

OS/2 Version 2
Volume 4: Writing Applications

Document Number GG24-3774-01

January 1993

International Technical Support Center
Boca Raton

Before using this information and the product it supports, be sure to read the general information under
"Special Notices" on page xxi.

Second Edition (January 1993)

This edition applies to Version 2.0 of Operating System/2.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed, address
your comments to:

IBM Corporation, International Technical Support Center
Dept. 91J, Building 235-2 Internal Zip 4423
901 NW 51 st Street
Boca Raton, Florida 33432

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document describes application development for OS/2 Version 2.0. It forms
Volume 4 of a five volume set; the other volumes are:

• OS/2 Version 2.0 - Volume 1: Control Program, GG24-3730

• OS/2 Version 2.0- Volume 2: DOS and Windows Environment, GG24-3731

• OS/2 Version 2.0- Volume 3: Presentation Manager and Workplace Shell,
GG24-3732

• OS/2 Version 2.0 - Volume 5: Print Subsystem, GG24-3775

The entire set may be ordered as OS/2 Version 2.0 Technical Compendium,
GBOF-2254.

This document is intended for IBM system engineers, IBM authorized dealers,
IBM customers, and others who require a knowledge of application development
under OS/2 Version 2.0.

This document assumes that the reader is generally familiar with the function
provided in previous releases of OS/2.

PS (409 pages)

©Copyright IBM Corp. 1993 Ill

Iv OS/2 v2.o Volume 4

Acknowledgements

The advisors for this project were:

Hans J. Goetz
International Technical Support Center, Boca Raton

Giffin Lorimer
International Technical Support Center, Boca Raton

The authors of this document are:

Alan Chambers
IBM United Kingdom

Franco Federico
IBM United Kingdom

Douglas Pearless
IBM New Zealand

Neil Stokes
IBM Australia

This document was compiled and published with the aid of the International
Technical Support Center, Boca Raton.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Ian Ameline
IBM Development Laboratories, Toronto

Mike Cowlishaw
IBM United Kingdom Development Laboratories, Hursley

David Kerr
IBM Programming Center, Boca Raton

Michael Kogan
IBM Programming Center, Boca Raton

Peter Magid
IBM Programming Center, Boca Raton

Greg Milligan
IBM Canada

Larry Raper
IBM Development Laboratories, Austin

Oliver Sims
IBM United Kingdom

©Copyright IBM Corp. 1993 v

Yi OS/2 V2.0 Volume 4

Thanks also to the many people, both within and outside IBM, who provided
suggestions and guidance, and who reviewed this document prior to publication.

Thanks to the following people for providing excellent tools, used during
production of this document:

Dave Hock (CUA Draw)
IBM Cary.

JOrg von Kanel (PM Spy)
IBM Yorktown Heights.

Contents

Abstract . iii

Acknowledgements v

Special Notices .. xxi

Preface xxiii

Related Publications
Prerequisite Publications
Additional Publications

xx ix
xxix
xx ix

Chapter 1. Overview . 1
1.1 User Interface 1
1.2 Object-Oriented Applications . 2

1.2.1 Object-Oriented Design . 2
1.2.2 Object-Action Interfaces . 4
1.2.3 Benefits of the Object-Oriented Approach 5

1.3 Presentation Manager Application Model 6
1.3.1 Systems Application Architecture Conformance 7
1.3.2 Online Help and Documentation . 8

1.4 The Workplace Shell . 8
1.5 Summary . 9

Chapter 2. Operating System/2 11
2.1 History . 11
2.2 Intel 80386 32-Bit Microprocessor Support 12
2.3 Memory Management . 12
2.4 Multiprogramming and Multitasking 13

2.4.1 Application Support . 14
2.4.2 Processes and Threads 15
2.4.3 'Interprocess Communication and Synchronization 16

2.5 DOS Application Support . 18
2.6 Microsoft Windows Application Support . 19
2.7 Dynamic Linking . 20
2.8 Summary . 21

Chapter 3. Object-Oriented Applications 23
3. 1 Object-Oriented Concepts . 23

3.1.1 Object-Oriented vs Functional Decomposition 25
3.1.2 Class-Based vs Module-Based . 26
3.1.3 Subclassing

3.2 User View vs Application View .
3.3 Object-Oriented Design .

3.3.1 Object Identification .
3.3.2 Action Identification
3.3.3 Search for Existing Objects .
3.3.4 Message Definition
3.3.5 Method Design

3.4 Object-Oriented Implementations
3.5 More Complex Objects

28
29
30
31
31
32
32
32
33
33

©Copyright IBM Corp. 1993 vii

Viii OS/2 V2.0 Volume 4

3.5.1 Device Manipulation 34
3.5.2 Access to Remote Systems . 34
3.5.3 Procedure Manuals . 35

3.6 Summary . 35

Chapter 4. The Presentation Manager Application Model 39
4.1 Windows 39

4.1.1 Window Classes . 40
4.1.2 Window Procedures 40

4.2 Messages 40
4.2.1 Message Classes . 41
4.2.2 Message Structure 41
4.2.3 Message Processing . 43

4.3 Application Structure 43
4.3.1 Main Routine . 44
4.3.2 Window Procedures . 46
4.3.3 Dialog Procedures . 49
4.3.4 Subroutines . 51
4.3.5 Partitioning the Application . 52

4.4 Presentation Manager Resources 52
4.5 Creating Reusable Code . 53
4.6 Window Hierarchy . 54

4.6.1 Parent/Child Relationship . 54
4.6.2 Window Ownership . 56
4.6.3 Z-Order . 57

4.7 Subclassing . 57
4.8 Summary . 58

Chapter 5. The Flat Memory Model . 61
5.1 DosAllocMem() Function . 61
5.2 Allocating versus Committing Memory . 62

5.2.1 Committing Storage at Allocation . 63
5.2.2 Dynamically Committing Storage . 63

5.3 Suballocating Memory . 66
5.4 Exception Handling . 68
5.5 Shared Memory Objects . 69

5.5.1 Named versus Anonymous Shared Memory Objects 69
5.5.2 Committing Shared Memory Objects 70

5.6 Summary . 70

Chapter 6. Building a Presentation Manager Application 73
6.1 Language Considerations . 73
6.2 Function and Data Types 74
6.3 Object-Oriented Programming Practices . 74
6.4 Application Main Routine . 75
6.5 Using Windows . 79

6.5.1 Window Creation . 79
6.5.2 Window Processing . 80
6.5.3 Window Closure . 80
6.5.4 Instance Data and Window Words 81
6.5.5 Subclassing a Window . 84

6.6 Window Communication . 87
6.6.1 Standard Windows . 87
6.6.2 Dialog Boxes . 88
6.6.3 Control Windows 89

6.6.4 Message Boxes . 91
6.6.5 Identifying the Destination Window . 91
6.6.6 Creating Message Parameters . 93
6.6. 7 Broadcasting Messages . 94

6.7 Passing Control 95
6.7.1 Direct Invocation/Direct Return 95
6.7.2 Direct Invocation/Message Return 96
6.7.3 Message Invocation/Direct Return 96
6.7.4 Message Invocation/Message Return 96
6.7.5 External Macros . 97

6.8 Terminating an Application . 98
6.9 Summary . 99

Chapter 7. Workplace Shell and the System Object Model 101
7.1 Objects in the Workplace Shell . 101

7.1.1 Inheritance Hierarchy . 101
7.1.2 Metaclasses . 103
7.1.3 Class Implementation . 103

7.2 Object Structure . 104
7.2.1 Methods . 104
7.2.2 Subroutines . 114

7.3 Defining an Object . 114
7.3.1 Files . 114
7.3.2 Class Definition File . 115
7.3.3 C Implementation of an Object Class 119

7.4 Object Behavior . 121
7.4.1 Creating an Object . 122
7.4.2 Using an Object . 128
7.4.3 Destroying an Object . 146
7.4.4 Deregistering an Object Class . 147
7.4.5 Accessing Presentation Manager Resources From a Workplace

Shell Object . 148
7.5 Transient Objects . 148
7.6 Communication Between Objects . 149

7.6.1 Application-Initiated Communication 150
7.6.2 User-Initiated Communication . 152
7.6.3 Dragging a Non-Workplace Object onto a Workplace Object 157
7.6.4 Dragging a Workplace Object onto a Non-Workplace Object 158
7.6.5 Dropping an Object . 159

7.7 Building a Workplace Shell Application . 164
7.8 Debugging . 166

7.8.1 Replacing SOM's SOMOutCharRoutine 166
7.8.2 A Sample ASCII Terminal Emulator for Debugging Use 168
7.8.3 SOM Provided Macros for Debugging 168

7.9 Sample Code and Application 169
7.9.1 pwFolder . 169
7.9.2 pwFinanceFile . 169

7.10 Summary . 169

Chapter 8. Direct Manipulation . 171
8.1.1 Direct Manipulation Basics . 171
8.1.2 Significant Events . 172
8.1.3 Rendering Mechanisms . 173

8.2 Data Structures Used in Drag/Drop · 174
8.2.1 The DRAGINFO Structure . 174

contents Ix

X OS/2 V2.0 Volume 4

8.2.2 The DRAGITEM Structure . 175
8.2.3 The DRAGIMAGE Structure . 176
8.2.4 The DRAGTRANSFER Structure . 177

8.3 Using Direct Manipulation . 177
8.3.1 Initiating a Drag Operation . 177
8.3.2 Dragging Over a Window . 182
8.3.3 Dropping an Object . 183
8.3.4 Transferring Information . 185

8.4 Using Rendering Mechanisms . 187
8.4.1 Standard Rendering Mechanisms . 188
8.4.2 Implementing a Private Rendering Mechanism 189

8.5 Summary . 190

Chapter 9. Presentation Manager Resources 191
9.1 Types of Resources . 191

9.1.1 Fonts 191
9.1.2 Icons, Pointers and Bitmaps . 191
9.1.3 Menu Bars and Pulldown Menus . 192
9.1.4 String Tables . 195
9.1.5 Accelerator Tables . 196
9.1.6 Help Tables . 196
9.1.7 Window and Dialog Templates . 197

9.2 Resource Script File . 198
9.3 Using Resources . 200

9.3.1 Loading From Within the Application 200
9.3.2 Loading Resources From a DLL . 200
9.3.3 Loading Dialogs From a DLL . 201

9.4 Resources and National Language Support 202
9.5 Summary . 203

Chapter 10. Multitasking Considerations . 205
10.1 Creating a Secondary Thread . 206

10.1.1 Threads Containing Object Windows 206
10.1.2 Threads Without Object Windows 210

10.2 Creating Another Process . 211
10.3 Destroying a Secondary Thread . 213

10.3.1 Threads Containing Object Windows 213
10.3.2 Threads Without Object Windows . 213
10.3.3 Forcing Termination of a Thread . 214

10.4 Terminating a Process . 214
10.5 Communicating With a Secondary Thread 215

10.5.1 Threads Containing Object Windows 215
10.5.2 Threads Without Object Windows . 215

10.6 Communicating With Another Process 216
10.6.1 Presentation Manager Messages . 216
10.6.2 Shared Memory . 216
10.6.3 Atoms . 219
10.6.4 Queues . 221
10.6.5 Pipes . 226

10.7 Maintaining Synchronization . 229
10.7.1 Presentation Manager Messages . 230
10.7.2 Timers and Semaphores . 231
10.7.3 DosWaitThread() Function . 233
10.7.4 DosWaitChild() Function . 234

10.8 Preserving Data Integrity . 235

10.9 Client-Server Applications . 236
10.10 Summary . 237

Chapter 11. Systems Application Architecture CUA Considerations 239
11.1 Standard Windows . 239
11.2 The Menu Bar . 241

11.2.1 Inserting/Deleting Menu Bar Items 242
11.2.2 Enabling/Disabling Items . 244
11.2.3 Indicating Selected Items . 244

11.3 Action Windows . 245
11.3.1 Modeless Action Windows . 245
11.3.2 Modal Action Windows . 246
11.3.3 Standard Dialogs . 247
11.3.4 Use of Control Windows . 253
11.3.5 Message Boxes . 256

11.4 Maintaining User Responsiveness . 257
11.5 Summary . 258

Chapter 12. Application Migration . 259
12.1 Data Types . 259
12.2 Function Name Changes . 260
12.3 32-Bit Interface Constraints . 260
12.4 Function Enhancements . 261

12.4.1 Semaphore Functions . 261
12.4.2 Thread Management . 262

12.5 Memory Management . 262
12.6 New Presentation Manager Functions . 263
12. 7 Summary . 264

Chapter 13. Mixing 16-Bit and 32-Bit Application Modules 265
13.1 Function Calls to 16-Bit Modules . 265
13.2 Using 16-Bit Window Procedures . 266

13.2.1 Creating a Window . 266
13.2.2 Passing Messages to 16-Bit Windows 267
13.2.3 Passing Messages to 32-Bit Windows 268

13.3 Summary . 270

Chapter 14. Compiling and Link Editing an Application 273
14.1 Running the SOM Precompiler . 275

14.1.1 The Makefile 275
14.1.2 SOM Precompiler Invocation . 276

14.2 Compiling C Source Code . 276
14.2.1 Module Definition File . 278
14.2.2 Compiler Options . 279

14.3 Link Edit . 280
14.4 Resource Compilation . 280
14.5 Dynamic Link Libraries . 280

14.5.1 Creating a DLL . 281
14.5.2 Using a DLL . 282
14.5.3 Presentation Manager Resources in a DLL 282
14.5.4 Using Dialogs in System Object Model Objects 283

14.6 Summary . 284

Chapter 15. Adding Online Help and Documentation 285
15.1 Creating Help Information . 285

Contents Xi

XII OS/2 V2.0 Volume 4

15.1.1 IPF Tag Language . 285
15.1.2 Defining Help Panels . 286
15.1.3 Displaying Graphics . 287
15.1.4 Hypertext and Hypergraphics . 287
15.1.5 Viewports 289

15.2 Compiling Source Files . 290
15.2.1 The I PFC Command . 290
15.2.2 National Language Support . 291

15.3 Linking Help Windows With Applications 291
15.3.1 Creating a Help Table . 291
15.3.2 Creating a Help Instance . 292
15.3.3 Associating a Help Instance . 293
15.3.4 Ending a Help Instance . 293

15.4 Displaying Help Panels . 293
15.4.1 F1 Key . 293
15.4.2 Help Menu Bar Item . 294
15.4.3 Help Pushbutton . 294

15.5 Main Help Window . 294
15.5.1 The Help Pulldown Menu . 294
15.5.2 Communication Between IPF and Applications 295

15.6 Stand-Alone Online Documentation . 297
15.6.1 Compiling Online Documents . 297
15.6.2 Concatenating Source Files . 298

15.7 Application Tutorials 298
15.8 Self-Teaching Applications . 298

15.8.1 Loosely Coupled Applications . 299
15.8.2 Tightly Coupled Applications . 299

15.9 Summary . 299

Chapter 16. Problem Determination . 301
16.1 Problem Documentation . 301

16.1.1 Window 302
16 .1.2 Event/ Action . 302
16.1.3 First Time vs Repetitive Actions . 302

16.2 Problem Isolation . 303
16.3 Problem Diagnosis . 303

16.3.1 First Time Problems . 304
16.3.2 Repetitive Action Problems . 306

16.4 Post-Resolution Action . 307
16.5 Summary . 307

Chapter 17. Generic Application Modules . 309
17.1 Generic Application Objects . 309

17.1.1 Display Windows . 310
17.1.2 Object Windows . 310
17.1.3 Subclassing . 311

17.2 Dialog Boxes . 311
17.3 Generic Subroutines . 311
17.4 Granularity . 312
17.5 Packaging . 313
17.6 Summary . 313

Chapter 18. Managing Development . 315
18.1 Risk Management . 315

18.1.1 Technological Risk . 315

18.1.2 Managerial Risk . 316
18.2 Configuration/Library Management . 317

18.2.1 Terminology . 318
18.2.2 Network Organization . 318
18.2.3 Common Access to Resources . 320
18.2.4 Update/Modification of Resources 321
18.2.5 Administration . 321

18.3 Summary . 322

Appendix A. Naming Conventions . 325
A.1 Symbolic Names and Constants . 325
A.2 Subroutine Names . 326
A.3 Window and Dialog Procedure Names . 326
A.4 Variable Names . 326

Appendix B. Application Program Construction 329
8.1 Modularization . 329
8.2 Header Files . 330

8.2.1 Private Header File . 330
8.2.2 External Interface Header File . 331
8.2.3 Global Header File . 331
8.2.4 Generic Routines Header File . 332
8.2.5 System-Supplied Header Files . 332

8.3 Data Abstraction and Encapsulation . 332
8.4 Packaging . 333

8.4.1 Application Object Modules . 333
8.4.2 Application Executable File . 334
8.4.3 Dynamic Link Libraries . 334

Appendix C. OS/2 Kernel API Functions . 335
C.1 Memory Allocation and Management . 335
C.2 Session Management . 336
C.3 Task Management . 336
C.4 Signal and Exception Handling . 337
C.5 Interprocess Communication . 338

C.5.1 Anonymous Pipes . 338
C.5.2 Named Pipes . 338
C.5.3 Queues . 339
C.5.4 Semaphores . 340

C.6 Message Retrieval . 341
C.7 Timer Services . 341
C.8 Dynamic Linking . 341
C.9 Device 1/0 . 342
C.10 File 1/0 . 342
C.11 Code Page Support . 343
C.12 Error Management . 344

Appendix D. Problem Reporting Worksheet 345

Appendix E. Source Code for the PWFolder and PWFlnanceFlle objects 347
E.1 Source Code for the PWFolder Object . 347

E.1.1 Source Code for the PWFolder.CSC file 347
E.1.2 Source Code for the PWFolder.C file 350
E.1.3 Source Code for the PWFolder.MAK file 360
E.1.4 Source Code for the PWFolder.RC file 361

Contents XIII

Xiv OS/2 V2.0 Volume 4

E.1.5 Source Code for the DIALOG.H file
E.2 Source Code for the PWFinanceFile Object

E.2.1 Source Code for the PWFin.CSC file
E.2.2 Source Code for the PWFin.C file
E.2.3 Source Code for the PWFin.MAK file
E.2.4 Source Code for the PWFin.RC file
E.2.5 Source Code for the Dialog.H file

361
362
362
367
387
389
389

Glossary . 391

Index ... 403

Figures

1. Program Flow - Functional Decomposition Approach 25
2. Program Flow - Object-Oriented Approach 25
3. Subclassing an Application Object . 28
4. Object-Oriented Development Progression 30
5. Encapsulation of Host Interaction Within Application Object 34
6. Message Flow in a Presentation Manager Application 44
7. Structure of an Application's Main Routine 44
8. Structure of a Window Procedure 46
9. Structure of a Dialog Procedure . 50

10. Allocating Memory in Previous Versions of OS/2 61
11. Allocating Memory in OS/2 Version 2.0 . 62
12. Committing Storage During Allocation 63
13. Using a Guard Page With a Memory Object 64
14. Guard Page Exception Handler . 65
15. Registering a Guard Page Exception Handler 66
16. Suballocating Memory . 67
17. Allocating Shared Memory 70
18. Sample Application Main Routine (Part 1) - Registration 76
19. Sample Application Main Routine (Part 2) - Window Creation 77
20. WinAddSwitchEntry() Function 78
21. Storing Instance Data in Window Words 82
22. Retrieving Instance Data from Window Words 83
23. Releasing Instance Data Storage . 83
24. WinSubclassWindow() Function . 84
25. Subclass Window Procedure . 86
26. WinDlgBox() Function . 88
27. Communicating with a Control Window . 89
28. Querying Information From a Control Window 90
29. Inserting an Item Into a List Box . 90
30. Querying a Selected List Box Item . 91
31. WinMessageBox() Function 91
32. Obtaining a Window Handle - WinQueryWindow() Function 92
33. Obtaining a Window Handle - WinWindowFromlD() Function 92
34. Obtaining a Window Handle Using the Switch Entry 92
35. WinBroadcastMsg() Function . 94
36. Calling External Macros . 97
37. Workplace Shell Inheritance Hierarchy 102
38. Invoking a Method . 105
39. Overriding an Existing Method . 107
40. Adding a New Method . 108
41. Adding an Item to a Context Menu . 109
42. Invoking a Method via a Context Menu Item 110
43. Filtering the Pop-up Menu Items . 111
44. Class Method Example . 112
45. Invoking a Method in Another Object Class 113
46. A SOM Precompiler-generated Function Stub 120
47. Registering a Workplace Shell Object Class 122
48. REXX Code to Register a Workplace Object 123
49. Initializing Class Data . 124
50. Freeing Class Data Items 124
51. C Code to Create an Object . 125

©Copyright IBM Corp. 1993 XV

XVI OS/2 V2.0 Volume 4

52. REXX Code to Create an Object . 125
53. Object Setup . 127
54. Initializing Instance Data . 128
55. Opening an Object . 130
56. Opening a Custom View of an Object . 132
57. _wpModifyPopupMenu .C code . 133
58. pwFinanceFile's Context Menu . 134
59. pwFinanceFile's Custom View . 134
60. _ wpMenultemSelected .C code . 135
61. _wpOpen . 136
62. · pwFinanceFile's Initialization Function 138
63. pwFinanceFile's Window Procedure, FinanceFileProc() 141
64. Automatically Instantiating an Object . 143
65. Closing an Object . 144
66. Saving an Object's State . 145
67. Restoring an Object's State . 146
68. Destroying an Object . 146
69. Deregistering an Object Class . 147
70. REXX Code to Deregister a WPS Object 147
71. Creating a Transient Object . 149
72. Referencing an Object Using OBJECTID 151
73. Dragging a Workplace Object . 154
74. Only Accepting pwFinanceFile Objects from Drag Operations 156
75. Multiple Rendering Methods . 158
76. Converting a Source Drag OS/2 File to a Workplace Object 160
77. Workplace Shell Application Structure 165
78. Sample .CSC File Definition for Overriding the SOMOutCharRoutine . 167
79. Sample .C File Definition for Overriding the SOMOutCharRoutine . . . 167
80. Sample STARTUP.CMD File Definition 168
81. Drag Initiation From a Container Window 179
82. Receiving a DM_PRINTOBJECT Message 181
83. Handling the DM_DRAGOVER Message 182
84. Handling the DM_DROP Message . 184
85. Handling the DM_RENDER Message . 186
86. Menu Bar Resource Definition . 193
87. String Table Resource Definition . 195
88. Loading a Text String Resource . 195
89. Accelerator Table Resource Definition 196
90. Window Template Resource Definition 197
91. Dialog Template Resource Definition . 198
92. Resource Script File . 199
93. Loading Resources From a DLL . 201
94. Loading a Dialog Resource From a DLL 202
95. Creating a Thread With an Object Window 207
96. Secondary Thread Creating an Object Window 208
97. Sample Object Window Procedure . 209
98. Creating a Thread Without an Object Window 211
99. Starting a Child Process . 212
100. DosKillThread() Function . 214
101. Terminating a Process . 214
102. Interprocess Communication Using Shared Memory (Part 1) 217
103. Interprocess Communication Using Shared Memory (Part 2) 218
104. Interprocess Communication Using Atoms (Part 1) 220
105. Interprocess Communication Using Atoms (Part 2) 221
106. Interprocess Communication Using Queues (Part 1) 222

107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.

Interprocess Communication Using Queues (Part 2)
Interprocess Communication Using Queues (Part 3)
Interprocess Communication Using Named Pipes (Part 1)
Interprocess Communication Using Named Pipes (Part 2)
Synchronization Using Presentation Manager Messages
Synchronization Using an Event Semaphore (Part 1)
Synchronization Using an Event Semaphore (Part 2)
Synchronization Using the DosWaitThread() Function (Part 1)
Synchronization Using the DosWaitThread() Function (Part 2)
DosWaitChild() Function
Dynamically Inserting a Menu Bar Item
Dynamically Inserting a Pulldown Menu
Disabling an Menu Bar/Pulldown Menu Item
Placing a Check Mark on a Pulldown Menu Item
Standard Dialogs - WinFileDlg() Function
WinFontDlg() Function - Sample Code
DosCreateThread() Function
DosAllocMem() Function .
Declaring a 16-Bit Function in 32-Bit Code
Creating a 16-bit Window From Within a 32-bit Module
Passing a 16:16 Pointer as a Message Parameter
Mixed Model Programming - WinSetWindowThunkProc() Function
Mixed Model Programming - Thunk Procedure
16:16 to 0:32 Address Conversion
Development Process for New WPS Classes
Compiling and Linking an OS/2 Presentation Manager Application
Sample Module Definition File for Presentation Manager
Sample Module Definition File to Create a DLL
IPF Tag Language Example
Simple Help Panel Source
Displaying a Bitmap in a Help Window
Hypertext Link
Hypergraphic Link
Link File With Multiple Hypergraphic Links
Multiple Viewports Using Automatic Links
Application-Controlled Viewport
Help Table Resource Definition
WinCreateHelplnstance() Function
WinAssociateHelplnstance() Function
WinDestroyHelplnstance() Function
Help Pulldown Menu Definition
Network Domains
Production Libraries on a LAN Server

224
225
227
228
230
231
232
233
233
234
242
243
244
244
248
251
262
263
265
267
268
269
269
270
274
277
278
281
286
286
287
287
288
289
289
290
291
292
293
293
295
319
320

Figures xvii

.·

XViii OS/2. V2.0 Volume 4

Tables

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Window Identifiers
Application Object/Window Correlation .
Presentation Manager Macros
Parameters and Settings for the Remote Terminal .
New Presentation Manager Functions in OS/2 Version 2.0
Type Prefixes for Symboiic Constants
Type Prefixes for Variables
Type Prefixes for Pointers
Memory Management Functions
Session Management Functions
Task Management Functions
Exception Handling Functions
Anonymous Pipe Functions
Named Pipe Functions
Queue Functions
Semaphore Functions
Message Retrieval Functions
Timer Services Functions .
Dynamic Linking Functions
Device 1/0 Functions

21. . File 1/0 Functions
22.
23.

©Copyright IBM Corp. 1993

Code Page Functions
Error Management Functions

55
59
93

168
263
325
326
327
335
336
336
337
338
339
339
340
341
341
341
342
342
344
344

xix

' .·

XX. OS/2 V2.0 Volume 4
' -. # ~'

Special Notices

This publication is intended to help the customer in the design and
implementation of OS/2 Presentation Manager applications under OS/2 Version
2.0, using object-oriented design and programming principles. The information
in this publication is not intended as the specification of any programming
interfaces that are provided by OS/2 Version 2.0. See the PUBLICATIONS
section of the IBM Programming Announcement for OS/2 Version 2.0 for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries. in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS.

The information about non-IBM ("vendor") products in this manual has been
supplied by the vendor and IBM assumes no responsibility for its accuracy
completeness.

The use of this information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do
so at their own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and a.ddresses used by an
actual business enterprise is entirely coincidental.

@Copyright IBM Corp. 1993 xxl

XXli OS/2 V2.0 Volume 4

The following terms, which are denoted by an asterisk{*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

C/2
COBOU2
Common User Access
Common View
CUA
DATABASE 2
DB2
DCF
Document Composition Facility
FORTRAN/2
IBM
Macro Assembler/2
Micro Channel
Office Vision
Operating System/2
OS/2
Personal System/2
Presentation Manager
PS/2
SAA
System/370
Systems Application Architecture
WIN-OS/2
Workplace Shell

The following terms, which are denoted by a double asterisk (* *) in this
publication, are trademarks of other companies.

Intel is a trademark of Intel Corporation.
Lotus is a trademark of the Lotus Development Corporation.
Microsoft is a trademark of Microsoft Corporation.
MS-DOS is a registered trademark of Microsoft Corporation.
Smalltalk/V is a trademark of Digitalk Inc.
Windows is a trademark of Microsoft Corporation.
286, 386, 486, SX are trademarks of Intel Corporation.

Preface

This document is intended as a general introduction to the concepts involved in
the design and implementation of applications which will execute in the OS/2
Presentation Manager and Workplace Shell environments under OS/2 Version
2.0. It is not intended to be an exhaustive reference on the subject of
Presentation Manager programming, and should be used in conjunction with the
official IBM product documentation, and other reference books and documents,
which are mentioned herein.

It must be stressed that this document is not intended to teach the reader how to
program in the "C" language or how to use the Presentation Manager
programming interface, nor is it intended to teach the theory of object-oriented
programming. Rather, it serves as a guide to the integration of various
object-oriented software engineering techniques with the Presentation Manager
application model, in order to produce well-structured, easily-maintainable
applications which conform to CUA guidelines.

The information given in this document is generally independent of programming
language implementations (with certain exceptions noted in the text), and may
be used to develop applications in any supported programming language.
However, programming syntax examples used in this document are shown using
the "C" language, since this language is commonly used for Presentation
Manager application development, and most clearly illustrates the structure of
the Presentation Manager and Workplace Shell application models.

This document is intended for:

• Application designers, planners and development managers who require an
understanding of the application of object-oriented principles to the
Presentation Manager environment, and the productivity gains to be
achieved from the use of such principles.

• Programmers who wish to understand the structure of Presentation Manager
and Workplace Shell applications, and the techniques by which applications
may be constructed so as to achieve maximum function, with optimal levels
of reusability and maintainability.

The code examples used in this document are available in electronic form via
CompuServe .. or through a local IBM Support BBS, as package RB3774.ZIP.
IBM employees may obtain the code examples from the package GG243774
PACKAGE on OS2TOOLS.

Second Edition -------------------------.

This Second Edition includes programming information relating to application
development under OS/2 Version 2.0, and supercedes the ITSC Technical
Bulletin Presentation Manager Application Development, GG24-3543.

The document is organized as follows:

• Chapter 1, "Overview" provides a brief introduction to the topics covered in
this document.

This chapter is recommended for all readers of the document.

©Copyright IBM Corp. 1993 xxm

xxlv os12 v2.o Volume 4

• Chapter 2, "Operating System/2" provides a brief technical overview of the
OS/2 Version 2.0 environment, comparing and contrasting it with the DOS
environment and previous versions of OS/2. The major features of OS/2
Version 2.0 are described and their use by applications is discussed.

This chapter is recommended for those readers who are not familiar with the
OS/2 Version 2.0 operating system environment, in order to provide them
with a basic understanding of the capabilities of OS/2 Version 2.0.

• Chapter 3, "Object-Oriented Applications" explains the basic principles of
object-oriented design and programming. The object-oriented approach is
compared and contrasted with the traditional procedural approach in terms
of a simple application model, before the extension of the object-oriented
paradigm into more complex scenarios is discussed. Some suggestions and
guidelines are also offered with regard to application design and
implementation using the object-oriented approach.

This chapter is recommended for readers who do not already possess an
understanding of the basic principles of object-oriented programming. This
knowledge is essential in order to understand the programming guidelines
presented later in the document.

• Chapter 4, "The Presentation Manager Application Moder' describes the
Presentation Manager application model, and illustrates the way in which the
application model implements the object-oriented principles introduced in
Chapter 3, "Object-Oriented Applications. 11

This chapter is recommended for all readers of this document, since it
explains the basic structure of a Presentation Manager application, and the
way in which the Presentation Manager application model facilitates the
creation of object-oriented applications.

• Chapter 5, "The Flat Memory Model" describes the 32-bit flat memory model
implemented in OS/2 Version 2.0, and discusses the programming
considerations which arise from the differences between this memory model
and the segmented memory model used by previous versions of OS/2.

This chapter is recommended for all programmers who intend to develop
applications under OS/2 Version 2.0.

• Chapter 6, "Building a Presentation Manager Application" describes the
major programming techniques required to implement a Presentation
Manager application, including recommendations and established
conventions in areas such as methods of opening and closing windows,
displaying dialogs, communication between windows, managing user
responsiveness etc. The chapter also discusses certain software
engineering techniques which may be used to enhance the level of
modularity and optimize the granularity of the resulting application code.

This chapter is recommended for programmers and development managers
who will be working on the implementation of Presentation Manager
applications.

• Chapter 7, "Workplace Shell and the System Object Model" describes the
system object model introduced in OS/2 Version 2.0, and its implementation
by the OS/2 Version 2.0 Workplace Shell. The chapter describes the
object-oriented application layer provided by the Workplace Shell, and
explains how Workplace Shell objects are defined, created and implemented.

This chapter is recommended for programmers and development managers
who wish to create objects for use on the Workpla.ce Shell desktop.

• Chapter 8, "Direct Manipulation" explains the implementation of direct
manipulation (drag and drop) techniques for carrying out required tasks in
the Presentation Manager and Workplace Shell environments. The chapter
discusses the use of these techniques both by Presentation Manager
windows and by Workplace Shell objects.

This chapter is recommended for programmers who wish to implement
direct manipulation in their Presentation Manager applications or Workplace
Shell object classes.

• Chapter 9, "Presentation Manager Resources" discusses the concept of
Presentation Manager resources. The chapter covers the types of
application resources which may be defined in the Presentation Manager
environment, their definition and conventions governing their use.

This chapter is recommended for all programmers who will develop
Presentation Manager applications, since resources are used in most if not
all applications.

• Chapter 10, "Multitasking Considerations" describes the ways in which
multiple threads of execution may be used within a Presentation Manager
application, in order to isolate long-running application tasks from the user
interface and thereby provide greater application responsiveness to the end
user.

This chapter is recommended for programmers and development managers
who will be building Presentation Manager applications which carry out
lengthy processing tasks, or which require access to remote devices or
systems.

• Chapter 11, "Systems Application Architecture CUA Considerations"
discusses the implementation of various SAA CUA user interface
specifications in Presentation Manager applications. The chapter provides
coding examples for a number of CUA techniques such as menu bar
handling.

This chapter is recommended for programmers who wish to implement SAA
CUA guidelines in their applications.

• Chapter 12, "Application Migration" discusses the migration of Presentation
Manager applications to OS/2 Version 2.0 from previous versions of OS/2.
Differences in implementation are described, along with additional facilities
provided by Presentation Manager under OS/2 Version 2.0.

This chapter is recommended for application developers with Presentation
Manager applications written for previous versions of OS/2, which they wish
to modify in order to take full advantage of the capabilities of OS/2 Version
2.0.

• Chapter 13, "Mixing 16-Bit and 32-Bit Application Modules" describes the
way in which 32-bit applications under OS/2 Version 2.0 may make use of
existing 16-bit functions and window procedures, along with restrictions and
programming considerations to be borne in mind when developing such
applications.

This chapter is recommended for those programmers working in
organizations with existing 16-bit runtime libraries or Dlls, and who wish to
make use of functions contained within these libraries.

• Chapter 14, "Compiling and Link Editing an Application" describes the steps
necessary to compile and link edit a Presentation Manager application
under OS/2 Version 2.0. including the use of module definition files. and the

Preface XXV

creation of dynamic link libraries to contain application code and
Presentation Manager resources.

This chapter is recommended for all programmers who will develop
Presentation Manager applications, and who wish to understand how to
create executable modules and dynamic link libraries.

• Chapter 15, "Adding Online Help and Documentation" examines the
provision of online, context-sensitive help information for Presentation
Manager applications using the IPF provided with Presentation Manager,
and the use of this facility to create on line documentation.

This chapter is recommended for application developers who wish to provide
online help for their applications, or who wish to develop online
documentation and tutorial programs.

• Chapter 16, "Problem Determination" describes some simple techniques for
problem determination and resolution in the Presentation Manager
environment, and discusses some common application problems.

This chapter is recommended for all application developers involved in
testing and debugging Presentation Manager applications.

• Chapter 17, "Generic Application Modules" discusses the use of generic
routines to perform commonly used functions within a Presentation Manager
application, and identifies a number of areas where generic functions may be
successfully applied.

This chapter is recommended for planners and development managers who
will manage a number of application developers working on one or more
Presentation Manager applications, and who wish to understand the benefits
in terms of consistency and productivity which can be achieved through the
use of common routines.

• Chapter 18, "Managing Development" provides some guidelines for the use
of a local area network (LAN) to facilitate centralized control and
administration of the workstation-based application development process.

This chapter is recommended for planners and development managers who
will manage a number of application developers working on one or more
Presentation Manager applications, and who wish to understand some of the
ways in which a distributed development process may be managed and
control led.

The following appendixes are Included in this document:

XXVI OS/2 V2.0 Volume 4

• Appendix A, "Naming Conventions" provides some guidelines for naming
conventions to be used with symbols, subroutines and variables in the
Presentation Manager environment. These guidelines cover the use of
Hungarian Notation for such names.

This chapter is recommended for planners and development managers who
wish to implement a standard series of naming conventions for the
application development projects under their control.

• Appendix B, "Application Program Construction" presents guidelines for the
structuring of applications and their component modules in order to achieve
the optimum level of modularity and granularity within an application, thus
promoting reuse of application code.

This chapter is recommended for planners and development managers who
wish to gain the maximum productivity benefit over a number of Presentation
Manager application development projects.

• Appendix c. "OS/2 Kernel AP/ Functions" compares the operating system
kernel functions provided in OS/2 Version 2.0 with those provided in OS/2
Version 1.3.

This chapter is recommended for programmers who will be migrating
applications from previous versions of OS/2.

• Appendix D. "Problem Reporting Worksheet" provides a worksheet which
may be used when following the steps given in Chapter 16, "Problem
Determination," to provide effective problem documentation which can then
be used to reproduce application errors.

This chapter is recommended for application developers involved in testing
and debugging Presentation Manager applications.

Preface XXYll

.··I:

xxvlii os12 v2.o Volume 4

Related Publications

The following publications are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

Prerequisite Publications
• IBM OS/2 Version 2.0 Application Design Guide, 10G6260

• IBM OS/2 Version 2.0 Control Program Reference

• IBM OS/2 Version 2.0 Presentation Manager Reference

• IBM OS/2 Version 2.0 Programming Tools Reference.

Additional Publications

© Copyright I BM Corp. 1993

• OS/2 Version 2.0 - Volume 1: Control Program, GG24-3730

• OS/2 Version 2.0 - Volume 2: DOS and Windows Environment, GG24-3731

• OS/2 Version 2.0 - Volume 3: Presentation Manager and Workplace Shell,
GG24-3732

• OS/2 Version 2.0 - Volume 5: Print Subsystem, GG24-3775

• OS/2 Version 2.0 Remote Installation and Maintenance, GG24-3780

• The Design of OS/2, Harvey M. Deitel and Michael J. Kogan, Addison Wesley
1992 ISBN 0-201-54889-5 (SC25-4005)

• Object Oriented Programming: An Evolutionary Approach, Brad J. Cox,
Addison Wesley 1987 ISBN 0-201-10393-1

• Programmer's Guide to the OS/2 Presentation Manager, Michael J. Young,
Sybex 1989 ISBN 0-89588-569-7

• Programming the OS/2 Presentation Manager, Charles Petzold, Microsoft
Press 1989 ISBN 1-55615-170-5

• IBM OS/2 Version 2.0 Technical Library - Procedures Language/2 REXX
Reference, 10G-6268

• IBM C Set/2 User's Guide, SC09-1310

• IBM C Set/2 Migration Guide, SC09-1369

• IBM Systems Application Architecture CUA Advanced Guide to User Interface
Design, SC34-4289

• IBM Systems Application Architecture CUA Advanced Interface Design
Reference, SC34-4290

• IBM Systems Application Architecture Common Programming Interface
Presentation Reference, SC26-4359.

xxlx

XXX OS/2 V2.0 Volume 4

ITSC Technical Bulletin Evaluation
GG24-377 4-01

REDOOO

Fold and Tape

Fold and Tape

G G24-377 4-01

Please do not staple

BUSINESS REPL V MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Center
Department 91J, Building 235-2
Internal Zip 4423
901 NORTHWEST 51 ST STREET
BOCA RATON FL
USA 33431-1328

1 .. 11 ... 11 .. 1 .. 1 .. 11 11 ... 11 .. 11 ... 1.11 .. 1 ... 1.11

Please do not staple

--. -- ------ --------.! ~:SrE:®

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

Fold and Tape

ITSC Technical Bulletin Evaluation REDOOO

05/2 Version 2
Volume 4: Writing Applications

Publication No. GG24-3774-01

Your feedback is very important to us to maintain the quality of ITSO redbooks. Please fill out this
questionnaire and return it via one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spelling
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print Quality

Please answer the following questions:

a) Are you an employee of IBM or its subsidiaries? Yes No

b) Are you working in the USA? Yes -- No

c) Was the bulletin published in time for your needs? Yes -- No

d) Did this bulletin meet your needs? Yes -- No

If no, please explain:

What other Topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organization

Phone No.

Chapter 1. Overview

IBM* OS/2* Presentation Manager• is a graphical user interface facility that
allows the creation of object-oriented, event-driven applications which conform to
IBM Systems Application Architecture* {SAA*) Common User Access* {CUA*)
guidelines. Presentation Manager provides an application execution
environment under which such applications are executed, and under which they
may take full advantage of the advanced capabilities of the OS/2 operating
system environment, as well as a system-level mechanism to handle interaction
between the application and the user in a consistent and intuitive manner.

The object-based Presentation Manager application model facilitates the use of
object-oriented software engineering principles such as data abstraction and
encapsulation. The application of these principles enhances application
modularity and thereby contributes to increased potential for code reuse and
easier application maintenance through containment of change, thereby
achieving higher levels of productivity in the areas of application development
and maintenance.

This document examines the Presentation Manager execution environment in
order to describe the structure and implementation of Presentation Manager
applications, and to illustrate the facilities provided by Presentation Manager to
support object-oriented techniques. In addition, the document examines the
ways in which CUA guidelines may be implemented by Presentation Manager
applications within the object-oriented application model. Particular emphasis is
given to the use of software engineering principles which facilitate the creation
of reusable code for common application services. This is one of the primary
concerns of the object-oriented approach to application design, and is also one
aspect of the Systems Application Architecture Common Applications ("red
layer") component.

The document also discusses the management of workstation-based application
development projects. Historically, workstation applications have typically fallen
into the systems software category, or have been "one-off" applications and
hence have not been subject to the same rules and disciplines imposed upon the
traditionally host-based line-of-business applications. However, as the OS/2
environment begins to provide a viable platform for the implementation of
workstation-based and cooperative line-of-business applications, typical
corporate investments in workstation software are increasing rapidly, and
therefore the management and maintenance of these investments must be
considered. Some suggestions on the management of the workstation-based
development process are given in Chapter 18, "Managing Development."

1.1 User Interface
The Presentation Manager user interface model facilitates an intuitive user
interface. While people typically approach their work tasks from a
"problem-domain" viewpoint, computers tend to adopt an "operator/operand"
approach that is inherently alien to the end user. Traditionally, the required
translation between approaches has been left to the user, with applications and
their user interfaces written to conform to the computer's viewpoint rather than
that of the user. This approach has often led to users having difficulty relating to

©Copyright IBM Corp. 1993 1

the technology, with consequently greater amounts of time and money spent in
user training.

In recent times, a growing school of thought has emerged which contends that,
with the increasing power of computer systems and particularly with the advent
of powerful programmable workstations, the responsibility for this interface
translation should lie primarily with the application or the computer system
rather than with the user. In order to achieve this, user interfaces must be
redesigned in order to operate in an object-action, event-driven manner which
corresponds with the users' problem domain viewpoint.

Presentation Manager implements such a user interface, and Presentation
Manager applications may thus be designed and implemented in such a way as
to provide improved user-friendliness and encourage learning by exploration.
The details of the Presentation Manager user interface are described in OS/2
Version 2.0 - Volume 3: Presentation Manager and Workplace Shell.

Presentation Manager also facilitates consistency between applications by
handling the interface between user and application at a system level, providing
a number of standard constructs which may be exploited by applications. Since
these constructs typically appear and behave in the same way regardless of the
application under which they are implemented, a user need learn only one set of
user interface guidelines to be able to interact with multiple applications. This
consistency reduces confusion for users who work with multiple applications,
and reduces the need for extensive application training.

The SAA CUA component provides guidelines for the use of these constructs to
fulfill particular input/output requirements within an application, such that a level
of consistency is achieved not only in the behaviour of the constructs
themselves, but also in their relationship to one another and thus in the
behaviour of the application as a whole. These guidelines are documented in
the IBM Systems Application Architecture CUA Advanced Guide to User Interface
Design.

1.2 Object-Oriented Applications
Many definitions of the term object-oriented programming may be found in
various publications and presentations appearing over the last few years. These
definitions often differ widely, and have resulted in a great deal of confusion and
debate as to the "true" meaning of the term. It may be justifiably argued that
there is no such true meaning, and the term object-oriented may be used to
describe techniques ranging from simple data abstraction to the full inheritance
hierarchies implemented by certain object-oriented development tools.

1.2.1 Object-Oriented Design

2 OS/2 V2.0 Volume 4

For the purpose of discussion within this document, an object-oriented
application will be defined as one where data objects are the focus of the
application. A data object is defined to be a particular representation of a
logical data entity. For example, a document being edited may exist in two
places: as an image in memory and as a file on a fixed disk. Each of these two
forms constitutes a separate data object.

The procedures that operate upon these data objects in order to carry out
application functions are encapsulated with the data objects to form application

objects. Application objects are logically independent units comprising both data
and function, which communicate with one another to request actions, conveyed
in the form of messages passed between the communicating objects. In
object-oriented terminology, the procedures that are invoked to carry out the
required actions are known as methods.

Several rules apply to the design and behaviour of application objects. These
are listed below:

• A data object should be accessible only from within a single application
object which "owns" the data object. The definition, creation and/or
establishment of access to the data object should also be achieved from
within the application object; this is known as the principle of encapsulation.

• The behaviour of and output from an application object should depend upon,
and only upon, the type and contents of the messages it receives. The
behaviour of an object should not depend upon any other external source.

As a corollary to the foregoing principle, the result of passing a particular
type of message may also vary, depending upon the type of application
object to which it is passed, and that object's interpretation of the message.
Adherence to this rule allows the behaviour of an object to differ, depending
upon the nature of the messages received by that object; this differing
behaviour is known as polymorphism.

For ease of processing, application objects with similar properties are grouped
into object classes. Each object in a class is said to be an instance of that class.
Application objects within the same class share properties such as data object
definitions, class-specific variable definitions and values, and methods. Objects
therefore take on the properties of their class; this is known as inheritance.

It is the concept of inheritance that provides a distinguishing factor between the
two major schools of thought which exist under the object-oriented paradigm:

• The basic precept of the class-based theory of object-oriented design is that
objects are defined in terms of their class, and that new classes are defined
in terms of existing classes, with certain additions and modifications which
distinguish the new class. Thus there is a measure of interdependence
between object classes, and an inheritance hierarchy is formed.

The primary advantage of the class-based approach is that it eases the task
of defining object classes, since each new class belongs to a hierarchy of
previously defined classes with their own properties and methods. The
application developer therefore need only explicitly define the distinguishing
characteristics of each class.

The major disadvatange of the class-based approach is the consequent high
level of interdependence between objects. Since the unit of modularity is the
entire inheritance hierarchy, rather than the individual object, reuse of a
particular object presupposes reuse of all those objects in its hierarchy upon
which the definition of the required object depends.

The class-based approach therefore provides a high initial productivity to the
application developer, although with a consequent reduction in the level of
granularity and an increase in run-time overhead.

• The module-based theory of application development contends that while
objects are defined in terms of their class, each new class is totally defined
in its own right, and is not dependent upon the definitions of other classes.
Hence•there is no inheritance hierarchy under the module-based approach.

Chapter 1. Overview 3

The primary advantage of the module-based approach is that it avoids the
object interdependence associated with the class-based approach; since
each object class contains its own complete definition of properties and
methods. Thus the unit of modularity is the individual application object.

The disadvantage of this approach lies in the fact that the application
developer is required to define each object class in its entirety, and typically
cannot rely on previous definitions.1 The module-based approach therefore
attains a higher level of modularity and independence between application
objects, but at the expense of higher initial development time.

The object-oriented approach to application design is most suited to applications
where the data is the focus of the application, and is less suitable where the
procedure or sequence of actions is the critical factor in the design. However, in
mixed situations where only certain parts of an application or application system
are procedurally oriented, as is the case with many work tasks, and where the
provision of an event-driven user interface is desirable, the object-oriented
paradigm can be extended to encompass procedurally oriented tasks. This is
discussed further in Chapter 31 "Object-Oriented Applications."

While object-oriented applications deal primarily with the manipulation of data
entities and their logical representations, there are many situations where an
application must deal with other entities such as remote devices or systems.
Administrative procedures defined by or imposed upon an organization may also
be viewed as logical entities with which an application must interact. The
incorporation of such entities into the object-oriented application paradigm
requires an expansion of the concept of an application object to include the
definition of and methods pertaining to any type of entity addressed by the
application. This broadened definition is fundamental in making the
object-oriented application model applicable to virtually any application scenario.

1.2.2 Object-Action Interfaces
For the purpose of discussion within this document, an object-oriented
application will also be defined as one that implements an event-driven,
object-action user interface such as that specified in the IBM Systems
Application Architecture CUA Advanced Guide to User Interface Design. With
such an interface, a user first selects an object to manipulate, then selects one
or more of a defined set of actions to be performed upon that object. The
sequence of these actions, and hence the sequence of the dialog with the user,
is controlled by the user rather than by the application, where this is possible
within the requirements of the work task being performed.

The concepts of object-oriented design and an object-action user interface are
distinct but complementary. While it is possible to design and create an
object-oriented application without an object-oriented user interface, it it far
more difficult to implement a truly event-driven, object-action style of user
interface without embracing, at least a certain degree, the object-oriented
approach to design and implementation. It thus follows that the SAA CUA user
interface model cannot be fully implemented without some measure of
adherence to object-oriented design principles. It is the provision of an intuitive,
event-driven user interface that constitutes one of the great strengths of the
object-oriented paradigm.

1 This may be overcome to some extent through subclassing, which is explained later in this chapter.

4 OS/2 V2.0 Volume 4

1.2.3 Benefits of the Object-Oriented Approach
A fundamental benefit of an object-oriented approach from the viewpoint of the
end user is the ability for an application to behave in a manner that parallels a
typical human being's natural approach to problem solving. The flexibility of the
object-action interface allows scope for individual variation in the approach to a
particular work task. However, such a user interface relies upon an
object-oriented application implementation in order to allow such flexibility.
Such an implementation is in turn dependent upon the correct design approach,
which must begin with a focus upon the entities that affect the application, rather
than upon the procedures to be performed upon those entities.

The object-oriented paradigm also encourages the concept of data abstraction
and encapsulation, whereby the definition of and establishment of access to data
objects is achieved from within the application object. Ideally, all access to and
manipulation of a data object is carried out from within a single application
object, thereby facilitating change management and application maintenance.

Another great benefit of the object-oriented approach is the increased potential
for creation of reusable code. The independent nature of application objects
enables them to be coupled together in various ways to achieve desired results,
with the internal implementation details of each object and its data structures
being isolated from the other objects with which it communicates. Applications
that manipulate existing data objects may therefore be assembled from a
number of existing application objects, thus reducing the time and effort required
to develop the application.

This potential for object reuse has also given rise to one of the great criticisms
levelled at the object-oriented approach; the "myth" of the completely generic
object. Due to the impracticability of foreseeing all possible actions that might
be performed on a data object, it is impossible to produce a complete set of
methods for that object. Hence an application object might require modification
at some stage in its life cycle, and is not truly reusable.

The obj~ct-oriented approach overcomes this potential problem by the use of a
concept known as subclassing, whereby a new application object is created
comprised of a data object and a number of new or modified methods which act
upon that object. Messages destined for the original application object are
diverted to the new object; the original object is said to have been subclassed.
If the message is of a type with which the new object is explicitly concerned, it
processes the message using its own methods. If not, it passes the message on
to the original object for processing. In the subclassing process, neither the
sending object nor the original receiving object should be aware that
subclassing has taken place. Subclassing therefore provides a transparent
means for modifying or adding to the behaviour of an existing application object
without modifying the object itself.

The general principles of object-oriented design and programming, as they apply
to the Presentation Manager environment, are explored more fully in Chapter 3,
"Object-Oriented Applications."

Chapter 1. Overview 5

1.3 Presentation Manager Application Model

6 OS/2 V2.0 Volume 4

Contrary to popular belief, Presentation Manager provides far more than merely
the ability to achieve a windowed, graphical user interface for the display of
information on the screen. Rather, Presentation Manager provides a
message-driven, object-based execution environment that facilitates the
provision of an event-driven, object-action user interface, and supports the
implementation of object-oriented design techniques.

Presentation Manager enables the implementation of an object-action user
interface by providing an application programming interface that conforms to the
guidelines laid down in the IBM Systems Application Architecture Common
Programming Interface Presentation Reference, and a set of underlying system
services that support an object-oriented, event-driven application model. The
Presentation Manager programming interface provides user interface constructs
which conform to CUA guidelines. However, it must be strongly emphasized
that the term "presentation interface" is a misnomer, since Presentation
Manager is concerned with far more than merely the display of information on
the screen.

The Presentation Manager application model is centered around the concept of
windows. While a window typically appears as a rectangular area on the
screen, it is in fact a "handle" to a data object; a window concerned with data
being displayed on the screen is termed a display window, whereas a window
concerned with an internal data object is known as an object window. Each
window belongs to a window class and is associated with a window procedure,
which contains the definition of the window's data object(s) and also contains
methods to perform all of the processing associated with that window. Windows
and their associated window procedures communicate with the user and with
each other, by the use of messages that are routed to the appropriate window by
Presentation Manager.

Since a window procedure may contain all the processing related to a particular
data object, along with the definition of and establishment of access to that data
object, Presentation Manager provides a suitable environment for data
encapsulation and abstraction, in that the internal representation and workings
of a data object may be "hidden" within the window procedure that "owns" the
data object. Provided the external interfaces (that is, the message formats) of
the window procedure remain unchanged, other window procedures within an
application are insulated from changes to the data object or its processing. This
provides a powerful tool for the enhancement of application modularity and the
containment of change within an application. This in turn facilitates the task of
application maintenance and change management, since affected application
modules may be easily identified.

A close corellation may be drawn between the concept of an application object
and that of a window under Presentation Manager. The window becomes the
identity of, or "handle" to an object; the data referenced by the window (whether
a display space on the screen or a data file) becomes a data object; the window
procedure associated with a window contains the methods to act upon that data
object; and actions to be performed by the application object on its data object
are conveyed by way of messages routed to the window by Presentation
Manager. Although Presentation Manager provides window classes to allow
grouping of objects with similar characteristics, a full inheritance hierarchy is not
supported, and thus Presentation Manager conforms more closely to the

module-based theory of object-oriented design than to the class-based approach.
Development tools such as Smalltalk V/PM .. are available to extend the
Presentation Manager application model and facilitate implementation of a full
inheritance hierarchy.

The Presentation Manager application model, along with the underlying OS/2
environment, affords the ability to store an application object (that is, a data
object definition, along with the methods associated with that data object,
contained within a window procedure) in a library that may be dynamically
linked with an application. This in turn provides the potential to develop and
implement applications composed of one or more generic objects linked by a
custom-built application harness, which allows applications to be assembled
more quickly and at less cost.

The Presentation Manager programming interface includes a mechanism for
subclassing a window, whereby messages destined for a particular window may
be transparently diverted to another window for specialized processing.
Implementing an application using generic objects with subclassing to provide
specialized methods may greatly reduce the amount of coding required, and
consequently reduce the development time and cost of applications.

The general implementation of and support for object-oriented programming
principles under Presentation Manager is discussed further in Chapter 4, "The
Presentation Manager Application Model." The subject is examined in more
detail, and specific examples are discussed, in Chapter 6, "Building a
Presentation Manager Application."

1.3.1 Systems Application Architecture Conformance
While Presentation Manager supports and facilitates the implementation of
object-oriented design techniques and provides support for the user interface
constructs and guidelines laid down by the CUA component of Systems
Application Architecture, it does not force an application developer to conform to
object-oriented design principles or CUA-conforming user interface guidelines.
While the rich function set provided by the Presentation Manager programming
interface allows an application developer to interpret and implement CUA
guidelines in a number of ways, there are emerging conventions with regard to
the implementation of these guidelines.

In order to achieve the benefits which accrue from adherence to object-oriented
and CUA principles, a measure of discipline is required on the part of the
application developer, so as to implement the application in such a way that the
maximum degree of object-independence and reusability is attained, and that the
optimal level of conformance to CUA conventions is achieved. The subject of
CUA conformance is discussed in detail in Chapter 11, "Systems Application
Architecture CUA Considerations."

Note that CUA conformance, along with consistency in the implementation of
application functions and user interface constructs, may be enforced or
enhanced through the use of standard functions and subroutines contained in
code libraries. The creation of such libraries is facilitated by the modular nature
of the Presentation Manager environment, and by the dynamic linking
capabilities of the OS/2 operating system. This subject is discussed further in
Chapter 17, "Generic Application Modules."

Chapter 1. Overview 7

1.3.2 Online Help and Documentation
Presentation Manager also supports the development of online, context-sensitive
help panels, along with online documents for support of applications, business
processes and computer-based training. Such information may be displayed in
windows on the Presentation Manager desktop, using the Information
Presentation Facility (IPF), which is shipped with the operating system.

Help panels displayed using IPF are context-sensitive, thereby allowing the user
to request help on a specific topic, and the application to that help in a window
on the Presentation Manager desktop. Help panels within an application may be
indexed, which allows a user to search for help on related topics in addition to
the topic initially requested.

Phrases or illustrations within panels may be marked as selectable, and used to
display additional information, initiate application events or start new
applications. This capability is provided by the hypertext and hypergraphics
facilities of IPF.

Online documents may also be generated by IPF. Such documents are not
linked to applications; they act as applications in their own right, and indeed may
be used to initiate the execution of application programs using the hypertext
facility of IPF. Online documents may also be indexed, and keyword searches
may be conducted on document files; these facilities are part of IPF.

Information Presentation Facility is described in detail in Chapter 15, "Adding
Online Help and Documentation."

1.4 The Workplace Shell

8 OS/2 V2.0 Volume 4

Under OS/2 Version 1.3, the Presentation Manager provides a basis for the
implementation of object-oriented software engineering principles, allowing the
developer to take advantage of the benefits inherent in the object-oriented
approach. However, the Presentation Manager application model lacks a built-in
inheritance hierarchy, and therefore prevents the developer from realizing the
productivity and consistency benefits that may be achieved under the principle of
inheritance.

OS/2 Version 2.0 extends the object-based Presentation Manager user interface
with the introduction of the Workplace Shell*, and also provides an
object-oriented application model that allows applications to exploit the principle
of inheritance. The Workplace Shell application model views an application as a
series of objects, typically represented by icons on the Workplace Shell desktop,
which are manipulated by the user to achieve the required result.

Objects may represent entities such as files, programs or devices, or may be
containers that allow the user to logically group related objects. The properties
or contents of an object may be examined using a view of the object, which is
typically implemented as a Presentation Manager window.

The Workplace Shell application model is based upon the system object model,
which defines a set of classes to form a basic inheritance hierarchy, and a set of
protocols for interaction between application objects. The Workplace Shell
defines its own object classes that extend the inheritance hierarchy, and an
application developer can continue to extend the hierarchy, subclassing existing
object classes to create new classes.

1.5 Summary

The Workplace Shell therefore brings both the end user and the application
developer closer to the concept of direct object manipulation, and allows
exploitation of the class-based theory of object-oriented programming. The
Workplace Shell application model, along with the creation and manipulation of
Workplace Shell objects, is described in detail in Chapter 7, "Workplace Shell
and the System Object Model."

Presentation Manager facilitates the implementation of an event-driven,
object-action user interface and provides predefined constructs that enable a
consistent, intuitive user interface for multiple applications, in line with the
objectives of the Systems Application Architecture Common User Access
component. However, in order to gain the fullest benefit from such an interface,
the application developer must adopt a certain degree of object-oriented
principles in the design and implementation of applications.

In order to support the implementation of an event-driven interface and facilitate
the incorporation of object-oriented design techniques, Presentation Manager
provides an object-based, event-driven execution environment with an
application architecture that conforms closely to object-oriented theory, within
the framework of the Systems Application Architecture Common Programming
Interface. Windows become the handles by which the application references
data objects, and windows communicate with one another and with the user in
an event-driven manner. With the addition of the Workplace Shell in OS/2
Version 2.0, the user and the programmer may deal directly with objects and
take full advantage of the concept of inheritance.

Benefits to be gained from the adoption of such principles include enhanced
opportunity for code reuse with consequent reductions in development costs,
and easier containment of change through encapsulation and data isolation. As
the programmable workstation becomes more widely utilized as the platform for
line-of-business applications, the importance of sound software engineering
principles in the design and implementation of workstation applications will
increase, in accordance with the requirement to be able to adequately manage
and maintain these applications. OS/2 and Presentation Manager together with
the Workplace Shell, which extends the paradigm to further exploit
object-oriented concepts, provide a platform for the implementation of such
principles.

It must be emphasized that Presentation Manager provides an application
architecture at the operating system level which supports the implementation of
certain object-oriented software engineering principles, and provides many of
the facilities required by such an approach. However, while Presentation
Manager supports an object-oriented approach to application design, it does not
force the application developer to conform to object-oriented design practices.
Presentation Manager does not provide, nor does it seek to provide, a complete
development environment for object-oriented applications: the provision of such
function is the responsibility of application-enabling products that may reside
and execute in the Presentation Manager environment.

The remainder of this document will further explore the relationship between
OS/2 Version 2.0, Presentation Manager and object-oriented programming, and
examine the techniques by which object-oriented applications may be

Chapter 1. Overview 9

10 05/2 V2.0 Volume 4

implemented in the Presentation Manager environment, using both the
Presentation Manager and Workplace Shell application models.

Chapter 2. Operating System/2

2.1 History

This chapter briefly explains the differences between the PC DOS and Operating
System/2 (hereafter referred to as OS/2) environments, and describes the
features and capabilities of IBM OS/2 Version 2.0. The chapter discusses OS/2's
retention of compatibility with existing DOS applications, while providing support
for multiprogramming and multitasking, larger memory, multiple concurrent
communications, etc.

IBM and Microsoft** introduced OS/2 in 1987 as a successor to the PC DOS/MS
DOS** operating system2 in the programmable workstation environment. In the
years since its inception in the early 1980s, DOS has grown in both capabilities
and sophistication, but by 1987 advanced workstation users were demanding
more sophistication from their applications, to an extent which was beyond the
capabilities of DOS to deliver.

The choice for operating system developers lay between further enhancing the
existing DOS architecture to support more powerful processors, larger memory
and so on, or migrating to a new, more powerful operating system architecture
which offered more facilities to satisfy user requirements, a broader platform for
application development, and potential for future expansion. The latter choice
was taken, and the result was OS/2.

The OS/2 operating system environment provides a great deal more power and
flexibility than the DOS environment, while maintaining a level of compatibility
with existing DOS applications and data. Enhancements made in OS/2 Version
1.3 include:

• Effective use of the advanced capabilities of the Intel 80286 processor

• Support for system memory above 640 kilobytes (KB)

• Support for multiprogramming and multitasking

• Dynamic linking for system and application modules.

In addition, numerous other functions are provided to support and complement
these capabilities.

OS/2 Version 2.0 was developed as an extension of the original 16-bit
implementation used in OS/2 Version 1.3, and is an advanced 32-bit multitasking
operating system for machines equipped with the Intel 80386** or compatible
processors. The following new features are implemented in OS/2 Version 2.0:

• Support for the Intel 80386 32-bit microprocessor instruction set; previous
versions of OS/2 only supported the 80386 in 80286 emulation mode.

• 32-bit memory management with a flat memory model; previous versions of
OS/2 required applications to use the segmented memory model. See 2.3,
"Memory Management" on page 12 for further information.

• Enhanced hardware exploitation.

2 For s1mplic1ty, the term "DOS" will be used throughout this document to refer to both the PC DOS and MS DOS products.

©Copyright IBM Corp. 1993 11

• Support for multiple concurrent DOS applications with pre-emptive
multitasking and full memory protection.

• Support for Microsoft Windows·· applications.

• New 32-bit programming environment.

• Binary-level compatibility with previous versions of OS/2, allowing 16-bit
applications written for previous versions to execute under Version 2.0
without modification.

• An enhanced Presentation Manager user shell, known as the Workplace
Shell, which implements the 1991 IBM Systems Application Architecture CUA
Workplace Environment.

The remainder of this chapter describes the features of OS/2 Version 2.0, and
also makes reference to architectural features implemented in previous versions
of OS/2 where appropriate.

2.2 Intel 80386 32-Bit Microprocessor Support
The basis for OS/2 Version 2.0 is its support for the Intel 80386 microprocessor;
previous versions of OS/2 were developed for the Intel 80286 processor, and
supported the 80386 in 80286 emulation mode only. Full support of the 80386
means that a powerful set of 32-bit features now becomes available to the
operating system and applications, including enhanced memory management
and more sophisticated multitasking capabilities. The Intel 80386 and 80486 offer
significant improvements over the previous generation of 16-bit microprocessors,
while retaining compatibility with these processors.

The memory addressing capacity of the 80386 processor is significantly greater
than that of the 80286:

• 4 gigabyte (GB) physical address space; this compares with the 640 kilobyte
(KB) address space of DOS and the 16 megabyte (MB) address space of
OS/2 Version 1.3.

• 64 terabyte (TB) virtual address space; DOS does not support virtual
memory, and OS/2 Version 1.3 supports 2 GB of virtual memory.

• 1 byte to 4 gigabyte memory objects; this compares with a 64 KB maximum
size under DOS or OS/2 Version 1.3.

OS/2 Version 2.0 uses many of these processor features and capabilities to
provide a more powerful and flexible operating system platform. Note that OS/2
Version 2.0 does not implement the full 64 TB virtual address space provided by
the 80386, since this requires use of the segmented memory model; OS/2
Version 2.0 uses a flat memory model, as described in 2.3, "Memory
Management."

2.3 Memory Management

12 OS/2 V2.0 Volume 4

Memory management is the way in which the operating system allows
applications to access the system's memory. This includes the way in which
memory is allocated. either to a single application or to be shared by multiple
applications. The operating system must check the amount of memory available
to an application. and must handle the situation where there is insufficient free
memory to satisfy an application's requests.

Memory management under DOS and OS/2 Version 1.3 was achieved using units
of memory known as segments, which could be from 16 bytes to 64 KB in size.
The memory model implemented by these operating systems was therefore
known as a segmented memory model. The use of data structures larger than
64KB required the use of multiple segments, the management of which was the
responsibility of the application. This led to increased size and complexity, and
reduced performance in applications which handled large data structures.

In OS/2 Version 2.0, memory management has been enhanced to provide a flat
memory model, which takes advantage of the 32-bit addressing scheme provided
by the Intel 80386 architecture. This means that through memory management,
the system's memory is seen as one large linear address space of 4 GB.
Applications have access to memory by requesting the allocation of memory
objects. Under OS/2 Version 2.0, these memory objects can be of any size
between 1 byte and 512 MB. The use of a flat memory model removes the need
for application developers to directly manipulate segments, thereby simplifying
application development and removing a significant obstacle in porting
applications between OS/2 Version 2.0 and other 32-bit environments such as
AIX*.

OS/2 Version 2.0 manages memory internally using pages, each of which is 4 KB
in size. Each memory object is regarded by the operating system as a set of
one or more pages. For practical purposes therefore, memory is allocated in
units of 4 KB, although a page may be broken down into smaller parts and may
contain multiple memory objects.

One of the useful aspects of paged memory is the way in which memory
overcommitment is handled; that is, what happens when there is no more real
memory left to load applications or satisfy a request for memory from an
application. Under OS/2 Version 2.0, individual pages may be swapped to and
from disk storage, rather than entire memory objects. This improves swapping
performance, particularly when large memory objects exist in the system. The
fixed page size also improves swapping performance since the operating system
need not be concerned with moving memory objects about in order to
accomodate the various object sizes, as was the case with previous versions of
OS/2.

For a more detailed discussion of memory management under OS/2 Version 2.0,
readers should refer to OS/2 Version 2.0 - Volume 1: Control Program.

2.4 Multiprogramming and Multitasking
A multiprogramming operating system allows the concurrent execution of
multiple applications in the same machine. A multitasking operating system is
an extension of the multiprogramming concept, which distributes processor time
among multiple applications by giving each application access to the processor
for short periods of time. OS/2 implements both multiprogramming and
multitasking.

Multitasking may be supported in two forms:

• Cooperative multitasking requires the active support of applications running
in the system, which must explicitly relinquish control of the processor to
allow other applications to execute. This form of multitasking is unreliable

Chapter 2. Operating System/2 13

and frequently leads to poor performance, since an ill-behaved application
can monopolize the processor.

• Pre-emptive multitasking uses a scheduler as part of the operating system;
the scheduler is responsible for selectively dispatching and suspending
multiple concurrent tasks in the system. This form of multitasking is more
sophisticated, typically leads to greater overall system throughput. and
allows implementation of priority dispatching schemes for various tasks.

Numerous mechanisms exist for providing multiprogramming support under
DOS; these include products such as Microsoft Windows. However. since such
facilities are ultimately dependent upon the single-tasking architecture of the
DOS operating system, they typically provide only limited multitasking
capabilities; where pre-emptive multitasking is supported, schedulers are
typically primitive and performance is relatively poor. Pre-emptive multitasking
is not possible during input/output operations, since these operations are
performed by the single-tasking DOS operating system.

OS/2 provides pre-emptive multitasking under the control of the operating
system, which is designed to use the multitasking protected mode of the Intel
80286 and 80386 processors. OS/2 implements a pre-emptive task scheduler
with a multi-level priority scheme. which provides dynamic variation of priority
and round-robin dispatching within each priority level. The dynamic variation of
priority is achieved on the basis of current activity, and is intended to improve
overall system performance and ensure that the system as a whole responds
adequately to user interactions. For circumstances where dynamic variation of
priority is inappropriate, the dynamic variation may be disabled using a
command in the CONFIG.SYS file, and task priority then becomes absolute. In
either case, task priority may be set and altered dynamically using a number of
operating system functions available to OS/2 application programmers.

The management of tasks executing in the system is further simplified and
streamlined under OS/2 Version 2.0. This is due primarily to the fact that
support for processes executing in real mode (such as the DOS Compatibility
Box in OS/2 Version 1.3) is no longer required, since the execution of DOS
applications is supported using virtual DOS machines which run as protected
mode processes. See 2.5, "DOS Application Support" on page 18 for further
information.

2.4.1 Application Suppor1

14 05/2 V2.0 Volume 4

OS/2 Version 2.0 supports concurrent execution of the following types of
applications:

• DOS applications, in full-screen mode or in windows on the Presentation
Manager desktop

• Microsoft Windows applications, in windows on the Presentation Manager
desktop

• 16-bit OS/2 applications developed for previous versions of OS/2

• New 32-bit applications developed for OS/2 Version 2.0.

All applications execute as protected mode processes under OS/2 Version 2.0,
and are therefore provided with pre-emptive multitasking and full memory
protection; each application is isolated from other applications and from the
OS/2 Version 2.0 operating system itself.

2.4.2 Processes and Threads
The term task (as in multitasking) refers to a hardware-defined task state. While
OS/2 supports multitasking. it does not directly use the concept of a task as
defined by the Intel 80386 processor architecture. Instead, OS/2 makes a
differentiation between processes and threads.

2.4.2.1 Processes
A process is most easily defined as a program executing in the system. Since it
is possible for a single program to be invoked multiple times in a multitasking
system such as OS/2. multiple processes may be executing the same program,
and each such process is known as an execution instance of the program. A
process owns system resources such as threads, file handles etc, and a memory
map that describes the region of memory owned by that process. Since each
process owns its own resources and memory map, which are administered by
the operating system on behalf of the process, the resources of one process are
protected from access by any other process. In situations where communication
between processes is required, OS/2 provides a number of architected
mechanisms by which they may be achieved. These mechanisms are described
in 2.4.3, "Interprocess Communication and Synchronization" on page 16.

2.4.2.2 Threads
A thread is the unit of dispatching for the operating system's scheduler. and
therefore equates closely with the notion of an 80386 task as defined by the
processor architecture. Each thread is owned by a process. and a single
process may have multiple threads. When a process is created, one thread
(known as the primary thread) is always created to run the code specified in the
process creation system call. Thus a process always has at least one thread.
Secondary threads are often used to perform lengthy operations such as
document formatting. remote communications etc. thereby allowing the primary
thread to continue interaction with the user. Secondary threads may be created
and terminated at any time during execution of a process. When the primary
thread of a process is terminated, the process itself terminates.

A thread executes for a short period of time before the operating system's
scheduler preempts the thread and gains control. The scheduler may then
determine that there is some other thread that ought to run; if so, the scheduler
saves the task state of the current thread and dispatches the new thread, which
executes for a period of time until it too is preempted and control returns to the
scheduler.

OS/2 Version 2.0 supports up to 4096 threads within the system. Note that this
limit includes those threads used by the operating system and by applications
executing under operating system control. such as the print spooler. The
number of threads available to applications will therefore be somewhat less than
4096.

Since each thread is owned by a process, all threads within that process share
the resources and memory map belonging to that process, and thus have access
to those resources. OS/2 does not protect memory resources from being
accessed by multiple threads within the same process: this is the responsibility
of the application developer. However, OS/2 provides a number of architected
mechanisms to aid the application developer in maintaining the integrity of the
application's resources.

Chapter 2. Operating System/2 15

2.4.3 Interprocess Communication and Synchronization

16 OS/2 V2.0 Volume 4

Since OS/2 provides support for concurrent execution of multiple processes, witJi
memory protection between these processes, it must also provide mechanisms
to facilitate synchronization and communication between different processes and
threads executing in the system, which may wish to share data and control
information. OS/2 provides a number of such mechanisms, as follows:

• Shared memory

• Queues

• Pipes (both named and anonymous)

• Presentation Manager messages

• Semaphores.

These mechanisms allow application developers to implement applications using
multiple processes or threads, while retaining the ability to communicate data
and control information in a controlled manner, and to achieve synchronization
between various components of an application.

2.4.3.1 Shared Memory
The OS/2 memory management architecture utilizes the protect mode of the Intel
80386 processor to achieve memory isolation between processes. A process
has addressability only to its own memory objects. However, in certain
circumstances processes may wish to communicate an~ pass data to each
other; OS/2 allows this by the use of shared memory objects. Shared memory
objects are dynamically requested from the operating system by the application
during execution, and are flagged as shareable by OS/2. It is the responsibility
of the applications concerned however, to correctly synchronize the flow of data
between processes. OS/2 provides a number of mechanisms by which this
synchronization may be achieved. Shared memory and its usage is discussed in
the IBM OS/2 Version 2.0 Application Design Guide.

2.4.3.2 Queues
Queueing system calls are implemented. by a system service routine that uses
shared memory and semaphores (see below) for serialization. A queue is
created by a process that then becomes the owner of that queue; only the
owner may read from the queue. Other processes may write to the queue, but
only the owner may look at elements on the queue, remove elements from the
queue, purge or delete the queue. Queues may be specified with FIFO (first-in,
first-out) or LIFO (last-in, first-out) dispatching priority.

A queue has a name, similar to a file name, by which it is known to both
processes and by which it is referred to when the queue is first accessed by a
particular process. A series of operating system functions is provided by OS/2
to create and access queues. Queues are discussed in detail in the IBM 0512
Version 2.0 Application Design Guide.

2.4.3.3 Pipes
A pipe is a FIFO data structure that permits two processes to communicate using
file system 1/0 calls. The first process writes data into the pipe and the second
process reads the data from the pipe. However, the data is never actually
written to an external file, but is held in a shared area in memory.

A pipe may be named, in which case it has a name similar to a file name which
is known by both processes, or it may be anonymous in which case read and

write handles to the pipe are returned by the operating system when the pipe is
created. It is then the responsibility of the creating process to communicate
these handles to other threads or processes.

The creation of pipes is achieved using a number of OS/2 function calls; once
created, pipes are then accessed using file system 1/0 functions. Pipes and their
manipulation are discussed in the IBM OS/2 Version 2.0 Application Design
Guide.

2.4.3.4 Presentation Manager Messages
In the OS/2 Presentation Manager programming environment, application
routines known as window procedures communicate by receiving messages
from one another and from Presentation Manager itself. Messages may be
passed between window procedures executing in the same thread, between
different threads in a process, or between processes.

Messages may be used to pass data between routines executing in different
threads or processes, or to communicate events in order to achieve
synchronization between threads and/or processes. Presentation Manager
messages may be used to invoke processing routines in either a synchronous or
asynchronous manner. The Presentation Manager messaging model conforms
closely to object-oriented programming practices, and is described further in
Chapter 4, "The Presentation Manager Application Model."

2.4.3.5 Atoms
Where character strings must be passed between threads, it is relatively simple
to pass a pointer to the character string, since all threads within a process share
access to memory objects. Where strings must be passed between processes
however, more complex methods such as shared memory must normally be
used. OS/2 provides a way to simplify the passing of strings between processes,
using atoms.

An atom is effectively a "handle" to a string that is stored in an area of shared
memory known as an atom table. Atom tables are maintained by the operating
system: and may be private to a particular process or shared by all processes in
the system. OS/2 creates a system atom table at system initialization time,
which is accessible by all processes in the system.

A process may add a string to an atom table, and obtain an atom that may
subsequently be used to access the string. Atoms that reference strings in the
system atom table may be passed between processes using any of the methods
described in the foregoing sections, and used by another process to obtain the
contents of the string.

2.4.3.6 Semaphores
OS/2 applications may be implemented using multiple threads within one or
more processes. Within a single process, the OS/2 memory management
architecture provides no memory protection for different threads, and hence
multiple threads may have addressability to the same data areas. It is important
that the integrity of resources such as common data areas or files, shared
between threads, be protected at all times. Such resources must be accessed in
a serialized fashion. Although OS/2 provides no automatic protection for data
resources between threads within a process, OS/2 allows an application to
achieve this serialization of access by using semaphores.

Chapter 2. Operating System/2 17

A semaphore is a data structure that may be "owned" by only one thread at any
time. Semaphores may be used as flags by an application, to indicate that a
data resource is being accessed. A thread may request ownership of the
semaphore; if the semaphore is already owned by another thread, the requesting
thread is blocked until the first thread releases it.

OS/2 Version 2.0 provides a number of different types of semaphores, to be used
in different circumstances:

• Mutex semaphores provide mutually exclusive access to a particular
resource such as a shared memory object. These semaphores offer a useful
means of synchronizing access to such resources between different threads
or processes.

• Event semaphores are used to signal system or application events. These
semaphores provide a means of signalling events to other threads or
processes, allowing such threads to suspend their execution and "wait" for a
particular event to occur.

• MuxWait semaphores may be used when waiting for multiple events to occur
or multiple mutex semaphores to clear.

Within these semaphore types, OS/2 Version 2.0 provides both private and
shared semaphores. The system semaphores and RAM semaphores provided by
previous versions of OS/2 are also supported, retaining compatibility with
applications developed for previous versions of the operating system. Each
process in the system may have up to 65535 private semaphores, and there may
be up to 65535 shared semaphores in the system.

OS/2 Version 2.0 provides a number of operating system functions allowing the
creation and manipulation of semaphores. Semaphores are discussed in the
IBM 0512 Version 2.0 Application Design Guide.

2.5 DOS Application Support

18 OS/2 V2.0 Volume 4

OS/2 Version 1.3 provides the capability for a single DOS application to be
executed in the system using a facility known as the DOS Compatibility Box. The
DOS application executes in real mode, and is automatically suspended if the
DOS Compatibility Box is switched to the background; that is, pre-emptive
multitasking is not supported in the DOS Compatibility Box under OS/2 Version
1.3.

OS/2 Version 2.0 provides the capability to pre-emptively multitask DOS
applications along with OS/2 applications, using the Multiple Virtual DOS
Machines feature of OS/2 Version 2.0. The DOS support has been totally
rewritten in OS/2 Version 2.0 and allows multiple concurrent DOS applications
where each is executed as a single-threaded, protected mode OS/2 program.
This method of implementation provides pre-emptive multitasking for DOS
applications, and allows normal OS/2 levels of memory protection; that is, it
provides isolation of system memory and other applications, protection from
illegal memory accesses by ill-behaved applications, and the ability to terminate
sessions where applications are "hung."

DOS support is achieved through the use of virtualization techniques, allowing
the creation of multiple instances of separate, independent virtual DOS
machines. Through this technique, a virtual interface is provided to each DOS

machine, giving the impression that each application owns all of the required
resources, both hardware and software.

Each virtual DOS machine has more memory than the DOS Compatability Box
implemented in previous versions of OS/2, and OS/2 Version 2.0 supports the
use of Lotus**-lntel-Microsoft (LIM) expanded memory (EMS) and extended
memory (XMS) to provide additional memory for those DOS applications that are
capable of using such extensions. OS/2 Version 2.0 maps this extended or
expanded memory into the system's normal linear memory address space, and
manages it in the same manner as any other allocated memory.

The ability of a virtual DOS machine to run within a Presentation Manager
window provides immediate productivity gains to existing DOS applications,
since they may utilize Presentation Manager desktop features. These features
include window manipulation and the ability to cut/copy/paste information
between applications using the clipboard.

Application compatibility in the virtual DOS machine is also enhanced over
previous versions of OS/2. The virtual DOS machine can be used to execute
DOS-based communications applications and other applications that address
hardware 1/0 devices, through the use of virtual device drivers that map the
device driver calls from the applications to the appropriate physical device driver
within the operating system. Applications using hardware devices that are not
required to be shared with other applications in the same system may be
accessed using the standard DOS device drivers, without the need for a virtual
device driver. Certain restrictions still apply with respect to communications line
speed and time-critical interrupt handling.

For applications that require specific versions of DOS in order to operate, OS/2
Version 2.0 provides the capability to load a physical copy of that version into a
virtual DOS machine. This provides compatability for those applications that
internally manipulate DOS data structures or that use undocumented interfaces.

Application compatability in a virtual DOS machine is further enhanced by the
DOS settings feature, which allows virtual DOS machines to be customized to
suit the requirements of the applications running in them. Properties such as
video characteristics, hardware environment emulation, and the use of memory
extenders can all be customized using this feature.

Multiple Virtual DOS Machines is described in more detail in OS/2 Version 2.0 -
Volume 2: DOS and Windows Environment.

2.6 Microsoft Windows Application Support
OS/2 Version 2.0 provides the capability for Microsoft Windows applications to
run under OS/2 Version 2.0, in virtual DOS machines. This support allows
applications written for Windows 3.0 and previous versions of Windows to coexist
and execute concurrently in the same machine.

Each Windows applications executes as a protected mode process. Windows
applications are therefore subject to the full memory protection facilities
provided to protected mode applications under OS/2 Version 2.0, and are
protected from one another and from DOS or OS/2 applications executing in the
system. This is in contrast to the native Windows 3.0 environment, where limited

Chapter 2. Operating System/2 19

protection is provided for Windows 3.0 applications, and none at all for DOS
applications unless Windows is running in enhanced mode.

The execution of Windows applications as protected mode tasks also allows
these applications to take full advantage of the pre-emptive multitasking
capabilities of OS/2 Version 2.0, with full pre-emptive multitasking between
Windows applications, DOS applications and OS/2 applications. This is again in
contrast to the native Windows 3.0 environment, where pre-emptive multitasking
is available only for DOS applications, only when Windows 3.0 is running in
enhanced mode, and only when no input/output operations are being performed,
thereby impacting performance and preventing many applications written for
previous versions of Windows from executing. OS/2 Version 2.0 has no such
restriction.

As with DOS applications, Windows applications may make use of EMS and XMS
memory extenders in order to access memory above 640 KB. This support is
provided in an identical manner to that provided for DOS applications.

Support for Microsoft Windows applications under OS/2 Version 2.0 is discussed
in more detail in OS/2 Version 2.0 - Volume 2: DOS and Windows Environment.

2. 7 Dynamic Linking

20 OS/2 V2.0 Volume 4

OS/2 system services are requested by application programs using function
calls; the external code references generated by such calls are resolved when
the program is loaded or when the segments of the program are loaded, rather
than at link-edit time. This deferred resolution of external references is known
as dynamic linking, and is available to applications, which may incorporate their
own routines into dynamic link libraries (DLLs).

Dynamic linking may be achieved in two ways under OS/2;

• Load-time dynamic linking resolves external references within a code
segment at the time the segment is loaded into memory.

• Run-time dynamic linking postpones the resolution until the actual execution
of the code, at which time the appropriate module is explicitly loaded and
invoked by the application.

Load-time dynamic linking is the simplest mechanism; as already mentioned,
OS/2 system services are implemented in this way. Load-time dynamic linking
is used whenever an application developer wishes to provide common services
that may be used by multiple applications, and which are implemented
independently of the applications that will use them. Run-time dynamic linking is
used where particular routines may or may not be used by an application, and
thus should not be loaded into memory unless required. If an application
requires that such a routine be executed, the application may then explicitly load
the routine and execute it.

Dynamic linking provides an architected method of extending the services of the
operating system; all of the application programming interfaces supported by
OS/2 are implemented using dynamically linked modules. An application
developer may use the same facilities to create his or her own dynamically
linked modules to provide additional services or standard routines that may be
used by applications executing in the system.

2.8 Summary

Dynamic linking is of benefit in that routines contained in DLLs are completely
independent of application code, and may be modified without the need to re-link
applications. In this way, DLLs contribute to the containment of change within
applications. In addition, the contents of Dlls are not limited to application
code. Presentation Manager resources such as icons, bitmaps, graphics fonts,
window definitions etc, may be generated and stored in a DLL for subsequent
use by applications. See Chapter 9, "Presentation Manager Resources" for a
further discussion of Presentation Manager resources. Dlls thus provide a
powerful mechanism for the creation of reusable modules for both full-screen
and Presentation Manager applications.

Secondly, the creation of Dlls as re-entrant routines reduces the storage
requirements for OS/2 applications, since multiple applications may make use of
the same memory-resident copy of a DLL. This re-entrancy and reusability, in
conjunction with the code independence gained by using a DLL, makes the DLL
a useful vehicle for implementation of standard service routines, which may be
accessed by any application or process within the system. This contributes to
standardization within the business organization, which in turn can result in
improved productivity and reduced maintenance effort since the code to
implement a particular function need reside in only one location.

Note that a DLL is not a process under OS/2. The re-entrant nature of a DLL
allows multiple applications to use the same memory-resident copy of the code;
however, each instance executes under the control of the process that invoked it.

OS/2 provides the programmable workstation platform for the delivery of
Systems Application Architecture application functionality in the standalone
workstation and cooperative processing environments. OS/2 overcomes the
limitations of the DOS operating system by providing support for large physical
and virtual address spaces and supporting concurrent execution of multiple
applications with memory isolation and automated task dispatching. While
enforcing memory protection between applications, OS/2 provides architected
mechanisms to allow interprocess communication and data sharing in a
controlled manner.

OS/2 also provides compatibility with existing DOS applications, since OS/2
Version 1.3 allows a single DOS application to run using the DOS Compatibility
Box, and OS/2 Version 2.0 allows multiple concurrent DOS applications to
execute in virtual DOS machines. OS/2 Version 2.0 also supports Microsoft
Windows applications in a similar manner to DOS applications. This allows
users of OS/2 systems to continue to use their existing DOS and Windows
applications under the new operating system.

OS/2 also implements dynamic linking, which allows an application developer to
isolate common application services in separate modules known as dynamic link
libraries (DLLs). Calls to application services provided in a DLL are resolved at
execution time, which means that any modifications to the routines contained in
a DLL do not require any maintenance to applications using that DLL. In
addition, Dlls are created as re-entrant code, thus allowing multiple
applications to use the same memory-resident copy of the DLL code and thereby
reducing storage requirements.

Chapter 2. Operating System/2 21

22 OS/2 V2.0 Volume 4

OS/2 provides an operating system environment for the programmable
workstation that enables a far greater degree of functionality and sophistication
on the part of application programs. OS/2 Version 2.0 provides architected
methods for overcoming most of the inherent limitations of the DOS and OS/2
Version 1.3 environments, and providing the workstation user with a higher level
of capability in the workstation. OS/2 provides the vehicle that will enable the
fulfillment of the Systems Application Architecture cooperative processing
direction.

Chapter 3. Object-Oriented Applications

This chapter provides a brief overview of some concepts involved in
object-oriented application design and programming, and the way in which this
approach differs from traditional top-down functional decomposition. It is not
intended as an indepth analysis of object-oriented programming, since such a
task is beyond the scope of this document, but serves merely to provide a
background against which the implementation of object-oriented principles under
Presentation Manager may be discussed.

3.1 Object-Oriented Concepts
Object-oriented application design places the focus of an application on the
logical entities or objects (typically items of data) upon which a program will
operate, and attaches procedures or routines to manipulate these objects. A
logical data entity (such as a group of records) may have multiple
representations within the system. Each of these representations is known as a
data object, and each data object may have a finite set of actions performed
upon it. The data object itself, along with the routines (known as methods) used
to perform these actions, are together regarded as an application object.

Note that in the remainder of this document, the term data object will be used to
denote a particular representation (for example, on the screen or in a disk file) of
a logical data entity. The term application object will be used to denote the
conjunction of a data object and its methods. While these terms are not in
general use, they will be used here in order to provide a distinction between a
data item, and the conjunction of that data item and the routines that act upon it.

Application objects typically respond to events, which originate outside the
object and which may be system-initiated or user-initiated. The sequence of
these events determines the sequence of operations within the application, and
the progression of dialog between the application and the user, rather than the
application determining the sequence of the dialog, as is traditionally the case.
Such an object-oriented application environment is thus said to be event-driven.

Events are communicated to an application object by means of a series of
defined messages, which are not considered to be part of the objects between
which they are passed. The focus of the program thus becomes the object,
rather than the procedure, and the program becomes a flow of messages
between cooperating objects.

Actions on a data object should be possible only by sending messages to the
associated application object; an object's methods should not be directly
accessible from another object, nor should the behavior of an object be
dependent upon any external source other than the messages it receives. A
message should also specify only the action that is to be carried out, and not the
way in which it is to be accomplished. It is the responsibility of the receiving
object to determine the way in which to carry out a requested action.
Consequently, the behavior of an application object may differ, depending upon
the class and content of its input messages. A corollary of this statement is that
the result of passing the same message class may vary, depending on the target
object class and its interpretation of that message. These guidelines outline the
concept of polymorphism.

@ Copyright I BM Corp. 1993 23

24 OS/2 V2.0 Volume 4

One of the primary properties of an application object is its modularity; objects
that obey the foregoing rules should be largely independent of one another. and
the implementation of one object should not be dependent upon the internal
details of another. Data belonging to an application object should be accessible
only by that object; requests for access by other objects should be made via
appropriate messages sent to the application object that "owns" the data object.
Thus the only information necessary to use an application object is a knowledge
of the messages it can receive and operate upon (through its methods). This
rule encompasses the principle of encapsulation, which states that a data object
should be defined, created and/or accessed solely from within its "owner"
application object.

Since a number of application objects may exist with similar characteristics,
such objects are usually grouped into object classes. A class consists of those
objects that share similar properties and methods. An object class is typically
associated with a single data object or type of data object, and has a defined,
finite set of methods associated with it. It is the class that normally defines the
messages and methods applicable to an object. Each object belonging to a
particular class is then known as an instance of that class. Each instance
inherits data objects and values defined for its class, and may also contain its
own data, known as instance data; the properties of instance data are typically
obtained from the definition of the object class, but the values are defined
uniquely by each instance.

The object-oriented approach is most suited to situations where the purpose of
the application is the manipulation of data, whether on the screen or in a data
file, and where the exact sequence of actions is not critical, provided all
necessary actions are carried out. The focus of an object-oriented application is
the data objects that are being manipulated; the functions to be performed are
subordinate to the data objects upon which they will act. In addition, the
event-driven user interface places the user in control of the sequence of actions,
and provides flexibility with respect to the way in which the desired result is
achieved.

An advantage of the object-oriented design approach for data manipulation
applications is that a particular data object is "owned" by one application object,
and that the definition of and establishment of access to that data object is
achieved from within the application object. Since application objects may be
made relatively independent of one another, other objects may be isolated from
changes to the data structure. This greatly simplifies application maintenance,
since all necessary changes need only be made within a single object.

Note that since application objects are closely related only to their associated
data objects, and not to the applications from which they are accessed, it follows
that application objects may be constructed for each data object, and accessed
from multiple applications. An application need not be aware of the internal
workings of an application object, but need only know the correct type and
format of the messages through which to interact with the object. Thus the
object-oriented approach facilitates code reusability.

3.1.1 Object-Oriented vs Functional Decomposition
Under a traditional functional decomposition approach to program design, often
referred to as structured programming, the function or procedure is the unit of
modularity; programs are designed and implemented by placing a number of
well-defined procedures in a particular order, and executing these procedures to
achieve a desired result. The focus of the design is the procedure or action to
be performed. Objects such as data structures are attached to procedures and
passed between them using parameters. A user typically selects an action to be
performed, and then selects or enters a data object upon which to perform that
action.

. ,. ...

•:::•:-···:·.:.ff#~~~:·!·!·::::

Figure 1. Program Flow - Functional Decomposition Approach

The functional decomposition approach is best suited to situations where the
procedure is necessarily the focus of the application (for instance, a process
management application), and where the correct sequencing of operations to be
performed is a crucial factor in the successful execution of the required task.
Under this approach, the application defines the sequence of actions which the
user performs: that is, the application controls the user interface.

In an object-oriented approach, the application object is the unit of modularity.
Application objects communicate with each other and pass messages containing
actions to be performed. Object-oriented programming is hence the conceptual
inverse of functional decomposition, and is a logical extension of the industry
trend toward data-centric application design .

....
Otijel;tB·.

Figure 2. Program Flow - Object-Oriented Approach

Chapter 3. Object-Oriented Applications 25

This is not to say that an object-oriented application should not be structured.
Although such an application consists of objects that are largely independent of
one another in programming terms, normal structured coding techniques should
be followed in the creation of the methods within each application object.

The object-oriented approach also requires firm management of the application
development process in order to achieve the greatest possible level of
productivity through code reuse. Administration and control of existing objects is
vital in order to allow application developers to access and use these objects in
their applications. Management of the application development process is
discussed in greater detail in Chapter 18, "Managing Development," and the
structuring of application source modules in order to provide optimal granularity
is described in Appendix B, 11 Application Program Construction."

While it is possible for an application designed according to functional
decomposition principles to implement some of the characteristics of
object-oriented applications such as message passing, such applications should
not be regarded as truly object-oriented. If the design approach centers on
procedures rather than data objects, then the application is designed along
functional decomposition guidelines. In this case, message passing is merely a
replacement of the normal subroutine call mechanism, and does not significantly
affect the structure of the application.

3.1.2 Class-Based vs Module-Based

26 05/2 V2.0 Volume 4

The notion of object classes, and the extent to which this concept is taken,
provides the distinguishing factor between two primary schools of thought within
the object-oriented paradigm. Under a class-based approach, objects are
defined in terms of their class, and each class is defined in terms of other
previously defined classes, the properties and methods of which are
automatically conveyed upon the new class; this is known as the principle of
inheritance.

For example, the object class "horse" may be defined as a sub-class of the
object class "quadruped," with the additional properties of being able to be
ridden and eating grass. A further object class "pony" may then be defined as
being a sub-class of the class "horse," with an additional upper limit on size.
While this is a somewhat frivolous example, it illustrates the principle that an
object class is defined in terms of other object classes, and need only explicitly
define those properties and methods that are unique to that object class. All
other properties and methods are inherited from its parent class or classes.
This introduces the concept of an inheritance hierarchy, in that an object inherits
not only the properties and methods of its class, but also those of other classes
by way of which that class was defined.

The major advantage of such an inheritance hierarchy is that, given a
well-documented set of existing objects, it becomes extremely easy to create
new object classes, simply by defining the new class in terms of other classes
that already exist, and simply specifying any new or different properties or
methods that apply to the new class. This of course assumes the use of
adequate object documentation and management practices. Without such
practices, it becomes difficult if not impossible to identify a suitable base object
from a large library of existing object classes.

However, many existing implementations of the class-based approach extend the
inheritance hierarchy to a great degree, such that almost all imaginable object

classes are defined in terms of parent object classes. While this provides a
unified approach to the problem of object definition, the significant disadvantage
of such an approach is the increased level of interdependence between objects.
The unit of modularity becomes the complete hierarchy rather than the individual
object, since an object has no complete definition in its own right. The reuse of
a single object therefore requires the inclusion of its complete parent hierarchy.
Since it is typical for this parent hierarchy to be defined dynamically using
run-time definitions for parent classes rather than defined statically at
application generation, it is also possible for changes to a parent class to cause
unforeseen side-effects in the behavior of descendant object classes. Thus
inheritance hierarchies require careful management to ensure that such side
effects do not occur and adversely affect the integrity of applications and data.

Where the inheritance hierarchy is taken to the extent of providing
system-defined object classes, to which all application-defined object classes are
linked, the hierarchy and thus the application is dependent upon the existence of
a virtual machine conceptual environment, which must also be accepted along
with the hierarchy. This in turn may result in significant penalties in terms of
application efficiency and run-time performance.

A module-based approach to object-oriented programming defines each object
as complete in its own right. Objects may still be grouped into classes for easier
definition and processing, but each class possesses its own complete set of
properties and methods, and is not dependent upon another class for a part of
this definition. The primary advantage of the module-based approach is the
increased level of independence between objects, with a finer degree of
granularity in the application allowing object reuse with a lower level of
overhead. The main disadvantage of this approach is that each object class
must be completely defined, requiring more work on the part of the application
developer at the time the object is created.

The concept of inheritance, while providing great potential for productivity
enhancement during the application development process, must be carefully
managed in order to avoid additional complications in application management
and maintenance due to object interdependencies. Side effects arising from
modification to parent object classes may adversely affect the integrity of an
application. The alternative course of action, that of prohibiting the modification
of existing objects in favor of creating new objects that inherit only the
unmodified properties of the existing object, is often not viable due to the
increased application overhead and managerial effort required to maintain and
control an ever-expanding inheritance hierarchy. Reliance on the behavior of
existing objects must therefore be viewed with extreme caution in the absence of
effective management controls over object modification.

The increase in development productivity provided by the use of inheritance may
often be offset by the increased time and effort spent in regression testing of
existing applications in order to determine any effects on these applications
caused by the modification of existing object classes. Tight managerial controls
over development must therefore be maintained in order to identify and isolate
those existing object classes that are modified and which are likely to affect
existing applications.

One technique that can be used to minimize the impact on existing applications
is for the development organization to adopt a standard whereby, once an
application object is deployed in a production environment, new applications that

Chapter 3. Object-Oriented Applications 27

use the object may only modify its behavior through the use of subclassing (see
3.1.3, "Subclassing" on page 28). This means that the object itself is not
modified, and other applications that use the object are not affected.

3.1.3 Subclassing

28 OS/2 V2.0 Volume 4

As already mentioned, the object-oriented approach facilitates the reuse of
application code; generic objects may be created and used by multiple
applications to perform actions upon the same data object or type of object.
However, one of the criticisms often levelled at this capability is that it becomes
impossible to foretell the total set of actions that may ever be required with
respect to a particular data object, and that an object is therefore never truly
reusable.

The object-oriented approach overcomes this difficulty by providing a way for
applications to modify the behavior of existing application objects without
modifying the objects themselves; this is known as subclassing the object. A
subclass application object is composed of a data object definition and a certain
number of methods to manipulate that object. The subclass application object
may contain methods that are not contained within the original application object
created for that data object, or methods that are modified in some way from
those contained in the original object. In this way a subclass application object
may add new methods to perform actions which are not performed by the
original object class, or to handle certain types of message in a different way
than that normally carried out by the original object class.

·:··,::;::ig,~~~::~::::~1:!:: :f--T-_P_erce_1v_ec1_1_11e_-_se_Pa_th_---·lm1i~W~~~!I

Actual Message Path

Figure 3. Subc/assing an Application Object

When an application object has been subclassed, all messages intended for that
object are directed to the subclass application object first. The sending object
need not be aware that the message has been diverted. If the subclass
application object does not contain a method to deal with a particular message.
it should then pass the message on to the original application object, for
processing by one of that object's methods. The original application object
receiving a message in this way should also be unaware that it has been
subclassed.

A useful application of the subclassing principle occurs when a generic
application object is defined and stored away for use by many applications,
taking advantage of the reusability aspects of the object-oriented approach.
Where one application wishes to perform a particular action in a slightly different
manner than that performed by the methods associated with the generic object,
a subclass application object may be created containing a new method for that

specific action only, and passing all other messages to the original application
object for regular processing. It can be seen that subclassing is a technique for
application of the concept of inheritance, through its ability to transparently add
properties and methods to existing objects.

Subclassing also provides a way to overcome the danger of inadvertently
impa::ting the behavior of other applications by modifying an existing application
object. If a standard is adopted whereby existing application objects in a
production environment may only be modified through subclassing, such
changes do not impact applications using the original object or which may
themselves have subclassed that object. In this way the need for regression
testing of affected applications is eliminated, and the degree of
object-management required is significantly reduced.

When a functional requirement may be satisfied by modifying the methods of an
existing application object (through subclassing), a decision must be made
regarding the relative merits of modifying the object, against creating a new
object. Various texts advocate a rule whereby a new object should be created
when more than 10% or 20% of an existing object's methods must be modified.
However, the decision of whether to modify an existing object or create a new
object must be taken on the basis of object complexity, degree of modification
and experience.

3.2 User View vs Application View
A primary benefit of the object-oriented approach is its intuitive user interface; a
user selects an object and performs a series of predefined actions upon that
object. This object-action style of interface encourages the user to explore the
application through context-sensitive actions, and reduces the overall complexity
of the user's interaction by reducing the levels of hierarchy required for the
application.

However, the end user may have a different view of an object-oriented
application from that which must necessarily be taken by the application
developer. For instance, in the case of a text editor application editing a file,
there may in fact be two versions of this file; one existing in memory, being
manipulated by the application, and the other stored on a disk. The application
would consider these as two separate data objects, each with its own set of
methods, and would create two application objects.

Normal user interaction would take place with one object (the memory
representation of the file), and when the user·selects a "Save" action for the file,
a message is passed to the second object (the disk representation of the file)
with the information necessary to save updates on disk storage. The user
considers the logical data entity as the object being manipulated, while the
application must distinguish between the representations of that data entity in
various locations within the system. The user's metaphorical view of the data
object is therefore not carried over to the application's view, which must by
necessity be more concerned with the reality of that object's manipulation.

Note however, that this distinction between representations should not be
apparent to the end user. The end user should perceive a single object (the text
file) upon which he or she would perform actions. Thus there is a distinction
between the user's view and the application's view of the objects. An
understanding of this distinction is important in order to comprehend the

Chapter 3. Object-Oriented Applications 29

difference between an object-action user interface and an object-oriented
application design.

01Jject Oriented Application Design

Qb]ec;~ Qijenteff, Implementation

Figure 4. Object-Oriented Development Progression. This diagram shows the
interdependence of object-oriented design. implementation and user interface.

The two concepts are complementary but distinct. An event-driven, object-action
user interface necessarily emerges from an object-oriented application design
and implementation. It is not possible to provide such an interface unless the
application structure conforms to a certain level of object-oriented principles and
practices. This in turn is dependent upon an object-oriented application design.
For this reason, the proper implementation of the graphical user interface
concepts defined in the IBM Systems Application Architecture CUA Advanced
Guide to User Interface Design, requires applications to be designed and
implemented using object-oriented guidelines.

3.3 Object-Oriented Design

30 OS/2 V2.0 Volume 4

The success of object-oriented design lies in the correct and intelligent definition
of application objects and their methods as coherent and independent units. The
secret of a successful approach to this task is the consideration of the data
objects themselves as the focus, rather than the procedures that will operate
upon these objects. Since the objects are typically associated with data, an
entity-relationship model is often a useful starting point.

Correctly-designed application objects facilitate reusability, since the data object
and applicable actions are all defined within the application object. Additional
applications that require manipulation of that data object may use the existing
application object to achieve the required actions. Certain applications may
require additional, unforeseen actions, or that existing actions be carried out in a
different manner; in such cases, subclassing the application object allows such
modifications to be carried out. One of the aims in the high-level design of an
object-oriented application should be to make maximum use of existing
application objects where possible, in order to reduce the design, coding and
testing effort required. This not only reduces the time and expense involved in
application development, but enables application solutions to be delivered in a
shorter time frame, allowing the business enterprise to respond more quickly to
a dynamic marketplace.

The correct definition of application objects and their boundaries also facilitates
change management and maintenance of application code, since changes to a
particular data object should affect only the application object(s) dealing with
that data object. Thus the effects of change are ideally confined to a single
application object. Modifications to a method within an application object should
not affect the workings of other objects with which that application object
interacts, provided the external interfaces of that object are not altered by the
modification. This containment of change within a single application object has
the potential, in conjunction with proper configuration management techniques,
to greatly ease the effort and cost involved in application maintenance.

The following steps are necessary in the design of an object-oriented application:

1. Identify the data objects (that is, the different representations of the logical
data entity or entities upon which the application is to operate) and the
relationships between data objects.

2. Determine the set of applicable actions to be performed on each data object.

3. Determine whether application objects have been previously been created
for the data objects to be manipulated by the application, and to what extent
these existing objects perform the required set of actions for each object.

4. Determine the message classes required to achieve the desired
communication and to initiate required actions that are not already satisfied
through existing application objects.

5. Design the methods necessary to carry out the additional actions.

These steps are generic in nature, and must be combined with suitable
management controls, checkpoints and documentation standards to ensure
adequate design quality at each stage in the process.

3.3.1 Object Identification
The identification of data objects and their relationships should begin with the
definition of a normal entity-relationship model, and the extension of this model
to reflect the representations of data objects as well as the logical data entities
involved. The objective should be to achieve an optimal balance between the
number of object classes and the size and complexity of each class, since each
object may itself be composed of other objects, also bearing in mind that
multiple objects of the same class may exist. Optimizing the number of object
classes will allow the number of message classes to be minimized, which in turn
simplifies the design of the methods and the eventual testing of the object
classes.

3.3.2 Action Identification
Having defined the data objects and their relationships, the set of actions
pertaining to each data object should be determined. Once this point is
achieved, the high-level design of the application objects, and therefore of the
application itself, is essentially complete, and should be documented and
approved by all concerned parties before the detailed design of methods
commences. Note that it is not necessary to define all of the applicable actions
for each data object, since the essentially independent nature of methods allows
additional actions to be added to an application object.

Chapter 3. Object-Oriented Applications 31

3.3.3 Search for Existing Objects
Once the data objects and the set of actions required for each object have been
defined, the application designer should determine the existence of any
previously-created application object classes for that type of data object. The
use of existing application objects, with additional actions and methods handled
through subclassing, can significantly reduce the amount of coding required.

The accurate identification of existing application object classes requires that
each application object, upon completing its final testing, must be placed in an
object library, and its external interfaces (both input and output) must be fully
documented and placed in a retrieval system from which the object's description
may be recalled by designers of future applications. The organization and level
of sophistication of such a system is largely at the discretion of the development
organization, but becomes more crucial as the number of application objects
grows larger over time. It is strongly recommended that any organization
embarking on a strategy of object-oriented application development should adopt
an efficient object library management system from the outset.

3.3.4 Message Definition
When the high-level design is complete, the message classes and their contents
must be defined for each action that will be performed on and by an object.
Note also that the same message class may be used with different object
classes to achieve a different result, in accordance with the principle of
polymorphism, thus reducing the number of defined message classes and
simplifying the design of the application objects and their methods.

The message classes comprise the interfaces between objects, and provide the
input and output for the methods associated with the object. These message
interfaces must therefore be documented to facilitate reusability of the
newly-created application objects by documenting the valid inputs and outputs
for each object class, and the behavior of the object in response to these
messages.

Since the messages received and dispatched by an object constitute the inputs
and outputs required and expected of that object, the documented message
interfaces provide a valuable starting point for developing a test plan for the
object. Since the inputs, actions and outputs are known, a comprehensive set of
test data may then be formulated to test the methods associated with each
action, with both valid and invalid message inputs.

3.3.5 Method Design

32 OS/2 V2.0 Volume 4

Traditional functional decomposition techniques may then be used in the design
of the methods to complete the required actions. If the high-level design has
been completed correctly, the application objects should be relatively
independent of one another. It should therefore be possible to complete the
development and testing of the methods for each object class as a separate task
with each class, its methods and valid interfaces defined and unit-tested before
the application is brought together for final integration-testing.

3.4 Object-Oriented Implementations
There has been much discussion in the computing industry press concerning
application development products and tools that support the creation of
object-oriented applications. While the use of such products is a valuable aid in
designing and developing an object-oriented application, it should not be
construed tnat their use is essential to the successful implementation of an
object-oriented approach.

It is quite possible to implement module-based object-oriented principles to a
practical and beneficial degree in the Presentation Manager environment, using
a "conventional" programming language such as "C." However, the degree of
discipline and amount of work required of the application developer is greater
when a standard programming language is used. Object-oriented tools or
language extensions make the task of the application developer much easier,
since many of the object-oriented concepts are handled by the tools themselves,
without the need for the developer to concern him/herself with the details of their
implementation.

Object-oriented programming tools fall into two general categories:

• Those that provide extensions to an existing programming language and
implement certain object-oriented conventions, such as C+ +. These
languages typically provide object-oriented constructs but do not force an
application developer into the use of such constructs. The strength of such
implementations is their flexibility, but they have the inherent weakness that
it is easy to develop application code that does not conform to
object-oriented programming practices.

• Those that provide a complete programming language syntax, which obeys
and implements object-oriented principles, such as Smalltalk V**. These
languages provide an additional benefit in that they force the application
developer into obeying object-oriented programming practices, but at the
expense of flexibility.

The tools that are marketed as "object-oriented" and which are currently
available in the marketplace tend to implement the class-based approach to
object-oriented programming. Their primary benefit is thus that they provide an
inheritance hierarchy, and so make the task of object creation much easier for
the application developer, albeit at the risk of reduced code efficiency and
possible dependence upon a conceptual run-time environment.

The choice of an object-oriented programming tool is very much an individual
one, and depends on the requirements and priorities of the development
organization, the skills and prior experience of the application developers
concerned, and the degree to which object-oriented practices are to be enforced
within the organization.

3.5 More Complex Objects
For relatively simple applications where a data object is retrieved, manipulated
and saved again, the foregoing definition of an application object will suffice.
However, the situation often arises when an application must perform some
processing that is rather more complicated. Either the application must interface
with another system or external device or a certain work task must be performed
in a particular sequence of operations that is critical to the correct completion of

Chapter 3. Object·Oriented Applications 33

the task. The incorporation of such requirements into the object-oriented
paradigm requires an expansion of the application object concept.

The key to successful expansion of the object-oriented paradigm lies in the
definition of a data object. Whereas a data object was previously defined as a
manifestation of a logical data entity, the definition will now be expanded to
include any other type of logical entity or source of information, such as an
external system or a procedures manual.

3.5.1 Device Manipulation
The entity represented by an application object may be a physical device. For
example, suppose an application is required to access a particular type of
external data input device such as an MICR reader. The definition of the
protocols and specialized access routines necessary to interact with such a
device can be encapsulated within an application object, and the various actions
performed by the device on behalf of the application (such as getting the next
MICR document) then become the methods associated with that object. The
application thus regards the MICR reader as an object to which it passes
messages in order to perform actions; the results of those actions are then
conveyed back to the application, also by way of messages.

3.5.2 Access to Remote Systems

34 05/2 V2.0 Volume 4

The representation of a physical device as an application object may be
extended to encompass any external entity with which an application must
interact. Suppose that an application executing in a programmable workstation
must interface with a number of server applications executing in a System/370
host, using the SRPI interface. The host system may be regarded as a logical
entity, and a single application object created to interact with that entity. All
communications-related and interface-specific code may then be encapsulated
within that object, and other objects within the application need not concern
themselves with the details of the SRPI communication. A message passed to
the application object by a requesting object elsewhere in the application will
contain the name of the server application to be invoked, and the data to be
passed to the server application. A return message from the host-interaction
object will contain the reply data from the server application.

Input
Message

"H t'1 • :
... ·,:,•.:< ..•. .os. <····· Remote•··:•

•···

Host:··

Figure 5. Encapsulation of Host Interaction Within Application Object

The isolation of programming interfaces and protocols specific to the
communications architecture, within the "Host" application object provides an
easy means of insulating the remainder of the application from changes to
communications network configurations or to the remote system itself. Such
changes would only require modification to the "Host" object.

3.5.3 Procedure Manuals

3.6 Summary

An administrative procedure, which is merely a set of information that
documents the way in which a task must be performed, may also be regarded as
a procedural entity that may be encapsulated in an application object. Such an
application object typically contains a small number of methods, and may
possibly contain only one.

In the case of an object that contains only a single method and merely accepts
data from a calling application object rather than possessing data objects of its
own, the object may be regarded as simply a method rather than an application
object in its own right. Where it is desirable to invoke the procedure from a
number of applications, the procedure may be placed in a separate executable
module and dynamically bound to its calling applications, thereby maintaining
independence of the procedure from the applications.

A message is passed to the application object identifying the action to be
performed and providing the necessary input data. The application object will
then typically carry out a modal dialog (or possibly a series of dialogs) with the
end user to obtain any further information, leading the user through the
necessary steps in the required order. When the procedure has been
completed, the application object terminates the dialog and possibly passes a
message to its caller or to another application object, containing an
acknowledgement of completion, or information collected during the procedure.
Where completion of a method is mandatory to correct execution of the
application, this acknowledgement of completion provides a useful mechanism
for the caller to determine that the method has been successfully executed.

If such procedures are correctly defined at a generic level (for example, Enter
the customer data), their application objects may be stored in a library and used
by multiple applications. More complex procedures may be constructed within
an application by invoking a number of such application objects in sequence.
Acknowledgement messages from the application objects can be used to verify
that the required steps have taken place.

Thus it can be seen that the object-oriented paradigm, when the definition of a
data object is sufficiently expanded to include all types of logical entity, and
when properly applied with correctly designed application objects obeying the
aforementioned rules and guidelines, is generally applicable to almost all
applications. A wide variety of applications may therefore achieve the
modularization and reusability benefits afforded by an object-oriented design
approach.

It can be seen from the foregoing discussion that the object-oriented paradigm is
a logical consequence of the move toward data-centered application design. An
object-oriented approach provides many benefits for applications which
manipulate data, not the least of which is the ability to implement an intuitive,
event-driven user interface where the user manipulates a number of conceptual
objects in a metaphorical manner that mirrors the "real-life" manipulation of
those objects.

It should be stressed however, that object-oriented programming is not
necessarily suited to all applications; its use is recommended only where data is

Chapter 3. Object-Oriented Applications 35

36 OS/2 V2.0 Volume 4

the central factor in the application's task. There may be situations where the
procedure, rather than the data, is necessarily the focus of the application, or
where an event-driven style of user interface is not appropriate to the task being
performed. In such cases, traditional structured programming techniques hold
advantages over object-oriented programming. However, in situations where
only a portion of the work task is procedurally oriented, it is possible for the two
approaches to coexist within the same application.

Object-oriented programming focuses on the principles of data abstraction and
encapsulation, with all access to a data object being controlled by the
application object which "owns" that data object. This principle allows the
object-oriented approach to facilitate the creation of reusable application objects,
since the interface to an object is defined only by the messages it receives and
dispatches. The implementation details of the data objects or methods
belonging to an application object are typically transparent to other application
objects. Thus the effects of changes to these data objects or methods may be
contained within a single application object, easing the task of change
management and application maintenance.

A distinction must also be drawn between an object-oriented application design
and an event-driven, object-action user interface. The two concepts are
complimentary in that the provision of a truly event-driven interface for the end
user is dependent upon the application being designed and implemented
according to object-oriented principles. However, while the two concepts are
complimentary, they are not identical and the difference must be borne in mind
when designing an application.

Object-oriented application design begins with a definition of logical data entities
and their representations (data objects) in the system. Once these data objects
are defined, the actions relevant to each may be determined, and the design of
the messages to convey each action and the methods necessary to achieve the
actions may be undertaken. The definition of messages and actions completes
the high-level design of the application, and traditional functional decomposition
techniques may then be applied to designing and developing the individual
methods. The independent nature of application objects and of the methods
within an object facilitates modularization of the application, and allows the
design, development and testing of the methods for each object to take place
independently of the methods for other objects.

A number of programming languages and tools exist which implement
object-oriented programming practices to varying degrees. These may exist in
the form of object-oriented extensions to an existing programming language, or
as complete programming languages in their own right. The degree to which
these products enforce object-oriented practices also varies from one product to
the next. It should be stressed however, that the implementation of
object-oriented techniques in application design and development is not
dependent upon the use of any particular tool or programming language, but
rather depends on the correct application of object-oriented design concepts.
When such concepts are correctly applied in the design of an application, it is
quite possible to develop object-oriented applications in conventional
programming languages such as "C." The difference lies in the amount of
latitude given to the individual application developer with respect to the
interpretation of object-oriented principles.

It may be argued with some justification, that according to many
popularly-accepted definitions, the techniques offered in this chapter do not
constitute a truly object-oriented application model. However, such concepts as
a full inheritance hierarchy are not directly supported by execution environments
such as Presentation Manager, and are difficult to provide without the use of
additional object-oriented programming tools. It must be stressed that the
methodology outlii1ed herein is not intended to be a purist implementation of the
full object-oriented paradigm, but is intended to illustrate the application of
certain object-oriented principles to the design and implementation of
Presentation Manager applications, in accordance with the module-based
approach to object-oriented programming.

These principles, when applied to the Presentation Manager environment, afford
significant enhancements in the areas of code reusability and application
modularity, and subsequent benefits with respect to reduced development time
and effort, and easier application maintenance and change management.
Additional tools may be utilized to apply further object-oriented principles to
Presentation Manager application design, in order to achieve the benefits
associated with a class-based approach to object-oriented programming.
However, such tools typically have additional drawbacks that must be weighed
against their advantages, with regard to the specific development scenario.

Chapter 3. Object-Oriented Applications 37

.;·

,38 OS/2.V2.0 Volume 4

Chapter 4. The Presentation Manager Application Model

4.1 Windows

The Presentation Manager environment lends itself to the implementation of
object-oriented programs under the module-based approach to object-oriented
design. Presentation Manager provides far more than merely a means of
displaying information on the screen. It implements an event-driven,
object-based application execution environment and provides many services
required for the definition and manipulation of application objects and messages.

This chapter will examine the execution environment provided by Presentation
Manager, describe the structure of a Presentation Manager application, and
illustrate the implementation of basic object-oriented concepts in the
Presentation Manager environment.

A window is the embodiment of an application object within the Presentation
Manager application model. To the end user, a window appears as a
rectangular display area on the screen. From an application viewpoint however,
the concept of a window is far more powerful than this. Windows may be of two
basic types:

• Display windows have a physical identity represented by a rectangular area
on a screen; in this case the window represents a view of a conceptual
display surface known as a presentation space, which is in fact a data entity
being represented on the screen. This is the average end user's concept of
a window.

• Object windows have no physical manifestation, and are merely addresses
or "handles" to which messages may be directed. An object window is
typically associated with an entity such as a file or database, and is used to
access this entity and perform actions upon it. The object window concept is
very important to the implementation of object-oriented principles under
Presentation Manager, since it enables the creation of non-visual objects
within the Presentation Manager application model. See 4.6.1.2, "Object
Windows" on page 56 for further information.

Windows respond to events, communicated by way of messages, which may
originate from Presentation Manager as a result of user interaction, or from
other windows existing in the system. Messages are routed to and between
windows by Presentation Manager on behalf of the application. Windows may
interpret and process messages in different ways, in accordance with the
concept of polymorphism.

Each window existing in the system has a unique identifier known as its window
handle, which is assigned by Presentation Manager when the window is created.
This handle is used to identify a window in all communication between that
window and other parties, such as Presentation Manager or the user. The
window handle is specified as the destination address used when passing
messages to a window. See 4.2, "Messages" on page 40 for further discussion
of Presentation Manager messages. A window is always aware of its own
handle, since the handle is part of every message passed to the window.
Presentation Manager provides a number of mechanisms by which a window
may determine the handles of other windows in the system in order to pass

© Copyright I BM Corp. 1993 39

messages to those windows; these mechanisms are described in 6.6, "Window
Communication" on page 87.

4.1.1 Window Classes
Since many windows may be in existence at any time, windows having similar
properties and behavior ~re grouped into window classes, with each window
belonging to a class being an instance of that class. Window classes may be
public (defined by Presentation Manager and usable by all applications in the
system) or private (defined by the application and accessible only by that
application unless an application developer decides otherwise; see 4.5,
"Creating Reusable Code" on page 53). Private window classes are registered
to Presentation Manager by the application upon initialization of the application.

Presentation Manager maintains control information relating to each window
created in the system, including properties such as window text, current size and
location, etc. In addition to this information, an application may specify an
additional area of storage to be included within the window control block for
application data relating to that window. This storage is known as window
words. The presence and size of window words is determined for each window
class at the time the class is registered to Presentation Manager. However, a
new storage area is defined for each instance of the class, and window words
may therefore be used for instance data. Window words typically contain
pointers to dynamically-defined application data structures, which in turn contain
the instance data.

4.1.2 Window Procedures

4.2 Messages

40 OS/2 V2.0 Volume 4

Each window class is associated with a window procedure, which defines and/or
establishes access to data objects and performs processing related to that
window class. In object-oriented terms, the window procedure contains the
methods to carry out actions upon the data object referenced by the window.

A window procedure is normally invoked by Presentation Manager on behalf of
the application. The window procedure interprets messages passed by
Presentation Manager to the window and invokes a method (that is, a coherent
set of application statements and/or routines) depending on the nature and
contents of the message.

See 4.3.2, "Window Procedures" on page 46 for a more complete discussion of
window procedures' structure and behavior.

All interaction between the user and windows, or between one window and
another in the Presentation Manager environment, takes place by way of
messages. Whenever the user presses a key, moves or clicks the mouse,
selects an item from a menu, etc., a message is generated and placed on a
system message queue. Presentation Manager takes these messages in the
order they were received by the system, determines the window for which each
message is intended, and routes the message to a message queue belonging to
the application that "owns" that window. The application then dequeues each
message in turn, and routes the message via Presentation Manager to the
window procedure associated with that window, which processes the message.

Mess~ges may be of three types:

• User-initiated; that is, the message is generated as the result of the user
selecting an action-bar item, pressing a key, etc.

• Application-initiated; that is, the message is generated by one window within
the application for the communication of an event or required action to
another window.

• System-initiated; that is, the message is generated by Presentation Manager
as the result of some system event such as a window having been resized or
moved.

A Presentation Manager application has the ability to process messages of any
of the three types, which allows the application to respond to any type of event,
regardless of its origin.

4.2.1 Message Classes
Messages are grouped into message classes, with each class representing a
particular type of event such as character input, mouse movement, etc. Many
message classes are defined by Presentation Manager, and messages of these
classes are usually dispatched by Presentation Manager to inform an application
of system-initiated events. These system-defined message classes are
described, along with the default processing provided by Presentation Manager
for each class, in the IBM OS/2 Version 2.0 Presentation Manager Reference.

An application developer may define additional message classes unique to his
or her particular application, for use by that application. Application-defined
messages typically serve as a means of communication between windows,
where one window passes information to another window, for processing by the
window procedure associated with that window. The destination window may
then return a message to the calling window indicating completion, or may pass
a message to a third window to trigger an additional action, dependent upon the
requirements and design of the application.

For example, the user may elect to update a file by selecting an item from a
menu bar. The window procedure associated with the display window to which
the menu bar belongs may pass a message to an object window associated with
the file to be updated. The window procedure for this window would make the
change and then pass a message to a third object window, which logs the
update before passing a message back to the original window procedure
indicating that the update is complete.

Note that message classes need not be specific to a particular window class;
messages of the same class may be passed to different window classes, with
different results depending upon the processing of that message by the window
procedure belonging to that window class. This is in accordance with the
object-oriented principle of polymorphism.

4.2.2 Message Structure
In order to allow any window the ability to process any message class,
Presentation Manager defines a standard format for messages. In the
Presentation Manager environment, a message is composed of four distinct
attributes:

• A window handle identifying the window for which the message is intended

• A message ID identifying the particular class of message

Chapter 4. The Presentation Manager Application Model 41

42 OS/2 V2.0 Volume 4

• Two message parameters, which are 32-bit fields containing a variety of
information, depending upon the class of message received.

All Presentation Manager applications must contain a message processing loop,
which receives the message from Presentation Manager (see 4.3, "Application
Structure" on page 43), and routes it, using Presentation Manager
message-dispatching functions, to the appropriate window procedure for
processing. Thus Presentation Manager actually invokes the window procedure
on the application's behalf.

4.2.2.1 Message Identifier
The message ID identifies the message class to which each message belongs,
and is in fact an integer value which is typically replaced by a symbolic name for
ease of use. The symbolic names for all system-defined message classes are
defined by Presentation Manager; symbolic names for application-defined
(private) message classes must be declared by the application developer in the
application's source code. This is typically achieved by declaring an integer
constant, the value of which is specified as an offset from the system-defined
value WM_USER. For example:

#define WMP_MYMESSAGE WM_USER+6

The use of an offset to a system-defined constant, rather than an absolute
numeric value, eliminates the chance of using the same integer value as a
system-defined message class (with consequently unpredictable results), and
avoids the necessity to alter application code should the number or definition of
system-defined message classes be altered in future versions of Presentation
Manager.

4.2.2.2 Message Parameters
As noted above, message parameters may contain a variety of information.
When used for communication between window procedures, the window handle
of the calling window may be passed to the destination window as one of the
message parameters, in order that the destination window procedure may
dispatch an acknowledgement or reply message to the calling window.
Qualifiers to the message type or small items of data may also be passed; for
example, the Presentation Manager-defined WM_ COMMAND message class
(indicating a menu selection by the user) uses the first message parameter to
identify the menu item selected.

When large data structures are required to be passed between window
procedures, and the data obviously cannot be contained within the two 32-bit
message parameters, the convention is to allocate a memory object for the
required data structure using the DosAllocMem() function, and to pass a pointer
to that memory object as a parameter to the message. Presentation Manager
provides a number of macros to enable various types of data to be placed into
and retrieved from message parameters. The insertion and retrieval of data into
and from message parameters is described in 6.6.6, "Creating Message
Parameters" on page 93.

4.2.3 Message Processing
Messages passed to a window may be processed in one of two basic ways:

• Synchronously, in which case the message is passed directly to the target
window and is processed immediately; the window from which the message
originated suspends its execution until the message is processed.

• Asynchronously, in which case the message is placed on a queue from
which it is subsequently retrieved and passed to the target window; the
window from which the message originated continues execution immediately
after the message is placed on the queue.

Synchronous and asynchronous processing are described in more detail in
4.3.2.1, "Invoking a Window Procedure" on page 47.

A message may also be dispatched to multiple windows at the same time, using
the message broadcasting facilities provided by the Presentation Manager
programming interface. Broadcasting may be either synchronous or
asynchronous. The implementation of message broadcasting is discussed in
more depth in 6.6, "Window Communication" on page 87.

Messages that are not explicitly processed by an application in its window
procedures are passed to a default window procedure supplied by Presentation
Manager, which contains default processing for all message classes (in the case
of application-defined message classes, this default window procedure simply
ignores the message). This technique is in accordance with the principle of
inheritance, in that a window procedure only contains methods for those
message classes with which it is directly concerned, and allows other messages
to be processed by the existing default window procedure. Default processing
for each message class is described in the IBM 0512 Version 2.0 Presentation
Manager Reference.

For message classes that are processed by the application's window
procedures, the last operation in the message processing should be to provide a
return code to Presentation Manager. In many cases, this return code
determines whether Presentation Manager performs its default message
processing, after the application's own message processing is complete. The
default message processing may or may not be desirable, depending upon
application requirements. This ability allows system-initiated events to be easily
detected and trapped by a Presentation Manager, enabling the application to
perform its own processing for the event before allowing the default processing
to occur.

4.3 Application Structure
All Presentation Manager applications have a similar structure. The application
is composed of a main routine, which performs initialization and termination
functions, and which contains the application's main message processing loop,
and a number of window procedures that process messages for window classes
created and/or used by the application. These window procedures are invoked
and messages passed to them by Presentation Manager on behalf of the
application, as shown in Figure 6 on page 44.

Chapter 4. The Presentation Manager Application Model 43


~~~~1; __. .~Z~· 
+ 

. -- . ~ 

Presentation{,·___.... 

p:::::on J ::;~:::~ 
-_::,,::.·.:M: . ' ·.·.· , <':, ·: .. ; ___.... :<=:.·\.•·.:.P.· .. oc.ed.· u~~x!-,I::"' 

.••·.:.i1 ... •·.,·.•• .. :.··.·.•·. .. a.ti. aae. ··'····•·.•· .· · · , , o~ ·:::::-:::::::· 

Figure 6. Message Flow in a Presentation Manager Application 

Window procedures may also pass messages between one another in order to 
communicate events. The flow of messages between the window procedures is 
also controlled by Presentation Manager on behalf of the application. 

4.3.1 Main Routine 

44 05/2 V2.0 Volume 4 

The main processing routine of a Presentation Manager application performs a 
number of initialization and termination functions for the application, as shown in 
Figure 7. 

int main() 
{ 

<Global data declarations> 

hAB = Winlnitialize( ••• ); 
hMsgQ = WinCreateMsgQueue( ••• ); 

WinRegisterClass( ••• ); 

hFrame = WinCreateWindow( ••• ); 
hClient = WinCreateWindow( .•• ); 

WinAddSwitchEntry( ••• ); 

while (WinGetMsg( ••• )) 
WinDispatchMsg( ••. ); 

WinRemoveSwitchEntry( ••• ); 

WinDestroyWindow(hFrame); 
WinDestroyMsgQueue(hMsgQ); 
WinTerminate(hAB); 

/* Register application */ 
/* Create message queue */ 

/* Register window class */ 

/* Create frame window */ 
/*Create client window */ 

/* Add task manager entry */ 

/* Loop until WM_QUIT */ 

/* Remove task mgr entry */ 

/* Destroy main window */ 
/* Destroy message queue */ 
/* Deregister application */ 

Figure 7. Structure of an Application's Main Routine 



The application's main routine registers the application to Presentation Manager, 
creates the application's message queue and defines private window and 
message classes for the application before actual processing takes place. Other 
application-specific initialization processing may also take place at this time, 
such as the definition of global data items. Note however, that the use of global 
data increases the interdependence of application modules and reduces the 
potential for subsequent code 1 euse. Hence global data should be avoided 
wherever possible. 

The main routine also creates the application's main window. Note that from an 
application viewpoint, a display window is actually a group of windows that 
appear and behave as a single unit. Therefore the frame (with its associated 
title bar, menu bar, etc.) and the client areas are created separately, as shown 
in Figure 7. This concept is explained in more detail in 4.6, "Window Hierarchy" 
on page 54. 

During execution of the application, the only function of the main routine is to 
accept messages from the system queue and route them to window procedures 
via Presentation Manager. This is performed using a message processing loop, 
which continues until a message of the system-defined class WM_ QUIT is 
received, at which point the loop terminates and allows the application's 
termination processing to occur. 

Upon termination of the application, the main routine destroys any remaining 
windows, along with the application's message queue, and deregisters the 
application before terminating. Any global data items acquired during 
initialization are also released at this time. 

When the user selects "Exit" from the menu bar, or selects the "Close" option 
on the system menu of the application's main window, the application is not 
automatically terminated. These messages are passed to the window procedure 
for that window, and may be processed by the application. The typical action 
performed by the window procedure in such cases is that a message of class 
WM_QUIT is posted to the application's message queue, which causes the 
message processing loop to terminate. Conventions for closing windows and 
terminating applications are discussed further in 6.5.3, "Window Closure" on 
page 80. 

Since Presentation Manager actually informs the application that it is being 
terminated rather than simply shutting the application down, the application is 
given a chance to perform any necessary termination processing and exit in an 
orderly manner. When a window is destroyed, it receives a WM_DESTROY 
message from Presentation Manager, which may be processed by the window 
procedure to allow orderly termination of processing. This enables the 
preservation of data integrity by Presentation Manager applications, which need 
not rely on the user completing a logical unit of work before terminating; any 
uncompleted units of work may be placed in an interim storage area on disk, or 
simply backed out as part of the WM_DESTROY message processing. 

This feature is also used by the "Shutdown" procedure of the Workplace Shell. 
When the user selects "Shutdown" from the menu bar, Presentation Manager 
posts a WM_QUIT message to the main window of each application executing in 
the system, informing the application that it is being terminated and allowing any 
termination processing to take place. This facility allows for an orderly shutdown 
of the system and preserves the integrity of data objects. 

Chapter 4. The Presentation Manager Application Model 45 



4.3.2 Window Procedures 

46 03/2 V2.0 Volume 4 

It has already been mentioned that each window class within an application, 
whether a display window or an object window. is associated with a window 
procedure, which receives all messages intended for windows within that class. 
The window procedure contains the methods used to perform actions upon the 
data object to which the window pertains, and thus contains the application logic 
for the manipulation of data objects. It may thus be said that window procedures 
form the "heart" of a Presentation Manager application. 

Upon invocation, the window procedure determines the type of message passed 
to it, and may either process the message explicitly or pass it on to a default 
window procedure supplied by Presentation Manager for standard processing. A 
window procedure is essentially an extended CASE statement. as illustrated in 
Figure 8. Each case within the window procedure contains a set of application 
statements and/or routines necessary to perform a particular action. Thus in 
object-oriented terminology, each case is a method in its own right. 

MRESULT EXPENTRY wpMain(HWND hWnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2) 
{ 

switch (ulMsg) 
{ 
case WM CREATE: 

WinDefWindowProc(hWnd, ulMsg, mpl, mp2); 
<perform initialization of instance variables> 
<define, create or establish access to data objects> 
return((MRESULT)FALSE); 
break; 

case WM_COMMAND: 
<determine command by examining message parameters> 
<perform processing for menu command> 
return((MRESULT)0); 
break; 

case WM HELP: 
<perform help processing> 
return((MRESULT)0); 
break; 

case WM_DESTROY: 
<back out any incomplete updates> 
<close all open data objects> 
return((MRESULT)0); 
break; 

default: 
return((MRESULT)WinDefWindowProc(hWnd, 

ulMsg; 
mpl, 
mp2)); 

break; 

Figure 8. Structure of a Window Procedure 

A window procedure is declared to return the type MRESULT, which is a 32-bit 
data type declaration provided by Presentation Manager, and indicates the 



nature of the window procedure's return value. Note that in the above example, 
the returned values differ depending upon the message class; see 4.3.2.3, 
"Returning from a Window Procedure" on page 49 for further discussion. Note 
also that in the default case shown in Figure 8, the window procedure did not 
decide the return value itself, but used the value returned by the Presentation 
Manager-supplied default window procedure. This is an established 
Presentation Manager convention. 

A window procedure should always be declared with the system linkage 
convention; this is typically achieved by declaring the function to be of type 
EXPENTRY. This type identifier is defined in the system header file 052DEF.H, 
and simply specifies use of the system linkage convention. Use of the system 
linkage convention is required since a window procedure is invoked by 
Presentation Manager on the application's behalf, rather than directly by the 
application. Note that under previous versions of OS/2, the EXPENTRY keyword 
resulted in use of the pascal linkage convention, for precisely the same reason. 

Subject to programming language conventions, a window procedure has the 
ability to define a data object or instance data, or to establish access to an 
existing data object as part of its initialization processing. When a window is 
created by Presentation Manager in response to an application's request, 
Presentation Manager immediately dispatches a message of the system-defined 
class WM_CREATE to that window (see Figure 8). The window procedure may 
process this message in order to define instance data or establish access to 
data objects. Typically, a window procedure requests the allocation of a memory 
object as a control block for its instance data. Initial values for the instance data 
are then placed in the control block, and a pointer to the control block is stored 
in the window words. A window procedure thus supports the object-oriented 
concept of encapsulation, by allowing the dynamic allocation of and 
establishment of access to data objects, within a single application object. 

Note that prior to allocating instance data or performing any other processing for 
the WM_CREATE message, a window procedure should invoke the default 
message processing provided by Presentation Manager in the 
WinDefWindowProc() function. This ensures that the initialization of Presentation 
Manager's control data for the window is completed prior to WM_ CREATE 
processing by the window procedure. This in turn ensures that the window 
handle, window words, etc., will be available during the window procedure's 
WM_CREATE processing. 

4.3.2.1 Invoking a Window Procedure 
A window procedure is invoked by dispatching a message to a window of the 
class with which the window procedure is associated. Messages passed to a 
window are typically initiated as the result of user interaction or application 
events, or by Presentation Manager to indicate system events. 

While window procedures may be invoked directly using a normal subroutine 
call, it is recommended that messages be used for all communication between 
window procedures. This conforms to standard object-oriented practice, in that 
an object should be accessible only via a message passed to it. 

Messages may be used to invoke a window procedure in two ways: 

• A message may be sent directly to the window procedure using the 
WinSendMsg() call, in which case the window procedure executes 
synchronously, and control does not return to the calling procedure until 

Chapter 4. The Presentation Manager Application Model 47 



48 05/2 V2.0 Volume 4 

processing is completed. This method of invocation is similar to a normal 
subroutine call, but preserves the message-driven structure of the 
application. Note that since the message is sent directly to the window 
procedure and not placed on a queue, the normal serialization of message 
processing is disturbed. This may cause different results from those 
intended by the user; thus WinSendMsg() should be used with care. 

• A window procedure may also be invoked by posting a message to a queue 
associated with the window procedure, using the WinPostMsg() call. With 
this call the window procedure executes asynchronously, and control returns 
to the calling procedure immediately after the message is placed in the 
queue. This method of invocation provides a convenient and powerful 
means for serialized and yet asynchronous processing. It then becomes the 
responsibility of the application developer to ensure synchronization between 
different window procedures. 

Invoking a window procedure by posting a message to it via a queue has an 
advantage over the use of WinSendMsg() or a direct subroutine call in that, 
where multiple windows are passing messages to a single receiving window, 
these messages are queued by Presentation Manager and dispatched to the 
receiving object in the order in which they were initiated. Provided all sending 
windows obey the established conventions and post messages to queues, this 
ensures the correct sequencing of message processing by the receiving window, 
helps preserve the user's intention and facilitates maintaining the integrity of 
data objects. 

A window procedure accepts four parameters upon invocation; these correspond 
to the four attributes of a message as described in 4.2, "Messages" on page 40 
and to the parameters of the WinSendMsg() and WinPostMsg() functions, and are 
as follows: 

1. The handle of the window for which the message was intended 

2. A message-class identifier 

3. Two 32-bit message parameters. 

Note that the behavior of a window procedure, and the result obtained from 
processing by a window procedure, are dependent upon the class and contents 
of the message sent to it. Similarly, the same message class may be interpreted 
in a different manner by window procedures belonging to different window 
classes. In this way, a window procedure supports the object-oriented concept 
of polymorphism. 

4.3.2.2 Window Procedure Processing 
A window procedure will normally determine the message class. and take action 
based upon that class and the contents of the message parameters. Where the 
action involves the manipulation of data objects and/or instance data, the 
window procedure typically obtains access to the window's control block by 
retrieving its pointer from the window words. The window procedure then has 
access to the data values, resource handles, etc., required to complete the 
action. 

Note that the example given earlier in this chapter contains explicit processing 
options for only four types of messages; the application allows Presentation 
Manager to handle all other types of messages, by passing the message to the 
system-supplied default window procedure using the WinDefWindowProc() 



function. This illustrates one of the basic principles of a Presentation Manager 
application; the window procedure processes only those messages with which it 
is explicitly concerned, and passes a// other messages to Presentation Manager 
for default processing. A window procedure must pass such messages on to 
Presentation Manager, or unpredictable results may occur. 

This "catchall" approach to implementation also allows the stepwise 
implementation of methods during application development. An application 
developer may code a window procedure such that all command messages are, 
by default, passed to a routine that displays a message informing the user that 
the requested action is not yet implemented. As the method for each action is 
designed and coded, a case for that action may be added to the window 
procedure. Thus implementation of methods for an object proceeds in a 
stepwise and independent fashion until all necessary methods are implemented. 

As mentioned earlier in this chapter and illustrated in Figure 8, a window 
procedure may process messages of any type, including the WM_DESTROY 
message, which is posted to a window upon termination. A window procedure 
may explicitly process this message in order to close files and terminate access 
to data objects in an orderly manner, thus preserving the integrity of those data 
objects. This ability allows the window procedure to further support the principle 
of encapsulation. 

4.3.2.3 Returning from a Window Procedure 
By convention, a window procedure typically returns a Boolean value (type 
MRESULT) to its caller, to indicate the result of message processing for that 
message. The value returned is significant, since Presentation Manager takes 
action depending upon that value. The defined return values for each 
system-defined message class, along with the default processing provided by 
Presentation Manager for each class, are given in the IBM OS/2 Version 2.0 
Presentation Manager Reference. Naturally, the return values for user-defined 
message classes are defined by the application developer. 

If the window procedure has been invoked synchronously using WinSendMsg(), 
the result is returned by Presentation Manager to the calling window procedure, 
which may interrogate and act upon it. If the window procedure has been 
invoked asynchronously using the WinPostMsg() function, the result is returned 
to Presentation Manager only. Presentation Manager then uses this result to 
determine whether any post-processing should be carried out for the message. 
Note that while the WinPostMsg() function call also provides a Boolean return 
code to the caller, this code only indicates whether the message was 
successfully posted to the queue, and not the successful processing of the 
message by the target window procedure. 

4.3.3 Dialog Procedures 
A dialog procedure is a special type of window procedure that is associated with 
a modal dialog box and processes messages intended for that dialog box. The 
structure of a dialog procedure is similar to that of a "normal" window 
procedure, and it processes messages in the same way, although certain 
message classes received by a dialog procedure are different from those 
received and processed by a normal window procedure. The structure of a 
typical dialog procedure is shown in Figure 9 on page 50. 

Chapter 4. The Presentation Manager Application Model 49 



50 OS/2 V2.0 Volume 4 

MRESULT EXPENTRY dpDProc(HWND hWnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2) 
{ 

switch {ulMsg) 
{ 
case WM INITDLG: 

<extract initialization data from message parameters> 
<establish initial values for control window data> 
return((MRESULT)TRUE); 
break; 

case WM CONTROL: 
<determine originator of message and message contents> 
<perform control-specific processing> 
return((MRESULT)0); 
break; 

case WM COMMAND: 
switch LOUSHORT(mpl): 

{ 
case DID_OK: 

<complete dialog> 
WinDismissDlg{hWnd,TRUE); 
break; 

case DID_CANCEL: 
<cancel dialog> 
WinDismissDlg(hWnd,FALSE); 
break; 

} 
return((MRESULT)0); 
break; 

default: 
return((MRESULT)WinDefDlgProc(hWnd, 

ulMsg, 
mpl, 
mp2)); 

break; 

Figure 9. Structure of a Dialog Procedure 

Since modal dialog boxes do not belong to a class, they are not registered to 
Presentation Manager in the manner of a normal window. A dialog procedure is 
associated with a dialog box as part of a WinDlgBox() call, which loads a modal 
dialog box and processes the dialog as a single operation, or a WinloadDlg() 
call, which loads the dialog box into memory but does not process it; the dialog 
box may subsequently be processed by a WinProcessDlg() call. The processes 
of providing input to and obtaining results from a dialog procedure are discussed 
in Chapter 6, 11 Building a Presentation Manager Application." 

Note that since a modeless dialog box is simply an optimized (non-sizable) 
window with no other inherent properties such as modality, it receives the same 
messages as a standard window, and its methods are therefore contained within 
a normal window procedure rather than a dialog procedure. 

Note that a dialog box must use the system linkage convention, since it is simply 
a specialized form of window procedure. This is achieved using the EXPENTRY 
keyword. 



Upon creation, a dialog box receives a message of the system-defined class 
WM_INITDLG. This is similar to the WM_CREATE message received by a normal 
window upon creation, and may be processed in a similar way. The first 
parameter in the WM_INITDLG message may be used to pass a pointer to the 
dialog procedure, referencing a data structure containing initialization 
information or other application-specified data. 

A dialog box also receives messages of class WM_CONTROL indicating events 
occurring in control windows within the dialog box. The window identifier of the 
control window that dispatched the message, along with the nature of the 
message, is indicated in the message parameters. The WM_ CONTROL message 
is described in the IBM OS/2 Version 2.0 Presentation Manager Reference. The 
dialog procedure may wish to explicitly process events indicated by 
WM_ CONTROL messages, or it may allow such messages to pass on to the 
default Presentation Manager-supplied dialog procedure WinDefDlgProc(). 

A dialog box also typically receives WM_COMMAND messages, which are 
generated when a pushbutton within the dialog box is pressed by the user. The 
identity of the pushbutton is indicated in the first parameter of the 
WM_COMMAND message. 

The symbolic names DID_OK and DID_CANCEL are defined by Presentation 
Manager, and by convention are used to refer to the "OK" and "Cancel" 
pushbuttons respectively. The definition of dialog boxes is described in detail in 
Chapter 9, "Presentation Manager Resources." 

A dialog procedure is terminated and the dialog box is destroyed when the 
dialog procedure issues a WinDismissDlg() call to Presentation Manager, 
typically as a result of the user pressing a pushbutton. By convention, this call 
specifies a parameter indicating TRUE if the user completed the dialog by 
pressing an "Enter" or "OK" pushbutton, or FALSE if the user cancelled the 
dialog by pressing a "Cancel" pushbutton. The value specified in this parameter 
is returned to the window procedure that issued the WinDlgBox() or 
WinProcessDlg() call, as the return value from that call. 

Message boxes do not require an application-supplied procedure to carry out 
their processing. The simple nature of the message box dialog allows it to be 
processed by Presentation Manager on the application's behalf, and to return 
the result to the application for subsequent action. 

4.3.4 Subroutines 
Subroutines may be used in a Presentation Manager application, in the same 
way as they are used in any other application. However, in order to conform to 
object-oriented practices, subroutine calls should only be used to achieve 
functional isolation within the methods of a single application object, or to 
perform a standard processing function that is common to a number of objects; 
in this case, the scope of each execution instance of the subroutine is limited to 
a single object. In accordance with object-oriented programming guidelines, 
communication between objects (windows) should be achieved using messages, 
and hence window procedures should not be invoked directly as subroutines. 
See 6.7, "Passing Control" on page 95 for further discussion on the use of 
subroutines in Presentation Manager applications. 

Chapter 4. The Presentation Manager Application Model 51 



4.3.5 Partitioning the Application 
With the dynamic linking capabilities of OS/2, it is possible to partition an 
application into a number of executable modules. A single base program may 
be augmented by one or more dynamic link libraries. Such an approach has a 
number of advantages: 

• Application code that is only executed ir. exceptional circumstances, such as 
little-used functions, exception and error-handling routines etc, is not loaded 
unless it is required. This may significantly reduce the load time and 
memory requirements of the application. 

• Common functions may be shared between applications, since dynamic link 
libraries are re-entrant and a single memory-resident copy of the library 
code may be used by all applications. This can further reduce the memory 
requirements of an application. 

• Functions placed in dynamic link libraries are isolated from the main 
application, and may be modified without the need to re-link the application. 
This facilitates application maintenance and update, since only the new 
version of the DLL need be distributed. 

Applications written for the Workplace Shell should be partitioned in this manner. 
Since the shell displays all objects on the desktop at system initialization, all 
applications must potentially be loaded at this time. This can dramatically 
increase the time required for system initialization, along with the overall 
memory requirements of the system. 

These requirements may be significantly reduced by having only the minimum 
code (that is, the code required to accept and identify messages) loaded at 
application startup, and placing all processing function into dynamic link libraries 
that are loaded only when one of their entry points is called. 

Application developers must give careful consideration to correct partitioning of 
the application. Groups of functions that are interdependent and which call one 
another, or are typically called in close sequence should be placed in a single 
DLL module. Functions that are independent of one another should be placed in 
separate DLLs. This approach will minimize the load time and memory 
requirements of the application. 

4.4 Presentation Manager Resources 

52 OS/2 V2.0 Volume 4 

Presentation Manager allows the application developer to define application 
resources externally to the application code. Resources may include definitions 
for the following items: 

Fonts 

Icons 

Menus 

Graphic fonts may be created and modified using the Font 
Editor supplied as part of the IBM Developer's Toolkit for 
0512 2.0. 

Application and window icons, mouse-pointers and 
bitmaps may be created and modified using the Icon Editor 
supplied as part of the IBM Developer's Toolkit for 0512 
2.0. 

Menu bars and pulldown menus may be defined for display 
windows. 



String Tables Tables of text strings may be defined for use by an 
application. 

Accelerator Tables Tables of accelerator keys (for example, F3 for Quit) may 
be defined for display windows. 

Help Tables Tables of help panels may be defined for each display 
window or each control window in a dialog box. See 
Chapter 15, "Adding Online Help and Documentation" for 
further discussion of help panels. 

Dialog Templates Dialog boxes may be created or modified and stored as 
dialog templates, using the Dialog Box Editor supplied as 
part of the IBM Developer's Toolkit for OS/2 2.0. 

Window Templates Window templates may be created or modified and stored 
as window templates, using the dialog editor supplied as 
part of the IBM Developer's Toolkit for 0512 2.0. 

Except where noted above, resources are defined in a resource script file, an 
ASCII text file that may be manipulated using a standard text editor. This 
resource script file seryes as input to a resource compiler, which is provided as 
part of the IBM Developer's Toolkit for OS/2 2.0. The resource compiler 
produces a precompiled version of the resources, which is then incorporated 
into the application's executable code or stored in a dynamic link library for use 
by one or more applications. 

It is usual for simple text-based resources such as menus and string tables to be 
placed directly into the resource script file using an ASCII text editor. However, 
non-textual resources such as icons or bitmaps, or more complex text-based 
resources such as dialog templates, are typically stored in separate files and 
referenced from the resource script file. 

A major benefit of defining such resources externally to the application is that 
changes may be made to resource definitions without affecting the application 
code itself. Modifications such as new icons, altered commands or menus, etc., 
may be implemented quickly and easily by making simple changes at a single 
point in the application. 

As a further example, the task of providing national language versions of an 
application is simplified, since all text such as menus and messages may be 
defined outside the application code, and multiple language-specific versions of 
such resources may be linked into a single version of the application code. In 
this way, the user interface properties of a display window may be modified 
without affecting the internal implementation of the window procedure or its 
methods. 

The creation and use of Presentation Manager resources is discussed in 
Chapter 9, "Presentation Manager Resources." 

4.5 Creating Reusable Code 
The ability to define resources such as window and dialog templates externally 
to the application, in conjunction with the dynamic linking facilities provided by 
the OS/2 operating system, provides a powerful tool for the creation of generic 
application objects. comprised of window/dialog templates and their associated 
window or dialog procedures. These application objects may be defined and 

Chapter 4. The Presentation Manager Application Model 53 



stored in dynamic link libraries for subsequent use by one or more applications. 
This practice is in accordance with the guidelines for Systems Application 
Architecture Common Applications, which provide for common application 
services within and between environments, as well as common user 
applications. This concept is further discussed in Chapter 17, "Generic 
Application Modules." Note however, that the use of generic application objects 
presupposes that the nature of and message interfaces to such application 
objects are well-defined and documented, in order to allow application 
developers to correctly select and interact with the generic objects. 

For instance, a standard dialog box that will be used by many applications could 
be defined in a dialog template, resource compiled and stored in a dynamic link 
library, along with the dialog procedure which performs the processing for that 
dialog. The dialog can then be loaded from the DLL by any application which 
needs to use it. The dialog need be coded only once, and may be modified at 
any time while requiring no source code changes to the applications that access 
it. The fact that DLL code is not bound with the application at link edit time like 
other library code also means that no changes are required to the object code of 
the applications, and thus recompilation and link edit is not required. An 
example of this technique is given in Chapter 9, "Presentation Manager 
Resources." 

The window or dialog procedure associated with a generic object should contain 
all the methods normally used to perform actions upon that object, but need not 
contain every action that will ever be necessary. If an application requires a 
specialized action on a generic object (that is, a previously undefined action or a 
modification of an existing action), the window acting as a handle to that object 
may be subclassed, and a new window procedure substituted for the existing 
window procedure. This new window procedure would contain methods to 
process the specific messages in which it has an interest, and would then invoke 
the original window procedure to handle any other message classes, in 
accordance with the object-oriented principle of inheritance. Subclassing is 
discussed further in 4.7, "Subclassing" on page 57. 

4.6 Window Hierarchy 
Presentation Manager organizes windows hierarchically; each window in the 
system has a parent, and may optionally have an owner. These parent and 
owner relationships determine the behavior of the window in response to certain 
messages, and may be used by applications to navigate the window hierarchy. 

4.6.1 Parent/Child Relationship 

54 OS/2 V2.0 Volume 4 

The parent/child relationship between windows is mentioned in OS/2 Version 2.0 
- Volume 3: Presentation Manager and Workplace Shell, with regard to the 
clipping of a child window to the borders of its parent. However, this hierarchy 
goes further in Presentation Manager, since a// windows, both display windows 
and object windows, have a designated parent window. For top-level display 
windows, this parent window is the desktop, and is identified by the 
HWND_DESKTOP constant. Other display windows within an application, which 
are child windows of the application's main window, may have the top-level 
application window as their parent, or indeed subsequent levels of the window 
hierarchy may be created, dependent on application requirements. A window's 
parent is identified to Presentation Manager by the application when the window 



is created. Thus the window hierarchy within a particular desktop is dynamically 
defined at execution time. 

As well as being uniquely identified by its window handle, a child window may 
also be identified by a window identifier, which is unique between children of a 
particular parent window. This identifier is an integer value, which in practice is 
usually replaced by a more meaningful symbc:ic name that defines an integer 
constant. The window identifier is supplied as a parameter when the application 
requests creation of the window by Presentation Manager. When a window's 
parent and identifier are known, the WinWindowfromlD() function may be used 
to determine its window handle so that operations may be performed upon it. 
See 6.6, "Window Communication" on page 87 for further information. 

The parent/child hierarchy is useful for application design purposes, since in 
many cases, a window and its children may be regarded and manipulated as a 
single unit. For example, sizing a parent window automatically clips all children 
of that window to the boundaries of the parent, and closing a parent window 
results in each of its children being closed. This simplifies the application logic 
required for applications that create multiple windows. 

4.6.1.1 Frame and Client Windows 
The concepts of frame and client areas for a window are discussed in OS/2 
Version 2.0 - Volume 3: Presentation Manager and Workplace Shell. In fact, 
these frame and client areas are separate windows in their own right; the frame 
window of the application's "main window" is a top-level ·window with the 
desktop as its parent, and the client window is a child of the frame window. 
Frame control windows such as maximize/minimize icons, the title bar, the menu 
bar, etc., are also separate windows from the application viewpoint, and are 
regarded as children of the frame window. Note that although they are separate 
windows, the end user perceives and manipulates the entire group as a single 
unit. 

The frame window and its children all belong to system-defined generic window 
classes, and thus have their own window procedures defined by Presentation 
Manager. The exception is the client window, the window class of which is 
defined by the application; the window procedure is therefore defined to 
Presentation Manager when the window class is registered. Note that window 
procedures for system-defined window classes may be subclassed by the 
application in order to provide specialized processing of certain messages. 

The children of a frame window have specific window identifiers assigned to 
them by Presentation Manager. These window identifiers are unique for each 
frame window. The predefined window identifiers are shown in Table 1. 

Table 1 (Page 1 of 2). Window Identifiers. This table shows the window identifiers 
assigned by Presentation Manager to the children of a frame window. 

Child Window Window Identifier Defined by 

Client Window FIO_CLIENT Application 

System Menu FIO_SYSMENU Presentation Manager 

Menu Bar FID_MENU Presentation Manager 

Title Bar FIO_TITLEBAR Presentation Manager 

Min/Max Icon FID_MINMAX Presentation Manager 

Vertical Scroll Bar Fl D _ VERTSCROLL Presentation Manager 

Chapter 4. The Presentation Manager Application Model 55 



Table 1 (Page 2 of 2). Window Identifiers. This table shows the window identifiers 
assigned by Presentation Manager to the children of a frame window. 

Child Window Window Identifier Defined by 

Horizontal Scroll Bar Fl D _HORZSCROLL Presentation Manager 

Note: The •Defined by• column indicates whether the window procedure that 
determines a window's appearance and behavior is supplied by Presentation 
Manager or the application. 

These identifiers may be used to communicate with child windows of a particular 
frame window, without the necessity to determine the window handle of the child 
window. This concept is applicable to all windows including control windows 
within a dialog box. See 6.6, "Window Communication" on page 87 for further 
information. 

4.6.1.2 Object Windows 
Object windows do not have a parent in the visual sense, as considerations such 
as clipping do not arise (since the window is never displayed). For the purposes 
of standardization, Presentation Manager considers every object window to have 
a conceptual parent; this parent may be referenced using the constant 
HWND_OBJECT. This technique allows an object window to be created using the 
same Presentation Manager function as that used to create a display window. It 
is also useful in allowing logical grouping of windows with similar functions, or 
which need to be treated as a group for application purposes, under a single 
conceptual parent. 

For example, all the object windows created by a particular application may be 
grouped as children of a single "dummy" parent window. When the application 
terminates and wishes to destroy all these windows, only a single function call to 
destroy the parent need be issued; Presentation Manager will automatically 
destroy each of the children in turn before destroying the parent. Due to the way 
in which Presentation Manager destroys windows by first passing a 
WM_DESTROY message to the window, each object window is given a chance to 
exit in an ·orderly manner. 

4.6.2 Window Ownership 

56 0512 V2.0 Volume 4 

A window may have an owner as well as having a parent. While a window's 
relationship to its parent is mainly concerned with display, the relationship with 
its owner is concerned primarily with function. The owner is assumed to have 
some interest in events that take place within a window. For example, a frame 
window is the parent of its frame control windows (icons, menu bar, etc.,) and is 
also their owner. When certain events take place, such as the user selecting an 
item from a menu bar, the control windows notify their owner by dispatching 
notification messages (the menu bar for instance, typically dispatches a 
message of class WM_ COMMAND). Thus the owner receives notification of the 
event, and may perform some action in response. 

The concept of ownership is usually applied to system-defined window classes 
such as control windows. Since the window procedures for these window 
classes are defined by Presentation Manager rather than by the application, it is 
necessary for a control window to notify its owner of any event that may be 
significant to the owner. 



4.6.3 Z-Order 

4.7 Subclassing 

There is typically no owner relationship between frame and client windows. 
Messages received by the frame window that are deemed to be of possible 
interest to the client window are passed to the client window automatically by 
the system-supplied frame window procedure, by virtue of the predefined 
parent/child relationship between the frame and client windows. 

Should application requirements dictate, the appl!cation developer may establish 
an owner relationship between any two windows within his/her application, 
provided those windows are created by the same thread. Owner relationships 
are not permitted between windows created by different threads. 

A desktop is typically regarded as a two-dimensional display space; in fact, a 
desktop is three-dimensional, since when windows overlap on the desktop, one 
window is conceptually "on top of" the other. This concept of "stacking" 
windows applies even when windows do not actually overlay one another on the 
desktop. The order in which windows appear on the desktop is known as the 
z-order. The z-order is known to Presentation Manager, and a number of 
function calls are provided that enable an application to request window handles 
of specific windows in the z-order using the WinGetNextWindow() function to 
obtain the handle of the next window in the z-order, or the WinQueryWindow() 
function to obtain the handle of a window at a specified position in the z-order. 

Since the z-order changes dynamically as different applications create and 
destroy windows, Presentation Manager takes a "snapshot" of the desktop state 
when the application issues a WinBeginEnumWindows() call. This function 
accepts a window handle as a parameter, and the z-order of all immediate 
children of that window is recorded by Presentation Manager. A call to this 
function should be issued before any WinGetNextWindow() call is issued, or 
before any WinQueryWindow() call is issued that specifies a position in the 
z-order. When the application no longer wishes to interrogate the recorded 
window hierarchy, a WinEndEnumWindows() call should be made. 

The concepts of z-order and window enumeration are useful in circumstances 
where an operation or sequence of operations must be performed on a number 
of windows in order. Windows with the same parent always appear contiguously 
in the z-order, and thus may be easily processed in succession. 

Windows may be subclassed by replacing the window procedure defined by the 
window class with another window procedure. This new subclass window 
procedure typically processes some of the messages routed to it, and then calls 
the original window procedure to process any other messages. This technique 
parallels the definition of subclassing given in Chapter 3, "Object-Oriented 
Applications." 

Presentation Manager implements subclassing by having the application call the 
WinSubclassWindow() function, specifying the handle of the window to be 
subclassed and the new subclass window procedure. Note that only the window 
specified is affected by the WinSubClassWindow() function call; other windows of 
the same class are not subclassed. Once the call is successfully issued, any 
messages destined for the original window procedure are automatically routed 
to the subclass window procedure by Presentation Manager. The object 

Chapter 4. The Presentation Manager Application Model 57 



4.8 Summary 

58 OS/2 V2.0 Volume 4 

(whether a window or the operating system) from which the message originated 
is unaware of the subclass window procedure's interference. An example of a 
subclass window procedure is given in Figure 25 on page 86. 

The subclassing concept enables messages destined for particular windows to 
be intercepted and the processing resulting from certain messages to be altered. 
This provides a powerful mechanism that facilitates the creation and use of 
generic windows {application objects), while retaining the ability for the 
application to modify the behavior of such windows should the need arise. The 
use of subclassing enables a newly created window to take on the properties 
and methods of existing window classes in accordance with the principle of 
inheritance. 

Presentation Manager enables the effect of subclassing a window to be reversed 
by the application issuing the WinSubclassWindow() call a second time for the 
same window, specifying the original window procedure. Presentation Manager 
then routes messages directly to their intended destination. This capability 
allows windows to be temporarily subclassed to meet changing requirements at 
different points during application execution. 

It can be seen from the foregoing discussion that Presentation Manager provides 
a base that facilitates the implementation of module-based object-oriented 
conventions by application programs. The concepts of an application object and 
its methods are implemented under Presentation Manager as a window and its 
window procedure. 

Windows are grouped into classes and a window procedure is associated with a 
window on the basis of its class, in a parallel to the concept of allocating 
methods to an object class rather than to individual instances of that class. 
Window classes are defined in isolation however, and the concept of an 
inheritance hierarchy is not imposed by Presentation Manager, thus further 
enhancing the potential for efficient reuse by increasing object granularity. 
Presentation Manager allows windows to be subclassed, in order to allow 
additional or modified methods to be applied to an object in response to new or 
specialized actions. This provides an additional enhancement to the capability 
of code reuse, since it is not necessary to create a new object class in order to 
implement small modifications to an existing class. 

Windows communicate with the system and with each other by way of 
messages, which are queued and routed by Presentation Manager, and which 
are processed in a serial fashion by the target window procedure. This 
messaging model is a practical implementation of the message-driven 
communication precept of object-oriented application design.· 

While not supported explicitly by Presentation Manager, the object-oriented 
concept of encapsulation is supported implicitly by the ability of a window 
procedure to define and thus "own" a data object. The concept of polymorphism 
is also supported by Presentation Manager, since the behavior and results 
obtained from a window procedure are dependent upon, and only upon the class 
and contents of messages sent to that window procedure. In a similar fashion, 
the result of a message is dependent upon the window procedure (application 
object) to which it is passed. The isolation of data objects within an application 



object facilitates the containment of change by enhancing application modularity, 
thus easing the task of change management and application maintenance. 

Table 2. Application Object/Window Correlation 

Application Object Supported Implementation 

Message Communication Yes PM Message 

Class Association Yes Window Class 

Class Data Yes Defined in Window 
Procedure 

Instance Data Yes Stored in Window Words 

Encapsulation Yes In Window Procedure 

Polymorphism Yes In Window Procedure 

Inheritance Partial Via Subclassing 

The ability to encapsulate the definitions of data objects with the methods used 
to manipulate those objects, and to store the resulting application objects in 
object libraries, facilitates the notion of reusability, which is one of the central 
precepts of object-oriented programming. The dynamic linking facilities provided 
by OS/2 further extend the potential for reusable application objects. Reusable 
objects may be defined and stored for use by multiple applications; indeed, 
multiple objects may direct messages to a single instance of an object executing 
in the system. The message queueing and serialization provided by 
Presentation Manager ensures the correct sequence of processing to preserve 
the user's intention and facilitate the integrity of data objects. 

It may be seen that the concept of an application object as defined in Chapter 3, 
"Object-Oriented Applications" and the implementation of a window under 
Presentation Manager have a strong correlation. A window may be regarded as 
the identity of an application object. That object is associated with a data object 
and a set of methods (the window procedure) that perform actions upon the data 
object. Class-specific data is defined within the window procedure, while 
storage for instance data is defined dynamically and pointers typically stored in 
window words. Windows communicate with the user and with one another by 
way of messages. Thus the window is the implementation of an application 
object under Presentation Manager. 

Hence Presentation Manager provides an execution environment and a basic 
application architecture that supports the implementation of object-oriented 
applications, within the boundaries of IBM Systems Application Architecture. 
Although it does not provide a complete development environment that enforces 
object-oriented guidelines, it offers the basis upon which such a development 
environment may be based. 

Chapter 4. The Presentation Manager Application Model 59 



.,1·' 

.\'. 

· 60 05/2 V2.0Volunie 4 



Chapter 5. The Flat Memory Model 

The task of dynamically allocating memory within an application is greatly 
simplified in the 32-bit OS/2 Version 2.0 environment through use of the flat 
memory model. The application developer need no longer be concerned with 
the maximum 64KB segment size imposed by the 80286 processor architecture. 
Larger amounts of memory may be allocated and subsequently manipulated as 
single units known as memory objects, rather than as multiple segments as was 
the case with previous versions of OS/2. This reduces application complexity, 
facilitating improved performance and reducing application development time. 

This chapter describes the use of the flat memory model for application 
programming, in order to allocate and manipulate system memory. The chapter 
also examines the facilities provided by OS/2 Version 2.0 that enable 
applications to handle memory protection exceptions. 

The concept of the flat memory model is described in OS/2 Version 2.0 - Volume 
1: Control Program. The functions necessary to manipulate memory from within 
applications are described in detail in the IBM OS/2 Version 2.0 Control Program 
Reference. 

5.1 DosAllocMem() Function 
The DosAllocSeg() function implemented under previous versions of OS/2 is 
replaced in Version 2.0 by the DosAllocMem() function, which allows allocation of 
memory objects greater than 64KB in size. To take an example, Figure 10 
shows the code necessary under OS/2 Version 1.3 to allocate a 72KB area of 
memory for use by an application: 

SEL sell, sel2; 
PVOID pSegmentl, pSegment2; 

DosA11ocSeg(0, &sell, SEG_NONSHARED); 
DosAllocSeg(8192, &sel2, SEG_NONSHARED); 

pSegmentl=MAKEP(sell, 0); 
pSegment2=MAKEP(sel2, 0); 

Figure 10. Allocating Memory in Previous Versions of OS/2. This example shows the use 
of the DosA//ocSeg() function to allocate multiple segments in order to access 72KB of 
memory. 

The application must then use pSegmentt to reference the lower 64KB and 
pSegment2 to reference the upper 8KB of the memory object. This requires 
conditional testing for each memory reference, and thereby introduces additional 
complication to the application code. Use of the DosAllocHuge() function 
simplifies this slightly, but arithmetic is still required in order to correctly 
calculate offsets within the higher area of memory. 

Under OS/2 Version 2.0, a single DosAllocMem() function call is required in order 
to perform the same task, as shown in Figure 11 on page 62. 

©Copyright IBM Corp. 1993 61 



PVO ID pObj ec t; /* 32-bit linear pointer to memory object*/ 

DosAllocMem(&pObject, 
73727, 
PAG_READ I 
PAG_WRITE); 

/* Allocate memory object 
/* Size of memory object 
/* Allow read access 
/* Allow write access 

*/ 
*/ 
*/ 
*/ 

Figure 11. Allocating Memory in OS/2 Version 2.0. This example shows the use of the 
DosAl/ocMem() function to allocate a single 72KB memory object. 

Subsequent references to this memory object may simply use a 32-bit offset 
within the allocated address range. 

Note that since OS/2 Version 2.0 uses paged memory internally, memory 
allocated using DosAllocMem() is a/ways allocated in multiples of 4KB. Thus, a 
request for 10 bytes will actually result in a full 4KB page being committed in 
real storage. Since this will lead to high fragmentation and consequent waste of 
memory, the allocation of many small memory objects using DosAllocMem() 
directly is not recommended. Application developers should initially use 
DosAllocMem() to allocate the maximum storage likely to be required, and then 
use the DosSubAlloc() function to allocate individual memory objects. This 
technique allows the storage of multiple small memory objects within the same 
4KB page, thereby reducing fragmentation and making more efficient use of 
storage. 

Note that the DosAllocHuge() function provided under previous versions of OS/2 
has no counterpart under Version 2.0. This function is not required since 
DosAllocMem() allows the theoretical allocation of memory objects of a size up 
to that of the application's entire process address space. 

Memory objects allocated using DosAllocMem() may be freed using the 
DosfreeMem() function. 

5.2 Allocating versus Committing Memory 

62 OS/2 V2.0 Volume 4 

Under OS/2 Version 2.0, there is a distinction between a/locating a memory 
object and committing that object. This distinction was not present in previous 
versions of OS/2, and is a very important concept for the application developer 
to grasp. When a memory object is allocated, space is reserved in the linear 
address space, but no real storage or swap file space is reserved for the object. 
This space is only reserved when the memory object or parts thereof are 
committed. A memory object that has not been committed is known as a sparse 
object. 

A memory object may be committed in two ways: 

• It may be committed (in its entirety) at the time it is allocated, using the 
PAG_COMMIT flag in the DosAllocMem() function. 

• It may be committed in stages at some later point, using the DosSetMem() 
function. 

The former technique is intended for small memory objects, the size of which is 
fixed and can be determined in advance by the application developer. The latter 
technique is intended for memory objects such as external data files, which may 
vary in size. 



Memory must be committed prior to being accessed by the application. Failure 
to do this will result in a page fault (Trap OOOE) exception. 

5.2.1 Committing Storage at Allocation 
For memory objects that have a fixed size, such as internal application storage, 
control blocks and most instance data, memory objects should be committed 
immediately upon allocation, allowing the application to access the memory 
object without the inconvenience and additional overhead of explicitly committing 
the storage at a later time. 

Storage for a memory object may be committed using the PAG_COMMIT flag in 
the DosAllocMem() function call used to allocate the memory object, as shown in 
Figure 12. 

PVOID pObject; 

DosAllocMem(&pObject, 
73727, 
PAG_READ 
PAG_WRITE I 
PAG_COMMIT); 

/* 32-bit linear pointer to memory object */ 

/*Allocate memory object 
/* Size of memory object 
/*Allow read access 
/*Allow write access 
/* Commit storage immediately 

*/ 
*/ 
*/ 
*/ 
*/ 

Figure 12. Committing Storage During Allocation. This example shows the use of the 
PAG_COMMIT flag with the DosAllocMem() function. 

The above example creates a 72KB memory object in a similar manner to that 
shown in Figure 11 on page 62, but commits the storage during allocation, so 
that is immediately available for use by the application. 

5.2.2 Dynamically Committing Storage 
Under DOS and previous versions of OS/2, it is common for an application to 
allocate a small memory segment to contain a data structure. If the data 
structure outgrows the size of the segment, the segment size may be 
progressively increased using the DosReallocSeg() or DosReallocHuge() 
functions, moving the segments within the machine's physical memory in order 
to accommodate the increased size requirements. This is not possible under 
Version 2.0, since the paged memory implementation does not allow memory 
objects to be moved within memory once they are allocated; hence the 
DosReallocSeg() and DosReallocHuge() functions have no counterparts in the 
32-bit environment. 

Under OS/2 Version 2.0, an application can allocate an area of storage in its 
process address space, but may commit only a small amount of that storage at 
the time the application is initialized. In this way, the application does not use a 
large amount of storage in a situation where it is not required, and thereby 
avoids placing unnecessary resource demands on the operating system. This 
can result in improved overall system performance. 

If the storage requirements for a memory object increase during execution {for 
example, the size of a spreadsheet increases), and exceed the amount of 
storage initially committed, the application may dynamically commit additional 
storage up to the maximum specified in the DosAllocMem() function call that 
allocated the memory object. 

Chapter 5. The Flat Memory Model 63 



64 OS/2 V2.0 Volume 4 

This dynamic commitment of storage is typically achieved using the guard page 
technique. A page within the memory object may be specified as a guard page 
using the PAG_GUARD flag in the DosAllocMem() function call or in a 
DosSetMem() call made subsequent to the allocation. Once this is done, any 
memory reference to that page will generate a guard page exception. The guard 
page exception warns the application that the upper boundary of the committed 
portion of a memory object has been reached, and allows appr"'priate action to 
be taken in order to avoid a page fault exception. 

Note that the memory protection scheme implemented by OS/2 Version 2.0 
allocates pages to individual processes. An exception is only generated when 
an application attempts to write into a page which is not allocated to the current 
process under which the application is running. If the page is allocated to the 
current process, no exception is generated. Use of the guard page technique is 
therefore strongly recommended in circumstances where the amount of data to 
be written into a memory object is variable, or where the size of the memory 
object or its data may grow during execution. 

The recommended method of using guard pages is to initially allocate the 
memory object as a sparse object, and then commit the amount of storage 
required for the current size of the data, flagging the uppermost page of the 
memory object as a guard page. This technique is shown in Figure 13. 

PVOID pObject; /* 32-bit linear pointer to memory object */ 

DosAllocMem(&pObject, 
73727, 
PAG_READ I 
PAG_WRITE); 

DosSetMem(pObject, 
8192L, 
PAG_DEFAULT I 
PAG_COMMIT); 

DosSetMem(pObject+4096, 
ll, 
PAG_DEFAULT I 
PAG - COMM IT I 
PAG_GUARD); 

/*Allocate memory object 
/* Size of memory object 
/*Allow read access 
/*Allow write access 

/* Set memory attributes for object 
/* Two pages (8192 bytes) 
/*Default attributes from allocation 
/* Commit page 

/* Set memory attributes for object 
/* Two pages (8192 bytes) 
/* Default attributes from allocation 
/* Commit page 
/* Flag page as guard page 

Figure 13. Using a Guard Page With a Memory Object 

*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 

The example shown in Figure 13 allocates a memory object that is 72KB in size 
as a sparse object, commits the first two pages (8KB) of the object and specifies 
the uppermost of the two pages as a guard page. Any attempt by the application 
to write into this uppermost page will result in a guard page exception. 

The guard page exception generated when an application attempts to write into 
a guard page can be trapped and processed by an application-registered 
exception handler, to commit further pages within the memory object. A simple 
guard page exception handler is shown in Figure 14 on page 65. 



ULONG GPHandler(PEXCEPTIONREPORTRECORD pX) 
{ 

ULONG ulAttribs; 
ULONG ulSize; 

if (pX->ExceptionNum == 
XCPT_GUARD_PAGE_VIOLATION) 

{ 
ulSize=lL; 
DosQueryMem( 

(PVOID)pX->Exceptioninfo[l], 
&ulSize, 
&ulAttribs); 

if (((ulAttrs & PAG_FREE) I I 
(ulAttrs & PAG_COMMIT))==0) 

{ 

/* Memory attributes 
/* Range in pages 

*I 
*I 

/* If guard page exception */ 

/* One page */ 
/* Query memory attributes */ 
/* Page base address */ 
/* Single page */ 
/* Memory attributes */ 
/* If page is available */ 
/* but is not committed */ 

DosSetMem( /* Commit page */ 
*I 
*I 
*/ 
*/ 
*I 

(PVOID)pX->Exceptionlnfo[l], /*Page base address 
lL, /* Single page only 
PAG_DEFAULT I /* Default attributes 
PAG_COMMIT); /*Set commit flag 

return(XCPT_CONTINUE_EXECUTION); /*Done 
} 

} 
if (pX->ExceptionNum == 

XCPT_ACCESS_VIOLATION) 
{ 

/* If access violation */ 

if (pX->Exceptionlnfo[l]) 
{ 
ulSize=lL; 
DosQueryMem( 

(PVOID)pX->Exceptionlnfo[l], 
&ulSize, 
&ulAttribs); 

if (((ulAttrs & PAG_FREE) I I 
(ulAttrs & PAG_COMMIT))==0) 

{ 

/* If page address not NULL */ 

/* One page */ 
/* Query memory attributes */ 
/* Page base address */ 
/* Single page */ 
/* Memory attributes */ 
/* If page is available */ 
/* but is not committed */ 

DosSetMem( /* Commit page *I 
*I 
*/ 
*I 
*/ 
*/ 

(PVOID)pX->Exceptionlnfo[l], /*Page base address 
lL, /*Single page only 
PAG_DEFAULT I /* Default attributes 
PAG_COMMIT); /*Set commit flag 

return(XCPT_CONTINUE_EXECUTION); /*Done 
} 

} 
return(XCPT_CONTINUE_SEARCH); /*Chain to next handler if*/ 

/* any other exception */ 

Figure 14. Guard Page Exception Handler. This exception handler also handles the 
situation where an application writes directly to an uncommitted page rather than to the 
guard page, as is possible with non-sequential write operations. 

The exception handler shown in Figure 14 handles two types of exception: the 
guard page exception and the page fault exception. The latter occurs when an 
application attempts to write to an uncommitted page in the memory object that 
is not the guard page. This can occur when a memory object is accessed in a 
non-sequential manner. 

Chapter 5. The Flat Memory Model 65 



The example shown above handles the guard page exception simply by 
committing the next page in the memory object, and making this page the new 
guard page. Guard page exceptions should not be allowed to pass through to 
the operating system's default guard page exception handler, since the default 
handler operates by committing the next lower page in the memory object and 
making this the new guard page. This is done because the default handler is 
intended mainly to handle dynamic stack growth; stacks are always propagated 
downward. 

The exception handler shown in Figure 14 also handles the page fault exception, 
where a write operation is attempted into a page other than the guard page, 
which has not previously been committed. The exception handler responds to 
this exception by querying the properties of the page in question and, if the page 
has been allocated but not yet committed, proceeds to commit the page. 

If the page has not been allocated (that is, it does not lie within the boundaries 
of the memory object), or if the exception is neither a guard page exception nor 
a page fault exception, the exception handler does not process the exception, 
and returns control to the operating system, which will invoke any other 
exception handlers registered for the current thread (see 5.4, "Exception 
Handling" on page 68). 

A guard page exception handler is registered by the application using the 
DosSetExceptionHandler() function. This function is illustrated in Figure 15. 

EXCEPTIONREGISTRATIONRECORD Exception; 

Exception.ExceptionHandler = (_ERR *)&GPHandler; /* Set entry point addr */ 

DosSetExceptionHandler(&Exception); /* Register handler */ 

Figure 15. Registering a Guard Page Exception Handler. This example shows the use of 
the DosSetExceptionHandler() function. 

The DosSetExceptionHandler() function can also be used to register exception 
handlers for other types of system exception; see 5.4, "Exception Handling" on 
page 68 for further information. 

Note that OS/2 Version 2.0 provides its own exception handlers within the 
service layers for all 32-bit system functions. These exception handlers allow 
the service routines to recover from page fault exceptions and general protection 
exceptions encountered due to bad pointers in applications' function calls. The 
function call returns an ERROR_BAD_PARAMETER code rather than a Trap COD 
or Trap OOE code, thereby allowing the application to recover. This represents a 
significant enhancement over previous versions of OS/2, since it allows easier 
debugging and more flexible pointer handling. 

5.3 Suballocating Memory 

66 OS/2 V2.0 Volume 4 

Under OS/2 Version 2.0, the granular unit of memory is the page. This means 
that the minimum possible memory allocation for a single DosAllocMem() 
function call is 4KB. For example, if an application requests the allocation of 10 
bytes of storage, the operating system will allocate a full 4KB page; the 
remaining storage in this page will be wasted. 



It is therefore recommended that for dynamic allocation of small memory objects 
for uses such as instance data, each window procedure should use a single 
DosAllocMem() function call to allocate a storage pool, and subdivide this 
storage as required using the DosSubAlloc() function, as shown in Figure 16 on 
page 67. 

#define 
PVOID 

POOLSIZE 8192 
pPool; 

CTRLSTRUCTl *Structl; 
CTRLSTRUCT2 *Struct2; 

DosAllocMem(&pPool, 
POOLSIZE, 
PAG READ 
PAG)RITE I 
PAG _COMM IT) ; 

DosSubSet(pPool, 
DOS SUBINIT, 
POOLSIZE); 

DosSubAlloc(pPool, 
&Structl, 
sizeof(CTRLSTRUCTl)); 

DosSubAlloc(pPool, 
&Struct2, 
sizeof(CTRLSTRUCT2)); 

Figure 16. Suballocating Memory 

/* Size of storage pool 
/* Base address of pool 

/* Control structure 1 
/* Control structure 2 

*/ 
*/ 

*/ 
*I 

/* Allocate storage for pool */ 
/* Size of memory object */ 
/*Allow read access */ 
/*Allow write access */ 
/* Commit storage immediately */ 

/* Initialize for suballoc */ 
/* Initialize flag */ 
/* Size of pool */ 

/* Suballocate storage */ 
/* Pointer to memory object */ 
/* Size of storage required */ 
/* Suballocate storage */ 
/* Pointer to memory object */ 
/* Size of storage required */ 

Storage must be suballocated in multiples of 8 bytes. Any requested 
suballocation which is not a multiple of 8 bytes will have its size rounded up to a 
multiple of 8 bytes. 

Storage to be suballocated must first be allocated using the DosAllocMem() 
function, and initialized for suballocation using the DosSubSet() function. Note 
that control information for the suballocation uses 64 bytes of the storage pool; 
this must be taken into account when determining the size requirements for the 
pool. 

In Figure 16, the storage in the pool is committed during allocation, since the 
example assumes that the total storage requirement is known in advance. In 
situations where the exact size of the storage required is not known, the storage 
may be allocated but not committed, and the suballocation procedure will then 
progressively commit storage as required. This is indicated by specifying the 
DOS_SPARSE_OBJ flag in the DosSubSet() function call. 

Memory that has been suballocated using the DosSubAlloc() function may be 
freed using the DosSubFree() function. The storage is then available for future 
suballocation. Note, however, that the suballocation procedure does not 
reorganize suballocated memory objects within a pool. Thus freeing objects 
within the pool may result in memory fragmentation. 

A storage pool initialized for suballocation using the DosSubSet() function should 
be removed using the DosSubUnset() function before the memory in the pool is 

Chapter 5. The Flat Memory Model 67 



freed. This function call releases the operating system resources used by the 
suballocation procedure. 

When using the C Set/2 compiler, the malloc() function may be used to allocate 
memory. This function has many of the advantages of the DosSubAlloc() 
function, but avoids the need for the application to explicitly allocate, set and 
suballocate memory. The malloc() function also provides greater independence 
for application code from the platform upon which it executes, allowing the 
application to be more easily migrated to platforms other than OS/2 Version 2.0. 

The malloc() function works as follows: 

• The first call to malloc() from a particular application (process) causes 
malloc() to request a memory object from the operating system. The 
malloc() service routine adds 16 bytes to the size specified in the function 
call, and rounds the result upward to the next even power of 2. This amount 
of memory is then requested from the operating system using a 
DosAllocMem() call. The operating system will then allocate memory, 
rounding the service routine's request size upward to the nearest multiple of 
4KB. The malloc() function then fulfills the application's request, with some 
wastage due to the page-granular allocation. 

• For subsequent calls to malloc(), the malloc() service routine first checks 
whether it has sufficient memory remaining from a previous request; if so, it 
allocates that memory and returns control to the application. If not, the 
service routine requests additional memory from the operating system using 
the DosAllocMem() function. 

Note that the free() function, used to free memory which has been allocated 
using malloc(), does not return the memory to the operating system; rather, that 
memory is held by malloc() for future use. In order to return memory to the 
operating system, the application must issue a heapmin() function call. 

5.4 Exception Handling 

68 OS/2 V2.0 Volume 4 

The following outcomes are possible when a memory object is referenced by the 
application: 

• If the memory has not been allocated or committed, a general protection 
exception (Trap 0000) will occur. 

• If the memory has been allocated but not committed, a page fault exception 
(Trap OOOE) will occur. 

In both of the above cases, the exception is reported to the application's general 
protection exception handler, if one has been registered by the application. The 
application may then deal with the error. If an exception handler has not been 
registered by the application, the default exception handler provided by the 
operating system will terminate the application. 

• If the page to be referenced has been defined as a guard page, a guard page 
exception is generated. If the application has not registered its own handler 
for this exception, the system's default handler will commit the page, and 
mark the next page in the memory object as the new guard page for the 
object. Once the guard page exception has been processed, execution 
proceeds normally. 

• If none of the above conditions occur, the memory object is accessed and 
execution proceeds normally. 



Exception handlers for the various types of exception may be registered using 
the DosSetExceptionHandler() function, as shown in Figure 15 on page 66. 

Note that unlike previous versions of OS/2, application handlers need not be 
written in assembly language; high-level programming languages may be used. 

Exception handlers are registered on a per-thread basis, and multiple exception 
handlers may be registered for each thread. When more than one exception 
handler is registered, the handlers are chained, with the most recent addition 
being placed at the start of the chain. When an exception occurs, control is 
passed to the first handler, which may handle the exception and return 
XCPT_CONTINUE_EXECUTION, in which case the operating system returns 
control to the application. 

If the exception handler cannot handle a particular exception, it returns 
XCPT_CONTINUE_SEARCH, in which case the operating system passes control to 
the next exception handler in the chain. In this way, control is eventually passed 
to the operating system's default exception handlers. 

When an exception handler is no longer required, it can be removed from the 
chain using the DosUnsetExceptionHandler() function. 

Exception handling and the various operating system exceptions that can occur 
are described in the IBM OS/2 Version 2.0 Control Program Reference. 

5.5 Shared Memory Objects 
By default, memory objects allocated by an application are private to the 
process in which that application executes. However, OS/2 allows memory to be 
shared among applications for interprocess communication. Shared memory 
objects are allocated in a similar manner to private memory objects, using the 
DosAllocSharedMem() function. 

Note that while private memory objects are allocated using addresses upward 
from the lower limit of the process address space, shared memory objects are 
allocated downward from the upper limit of the process address space. Hence 
the private and shared memory arenas grow toward one another as more 
memory objects are allocated during execution. 

Shared memory objects may be freed in the same manner as private memory 
objects, using the DosFreeMem() function. 

5.5.1 Named versus Anonymous Shared Memory Objects 
Shared memory objects may be named or anonymous. Named shared memory 
objects have names of the form: 

\SHAREMEM\<objectname.ext> 

A named shared memory object may be accessed by another process using the 
DosGetNamedSharedMem() function. 

An anonymous shared memory object must be declared as "giveable" or 
"gettable" when it is allocated, in order that it may be made available to other 
processes using the DosGiveSharedMem() or DosGetSharedMem() functions. An 
example is given in Figure 17 on page 70. 

Chapter 5. The Flat Memory Model 69 



MYSTRUCT *MYSTRUCT; 
APIRET re; 

re= DosAllocSharedMem(&MyStruct, /*Allocate memory object */ 
NULL, /* Anonymous memory object */ 
sizeof(MYSTRUCT), /*Size of memory object */ 
OBJ_GIVEABLE I /* Object is giveable */ 
PAG_WRITE I /*Write access is allowed */ 
PAG_READ I /* Read access is allowed */ 
PAG_COMMIT); /*Commit storage immediately */ 

re = DosGiveSharedMem(MyStruct, 
pidOther, 
PAG_WRITE I 
PAG_READ); 

/* Give access to object 
/* Process to receive access 
/* Write access is allowed 
/* Read access is allowed 

Figure 17. Allocating Shared Memory. This example shows the use of the 
DosAllocSharedMem() function, declaring a memory object as "giveable." 

*I 
*/ 
*I 
*I 

The DosGiveSharedMem() function can be used at any time to provide another 
process with a specified level of access to a memory object, provided that the 
owner of the memory object knows the process ID of the process to which 
access is to be given. 

5.5.2 Committing Shared Memory Objects 

5.6 Summary 

70 OS/:l V2.0 Volume 4 

Like private memory objects, shared memory objects have a distinction between 
allocating and committing storage. Shared memory objects may be committed 
upon allocation, or subsequently using exception handlers and the DosSetMem() 
function. The guard page technique may be used with shared memory objects 
as well as private memory objects. 

One distinction between shared memory objects and private memory objects is 
that private memory objects may be "de-committed" if the required amount of 
memory reduces during execution; that is, physical storage is released without 
releasing the corresponding address ranges in the process address space. 
Shared memory objects may not be de-committed, to avoid the situation where 
one process may de-commit a page that is being accessed by another process. 

Dynamic memory allocation is greatly simplified under OS/2 Version 2.0, since 
the application developer is no longer required to explicitly code for the 80286 
segmented memory model, with its size limitation of 64KB per segment. Larger 
units of memory may be allocated and manipulated as single units, simplifying 
application code and reducing development time for applications that manipulate 
large data structures. 

When executable modules compiled for different environments are executed 
within the same process, the operating system handles interaction between 
these modules through thunk layers. The conversions made within the thunk 
layers are transparent to the application modules themselves, and do not require 
consideration by the application developer. This enables executable files, 
dynamic link libraries, and resources from different environments to be mixed 
within the same application. 



In general, application developers using OS/2 Version 2.0 are provided with a 
greater level of function and, at the same time, may take advantage of greatly 
simplified application development through use of the 32-bit flat memory model, 
which removes much of the inherent complexity of memory manipulation within 
the application. Developers may produce applications more efficiently under 
Version 2.0, and may easily migrate their applications to and from the OS/2 
Version 2.0 environment. 

Chapter 5. The Flat Memory Model 71 



72 · OS/2 V2.0 Volume 4 

I 
1. 
I 

I 



Chapter 6. Building a Presentation Manager Application 

While the steps necessary to create a Presentation Manager application are 
generally similar to those required to create any kind of application in the 
programmable workstation environment under OS/2, there are some specific 
considerations to be borne in mind with regard to the implementation of 
object-oriented concepts in Presentation Manager applications, since the 
Presentation Manager environment does not force the application developer to 
obey such guidelines. Therefore, this chapter will discuss the implementation of 
the general concepts outlined in Chapter 4, "The Presentation Manager 
Application Model," in such a way that they conform to object-oriented 
principles and achieve the highest level of modularity. 

For the purposes of discussion, this chapter will assume that the source code is 
written using the "C" language. Other programming languages may be used to 
create Presentation Manager applications while preserving the overall 
application architecture, provided these languages support the creation of 
reentrant code and allow recursion. 

6.1 Language Considerations 
Presentation Manager applications may be written usin·g the following 
programming languages: 

• Assembler language 
• "C" 
• COBOU2 (after May 7th 1991) 
• FORTRAN (OS/2 Version 1.2 and above) 

The use of Assembler language should be avoided wherever possible. While 
coding to such a low-level language may provide significant performance 
improvements in critical applications, it is typically more costly in terms of 
programmer productivity and subsequent code maintenance. Assembler code is 
also less portable than that written using higher-level languages. 

The requirements of the Presentation Manager execution environment restrict 
the use of some COBOL and FORTRAN compilers. Presentation Manager 
requires window procedures to be reentrant, and a FORTRAN or COBOL 
compiler that supports the creation of reentrant code must be used. In addition, 
much of the default message processing provided by Presentation Manager 
results in synchronous messages being sent to window procedures. This 
practice is effectively a recursive subroutine call, and requires window 
procedures to be written in a language that supports recursion. 

In order to create COBOL or FORTRAN source code that executes in the 
Presentation Manager environment, from a compiler that does not support 
reentrant or recursive procedures, the application developer must adopt one of 
two solutions: 

©Copyright IBM Corp. 1993 

1. Create a "C" program to provide the Presentation Manager windowing and 
dialog management functions, and combine this program with called COBOL 
or FORTRAN subprograms to perform the actual processing for the 
application. 

73 



2. Create a "winproc-less" application, where a main routine written in COBOL 
or FORTRAN creates a message-processing loop, captures and explicitly 
processes all message classes. Such an application has no window 
procedures. 

3. Use the "language support window procedure" provided with the OS/2 
Programmer's Toolkit under OS/2 Version 1.3, which provides processing for 
most message classes and returns selected messages to the application for 
processing. 

Where the use of COBOL or FORTRAN is unavoidable, solution (1) above is 
recommended, since it provides additional flexibility, maintains SAA 
conformance, retains much of the object-oriented nature of the application, and 
allows the best use to be made of existing host COBOL or FORTRAN application 
code, since the subprograms used are invoked using standard language 
conventions, and data is passed to them using a normal parameter list and 
returned the same way. The subprograms therefore interact with the calling 
application in much the same way as an ISPF dialog, minimizing the requirement 
for modification of existing code and reducing the need to retrain application 
developers. 

Object-oriented programming languages such as Smalltalk and C+ + are 
becoming increasingly popular for the creation of object-oriented code, and are 
well-suited to the Presentation Manager application model. Organizations may 
wish to investigate the viability of these languages for particular development 
projects and environments. 

6.2 Function and Data Types 
Presentation Manager provides a number of specialized function and data type 
definitions (such as MRESULT, MPARAM, etc.) for use by Presentation Manager 
applications. While these type definitions are not "standard" C language types, 
their use is strongly recommended. OS/2 maps these type definitions into 
standard C language types using #define statements embedded in the OS/2 
header file ~s2.h. Since the mapping may vary between OS/2 Version 1.3 and 
Version 2.0 due to differences between the 16-bit and 32-bit operating system 
architectures, the use of Presentation Manager's type definitions insulates the 
application source code from the underlying architecture. 

6.3 Object-Oriented Programming Practices 

74 OS/2 V2.0 Volume 4 

While Presentation Manager allows an application developer to implement the 
fundamental concepts of object-oriented programming in his or her applications, 
it does not restrict the application developer to the use of these conventions. 
Therefore to ensure the correct implementation of object-oriented conventions 
and to enable the maximum level of granularity, a number of guidelines are 
offered: 

• The use of multi-purpose application objects (window procedures) should be 
avoided; for example, a single window procedure should not handle both 
user interaction and file access. Manipulation of separate data objects 
should be achieved using separate window procedures. Background data 
objects (that is, files or databases) should be manipulated using object 
windows. 



• As a corollary of the above rule, multiple window procedures should not be 
created to act upon a single data object; where possible, all actions on a 
particular data object should be performed by a single window procedure. 
This behavior simplifies any future maintenance should the definition of the 
logical data entity or its representation change. Note that this guideline may 
need to be overridden in circumstances where an action requires lengthy 
processing, in order to preserve application responsiveness. 

• The definition, creation and/or establishment of access to data objects 
should be achieved, where possible, from within a window procedure in 
order to preserve the concept of data encapsulation. That is to say, the use 
of global data should be minimized in order to enhance modularity and 
maximize object independence. 

• The input, output and behavior associated with a window procedure should 
depend solely on the class and contents of the messages it receives, and 
should not depend on any other external data or parameter, other than a 
data structure to which a pointer is passed as a message parameter. This 
preserves the concept of object polymorphism and enhances the potential for 
reuse. 

These guidelines, when obeyed, will enable an application to conform to the 
established guidelines for object-oriented programming as discussed in 
Chapter 3, "Object-Oriented Applications." 

6.4 Application Main Routine 
A sample application main routine is illustrated in Figure 18 on page 76 and 
Figure 19 on page 77. The functions performed by the main routine are as 
follows: 

1. Register the application to Presentation Manager, and obtain an anchor 
block handle (that is, an application handle), using the Winlnitialize() 
function. 

2. Create a message queue, into which Presentation Manager will place all 
messages intended for the application, using the WinCreateMsgQueue() 
function and passing both the anchor block handle and the required queue 
size to Presentation Manager, which returns a message queue handle to the 
application. Note that if the queue size specified is zero (as shown in the 
example above) then the default queue size of 10 messages is used. 

3. Register one or more window classes, for the windows that will be created 
by the application, and associate a window procedure with each window 
class, using using the WinRegisterClass() function. Parameters passed to 
this function include the name of the window class and the name of the 
window procedure to be associated with the class. Presentation Manager 
returns a Boolean value indicating success or failure. Note the 4 bytes (32 
bits) requested for window words, which may be used by the window 
procedure to store the address of its instance data block. 

Chapter 6. Building a Presentation Manager Application 75 



76 OS/2 V2.0 Volume 4 

#define INCL WIN 
#include <os2.h> 

#define WCP MAIN 0 WCP MAIN 11 

MRESULT EXPENTRY wpMain(HWND,ULONG,MPARAM,MPARAM); 

int main() 
{ 

struct MYSTRUCT InitData; 

static CHAR szTitle[] = "Main Window 11
; 

FRAMECDATA fcdata; 
HAB hAB; 
HMQ hMsgQ; 
HWND hFrame, hClient; 
QMSG qMsg; 
APIRET re; 

/* Control data for window */ 
/* Anchor block handle */ 
/* Message queue handle */ 
/* Window handles */ 
/* Message queue structure */ 
/* Flag */ 

memset(&fcdata,0,sizeof( fcdata ); /* Initialize */ 
fcdata.cb = sizeof( fcdata ); 

hAB = Winlnitialize(0); 
hMsgQ = WinCreateMsgQueue(hAB,0); 

re = WinRegisterClass(hAB, 
WCP_MAIN, 
wpMain, 
0L, 
4); 

/*Register appl. to PM */ 
/* Create message queue */ 

/* Register window class */ 
/* Name of class */ 
/* Window procedure name */ 
/* No style */ 
/* 32 bits in window words */ 

Figure 18. Sample Application Main Routine (Part 1) - Registration 

4. Create a main display window for the application, using two consecutive 
WinCreateWindow() calls (as shown in Figure 19 on page 77) or a single 
WinCreateStdWindow() call. Note the separate handles used for the frame 
and client windows. The values specified for fcdata.f/CreateF/ags control the 
appearance of the window, the controls it contains and its position on the 
screen. 

5. Optionally, create an entry for the application in the Workplace Shell Window 
List, using the WinAddSwitchEntry() function. Note that this step is omitted 
from Figure 19 for reasons of clarity, and is shown separately in Figure 20 
on page 78. 

Note that under OS/2 Version 2.0, the WlnCreateSwltchEntry() function is 
provided in addition to the WinAddSwitchEntry() function. These two 
functions accept identical parameters and carry out identical tasks; the 
WinCreateSwitchEntry() function is intended to provide consistent function 
naming conventions. The WinAddSwltchEntry() function is retained under 
OS/2 Version 2.0 for compatability with existing applications, but use of the 
WinCreateSwitchEntry() function is recommended. 

6. Establish a message processing loop, whereby the application requests 
Presentation Manager to supply messages from the system queue and 
subsequently invokes Presentation Manager to dispatch them to the 



appropriate window procedure. This loop uses nested WinGetMsg() and 
WinDispatchMsg() calls. 

7. Upon receivng the special message class WM_QUIT, which will cause 
WinGetMsg() to return false and hence terminate the while loop, remove any 
remaining windows using the WinDestroyWindow() function, remove the 
application's entry from the Window List using the WinRemoveSwitchEntry() 
function, destroy the message queue and deregister the application before 
terminating. These latter functions are achieved using the 
WinDestroyMsgQueue() and WinTerminate() calls. 

fcdata.flCreateFlags = FCF_TITLEBAR I FCF SYSMENU 
FCF MINMAX FCF_SIZEBORDER I 

FCF_SHELLPOSITION; 

hFrame=WinCreateWindow(HWND_DESKTOP, 
WC FRAME, 
(PSZ)El, 
Ell, 
e,e,e,e, 
(HWND)El, 
HWND_TOP, 
El, 
&fcdata, 
El); 

hClient=WinCreateWindow(hFrame, 
WCP_MAIN, 
szTitle, 
Ell, 
e,e,e,e, 
(HWND)El, 
HWND_TOP, 
FID _CLIENT, 
&InitData, 
El); 

/* Create frame window */ 
/* Frame window class */ 
/* No window text */ 
/* No style */ 
/* PM shell will position */ 
/* No owner */ 
/* On top of siblings */ 
/* No window identifier */ 
/* Frame control data */ 
/* Presentation parameters */ 
/* Create client window */ 
/* Window class */ 
/* Window title */ 
/* Standard style */ 
/* PM shell will position */ 
/* No owner */ 
/* On top of siblings */ 
/* Client window identifier */ 
/* Initialization data */ 
/* Presentation parameters */ 

I* <Create Window List entry for application> */ 

while (WinGetMsg(hAB, &qMsg, 0, El, El)) 
WinDispatchMsg(hAB, &qMsg); 

/* <Remove Window List entry for application> */ 

WinDestroyWindow(hFrame); 
WinDestroyMsgQueue(hMsgQ); 
WinTerminate(hAB); 

/* Destroy frame & children */ 
/* Destroy message queue */ 
/* Deregister application */ 

Figure 19. Sample Application Main Routine (Part 2) - Window Creation 

The structure of the main routine is similar for both the application (that is, the 
application's primary thread) and any secondary threads created by the 
application. See Chapter 10, "Multitasking Considerations" for further 
discussion on secondary threads. 

In Figure 18, note the use of the EXPENTRY keyword in the function prototype to 
specify the system linkage convention for the window procedure wpMain. This is 
required whenever declaring a window procedure or dialog procedure, since 

Chapter 6. Building a Presentation Manager Application 77 



such procedures are normally invoked by Presentation Manager on the 
application's behalf, rather than directly by the application. 

If the application is to appear in and be selectable from the Workplace Shell 
Window List, the main routine must issue a WinAddSwitchEntry() function call, 
after creating the application's main window and before entering the message 
processing loop.3 This function call is shown in Figure 20. 

SWCNTRL SwitchData; 
HSWITCH hSwitch; 

SwitchData.hwnd = hFrame; 
SwitchData.hwndlcon = 0; 
SwitchData.hprog = 0; 
SwitchData.idProcess = 0; 
SwitchData.idSession = 0; 
SwitchData.uchVisibility = SWL_VISIBLE; 
SwitchData.fbJump = SWL_JUMPABLE; 
SwitchData.szSwTitle[e] = '\0'; 

/* Switch control data block */ 
/* Switch entry handle */ 

/* Set frame window handle */ 
/* Use default icon */ 
/* Use default program handle*/ 
/* Use current process id */ 
/* Use current session id */ 
/* Make visible */ 
/* Make jumpable via Alt+Esc */ 
/* Use default title text */ 

hSwitch = WinAddSwitchEntry(&SwitchData); /*Add switch entry */ 

Figure 20. WinAddSwitchEntry{) Function. This function adds the application to the OS/2 
Window List. Note that under OS/2 Version 2.0, the WinCreateSwitchEntry() function 
should be used. 

Note that the application may set the swTitle field of the SwitchData structure to 
NULL. Presentation Manager will then determine the title under which the 
application was started from the Presentation Manager shell, and use this title 
for the switch entry. 

The WinAddSwitchEntry() function returns a switch entry handle, which may be 
stored by the application and used during termination to remove the switch entry 
from the Workplace Shell Window List using the WinRemoveSwitchEntry() 
function. 

The switch entry may be accessed by a window procedure at any time during 
application execution. The switch entry handle is obtained using the 
WinQuerySwitchHandle() function, and the SwitchData control structure may then 
be obtained using the WinQuerySwitchEntry() function, and altered using the 
WinChangeSwitchEntry() function. This capability may be used to allow a 
window procedure to obtain the handle of the application's main window, in 
order to post or send messages to that window. This is discussed in 6.6.5, 
"Identifying the Destination Window" on page 91. 

3 Note that under 05/2 Version 2.0, use of the WinCreateSwitchEntry() function is recommended, for reasons of consistency In 
function names. 

78 05/2 V2.0 Volume 4 



6.5 Using Windows 
As mentioned in 4.3.2, "Window Procedures 11 on page 46, window procedures 
within a Presentation Manager application are reentrant; that is, the same 
window procedure is used for multiple instances of the same window class. 
However, a window class may have separate data objects associated with each 
instance of that class, which may be used to store temporary data necessary 
during the existence of that object; such data is known as instance data. These 
data objects may need to be created/opened and initialized. Upon the window 
being closed, data objects may need to be closed or destroyed in a controlled 
fashion. 

Presentation Manager allows such function to be performed by a window 
procedure, since messages are sent to a window by Presentation Manager 
informing the window procedure of events such as creation or closure of the 
window. These messages are discussed below. 

6.5.1 Window Creation 
A window is created by Presentation Manager in response to the application 
issuing a WinCreateStdWindow() function call or a WinCreateWindow() call; an 
example of the WinCreateWindow() call is given in Figure 19 on page 77. 

The first statement in the example specifies the attribut~s of the frame window, 
which are contained in the data variable fcdata.flCreateF/ags. These values 
determine the control windows that are created with the frame window 
(FCF _SYSMENU, FCF _MINMAX etc), and also indicate to Presentation Manager 
that it should select the position of the window on the desktop 
(FCF _SHELLPOSITION). 

The window is then created in two steps; firstly the frame window is created, 
with the desktop as its parent, and then the client window is created with the 
frame window as its parent. The frame window belongs to the system-defined 
window class WC_FRAME, whereas the client window belongs to an 
application-defined window class WCP _MAIN, which is assumed to have already 
been defined to Presentation Manager using a WinRegisterClass() call. 

If it is necessary to pass initialization information to a window upon its creation, 
this may be achieved using the Ct/Data parameter in the WinCreateWindow() 
function. This parameter is a 32-bit pointer, which may reference an 
application-defined data structure. This pointer is passed to the window as the 
first parameter of the WM_ CREATE message. The window may, during its 
processing of this message, extract the pointer from the message parameter 
and use it to access the data structure. See Figure 19 for an example of this 
technique. 

When an application requests that Presentation Manager creates a window of a 
particular class, a message of the system-defined class WM_ CREATE is sent to 
the window procedure associated with that class. The window procedure may 
capture this message by including a case for it, and perform any processing 
such as opening files or databases, allocating memory objects and setting 
instance data to initial default values. 

In coding the method for this message class, the first statement should be a call 
to WinDefWindowProc(), which will enable Presentation Manager to perform 
default processing and complete the initialization of the window (such as 

Chapter 6. Building a Presentation Manager Application 79 



allocating a window handle) before the application-specific processing is carried 
out. If the default processing is not completed first, the window handle and any 
window words may not be allocated before the application makes function calls 
that reference them, thus causing these calls to fail. 

Where instance data or resource handles will be used by the window, and must 
be maintained beyond the processing of a single message, a data structure 
should be defined to contain these items. Memory for the data structure should 
be requested from the operating system, and a pointer to the memory object 
stored in the window words, as part of the WM_ CREATE processing. See 6.5.4, 
"Instance Data and Window Words" on page 81 for further information. 

6.5.2 Window Processing 
During execution, a window processes messages passed to it by Presentation 
Manager, using the methods defined in its window procedure. Upon receiving a 
message, the window procedure performs three basic tasks: 

1. The window procedure determines the message class by examining the 
message class identifier. 

2. Depending upon the message class, the window procedure executes a series 
of application instructions and/or subroutines to perform the action 
requested by the message. 

3. The window procedure passes a return code to Presentation Manager. 

As part of the second step above, the window procedure may extract necessary 
information from the parameters passed with the message, using a number of 
macros provided by Presentation Manager. These macros are described in 
6.6.6, "Creating Message Parameters" on page 93. 

The window procedure may also gain access to instance data or resource 
handles stored in a control block during processing of previous messages. This 
control block is generally allocated upon creation of the window and a pointer to 
it stored in the window words. The window procedure may retrieve this pointer 
from the window words at the start of processing for the current message. 
See6.5.4, ''Instance Data and Window Words" on page 81. 

6.5.3 Window Closure 

80 OS/2 V2.0 Volume 4 

A window is closed (removed from the screen and destroyed) by Presentation 
Manager in response to the application issuing a WinDestroyWindow() call, 
specifying the handle of the window to be destroyed. In normal circumstances 
the handle of the frame window is specified; destroying the frame window 
destroys that window and all of its children, including the client window 
associated with that frame. 

When an application requests that Presentation Manager close a window, a 
system-defined message of class WM_DESTROY is sent to the client window, 
and thus to the window procedure associated with that class. The window 
procedure may capture and process this message, backing out any uncompleted 
units of work, and destroying or terminating access to data objects. The window 
procedure should then return a value of zero. 

Note that although closing and destroying a parent window will also close and 
destroy all children of that window, the WM_ DESTROY message is sent to the 
parent window, and processed before the children are destroyed. Hence when 



processing a WM_DESTROY message, a window procedure may assume that all 
its children still exist. 

If the user explicitly requests closure of a window by selecting the "Close" 
option on the system menu, a system-defined message of class WM_CLOSE is 
sent to the window procedure. The window procedure may also capture and 
process this message in a similar manner to that used for WM_DESTROY 
messages. 

Note that explicit processing of the WM_ CLOSE message class is recommended 
for all Presentation Manager windows, since the default processing provided by 
Presentation Manager causes a WM_ QUIT message to be posted to the 
application's message queue. This may result in unwarranted termination of the 
application. The window procedure for a child window should process a 
WM_CLOSE message by issuing a WinDestroyWindow() call for its frame window. 
The window procedure for an application's main window should process a 
WM_ CLOSE message by posting a WM_ QUIT message to itself. This will cause 
the application to terminate (see 6.8, "Terminating an Application" on page 98). 

In order to handle the closure of a window in the most elegant manner, the 
following course of action is recommended: 

• Explicit processing should be provided for both WM_ CLOSE and 
WM_DESTROY messages: 

A window procedure should process a WM_CLOSE message by issuing a 
WinDestroyWindow() call for its own frame window if it is a child window, 
or a WM_ QUIT message to itself if it is an application's main window. In 
both cases, the window procedure should then return a value of zero. 

A window procedure should process a WM_DESTROY message by 
closing any files or databases that it has opened, and freeing any 
resources such as memory objects. 

• Selection of the "Exit" option from a menu bar should result in the closure of 
the window to which the menu bar belongs, by having the window 
procedure issue a WinDestroyWindow() call for its frame window. If the 
window is the application's main window, it should be closed by having the 
window procedure post a WM_QUIT message to itself (see 6.8, "Terminating 
an Application 11 on page 98). This will result in a WM_DESTROY message 
being posted to the main window and each of its children as part of the 
application's termination processing. These messages may be captured and 
processed by the appropriate window procedures in order to close data 
objects, back out incomplete units of work, etc. 

The release of data objects and Presentation Manager resources is discussed in 
6.5.4, "Instance Data and Window Words. 11 

6.5.4 Instance Data and Window Words 
For data that is private to a particular instance of a window class, each window 
may have an area of storage associated with it, assigned by Presentation 
Manager and located within the Presentation Manager control block for that 
window. This area is known as the window words. The amount of space 
allocated for window words in a particular window class is variable, and is 
defined in the WinReglsterClass() function call at the time the class is registered 
to Presentation Manager. 

Chapter 6. Building a Presentation Manager Application 81 



82 OS/2 V2.0 Volume 4 

It is recommended that for storage of amounts of data larger than four bytes, a 
memory object is obtained from the operating system using the DosAllocMem() 
or DosSubAlloc() functions, and a pointer to this object is placed in the window' 
words of the associated window. An example of this technique is given in 
Figure 21 on page 82. 

MYSTRUCT *MyStruct; 

switch (ulMsg) /* Switch on message class */ 
{ 
case WM CREATE: 

Wi nDefWi ndowProc (hWnd, /* Perform default i nit * / 
ulMsg, 
mpl, 
mp2); 

DosAllocMem(MyStruct, /* Allocate memory object */ 
sizeof(MYSTRUCT), /*Size of memory object */ 
PAG_READ I /* Allow read access */ 
PAG_WRITE I /*Allow write access */ 
PAG_COMMIT); /* Commit storage now */ 

hFrame=WinQueryWindow(hwnd, /* Get frame window handle */ 
QW PARENT, 
FALSE); 

WinSetWindowULong(hFrame, /* Place pointer in window */ 
QWL_USER, /* words * / 
(ULONG)MyStruct); 

return((MRESULT)0); 
break; 

Figure 21. Storing Instance Data in Window Words. This example shows the allocation of 
a memory object, and the storage of a pointer to that memory object in window words. 

A memory object corresponding to the size of the data structure MYSTRUCT is 
obtained from the operating system using the DosAllocMem() function, and a 
pointer to this memory object is set by the application. This pointer is then 
placed in the window words of the current window's parent {that is, the frame 
window) using the WinSetWindowULong() function, at offset QWL_USER. A 
number of predefined Presentation Manager window classes, including the frame 
window class, contain a 32-bit word at this offset, which is available for 
application use. 

Note the use of the PAG_COMMIT flag in the DosAllocMem() function call. This 
flag causes storage to be allocated immediately for the memory object being 
created, since OS/2 Version 2.0 by default uses a two-phase process for dynamic 
memory allocation. 

The concept of committing memory is new to Version 2.0, and allows a storage 
map for the application to be defined, but the storage is not reserved in memory 
until it is needed, at which time the application may explicitly commit the storage 
using the DosSetMem() function. Optionally, the application may set the 
PAG_COMMIT flag in the DosAllocMem() function call to commit the storage 
immediately upon allocation. 

Failure to commit storage, either by use of the PAG_COMMIT flag or the 
DosSetMem() function, will result in a page fault exception {Trap OOOE) when the 
application attempts to write to the storage area. The concept of allocating and 



committing storage is explained fully in OS/2 Version 2.0 - Volume 1: Control 
Program, and the use of these techniques by applications is described in 
Chapter 5, "The Flat Memory Model." 

After the memory object containing instance data is initially allocated, the 
window procedure may access it during processing of subsequent messages by 
issuing a WinQueryWindowULong() call to Presentation Manager, as shown in 
Figure 22. 

case WMP MYMESSAGE: 
hFrame=WinQueryWindow(hwnd, 

QW PARENT, 
FALSE); 

MyStruct=WinQueryWindowULong(hFrame, 
QWL_USER); 

<Perform action> 
return((MRESULT)0); 
break; 

Figure 22. Retrieving Instance Data from Window Words 

Upon termination of the window by the application, the window procedure 
receives a WM_DESTROY message. As described in 6.5.3, "Window Closure" on 
page 80 , the window procedure should process this message by releasing any 
resources to which it has access. This includes the instance data control block, 
which must be released using the DosFreeMem() function as shown in Figure 23. 

case WM_DESTROY: 
hFrame=WinQueryWindow(hwnd, 

QW PARENT, 
FALSE); 

MyStruct=WinQueryWindowULong(hFrame, 
QWL_USER); 

<Release data objects> 
<Release Presentation Manager resources> 
DosFreeMem(MyStruct); 
return((MRESULT)0); 
break; 

Figure 23. Releasing Instance Data Storage 

In the above example, the pointer to the instance data control block is first 
retrieved from the window words, giving access to the handles of any data 
objects or Presentation Manager resources obtained by the window, in order 
that these may be released. Once this has been achieved, the memory object 
containing the control block is released by the window procedure. Failure to 
release the data objects and resources before freeing the memory object would 
result in a general protection exception (Trap 0000) when the data objects or 
resources were subsequently released. 

Chapter 6. Building a Presentation Manager Application 83 



6.5.5 Subclassing a Window 

84 OS/2 V2.0 Volume 4 

The use of subclassing to modify the methods of an existing window class has 
been described in 4.7, "Subclassing" on page 57. An application subclasses a 
particular window instance (rather than the entire window class) by creating a 
subclass window procedure. and registering this window procedure to 
Presentation Manager using the WinSubclassWindow() function. 

The use of the WinSubclassWindow() function is shown in Figure 24. 

PFNWP pOldWinProc; 

pOldWinProc = WinSubclassWindow(hWnd, wpSubclass); 

Figure 24. WinSubc/assWindow() Function 

The WinSubclassWindow() function substitutes a new window procedure, known 
as the subclass window procedure, for the original window procedure associated 
with the window being subclassed. The window handle of the window, along 
with the entry point of the subclass window procedure, is passed to the 
WinSubclassWindow() function. The function returns the entry point address of 
the original window procedure for that window. 

Once a window has been subclassed, Presentation Manager routes messages 
destined for that window to the subclass window procedure. The subclass 
window procedure may: 

• Process the message itself, if it indicates an action for which the method 
must be modified. 

The subclass window procedure then returns control immediately to 
Presentation Manager. 

• Pass the message on to the original window procedure for that window, if 
the subclass window procedure is not explicitly concerned with the action 
indicated by the message. 

The original window procedure is directly invoked by the subclass window 
procedure; note that this is one of the few instances where direct invocation 
of a window procedure is recommended. The return code from the original 
window procedure is then returned to Presentation Manager. 

• Both of the above, if the subclass window procedure must perform some 
processing in addition to that normally performed by the original window 
procedure. 

The additional processing performed by the subclass window procedure may 
be performed either before or after the processing performed by the original 
window procedure. This sequence is at the discretion of the application 
developer, and depends largely on the desired modification in the window's 
behavior. 

A subclass window procedure is similar in structure to a "normal" window 
procedure, except that instead of calling the WinDefWindowProc() function as its 
default case, it should invoke the original window procedure. This means that 
the entry point address of the original window procedure must be known to and 
accessible from the subclass window procedure. Note also that the entry point 
address might not be that of the original window procedure specified when the 
window class was registered to Presentation Manager, since the window might 



previously have been subclassed, and the current subclassing operation might 
be effectively subclassing the subclass window procedure. 

The entry point address of the original procedure can be supplied to the 
subclass window procedure in a number of ways: 

• It may be determined from the information returned by the 
WinSubclassWindow() call, and passed to the subclass window procedure in 
an application-defined message. The subclass window procedure may then 
store the entry point address in a global variable or in the window words of 
the window, assuming the available window words are not already in use. 

• It may be determined by the subclass window procedure itself by querying 
Presentation Manager. Note, however, that this method will only work if the 
window has not previously been subclassed, since Presentation Manager 
only records the original window procedure (as specified in the 
WinRegisterClass() function call) in the CLASSINFO structure for the window. 

An example of a subclass window procedure, including a query to obtain the 
original entry point address from the Presentation Manager class information, is 
given in Figure 25 on page 86. 

Chapter 6. Building a Presentation Manager Application 85 



86 OS/2 V2.0 Volume 4 

MRESULT EXPENTRY wpSubclass(HWND hWnd, 
ULONG ulMsg, 
MPARAM mpl, 
MPARAM mp2) 

CHAR szClass[7]; 
CLASSINFO WinClass; 
PFNWP pWinProc; 

BOOL bSuccess; 
ULONG ulRetlength; 

switch (ulMsg) 
{ 
case WMP_MESSAGEl: 

<Perform application specific processing> 

return((MRESULT)0); 
break; 

case WMP MESSAGE2: 

<Perform application specific processing> 

break; 
default: 

break; 
} 

ulRetlength=WinQueryClassName(hWnd, 
sizeof(szClass), 
szClass); 

bSuccess=WinQueryClassinfo(NULL, 
szClass, 
&WinClass); 

pWinProc=WinClass.pfnWindowProc; 
return((MRESULT)(*pWinProc)(hWnd, 

ulMsg, 
mpl, 
mp2); 

Figure 25. Subclass Window Procedure 

Figure 25 shows each of the possible cases listed above. The message class 
WMP _MESSAGE1 is explicitly processed by the subclass window procedure, 
which then returns control to Presentation Manager with a return statement upon 
completion. 

The message class WMP _MESSAGE2 is also explicitly processed by the subclass 
window procedure, but in this case it is required that the processing performed 
by the original window procedure be allowed to occur, after the subclass window 
procedure's processing. The subclass window procedure therefore does not 
return control immediately to Presentation Manager, but merely terminates the 
switch statement, allowing the final four statements to be executed. 



For other message classes with which the subclass window procedure is not 
concerned, the default case also terminates the switch statement, allowing the 
final four statements to be executed. 

These final statements determine the entry point address of the original window 
procedure, using the WinQueryClassName() and WinQueryClasslnfo() functions to 
access control information held by Presentation Manager. This entry point 
address is then used to invoke the original window procedure to process 
messages with which the subclass window procedure is not concerned, or for 
which the normal processing must be allowed to occur. 

The last four statements in the example above are common to all subclass 
window procedures, and organizations undertaking development of Presentation 
Manager applications may wish to incorporate them into a standard subroutine 
and place them in a library for access by developers. 

Note that a subclass window procedure, like all window and dialog procedures, 
must use the system linkage convention. This is normally achieved by declaring 
the subclass window procedure using the EXPENTRY keyword. 

6.6 Window Communication 
Presentation Manager provides a number of mechanisms for communicating 
between windows. All of these mechanisms use the Presentation Manager 
message concept. The exact technique used in any particular situation is 
dependent upon the nature of the communications and the types of windows 
involved. 

6.6.1 Standard Windows 
Data may be passed to a window upon its creation, using the Ct/Data parameter 
of the WinCreateWindow() function. The contents of this parameter (a 32-bit 
pointer) are passed to the target window as a parameter to the WM_ CREATE 
message. The contents may then be extracted from the message parameter 
and used by the window procedure. 

When an application wishes to pass a message between two standard windows 
that currently exist, whether they are display windows or object windows, either 
of two methods may be used, depending on whether the desired communication 
is to be synchronous or asynchronous. 

• When a synchronous message is to be passed, the WinSendMsg() function is 
used, and the target window procedure is invoked directly by Presentation 
Manager, in a similar fashion to a normal function call. The return code from 
the window procedure is passed by Presentation Manager to the calling 
window procedure, where it may be interrogated and acted upon. 

• When a message is to be processed asynchronously, the WinPostMsg() 
function is used. In this case the message is posted to a queue associated 
with the thread that created the target window, and the return code to the 
calling window procedure merely indicates that the message was 
successfully placed on the queue. In order for the target window procedure 
to pass a return code or acknowledgement back to the calling window 
procedure, it must include another WinPostMsg() call as part of the 
processing of the message. 

Chapter 6. Building a Presentation Manager Application 87 



The use of WinPostMsg() is recommended over that of WinSendMsg(), since 
posted messages are processed in the order in which they arrive in the queue, 
and the integrity of the user's intention is thus preserved in the order of 
processing. In addition, synchronous window procedures are invoked and 
executed without the original window procedure completing its processing and 
returning control to the message processing loop. Thus the application is 
prevented from processing additional user interaction, which may lead to 
violation of the SAA CUA responsiveness guidelines. 

6.6.2 Dialog Boxes 

88 OS/2 V2.0 Volume 4 

Communication between a standard window and a modeless dialog box is 
achieved in a similar fashion to that used between two standard windows, since 
the modeless dialog box is merely a normal window without a sizable border. 
However, communication between a standard window and a modal dialog box 
must be achieved in a different manner, since a modal dialog box is typically 
loaded and processed in a single WinDlgBox() function call, and the dialog box 
only has an existence during the execution of that function call. An example of 
the WinDlgBox() function is shown in Figure 26. 

MYSTRUCT *MyStruct; 

DosAllocMem(MyStruct, 
sizeof(MYSTRUCT), 
PAG_READ I 
PAG_WRITE I 
PAG_COMMIT); 

<Initialize values in MyStruct> 

re = WinDlgBox(HWND_DESKTOP, 
hwnd, 
dpMyDialog, 
(HMODULE)0, 
DC_MYDIALOG, 
MyStruct); 

Figure 26. WinDlgBox() Function 

/* Allocate memory object 
/* Size of memory object 
/* Allow read access 
/* Allow write access 
/* Commit storage now 

/* Set initialization data 

*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

/* Desktop is parent */ 
/* Current window is owner */ 
/* Entry point of dialog procedure */ 
/* Resource is in EXE file */ 
/* Dialog resource identifier */ 
/* Pointer to initialization data */ 

Data may be passed to a dialog procedure at initialization time by creating a 
data structure and passing a pointer to that structure in the CreateParams field 
of the WinDlgBox() function, as shown in Figure 26. This pointer is passed to the 
dialog procedure as the second parameter of the WM_INITDLG message, and 
may be accessed by the dialog procedure during the processing of this 
message. Note that this is the only time at which input may b.e passed to a 
dialog box, since the dialog is processed within the scope of a single application 
statement; either a WinDlgBox() call or a WinProcessDlg() call may be used. The 
WM_INITDLG message is described in the IBM 0512 Version 2.0 Presentation 
Manager Reference. 

Information may be conveyed from a dialog procedure to its calling window 
procedure in one of two ways: 

• The dialog box may provide an unsigned integer (USHORT) parameter to the 
WinDismissDlg() function, and this value is passed to the calling window 
procedure as the return code from the WinDlgBox() function. This technique 



is useful where an acknowledgement or simple return data must be 
conveyed. 

• The dialog box may issue a WinPostMsg() call to pass a message to the 
queue associated with its calling window. The window procedure may then 
receive and process that message in the normal way. This technique is 
useful when more complex data or structures must be conveyed. 

The latter technique above may also be used to convey information to a window 
other than the window that invoked the dialog. This may be necessary in 
situations where a dialog box is invoked by one window procedure on behalf of a 
group of windows. 

6~6.3 Control Windows 
As mentioned in Chapter 11, "Systems Application Architecture CUA 
Considerations," control windows are typically used in dialog boxes, and are 
hence accessed from the dialog procedure associated with their parent dialog 
box. Such communication is synchronous in nature, since it usually involves 
insertion or retrieval of data into or from control windows, or other tasks that are 
part of the modal dialog with the user. 

Under OS/2 Version 2.0, some additional functions have been introduced into the 
Presentation Manager programming interface, to ease more complex 
communications, such as those involving list boxes. Since communication with 
list boxes is therefore somewhat different from that involving other control 
window classes, list boxes are discussed separately in 6.6.3.2, "List Boxes" on 
page 90. 

6.6.3.1 General Control Windows 
Communication between a dialog procedure and the control windows associated 
with its dialog box is typically achieved using the WinSendDlgltemMsg() function, 
which is documented in the IBM OS/2 Version 2.0 Presentation Manager 
Reference. This function is similar in function and behavior to the 
WinSendMsg() function, in that it passes a synchronous message to the 
destination window. However, instead of accepting the handle of the destination 
window as its first parameter, it accepts the handle of the control window's 
parent and the window identifier of the control window itself as the first two 
parameters of the call. For example, to send a message of class 
EM_SETTEXTLIMIT to an entry field named EF _PRODNAME, which is a child of 
the dialog box with handle hD/gBox, the function call shown in Figure 27 is used: 

re = WinSendDlgltemMsg(hDlgBox, 
EF_PRODNAME, 
EM_SETTEXTLIMIT, 
20, 
0); 

Figure 27. Communicating with a Control Window 

/* Parent dialog box */ 
/* Control identifier */ 
/* Message */ 
/* Message parameters */ 

It is possible to perform an equivalent function using the WinSendMsg() call, by 
obtaining the control window's handle using the WinWindowFromlD() function. 
However, for purposes of standardization and in accordance with emerging 
conventions, it is recommended that the WinSendDlgltemMsg() function be used 
to send messages to control windows. Note that for this purpose, the definition 
of control windows includes both the system menu and menu bar; messages 

Chapter 6. Building a Presentation Manager Application 89 



sent to these menus (in order to insert, modify or delete items) should be sent 
using the WinSendDlgltemMsg() function. 

Similarly, it is recommended that the WinSetDlgltemText() and 
WinQueryDlgltemText() functions be used to set and query the contents of control 
windows from within the application. For example, assume that the user has 
completed interaction with a dialog box, and pressed the "Enter" or "OK" button, 
and the application wishes to obtain the contents of an entry field named 
EF _PRODNAME, which is child of the dialog box with handle hD/gBox. The 
function call call shown in Figure 28 is used. 

re= ~JinQueryDlgitemText(hDlgBox, 
EF_PRODNAME, 
sizeof(szBuffer), 
szBuffer); 

/* Parent dialog box */ 
/* Control identifier*/ 
/* Size of buffer */ 
/* Pointer to buffer */ 

Figure 28. Querying Information From a Control Window 

90 OS/2 V2.0 Volume 4 

The WinQueryDlgltemText() function copies the contents of the entry field into the 
string szBuffer, and returns the number of characters copied. 

The WinSetDlgltemText() function is typically used in situations where some of 
the information necessary to complete an action is known; this information is 
then displayed in the appropriate entry fields within the dialog box, and the user 
fills in the missing fields. Another use of this function is to provide default 
values for entry fields. Both the WinSetDlgltemText() and WinQueryDlgltemText() 
functions are documented in the IBM 0512 Version 2.0 Presentation Manager 
Reference. 

6.6.3.2 List Boxes 
The complexity of communication with list boxes has been greatly reduced under 
OS/2 Version 2.0. The Presentation Manager programming interface now 
includes a number of functions that allow most communication requirements to 
be achieved in a single step. Note that these functions may also be used for 
communication. with a combo box (prompted entry field). 

Insertion and deletion of list box items is carried out using the 
Winlnsertlboxltem() and WinDeletelboxltem() functions, which are new to OS/2 
Version 2.0. The Winlnsertlboxltem() function is illustrated in Figure 29. 

hLBox = WinWindowFromID(hWnd, 
LB_LIST); 

/* Get list box window handle */ 

ullndex = Winlnsertlboxitem(hLBox, /* Insert list box item */ 
LIT_END, /* Insert at end of list */ 
szitemText); /* Item text */ 

Figure 29. Inserting an Item Into a List Box 

An application may obtain the text of a selected item in the list box using the 
WinQuerylboxSelectedltem() and WinQuerylboxltemText() functions. The use of 
these functions is illustrated in Figure 30 on page 91. 



hLBox = WinWindowFrornID(hWnd, 
LB_LIST); 

/* Get list box window handle */ 

ulindex = WinQuerylboxSelectedltem(hLBox); /*Get index of selected item*/ 

ullength = WinQuerylboxiternText(hLBox, /*Get item text */ 
uslndex, /* Index of item */ 
szBuffer, /* Text buffer */ 
sizeof(szBuffer)); /*Max no. of chars */ 

Figure 30. Querying a Selected List Box Item 

Other functions include the WinQuerylboxCount() function, which returns the 
number of items in a list box, and the WinQuerylboxltemTextlength() function, 
which returns the length of list box item's text. 

All of these list box manipulation functions are described in the IBM OS/2 
Version 2.0 Presentation Manager Reference. 

6.6.4 Message Boxes 
Communication between a window or dialog procedure and a message box is 
relatively simple. The message box is created and processed using the 
WinMessageBox() function, and the only input data pro.vided to this function is 
the title of the message box and the text of the message to be displayed. The 
application may affect the style of the message box, by specifying style attributes 
in the function call, as described in the IBM OS/2 Version 2.0 Presentation 
Manager Reference. 

An example of the WinMessageBox() function is given in Figure 31. 

re = WinMessageBox(HWND_OESKTOP, 
hWnd, 
pszMsgText, 
11 0pen the File 11 

0, 
MB OKCANCEL 
MB DEFBUTTONl 
MB)ELP); 

Figure 31. WinMessageBox() Function 

/* Desktop is parent */ 
/* Current window is parent */ 
/* Pointer to message text */ 
/* Message title */ 
/* Message box identifier */ 
/* Include OK & Cancel buttons */ 
/* Default to OK */ 
/* Include help button */ 

The result of the user's interaction with the message box (that is, the identifier of 
the button that was pressed) is communicated to the application in the form of 
an unsigned integer returned by the WinMessageBox() call. The application may 
then interrogate this returned value to determine the subsequent action to be 
taken. 

6.6.5 Identifying the Destination Window 
When passing messages between windows using the WinPostMsg() or 
WinSendMsg() functions, the window handle of the destination window must be 
known and specified in the message. If window handles are not defined globally, 
the required handle must be obtained from Presentation Manager. This may be 
achieved in a number of ways: 

Chapter 6. Building a Presentation Manager Application 91 



92 OS/2 V2.0 Volume 4 

• If the target window has a known relationship to the current window or to 
another window for which the handle is already known, the 
WinQueryWindow() function may be used to obtain the window handle of the 
target window. For example, if a window wishes to post a message to its 
own parent window, the technique shown in Figure 32 may be used. 

hTarget = WinQueryWindow(hWnd, /* Base window for relation */ 
QW PARENT, /*Relationship to base wndw */ 
FALSE); /*Do not lock window */ 

Figure 32. Obtaining a Window Handle - WinQueryWindow() Function 

The WinQueryWindow() call returns the handle of the required window. 
Relationships other than parent/child may also be used by this function; the 
valid relationships are described, along with the WinQueryWindow() function, 
in the IBM 0512 Version 2.0 Presentation Manager Reference. 

• If the parent window and window identifier of the target window are known, 
the WinWindowFromlD() function may be used to obtain the window handle 
of the target window. For example, if a window wishes to post a message to 
the client window of its application's main window, assuming the frame 
window handle is known, the method shown in Figure 33 may be used. 

hTarget = WinWindowFromID(hMainFrame, /* Parent window known */ 
FID_CLIENT); /*Window identifier */ 

Figure 33. Obtaining a Window Handle - WinWindowFrom/D() Function 

The WinWindowFromlD() function also returns the handle of the required 
window. 

• If the target window is the application's main window, its handle may be 
obtained by first querying the application's switch entry in the Workplace 
Shell Window List to obtain the handle of the main frame window (using the 
WinQuerySwitchHandle() and WinQuerySwitchEntry() functions), then using 
the WinWindowFromlD() function to obtain the handle of the client window, 
as shown in Figure 34. 

hSwitch = WinQuerySwitchHandle(hWnd,0); 
ulSuccess = WinQuerySwitchEntry(hSwitch, 

SwitchData); 
hTarget = WinWindowFromID(SwitchData.hwnd, 

FID_CLIENT); 

Figure 34. Obtaining a Window Handle Using the Switch Entry 

The above example assumes that the application has been added to the 
OS/2 Window List using the WinAddSwitchEntry() function, and the handle of 
its main frame window supplied as a parameter. See Figure 20 on page 78. 

When passing messages synchronously to control windows using the 
WinSendOlgltemMsg() function, it is generally assumed that the target control 
window is a child of the current window or dialog box. Thus the parent window 
handle is the handle of the current window, and the window identifier is also 
known to the current window procedure. An exception is the case where a 



window procedure wishes to send a message to a frame control of its own 
parent frame window. In this case a WinQueryWindow() call must be issued with 
the QW_PARENT parameter to determine the handle of the frame window. The 
WinSendDlgltemMsg() function may then be used with this handle and the 
window identifier of the required frame control. 

6.6.6 Creating Message Parameters 
Before a message can be passed to a target window, its message parameters 
must be created from the necessary data items. As mentioned in 4.2, 
"Messages" on page 40, message parameters are 32-bit fields. Presentation 
Manager provides a number of macros to convert existing data types into the 
correct representation, and to extract data from message parameters within the 
target window procedure. These macros are described in Table 3. 

Table 3. Presentation Manager Macros. This table shows the .. C .. language macros 
provided by Presentation Manager to facilitate the construction and extraction of 
message parameters. 

Macro Usage 

MPFROMP Produces an MPARAM data type from a pointer 

MPFROMHWND Produces an MPARAM data type from a window handle 
(HWND) 

MPFROMCHAR Produces an MPARAM data type from an unsigned character 
(UCHAR) 

MPFROMSHORT Produces an MPARAM data type from a short integer (SHORT 
or USHORT) 

M PFROM2SHORT Produces an MPARAM data type from two short integers 
(SHORT or USHORT) 

M PFROMSH2CH Produces an MPARAM data type from a short integer (SHORT 
or USHORT) and two characters (CHAR or UCHAR) 

MPFROMLONG Produces an MPARAM data type from a long integer (LONG or 
ULONG) 

PVOIDFROMMP Produces a pointer from an MPARAM data type 

HWNDFROMMP Produces a window handle (HWND) from an MPARAM data 
type 

CHAR1 FROMMP Produces a character (UCHAR) from bits 0-7 of an MPARAM 
data type 

CHAR2FROMMP Produces a character (UCHAR) from bits 8-15 of an MPARAM 
data type 

CHAR3FROMMP Produces a character (UCHAR) from bits 16-23 of an MPARAM 
data type 

CHAR4FROMMP Produces a character (UCHAR) from bits 24-31 of an MPARAM 
data type 

SHORT1 FROM MP Produces an unsigned short integer (USHORT) from bits 0-15 of 
an MPARAM data type 

SHORT2FROMMP Produces an unsigned short integer (USHORT) from bits 16-31 
of an MPARAM data type 

LONGFROMMP Produces an unsigned long integer (ULONG) from an MPARAM 
data type 

For example, to create message parameter mp1 composed of two unsigned 
integers uslnt1 and uslnt2, the following statement is used: 

Chapter 6. Building a Presentation Manager Application 93 



mpl = MPFROM2SHORT(uslntl,uslnt2); 

Similarly, to extract two unsigned integers us/nt3 and uslnt4 from the message 
parameter mp2, the following statements are used: 

uslnt3 = SHORT1FROMMP(mp2); 
uslnt4 = SHORT2FROMMP(mp2); 

Characters, pointers, window handles, etc., may all be placed into and retrieved 
from message parameters using macros supplied by Presentation Manager. 

6.6.7 Broadcasting Messages 

94 OS/2 V2.0 Volume 4 

In certain circumstances, a window procedure may wish to indicate an event to 
multiple windows, and therefore need to pass the same message to each of 
these windows. Presentation Manager provides the capability for a message to 
be broadcast to multiple windows with a single WinBroadcastMsg() function call. 

The WinBroadcastMsg() function passes a message of a specified class to the 
descendants of a specified parent window, as shown in Figure 35. 

re = WinBroadcastMsg(hwnd, 
WMP_MYMESSAGE, 
mpl, 
mp2, 
BMSG_POST); 

Figure 35. WinBroadcastMsg() Function 

/* Current is parent */ 
/* Message identifier */ 
/* 1st message parameter */ 
/* 2nd message parameter */ 
/* Post message via queue */ 

The example shown in Figure 35 passes a message of the application-defined 
class WMP _MYMESSAGE to all children of the current window (that is, the 
window associated with the window procedure in which the function call is 
made), with message parameters as shown. The message is posted to the 
target windows via a message queue, and is thus processed asynchronously; the 
WinBroadcastMsg() function also allows for synchronous processing using the 
BMSG_SEND flag. 

The parent/child hierarchy allows windows to be grouped in particular ways to 
suit application requirements. For example, all the object windows created by 
an application may be created as children of a "dummy" master object window. 
If a particular message must then be sent to all these object windows (for 
example, to close all the windows), this can be done by broadcasting the 
message to all children of the master object window. 

The BMSG_DESCENDANTS flag may be set in the WinBroadcastMsg() call to 
cause a message to be passed to all descendants of the specified parent 
window, rather than just the direct children of that parent. This enables a 
message to be broadcast to a wider target group, should the application so 
require. Alternatively, the BMSG_FRAMEONLY flag may be set, causing the 
message to be passed only to frame windows. This is useful in situations 
where an application wishes to initiate an action by multiple display windows at 
the same time. 

The WinBroadcastMsg() function must be used with caution, particularly when it 
may cause messages to be sent to windows created by other applications. This 
is possible if the BMSG_DESCENDANTS flag is set and the desktop window is 
specified as the parent, and may cause complications in other applications. For 
example, consider the following message· definitions: 



Application 1 

#define WMP_REFRESH WM_USER+12 

Application 2 

#define WMP_CLOSEALL WM_USER+12 

In the example above, each application defines a message class, and each 
message is to be used for a different purpose. However, both messages have 
the same message identifier. Now let us assume that Application 1 makes the 
following function call: 

re = WinBroadcastMsg(HWND_DESKTOP, 
WMP_REFRESH, 
mpl, 
(MPARAM)El, 
BMSG_POST); 

This function call would cause a WMP _REFRESH message to be passed to all 
display windows in Application 1 and Application 2. However, the windows in 
Application 2 would interpret the message as a WMP _CLOSEALL message, with 
possibly undesirable results. 

It is therefore strongly recommended that developers exercise extreme care in 
using the WinBroadcastMsg() function, in order to accurately determine the 
potential results of the messages being broadcast. 

6.7 Passing Control 
The use of functions and subroutines in an object-oriented application executing 
in the Presentation Manager raises some issues with regard to object 
boundaries. In general, the scope of a function or subroutine should be 
restricted to a single application object, and the processing performed by that 
subroutine should therefore relate only to the data object(s) owned by that 
application object. If a subroutine invoked from one application object will 
perform processing on a data object related to a different application object, then 
the subroutine should be invoked by the second application object, by way of a 
message passed from the first application object. 

Four general types of subroutines may exist within an object-oriented 
application. These are discussed in the following sections, and are classified 
according to the nature of their inputs and outputs. 

6.7.1 Direct Invocation/Direct Return 
This type of subroutine corresponds to the "conventional" subroutine call, in that 
a parameter list is passed to the subroutine from the calling routine, and a 
number of parameters and/or a return code is returned at the end of the 
subroutine's execution. Within an object-oriented application, such subroutines 
should be used to perform processing that is limited in scope to a single 
application object (such as an SQL query on a database owned by the 
application object), or to perform a standard processing function that is common 
to a number of objects, but where the scope of each execution instance is 
limited to a single object. For example, a function DrawCircle may be called by 
a number of window procedures to display a circular graphics primitive; 
however, each invocation of the function is from a single window procedure. 

Chapter 6. Building a Presentation Manager Application 95 



6.7.2 Direct Invocation/Message Return 
This type of subroutine should be used where the scope of the processing 
performed by a subroutine is limited to a single application object, but where 
the result of that processing must be communicated to an application object 
other than the one that invoked the subroutine. Since the conventional method 
of achieving communication between objects is via messages, the subroutine 
posts a message to the affected application object using the WinPostMsg() call, 
or synchronously passes the message to the application object using the 
WinSendMsg() call (this latter call should be used with caution; see 6.7.3, 
"Message Invocation/Direct Return"). The message is routed to the destination 
window by Presentation Manager. The subroutine typically returns to its caller 
in the normal fashion; this method of passing control is therefore merely a 
variation of the previously described Direct Invocation/Direct Return method. 

Assuming that the calling routine is a window procedure, the return code (if any) 
from the subroutine is passed to the calling window procedure and that 
procedure completes its execution before the message resulting from the called 
subroutine is processed. 

Note that this technique can be used where the called subroutine executes in a 
secondary thread, and the resulting message is passed back to the calling 
window procedure in the primary thread to indicate the completion of the 
secondary thread's processing. See Chapter 10, "Multitasking Considerations" 
for further discussion of multiple threads. 

6.7.3 Message Invocation/Direct Return 
This type of subroutine occurs with window procedures that are invoked 
synchronously via a WinSendMsg() call. The message is processed, and the 
return code from the window procedure is routed to the calling routine by 
Presentation Manager. The calling routine then completes its execution. If any 
queued messages are generated by the called window procedure or subroutine, 
these messages are not processed until the calling routine completes its 
execution and the application issues its next WlnGetMsg() call. This is so, even 
if the called window procedure or subroutine executes in a separate thread. 

This type of invocation should be used for access to another application object, 
where the function to be performed must be executed synchronously and the 
result returned directly to the caller. However, use of the WinSendMsg() call in 
preference to the WinPostMsg() call for communication between objects may 
result in messages being processed out of order due to the application 
pre-empting the normal order of execution determined by the message queue. 
The WinSendMsg() function should thus be used with care. The use of this call 
may also extend the time interval between successive WinGetMsg() calls to 
Presentation Manager, thus decreasing the application's responsiveness to user 
interaction. 

6.7.4 Message Invocation/Message Return 

96 OS/2 V2.0 Volume 4 

This is the case for window procedures invoked in the standard way using a 
WlnPostMsg() call from another window or using the WinDispatchMsg() function 
from the application's main routine. In this case the message is processed, and 
any messages generated during execution are posted to the appropriate queue, 
but the return code from the window procedure is passed only to Presentation 
Manager, and does not reach the calling window procedure. For this reason, it 
is important that any message that requires acknowledgement be handled in 



such a way that the window procedure generates a message that is routed to the 
calling window, and that contains the required acknowledgement. 

This type of invocation should be used for access to other application objects, 
where the function to be performed need not be performed synchronously, and 
where acknowledgement or completion of the processing may be indicated by a 
subsequent message posted to the caller. 

Note that this should be the default method of invocation for window procedures, 
since the asynchronous nature of the processing allows the application to 
maintain the highest level of responsiveness to user interaction. 

Note also that a window may receive messages from a number of sources. This 
allows a window to service requests from a number of other windows, in 
accordance with a client-server architecture. This concept is discussed further in 
10.9, "Client-Server Applications" on page 236. 

6. 7 .5 External Macros 
An application may also pass control synchronously to an external routine such 
a macro or subprogram written using the Restructured Extended Executor (REXX) 
procedure language. This can be achieved quite easily by calling the REXX 
command interpreter using the RexxStart() function from any point within the 
application. This function is illustrated in Figure 36. 

#define INCL REXXSAA 

#include <rexxsaa.h> 

PSZ szFil eName; 
PSZ szOptions; 

RXSTRING arg; 
RXSTRING RexxRetValue; 

LONG lRexxRC; 

/* File to be accessed */ 
/* Command arguments */ 

/* REXX argument string */ 
/* Result */ 

/* REXX return code */ 

static RXSYSEXIT ExitList[] = {{"TIXXSI0 11
, RXSIO}, /*Exit handler */ 

{NULL, RXENDLST}}; 

arg.strptr = szOptions; 
arg.strlength = strlen(szOptions); 

re = RexxStart(l, 
&arg, 
(PSZ)"RexxProc", 
NULL, 
(PSZ) 11 TIXX", 
(SHORT)RXCOMMAND, 
(PRXSYSEXIT)ExitList, 
&lRexxRC, 
&RexxRetValue); 

/* Set argument string */ 
/* Size of arg string */ 

/* Call REXX */ 
/* Argument string */ 
/* REXX proc file */ 
/* Procedure in file */ 
/* ADDRESS environment */ 
/* REXX command */ 
/* Exit list routines */ 
/* Return code address */ 
/* Returned result */ 

Figure 36. Calling External Macros. This example shows the use of the RexxStart() function to call the REXX 
command interpreter from within an application. 

Chapter 6. Building a Presentation Manager Application 97 



Commands are passed to the REXX interpreter using command strings defined 
using the RXSTRING data type, which is defined in the rexxsaa.h header file. 
This structure contains the string pointer and an unsigned long integer 
containing the length of the string in bytes. A number of commands may be 
passed in a single operation, by specifying an array of RXSTRING structures in 
the second parameter to the RexxStart() function. The first parameter specifies 
the number of commands being passed. 

The third parameter to the RexxStart() function defines the name of the REXX 
procedure to be invoked. In Figure 36, the procedure is contained in the file 
REXXPROC, with an assumed default file extension of .CMD. 

If the REXX procedure invoked by the application issues its own commands such 
as SAY {to output information to the screen), a subcommand handler must be 
specified in the RexxStart() function call, in order to trap such output. A 
subcommand handler is simply a subroutine which accepts, as parameters, the 
function and subfunction names issued by the REXX procedure, along with a 
pointer to an RXSTRING structure which may be used by the subcommand 
handler to return any information to the REXX procedure. A subcommand 
handler may reside within the application's main executable module or in a DLL, 
and must be registered prior to issuing the RexxStart() function call, using the 
RexxRegisterSubcomExe() or RexxRegisterSubcomDll() functions. 

The REXX interpreter's operating environment may be customized through the 
use of user exits, whereby special routines may be inserted at particular points 
in the interpreter's execution. Such routines are specified using an array of 
RXSYSEXIT structures, which identify the exit point and the entry point address 
of the routine to be invoked at that point. The address of this array is passed in 
the RexxStart() function call. 

Use of the REXX interpreter, the RexxStart() function and its supporting functions 
are described in detail in the IBM OS/2 Version 2.0 Technical Library -
Procedures Language/2 REXX Reference. 

6.8 Terminating an Application 

98 OS/2 V2.0 Volume 4 

A Presentation Manager application is normally terminated by a message of the 
class WM_QUIT being posted to the application's message queue. The message 
may be posted by any window procedure or subroutine within the application, or 
by Presentation Manager as the result of the user selecting the "Shutdown" 
option from the Presentation Manager desktop. The message may result from 
the user selecting an "Exit" option from the menu bar, or selecting the "Close" 
option in the system menu of the application's main window. 

The WM_ QUIT message causes the next WinGetMsg() call to return FALSE. This 
in turn causes the application's message processing loop to terminate. 

By convention, a Presentation Manager application performs standard 
termination processing such as: 

• Destroying the application's main window 

• Destroying the application's message queue 

• Deregistering the application from Presentation Manager. 



6.9 Summary 

The application may additionally perform its own termination functions such as 
closing or destroying any global data objects. Secondary threads are normally 
terminated from within the window procedure that created them, as part of that 
window procedure's WM_DESTROY message processing. See Chapter 10, 
"Multitasking Considerations" for further information. 

It can be seen that by making effective use of the facilities provided by 
Presentation Manager, and by following a number of simple guidelines in the 
design and implementation of applications, it is relatively simple to develop a 
Presentation Manager application that conforms to module-based object-oriented 
programming standards, and achieves benefits through reduced development 
effort and easier application maintenance, due to code reuse and encapsulation. 

It must be accepted however, that some deviation from strict object-oriented 
practice may be necessary in order to preserve other important goals such as 
the preservation of responsiveness to the end user. Adherence to academic 
principles should not take precedence over achievement of the required result. 

The mapping of data objects into application objects must be approached with 
great care in the design stage of a Presentation Manager application. 
Presentation Manager allows the creation of window procedures (application 
objects) that operate on more than one data object, and of multiple window 
procedures that operate on the same data object. This practice should be 
discouraged however, since it reduces the level of encapsulation in the 
application object, increases the interdependence between application objects, 
and consequently reduces the benefits attainable through code reuse and 
containment of change. 

Notwithstanding, the Presentation Manager environment affords great 
opportunity for the development of applications that implement the general 
principles of the object-oriented approach. A central precept of object-oriented 
design is the generic nature and consequent reusability of the objects so 
created. Adherence to guidelines that promote conformance to object-oriented 
concepts such as data abstraction, encapsulation and polymorphism, in 
conjunction with the facilities provided by Presentation Manager for object 
creation, communication and subclassing, and by the OS/2 operating system in 
the form of dynamic linking, facilitates the development of highly granular, 
reusable generic objects in the Presentation Manager environment. 

Chapter 6. Building a Presentation Manager Application 99 



100 os12 v2;0 Volume 4 



Chapter 7. Workplace Shell and the System Object Model 

The Workplace Shell provided under OS/2 Version 2.0 introduces an 
object-oriented layer into the Presentation Manager environment. It provides a 
mechanism for the registration of object classes, creation of objects within those 
classes, and the inheritance of characteristics and behaviors from existing object 
classes. Using the Workplace Shell, an application may be created as a series 
of objects that interact on the desktop, and which the user manipulates to 
perform the required application processing. Each object possesses data, which 
may be defined for the entire class or for each instance, and a set of methods 
that operate upon that data. 

The Workplace Shell functions that allow the creation and manipulation of 
objects are based upon the system object model, which establishes a basic 
inheritance hierarchy for objects in the system and defines the underlying 
protocols which regulate the relationships between objects. The concepts 
behind the system object model are described in detail in OS/2 Version 2.0 -
Volume 3: Presentation Manager and Workplace Shell, and System Object Model 
Guide and Reference. 

This chapter is an enhanced and expanded version of Chapter 7 in OS/2 Version 
2.0 - Volume 4: Writing Applications. It adds more detail about areas of 
WPS/SOM programming, such as Drag/Drop and debugging, and provides a 
further example Workplace Object to illustrate these techniques. This new 
version of the chapter is included in both the revised version of OS/2 Version 2.0 
- Volume 4: Writing Applications, and also in &volborg .. 

This chapter includes examples of code from two Workplace Objects that have 
been especially written for this document. They are the pwFolder and 
pwFinanceFile Workplace Objects. The full source for these and other examples 
can be found on the diskette included with this document and the program 
listings are in Appendix E, "Source Code for the PWFolder and PWFinanceFile 
objects" on page 347. 

7.1 Objects in the Workplace Shell 
An object in the Workplace Shell conforms closely to the definition of an 
application object given in Chapter 4, "The Presentation Manager Application 
Model, 11 in that it consists of a set of data and a number of methods that operate 
upon that data. Each Workplace Shell object is an instance of a particular object 
class. In accordance with normal object-oriented theory, the class defines the 
basic characteristics of the object and the way in which the object responds to 
events. 

7.1.1 Inheritance Hierarchy 
Each object class is descended from another class, known as its parent class. 
Since the system object model supports the object-oriented concept of 
inheritance, a class may inherit data and methods from its parent class, which in 
turn may inherit data and methods from its parent, and so on. A class which 
inherits properties from other classes is therefore known as a descendant of 
those classes, and the classes from which it inherits are known as ancestors. 
The implementation of inheritance in the Workplace Shell means that when 
creating a new object class, a programmer simply subclasses the parent class, 

©Copyright IBM Corp. 1993 101 



102 OS/2 V2.0 Volume 4 

and need only define those characteristics that are not defined by, or are 
different from those of the parent class. This greatly simplifies the process of 
creating a new object class. 

Under the system object model, every object class is a descendant of the base 
class SOMObject. This class defines the basic characteristics and behaviors 
common to all objects in the system. Other object classes are subclasses of this 
class. The system object model provides two additional classes, SOMC/ass and 
SOMC/assManager, to form the basis of an inheritance hierarchy. The 
Workplace Shell extends this hierarchy by creating a number of classes of its 
own, based upon the SOMObject class. These Workplace Shell object classes 
define the characteristics of the object types that are defined and implemented 
by the Workplace Shell itself. 

The inheritance hierarchy implemented by the Workplace Shell is illustrated in 
Figure 37. 

E
M Object 
SOM Class 
SOMClassManager 
WPObject 

~EAbstract 
WPCJock 
WPCountry 

1 
WPKeyboard 

f
WPMouse 
WP Palette 

EWPColorPalette 
WPFontPalene 

I WPSchemes 

rWPPrinter 

~
~~~~~~~ 
WPShadow
WPShredder
WPSound

rWPSpecialNeeds
rWPSpooler
L.._WPSystem

1---wPFileSystem
1----WPDataFile
1----i PFolder

WP Desktop
WP Disk
WP Drives
WP Startup

'--WPProgramFile

f Transient
WP Job
WP Port

CWPPrinterDriver
WPQueueDriver

Figure 37. Workplace Shell Inheritance Hierarchy

As well as being descended from the system object model base inheritance
hierarchy. all Workplace Shell object classes are descended from one of three
base storage classes defined by the Workplace Shell. These classes are so
named because they directly influence the storage of control information and
instance data for the class. The three predefined base storage classes are:

• WPAbstract, which is the base class for abstract objects such as programs,
devices, etc., and for which control information is stored in the system
initialization file OS2.INI.

• WPFileSystem, which is the base class for objects that are stored as files in
the file system, and for which control information is stored in the file system
as extended attributes.

• WPTransient, which is the base class for objects that only exist during
execution of a particular program; that is, the object is created and used for
a particular purpose during processing, and then immediately deleted from
the system.

An application developer may extend the Workplace Shell inheritance hierarchy
by introducing new object classes based upon those already implemented by the
Workplace Shell itself. Indeed, the developer may even introduce new base
classes, although this is definitely a non-trivial exercise and should be
approached with caution.

7.1.2 Metaclasses
Just as each Workplace Shell object is an instance of a class, the class itself is
an instance of another class known as its metaclass. Just as an object has
instance data and methods that pertain only to a specific instance of the class,
so the metaclass has class data and methods that pertain to the entire class.
Such methods are known as class methods, whereas methods that operate only
for a particular instance of the class are known as instance methods.

Class methods and data are available to the programmer when creating new
object classes. A programmer may introduce new class data and methods for
an object class, as well as instance data and methods. Similarly, a new object
class may override existing class methods to modify the processing performed
by those methods.

7.1.3 Class Implementation
Each object class in the Workplace Shell resides in a dynamic link library (DLL).
A programmer creates an object class by defining its characteristics in a class
definition file. This file is then used as input to the SOM Precompller. in order to
produce "C" source code and header files for the object class. This source code
includes basic definitions for the object class's data and methods; the code is
then edited by the programmer to include the logic for each of the required
methods. Once the code is complete, it is compiled and link edited in the
normal way to produce a dynamic link library; see OS/2 2.1 Volume 4: Writing
Applications, Chapter 14 "Compiling and Link Editing an Application" for further
information on compiling and link editing.

When an object class has been created, it must be registered with the Workplace
Shell, which includes the DLL in a list of libraries loaded at initialization time.
The entry points for the DLL are known to the Workplace Shell, and may be
called in order to invoke the object's methods.

Chapter 7. Workplace Shell and the System Object Model 103

The process of creating an object class from a class definition file is described in
7.3, "Defining an Object" on page 114.

7.2 Object Structure

7 .2.1 Methods

104 OS/2 V2.0 Volume 4

In the simplest case, an object in the Workplace Shell consists of methods and
instance data. The PM Window Manager communicates events to the Workplace
Shell using messages, which in turn invokes the object's methods to perform the
processing indicated by the event. This is in accordance with the definition of an
application object given in 0512 2.1 Volume 4: Writing Applications, Chapter 4
"The Presentation Manager Application Model". Note that since the Workplace
Shell provides a more extensive inheritance hierarchy than the base
Presentation Manager application model, the method invoked by a particular
message may belong explicitly to the object in question, or may belong to its
parent (and be inherited from that parent).

The structure of an object in the Workplace Shell is therefore very similar to that
of a window in the conventional Presentation Manager application model; the
Workplace Shell object simply takes the object-oriented concepts to a higher
degree of implementation. Therefore the constructs implemented by
Presentation Manager under previous versions of OS/2 can often be
implemented more elegantly with the Workplace Shell.

For the remainder of this chapter, two examples are used to explain the
structure and behavior of an object class. These are the pwFolder and
pwFinanceFile Workplace Objects.

• The pwFolder Workplace Object is a specific type of Workplace Shell folder
which has a password defined so that it can be locked to prevent access by
an unauthorized user. This object class is implemented by subclassing the
WPFolder class to create a new object class named PWFolder, adding new
methods and overriding existing methods where appropriate.

• The pwFinanceFile Workplace Object is a specific type of Workplace Shell
data file which has a password defined so that it can be locked to prevent
access by an unauthorized user. Additional methods have been added to
provide specific behavior and this is covered later in this chapter. This
object class is implemented by subclassing the WPDataF/le class to create a
new object class named PWFinanceF/le, adding new methods and overriding
existing methods where appropriate.

Sample code is provided in the text, and on an included diskette, for the various
methods used to add the password protection to the folder.

In a Presentation Manager application, a window procedure receives messages
from Presentation Manager, determines the type of message and invokes a
series of program statements (which effectively constitute a method) as a result
of that message. A Workplace Shell object operates in a similar fashion, except
that the Workplace Shell itself determines the type of message and invokes the
corresponding method, without any explicit action on the part of the object.

Therefore, whereas the Presentation Manager window procedure comprises a
case statement with each case being a method, the Workplace Shell object
eliminates the need for the case statement and allows the Workplace Shell to
invoke the methods directly. The syntax for invoking a method from within an

object or application is hence very similar to that for invoking a subroutine; the
only real difference is that a method may be accessed from outside the object
itself (that is, from another object or from an application), while a subroutine is
normally private to the object.

Many methods are defined by the WPObject class, from which
application-defined classes are typically descended. When creating a new object
class, a programmer may override the methods already defined by the class's
ancestors, and/or include new methods specific to the class being created. The
methods defined by the WPObject class are described in the IBM 0512 Version
2.0 Presentation Manager Reference. Programmers who wish to create new
object classes descended from this case should read the descriptions of these
methods to determine the extent of the modifications necessary.

7.2.1.1 Invoking a Method
As mentioned in OS/2 2.1 Volume 4: Writing Applications, Chapter 4 "The
Presentation Manager Application Model" , methods within an object are invoked
as a result of messages that communicate events to the object. These events
may be initiated by the user (for example, as a result of clicking the mouse on
an object's context menu), by the object itself or another object, or by the system
to indicate a system event such as opening or closing a view of the object.

The syntax for invoking a method is similar to that for invoking a subroutine, with
one exception. The first parameter passed in the call is a pointer to an object
that is capable of invoking the method called the "receiver", and this is typically
a pointer to the object itself. This is illustrated in Figure 38, where a sample
invocation of a method named _wpSetTitle is shown.

PWFolder *somSelf;
PSZ szTitle;

_wpSetTitle(somSelf,szTitle);

Figure 38. Invoking a Method

/* Pointer to self
/* Title string

/* Set title string

*/
*/

*/

The _wpSetTitle method is defined by the WPObject class, and is inherited by all
classes descended from the class. The method accepts a title string and sets
the title of the object; that is, the text that appears below the object's icon on the
Workplace Shell desktop.

The pointer somSe/f is defined by the SOM Precompiler when it creates the "C"
source code from the class definition file. In the example above, somSelf is
defined as a pointer to an object of class PWFolder and within a method, allows
the method to access the instance data of the object to which it belongs. The
need to pass this pointer arises from the limitations of the "C" language syntax
under which the current implementation of the Workplace Shell operates; other
languages such as C + + may be able to invoke methods in a more elegant
manner.

Chapter 7. Workplace Shell and the System Object Model 105

106 OS/2 V2.0 Volume 4

7 .2.1.2 Method Processing and Instance Data
Within a method, the somSe/f pointer, passed as the first parameter in the call to
the method, acts as a pointer to the method's own object, and allows the method
to access its instance data. The SOM Precompiler automatically provides a base
pointer named somThis that references the instance data, and includes a call to
a method that initializes this pointer from the object pointer:

PWFolderData *somThis = PWFolderGetData(somSelf);

When this statement has successfully executed upon entry to the method, the
method has access to the object's instance data. For example, the
password-protected folder has a password string, which may be accessed by a
method using the following name:

somThis->szPassword

To make things simpler, the SOM Precompiler generates a macro for each
instance variable, in a manner similar to that used for function names:

#define _szPassword (somThis->szPassword)
#define _szCurrentPassword (somThis->szCurrentPassword)
#define _szUserid (somThis->szUserid)

This macro is included in a header file for the object class, and avoids the need
for the programmer to type the complete name throughout the source code.

Once the instance data is available to the method, any application logic may be
performed, including the use of OS/2 and Presentation Manager resources. See
7.4.5, "Accessing Presentation Manager Resources From a Workplace Shell
Object" on page 148 for additional considerations on the use of Presentation
Manager resources from within a Workplace Shell object.

7 .2.1.3 Returning from a Method
In order to return control to its calling routine, a method simply uses the return
statement. Any valid form of return code may be passed to the calling routine
as a parameter to this statement, provided that the data type of the return code
is consistent with the declaration of the method. The data type of the return
code is typically set by the SOM Precompiler, and a default return statement
provided, based on information supplied by the programmer when the method is
defined in the Methods section of the class definition file (see 7.3.2, "Class
Definition File" on page 115).

7 .2.1.4 Overriding Existing Methods
A new object class may override one or more of the existing methods defined by
its parent class, either to completely replace the processing performed by these
methods, or to add its own processing to that already performed by the parent.
An example of an object class overriding the _wpSetTitle method is shown in
Figure 39 on page 107.

SOM_Scope BOOL SOMLINK pwfolder_wpSetTitle(PWFolder *somSelf,
PSZ pszNewTitle)

CHAR szBuf [H>0]; /* Character buffer * /

PWFolderData *somThis = /* Get instance data */
PWFolderGetData(somSelf);

PWFolderMethodOebug(11 PWFolder11
, /* Set debug info */

11 pwfolder_wpSetTitle 11
);

strcpy(szBuf,pszNewTitle); /*Get current title */

if ((strcmp(_szCurrentPassword,
_szPassword)) != 0)

if((strstr(szBuf , 11 LOCKED 11
)) ==NULL)

strcat(szBuf, 11 <LOCKED> 11
);

return(parent_wpSetTitle(somSelf,
szBuf));

/* If folder is locked */

/* and <LOCKED> not in */
/* current title */
/* Add <LOCKED> to title */

/* Allow default proc to */
/* occur */

Figure 39. Overriding an Existing Method. This example shows the _wpSetTitle
method being overridden to add the word "LOCKED" to the end of the title of a locked
password-protected folder.

The example given in Figure 39 shows the use of class-specific processing to
modify the title of a password-protected folder. The inclusion of the string
11 < LOCKED> " at the end of the user-specified title provides a visual indication
to the user that the folder is locked. Additional visual indication is provided by
modifying the icon when the folder is in the locked state; the code that carries
out this operation is included in the _LockFo/der method shown in Figure 40 on
page 108.

The strings _szCurrentPassword and _szPassword are instance data items
defined by the new object class. These data items are actually accessed using
the somThis pointer; however, the SOM Precompiler defines a macro for each
instance data item. as described in 7.2.1.2, 11 Method Processing and Instance
Data" on page 106.

Note that most workplace methods require that parent processing be performed
during the override function. Normally this would be part of the return
statement, but some methods require parent processing to be done first. You
should check the method description to determine where the parent processing
needs to be done.

7 .2.1.5 Adding New Methods
In addition to overriding existing methods defined by the parent class, an object
class may also add new methods to carry out processing for events not handled
by the parent class. For example, the password-protected folder example must
have a mechanism to lock the folder. This is implemented as a new method
named _LockFolder, as shown in Figure 40 on page 108.

Chapter 7. Workplace Shell and the System Object Model 107

108 OS/2 V2.0 Volume 4

SOM_Scope BOOL SOMLINK pwfolder_LockFolder(PWFolder *somSelf)
{

HPTR hLockedlcon;

PWFolderData *somThis =
PWFolderGetData(somSelf);

PWFolderMethodDebug(11 PWFolder",
11 pwfolder_LockFolder11

);

strcpy(_szCurrentPassword,
11 NOPASSWD 11

);

_wpSetTitle(somSelf,
_wpQueryTitle(somSelf));

hLockedlcon = WinLoadPointer(HWND_DESKTOP,
(HMODULE)0,
LOCK);

_wpSetlcon(somSelf,
hLockedlcon);

return((BOOL)0);

Figure 40. Adding a New Method

/* Get instance data

/* Set debug info

/* Invalidate current
/* password
/*Set title

/* Load 11 lock 11 icon

/* Set icon to locked
/* appearance

/* Return

*/

*/

*/
*/
*/

*I

*/
*/

*/

This method simply copies a default string to the variable _szCurrentPassword
that contains the last supplied password entry from the user, so that when a
comparison is made between this variable and the folder's password, the two do
not match. This effectively locks the folder and prevents any view of it being
opened. To provide a visual indication to the end user that the folder is locked,
a "locked" icon is loaded using the Presentation Manager WinloadPointer()
function, and the _wpSetlcon method is invoked to set this as the folder's new
icon on the desktop.

Note that the definition for adding a new method is very similar to that for
overriding an existing method. The primary difference is that, since the new
method is specific to the object class and is not defined by the parent class,
there is no need to invoke the parent class's method to perform default
processing for the method.

7 .2.1.6 Attaching a Method to the Context Menu
A method may be invoked as a result of the user selecting an item from the
object's context menu. In order to allow this, an item must be added to the
context menu, and an appropriate action must be taken by the object when that
item is selected by the user.

An item can be added to the context menu for an object class by overriding the
_wpModifyPopupMenu method defined by the WPObject class, and including a
call to the _wplnsertPopupMenultem method to insert the item. This technique is
shown in Figure 41 on page 109.

#define MI LOCK WPMENUID USER+l

SOM_Scope BOOL SOMLINK pwfolder_wpModifyPopupMenu(PWFolder *somSelf,
HWND hwndMenu,
HWND hwndCnr,
ULONG iPosition)

PWFolderData *somThis = /* Get instance data */
PWFolderGetData(somSelf);

PWFolderMethodOebug(11 PWFolder 11
, /* Set debug info */

11 pwfolder_wpModifyPopupMenu 11
);

_wpinsertPopupMenultems(somSelf,
hwndMenu,
i Position,
hModule,
MI LOCK,
e);

return(parent_wpModifyPopupMenu(somSelf,
hwndMenu,
hwndCnr,
i Position)) ;

Figure 41. Adding an Item to a Context Menu

/* Insert menu item
/* Menu handle
/* Default position
/* Module handle
/* Menu item id
/* No submenu id

*/
*/
*/
*/
*/
*/

/*Allow default proc to */
/* occur */

The example shown in Figure 41 adds a Lock item to the context menu for the
password-protected folder object. This allows the folder to be locked by the user
at any time, irrespective of whether a view of the folder is currently open.

The _wplnsertPopupMenultem method adds a menu item or a submenu to the
existing context menu for the object. The item identifier for the menu item or
submenu (Ml_LOCK in the above example) is an integer constant that is typically
defined in the header file. Note that the value of this constant should be
specified as an offset from the system-defined constant WPMENUID_USER, rather
than an absolute integer value. Following this convention will avoid any clashes
with item identifiers defined by the Workplace Shell for default context menu
items.

Since the password-protected folder is a descendant of the WPFolder class
defined by the Workplace Shell, the default context menu items for the WPFolder
class should also appear. The default processing for the parent class is
therefore invoked as part of the _wpModifyPopupMenu processing for the new
object class.

Once the required item is added to the context menu, the object must be able to
detect when the item is selected in order to invoke the appropriate method. By
default, the _wpMenultemSelected method is invoked by the system whenever
the user selects an item from the context menu. This method, which is defined
by the WPObject class, may be overridden by a new object class in order to
check for the presence of a new item and invoke the appropriate method. The
item identifier of the selected item is passed as a parameter to the
_wpMenultemSelected method, and is normally interrogated using a case
statement, as shown in Figure 42 on page 110.

Chapter 7. Workplace Shell and the System Object Model 1 09

SOM_Scope void SOMLINK pwfolder_wpMenultemSelected(PWFolder *somSelf,
HWND hwndFrame,
ULONG Menuld)

PWFolderData *somThis = /* Get instance data */
PWFolderGetData(somSelf);

PWFol derMethodDebug (11 PWFol der 11
, /* Set debug info * /

11 pwfolder_wpMenultemSelected 11
);

switch (Menuld) /* Switch on item id */

return;

{
case MI_LOCK: /* If 11 Lock 11 i tern * /

_LockFolder(somSelf); /* Lock folder */
break;

default: /* else */
parent_wpMenultemSelected(somSelf, /*Allow default */

hwndFrame, /* processing to */
Menuld); /* occur */

break;

Figure 42. Invoking a Method via a Context Menu Item

The _wpMenultemSelected method consists of a case statement that determines
the item selected from the context menu. In the above example, an explicit case
is included only for the Ml_LOCK item defined by this class. All other menu
items are defined by the parent class, and their selection is therefore handled by
allowing the parent class's default processing to occur.

7.2.1.7 Modifying the Standard Context Menu Items
The _wpFilterPopupMenu method can be used to filter out (remove) standard
menu items that are inherited from the ancestor classes, or to reinstate any of
the standard pop-up menu items. This method can also be used to determine if
the ancestor classes have filtered out any of the Workplace Shell-provided
standard menu items, by checking to see if any of the flags associated with the
menu items are not set.

The u/Flags parameter of "C" type ULONG is really a bit array which is binary
ORed together with the ancestor classes u/Flags when the parent method is
called, effectively adding these menu items together. The resultant u/Flags is
then returned from the _wpFilterPopupMenu method.

110 OS/2 V2.0 Volume 4

But if the parent method is called first, then the resultant flags are binary ANDed
with the complement of the menu item (flag) to be removed. Upon returning this
from the object's _wpFilterPopupMenu, the item will now be removed from the
pop-up menu.

To determine if a menu item is present or not, first call the parent method and
then simply binary AND the menu item flag with the parent method result. If the
result of this operation is the menu item flag that was ANDed, then the flag has
been set by the ancestor classes; otherwise it has been removed.

Figure 43 on page 111 shows how to test for a menu item, removing the menu
item if it is present, or adding it if the ancestor classes removed it. In this case
the Create another menu item is the menu item of interest.

SOH_Scope ULONG SCHLINK pwFinanceFile_wpFilterPopupHenu(PWFinanceFile *somSelf,
ULONG ul Flags,
HWND hwndCnr,
BOOL fHultiSelect)

{ ULONG ulPopupFlags;

PWFinanceFileData *somThis a PWFinanceFileGetData(somSelf);
PWFi nanceFi 1 eHethodDebug ("PWFi nanceFi 1 e", "pwFinanceFi 1e_wpFi1 terPopupHenu");

/* first find out what our ancestors have done! */
ulPopupFlags = parent_wpFilterPopupMenu(somSelf,ulFlags,hwndCnr,fMultiSelect);

/* now what has been done to the "Create another" menu item */
if ((ulPopupFlags & CTXT_NEW) aa CTXT_NEW) {

/* the "Create another" menu item is on our Popup, so remove H */
ulPopupFlags = ulPopupFlags & -crxT_NEW;

} else {

/* the "Create another" menu item is NOT on our Popup, so add it */
ulPopupFlags = ulPopupFlags I CTXT_NEW;

} /* endif */

return(ulPopupFlags);

Figure 43. Filtering the Pop-up Menu Items

7 .2.1.8 Class Methods
Most object methods are instance methods; that is, they act upon one particular
instance of an object class, rather than upon all instances of the class.

However, there are times when it is useful to have methods that operate on the
object class itself. These methods may operate on class data rather than
instance data, thereby affecting the entire class rather than a single instance of
the class. Such methods are known as class methods. The class method
_wpclsQueryTitle is defined by the WPObject class, and is overridden in the
password-protected folder example. An example of the overridden
_wpclsQueryTitle method is given in Figure 44 on page 112.

Chapter 7. Workplace Shell and the System Object Model 111

112 05/2 V2.0 Volume 4

PSZ szDefaultClassTitle = "Password Folder";

I*
*
* METHOD: wpclsQueryTitle PUBLIC
*
* PURPOSE:
* Return the string "Password Folder"
*
*/

#undef SOM_CurrentClass
#define SOM CurrentClass M PWFolderCClassData.parentMtab
SOM_Scope PSZ SOMLINK pwfoldercls_wpclsQueryTitle(M_PWFolder *somSelf)
{

/* M_PWFolderData *somThis = M_PWFolderGetData(somSelf); */
M_PWFolderMethodDebug(11 M_PWFolder 11

,
11 pwfoldercls_wpclsQueryTitle 11

);

return(szDefaultClassTitle);

Figure 44. Class Method Example. This example shows an overridden class method
_wpclsQueryTitle, which is modified to supply a default title for an object within the class.

The purpose of this class method is to provide the password-protected folder
with a default title. This is the title that will appear with the folder's template
icon in the Templates folder, and which is given to any instances of the class that
are instantiated without a title. Since the default title applies to all instances of
the class, it is implemented in a class method rather than an instance method.

The prefix "M_" denotes the metaclass in the SOM-generated "C" source. As
already mentioned, the first parameter passed to a method is a pointer to a type
of object that can invoke that method; this is true for both instance methods and
class methods; for a class method the first parameter contains a pointer to an
instance of the metaclass.

Pointer to instance of metaclass
which is a class object ----+

pwfoldercls_wpclsQueryTitle(M_PWFolder *somSelf)

Type is Metaclass J

Since a class is also an object, it follows that the class itself has its own
"instance data"; hence the next line of code appears as follows:

/* M_PWFolderData *somThis = M_PWFolderGetData(somSelf); */

This statement would access the SOM object's class data. However, since no
class data is specified in the .CSC file, there is nothing to access and so the
SOM Precompiler has commented the line out to reflect this.

For simple examples, it is easier to use global variables in the DLL for class
data. This technique has been used in Figure 44; the default title string is stored
at the beginning of the program into the global variable szDefaultTitle. However,

using this technique means that class data can be accessed by instance
methods, which is never desirable, and may have adverse consequences,
although these may generally be avoided by sound programming techniques.

7.2.1.9 Invoking Another Object's Methods
An object may invoke a method in another object class. This technique is useful
in a client-server situation, where one object creates another object of a different
class and then wishes to have that object perform certain actions. The system
object model provides programming functions that can be used to determine the
necessary information and invoke the method. An example is given in
Figure 45.

SOMAny *RecordClass;
somID idQueryMethod;

CHAR szQueryBuffer[100];
PVOID pFindData;

re= DosAllocSharedMem(&pFindData,
NULL,
sizeof(szQueryBuffer)+l,
OBJ_GIVEABLE I
PAG_WRITE I
PAG_READ I
PAG_COMMIT);

strcpy(pFindData,szQueryBuffer);

/* Class object pointer */
/* Method id */

/* Query data buffer */
/* Returned data buffer */

/* Alloc shared memory */
/* No name */
/* Size of memory object */
/* Make object giveable */
/*Allow write access */
/*Allow read access */
/* Commit storage now */

/* Copy data to buffer */

RecordClass = _somFindClass(SOMClassMgrObject, /* Get class obj pointer */
SOM_IdFromString(11 Record 11

),

1,1));
idQueryMethod = SOM_IdFromString(11 clsQuery 11

); /* Get method id */

_somDispatchL(RecordClass,
idQueryMethod,
(void *)0,
pFindData,
somSelf);

Figure 45. Invoking a Method in Another Object Class

/* Invoke method */
/* Method id */
/* No descriptor string */
/* Method parameters */

The example given in Figure 45 shows part of a "database client" object that
sends a database query to a "database server" object. The client first allocates
a shared memory object into which it loads the query. The client then uses the
_somFindC/ass method and the SOM_ldFromString macro to determine the
object pointer for the object, and the method identifier for the required method.
The _somDispatchL method is then used to invoke the method.

It is also possible to invoke a class method using the object pointer to that class,
obtained using the _somFindC/ass method shown in Figure 45. This requires the
header file for the class to be included in the source code for the class that will
invoke the method, using a #include statement. In the module definition file for
the invoking class, the following IMPORT statements must be provided:

Chapter 7. Workplace Shell and the System Object Model 113

IMPORTS
record.RecordCClassData
record.RecordClassData
record.RecordNewClass
record.M RecordCClassData
record.M RecordClassData
record.M RecordNewClass

When these steps have been carried out, a method in the other class may be
invoked directly, as follows:

_clsQueryDatabase(RecordClass,
pQuery,
Folder);

/* Invoke class method */
/*Method specific */
/* parameters */

While this technique is less clean than the previous approach since it requires
the inclusion of the header file and import statements, it provides better
performance.

7.2.2 Subroutines
Subroutines may be accessed from within a Workplace Shell object, in much the
same manner as from any other program. Normal programming language
calling conventions are used. Subroutines used by the object may reside within
the same DLL as the object itself, or may be in a different DLL.

A number of guidelines for the use of subroutines within Presentation Manager
applications are given in OS/2 2.1 Volume 4: Writing Applications, Chapter 4 "The
Presentation Manager Application Model". Note that similar guidelines apply to
the use of subroutines within Workplace Shell objects, since these objects should
also adhere to object-oriented programming principles.

7.3 Defining an Object

7.3.1 Files

114 OS/2 V2.0 Volume 4

The definition of an object is achieved using a language known as the Object
Interface Definition Language. The statements that define an object class are
entered into the class definition file for the class, which is an ASCII file and may
thus be created using any normal text editor. The class definition file is used as
input to the SOM Precompiler, which will generate a number of files from the
class definition file.

The SOM Precompiler generates a number of files that are used to define an
object class to the Workplace Shell and to other classes that may wish to inherit
the characteristics and behaviors of the class. These files are:

.H A public header file for programs that use the class .

. PH A private header file, which provides usage bindings to any private
methods implemented by the class .

. IH An implementation header file, which provides macros, etc., to support
the implementation of the class .

. C A template C file, to which code may be added to implement the class .

. SC A language-neutral class definition.

.PSC A private language-neutral core file, which contains private parts of the
interface for the class .

. DEF An OS/2 DLL module definition file containing the relevant exports need
to implement the class.

These files may then be used as input to a C compiler, generating object code
that is in turn linked to create a dynamic link library, which implements the
object class.

7.3.2 Class Definition File
The class definition file contains all the information necessary to implement a
new class. The file is divided into the following sections:

1. Include section

2. Class section

3. Parent Class section

4. Release Order section

5. Metaclass section

6. Passthru section

7. Data section

8. Methods section

Each of these sections is described in more detail below, using examples from
the password-protected folder class described earlier in this chapter.

7 .3.2.1 Include Section
Since all system object model classes have a parent, it is necessary to know the
name of the parent class and the location of its interface definition. The include
section specifies the location of the interface definition file for the parent. In the
folder example, only a single line is included:

ii
Include the class definition file for the parent class

include <wpfolder.sc>

Since the folder example is simply a specialized form of the WPFolder class, it
uses this class as its parent and inherits much of its behavior from the WPFolder
class. The include section therefore specifies the interface definition for the
WPFolder class. A full list of Workplace Shell classes and their definition files
can be found in the IBM 0512 Version 2.0 Presentation Manager Reference.

Note that the comments that start with a "#" are discarded by the SOM
Precompiler; hence the comment in the example above will not be seen in the
SOM Precompiler-generated files.

7 .3.2.2 Class Section
This section provides basic information about the new class. specifying its name
and various attributes. The password folder example has the following class
section entry:

Chapter 7. Workplace Shell and the System Object Model 115

Define the new class

class: PWFolder,

file stem= pwfolder,
external prefix= pwFolder_,
class prefix= pwFoldercls_,
major version = 1,
minor version = 1,
local;

-- PWFolder is a Password-protected folder.
Its derived as follows:

SOMOject
- WPObject

- WPFil eSystem
- WPFolder

- PWFolder

All class definition files must contain a class section. Certain statements within
the class section are mandatory, while others are optional.

The first item in the class section is a name:

class: PWFolder,

All classes must have a name.

The file stem specifies the file name to be used by the SOM Precompiler for the
generated tiles. For example, if the file stem statement reads:

file stem = myfile

then the .DEF file generated by the SOM Precompiler would be called myfi/e.def.

The external prefix specifies a prefix to be used by the SOM Precompiler on all
function names. Hence if an external prefix of "pwFolder_" is specified and a
method is named "Setlnfo," the function name generated by the SOM
Precompiler would be "pwFolder_Setlnfo."

The SOM Precompiler normally generates a macro for all methods defined by
the class, such that the method is referenced in the source code by its defined
name, preceded by an underscore character. For example, the method
pwFolder_Setlnfo described above would be referenced simply as _Setlnfo. This
helps make the source code more readable and avoids the need for the
programmer to type the full name when editing the code.

116 OS/2 V2.0 Volume 4

The class prefix is similar to the external prefix, except that it is used specifically
for functions that are class methods. The differences between class methods
and instance methods are discussed in 7.2.1.8, "Class Methods" on page 111.

The major version and minor version are used to ensure that the bindings are at
the right level for the class implementation code.

The local option is used to specify that binding files should be linked locally. In
"C" programming terms, this means that the following source code is generated:

#include "wpfolder.h"

If the global option is used, the resulting source code would be as follows:

#include <wpfolder.h>

The last part of the class section is for comments. Using "--" as the comment
style causes a comment block to be passed through to the interface definition
(.SC) file.

7 .3.2.3 Parent Class Section
The parent class section specifies the parent of the new class. All classes must
have this section. The parent class section for the password-protected folder
example appears as follows:

Parent class

parent: WPFolder;

7 .3.2.4 Release Order Section
This section allows the programmer to specify the sequence in which the
methods and public data will be released. Since this sequence is maintained by
the SOM Precompiler, other programs using this class will not need to be
recompiled every time something new is added to the class.

Note that for future compatibility it is essential that all public and private
methods are listed in the release order section, and their order does not change.
It is strongly suggested that the "-r" option be used with the SOM compiler to
produce any release order warnings.

The password-protected folder example has only one public method in addition
to those already defined by its ancestor classes. This method is seen in the
release section as follows:

#Specify the release order of new methods

release order: LockFolder;

Since other public methods are defined by the parent class or by its ancestors,
the programmer creating an object class need not define these methods in the
class definition file. Hence the programmer need not be aware of the existing
methods in the parent class, unless they require modification for use by the new
class. This is in accordance with the object-oriented concept of encapsulation.

7 .3.2.5 Metaclass Section
For the password-protected folder example (and in most other cases) an explicit
metaclass is not required. The concept of metaclasses is discussed in 7.1.2,
"Metaclasses" on page 103. Readers desiring more knowledge of programming
using metaclasses should refer to the IBM SOM Programming Reference.

7 .3.2.6 Passthru Section
This section allows the programmer to define blocks of C source code that are
passed through to any of the files generated by the SOM Precompiler. Each
passthru block is distinguished by an identifier, the syntax of which is as follows:

passthru: <language>.<suffix>

The password-protected folder example has two passthru sections. The first
passthru is "C.h," which passes the code block to the C binding file pwfolder.h.
This block of code defines a DebugBox macro, which can be used anywhere in
the code for the new class.

Chapter 7. Workplace Shell and the System Object Model 117

II

II Passthru a debug message box to the .ih file
II (for inclusion in the .c file)
II

passthru: C.h, after;

#define DebugBox(Title, Text) WinMessageBox(HWND_DESKTOP,
HWND DESKTOP,
(PSZ)Text,
(PSZ)Title,

endpassthru;

0,
MB_OK I
MB_INFORMATION)

The second passthru block is "C.ph"; this passes the code block to the C binding
file pwfolder.ph. This block is used to define a data structure that is accessed by
the private methods _Getlnfo and _Setlnfo, and is used to pass information to
and from the dialog procedure that prompts the user for the folder password.

II Passthru private definitions to the .ph file
II (for inclusion in the .c file)

passthru: C.ph;

typedef struct _PWF_INFO {
CHAR ;zPassword[20];
CHAR szCurrentPassword[20];
CHAR szUserid[20];
} PWF_INFO;

typedef PWF_INFO *PPWF_INFO;

endpassthru;

7.3.2.7 Data Section
This section lists the instance variables used by the class. In the
password-protected folder example, three variables are defined as follows:

Define instance data for the class

data:
CHAR szPassword[20];

118 05/2 V2.0 Volume 4

-- This is the password that locks the folder
CHAR szCurrentPassword[20];
-- This is the password the user has entered to be
-- checked against the lock password
CHAR szUserid(20];
-- The userid data is here for future expansion

Note that the szUserid instance variable is not used in the version discussed in
this document, since the current example assumes only a single workstation
user. However, it is feasible for user identification to be obtained at startup, and
held by the system for authentication against a password to determine whether
access is permitted.

7 .3.2.8 Methods Section
The last section in the class definition file contains a list of all the methods to be
defined by the object class. ANSI C function-prototype syntax is used to define
each method. When coding these definitions, it is recommended that the
methods be divided into the following parts:

1. Methods that are new for this class

2. Methods that are overridden from ancestor classes

The following section shows two methods taken from the folder example's class
definition file.

This first method will be used in the password dialog to take a copy of the
object's instance data and place it in a structure that the dialog code may
access.

Define new methods

methods:

BOOL Querylnfo(PPWF_INFO pPWFolderlnfo), private;

-- METHOD: Querylnfo

-- PURPOSE: Copy the PWFolder instance data into
the PWF_INFO structure that pPWFolderlnfo
points to.

PRIVATE

The second example shows an overridden method. This method originates in the
WPObject class, which is a base class. It is used to set up the password string
when the folder object is created.

Specify methods being overridden

override wpSetup;

-- OVERRIDE: wpSetup

-- PURPOSE: Here we can set the folder password
to that passed in from the object
create command.

PUBLIC

More detailed information on class definition files and the OIDL is given in the
IBM SOM Programming Reference.

7.3.3 C Implementation of an Object Class
When the SOM Precompiler has been run successfully against a class definition
file, it will produce all the source files necessary to build a Workplace Shell DLL.
The most important of these files for the C programmer is the C source code file,
which has an extension of .C. This file contains definitions and "function stubs"
for all the methods defined by the class. This file must be edited by the
programmer to add the actual application logic to each method. Figure 46 on

Chapter 7. Workplace Shell and the System Object Model 119

120 OS/2 V2.0 Volume 4

page 120 shows the SOM Precompiler-generated function stub for the Querylnfo
method from the folder example.

/*
*
* METHOD: Querylnfo PRIVATE
*
* PURPOSE: Copy the PWFolder instance data into
* the PWF _INFO structure that pPWFol derlnfo
* points to.
*
*/ r11

SOM Scope BOOL

i - Lu
SOMLINK pwFolder_Querylnfo(PWFolder *somSelf,

PPWF_INFO pPWFolderlnfo)

P~JFolderData *somThis = PWFolderGetData(somSelf); El
PWFol derMethodDebug (11 PWFol der 11

,
11 pwfol der _Querylnfo 11

); II
<application logic> Iii
return((BOOL)0);

Ln
Figure 46. A SOM Precompiler·generated Function Stub

Notes:

D SOM_Scope declares the function scope according to the language being
used. For example, in C + +, SOM_Scope would be defined as extern C but in C
it is simply defined as extern.

ll It can be seen that the external prefix "pwfolder_," which was specified in
the class definition file, has been placed in front of the function as expected.
Note that the SOM Precompiler generates a macro for this function in the private
header file:

#define _Querylnfo PWFolder_Querylnfo

This avoids the necessity for the programmer to type the full function name, and
helps make the code more readable.

IJ Since SOM uses the C language, methods from SOM objects cannot be
referenced in a very elegant manner. The first parameter to a SOM method
must be a pointer to an object that can invoke that method. In the actual method
function, this pointer is given the name somSe/f. For example, the difference
between C and C + + is as follows:

/* Let us say*/

pMyObject = (pointer to an object);

// in C++ the following syntax may be used

pMyObject->Method(paraml, param2 •..•);

/* but in C the following is required */

Method(pMyObject, paraml, param2 .•..);

El This statement uses the pointer to the object to initialize a pointer to access
the object's instance data. See 7.2.1.2, "Method Processing and Instance Data"
on page 106 for further information on instance data.

II This line will perform tracing. Tracing is switched on whenever the SOM
global variable SOM_TraceLevel is set to a non-zero value.

D This section is left blank by the SOM Precompiler for the developer to fill
with the application logic. This logic may include access to system and/or
Presentation Manager resources. For the password-protected folder example,
the _Query/nfo method must copy the instance variables to the PWF _INFO data
structure defined in the passthru section of the class definition file. The code
required to do this is as follows:

strcpy(pPWFolderinfo->szPassword, _szPassword);
strcpy(pPWFolderlnfo->szCurrentPassword, _szCurrentPassword);
strcpy(pPWFolderinfo->szUserid, _szUserid);

This code must be inserted in the C source file by the programmer, after the file
is generated by the SOM Precompiler. This may be done using a normal text
editor.

IJ Finally, the SOM Precompiler provides a default zero return statement,
typecast with the return data type of the method as declared in the methods
section of the class definition file. This statement may be altered by the
programmer if required, provided that consistency with the method's prototype
and declaration is maintained.

7.4 Object Behavior
The behavior of an object in the Workplace Shell is very similar to that of a
window under Presentation Manager. An object must have its class registered
with the system, an instance of that class must be created ("instantiated") in the
system, and that instance (and any other instance) then receives messages and
uses its methods to process these messages. When processing is completed,
the instance may be destroyed.

One significant difference between a Workplace Shell object class and a window
class under Presentation Manager is that Workplace Shell object classes are
normally persistent; that is, while a Presentation Manager window class is
defined only for the duration of the application's execution. a Workplace Shell
object class remains defined to the system, and is useable by any application
until such time as it is explicitly deregistered from the system.

Chapter 7. Workplace Shell and the System Object Model 121

7.4.1 Creating an Object

122 OS/2 V2.0 Volume 4

A new object class in the Workplace Shell is typically created by taking an
existing object class and subclassing it, introducing new data and methods, and
modifying existing behaviors where required. The new object class is then
registered with the Workplace Shell, and is available from that point on.

7.4.1.1 Registration
Once an object class has been defined, compiled and placed into a dynamic link
library, it must be registered with Workplace Shell before it can be used. This
may be accomplished in any of two ways:

• An object class may be registered with the Workplace Shell using the
WinRegisterObjectClass() function. This function records the name of the
object class, and the name of the DLL that contains the code to implement
the class. Note that if specifying a fully qualified path name for
pszModName, then the DLL does not need to be placed in the LIBPATH.

• Additionally an object may also be registered with the Workplace Shell using
the SysRegisterObjectClass() function from REXX. Like the
WinRegisterObjectClass, this function also records the name of the object
class, and the name of the DLL that contains the code to implement the
class.

An example of the WinRegisterObjectClass() function is given in Figure 47, and
an example of the SysRegisterObjectClass() function is given in Figure 48 on
page 123.

PSZ pszClassName = 11 NewObject 11
;

PSZ pszModName = 11 NEWOBJ 11
;

BOOL bSuccess;

/* Class name */
/* DLL module for class */
/* Success flag */

bSuccess = WinRegisterObjectClass(pszClassName, /* Register class */
pszModName); /* DLL module name */

Figure 47. Registering a Workplace Shell Object Class

Figure 47 provides a very simple example; a useful technique for registering
object classes is to build a simple program that reads a set of strings from an
ASCII data file and uses these strings as parameters to the
WinRegisterObjectClass() function. In this way, a generic object-registration
routine can be built and used for multiple object classes, without the need to
modify and recompile source code.

Figure 48 on page 123 shows a sample piece of REXX code that registers a
class called pwFolder to the Workplace Shell. Notice that the DLL which
contains the pwFolder Workplace Object is also copied from the current
directory. If this copy was unsuccessful, the author of this code assumed this
was because the Workplace Shell has the DLL opened and so the REXX code
deregisters the class from the Workplace Shell.

/* */
Call RxFuncadd 'SysloadFuncs', 'RexxUtil', 1SysloadFuncs 1

Call SysLoadFuncs

'@echo off'

'copy pwfolder.dll c:\os2\dll l>nul: 2>nul:'

if re then do
say 'Error DLL could not be updated please re-boot'
/* Remove bad entry */
RetCode = SysDeregisterObjectClass(11 PWFolder 11

);

'pause•
exit (1)
end

RetCode = SysRegisterObjectClass(11 PWFolder11
,

11 pwfolder")

if RetCode then
say 1 PWFolder Class registered'

else do
say 'Error PWFolder Class failed to register'
/* Remove false entry */
RetCode = SysDeregisterObjectClass(11 PWFolder 11

);

exit(l)
end

Figure 48. REXX Code to Register a Workplace Object

Note that once an object class has been registered with the Workplace Shell, it
is permanently available until it is explicitly deleted by deregistering it. See
7.4.4, "Deregistering an Object Class" on page 147 for information on
deregistering an object class.

7 .4.1.2 Class Data
Class data is owned by the object class rather than by an instance of that class.
It is therefore available to all instances of the class, and must be initialized prior
to instantiating any objects within the class.

For this reason, class data is initialized when the object classes are loaded from
their Dlls, either during Workplace Shell initialization or dynamically during
execution. Class data initialization is performed by the _wpclslnitData class
method, which is called by the system when the class is loaded. If a new object
class has class data that must be initialized, it should override the
_wpclslnitData method and perform its class-specific processing.

An example of an overridden _wpclslnitData method from the
password-protected folder example is shown in Figure 49 on page 124.

Chapter 7. Workplace Shell and the System Object Model 123

HMODULE hModule;

SOM_Scope void SOMLINK pwfoldercls_wpclslnitData(M_PWFolder *somSelf)
{

CHAR ErrorBuffer[100]; /* Error buffer

/* M_PWFolderData *somThis =
M_PWFolderGetOata(somSelf); */

*/

M_PWFolderMethodDebug(11 M_PWFolder 11
, /* Set debug info */

11 pwfoldercls_wpclslnitData 11
);

DosloadModule((PSZ) ErrorBuffer,
sizeof(ErrorBuffer),
11 PWFOLDER11

,

&hModule);

parent_wpclslnitData(somSelf);

/* Get module handle */
/* Size of error buffer */
/* Name of DLL */
/* Module handle */

/* Allow default proc */

Figure 49. Initializing Class Data

In the example shown in Figure 49, a global variable hModule is used to contain
the module handle for the DLL, which is required when loading Presentation
Manager resources such as strings, pointers or dialogs. Since a global variable
is used rather than a class data variable, the first statement in the overridden
method, which obtains a handle to the class data, is not required and is
therefore commented out.

Any class data items obtained or initialized by an object class from within the
_wpclslnitoata method should also be freed by the object class, by overriding the
_wpclsUnlnitoata method. This method is invoked by the system when an object
class is deregistered (see 7.4.4, "Deregistering an Object Class" on page 147),
or when the Workplace Shell process is terminated. An example of the
_wpclsUnlnitoata method is shown in Figure 50.

124 OS/2 V2.0 Volume 4

SOM Scope void SOMLINK pwfoldercls_wpclsUnlnitData(M_PWFolder *somSelf)
{ -

/* M_PWFolderData *somThis
= M_PWFolderGetData(somSelf); */

M_PWFolderMethodDebug(11 M_PWFolder 11
, /* Set debug info */

11 pwfoldercls_wpclsUnlnitData 11
);

DosFreeModule(hModule); /* Free module handle

parent_wpclsUnlnitData(somSelf); /*Allow d~fault proc

Figure 50. Freeing Class Data Items

*/

*/

The example shown in Figure 50 assumes that the module handle for the DLL
has already been obtained and stored in the global variable hModu/e, as shown
in Figure 49.

7 .4.1.3 Instantiation
Once an object class has been registered with the Workplace Shell, an instance
of that class may be created; this is known as instantiation. This may be done in
one of three ways. One of the simplest method is to open the Templates folder
and drag the template for the object class to the required location. Alternatively,
an object may be created from within an application using the WinCreateObject()
function. An example of this is shown in Figure 51. And lastly Figure 52 shows
a sample piece of REXX code that creates a Workplace Object called pwFolder,
along with some parameters for the object.

PSZ pszClassName = "NewObject"; /* Class name */
PSZ pszObjectTitle = "My New Object"; /* Object title */
PSZ pszParams = 11 ICON=C:\\ICONS\\MYNEWICON.IC0 11

; /* Setup string */
PSZ pszLocation = 11 C:\\Desktop\\MyNewFolder11

; /* Location for object */

ULONG ulFlags;

HOBJECT hObject;

hObject = WinCreateObject(pszClassName,
pszObjTitle,
pszParams,
pszLocation,
CO_REPLACEIFEXISTS);

Figure 51. C Code to Create an Object

/* */

/* Creation flags

/* Object handle

/* Create object
/* Title for icon
/* Setup string
/* Location for object
/* Creation flags

Call RxFuncadd 'SysLoadFuncs', 'RexxUtil ', 'SysLoadFuncs'
Call SysLoadFuncs

'@echo off 1

RetCode = SysCreateObJ. ect ("PWFo l der 11 11 Fi nanceFil e11 11 <WP DESKTOP> 11 , ' - ,
11 PASSWORD=wps;OBJECTID=<MyFinanceFile> 11

)

if RetCode then
say 'PWFolder Object created'

else do
say 'Error creating object'
exit (1)
end

Figure 52. REXX Code to Create an Object

*/

*I

*/
*/
*/
*/
*I

Note that the pszParams parameter shown in Figure 51 is used to contain a
setup string, which can be used to pass one or more of a number of parameters
to the object class. In the example, it is used only to set the icon for the object,
but may also be used to specify other parameters for that instance of the class.
The keywords and values supported by the WPObject class are documented in
the IBM OS/2 Version 2.0 Presentation Manager Reference; other object classes
may add their own keywords and values.

The final parameter contains one or more flags which determine the behavior of
the WinCreateObject{) call if the object being created clashes with an object that

Chapter 7. Workplace Shell and the System Object Model 125

126 05/2 V2.0 Volume 4

already exists with the specified name and in the specified location. Valid
actions are for the call to fail, to update the existing object or to replace the
existing object. These flags are documented in the IBM OS/2 Version 2.0
Presentation Manager Reference.

The setup string is passed as a parameter to the method, which can either be
invoked when the object is instantiated, or during a call to WinSetObjectData.
Because a call can be made to the _wpSetup method from WinSetObjectData,
you must not process any default settings other than those related to the
parameters passed to the _wpSetup method. This method is defined by the
WPObject class, and may be overridden by a new object class in order to check
for its own keywords and take appropriate setup action.

The _wpSetup method accepts the setup string as a parameter, and may then
parse the setup string, extract any class-specific data and perform appropriate
processing on that data. However, since many of the keywords that may be
specified in the setup string are defined by the WPObject class and are handled
by the default _wpSetup method, the default processing must be carried out. In
this particular case, the default processing may be carried out before or after the
class-specific processing.

An example of an overridden _wpSetup method is shown in Figure 53 on
page 127; this example shows the use of an additional parameter in the setup
string (PASSWORD=) to set an initial password for a password-protected folder
upon folder creation. The setup string is parsed from within the object by calling
the _wpScanSetupString method. Both of these methods, along with the
keywords supported by the WPObject class, are described in the IBM OS/2
Version 2.0 Presentation Manager Reference.

After performing the class-specific processing in the _wpSetup method, an object
class should invoke its parent class's _wpSetup method to perform the default
processing for any other keywords in the setup string that are defined by the
parent class.

Before the _wpSetup method is invoked, the system invokes the object's
_wplnitData method, which allows an object to allocate resources and initialize
its instance data. See 7.4.1.4, "Instance Data" on page 127 for further details.

Note that unlike a Presentation Manager window, which exists only for the
duration of an application's execution, an object remains in existence
permanently unless explicitly deleted from the system.

SOM_Scope BOOL SOMLINK pwfolder_wpSetup(PWFolder *somSelf,
PSZ pszSetupString)

CHAR pszlnitPword[20);
BOOL bFound;
ULONG ulRetLength;

PWFolderData *somThis =
PWFolderGetData(somSelf);

PWFolderMethodDebug(11 PWFolder11
,

11 pwfolder_wpSetup 11
);

if (pszSetupString != NULL)
{
bFound=_wpScanSetupString(somSelf,

pszSetupString,
11 PASSWORD 11

pszinitPword,
&RetLength);

if (bFound)
{
strcpy(_szPassword,

pszinitPword);
strcpy(_szCurrentPassword,

pszlnitPword);

return (parent_wpSetup(somSelf,
pszSetupString));

/* Buffer for password */
/* Success flag */

/* Get instance data */

/* Set debug info */

/* If string is present */

/* Scan setup string to */
/* find keyword */

/* If parameter present */

/* Copy p1word to folder */
/* p'word and current */
/* .p'word - initialize */
/* in unlocked state */

/* Allow default proc to */
/* occur */

Figure 53. Object Setup. This example shows an overridden _wpSetup method which
parses the setup string to extract class-specific parameters.

7 .4.1.4 Instance Data
When an object is created or awakened from a dormant state, the _wplnitData
method is invoked by the system. This method allows an object to initialize its
instance data to a known state. Operating system resources should be allocated
at this stage, but Presentation Manager resources should not, since a view of the
object is not yet being opened. The allocation of Presentation Manager
resources is typically done during processing of the _wpOpen method (see
7.4.2.1, "Opening an Object" on page 128).

If an object has its own instance data, which must be initialized to a known state
before processing may be carried out, the object should override the _wplnitData
method in its class definition file, and include the initialization code. However,
for any object class other than a base storage class, the default initialization
processing must be carried out in addition to the class-specific processing. This
allows the correct initialization of any instance data items defined by the parent
class, and ensures that the new object class behaves in a manner consistent
with its ancestors.

Figure 54 on page 128 shows an overridden _wplnitData method, which
initializes the password information for a password-protected folder.

Chapter 7. Workplace Shell and the System Object Model 127

SOM_Scope void SOMLINK pwfolder_wplnitData(PWFolder *somSelf)
{

CHAR ErrorBuffer[100);

PWFolderData *somThis =
PWFolderGetOata(somSelf);

PWFolderMethodDebug(11 PWFolder 11
,

11 pwfolder_wplnitData");

strcpy(_szCurrentPassword,
11 password 11

);

strcpy(_szPassword,
11 password 11

);

return(parent_wplnitData(somSelf));

Figure 54. Initializing Instance Data

/* Error data buff er

/* Get instance data

/* Set debug info

/* Initialize folder
/* password
/* Set current password
/* to folder password
/* ie. Set unlocked

/* Perform default proc

*/

*/

*/

*/
*/
*/
*/
*/

*/

Note that during processing of the _wplnitData method, the instance data of the
object is not necessarily in a known state. The programmer must therefore take
great care when carrying out any processing during the execution of this
method, in order to avoid using data that may not yet have been initialized
correctly. Failure to follow this guideline may cause unpredictable results for the
object.

7.4.2 Using an Object

128 OS/2 V2.0 Volume 4

A user typically accesses an object by opening a view of that object. For
example, to access the contents of a folder object, the user opens the default
view (usually an icon view) of the folder, which then displays its contents. This
is certainly true for container objects such as folders, and for the
password-protected folder class used as an example in this chapter, although
other "device" objects such as printers or the shredder may be used without a
view.

When no view of an object is open, and the folder within which the object resides
is not open, the object is said to be dormant; typically, no system resources are
allocated to the object and its instance data is in an unknown state. Opening
and closing views of an object therefore involve not only the opening and closing
of windows, but also allocating and freeing resources, and saving and restoring
the instance data of the object. Similarly, opening a folder requires saving and
restoring the instance data of the objects in that folder.

7 .4.2.1 Opening an Object
As mentioned above, a user typically interacts with an object using a view of that
object. An object may support various types of view; for example, the WPFo/der
object class supports icon, tree, details and settings views. By default, an object
class supports the view types defined by its ancestors, and a programmer may
also define new view types for the object class.

When a view of an object is opened, the _wpViewObject method is invoked by
the Workplace Shell. This method determines if there is already an open view of
the view specified for the object. If there is not then _wpOpen is called to open a
view for the object. If there already is an open view, _wpViewObject checks the

objects settings for concurrent views. If concurrent views are set, the _wpOpen
is called to open an additional view of the object with the specified view.
Therefore your programs should call _wpViewObject and not _wpOpen, but
override _wpOpen to add your own unique views. Note that the concurrent view
setting can normally be found on an object's settings notebook, under the
"Window" tab, and is labelled "Object Open Behavior".

The _wpOpen method is defined and implemented by the base storage class
WPObject, and may be overridden by a new object class to perform its own
class-specific processing. The supported views for each object class are
implemented as part of the _wpOpen method, using Presentation Manager
windows.

When a view is opened by the user from a context menu, the
_wpMenultemSelected method is invoked (see 7.2.1.6, "Attaching a Method to
the Context Menu" on page 108 for more detailed discussion of this method).
The _wpMenultemSelected method typically invokes the _wpViewObject method,
which may invoke the _wpOpen method as outlined above.

When the user opens a view by double-clicking the mouse on an object's icon,
the _wpViewObject method invokes the _wpOpen method and passes an
OPEN_DEFAULT value. The default processing for the _wpOpen method invokes
the _wpQueryDefaultView method to determine the default view for the object,
and immediately invokes the _ wpOpen method a second time with the identifier
for that view.

An example of an overridden _wpOpen method is given in Figure 55 on
page 130. This example shows a password-protection facility being added to a
folder to prevent access by unauthorized users. Upon invocation of the
_wpOpen method, the password-protected folder object class displays a dialog
box to accept a password from the user. It then compares that password with
the correct password for that folder before actually opening the folder. Visual
cues such as the folder's icon and the word "Locked" on the folder's title are
modified or removed during the _wpOpen processing.

Chapter 7. Workplace Shell and the System Object Model 129

130 OS/2 V2.0 Volume 4

SOM_Scope HWND SOMLINK pwfolder_wpOpen(PWFolder *somSelf,
HWND hwndCnr,
ULONG ulView,
ULONG param)

ULONG ulResult;
CHAR szTitle[100];

PWFolderData *somThis =
PWFolderGetData(somSelf);

PWFolderMethodDebug("PWFolder11
,

11 pwfolder_wpOpen 11
);

if ((strcmp(_szCurrentPassword,
_szPassword)) == 0)

return(parent_wpOpen(somSelf,
hwndCnr,
ulView,
pa ram));

ulResult = WinDlgBox(HWND_DESKTOP,
HWND_DESKTOP,
dpPassword,
hModule,
DLG_PASSWORD,
(PVOID)somSelf);

if (ulResult == DID_OK)
{
if ((strcmp(_szCurrentPassword,

_szPassword)) == 0)
{
strcpy(szTitle,

_wpQueryTitle(somSelf));
szTitle[strlen(szTitle)-9] = 1\0 1

;

_wpSetTitle(somSelf,szTitle);

<Set icon to unlocked state>

return (parent_wpOpen(somSelf,
hwndCnr,
ulView,
param));

}
else

{

/* Set instance data
/* Set debug info

*/
*/

/* If not locked */

/*Allow open to proceed */
/* in normal way, using */
/* default processing */

/* Display p'word dialog */
/* Desktop is owner */
/* Dialog procedure */
/* Module handle */
/* Dialog resource id */
/*Object pointer */

/* If not cancelled */

/* If correct password */

/* Get title string */

/* Remove <LOCKED> */
/* Reset title string */

/*Allow default _wpOpen */
/* processing to occur */
/* by invoking parent's */
/*method */

WinMessageBox(HWND_DESKTOP, /* Display message box */
HWND_DESKTOP,
"Password incorrect. Folder remains locked.",
"Password Failed",
0, MB_oK 1 MB_CUAWARNING);

return ((BOOL) 0); /* Return FALSE * /
}

Figure 55. Opening an Object. This example shows the _wpOpen method, which is
called by the system when a view of an object is opened, being overridden to add
password protection to a folder.

Since the view being opened in this case is a view defined by the WPFolder
class, the actual opening of the view and presentation of the folder's contents is
handled using the default processing supplied by the parent class, which is
called after the class-specific processing has completed.

If an object class wishes to create a new view, it must add the name of the view
to the Open submenu in the object's context menu, and include a case for that
view in the _wpMenultemSelected method. This method then invokes
_wpViewObject with a specific value in the u/View parameter, indicating the view
to be opened. The class-specific processing for _wpOpen must test for this
value, open a window and display the correct information using Presentation
Manager functions.

The example in Figure 55 does not include the code to set the folder's icon to
the "unlocked" state. This code is identical to the code used in Figure 40 on
page 108 to set the icon to the "locked" state; the resource identifier of the
"unlocked" icon is simply substituted in the _wpOpen method for the identifier of
the "locked" icon.

Note that in many cases, it is important for an object class to allow the default
processing for _wpOpen to occur before it attempts to carry out its own
processing. This allows instance data and control information to be established
and initialized before the object attempts any processing using these items. In
Figure 55 on page 130 however, the additional class-specific processing
determines whether the object should open at all; if processing is allowed to
proceed, no alteration to the default processing takes place. The default
processing may therefore be carried out after the additional class-specific
processing introduced by the password-protected folder class.

The default processing for the _wpOpen method supports a number of views,
depending upon the parent class of the object; for example, the processing for
the WPFolder class supports ICON, TREE and DETAILS views. For new object
classes which support additional views, the _wpOpen method must be
overridden and the additional view types opened explicitly as windows using
appropriate Presentation Manager functions. Since a view of an object is
essentially a window, new views can be implemented as normal Presentation
Manager windows and the correct information displayed using text or graphical
programming functions, according to the requirements of the object class.

The application must always define a new view if it introduces one. Never
process OPEN_DEFAUL T other than passing it to the parent class. If you want to
have your own view be the default, then override the _wpclsQueryDefaultview
method.

Note that upon opening a view using a Presentation Manager window, an object
should add itself to the "Use List" maintained by the Workplace Shell. If the
view is the first view of the object to be opened, this causes the Workplace Shell
to modify the object's icon to indicate the "in use" state. The object should also
register the view with the Workplace Shell, which will then subclass the view's
frame window, automatically attach the object's context menu to the window's
system menu icon, and add the view to the Workplace Shell's Window List.
These steps are done using the _wpAddToObjUselist and _wpRegisterView
methods, as shown in Figure 56 on page 132.

Chapter 7. Workplace Shell and the System Object Model 131

132 OS/2 V2.0 Volume 4

HWND hView;

typedef struct OBJECTVIEW
{
SOMAny *Object;
USEITEM Useltem;
VIEWITEM Vi ewltem;
} OBJECTVIEW;

OBJECTVIEW *pObjectView;

<Create Window>

pObjectView = _wpAllocMem(somSelf,
sizeof(OBJECTVIEW),
NULL);

pObjectView->Record = somSelf;
pObjectView->Useltem.type = USAGE_OPENVIEW;
pObjectView->Viewltem.view = OPEN_CUST;
pObjectView->Viewltem.handle = hView;

WinSetWindowULong(hView,
QWL_USER,
(ULONG)pObjectView);

_wpAddToObjUselist(somSelf,
&pObjectView->Useltem);

_wpRegisterView(somSelf,
hView,
"Customer Details")

Figure 56. Opening a Custom View of an Object

/* View window handle */

/* Object view structure */

/* Object pointer */
/* USEITEM structure */
/* VIEWITEM structure * /

/* Pointer to structure */

/* Get window handle */

/*Allocate memory */
/* Size of mem object */

/* Initialize OBJECTVIEW */
/* structure */

/* Store pointer to */
/*structure in window */
/*words */

/*Add to Use List */
/* USEITEM structure */
/* Register view */
/* View window handle */
/* Title of view */

The Workplace Shell makes use of a USEITEM and a VIEWITEM structure in the
_wpAddToObjUselist method. It assumes that these structures are contiguous
in memory; hence they should be allocated as part of a larger data structure
such as the OBJECTVIEW structure shown in Figure 56. A pointer to this
structure is stored in the window words of the view window, so that information
such as the object's pointer can be accessed from the view's window procedure.

Note that upon closing a view, the view's window procedure should invoke the
_wpDeleteFromObjUselist method to remove the view from the Use List. If the
view is the only open view of the object, the object's icon is modified to remove
the "in use" emphasis.

7 .4.2.2 A Custom View of our pwFinanceFile
This section shows how to implement a custom view of the pwFinanceFile
Workplace Object. Not all of the code, such as the resource files, header files,
are shown. For a full code listing please refer to Appendix E, "Source Code for
the PWFolder and PWFinanceFile objects" on page 347

Figure 57 on page 133 shows how the "Open Finance File" menu item is added
onto the "Open" menu item, which appears on the pwFinanceFile's context
menu. Note that we also add the "Lock Finance File" menu item. Figure 58 on
page 134 shows the resulting context menu which is provided by Figure 57 on
page 133. Note that the "OS/2 System Editor" menu item is also present. The

Workplace Shell wpDataFile class has added this due to file type associations.
In this case because this object does not have a file type, it is assumed by the
ancestor classes to be text and the default association for the text type is the
OS/2 System Editor. We could remove this by overriding the
_wpclsQueryDefaultView method, thus making our view the default one.

/*
*
* METHOD: wpModifyPopupHenu PUBLIC

*
*
*
*
*/

PURPOSE: Adds an additional "Lock" item to the object's context menu.
Adds a NOpen Finance File• item to the NOpenN item

INVOKED: By Workplace Shell, upon instantiation of the object instance.

SOM_Scope BOOL SCHLINK pwfinanceFile_wpHodifyPopupHenu(PWFinanceFile *somSelf,
HWND hwndHenu,

{

HWND hwndCnr,
ULONG iPosition)

PWFinanceFileData *somThis ~ /* Get instance data pointer */
P~/Financefi 1 eGetData (somSe 1 f);

PWFinanceFileHethodDebug("PWFinanceF;le", /* Set debug info */
"pwFinancefile_wpHodifyPopupHenu");

_wpinsertPopupHenuitems(somSelf,
hwndMenu,
iPosition,
hmodThisClass,
ID CXTHENU LOCK,
e); -

_wplnsertPopupHenuitems(sornSelf,
hwndMenu,
e,
hmodThisClass,
ID OPENFinanceFile,
WPMENUID_OPEN);

/* Insert menu item
/* Menu handle
/* Default position
/* Module harrdle
/* Menu item identifier
/* No submenu identifier

/* Insert menu item
/* Menu handle
/* at the top!
/* Module handle
/* Menu item identifier
/* Submenu identifier

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

return(parent_wpModifyPopupMenu(somSelf, /* Invoke default processing */
hwndHenu,
hwndCnr,
i Position));

Figure 57. _wpModifyPopupMenu .C code. This example shows how to add two menu
items to the "Open Finance File" menu item on the pwFinanceFi/e's context menu.

Figure 60 on page 135, Figure 61 on page 136, Figure 62 on page 138 and
Figure 63 on page 141 show the additional code required to process the
selection of the "Open Finance File" menu item. Figure 59 on page 134 shows
the window view which is presented when the user selects the "Open Finance
File" menu item. This window is empty and the population of the window with
information from the file associated with the instance of the pwFinanceFile is a
normal PM programming exercise which is left for the reader to perform.

Chapter 7. Workplace Shell and the System Object Model 133

Figure 58. pwFinanceFile's Context Menu

Figure 59. pwFinanceFile's Custom View

134 OS/2 V2.0 Volume 4

/*
*
* METHOD: wpHenuitemSelected PUBLIC
*
*
*
*
*

PURPOSE: Processes the user's selections from the context menu. The
overridden method processes the added "Lock" & "OPENFinanceFile"
items, and passes all others to the parent method

* INVOKED: By Workplace Shell, upon selection of a menu item by the user.
*
*/

SOH_Scope BOOL SCHLINK pwFinanceFile_wpHenultemSelected(PWFinanceFile *somSelf,
HWND hwndFrame,

{

}

ULONG ulHenuid)

PWFinanceFileData *somThis = /* Get instance data pointer*/
PWFinanceFileGetData(somSelf);

PWFinanceFileHethodDebug("PWFinanceFile", /* Set debug info */
"pwFinanceFile_wpHenuitemSelected");

switch(ulHenuld)
{

/* Switch on item identifier */

/*

}

*
*
*
*
*
*
*/

case JOH LOCK:
LockFinanceFile(somSelf);

break;

/* Lock item selected */
/* Invoke _LockFinanceFile method */

We could call wpOpen here, but if the object is already opened
the following API determines whether the object should be
resurfaced or if multiple views are desired.
Hust call wpViewObject not wpOpen. If you use wpOpen then multiple
concurrent views won't work. User can set object to open multiple views
or switch to.

case JOH OPENFinancefile: /* Open a view selected */
wpViewObject(somSelf, NULLHANDLE, OPEN_FinanceFile, O);

break;

default:
parent wpHenuitemSelected(somSelf,

- hwndFrame,
ulHenuld);

break;

/*All other items */
/* Invoke default processing */

Figure 60. _wpMenultemSelected .C code

Chapter 7. Workplace Shell and the System Object Model 135

136 OS/2 V2.0 Volume 4

"C" Code

/*
*
* METHOD: wpOpen PUBLIC
*
*
*
*
*
*
*
*
*/

PURPOSE: Only allows a Financefile to be opened if the Financefile is unlocked, or
if the user supplies the correct password in response to the
dialog.

INVOKED: By Workplace Shell, upon selection of the "Open" menu item by
the user.

SOH_Scope HWND SCHLINK pwFinanceFile_wpOpen(PWFinanceFile *somSelf,
HWND hwndCnr,

{
UL ONG
CHAR
PVOID
BOOL

ULONG ulView,
ULONG param)

ulResult;
szTi t 1 eflll8fl";
pCreateParam;
bAllowAccess c FALSE;

PWFinanceFileData *somThis •
PWFinanceFileGetData(somSelf);

PWFinanceFileHethodDebug(•PwFinanceFile",
"pwFinanceFile_wpOpen");

if ((strcmp(szCurrentPassword,
_szPassword)) !c a)

{
somPrintf ("ask for a password\n");

pCreateParam n malloc(sizeof(ULONG));

*((PULONG)pCreateParam) a (ULONG)somSelf;

ulResult c WinDlgBox(HWND_DESKTOP,
HWND DESKTOP,
PasswordDlgProc,
hmodThisClass,
ID DLG PASSWORD,
pCreateParam) ;

Figure 61 (Part 1 of 2). _wpOpen

/* Return value */
/* Financefile title buffer */

/*user is allowed in */

/* Get instance data pointer */

/* Set debug info */

/* If Financefile is locked */

/* Allocate memory to pass a */
/* ULONG to the dialog proc */
/* Put the somSelf pointer */
/* in the CreateParam memory */

/* Display password dialog */
/* Desktop is owner */
/* Dialog procedure address */
/* Module handle */
/* Dialog resource id */
/* Create Param holding the */
/* pointer to this object */

if (ulResult cc DID_OK) /* If user hit OK button
{
if ((strcmp(_szCurrentPassword, /* If password is correct

_szPassword)) 5 ~ e)
{
strcpy(szTitle, /* Get title string

_wpQueryTitle(somSelf));
s~Titlefflstrlen(szTitle)-9• c '\0'; /* Remove <LOCKED>
_wpSetTitle(somSelf,szTitle); /* Reset title string

_wpSetlcon(somSelf 1 /* Set icon to unlocked
hUnlockedlcon); /* state

/* now we can allow the user access to the object proper ! */
bAllowAccess c TRUE;

}

*/

*/

*/

*/
*/

*/
*/

else /* Password is incorrect */
{
WinHessageBox(HWND_DESKTOP, /* Display message to user */

HWHD_DESKTOP,
"Password incorrect. FinanceFile remains locked.",
•Password Failed•,
e,
MB OK I
HB-CUAWARNING);

return ((HWND) 0); - /* Return NULL handle *I
}

}
} else {

bAllowAccess c TRUE;
}
if (bAllowAccess) {

switch (ulView) {
case OPEN FinanceFile:

if (I wjjswitchTo(somSelf, ulView)) {
/*Create a basic frame and client window for this instance */
return PWFinanceFilelnit(somSelf);

} /* endif */
break;

default:
return(parent_wpOpen(somSelf,

hwndCnr,
ulView,
param));

} /* endswitch */
} else {
} /* endif */

Figure 61 (Part 2 of 2). _wpOpen

/*Allow open to proceed in */
/* normal way using default */
/* processing */

Chapter 7. Workplace Shell and the System Object Model 137

138 OS/2 V2.0 Volume 4

/***
* *
*
*
*
*
*
*

ROUTINE: PWFinanceFilelnit()

DESCRIPTION: PWFinanceFile Inisialisation

RETURNS: Handle of PWFinanceFile frame window, NULL if error

*
*
*
*
*
*

***/
HWND PWFinanceFilelnit (PWFinanceFile* somSelf)
{

HAB hab;
HlmD hwndFrame = NULLHANDLE;
HWND hwndClient = NULLHANDLE;
PWINDOWDATA pWindowData;

/* PH anchor block handle */
/* Frame window handle */

BOOL fSuccess;
SWCNTRL swcEntry;
FRAHECDATA flFrarneCtlData;

/* Switch Entry */
/* Frame Ctl Data */

somPrintf("PWFinanceFilelnit\n");

hab = WinQueryAnchorBlock(HWND DESKTOP);
if (!WinRegisterClass(hab , szFinancefileWindowClass, (PFNWP)FinanceFileWndProc ,

CS_SIZEREDRAW I CS_SYNCPAINT, sizeof(pWindowData)))
{

}

somPrintf("FinanceFilelnit Failure in WinRegisterClass\n");
return NULLHANDLE ;

*
*
*

Allocate some instance specific data in Window words of Frame window.
This will ensure our window procedure can use this object's methods
(our window proc isn't passed a * somSelf pointer).

*/
pWindowData = (PWINDOWDATA) _wpAllocHem(somSelf, sizeof(*pWindowData), NULL);

if (!pWindowData)
{

somPrintf("FinanceFilelnit wpAllocHem failed to allocate pWindowData\n•);
return NULLHANDLE;

}

memset((PVOID) pWindowData, 0, sizeof(*pWindowData));
pWindowData->cb 2 sizeof(*pWindowData); /* first field= size*/
pWindowData->somSelf • somSelf;

/* Create a frame window
*/

flFrameCtlData.cb
flFrameCtlData.flCreateFlags

flFrameCtlData.hmodResources
flFrameCtlData.idResources

= sizeof(flFrameCtlOata);
FCF SIZEBORDER I FCF TITLEBAR
FCF-HINHAX ; -

= hmodThisClass;
= ID_UNLOCK;

Figure 62 (Part 1 of 3). pwFinanceFile's Initialization Function

FCF_SYSHENU

hwndFrame "
WinCreateWindow(

/* create frame window */

HWND DESKTOP,
WC FRAME,
_wpQueryTitle(somSelf),
0,
0, 0, 0, 0,
NULLHANDI E,
HWND TOP,

/* parent-window handle
/* pointer to registered class name
/* pointer to window text
/tr. window style
/* position of window
/* owner-window handle
/* handle to sibling window
/* window identifier
/* pointer to buff er

*/
*/
*I
*/
*/
*/
*/
*/
*/

(USHORT) ID FRAME,
(PVOID) &flFrameCtlData,
NULL); /* pointer to structure with pres. params. */

if (lhwndFrame)
{

}

somPrintf("financeFilelnit Failure in WinCreateWindow\n");
return NULLHANDLE;

hwndClient "
WinCreateWindow(

/* use WinCreateWindow so we can pass pres params */

hwndFrame,
szfinancefileWindowClass,
NULL,
O,
e, o, o, o,
hwndFrame,
HWND TOP,
(USHORT)FID CLIENT,
pWindowData~
NULL);

if (!hwndClient)
{

/* parent-window handle
/* pointer to registered class name
/* pointer to window text
/*window style
/* position of window
/* owner-window handle
/* handle to sibling window
/*window identifier
/* pointer to buff er
/* pointer to structure with pres.

WinOestroyWindow(hwndFrame);
return NULLHANDLE;

}

*I
*/
*/
*/
*/
*/
*/
*/
*/

params. */

WinSendHsg(hwndfrarne,WM_SETJCON,HPFROHP(_wpQuerylcon(somSelf)),NULL);
WinSetWindowText(WinWindowFromID(hwndFrame,(USHORT)FlD TITLEBAR),

=wpQueryTitle(somSelf));

/*
* Restore the Window Position
*/

f Success "
WinRestoreWindowPos(

szFinancefileClassTitle,
_wpQueryTitle(somSelf),
hwndFrame);

/* class title */
/* object title */

Figure 62 (Part 2 of 3). pwFinanceFile's Initialization Function

Chapter 7. Workplace Shell and the System Object Model 139

140 OS/2 V2.0 Volume 4

if (!fSuccess)
{

}

SWP swp;

/*Get the dimensions and the shell's suggested
* location for the window
*/

WinQueryTaskSi?ePos(hab,0,&swp);

/* Set the frame window position
*/

swp.fl ~ SWP_SIZEISWP_MOVEISWP_RESTOREISWP_ZORDER;
WinSetWindowPos(hwndFrame, HWND TOP, swp.x, swp.y, swp.cx,

swp.cy, swp.fl);-

WinShowWindow(hwndFrame,TRUE);

return hwndFrame; /* success */

} /* end FinanceFilelnit() */

Figure 62 (Part 3 of 3). pwFinanceFile's Initialization Function

/**
*
* FinanceFf leWndProc()
*
* DESCRIPTION: FinanceFile Window Procedure
*
**/
MRESULT EXPENTRV FinanceFileWndProc(HWND hwnd, ULONG msg, MPARAH mpl, MPARAH mp2)
{

UL ONG
PWINDOWDATA
HWND

Menu I di
pWindowDatai
hwndFrame;
acBufferflllO";
fSuccess;
szPathHICCHHAXPATH•;
cbPath = CCHHAXPATH;

CHAR
BOOL
CHAR
ULONG

hwndFrame • WinQueryWindow(hwnd, QW_PARENT);

switch (msg)
{

case WM_CREATE:

pWindowData • (PWINDOWDATA) mpl;

if (pWfndowData •• NULL)
{

}

somPrintf(•FinanceFileWndProc:WH_CREATE couldn't get window words•);
return FALSE;

/*
* Fill in the class view/usage details and window specific data
* for this instance.
*/

/*

//jt 55384
//jt 55384

*Hust create Useitem, add it to the object's use list and register the view
*/

pWindowData->Useitem.type " USAGE OPENVIEW;
pWindowData->Viewitem.view = OPEN_FinanceFile;
/*
* Hust be frame. Be careful because this procedure is for the client.
* Must get parent and pass that as Viewitem handle.
*/

pWindowData->Viewitem.handle " hwndFrame;
'pWfodowData->x .. 10;
pWi ndowData->y • 10;
pWi ndowDa ta->xDi r .. 0;
pWindowData->yDir • Bi

/*
* Set window pointer with object pointer and instance view info.
* Then add view to the in-use list so wpSwitchTo works.
*/

WinSetWindowPtr(hwnd, QWL_USER, pWindowData);

Figure 63 (Part 1 of 3). pwFinanceFi/e's Window Procedure, FinanceFileProc()

Chapter 7. Workplace Shell and the System Object Model 141

142 OS/2 V2.0 Volume 4

/*
* _wpAddToObjUselist will tell the shell to store the view in
* the internal linked list for the object to enable wpSwitchTo and other
*methods to find the view. The shell will also subclass the view window
* this gives you title bar context menu when you call wpRegisterView.
* wpRegisterView also puts the view in the window list and sets up
* the title bar like: "Object Title - View Title"
*/

_wpAddToObjUseList(pWindowData->somSelf,&pWindowData->Useltem);
_wpRegisterView(pWindowData->somSelf, hwndFrame,

_wpQueryTitle(pWindowData->somSelf));
WinSetFocus(HWND_DESKTOP, hwndFrame);

/* what is the filename of the file */
if (_wpQueryRealName(pWindowData->somSelf,szPath,&cbPath,TRUE))

{
somPrintf(uFile name is %s, size %1 \n",szPath, cbPath);

} else {
somPrintf ("Failed to get filename\n");

} /* endif */

break;

case WM_COHMAND:

break;

case WM PAINT:
pWindowData = {PWINDOWDATA) WinQueryWindowPtr(hwnd, QWL_USER);

if (pWindowData aa NULL)
{

}

somPrintf("FinanceFileWndProc:WM_PAINT couldn't get window words\n");
return FALSE;

else
{

HPS
REC TL

hps;
rectl;

hps = WinBeginPaint(hwnd, (HPS)NULLHANDLE, &rectl);
WinFillRect(hps, &rectl, SYSCLR_WINDOW);
WinEndPaint(hps);

}
break;

Figure 63 (Part 2 of 3). pwFinanceFile's Window Procedure, FinanceFileProc(J

}

case WH CLOSE:
{ -

}

HAB hab;

hab = WinQueryAnchorBlock(HWND_DESKTOP);

pWindowData = (PWINDOWDATA) WinQueryWindowPtr(hwnd, QWL_USER);

if (pWindowData == NULL)
{

somPrintf(•FinanceFileWndProc:WH_CLOSE couldn't get window words\n•);
return FALSE;

f Success 11

WinStoreWindowPos(szFinanceFileClasslitle,_wpQuerylitle(pWindowData->somSelf),
hwndFrame);

/*
* Must remove from the object UseList when window is closed. (can be done
* on WH DESTROY instead)
*/ -

_wpDeleteFromObjUseList(pWindowData->somSelf,&pWindowData->Useltem);
_wpFreeMem(pWindowData->somSelf,(PBYTE)pWindowData);

WfnDestroyWindow (hwndFrame)

break;

default:
return WinDefWindowProc(hwnd, msg, mpl, mp2)i

return FALSE;

/* end FinancefileWndProc() */

Figure 63 (Part 3 of 3). pwFinanceFile's Window Procedure, FinanceFileProc()

7 .4.2.3 Automatic Opening Upon Instantiation
In many cases, it is desirable to automatically open a view of an object when the
object is created. This may be achieved by using the OPEN= keyword in the
setup string passed to the WinCreateObject() function. An example of this
technique is shown in Figure 64.

PSZ pszClassName = "NewObject"; /* Class name */
PSZ pszObjectTitle = "My New Object"; /* Object title */
PSZ pszParams = 11 0PEN=ICON 11

; /* Setup string * /
PSZ pszLocation = 11 C:\\Desktop\\MyNewFolder11

; /* Location for object */

ULONG ulFlags = CO_UPDATEIFEXISTS;

HOBJECT hObject;

hObject = WinCreateObject(pszClassName,
pszObjTitle,
pszParams,
pszLocation,
ul Flags);

/* Creation flags */

/* Object handle */

/* Create object */
/* Title for icon */
/* Setup string */
/* Location for object */
/* Creation flags */

Figure 64. Automatically Instantiating an Object. This example shows the use of the
OPEN.... keyword to automatically open a view of an object upon creating the object.

The opening of the view specified in the OPEN= keyword is handled by the
default processing for the _wpSetup method, as defined by the WPObject class.
The default processing supports the icon, tree and details views, specified using

Chapter 7. Workplace Shell and the System Object Model 143

the ICON, TREE and DETAILS values for the OPEN= keyword respectively. For
new object classes that support additional views, the _wpSetup method must be
overridden and the additional view types opened explicitly as windows using
appropriate Presentation Manager functions.

144 OS/2 V2.0 Volume 4

7 .4.2.4 Closing an Object
When all open views of an object are to be closed, the _wpClose method is
invoked. This method is normally invoked when the user selects the Close
option from a view's context menu.

The _ wpClose method may be overridden to perform class-specific processing
for closing views, or to free system resources allocated during processing of the
_wpOpen method. For example, Figure 65 shows the _wpClose method being
overridden to automatically lock a password-protected folder whenever it is
closed by the user.

SOM_Scope BOOL SOMLINK pwfolder_wpClose(PWFolder *somSelf)
{

PWFo 1 derData *somThi s = /* Get instance data * /
PWFolderGetData(somSelf);

PWFolderMethodDebug(11 PWFolder 11
, /*Set debug info */

11 pwfolder_wplnitData 11
);

_LockFolder(somSelf); /*Lock folder */

return(parent_wpClose(somSelf)); /*Allow default proc */

Figure 65. Closing an Object. This example shows the _wpClose method being
overridden in order to provide class-specific processing for the password-protected folder.

When a view of an object is closed, the system sends a WM_DESTROY message
to the view's frame window. This allows the object to release any allocated
resources and save its instance data, so that the object may be reopened in its
current state at some future time.

Note that since the _wpClose method is defined by the parent class and is
overridden, the default processing performed by the parent is called after the
class-specific processing has completed.

7 .4.2.5 Saving and Restoring the Object State
As already mentioned, an object is persistent; that is, it remains in existence
even when all views of the object are closed. In order to maintain its instance
data so that it may subsequently be opened in the same state in which it was
closed, the object must save this data when its views are closed and restore it
when a view is opened. The Workplace Shell provides methods that handle the
saving and restoration of instance data on behalf of object classes; these
methods are automatically invoked by the system at the appropriate times, and
are described below.

When an object is made dormant, the system invokes the object's _wpSaveState
method, which allows the object to save its instance data. A number of
predefined methods are available to the object to save its data, such as
_wpSaveString. These methods may be called by the object during the
processing of its _wpSaveState method, in order to save instance data. An

example of the _wpSaveState method for the password-protected folder example
is given in Figure 66 on page 145.

SOM_Scope BOOL SOMLINK pwfolder_wpSaveState(PWFolder *somSelf)
{

PWFol derData *somThi s = /* Get instance data * /
PWFolderGetData(somSelf);

PWFol derMethodDebug (11 PWFol der", /* Set debug ; nfo */
11 pwfolder_wpSaveState 11

);

_wpSaveString(somSelf,
11 PWFolder 11

,

ll,
_szPassword);

_wpSaveString(somSelf,
11 PWFolder 11

,

2L,
_szCurrentPassword);

return (parent_wpSaveState(somSelf));

/* Save folder password */
/* Class name */
/* Class-defined key */
/* String to be saved */
/* Save current password */
/* Class name */
/* Class-defined key */
/* String to be saved */

/* Invoke default proc */

Figure 66. Saving an Object's State

An object's instance data items are saved in different locations, depending upon
the class of the object. Object classes that are descendants of the WPAbstract
class store their instance data in the OS/2 initialization file OS2.INI. Object
classes that are descendants of the WPFileSystem class store their instance data
in extended attributes. Since the password-protected folder class is descended
from the WPFolder class defined by the Workplace Shell, which in turn is a
descendant of the WPFi/eSystem class, the instance data of this object class is
saved as extended attributes in the OS/2 file system.

The class-defined key passed to the _wpSaveString method is used to save the
data item in a particular location, which can then be accessed, using the same
key, to restore the item. In addition to strings, numeric data may be saved using
the _wpSavelong method, and other binary data such as application-defined
data structures may be saved using the _wpSaveData method.

Note that since the _wpSaveState method is defined by the object's class's
ancestors and overridden, it must invoke the default processing supplied by the
parent class in order to correctly save any instance data defined by ancestor
classes. Failure to do so may cause unpredictable results upon awakening the
object from its dormant state.

An object must retrieve its instance data and restore its state whenever it is
made awake. At this point, the system invokes an object's _wpRestoreState
method, which allows the object to restore its state. During the processing of
this method, the object can invoke other methods such as _wpRestoreString,
which restore specific instance data items. An example of the _wpRestoreState
method is given in Figure 67 on page 146.

Chapter 7. Workplace Shell and the System Object Model 145

SOM Scope BOOL32 SOMLINK pwfolder wpRestoreState(PWFolder *somSelf,
- ULONG ulReserved) -

ULONG ulResStrlen; /* String length */

PWFolderData *somThis = /* Get instance data */
PWFolderGetData(somSelf);

PWFolderMethodDebug(11 PWFolder 11
, /* Set debug info */

11 pwfolder_wpRestoreState 11
);

_wpRestoreString(somSelf,
11 PWFolder 11

,

ll,
_szPassword,
&ulResStrlen);

_wpRestoreString(somSelf,
11 PWFolder11

,

2L,
_szCurrentPassword,
&ulResStrlen);

/* Restore folder p1word */
/* Class name */
/* Class-defined key */
/* Target string */
/* Length restored */
/* Restore curr p1word */
/* Class name */
/* Class-defined key */
/* Target string */
/* Length restored */

return(parent_wpRestoreState(somSelf, /* Invoke default proc */
ulReserved));

Figure 67. Restoring an Object's State

The class-defined key passed to the _wpRestoreString method is used to locate
the required data item, and the item is restored into the specified target string
variable. Numeric data can be restored using the _wpRestorelong method, and
other binary data such as application-defined structures can be restored using
the _wpRestoreData method.

Since the _wpRestoreState method is an overridden method, it is important that
the default processing supplied by the parent class be invoked. Failure to do so
will result in any instance data defined by ancestor classes being in an unknown
state, with unpredictable results.

Note that you are not restricted to the workplace methods to save and restore
data. You may use any auxiliary file, OS2.INI, extended attributes or what ever
means you wish.

7.4.3 Destroying an Object

146 OS/2 V2.0 Volume 4

A specific instance of an object class can be destroyed by the user, simply by
dragging it over the Shredder object on the Workplace Shell desktop. If an
object or application wishes to delete an object. it may do so using the
WinDestroyObject() function, as shown in Figure 68.

HOBJECT hObject;
BOOL bSuccess;

bSuccess = WinDestroyObject(hObject);

Figure 68. Destroying an Object

/* Object handle
/* Success flag

/* Destroy object

*/
*I

*/

The WinDestroyObject() function uses the object handle that is returned by the
WinCreateObject{) function. The object or application that creates the object is
responsible for storing this handle during the existence of the object.

When an object is destroyed, the system invokes the object's _wpUnlnitData
method, which may be used to free any resources or instance data items that
were allocated to that particular object.

7.4.4 Deregistering an Object Class
An entire object class can be deleted from the system by deregistering it from
the Workplace Shell. This is achieved by either using the
WinDeregisterObjectClass() function, which is shown in Figure 69, or the
SysDeregisterObjectClass() function, which is shown in Figure 70.

BOOL bSuccess;

bSuccess = WinDeregisterObjectClass(pszClassName); /* Deregister class*/

Figure 69. Deregistering an Object Class

The WinDeregisterObjectClass() function accepts a string containing the object
class name. Once a successful call is made to the WinDeregisterObjectClass()
function, the object class is deleted from the system and is no longer available
to other objects or applications. However, the DLL that contains the code for the
object class is not automatically deleted from the system; if the Templates folder
is subsequently opened with this DLL still resident in a directory in the system's
LIBPATH, a template for the class will still appear in the folder. In order to
prevent this, the DLL must be explicitly deleted from the system.

During processing of the WinDeregisterObjectClass() call, the system invokes the
object's _wpclsUnlnitData method, to free any instance data or resources that
were obtained when the object class was created. See 7.4.1.2, "Class Data" on
page 123 for an example of this method.

Figure 70 shows a sample piece of REXX code that deregisters a Workplace
Object called pwFinanceFile.

/* */
Call RxFuncadd 'SysLoadFuncs', 'RexxUtil ', 'SysLoadFuncs'
Call SysLoadFuncs

'@echo off'

RetCode = SysDeregisterObjectClass(11 PWFinanceFile 11
);

if RetCode then
say 'Uninstall successfully completed for PWFinanceFile class'

say 'Re-boot NOW in order to release DLL'
'pause'

Figure 70. REXX Code to Deregister a WPS Object

Chapter 7. Workplace Shell and the System Object Model 147

7.4.5 Accessing Presentation Manager Resources From a Workplace Shell
Object

A Workplace Shell object may access and make use of Presentation Manager
resources such as icons, bitmaps, strings and dialogs. These resources may
reside in the same DLL as the object's code, or in another DLL. However, since
the resources must reside in a DLL, the code that loads the resources must use
the DosloadModule or DosGetModuleHandle() functions to obtain module
handles, as described in 9.3.2, "Loading Resources From a DLL" on page 200.
This is typically done by obtaining the module handles as part of the
_wpclslnitData method, and storing them either in global variables or in class
data until needed. Note that not all Workplace methods can be assumed to be
called in a PM thread. You may need to create your own PM thread to access
PM functions during Workplace processing.

7 .5 Transient Objects

148 OS/2 V2.0 Volume 4

As mentioned earlier in this chapter, a Workplace Shell object differs from a
Presentation Manager window in that it is persistent; that is, it continues to exist
after a system restart. The exception to this rule is the transient object, which
only exists during the current execution of the system, and is destroyed when
the system is IPLed.

Transient objects are useful when a programmer wishes to represent and
display information such as records from a database. As each record is
retrieved, a transient object is created for that record and displayed in a folder
on the Workplace Shell desktop. These objects may be opened and manipulated
by the end user, but will cease to exist when the system is IPLed.

Figure 71 on page 149 shows an object window in a requester process which,
upon receiving a completed database query from a server process, invokes the
_wpclsNew method to create a new instance of a transient object class,
representing the record retrieved from the database.

REPLY *Reply; /* Reply data structure */

SOMAny *NewObj; /* Object pointer */

case WMP_REQUEST_COMPLETE:
Reply = (REPLY *)mpl; /* Get reply data */

ClassID = SOM_IdFromString(11 CustClass 11
); /* Get class SOM ID */

TransClass = _somFindClass(SOMClassMgrObject, /* Get class pointer */
ClassID, /* Class SOM ID */
1,1); /* Major & minor version */

NewObj = _wpclsNew(TransClass,
Reply->CustName,
ltll ,
Reply->Folder,
TRUE);

_SetCustinfo(NewObj,
Reply);

break;

Figure 71. Creating a Transient Object

/* Create new object
/* Title for object
/* No setup string
/* Location
/* Lock flag

/* Set instance data

*/
*/
*/
*/
*/

*/

The SOM pointer to the transient object class is obtained using the
SOMldFromString() macro and the _somFindC/ass method (see 7.6,
"Communication Between Objects" for further information). This pointer is then
used to invoke the _wpclsNew method to create a new instance of the class.
Once the new instance is created, a method named _SetCustlnfo, which is
defined by the transient object class, is invoked to insert the information
retrieved from the database into the object's instance data.

Note that the technique shown in Figure 71 may only be used when an object is
created from within the Workplace Shell process. If an object must be created
from another process in the system, the WinCreateObject() function must be
used.

7.6 Communication Between Objects
Objects communicate with one another in order to convey events and initiate
actions on the part of other objects. Such communication is typically initiated in
one of two ways:

• By an object to convey information to another object with which it has an
application-defined relationship, such as a request. Th~s is similar to the
application-initiated event discussed for Presentation Manager applications
in OS/2 2.1 Volume 4: Writing Applications. Chapter 4 "The Presentation
Manager Application Model".

• By the user directly manipulating the objects' icons. For example, dropping
one icon over another icon initiates a conversation between the two objects.
This is similar to the user-initiated event discussed for Presentation Manager
applications in OS/2 2.1 Volume 4: Writing Applications, Chapter 4 "The
Presentation Manager Application Model".

Each of these types of communication is discussed in the following sections.

Chapter 7. Workplace Shell and the System Object Model 149

7.6.1 Application-Initiated Communication

150 OS/2 V2.0 Volume 4

The application-initiated communication is somewhat more complex then the
user-initiated communication since the initiator of the communication typically
has knowledge of the type of object to which the communication is being passed,
and can usually initiate the communication by simply invoking a method in the
receiving object, in a similar manner to that discussed in 7.2.1.9, "Invoking
Another Object's Methods" on page 113.

However, it is often necessary to determine the identity of the object for which a
method must be invoked. The Workplace Shell provides access to objects using
the HOBJECT and the OBJECTID and, at a base level, system object model
provides pointers to objects and SOM IDs. Each of these is described in the
following sections, and some discussion is included on converting between
identifiers.

7 .6.1.1 HOBJECT
This identifier is the object handle, which is allocated by the Workplace Shell and
passed as the return value from the WinCreateObject() function. It is a
persistent object handle that remains allocated to an object for the duration of its
existence. Object handles persist across system restarts, and may therefore be
used by one object to refer to another object at any time.

An object handle can be determined from the object's OBJECTID using the
WinQueryObject() fu net ion,

HOBJECT hObject; /* Object handle */
PSZ szObjectID = "<OBJECTID>"; /* OBJECTID string */

hObject = WinQueryObject(szObjectID); /* Query object handle */
Note that this function may be called from any process; its use is not restricted
to objects in the Workplace Shell process.

7 .6.1.2 OBJECTID
The OBJECTID is provided by an application or object class as part of the setup
string parameter in the WinCreateObject() call, when an object is created. It is
persistent in the same way as an object handle, but provides a more meaningful
reference for an object, which can be used by other objects.

HOBJECT hObject; /* Object handle *I
/***/
/* Create a folder on the desktop with an OBJECTID of MYFOLDER */
/***/

hObject = WinCreateObject("WPFolder", /* Class Name */
11 My Folder", /* Title */
11 0BJECTID=<MYFOLDER> 11

, /* Setup string * /
11 <WP _DESKTOP> 11

, /* Location * /
CO_REPLACEIFEXISTS); /* Create option */

/***/
/* Create a file object with an OBJECTID of MYFILE inside the folder */
/***/

hObject = WinCreateObject(11 WPDataFile",
11 My File 11

,

11 0BJECTID=<MYFILE> 11
,

11 <MYFOLDER> 11
,

CO_REPLACEIFEXISTS);

/* Class Name
/* Title
/* Setup string
/* Location
/* Create option

*I
*I
*/
*/
*/

/***/
/* Create a shadow of the file object MYFILE on the desktop */
/***/

hObject = WinCreateObject(11 WPShadow 11
,

11 My File",
11 SHADOWID=<MYFILE>11

,

11 <WP DESKTOP>" - ,
CO_REPLACEIFEXISTS);

Figure 72. Referencing an Object Using OBJECTID

/* Cl ass Name
/* Title
/* Setup string
/* Location
/* Create option

*/
*/
*/
*I
*I

Note that the angle brackets (" <" and "> ") used within the OBJECTID are an
important part of the syntax.

Note also that the Workplace Shell provides a number of predefined OBJECTIDs
for system-defined objects. The first and third WinCreateObject() calls in
Figure 72 use the <WP _DESKTOP> OBJECTID to place the objects on the
desktop.

7.6.1.3 SOM Pointer
SOM pointers come in various forms, but can all be typecast to SOMAny *. From
a Workplace Shell perspective, a SOM pointer is the return value of the
_wpclsNew class method; this is the method used for creating objects within the
Workplace Shell process. An object's public methods and data can be accessed
using the object's SOM pointer.

A SOM pointer for an object may be obtained from an object handle using the
_wpclsQueryObject method provided by the WPObject class, as follows:

SOMAny *Asomptr; /* SOM pointers */
SOMAny *Bsomptr;

Asomptr = _wpclsQueryObject(_WPObject,
hObject);

/* Query SOM pointer
/* Object handle

*/
*/

Chapter 7. Workplace Shell and the System Object Model 151

A SOM pointer for a class may be obtained from the SOM ID for that class, using
the _somFindC/ass method shown below:

Asomptr = _somFindClass(SOMClassMgrObject,
Asomld,
1,
1);

A SOM pointer for a class may be obtained from the SOM pointer for any object
within that class, using the _somGetC/ass method as follows:

Asomptr = _somGetClass(Bsomptr);

The SOM pointer is typically used to invoke class methods from an object in
another class. The _SOMDispatchL() method shown in Figure 45 on page 113
requires a SOM pointer as a parameter.

7 .6.1.4 SOM ID
A SOM ID is simply a way of mapping a unique number to a string. This string
may represent the name of a method or class. SOM IDs are integers that are
managed by the Workplace Shell using the Atom Manager facility of Presentation
Manager. A SOM ID is obtained using the SOM_ldfromString() function as
follows:

somid Asomid;

Asomid = SOM_IdFromString(11 WPFolder 11
);

The SOM ID is typically used to obtain a SOM pointer, which can then be used to
invoke a method.

7.6.2 User-Initiated Communication

152 OS/2 V2.0 Volume 4

The user-initiated communication is somewhat more complex then the
application-initiated communication, since the two objects may have no defined
relationship. A conversation must be initiated between the two, whereby each
determines the nature of the other, and whether a drop operation is valid at the
present time. If so, each object passes the information required to carry out the
requested action.

7 .6.2.1 Dragging a Workplace Object over a Workplace Object
When the user begins to drag an object, this source object being dragged is
notified by the system, by invoking the object's _wpFormatDragltem method.
This method is used to build a DRAGITEM structure, which is passed to any
object if this source object is dragged over it or dropped on it. The DRAGITEM
structure contains rendering information about the source object, which is used
by other receiving objects over which the source object is dragged, in order to
determine whether a drop operation is valid at that point.

Default information for the DRAGITEM structure is inserted by the default
processing provided by the parent class, but an object class may override the
method and include its own class-specific processing. The DRAGITEM structure
is nested within a DRAGINFO structure, which is passed to any receiver object
over which one or more source objects are dragged. In a situation where more
than one object is being dragged simultaneously, a separate DRAGITEM
structure is produced for each source object, and the entire set of structures is
combined using a single DRAGINFO structure.

When an object is dragged over an object the system invokes the _wpDragOver
method in the receiving object. This method receives a DRAGINFO structure,
which contains a variety of information including pointers to one or more
DRAGITEM structures. Note it is the responsibility of the receiver object's
_wpDragOver method to return whether it can accept the drop, and what
operation to perform.

The receiver object has to check the operation code it receives from the source
object. If it is the default (DO _DEFAUL n. it needs to return the operation to be
performed, for example DO_MOVE, or DO_COPY. If it is not the default, for
example a DO_MOVE, then the receiver object must determine if it can accept
that operation and return accordingly.

Warning -------------------------

If you have written Workplace Shell drag and drop code under OS/2 2.0, the
way the ancestor classes respond to the _wpDragOver method has changed
for OS/2 2.1. Specifically the parent_ wpDragOver method will return
DOR_NEVERDROP if the ancestor classes cannot accept the source objects.

Consequently code must be written so that the parent_wpDragOver method is
called first, and if the resultant Drop Indicator is NOT DOR_NEVERDROP, then
the method may continue its processing, as shown in Figure 73 on page 154.

Figure 73 on page 154 shows another _wpDrop method override example for the
object called pwFinanceFile which is derived from the wpDataFile Workplace
Shell object. In this example we first invoke our objects parent _wpDragOver
method (that is the _wpDragOver method for wpDataFile) to see that it doesn't
violate any of its rules. If the parent successfully tested one or more source
objects, our method determines how many source objects are being dragged
over the target object and then searches through each of the source objects()
and checks that they are all Workplace Objects. If any one of these is not a
Workplace Object then our object will reject all of them by returning
DOR_NEVERDROP as the indicator and DO _UNKNOWN as the operation.
Otherwise our method makes sure it is being passed a DO_COPY, DO_MOVE or
a DO _DEFAULT operation. If it is not one of these, it will reject all of the source
objects. If it is one of these, DO_DROP and DO_COPY will be returned as the
result to the Workplace Shell.

If the receiver object wanted to allow only its tests and not any of the parents,
then the parent_wpDragOver method invocation can be removed, along with the
setting of the drop/ndication and dropOperation from the returned mr program
variable, as well as the if statement that immediately follows.

If the _wpDragOver in Figure 73 on page 154 returns successful, and the user
drops the object, then the _wpDrop method is invoked for the receiver object.
The same checking that was performed in the _wpDragOver method needs to be
performed by the _wpDrop method because the receiving object may only
receive a _wpDrop method invocation, and not a _wpDragOver.

Chapter 7. Workplace Shell and the System Object Model 153

154 OS/2 V2.0 Volume 4

SOM_Scope MRESULT SOMLINK pwFinanceFile_wpDragOver(PWFinanceFile *somSelf,
HWND hwndCnr, '
PDRAGINFO pdrglnfo)

MRESULT mr;
USHORT dropOperation,

droplndicator;
ULONG ulitemCount =0;
ULONG ulltem =0;

PWFinanceFileData *somThis = PWFinanceFileGetData(somSelf);
PWFinanceFileMethodDebug(11 PWFinanceFile 11

,
11 pwFinanceFile_wpDragOver 11

);

/* firstly will all the source object(s) pass my parents tests? */
mr = parent_wpDragOver(somSelf,hwndCnr,pdrginfo);
droplndicator = SHORTlFROMMR(mr);
dropOperation = SHORT2FROMMR(mr);

if (droplndicator != DOR_NEVERDROP)
{

/* passed the parent's tests, so unless it fails this object's */
/* tests we will allow the DROP */
droplndicator = DOR_DROP;
dropOperation = DO_COPY;

/* how many items are being dragged ? */
ulitemCount = DrgQueryDragitemCount(pdrginfo);

/* search through the objects and abort if we find any that */
/* are not WorkPlace objects */

for (u1Item=0; ulitem<ulitemCount; ulltem++) {
PDRAGITEM pDragitem; /* temporary variable */
WPObject *ObjectBeingDragged=NULL; /* temporary variable */

/* get one of the one or more drag items that we are receiving */
pDragitem = DrgQueryDragitemPtr(pdrginfo, ulltem);

/* test to see if it is a WorkPlace object, if it is use */
/* the OBJECT_FROM_PREC macro to get the object; otherwise */
/* ObjectBeingDragged will remain as a NULL as it was */
/* i nit i a 1 i sed when dee 1 ared as NULL * /

Figure 73 (Part 1 of 2). Dragging a Workplace Object

if (DrgVerifyRMF(pDragltem, 11 DRM_OBJECT 11
, NULL))

ObjectBeingDragged = OBJECT_FROM_PREC(pDragltem);
if (!ObjectBeingDragged) {

/* Object is NOT a WorkPlace object, so I reject all objects */
return (MRFROM2SHORT(DOR_NEVERDROP,DO_UNKNOWN));
else {
if ((pdrglnfo->usOperation != DO_COPY) &&

(pdrglnfo->usOperation != DO_MOVE) &&
(pdrglnfo->usOperation != DO_DEFAULT)) {

/* this object only allows a move or copy*/
return (MRFROM2SHORT(DOR_NODROP,DO_UNKNOWN));
} /* endif */
/* endif */

} /* end for * /
} /* endif */
/*all the test have been passed, so tell this to the WorkPlace Shell */
return (MRFROM2SHORT(droplndicator, dropOperation));

Figure 73 (Part 2 of 2). Dragging a Workplace Object. In this figure we first see if the
source's object passes this object's parent's wpDragOver tests, and then apply our own.

Note that DOR_NODROP is returned when rejecting the operation, and
DOR_NEVERDROP is returned when rejecting the drop request. This is
important when a user drags one object onto another (DO_MOVE) and the
receiver object returns a DOR_NODROP, meaning it cannot accept the operation.
If the user still has the object over the receiver object and now holds down the
< ctrl > key, then the operation is now a DO_COPY. If the receiver object had
previously returned a DOR_NODROP then the Workplace Shell will now reinvoke
the objects _wpDragOver method passing it the DO_COPY. This would not occur
if a DOR_NEVERDROP had been received.

How the receiver object responds with its implementation of the _wpDragOver,
really depends on:

• The type of object being implemented

• What is being dragged over it

• What the person who designs the object really wants to achieve

For example, in Figure 73 on page 154, simple decisions are made based on the
parent's _wpDragOver method. Only Workplace Objects which want to perform
a DO_COPY, DO_MOVE or a DO_DEFAULT operation are acceptable source
objects.

The designer may want to restrict what the object will accept still further. For
example, only allowing objects that are the same class as the pwFinanceFile
object, or are descended from it, as there are going to be specific data types that
have meaning to this object and no others can be accepted. Perhaps the
designer wishes to have financial account type entries in the pwFinanceFile
object and it would therefore not be meaningful to allow the dragging and
dropping of a picture or any other objects that could not be understood by this
specialized object.

Figure 74 on page 156 expands on Figure 73 on page 154 to now exclude any
objects that are not part of the pwFinanceFile class.

Chapter 7. Workplace Shell and the System Object Model 155

156 OS/2 V2.0 Volume 4

SOM_Scope MRESULT SOMLINK pwFinanceFile_wpDragOver(PWFinanceFile *somSelf,
HWND hwndCnr,
PDRAGINFO pdrglnfo)

MRESULT
USHORT

mr;
dropOperation,
droplndicator;

ULONG
ULONG
CLASS

ulltemCount =0;
ulltem =0;
PWFinanceFileClass;

PWFinanceFileData *somThis = PWFinanceFileGetData(somSelf);
PWFi nanceFi 1 eMethodDebug ('1PWFi nanceFi 1e 11

,
11 pwFi nanceFi 1 e_wpDragOver 11

);

/* create a dummy pwFinanceFile class for comparison with the source */
/* object(s) class */
PWFinanceFileClass = _somClassFromid(SOMClassMgrObject,

SOM_IdFromString(11 PWFinanceFile 11
));

/* firstly will all the source object(s) pass my parents tests? */
mr = parent_wpDragOver(somSelf,hwndCnr,pdrglnfo);
droplndicator = SHORTlFROMMR(mr);
dropOperation = SHORT2FROMMR(mr);

if (droplndicator != DOR_NEVERDROP)
{

/* passed the parent's tests, so unless it fails this object's */
/* tests we will allow the DROP */
droplndicator = DOR_DROP;
dropOperation = DO_COPY;

/* how many items are being dragged ? */
ulitemCount = DrgQueryDragitemCount(pdrglnfo);

/*search through the objects and abort if we find any that */
/* are not WorkPlace objects */

for (u1Item=0; ulitem<ulitemCount; ulltem++) {
PDRAGITEM pDragltem; /* temporary variable */
SOMAny *ObjectBeingDragged=NULL; /* temporary variable */

/* get one of the one or more drag items that we are receiving */
pDragltem = DrgQueryDragitemPtr(pdrglnfo, ulltem);

/* test to see if it is a WorkPlace object, if it is use */
/* the OBJECT_FROM_PREC macro to get the object; otherwise */
/* ObjectBeingDragged will remain as a NULL as it was */
/*initialised when declared as NULL */

if (DrgVerifyRMF(pDragltem, 11 DRM_OBJECP, NULL))
ObjectBeingDragged = OBJECT_FROM_PREC(pDragltem);

Figure 74 (Part 1 of 2). Only Accepting pwFinanceFile Objects from Drag Operations

if (!ObjectBeingDragged) {
/*Object is NOT a WorkPlace object, so I reject all objects */
return (MRFROM2SHORT(DOR_NEVERDROP,DO_UNKNOWN));

} else {
if ((pdrglnfo->usOperation != DO_COPY) &&

(pdrginfo->usOperation != DO_MOVE) &&
{pdrginfo->usOperation != DO_DEFAULT)) {

/* this object only allows a move or copy*/
return {MRFROM2SHORT{DOR_NODROP,DO_UNKNOWN));
} else {

/* the object is all ok, but is it a pwFinanceFile object, */
/* or descended from one? */
if (!_somisA(ObjectBeingDragged,PWFinanceFileClass)) {

/*reject all the objects because this one is not derived*/
/* from PWFinanceFileClass */
return (MRFROM2SHORT(DOR_NEVERDROP,DO_UNKNOWN));

} /* endif */

} f* endif */

} /* endif */

} /* endfor */

} /* endif */
/* all the test have been passed, so tell this to the WorkPlace Shell */
return (MRFROM2SHORT{droplndicator, dropOperation));

Figure 74 (Part 2 of 2). Only Accepting pwFinanceFile Objects from Drag Operations

7.6.3 Dragging a Non-Workplace Object onto a Workplace Object
Dragging a non-Workplace Object onto a Workplace Object is handled in a
similar way to the dragging of a Workplace Object over a Workplace Object.
How the receiver object responds in its implementation of its _wpDragOver,
depends on the type of object being implemented, what is being dragged over it
and what the person who designed the object wants it to do. The difficulty is to
determine what the object should do for every possible type of non-Workplace
Shell object (and Workplace Shell objects such as OS/2 files).

If the receiver object is capable of having a file object dropped on it, and a file
was dragged over it (the source is not a Workplace Object file object), the
receiver object could convert the source to a file object and then process it.

If the source of the drag operation cannot be converted to a file object, or is not
a file in the first place, then drag and drop participation is still possible if the
source object has a drag mechanism and operation that the target object can
support. 7.6.5, "Dropping an Object" on page 159 shows an example of a
_ wpDrop method where an OS/2 file is accepted and converted to a Workplace
Object.

Chapter 7. Workplace Shell and the System Object Model 157

7.6.4 Dragging a Workplace Object onto a Non-Workplace Object

158 OS/2 V2.0 Volume 4

In the same way a non-Workplace Object can participate in a drag and drop
conversation with a Workplace Object, a Workplace Object can can also
participate in a drag and drop conversation with a non-Workplace Object,
provided the Workplace Object provide support for the drag mechanisms and
operations that the receiver object supports.

A Workplace Object can support multiple mechanisms and operations as shown
in Figure 75.

MRESULT mr;
PDRAGTRANSFER pDragTransfer;
BOOL bSentOK;

/* allocate a drag transfer structure*/
pDragTransfer = DrgAllocDragtransfer(l);

if (pDragTransfer) //was the allocate successful?
{

/* populate the drag structure */

pDragTransfer->hstrSelectedRMF
DrgAddStrHandle(11 (DRM_OS2FILE,DRM_PRINT)x(DRF_TEXT),

<DRM_OBJECT,DRF_OBJECT> 11
);

bSentOK = (BOOL)DrgSendTransferMsg(pDraglnfo->hwndSource,
DM_RENDERPREPARE,
(MPARAM)pDragTransfer,
(MPARAM)NULL);

if (bSentOK)
{

} else {
mr = (MRESULT)RC_DROP_ERROR;

Figure 75. Multiple Rendering Methods

7.6.5 Dropping an Object
When a drop operation occurs, the receiver object is notified by the system
which invokes the _wpDrop method for that object. This method accepts the
DRAGINFO structure which may then be examined by the receiver object to
determine the correct action to be taken. The rendering information contained in
the DRAGITEM structure may be sufficient to allow the action to be completed, or
the receiver object may initiate a conversation with the source object in order to
gain sufficient information to complete the action.

If the source object is not a Workplace Object but it is an OS/2 file, then the
receiver object must decide whether it can handle a file. If receiver handling is
set then the receiver object can create a Workplace Object created to represent
the OS/2 file. This Workplace Object can then issue methods. However, if you
do not wish to create a Workplace Object to represent the file then the
Presentation Manager Drag and Drop messages must be handled.

If neither a Workplace Object, nor an OS/2 File are being dropped, then the
receiver object must decide what it wants to do.

The rendering information provided in the DRAGITEM structure, and its use by a
Presentation Manager or Workplace Shell object, is described in detail in OS/2
2.1 Volume 4: Writing Applications, Chapter 8 "Direct Manipulation."

Chapter 7. workplace Shell and the System Object Model 159

160 OS/2 V2.0 Volume 4

/*
*
* METHOD: wpDrop PUBLIC

* PURPOSE: To receive a dropped object.
*
* INVOKED: By Workplace Shell, when another object has been dropped on
* this object.
*
*/

SOH_Scope MRESULT SCHLINK pwFinanceFile_wpDrop(PWFinancefile *somSelf,
HWND hwndCnr,

{

CHAR
CHAR
ULONG
ULONG
ULONG
CLASS
SOHAny
HRESULT
US HORT

PDRAGINFO pdrglnfo,
PDRAGITEH pdrgitem)

szNameffiCCHMAXPATH";
szPathfflCCHHAXPATH•;
cbPath ° CCHHAXPATH;
ul ItemCount aEJ;
ul Item aEJ;
PWFinancefileClass;

*ObjectBeingDragged;
mr;
dropOperation,
drop Indicator;

BOOL flPrepared = TRUE; // Assume we do not need to do a prepare
BOOL flRendering = FALSE;
PDRAGTRANSFER pDragTransf er;

PWFinancefileData *somThis = PWFinancefileGetData(somSelf);
PWFinanceFileHethodDebug("PWFinanceFileA,"pwFinancefile_wpDrop•);

if ((strcmp(_szCurrentPassword,
_szPassword)) == 0)

/* If Financeff le is NOT locked */

{

/* make sure we are not dragging ourselves, and dropping onto ourselves */
if (pdrglnfo->hwndSource != hwndCnr)
{

/* for each of the items being dropped, check to see that they are all */
/* derived from PWFinanceFileClass */

PWFinancefileClass a _somClassfromld(SOMClassMgrObject,
SOM_IdFromString("PWFinancefile"));

Figure 76 (Part 1 of 5). Converting a Source Drag OS/2 File to a Workplace Object

/*passed the parent's tests, so unless it fails this object's*/
/* tests we will allow the DROP */
droplndicator .. DOR DROP;
dropOperation • DO_COPY;

/* how many items are being dragged ? */
ulltemCount a DrgQueryDragitemCount(pdrginfo);

/* search through the objects and abort if we find any that aren't derived */
/* from PWFinanceFileClass */
somPrintf("Number of Items being dropped 11 %i.\n",u1ItemCount);
for (ulltem~a; ulltem<ulitemCount; ulltem++) {

PDRAGITEH pDragltem; /* temporary variable*/

/* get one of the one or more drag items that we are receiving */
pDragltem • DrgQueryDragitemPtr(pdrglnfo, ulltem);

ObjectBeingDragged = queryObjectFromDragitem(pDragltem);

if (ObjectBeingDragged) {
if (!_somisA(ObjectBeingDragged,PWFinanceFileClass)) {

somPrintf ("Object %1, is rejected for drop because it ", ulltem);
somPrintf(•is not derived from PWFinanceFileClass\n");

} else {
somPrintf("Object %i, fs acceptable for dropping, by wpOROP\n•,ulltem);

} /* endif */
} else {

somPrintf{"Object %i, is not a WPS object, can we render it\n",ulltem);

/* start of code to render item */

if(OrgVerifyRMF (pOragltem, 11 0RH_OS2FILE", NULL))
{

somPrintf("An OS2FILE rendering methodI\n");
/*Protocol allows the source object to propose a target name •••
*
* If it does, then try to use it, if it does not, then
* try to use the source name, if present. Finally, just
*make up our own name •••
*/

if (pDragitem->hstrTargetName &&

{

}

DrgQueryStrNameLen(pOragltem->hstrTargetName)

DrgQueryStrName(pOragltem->hstrTargetName,
sizeof(szName),szName);

somPrintf("Source proposes the target filename\n");

else
{

Figure 76 (Part 2 of 5). Converting a Source Drag OS/2 File to a Workplace Object

Chapter 7. Workplace Shell and the System Object Model 161

162 OS/2 V2.0 Volume 4

}

if (pDragltem->hstrSourceName &&
DrgQueryStrNamelen(pDragltem->hstrSourceName})

{
DrgQueryStrName(pDragltem->hstrSourceName,

sizeof(szName),szName);
somPrintf ("Source proposes the source filename\n");

}
else
{

szNamefflO" .. '\0';
somPrintf("no source, nor target name\n");

}

/*Allocate and initialize a drag transfer structure
*/

somPrintf("allocating pDragtransfer structure\n");
pDragTransfer a DrgAllocDragtransfer(l);

if (pDragTransfer)
{

somPrintf("pDragtransfer structure allocated ok\n");
/* create a WPDataFile object
*/

ObjectBeingDragged .. _wpclsNew(_WPDataFile,
szName,
NULL,
_wpclsQueryFolder(_WPDataFile,•<WP_NOWHERE>",TRUE),
TRUE);

if (ObjectBeingDragged)
{

somPrintf("ObjectBeingDragged has been successfully allocated\n");
_wpQueryRealName(ObjectBeingDragged,szPath,&cbPath,TRUE);
somPrintf("The ObjectBeingDragged filename is %s\n",szPath);

/* fill in the struct now
*/

pDragTransfer->cb • sizeof(DRAGTRANSFER);
pDragTransfer->hwndClient 11 hwndCnr;
pDragTransfer->pditem = pDragltem;
pDragTransfer->hstrSelectedRHF =

DrgAddStrHandle("<DRH_OS2FILE,DRF_UNKNOWN>");
pDragTransfer->hstrRenderToName = DrgAddStrHandle(szPath);
pDragTransfer->ulTargetlnf o = 0l;
pDragTransfer->usOperation = pdrglnfo->usOperation;
pDragTransfer->fsReply = 0;

Figure 76 (Part 3 of 5). Converting a Source Drag OS/2 File to a Workplace Object

/*Now, if the source wants prepared, do it •••
*/

if (pDragltem->fsControl & DC_PREPARE)
{

somPrintf("Source wants prepared\n");
flPrepared a (BOOL)DrgSendTransferHsg(pdrglnfo->hwndSource,

DH RENDERPREPARE,
(HDARAH)pDragTransfer,
(HPARAH) NULL);

} else {
somPrintf("Source does not want prepared\n");

}
/* See if either we did not need to send a RENDERPREPARE, or
*we have successfully done so ••.
*/

if (flPrepared)
{

}

somPrintf("not prepared\n");
/*Tell the source object where to put the file.
*/

flRendering = (BOOL)DrgSendTransferHsg(pDragltem->hwndltem,
DH RENDER,
(HPARAH)pDragTransfer,
(HPARAH)NULL);

if (!flRer.dering)
{

/* The partner object did not render, so delete
* the object we just created.
* or we could add code here to directly open the source as
* a file and work with it, or what ever we like.
*/

_wpFree(ObjectBeingOragged);
somPrintf("not rendering, we are deleting the object we just created\n•);

} else {
somPrintf("rendering\n");

}

else
{

Figure 76 (Part 4 of 5). Converting a Source Drag OS/2 File to a Workplace Object

Chapter 7. Workplace Shell and the System Object Model 163

}

}

}

somPrintf("Our partner wanted us to send him a prepare, and");
somPrintf("now has changed his mind about things ••• , ABORT\n");

/* Our partner wanted us to send him a prepare, and
*now has changed his mind about things •••
* We cannot even send him an end conversation, as
* we do not know that the hwnd is any good.
*
* For now, we will treat this as an error.
*/

mr • (HRESULT)RC_DROP_ERROR;

} else {
somPrintf("ObjectBeingDragged has NOT been successfully allocated\n");

}
if (flRendering)
{

mr a RC_DROP_RENDERING;
}
else
{

}

DrgDeleteStrHandle(pDragTransfer->hstrRenderToName);
DrgFreeDragtransfer(pDragTransfer);

} else {
somPrintf("Not an OS2FILE rendering method\n");

}

} /* endif */

} /* for */
} else {

somPrintf("we are trying to drop onto ourselves, not allowed\n");
} /* endif */

} else {
somPrintf("LOCKED, drop is disallowed\n");

} /* endif */

return((HRESULT) NULL);

Figure 76 (Part 5 of 5). Converting a Source Drag OS/2 File to a Workplace Object. A
partial sample _wpDrop accepting a non-Workplace Object, specifically an OS/2 file.

7.7 Building a Workplace Shell Application

164 OS/2 V2.0 Volume 4

As already mentioned, an application that exploits the Workplace Shell consists
of a number of objects on the desktop or in folders, which interact with one
another to carry out operations as requested by the user. The implementation of
the Workplace Shell under OS/2 V2.0 causes all Workplace Shell objects to run
in a single process, under the control of the Workplace Shell itself. It is
therefore possible for an error in a Workplace Shell to terminate the Workplace
Shell process, and all objects currently open under the control of that process.
While the Workplace Shell automatically restarts itself and its open objects, it is
recommended for reasons of performance that applications carrying out lengthy
processing such as database or remote system access should be implemented
using multiple processes. Other processes in the system are not affected if the
Workplace Shell process terminates, and become available to the user as soon
as the shell restarts itself, without the need to reload application code,
reinitialize communications links, etc.

For example, a database query application that searches a database for
customer records and displays these in a Workplace Shell folder may be
composed of two processes, each with multiple threads, as shown in Figure 77
on page 165.

WPS Thread
WPS Process
New Thread

Client

Figure 77. Workplace Shell Application Structure

Second Process

Server

.,
Perfonn
Actual

Searches

The requester portion of the application, which allows the user to enter a query,
and which displays the results on the screen, is implemented as a Workplace
Shell object, running under the control of the Workplace Shell process. The
primary thread in this process carries out the interaction with the end user, while
a secondary thread is created to handle communication between processes.

The second process acts as a database server, and is created by the first
process when the application is started. The server process has a primary
thread that accepts requests from the requester in the Workplace Shell process,
and a number of secondary threads that actually perform the database access.

Chapter 7. Workplace Shell and the System Object Model 165

7.8 Debugging

If an errant object or application were to cause the Workplace Shell to terminate,
the requester threads would be terminated. However, the server process would
not be terminated, and communication with the requester could be '
re-established simply by having the requester initiate one of the standard
interprocess communication mechanisms described in OS/2 2.1 Volume 4:
Writing Applications, Chapter 10, "Multitasking Considerations".

SOM provides several facilities to aid in debugging SOM and WPS applications.
These facilities are designed around a replaceable procedure called
SOMOutCharRoutine, which normally writes output to the stdout logical device.

It is not practical to capture stdout and the information that SOM and WPS is
providing when debugging WPS objects, because objects are implemented as
Dlls. Instead the object must replace the SOMOutCharRoutine to send the
output to a place where you can easily deal with it.

Additionally the OS/2 Programmer's Toolkit provides an interactive debugging
tool, the Kernel Debugger. For further information on using the Toolkit Kernel
Debugger to debug Dlls, please refer to the OS/2 Programmer's Toolkit.

7.8.1 Replacing SOM's SOMOutCharRoutine
Figure 78 on page 167 shows a simple replacement procedure that sends the
output to the COM1: serial port. To actually replace the SOMCharOutRoutine it
is necessary to add a line of code to the initialization portion of your object. This
is shown in Figure 79 on page 167. Note that it is best to add a command to
your STARTUP.CMD file to set up the COM1: serial port. A sample portion of a
STARTUP.CMD is shown in Figure 80 on page 168.

You can now use another computer to view the information that is generated by
the SOM runtime as you manipulate your object.

The additional computer should be connected from its serial port, normally
COM1:, to the first computer by means of a NULL modem cable. This is a
specialized serial cable where the transmit and receive ·conductors are crossed
over to allow the transmission from one serial port to be received by the other.

It is then a matter of registering your object and running an ASCII terminal
emulator program on the additional computer to view the information.

166 OS/2 V2.0 Volume 4

II
Passthru a debug message box to the .ih file
(for inclusion in the .c file)

passthru: C.ih, after;

#include <wppgm.h>
#include <wppgmf.h>
#include <stdio.h>

II force SOM to output all debug information to the Communications Port 1

int myReplacementForSOMOutCharRoutine (char c)
{
static FILE *fdebug = NULL;

if (!fdebug) {
fdebug = fopen(uCOMlu,"w");

if (!fdebug) return e;
}

fputc(c,fdebug);
fflush(fdebug);

return 1;
}
endpassthru;

I* failed to open COMl: *I

Figure 78. Sample .CSC File Definition for Overriding the SOMOutCharRoutine

/*Set up the debug and tracing ••• */

/* Produce a message each time a method is entered */
SOM_Tracelevel=2;

I* Replace the default routine with this object's new one */
SOMOutCharRoutine = myReplacementForSOMOutCharRoutine;

Figure 79. Sample .C File Definition for Overriding the SOMOutCharRoutine

Chapter 7. Workplace Shell and the System Object Model 167

I* My STARTUP.CMD */
MODE COMl 9680,n,8,l
/* and whatever else like to have in here */

exit 0

Figure 80. Sample STARTUP.CMD File Definition

7.8.2 A Sample ASCII Terminal Emulator for Debugging Use
The PM terminal program that can be found in the Productivity folder can be
used to receive and display the information from the SOM runtime about the
computer to be debugged. The following steps detail how to create and use a
custom emulator session.

7 .8.2.1 Creating a Custom Emulator Session
The following steps detail how to create a PM Terminal session suitable for
remote debugging use.

1. Open OS/2 System and select the Productivity Folder
2. Select PM Terminal
3. From the Session pulldown, select Add
4. Enter a comment, for example "Remote SOM Debug Session"
5. You should have the default settings as shown in Table 4, on the Add

Session panel
6. Select the ADD pushbutton to add the new session

Table 4. Parameters and Settings for the Remote Terminal

Parameter Setting

Terminal emulation profile ANSI 3.64

Connection path profile ACDI ·Hardwire

System environment profile Default Environment

File transfer profile Character

7 .8.2.2 Using the Emulator Session
After you have created an instance of your object, start the session you created
above. If the connection is broken at any time, for example you closed and
reopened the object, then from the Fiie pulldown select Connect.

7.8.3 SOM Provided Macros for Debugging

168 OS/2 V2.0 Volume 4

System Object Model provides a number of macros for the purposes of
debugging objects. These are:

SOM_TestC Evalutes a Boolean expression. If it is true, then execution
continues; otherwise SOM_Error is invoked.

SOM_WarnMsg

SOM_Assert

Writes out a warning message depending on the setting of
the SOM_WarnLevel variable.

Evaluates a Boolean assertion. If this fails then SOM_Error
is invoked with a user supplied error code.

SOM_Expect

somPrintf

Evaluates a Boolean assertion. If this fails then
SOM_Warn is invoked.

SOM's implementation of the "C" printf function.

For more detailed information please refer to System Object Model Guide and
Reference.

7.9 Sample Code and Application

7 .9.1 pwFolder

The sample Workplace Objects used as examples in this chapter are included on
a diskette supplied with this document, as well as the main program listings
appearing in Appendix E, 11 Source Code for the PWFolder and PWFinanceFile
objects" on page 347. The two main code examples are pwFolder and
pwFinanceFile.

The pwFolder is a Workplace Object that has been sub-classed from the
Workplace Folder class and adds a lock feature. This lock feature prevents the
user from accessing the folder when it is in the locked state.

The pwFolder demonstrates adding a method to a context menu and writing your
own methods, as well as drag and drop processing.

7.9.2 pwFinanceFile

7.10 Summary

The pwFinanceFile is a Workplace Object that has been subclassed from the
wpDataFile class and also adds a lock feature, in a very similar manner to the
pwFolder.

The pwFinanceFile demonstrates the following:

• Adding a method to a context menu

• Filtering menu items in a context menu

• Writing your own methods

• Drag and drop progressing, including:

Only accepting source objects which are descended from the same
pwFinanceFile class

Accepting an OS/2 file as a source, and converting it to a Workplace
Object

Multiple rendering methods

• Adding an object view

• Determining the file name of a wpDataFile object

The OS/2 Version 2.0 Workplace Shell provides an object-oriented user interface
to the operating system, and provides an object-oriented application layer on top
of Presentation Manager, through its implementation of the system object model.
An application that exploits the facilities of the Workplace Shell consists of a
number of objects, which are manipulated on the Workplace Shell desktop by the
user, in order to carry out the required tasks.

Chapter 7. Workplace Shell and the System Object Model 169

170 05/2 V2.0 Volume 4

Workplace Shell objects conform to "standard" object-oriented principles in that
they are grouped into object classes, have instance data, and contain methods
which perform the required tasks and operate upon the instance data.
Workplace Shell object classes may inherit data and methods from their parent
class, in accordance with the object-oriented concept of inheritance. A class
may add additional data items or new methods to perform actions not handled
by its parent class, or may override existing methods to handle actions in a
different manner.

An object class is defined using a class definition file, which defines the parent
hierarchy for the object, its data items and its methods. The class definition file
is used as input to the SOM Precompiler, which uses the file to produce a
number of source code files and header files. The source code is edited by the
programmer to add the application logic for each method. It is then compiled
using a normal C compiler, and link edited to produce a dynamic link library that
implements the object class. An object class may make use of operating system
and Presentation Manager resources during its execution.

Workplace Shell objects behave in a similar manner to windows under
Presentation Manager; object classes are registered to the Workplace Shell, and
individual instances of an object class are created, opened, closed and
destroyed by the user or by other objects in the system. The major difference
between a window under Presentation Manager and an object under the
Workplace Shell is that Workplace Shell objects are persistent; that is, they exist
for longer than a single application execution. Once created, a Workplace Shell
object remains in existence until it is explicitly destroyed.

Chapter 8. Direct Manipulation

Direct manipulation of icons on the Presentation Manager desktop in order to
carry out processing tasks has been possible since the first release of
Presentation Manager in OS/2 Version 1.1, but only in Version 1.3 was a
standard method introduced for implementing such function. Previously, each
programmer needed to devise a set of protocols, and write code in every
application to handle all the mouse messages and interaction between windows
that may have been needed.

OS/2 Version 1.3 introduced some standards for coding direct manipulation
operations, in the form of new message classes (the DM_xxxx messages), and
standard protocols known as rendering mechanisms, which are used to
communicate required information for commonly used direct manipulation
operations. This support is continued in OS/2 V2.0, and is of increased
importance since the Workplace Shell itself makes extensive use of direct
manipulation. Applications that use direct manipulation are therefore more likely
to be written under Version 2.0, either to interact with one another or to make
use of Workplace Shell facilities such as printer objects or the shredder.

This chapter discusses the use of direct manipulation in a program, covering the
major messages and data structures involved, and the use of the standard
rendering mechanisms. Examples of the use of these messages and data
structures are given, along with guidance on implementing a private rendering
mechanism to meet the needs of a particular application.

8.1.1 Direct Manipulation Basics
It might appear that dragging an icon from one window and dropping it onto
another is straightforward, but on closer consideration it proves to be somewhat
more complex. Consider the simple action of dragging an icon representing a
customer from one container window to another, the intention being to move the
customer from one branch of the business (represented by the first container) to
another (the second container window). The following steps are required:

© Copyright I BM Corp. 1993

1. The program owning the first container (hereafter called the source program)
must determine which customer the user wishes to move (hereafter known
as the dragitem).

2. The source program must decide on an icon or bitmap to represent the
customer as the user drags the customer around the screen.

3. The source program must package a number of items of information to travel
with the icon, so that potential target windows may decide whether or not
they will allow the item to be dropped on them.

4. As the icon passes outside the container to other areas, its appearance must
be constantly updated to indicate to the user whether a drop is allowed.

5. When the icon reaches a potential target window, the program owning the
target window (hereafter known as the target) must access the information
about the dragged item to decide whether it will allow the item to be
dropped. At this point, the rendering mechanism used to convey this
information becomes significant, since both the source and target must be
able to understand the mechanism.

171

6. Once a drop has occurred, the target window must decide the form in which
it wishes to receive the dropped object (if more than one form is supported
by both source and target), and inform the source program accordingly.

7. The source program must make the data representing the customer
available to the target program. Since the source and target programs may
not necessarily run in the same process, this may not be trivial. Again, the
rendering mechanism to be used becomes significant.

8. The source must inform the target that the data is ready.

9. The target must access and retrieve the data.

10. The source must delete its own copy (since the operation is a "move"
operation).

11. The target must display the new customer object in its own container
window, in the location at which it was dropped.

While this appears extremely complex, much of the necessary work is done by
Presentation Manager for a Presentation Manager application; for a Workplace
Shell object, even more of the necessary function is automated by the Workplace
Shell. The remainder of this chapter will describe the steps necessary for a
Presentation Manager application and/or a Workplace Shell object to exploit
drag/drop functionality.

8.1.2 Significant Events

172 OS/2 V2.0 Volume 4

There are a number of significant events that occur during a direct manipulation
operation, and which must be communicated to the source and/or target of the
operation. These are as follows:

• Initiation of the drag operation, which must be communicated to the source
so that it can initialize data structures with information relating to the
drag item.

• Dragging the object over a potential target, which must be communicated to
the target so that the target can determine whether a drop operation is valid.

• Dropping the object over a target, which must be communicated to the target
so thaf it may decide the form in which it wishes the dragitem data to be
passed, and allocate any necessary resources to receive the data.

• Transferring the information between the source and the target to complete
the overall direct manipulation sequence.

Presentation Manager carries out much of the required notification of drag/drop
events using messages, which are passed to the source or target windows as
necessary during the drag/drop operation. The required messages are
described in the OS/2 2.0 Programming Guide Volume II and their use is
discussed in 8.3, "Using Direct Manipulation" on page 177.

In certain cases, the behavior of a Workplace Shell object participating in a
direct manipulation operation varies somewhat from that of a Presentation
Manager window. This is due to the fact that the Workplace Shell implements
much of the required message handling itself, and directly invokes the
appropriate methods in the object. Where the behavior of a Workplace Shell
object differs from that of a Presentation Manager window, this is noted in the
text.

8.1.3 Rendering Mechanisms
Rendering mechanisms are the means by which the source and target of a
drag/drop operation determine the data type of the dragitem and the format of
the information to be exchanged.

While the precise sequence of events that takes place after a drop has occurred
is dependent upon the application, a number of standard rendering mechanisms
have been defined to enable diverse applications to engage in direct
manipulation with one another. These standard rendering mechanisms are used
by various components of OS/2, as well as being available for use by
applications.

Three standard rendering mechanisms are provided by Presentation Manager
and are documented in the OS/2 2.0 Programming Guide Volume//:

DRM_PRINT This rendering mechanism is designed for applications that wish
to provide printing facilities via direct manipulation, by allowing
the user to drag items from the application and drop them on
one of the Workplace Shell printer objects.

It is a very simple mechanism. When an object is dropped on a
printer object, the printer object sends a DM_PRINTOBJECT
message, one parameter of which gives the name of the print
queue represented by that printer object. It is then the
responsibility of the source window to print the relevant data to
the specified queue.

Note that in OS/2 Version 1.3, the DM_PRINT message was used
for this purpose, rather than the DM_PRINTOBJECT message.

DRM_OS2FILE This rendering mechanism is intended for applications that wish
to allow the dragging and dropping of file objects between
windows or folders on the desktop. Such applications include
the File Manager in OS/2 Version 1.3, or the Drives objects in
OS/2 V2.0.

DRM_DDE

With this mechanism, all information about the source file may
be contained in the fields of the DRAGITEM structure, so it is not
necessary for a protracted conversation to take place between
source and target windows. In the simplest case, the target can
complete the operation using only this information with no
further involvement from the source window, though this
rendering mechanism does allow for more interaction between
the two windows should this be useful.

The DOE rendering mechanism is intended for applications in
which drag/drop actions will be used to set up DOE links
between windows. The DOE then proceeds according to
standard ODE protocols.

Further rendering mechanisms may be devised and documented for use by a
particular user's applications. The creation and use of rendering mechanisms is
discussed in 8.4, "Using Rendering Mechanisms" on page 187.

Chapter 8. Direct Manipulation 173

8.2 Data Structures Used in Drag/Drop
Three structures contain the data that travels with an item while it is being
dragged; these are the DRAGINFO, DRAGITEM and DRAGIMAGE structures. A
further structure, the DRAGTRANSFER structure, is used to transfer information
between source and target windows after a drop has occurred.

Details of the fields within these structures can be found in the IBM OS/2 Version
2.0 Presentation Manager Reference, and full descriptions will not be given here.
However, the following sections describe in general terms the kind of data the
structures contain, and particularly certain critical fields.

8.2.1 The DRAGINFO Structure

174 OS/2 V2.0 Volume 4

The DRAGINFO structure contains information about the overall drag operation,
which may consist of one or more drag items. Information in the DRAGINFO
structure determines the source and type of the drag operation, and provides
pointers to one or more DRAGITEM structures which identify individual
drag items.

The handle of the source window for the drag operation is contained in the
DRAGINFO structure. This handle enables a target window which receives the
structure to initiate a conversation with the source window if necessary, in order
to exchange information.

The other item of note in the DRAGINFO structure is a field which identifies the
type of drag operation that the user has selected. For example, a value of
DO_COPY means that the user is holding the Ctrl key down, which by convention
means that a copy operation is required. The DO_DEFAULT value means that a
default drag operation is to be used because the user is not holding down any
modifier key.

The DRAGINFO structure contains a counter that specifies how many dragitems
are involved in the current operation. This counter is then used to access an
array of pointers, also contained within the DRAGINFO structure, which reference
individual DRAGITEM structures for each dragitem.

Note that the DRAGINFO structure must be accessible not only to the source
window that sets it up in the first place, but also to any potential target windows.
Since these windows may not be owned by the same process, the DRAGINFO
structure must be allocated in shared memory. In order that the structure be
correctly allocated and easily accessible by the system in order to provide it to
potential target windows, OS/2 allocates the DRAGINFO structure on the
application's behalf, using the DrgAllocDraginfo() function. This function is called
by the source window when it is notified of a drag operation by receiving a
WM_BEGINDRAG message.

For Workplace Shell objects, the Workplace Shell handles the allocation and
initialization of the DRAGINFO structure. The object itself is not required to take
any action with respect to this structure.

8.2.2 The DRAGITEM Structure
The DRAGITEM structure contains information about an individual dragitem. A
drag operation may include one or more dragitems, and a separate DRAGITEM
structure is used for each. The number of dragitems, and an array of pointers to
the DRAGITEM structures, is contained in the DRAGINFO structure. In
conjunction with the information contained in the DRAGINFO structure, the
DRAGITEM structure provides the information required by a potential or actual
target window, to determine whether a drop operation is valid for the dragitem.

Several of the fields in the DRAGITEM structure are defined as being of type
HSTR. These fields refer to ordinary null-terminated character strings that are
given string handles by Presentation Manager when the DrgAddStrHandle{)
function is called. It is the string handles that are stored in the DRAGITEM
structure; the strings themselves are stored by Presentation Manager and may
be accessed by any other process that has access to the string handle, using the
DrgQueryStrName() function.

For Presentation Manager windows, the DRAGITEM structure is normally
allocated by the source of the drag/drop operation as a local variable, since it
only persists for the duration of the operation. For Workplace Shell objects, the
structure is allocated by the Workplace Shell and a pointer to it is passed to the
object by the Workplace Shell when it invokes the object's _wpFormatDragltem
method when the drag is initiated.

A number of fields in the DRAGITEM structure are of primary importance; these
fields are described in the following sections.

8.2.2.1 ulltemlD
This field contains a value provided by the source window, which uniquely
identifies the dragitem. For example, the value might be a listbox index value, a
customer number, or any other value that is unique and meaningful to the
source window. The reason for having this identification is that later in the
drag/drop processing, the target window may need to ask the source window for
more information about the dragged item. The identifier can then be used to
identify the item concerned.

8.2.2.2 hstrType and hstrRMF
These values refer to character strings containing details of the type of data
represented by the dragitem, and the rendering mechanisms and formats that
the source is able support for the item. The types correspond to the file type
extended attribute, and are identified by names of the form DRT _xxxx; for
example, ORT_ TEXT for plain text, or ORT _BITMAP for bitmap data.

The rendering mechanism is specified in the hstrRMF field, and may refer to any
of the standard mechanisms described in 8.1.3, "Rendering Mechanisms" on
page 173, identified by the names DRM_PRINT, DRM_DISCARD, DRM_OS2FILE
and DRM_DDE, or to any user-defined rendering mechanism for which a similar
name should be defined. More than one rendering mechanism can be specified;
for example, a program that allows the dragging of files may allow the file to be
moved or copied to another directory, or to be printed by being dropped on a
printer object. In this case the program would include the names of both the
Print and OS/2 File rendering mechanisms in its hstrRMF string, allowing the
target window to decide which is more suitable.

Chapter 8. Direct Manipulation 175

The format specifications, which are also contained in the hstrRMF field, inform a
target window of the data formats supported by the dragitem for each of its
supported rendering mechanisms. Data format names use the convention
DRF _xxxx.

To illustrate the use of format specifications and rendering mechanisms,
consider a spreadsheet program that allows the user to drag an icon
representing a particular spreadsheet; the user may choose to drag the data into
a word-processor, into another spreadsheet, or onto a printer object for printing.
For dragging the file to another spreadsheet or to a word-processing document,
the DRM_OS2FILE rendering mechanism is appropriate but for dragging to a
printer object, the DRM_PRINT mechanism is required. In the case where the
target is the printer or the word-processing document, clearly the required
format for the data is text, but in the case of a drag to another spreadsheet it
would be more convenient to have the numerical data and the cell relationships
transferred too, so a different data format should be used, perhaps SYLK.

The dragitem therefore needs to indicate that it supports the following rendering
mechanism/data format combinations:

• DRM_OS2FILE with ORF _TEXT

• DRM_PRINT with ORF_ TEXT

• DRM_OS2FILE with ORF _SYLK.

The hstrRMF string provides a syntax for defining this in a fairly straightforward
way. Complete details are given in the OS/2 2.0 Programming Guide Volume II
but, for the above example, the hstrRMF string is as follows:

<DRM_OS2FILE,DRF_TEXT>,<DRM_PRINT,DRF_TEXT>,<DRM_OS2FILE,DRF_SYLK>

This can be expressed slightly more concisely as:

(DRM_OS2FILE,DRM_PRINT)x(DRF_TEXT),<DRM_OS2FILE,DRF_SYLK>

Here the first two bracketed items, connected with an "x," indicate that all
possible pairs made up of one from the first bracket and one from the second,
are implied. This notation is very useful in more complex examples, where it
can save the programmer from having to enumerate all possible combinations in
the string.

8.2.2.3 hstrContainerName, hstrSourceName, hstrTargetName
The meaning of these three fields depends on the rendering mechanism to be
used; with some rendering mechanisms, certain fields are not needed. They
apply most directly to the DRM_OS2FILE mechanism where they are used to
define the source directory, source file name, and a suggested target filename
(which may be overridden by the target window if it so chooses).

8.2.3 The DRAGIMAGE Structure

176 OS/2 V2.0 Volume 4

This structure, as its name suggests, contains information about the actual
image to be displayed on the screen as the user performs the drag operation. In
this structure, the source window specifies the icon or bitmap to be used,
whether it is to be rescaled, and the coordinates of the hot spot.

8.2.4 The DRAGTRANSFER Structure
This structure is passed with a DM_RENDER message, from the target to the
source window, after a drop has occurred. It allows the target window to inform
the source of several important things. For example, where the source supports
several different rendering mechanisms and/or formats, the target can specify
which of these it wishes to use. Similarly, if the source supports both copy and
move operations, the target can specify which it will use by means of the
usOperation field of this structure.

Another important field is hstrRenderToName. This tells the source window
where to place the data, so that the target will know where to find it. The
precise interpretation of this depends on the rendering mechanism; for example,
in the case of the DRM_OS2FILE rendering mechanism, it contains the fully
qualified name that the file is to be given at its destination. Where the transfer
of information between source and target window is a simple memory transfer,
this field may be used to contain the name of a named shared memory object
into which the source is to place the data.

8.3 Using Direct Manipulation
The following sections use an example to illustrate the way in which direct
manipulation can be used within a Presentation Manager application or a
Workplace Shell object. The example consists of a Customer program which
reads and displays customer details. Each customer is displayed as an object in
a container window.

The other component of the example is a Telephone program, which accepts
customer information from the Customer program via drag/drop, and
automatically dials the customer's telephone number. The Telephone program
communicates with the Customer program using a private rendering mechanism
defined by the application. This rendering mechanism uses shared memory, and
is identified by the name DRM_SHAREMEM. The rendering mechanism is
explained in detail in 8.4.2, "Implementing a Private Rendering Mechanism" on
page 189.

The example uses Presentation Manager windows as both the source and target
for the drag/drop operation, since this enables a description of the complete set
of steps required to complete the operation. For Workplace Shell objects,
certain steps are handled automatically by the Workplace Shell itself, and a
Workplace Shell object class is therefore not required to carry out these steps.
Where a particular step is automated by the Workplace Shell, this is noted in the
discussion.

8.3.1 Initiating a Drag Operation
A drag operation is initiated by the source window or object. When the user
starts the drag operation by pressing and holding down mouse button 2,
Presentation Manager passes a WM_BEGINDRAG message to the window or
object that is currently under the mouse pointer. In the case of a Presentation
Manager window, the window procedure for that window may process the
WM_BEGINDRAG message in order to initialize the DRAGINFO and DRAGITEM
structures, and start the drag operation. A Workplace Shell object is notified of a
drag initiation by the Workplace Shell itself, which invokes the object's
_wpFormatDragltem method.

Chapter B. Direct Manipulation 177

178 OS/2 V2.0 Volume 4

The initialization of a drag operation from a container window is shown in
Figure 81 on page 179.

PCONTRECORD pCRec;
PCNRDRAGINIT pcnrlnit;
PDRAGINFO pDinfo;
DRAG ITEM DI tern;
DRAGIMAGE Dlmage;

APIRET re;

case WM CONTROL:
switch (SHORT2FROMMP(mpl))

{
case CN_IN!TDRAG:

pcnrlnit = /* Get container data */
(PCNRDRAGINIT)mp2;

pCRec = (PCONTRECORD)pcnrlnit->pRecord;

if (pCRec == NULL)
return(El);

/* If no item selected */
/* Return */

pDinfo = DrgAllocDraginfo(l); /*Allocate DRAGINFO */

Oltem. hwndltem = hWnd; /* Initialize DRAG ITEM * /
Dltem.ulitemIO = (ULONG)pCRec;
Dltem.hstrType =

DrgAddStrHandle(11 DRT_CUSTOMER 11
);

Oltem. hstrRMF =
OrgAddStrHandle(11 (DRM_SHAREMEM,DRM_PRINT)x(DRF_TEXT) 11

);

Dltem.fsControl =El;
Ditem.fsSupportedOps = DO_COPYABLE I DO_MOVEABLE;

re = DrgSetDragltem(pOinfo,
&Oltem,
sizeof(Dltem),
El);

/* Set item in DRAGINFO */
/* Pointer to DRAGITEM */
/* Size of DRAGITEM */
/* Index of DRAGITEM */

Olmage.cb = sizeof(DRAGIMAGE); /* Initialize DRAGIMAGE */
Dlmage.cptl =El; /* Not a polygon */
Dlmage.hlmage = hPostlcon; /* Icon handle for drag */
Dlmage.fl = ORG_ICON; /*Dragging an icon */
Dlmage.cxOffset = El; /* No hotspot */
Dlmage.cyOffset = El;

hDrop = DrgDrag(hWnd, /* Initiate drag */
pDinfo, /* DRAGINFO structure */
(PDRAGIMAGE)&Dlmage, /* DRAGIMAGE structure */
1, /* Only one DRAGIMAGE */
VK_ENDDRAG, /* End of drag indicator */
NULL); /*Reserved */

DrgFreeDraglnfo(pDinfo);
break;

/* Free DRAGINFO struct */

Figure 81. Drag Initiation From a Container Window. Another window class would
perform these operations in response to a WM_BEGINDRAG message, rather than a
WM_CONTROL message with the CN_INITDRAG indicator.

Chapter 8. Direct Manipulation 179

180 OS/2 V2.0 Volume 4

The code shown in Figure 81 would form part of the window procedure for the
owner of the container control, since it is this window that would receive the
WM_CONTROL message from the container.

8.3.1.1 Initializing Data Structures
When a WM_CONTROL message is received from a container window, a pointer
to a CNRDRAGINIT structure is passed in the second parameter to the
WM_CONTROL message. This structure contains a pointer to the item within the
container that the user is attempting to drag. If this pointer is NULL, the user
has attempted a drag operation while no item in the container was selected. In
the current example, the drag operation is ignored and control is immediately
returned to Presentation Manager.

The source window then allocates a DRAGINFO structure using the
DrgAllocDraginfo() function. The DRAGITEM structure is initialized with the
appropriate values, and its pointer is set in the DRAGINFO structure using the
DrgSetDragltem() function. All interaction with the DRAGINFO structure is
performed using Presentation Manager functions, avoiding the necessity for the
source window procedure to address the DRAGINFO structure directly.

The DRAGIMAGE structure is then initialized with the information relating to the
icon that will be displayed under the mouse pointer during the drag operation.

For a Workplace Shell object, the Workplace Shell itself performs the
initialization of the DRAGINFO structure. The object may perform its own
initialization of the DRAGITEM structure during processing of the
_wpFormatDrag/tem method, if class-specific processing is required. For
example, if the object class implements a private rendering mechanism, the
appropriate information must be entered into the correct fields in the DRAGITEM
structure as part of the _wpFormatDrag/tem method.

Note that a Workplace Shell object need not allocate the DRAGITEM structure,
since the structure is already allocated by the Workplace Shell, and a pointer to
the structure is passed to the _wpFormatDrag/tem method upon invocation.

8.3.1.2 DrgDrag() Processing
Once all data structures are allocated and initialized, the drag operation is
initiated using the DrgDrag() function. This function is synchronous; it does not
return control to the source window procedure until the key or mouse button
specified in the fifth parameter {VK_ENDDRAG in the example above) is
detected, and any synchronous message passing has been completed.

At this point, the DrgDrag() function returns a window handle. If the dragitem
was dropped over a window or object that was able to accept the item, the
window handle of the target window is returned. If a drop occurred over an
object that was unable to accept the item, a NULL window handle is returned.

Upon return of control by the DrgDrag() function, the drag operation and the drop
operation (if any) is complete, and the DRAGINFO structure can be released by
the source window procedure.

A Workplace Shell object is not required to invoke the DrgDrag() function, since
this is performed automatically by the Workplace Shell when the object
completes the processing of its _wpFormatDragltem method.

8.3.1.3 Synchronous Message Processing During DrgDrag()
When the user drops the dragitem over another window or object that is able to
accept the item, a DM_DROP message is passed to the target, which then
processes the drop operation. Note that the target's DM_DROP message
processing must complete and return control to Presentation Manager before the
DrgDrag() function will return control to the source window procedure. Thus any
processing that is performed by the target window during its processing of the
DM_DROP message is synchronous.

The synchronous nature of this processing is necessary in order to ensure that
the drop operation, and the accompanying transfer of information, is completed
before the user performs any other operation. For this reason, it is
recommended that any messages passed by the target to the source window
during processing of the DM_DROP message should be passed synchronously
using the DrgSendTransferMsg() function. This is a departure from the normal
Presentation Manager guidelines, where messages are processed
asynchronously, but is required in order to ensure data integrity.

A number of synchronous messages may be sent to the source window at the
completion of a drop, prior to the DrgDrag() call returning control to the source
window. For example, if the user drops an object on a Workplace Shell printer
object with the DRM_PRINT rendering mechanism specified, the target object
sends a DM_PRINTOBJECT message to the source window. This message
contains sufficient information for the source window to direct a print data
stream to the print queue represented by the printer object. The first parameter
in the DM_PRINTOBJECT message contains a pointer to the DRAGITEM structure
that identifies the item being dropped, and the second parameter contains the
name of the print queue for the printer object.

An example of the way in which the source window procedure may process the
DM_PRINTOBJECT message is shown in Figure 82.

case OM PRINTOBJECT:
WinMessageBox(HWND_DESKTOP,

hWnd,
"Printing customer details",
"Print Message Received",
e,
MB_OK);

<Extract DRAGITEM pointer from mpl>
<Extract print queue name from mp2>

<Print item>

break;

Figure 82. Receiving a DM_PRINTOBJECT Message

/* Display message box */
/* Curr window is owner */
/* Message box text */
/* Message box title */
/* No identifier */
/* Include okay button */

Note that the code that actually performs the printing operation has been omitted
from Figure 82. Printing under OS/2 Version 2.0 and Presentation Manager is
discussed in detail in OS/2 Version 2.0 - Volume 5: Print Subsystem, and
examples are also provided in the PRTSAMP program included in the IBM
Developer's Toolkit for OS/2 2.0.

Chapter 8. Direct Manipulation 181

8.3.2 Dragging Over a Window

182 OS/2 V2.0 Volume 4

While the dragitem is being dragged, Presentation Manager sends a succession
of DM_DRAGOVER messages to the Presentation Manager window under the
mouse pointer; one message is sent for every mouse movement. The
DM_DRAGOVER message informs the target window that it is being dragged
over, and allows it to access sufficient information to allow the window to decide
whether it is able to accept a drop operation. The window procedure indicates
this to Presentation Manager by the value that it returns in response to the
DM_DRAGOVER message.

The information required by the window is contained in two data structures; the
DRAGINFO structure, which is referenced by one of the parameters in the
DM_DRAGOVER message, and the DRAGITEM structure, which can be accessed
from the DRAGINFO structure. Since multiple items may be dragged at the
same time, the DRAGINFO structure contains an array of pointers to DRAGITEM
structures, one for each dragitem. The DRAGINFO structure maintains a count of
the number of dragitems.

When a potential target is a Workplace Shell object, the Workplace Shell notifies
the object that a dragitem is being dragged over it, by invoking the object's
_wpDragOver method. The DRAGINFO structure is passed to the object as a
parameter to this method. Processing of the _wpDragOver method is very
similar to that described below for Presentation Manager window procedures. In
normal circumstances, however, the _wpDragOver method is not overridden by
an object class; the default processing supplied by the parent class is allowed to
occur unless the object class supports private rendering mechanisms that must
be explicitly checked against those supported by the dragitem.

An example of the way in which a window procedure may process the
DM_DRAGOVER message is shown in Figure 83.

PDRAGITEM pDitem;
PDRAGINFO pDinfo;

case DM_DRAGOVER:
pdinfo = (PDRAGINFO)mpl;
DrgAccessDraginfo(pdinfo);
pditem = DrgQueryDragitemPtr(pdinfo,

0);
if (!DrgVerifyRMF(pditem,

11 DRM_SHAREMEM 11
,

11 DRF _TEXT"))
{
DrgFreeDraginfo(pdinfo);
return(MPFROM2SHORT(DOR_DROP,

DO_COPY));
}

else
{

DrgFreeDraginfo(pdinfo);
return(MPFROM2SHORT(DOR_NEVERDROP,

0));

break;

Figure 83. Handling the DM_DRAGOVER Message

/* Pointer to DRAGITEM */
/* Pointer to DRAGINFO */

/* Get DRAGINFO pointer */
/* Access DRAGINFO */
/* Access DRAGITEM */
/* Index to DRAGITEM */
/*Check valid rendering */
/* mechanisms and data */
/* formats */

/* Free DRAGINFO */
/* Return okay to drop */
/* Copy operation valid */

/* Free DRAGINFO */
/*Drop not valid */
/* No valid operations */

The code shown in Figure 83 is quite simple; the processing of the
DM_DRAGOVER message is intended only to determine whether a drop
operation is valid for the specified dragitem and the target window. First, access
is gained to the DRAGINFO structure, ~hich is referenced by the first parameter
to the DM_DRGOVER message. The DRAGINFO structure is then used to access
the DRAGITEM structure, by means of the DrgQueryDragitemPtr() function. The
window procedure then has access to all the information needed to determine
the validity of a drop operation.

In this particular case, the only type of dragitem that is acceptable to the target
window is one that represents a customer object, using the specially defined
DRM_SHAREMEM rendering mechanism. The window procedure therefore uses
the DrgVerifyRMF() function to check whether the dragitem supports this
rendering mechanism and the data type required by it.

According to the result returned by the DrgVerifyRMF() function, the window
procedure returns either DOR_DROP, indicating that a drop is acceptable, or
DOR_NEVERDROP, indicating that a drop is not acceptable and that there is no
point in sending any more DM_DRAGOVER messages to this window. A number
of other valid returns are possible for the DM_DRAGOVER message; these are
documented in the IBM OS/2 Version 2.0 Presentation Manager Reference.
Irrespective of the return code, the DRAGINFO structure is released.

If a window returns any return code other than DOR~DROP to this message, the
icon seen by the user is automatically modified to show that a drop is not
allowed, thereby providing instant visual feedback.

8.3.3 Dropping an Object
When the user drops a dragitem over a Presentation Manager window, the
target receives a DM_DROP message. The window procedure for the target may
process that message in order to handle the drop operation, and may either
complete the operation or initiate a conversation with the source window or
object in order to do so, typically by sending it a DM_RENDER message, which
ultimately will result in the data being transferred.

When the user drops a dragitem over a Workplace Shell object, the Workplace
Shell invokes that object's _wpDrop method. The processing of this method is
very similar to that discussed below for the DM_DROP message. However,
object classes that do not implement private rendering mechanisms need not
override the _wpDrop method; the default processing provided by the parent
class may be allowed to occur.

In the customer/phone dialler example, the only type of dragitem that the order
program will accept is a customer object, which uses the application-defined
DRM_SHAREMEM rendering mechanism. The correct data type and rendering
mechanism is verified by the target window procedure during processing of the
DM_DRAGOVER message, so there is no need for further checking when the
DM_DROP is processed. Note however, that in a more sophisticated application,
which supports multiple data types and rendering mechanisms, it may be
necessary to perform more detailed checking.

Chapter 8. Direct Manipulation 183

184 OS/2 V2.0 Volume 4

#define XFERMEM 11 \\SHAREMEM\\DragXfer.mem 11 /* Shared mem obj name */

PVOID pCust; /* Customer record ptr */

PDRAGITEM pDitem;
PDRAGINFO pDinfo;

/* DRAGITEM struct ptr */
/* DRAGINFO struct ptr */

case OM DROP:
pOinfo = (PDRAGINFO)mpl;
OrgAccessDraginfo(pDinfo);
pDltem = DrgQueryDragitemPtr(pdinfo,

0);

OosAllocSharedMem(&pCust,
XFERMEM,
sizeof(CUSTOMER),
PAG_COMMIT I
PAG_WRITE I
PAG_READ);

pdxfer = OrgAllocOragtransfer(l);
pdxfer->cb = sizeof(DRAGTRANSFER);
pdxfer->hwndClient = hWnd;
pdxfer->pditem = pOltem;
pdxfer->hstrSelectedRMF =

/* Get DRAGINFO pointer */
/* Access DRAGINFO */
/* Access DRAGITEM */
/* Index to DRAGITEM */

/*Allocate shared mem */
/* Named memory object */
/* Size of memory object */
/* Commit storage now */
/*Allow write access */
/*Allow read access */

/*Allocate ORAGTRANSFER */
/* Init ORAGTRANSFER */

DrgAddStrHandle(a<ORM_CUSTOMER,DRF_TEXT> 11
);

pdxfer->hstrRenderToName =
DrgAddStrHandle(XFERMEM);

pdxfer->ulTargetlnfo = 0;
pdxfer->usOperation = DO_COPY;

rc=DrgSendTransferMsg(pDinfo->hwndSource, /* Send msg to source */
OM RENDER, /* DM_RENDER message */
(MPARAM)pdxfer, /* DRAGTRANSFER pointer */

if (re == TRUE)
{

NULL);

strcpy(msgtext, 11 Di all ing number 11
);

strncat(msgtext,
pxfercust->phone,
30);

WinMessageBox(HWND_DESKTOP,
hWnd,
msgtext,
"Telephone Dialler11

,

0,
MB_OK);

PhoneDial(pxfercust->phone);
}

DrgFreeDraglnfo(pdinfo);
DrgFreeOragtransfer(pdxfer);
DosFreeMem((PVOID)pxfercust);
break;

Figure 84. Handling the DM_DROP Message

/* If rendered okay */

/* Build message text */

/* Display message box */
/* Curr window is owner */
/*Message text */
/* Message title */
/* No identifier */
/* Include okay button */

/* Dial number

/* Release all data
/* structures

*/

*/
*/

In Figure 84, access must first be gained to the DRAGINFO and DRAGITEM
structures. This is achieved in a similar manner to that already described for the
DM_DRAGOVER message. Having gained access to these structures, a named
shared memory object is then allocated, into which the source window will be
asked to place the customer details.

A DRAGTRANSFER structure is then allocated, in which information about the
target's requirements can be passed to the source window. This structure is
similar to the DRAGINFO structure, in that it must be accessible from multiple
processes. It is therefore allocated using the DrgAllocDragtransfer() function,
ensuring that the structure will be accessible to the source window, which may
be in another process and therefore not have direct access to the target's
private data areas.

There are several important fields in this structure. The target window
procedure places a pointer to the DRAGITEM structure into the pditem field,
thereby enabling the source to identify which item has been dropped. The
hstrSelectedRMF field is used to identify which rendering mechanism and data
format is to be used for this target, from the selection offered by the source in
the DRAGITEM structure. The hstrRenderToName field is used in the
DRM_SHAREMEM rendering mechanism to pass the name of the shared memory
object to the source window.

Once this structure has been completed with the necessary information, it is sent
to the source window as part of a DM_RENDER message. This message is
passed to the source window using the DrgSendTransferMsg() function. This
function should be used for drag/drop operations in preference to the
WinSendMsg() function since, for a DM_RENDER message, it also grants access
to the DRAGTRANSFER structure for the process that owns the window to which
the message is being sent.

In processing the DM_RENDER message, the source window copies the
customer details into the shared memory so that when DrgSendTransferMsg()
returns, the target window procedure may extract the data it needs. A detailed
explanation of the source window's processing of a DM_RENDER message is
given in 8.3.4, "Transferring Information."

Upon completion of the information transfer, the entire drag/drop operation is
complete and the data structures allocated during the operation may be
released. For the DRAGINFO and DRAGTRANSFER structures, this must be
carried out using the DrgFreeDraQinfo() and DrgFreeDragtransfer() functions.

8.3.4 Transferring Information
As explained in 8.3.3, "Dropping an Object" on page 183, a target window may
send a DM_RENDER message to the source when it receives a DM_DROP
message from Presentation Manager. Similarly, a Workplace Shell object may
send the same message when its _wpDrop method is invoked by the Workplace
Shell. This message is normally sent to the source when the target requires the
assistance of the source in completing the transfer of data as part of the drop
operation.

The source window processes this message in its window procedure, according
to the rendering mechanism requested by the target. If the source is a
Workplace Shell object, the Workplace Shell will directly invoke the object's
_wpRender method to perform the same function. In most cases, however, an

Chapter 8. Direct Manipulation 185

186 05/2 V2.0 Volume 4

object does not need to override the _wpRender method unless it wishes to
implement a private rendering mechanism.

The DM_RENDER processing from the Customer program is shown in Figure 85.

PDRAGITEM pDitem;
PDRAGINFO pDinfo;
PDRAGTRANSFER pDXfer;
PCONTRECORD pCRec;
PCUSTOMER pCust,

pXferData;
CHAR xfermem[100];

HWND hContainer;

case OM RENDER:
pDXfer = (PDRAGTRANSFER)mpl;
pDltem = pDxfer->pditem;
pCRec = pditem->ulltemID;
pCust = pCRec->cust;

/* DRAGITEM pointer */
/* DRAGINFO pointer */
/* DRAGTRANSFER pointer */
/* Container record ptr */
/* Customer record ptrs */

/* Memory name buffer */

/* Container handle */

/* Get DRAGTRANSFER ptr */
/* Get DRAGITEM ptr */
/* Get container rec ptr */
/* Get customer rec ptr */

DrgQueryStrName(pDXfer->hstrRenderToName, /* Get mem object name */
100, /*Size of buffer */
xfermem); /*Buffer */

DosGetNamedSharedMem((PPVOID)&pXferData,
xfermem,
PAG_WRITE I
PAG_READ);

memcpy(pCust,
pXferData,
sizeof(CUSTOMER));

DosFreeMem((PVOID)pCust);

if (pDXfer->usOperation == DO_MOVE)
{
hContainer = WinWindowFromID(hWnd,

CONTAINER);
RemoveCustomer(hContainer,

pCRec);
}

return((MRESULT)TRUE);
break;

Figure 85. Handling the DM_RENDER Message

/* Get shared mem object */
/* Name of mem object */
/*Allow write access */
/*Allow read access */
/* Copy customer record */
/* to shared mem object */
/* No. of bytes to copy */

/* Free shared mem obj */

/* If move operation */

/* Get container window */
/* handle */
/* Remove record from */
/* container */

/* Return TRUE */

The first parameter to the DM_RENDER message contains a pointer to the
DRAGTRANSFER structure, which in turn contains a pointer to the DRAGITEM
structure in its pditem field. For a Workplace Shell object, a pointer to the
DRAGTRANSFER structure is passed as a parameter to the _wpRender method.

In the DRM_SHAREMEM rendering mechanism, the ul/tem/D field in the
DRAGITEM structure is used to hold a pointer to the customer container record
(of type CONTRECORD). in whch the cust field is a CUSTOMER structure
containing details of the customer object which was dragged.

Next, the name of the shared memory object previously allocated by the target
window is retrieved from the hstrRenderToName field of the DRAGTRANSFER
structure. This name is used to obtain access to the shared memory object.
The customer details are copied into this memory object, after which the
memory object is freed.

The operation code in the DRAGTRANSFER structure is then checked to
establish whether the target requires a copy or a move operation. If a move was
requested, the source program deletes the customer record from the contaiiner
by calling an application subroutine named RemoveCustomer().

The window procedure then returns the value TRUE, indicating that the data was
successfully rendered. This value is returned to the target window procedure
that issued the DrgSendTransferMsg() call. At this point, the target window
procedure has access to all information required to complete the drop operation,
and may do so without further communication.

At the completion of the rendering procedure, the source may pass a
DM_RENDERCOMPLETE message to the target, allowing the target to release
any resources still outstanding. A Presentation Manager window may process
this message in its window procedure, while a Workplace Shell object is notified
of the event by the Workplace Shell, which invokes the object's
_wpRenderComplete method. This is usually only required in cases where
complex private rendering mechanisms involve multiple transfers. It is not used
in the above examples.

8.4 Using Rendering Mechanisms
The rendering mechanism is essentially a protocol that determines the contents
of several fields in the DRAGITEM structure. These fields are:

• ulltem/D, which contains an application-specific value uniquely identifying the
item being dragged.

• hstrType, which contains a handle to a string defining the data type of the
drag item.

• hstrRMF, which contains a handle to a string containing the names of all
rendering mechanisms supported by the dragitem, and the data formats
supported by those rendering mechanisms.

• hstrContainerName, hstrSourceName and hstrTargetName, which contain
handles to strings used by the DRM_OS2FILE rendering mechanism, and
may be used by private rendering mechanisms to contain string data.

The content of the hstrRMF field should obey a set of syntactical rules that are
explained in the 0512 2.0 Programming Guide Volume II. Other fields in the
DRAGITEM structure may also be used by particular rendering mechanisms;
their use is dependent upon the individual rendering mechanism in use at the
time. Applications may use one of the standard rendering mechanisms
DRM_PRINT, DRM_DISCARD, DRM_OS2FILE or DRM_DDE, or may define their
own rendering mechanisms to support dragging and dropping of particular
drag items.

Chapter 8. Direct Manipulation 187

8.4.1 Standard Rendering Mechanisms

188 OS/2 V2.0 Volume 4

The following sections describe the use of two of the standard rendering
mechanisms, DRM_PRINT and DRM_OS2FILE. These mechanisms can be used
by Presentation Manager applications to interact with other applications and/or
Workplace Shell objects.

8.4.1.1 DRM_PRINT
For Presentation Manager applications running on the Workplace Shell desktop
under OS/2 Version 2.0, it may be desirable to allow the user to print from the
program by dragging the relevant item, such as a customer record, onto a
Workplace Shell printer object. Since all Workplace Shell printer objects are
written to understand the DRM_PRINT rendering mechanism, a Presentation
Manager may provide such function simply by adhering to this mechanism.

With the DRM_PRINT rendering mechanism, responsibility for actually carrying
out the printing rests within the source window. The source window must:

1. Detect the fact that a drag is being initiated by the user

2. Allocate and fill the DRAGINFO and DRAGITEM structures

3. Start the drag operation using the DrgDrag{) function

4. Process the DM_PRINTOBJECT message which is returned by the target
printer object.

The first three steps are handled in exactly the same way as illustrated in
Figure 81 on page 179. Note that a view of a Workplace Shell object need not
explicitly handle Presentation Manager messages in the window procedures for
its views. When the user initiates a drag from within a Workplace Shell object
such as a folder or work area, the object is notified by the Workplace Shell,
which invokes the object's _wpFormatDragltem method. This method is
processed in an identical manner to that shown for the window procedure in
Figure 81.

The final step is handled by processing the DM_PRINTOBJECT message in the
source window procedure. A simple example of such processing is shown in
Figure 82 on page 181.

8.4.1.2 DRM_DISCARD
The DRM_DISCARD rendering mechanism operates in a similar fashion to the
DRM_PRINT mechanism, and is intended for use by applications which create
their own equivalent to the Workplace Shell Shredder object. In this rendering
mechanism, the target passes a DM_DISCARDOBJECT message to the source,
which may either accept responsibility for the discard operation, abort the
operation, or allow the system to perform the operation.

Note that the system may only discard objects which are capable of being
rendered with the DRM_OS2FILE rendering mechanism; that is, program files
and data files. Other objects not based upon files must be explicitly discarded
by the source.

When a Workplace Shell object is dropped on the Shredder object, the
Workplace Shell intercepts the DM_DISCARDOBJECT message and invokes the
source object's wpDe/ete method.

8.4.1.3 DRM_OS2FILE
The DRM_OS2FILE rendering mechanism is designed to support moving and
copying file objects between containers. This rendering mechanism is described
in detail in the OS/2 2.0 Programming Guide Volume II, and an extensive
example is provided in the IBM Developer's Toolkit for OS/2 2.0. The details of
programming for the DRM_OS2FILE mechanism will therefore not be described
further in this document.

Certain fields in the DRAGITEM structure are designed specifically for this
rendering mechanism; the hstrContainer, hstrSourceName and hstrTargetName
fields are ideally suited to holding the source directory name, source file name,
and fully qualified target file name respectively. This is how these fields are
used by the DRM_OS2FILE rendering mechanism.

An alternative, and even more straightforward way to implement this rendering
mechanism, is to use the DrgDragfiles() function. This function automatically
allocates and fills the required data structures for the source window, avoiding
the need for the application to perform these functions and reducing the risk of
error.

8.4.2 Implementing a Private Rendering Mechanism
The OS/2 2.0 Programming Guide Volume II gives some advice on use of the
various messages available to implement a private ren~ering mechanism, and
also some guidelines on how such a rendering mechanism should be
documented. This section illustrates the implementation of a simple rendering
mechanism, by explaining the definition of the DRM_SHAREMEM rendering
mechanism used by the examples earlier in this chapter.

A rendering mechanism is necessary to pass the customer record data used in
the examples, since the CUSTOMER structure that contains this data is too large
to be contained within the DRAGITEM structure. It is therefore necessary, after a
drop has occurred, for the source program to make the relevant data available
to the target, in a format which is understood by and accessible to both the
source and the target. In the examples, a named shared memory object is used
to transfer the data; hence the name DRM_SHAREMEM used for the rendering
mechanism.

The DRM_SHAREMEM rendering mechanism operates as follows:

• The source window stores a pointer to the customer record being dragged in
the ulltem/D field of the DRAGITEM structure. This field is defined as
ULONG, but it can be used in any way that is meaningful to the source
window to identify the item being dragged. A pointer to the customer record
is a convenient way to do this.

• The target window, on receiving a DM_DROP message, allocates a named
shared memory object with a name of its choice. It then sends a
DM_RENDER message to the source window, passing the name of the
memory object in the hstrRenderToName field of the DRAGTRANSFER
structure, and indicating whether it requires a copy (DO_COPY) or a move
(DO_MOVE) to take place, using the usOperation field of the
DRAGTRANSFER structure.

• When the source window receives the DM_RENDER message, it obtains
access to the shared memory object and places the customer record in that
object. The source window knows which customer record to copy, since the

Chapter 8. Direct Manipulation 189

8.5 Summary

190 OS/2 V2.0 Volume 4

DRAGITEM structure, which includes a pointer to the customer record, is
passed along with the DRAGTRANSFER structure.

Finally, if a move operation was requested by the target, the source window
deletes the customer record from its own data.

• On receiving a TRUE return code from the DM_RENDER message, indicating
that the data was successfully rendered, the target window copies the data
out of the shared memory object, and uses it in whatever way it chooses.

It should be stressed that this is a very simple rendering mechanism. However,
it illustrates the general structure of such mechanisms, and their impact on the
contents of fields in the DRAGITEM and DRAGTRANSFER structures.

Direct manipulation is likely to become considerably more important to
application designers than it has been in previous releases of OS/2, because of
its central role in the object-oriented user interface provided by the Workplace
Shell. Even applications that are not implemented as Workplace Shell objects
should provide, so far as is practical, a similar style of interface. Direct
manipulation forms an essential part of such an interface.

The programming facilities for direct manipulation in OS/2 V2.0 are essentially
the same as those introduced in OS/2 Version 1.3, and consist of a set of
message classes, functions and data structures, along with defined protocols
known as rendering mechanisms, which define standard techniques for using
these facilities to pass different types of information between diverse
applications, and between user-developed applications and Workplace Shell
objects such as printers and the shredder.

User-defined rendering mechanisms may also be defined for specific purposes
that are not covered by the standard ones. The OS/2 2.0 Programming Guide
Volume II gives guidance on this and on how such rendering mechanisms should
be documented.

Chapter 9. Presentation Manager Resources

The definition and use of Presentation Manager resources by applications was
mentioned in Chapter 4, "The Presentation Manager Application Model." The
use of such resources greatly simplifies the task of the application developer in
creating windows, menu bars, etc., and provides a powerful tool for the
externalization of the user interface properties of an application object, thereby
enabling easier modification of these properties during development or
maintenance of the application. This chapter will describe the definition of
resources, and the ways in which resources may be used within a Presentation
Manager application.

9.1 Types of Resources

9.1.1 Fonts

A number of different types of resources may be defined for use by Presentation
Manager applications. These include text items such as menu bars and window
templates. and graphical items such as graphics fonts, icons and bitmaps.
Textual items are defined in the resource script file, which is described in 9.2,
"Resource Script File" on page 198. Non-textual items are defined and saved in
other files, and are referenced by statements in the resource script file. The
various types of Presentation Manager resource are described in the following
sections.

A font is a set of alphanumeric characters and other symbols. Fonts may be
designed interactively using the Font Editor application provided as part of the
IBM Developer's Toolkit for 0512 2.0. Once a font has been designed, the Font
Editor saves the font in a disk file with an extension .FNT. This font file is
referenced from the resource script file using the FONT keyword:

FONT 123 MYFONT.FNT

The integer following the FONT keyword is used to identify the font resource. A
symbolic name cannot be used to define a font resource.

A font file must be link-edited along with a resource script file containing a FONT
keyword referencing the .FNT file, and with the FONTS.OBJ and FONTS.DEF files
provided with the 0512 Programmers Toolkit, to produce a file with an extension
of .FON. Although a font cannot be stored in a dynamic link library, the .FON file
may be installed on the system by the user or installed explicitly by an
application. The font is then usable by any application in the system.
Alternatively, an application developer may choose not to install the font, but
merely to access it from a particular application using the Gpiloadfonts()
function.

9.1.2 Icons, Pointers and Bitmaps
As already mentioned, an icon is a graphical representation of an object on the
screen. For the purposes of discussion, icons, pointers and bitmaps will be
grouped together; a pointer is a graphical image that is associated with a
pointing device such as a mouse, and which moves on the screen as the
pointing device is moved by the user, whereas a bitmap is a graphical image
that typically is used to represent a general item such as a logo. Icons, pointers
and bitmaps may be designed interactively using the Icon Editor application

© Copyright I BM Corp. 1993 191

supplied as part of the OS/2 Version 2.0 product. Depending on which resource
is being created, the Icon Editor saves the resulting icon, pointer or bitmap in a
file with an extension of ICO, PTR or BMP. These files are then referenced from
the resource script file using the ICON, POINTER or BITMAP keywords:

ICON MAIN APPLIC.ICO
POINTER DRAW PENCIL.PTR
BITMAP INTRO LOGO.BMP

The keyword is followed in each case by a resource identifier, which is a
symbolic name used by the application to identify the resource. For an icon, the
identifier is used as a parameter to the WinCreateWindow() and
WinCreateStdWindow() calls, and identifies the icon resource to be used when
the FCF _ICON attribute is specified for the frame window. In all cases, the
symbolic name must be defined as an integer constant using a #define
statement.

For a pointer or bitmap, the identifier is used as a parameter to the
WinLoadPointer() or GpiLoadBitmap() functions, which load the resource into
memory. WinLoadPointer() returns a pointer to the resource in memory, which
may then be used as a parameter to the WinSetPointer() function, in order to set
the desktop pointer to that resource.

A pointer may be set to one of the system-defined pointer styles (such as an
arrow or hourglass) using the WinSetPointer() function, by obtaining the handle
of the required system pointer using the WinQuerySysPointer() function as
follows:

re = WinSetPointer(HWND_DESKTOP,
WinQuerySysPointer(HWND_DESKTOP,

SPTR WAIT,
FALSE));

This call will set the pointer for the desktop to the hourglass pointer (indicated
by the symbolic name SPTR_WAIT). The handle of the hourglass pointer is
returned by the WinQuerySysPointer() call. The symbolic names of the various
system pointers are described along with the WinQuerySysPointer() function in
the IBM OS/2 Version 2.0 Presentation Manager Reference.

A bitmap is drawn within a window on the screen using the WinDrawBitmap()
function. The pointer to the bitmap, returned by GpiLoadBitmap() is passed as a
parameter to WinDrawBitmap() in order to identify the resource.

9.1.3 Menu Bars and Pulldown Menus

192 OS/2 V2.0 Volume 4

Menu bars and their associated pulldown menus are defined within the resource
script file, using the MENU and SUBMENU keywords. A sample menu bar and
pulldown menu definition is shown in Figure 86 on page 193. ·

MENU MAIN
BEGIN

PRELOAD

END

SUBMENU "-File", MI_FILE, MIS TEXT
BEGIN

MENUITEM 11 -New .•• 11
, MI_NEW, MIS_TEXT

MENUITEM u-open", MI_OPEN, MIS_TEXT
MENUITEM n-save", MI_SAVE, MIS_TEXT
MENUITEM 11 Save -as 11

, MI_SAVEAS, MIS_TEXT
END
SUBMENU 11 -Edit 11

, MI_EDIT, MIS_ TEXT
BEGIN

END

MENUITEM 11 Cu-t 11
,

MENUITEM 11 -Copy 11 ,

MENUITEM 11 -Paste 11
,

SUBMENU 11 -Window",
BEGIN

MI_CUT, MIS_TEXT
MI_COPY, MIS_TEXT
MI_PASTE, MIS_TEXT

MI_WINDOW, MIS_TEXT

MENUITEM "-Tile", MI_TILE, MIS_TEXT
MENUITEM 0 -cascade 11

, MI_CASC, MIS_TEXT
END
MENUITEM "E-xit",
MENUITEM "-Help",

MI EXIT, MIS TEXT
MI=HELP, MIS=HELP I

MIS_BUTTONSEPARATOR

Figure 86. Menu Bar Resource Definition

The symbolic name (MAIN in the example above) identifies the resource. This
name is passed as a parameter to the WinCreateWindow() and
WinCreateStdWindow() functions and identifies the menu bar resource when the
FCF _MENU style frame control flag is specified for the frame window. The
PRELOAD option specifies that the resource will be incorporated into the
application's main .EXE file, and is to be loaded immediately into memory, rather
than being loaded when called by the application.

The SUBMENU statement defines a menu bar entry that will be associated with a
pulldown menu. MENUITEM statements that are enclosed within the BEGIN and
END markers of a SUBMENU statement define the pulldown menu items.
MENUITEM statements that are not enclosed within the bounds of a SUBMENU
statement define menu bar entries that do not have an associated pulldown
menu.

The text strings within quotation marks define the text for each menu bar or
pulldown menu item. The symbolic name following the text identifies the value
(placed in the first message parameter) of the WM_ COMMAND message
generated when the item is selected. The symbolic names following the
message identifier define the style of the item. In the example above, all items
are simple text items and are defined with the style MIS_ TEXT. The sole
exception is the final "Help" menu bar item, which is defined with the style
attributes of MIS_HELP, which causes the item to generate a WM_HELP message
rather than a WM_COMMAND message, and MIS_BUTTONSEPARATOR, which
causes the item to be displayed on the right-hand side of the menu bar
separated by a vertical bar, in accordance with SAA CUA guidelines. The
various item styles and attributes are documented in the IBM OS/2 Version 2.0
Presentation Manager Reference.

Chapter 9. Presentation Manager Resources 193

194 OS/2 V2.0 Volume 4

When groups of items within a single pulldown menu are logically separate, they
should be visually separated by a horizontal bar within the pulldown menu. This
may be achieved using the SEPARATOR keyword in the MENUITEM statement,
as follows:

MENUITEM SEPARATOR

The use of a separator bar in pulldown menus is particularly important when the
pulldown menu is used to display a list of entries, comprised of multiple sets of
mutually exclusive options, from which the user must select one option from
each set. In such a case, the separator bar is used to group the items within
each set, and to visually separate the sets from one another.

As already mentioned, menu bar resources are typically incorporated into a
window by specifying their resource identifier in a WinCreateWindow() or
WinCreateStdWindow() call, with the FCF _MENU frame creation flag set for the
frame window. A submenu within a menu bar resource may also be dynamically
created using the WinCreateMenu() function, which is described in 11.2, "The
Menu Bar" on page 241.

9.1.3.1 Mnemonics
Mnemonics may be specified for menu bar and pulldown menu items. A
mnemonic is a key which, when combined with the F10 key, results in selection
of the item. The character for the mnemonic must be part of the text for the
item. For example, the conventional mnemonic key for the "Exit" menu bar item
is "x"; when the F10 key is pressed followed by the "x" key, a WM_COMMAND
message with value Ml_EXIT is generated.

Mnemonics are indicated to the user by the appropriate character within the
item text being underlined. This is achieved by placing a tilde character(-)
within the item text, immediately prior to the required character; for example:

MENU ITEM "E-xi tu, MI_EXIT, MIS_ TEXT

When the resource script file is compiled using the resource compiler, the menu
bar item is created with the appropriate mnemonic.

9.1.3.2 Accelerator Keys
Accelerator keys or key sequences may be used to represent a pulldown menu
item and provide a "fast path" to a particular command. Note that accelerator
keys are not used to represent menu bar entries, since the use of an accelerator
key sequence is typically more complex than the use of a mouse or an F10 +
single character operation. The definition of accelerator keys is described in
9.1.5, "Accelerator Tables" on page 196. It is conventional to display an
accelerator key sequence, along with the command represented by that
sequence, in the pulldown menu, thus providing the user with a visual indication
of the accelerator key sequence. This may be achieved by the use of the "\t" or
"\a" control codes within the item text. The "\t" code causes text to the right of
the code to be left-justified in a new column, whereas the "\a" code causes text
to the right of the code to be right-justified in a new column.

To display an accelerator key sequence in a pulldown menu, it is conventional to
use the "\t" control code. For example:

MENUITEM 11 -Tile\tShift+FS 11
, MI_TILE, MIS_TEXT

This would result in the item text "Tile" (with the "T" underscored to represent
the mnemonic) being displayed in the left of the pulldown menu with the text
"Shift+ F5" being left-justified in a second column to the right of the item text.

9.1.4 String Tables
Tables of text strings may be defined within a resource script file for use by an
application. A string table is defined using the STRINGTABLE keyword, as
shown in Figure 87.

PRELOAD STRINGTABLE MAIN
BEGIN

STR_MAINTITLE,
STR_LISTl,
STR_MSGTITLEl,

"Application Main Window"
"List of Objects"
"Title for Message Box"

END

Figure 87. String Table Resource Definition

String tables may be used to contain titles, messages and other common text
used by an application. The external definition of these strings makes it easy to
change a title or message without modifying source code. String tables may
also be used to contain menu bar or pulldown menu text for dynamic insertion
by an application. Special characters such as mnemonic indicators and tab
characters for columnating display may be incorporated into the string definition.

The symbolic name following the STRINGTABLE keyword identifies the string
table and is used as a parameter when loading strings from the resource into
application buffers using the WinloadString() function. The PRELOAD keyword
specifies that the resource will be incorporated into the application's main .EXE
file, and is to be loaded into memory immediately rather than being loaded when
called by the application.

Multiple string tables may be defined by an application. Each string table must
have its own symbolic name (note that the same name may be used for a string
table and another type of resource such as a menu bar) and is enclosed within
the BEGIN and END keywords of a STRINGTABLE statement. Each string has its
own symbolic name within the string table.

As mentioned above. strings are loaded from the string table into application
buffers using the WinloadString() function. For example, to load the string
STR_MAINTITLE from the string table MAIN into a buffer named szTitle, the
function shown in Figure 88 is used.

ullength = WinLoadString(hAB,
NULL,
STR MAINTITLE,
sizeof(szTitle),
szTitle);

Figure 88. Loading a Text String Resource

/* Load string */
/* From appl resource file */
/* String id in resource */
/* Number of characters */
/* Target buffer */

The WinloadString() function returns an unsigned integer representing the
number of characters loaded into the target buffer. Once loaded, the buffer may
then be manipulated using standard programming language functions. or used
as a parameter to other Presentation Manager function calls.

Chapter 9. Presentation Manager Resources 195

9.1.5 Accelerator Tables
Accelerator keys are single keys or key sequences that are used to represent a.
particular command (typically a pulldown menu item) within an application, and
provide a fast path for the entry of that command. Accelerators are defined for
an individual window and are active whenever that window is active. According
to Systems Application Architecture CUA conventions, accelerator keys should
be indicated to the user by placing the accelerator key sequence alongside the
command in the pulldown menu. Accelerator keys are defined in the resource
script file using the ACCEL TABLE keyword, as shown in Figure 89.

ACCELTABLE CHILDl
BEGIN

END

VK_F3,
VK_FS,
11011,

Ml_EXIT, VIRTUALKEY
MI_TILE, VIRTUALKEY, SHIFT
MI_DELETE, CHAR, CONTROL

Figure 89. Accelerator Table Resource Definition

The symbolic name following the ACCEL TABLE statement identifies the
accelerator resource, and is passed as a parameter to the WinCreateWindow() or
WinCreateStdWindow() functions when the FCF _ACCEL TABLE style attribute is
specified for the frame window.

In the above example, the F3 key is defined as a virtual key that when pressed
will generate a WM_ COMMAND message with the value Ml_EXIT. This is
equivalent to the user having selected the "Exit" option from the menu bar. The
Shift+ F5 key sequence is also defined as a virtual key that will generate a
WM_ COMMAND message with the value Ml_TILE. Note that the shifted state of
the key is indicated by use of the SHIFT option. The Ctrl + D key sequence has
also been defined to generate a WM_COMMAND message with the value
Ml_DELETE. The Ctrl state of the key is indicated by the use of the CONTROL
option (in a similar manner to the SHIFT option on the previous line). The
various options for defining accelerator keys are documented in the IBM OS/2
Version 2.0 Presentation Manager Reference.

As already mentioned, an accelerator table is associated with a particular
window by specifying the resource identifier as a parameter to the
WinCreateWindow() or WinCreateStdWindow() functions. In addition, the
WinloadAccelTable() function may be used to dynamically load an accelerator
table into memory. The WinloadAccelTable() function returns the handle of the
accelerator table in memory, which may then be passed as a parameter to the
WinSetAccelTable() function to activate the accelerator table for a particular
queue or window.

9.1.6 Help Tables

196 OS/2 V2.0 Volume 4

Help tables are used by the IPF to relate each display window, dialog box or
control window to the help panel containing information about that window. Help
tables and their definition are described in detail in Chapter 15, "Adding Online
Help and Documentation."

9.1.7 Window and Dialog Templates
Templates defining standard windows and dialog boxes may be defined within
the resource script file. Typically, a window or dialog template is designed using
the Dialog Box Editor application supplied with the IBM Developer's Toolkit for
OS/2 2.0, and is saved in a text file with an extension .DLG which is included in
the resource script file with an rcinclude statement. A window or dialog
template may also be defined directly into the resource script file. In either
case, the template is defined using the WINDOWTEMPLATE or DLGTEMPLATE
keywords. These keywords are actually synonymous, and the resource compiler
interprets either keyword in the same way.

Within a single window or dialog template, there may be multiple WINDOW or
DIALOG statements that define individual windows or dialog boxes. The nesting
of the statements defines the parent/child window hierarchy. Figure 90 shows an
example of nested windows within a window template.

WINDOWTEMPLATE WCP_0001
BEGIN

END

FRAME 11Window Class X11
, 1, 10, 10, 320, 130

CTLDATA FCF_STANDARD
BEGIN

WINDOW 1111
, FID_CLIENT, 0,0,0,0, 11 MyClass 11 , 01

END

Figure 90. Window Template Resource Definition

The window template WCP _001 contains a frame window with the title "Window
Class X" and with size and positional coordinates as specified. The style
attributes of the frame window are specified using the CTLDATA statement. The
client window for this frame window is created using the WINDOW keyword
nested within the window template, with no window title, the identifier
FID_CLIENT, no size or positional coordinates (these are defined by the frame
window), the class "MyClass" and the default client style.

The use of the WINDOWTEMPLATE keyword and WINDOW statements is a useful
way for an application developer to predefine particular window types and styles
for use by one or more applications. The template definitions may be used to
create modal dialog boxes, which are loaded into memory and executed by the
use of WinloadDlg() and WinProcessDlg() calls. Definitions may also be created
for standard windows or modeless dialog boxes, which are loaded into memory
using the WinloadDlg() function and executed by making the window or dialog
box visible using the WinShowWindow() function.

Predefinition of windows is particularly useful when applied to dialog boxes.
Here, the number and complexity of control window definitions is often such that
creating such windows dynamically is a complicated task. A dialog box is
defined in the resource script file (or a .DLG file, which is incorporated into the
resource script file using the rcinclude statement) using the DLGTEMPLATE
keyword.

Within a dialog template, there may be multiple dialogs defined using the
DIALOG statement, and each dialog box may have multiple control windows
defined using CONTROL keywords. Figure 91 on page 198 shows an example of
a dialog template containing a dialog box with several control windows:

Chapter 9. Presentation Manager Resources 197

DLGTEMPLATE DC_CREATE
BEGIN

END

DIALOG "Create an Objecta, DC_CREATE, 22, 32, 260, 76,,
FCF_TITLEBAR I FCF_DLGBORDER
BEGIN

END

CONTROL 11 Enter the Object Name", -1, 7, 59, 246, 8, WC_STATIC,
SS_TEXT I DT_CENTER I DT_TOP I WS_GROUP I WS_VISIBLE
CONTROL 11

", 91, 43, 149, 8, WC_ENTRYFIELD,
ES_MARGIN I ES_LEFT I WS_TABSTOP I WS_VISIBLE
CONTROL 11 Enter11

, DID_OK, 38, 5, 38, 12, WC_BUTTON,
BS_PUSHBUTTON I BS_DEFAULT I WC_TABSTOP I WC_VISIBLE
CONTROL "Cancel", DID CANCEL, 38, 5, 38, 12, WC BUTTON,
BS_PUSHBUTTON I WC_TABSTOP I WC_VISIBLE -

Figure 91. Dialog Template Resource Definition

The dialog template is equivalent to a frame window, and is named DC_ CREATE.
This symbolic name is used to identify the dialog resource and is passed as a
parameter to the WinDlgBox() function, which loads and processes the dialog
box.

The dialog box is defined with a title bar and a dialog border, and is also named
using the symbolic name DC_CREATE. The dialog box contains a static text
control window providing instructions to the user, and an entry field into which
the user may enter text. It also contains an "Enter" and a 11 Cancel" pushbutton.

Note that the resource identifier for the static text string does not use a symbolic
constant, but simply has the value 11 -1." This is done because there is no need
for the application to access the text string; it is merely present as a prompt to
the user. It is therefore conventional to omit the symbolic constant and use "-1 11

as the value. Multiple text strings may have the same value.

9.2 Resource Script File

198 OS12 V2.0 Volume 4

The resource script file is an ASCII text file in which Presentation Manager
resources are either defined or referenced. A sample resource script file is
given in Figure 92 on page 199.

Note that the dialog templates are not defined directly in the resource script file,
but are incorporated at the end of the resource script file using an rcinclude
statement for the file myd/g.d/g. This is the typical way to incorporate dialog
templates that are created by the Dialog Box Editor and stored in a DLG file.

#include <os2.h>
#include 11myappl.h 11

#include 11mydlg.h 11

ICON MAIN APPLIC.ICO
ICON CHILDl CHILDl.ICO

BITMAP INTRO LOGO.BMP

STRINGTABLE MAIN
BEGIN

PRE LOAD

END

STR_ MAI NT IT LE,
STR_LISTl,
STR_MSGTITLEl,

11 Application Main Window"
"List of Objects 11

11 Title for Message Box 11

MENU MAIN PRELOAD
BEGIN

END

SUBMENU 11 -File 11
, MI_FILE, MIS_TEXT

BEGIN
MENU ITEM 11 -New ••. 11

, MI_NEW, MIS_ TEXT
MENUITEM 11 -0pen 11

, MI_OPEN, MIS_ TEXT
MENUITEM 11 -save 11

, MI_SAVE, MIS_TEXT
MENUITEM 11 Save -as 11

, MI_SAVEAS, MIS_TEXT
END
SUBMENU 11 -Edit 11

, MI_EDIT, MIS TEXT
BEGIN

END

MENUITEM 11 Cu-t 11
,

MENU ITEM 11 -copy 11
,

MENUITEM *1-Paste 11
,

MENUITEM 11 E-xit 11 ,

MENUITEM 11 -Help 11 ,

MI_CUT, MIS_TEXT
MI_COPY, MIS_TEXT
MI_PASTE, MIS_TEXT

MI_EXIT, MIS_TEXT
MI_HELP, MIS_HELP I

MIS_BUTTONSEPARATOR

ACCELTABLE MAIN
BEGIN

END

VK_F3,
VK_F5,

MI_EXIT, VIRTUALKEY
MI_TILE, VIRTUALKEY, SHIFT
MI_DELETE, CHAR, CONTROL

ACCELTABLE CHILDl
BEGIN

END

VK_Fl,
VK_F3,
11011,

MI_HELP, VIRTUALKEY, HELP
MI_EXIT, VIRTUALKEY
MI_DELETE, CHAR, CONTROL

rcinclude MYDLG.DLG

Figure 92. Resource Script File

The resource script file has a number of #include statements at the start, similar
to those typically found in C programs. This is because the symbolic names
used throughout the resource script file represent integer constants, and must
be defined in the application's header file myapp/.h. Other symbolic names may
be used in the .DLG file, and must also be defined; the header file mydlg.h for

Chapter 9. Presentation Manager Resources 199

these symbolic names is generated by the Dialog Box Editor. Finally, a number
of symbolic names such as DID_OK and DID_CANCEL are actually defined by
Presentation Manager rather than by the application, and therefore the file os2.h
is also required.

The resource script file is used as input to the resource compiler provided as
part of the IBM Developer's Toolkit for 0512 2.0. For further information on the
resource compiler and its operation, see 14.4, "Resource Compilation" on
page 280.

9.3 Using Resources
As mentioned throughout this chapter, resources are typically loaded and used
in an application by specifying the symbolic name of the resource as a
parameter to a function that requires the resource. The resource is then loaded
and used by that function in performing its task. However, there are several
ways in which the resource may be loaded, depending upon where it resides.
These are discussed in the following sections.

9.3.1 Loading From Within the Application
In the typical case, resources are incorporated into an application by passing the
resource script file to the resource compiler. The resource compiler compiles
the resource definitions and incorporates them into an executable file that has
already been created.

Many of the functions that require a resource identifier, such as WinLoadString()
and WinLoadPointer(), also accept the identifier of a resource file as one of their
parameters. For resources that are incorporated into the application's .EXE file,
this parameter should be specified as NULL. For example, to load a pointer from
a resource defined within the .EXE file, the following call is used:

hPointer = WinLoadPointer(hDesktop, /* Desktop handle */
NULL, /* Within .EXE file */
DRAW); /* Resource symbolic name */

Other Presentation Manager functions that use this convention include
WinLoadAccelTable(), WinLoadMenu() and WinCreateStdWindow().

9.3.2 Loading Resources From a DLL

200 OS/2 V2.0 Volume 4

Presentation Manager resources may also be defined and stored in a dynamic
link library. The process of compiling and placing resources in a DLL is
described in 14.5.3, "Presentation Manager Resources in a DLL" on page 282.
Once a resource is located in a DLL however, the DLL module must be loaded
into memory by the application, and a module handle obtained at run time
before the resource may be accessed by a Presentation Manager function. This
is typically achieved using the DosLoadModule() or DosGetModuleHandle()
functions. Figure 93 on page 201 illustrates the necessary code to load a
dynamic link library named MYDLL from a directory identified in the LIBPATH
statement in CONFIG.SYS, and to load a string resource from this DLL.

re = DosloadModule(NULL,
e,
11 MYDLL 11

,

hModule);

/* No object name
/* No object length
/* DLL module name
/* DLL handle (returned)

*/
*/
*I
*/

ullength = WinloadString(hAB, /* Load string */
hModule, /* DLL module handle */
STR_TITLE, /* Resource ID within DLL */
sizeof(szTitle), /*Number of bytes */
szTitle); /*Target buffer */

Figure 93. Loading Resources From a DLL

The DosloadModule() function call loads the dynamic link library with the name
"MYDLL" (the default extension of .DLL is assumed) into memory and returns a
handle hModule of type HMODULE. This handle is then passed as the resource
file identifier to the WinLoadString() function call, which accesses the resources
within the module. Other function calls such as WinloadPointer() work in a
similar manner.

9.3.3 Loading Dialogs From a DLL
The WinDlgBox() function also allows a DLL module handle to be specified, and
thus enables dialog template definitions to be loaded fro~ a DLL. For instance,
to load and create a dialog box from a dialog template resource DC_001 defined
in a DLL module named WINDLL.DLL, the following call sequence is used:

re = DosloadModule(NULL, /* No object name */
0, /* No object length */
11 MYDLL 11

, /* DLL module name * /
hModule); /* DLL handle (returned) */

re = WinDlgBox(hDesktop,
hFrame,
dpProc001,
hModule,
DC 001 - ,
NULL);

/* Desktop is parent */
/* Frame is owner */
/* Dialog procedure address */
/* DLL module handle */
/* Resource ID within DLL */
/* No create parameters */

Note that if the dialog procedure dpProc001 to be associated with this dialog box
is also defined within the DLL module, the address of this procedure must be
obtained by the application before the WinDlgBox() call is issued. This is
achieved using the DosGetProcAddr() function, which returns the address of the
required function, as shown in the following example:

re = DosGetProcAddr(hModule,
11 Procl 11

,

dpProc061);

In this case, Proc1 is the name of the required entry point in the DLL module,
and dpProc001 is a variable of type PFNWP which contains the address of the
procedure returned by the DosGetProcAddr() call. While the address of the
dialog procedure could have been supplied implicitly by using load-time rather
than run-time dynamic linking, run-time dynamic linking is necessary to load the
dialog box resource, and it is logical to place the resource and its associated
dialog procedure in the same DLL module. An example of the complete
procedure required to load a dialog box from a DLL is given in Figure 94 on
page 202.

Chapter 9. Presentation Manager Resources 201

BOOL CustlnfoOialog()
{

HMODULE hModule;
PFNWP dpDlgProc;
USHORT usResult;

DosGetModuleHandle("WINDLL",
hModule);

DosGetProcAddr(hModule,
11 dpCustDlg 11

,

dpDlgProc);

re= WinDlgBox(HWND_DESKTOP,
NULL,
dpDlgProc,
hModule,
DC CUSTDLG,
NULL);

return(usResult);

Figure 94. Loading a Dialog Resource From a DLL

/* DLL module handle */
/* Dialog procedure addr */
/* Result storage */

/* Get DLL module handle */

/* Get address of dialog */
/* procedure */

/* Load & process dialog */
/* No owner */
/* Dialog procedure addr */
/* DLL module handle */
/* Dialog template id */
/* No create parameters */

When loading dialogs from DLL modules, it is recommended that a combination
of load-time and run-time dynamic linking techniques be used. A calling routine
should be placed in the DLL which, in response to an application request, loads
and obtains the appropriate module handle, obtains the required dialog
procedure address and executes the dialog. This relieves the application of the
responsibility for loading the dynamically-linked resources and routines. An
example of such a routine is given in Figure 94. The calling routine Cust/nfoD/g
is defined as an entry point within the DLL module, since it will be called from
the application's main executable module. An import library is then built for the
DLL, and linked with the application code using standard conventions for
load-time dynamic linking.

When CustlnfoD/g is invoked by the application, it obtains a module handle for its
own DLL module, which has already been loaded when the call to CustlnfoD/g
was made, and uses this handle to obtain the address of the required dialog
procedure using standard run-time dynamic linking conventions. It then issues a
WinDlgBox() call to load and process the dialog box, and returns the result to the
application. This example illustrates the combination of load-time and run-time
dynamic linking conventions.

9.4 Resources and National Language Support
Since Presentation Manager resources provide the ability to define all the user
interface properties of a Presentation Manager application, externally to the
application code, they provide a useful means for implementing national
language support within Presentation Manager applications. Resources may be
used to define:

202 OS/2 V2.0 Volume 4

• Window titles
• Menu bar and pulldown menu entries, including mnemonics and accelerator

keys

9.5 Summary

• Dialogs
• Messages
• Symbols such as icons and pointers.

In short, all of the language-specific properties of an application may be defined
using Presentation Manager resources. Icons and other graphical symbols used
by the user interface may also be tailored to suit different cultures where such
symbols may have different meanings.

The set of resources for each national language may be compiled and
incorporated into a separate dynamic link library, which may be accessed by the
application in order to load the required resources, as described in 9.3.3,
"Loading Dialogs From a DLL" on page 201. The resource identifiers must, of
course, be identical in each DLL. Upon installation of the application on a
workstation, an installation procedure can prompt the user to determine the
required language, and install the appropriate DLL for that language.

Where multiple languages must be supported in the same system, an application
may query the codepage currently in use by its parent process using the
WinQueryCp() function, and load resources from a specific DLL, depending upon
the result of the function call. While this method is by no means foolproof, it will
suffice for many languages that use a single national codepage and single-byte
characters.

It can be seen that Presentation Manager provides the mechanism by which an
application developer may externally define the user interface properties of
his/her application. This ability provides the benefit that these external
properties may be modified, or different versions substituted, without the need to
modify the application code itself. In addition, standard user interface objects
such as icons, pointers and dialog boxes, along with their associated dialog
routines, may be defined and stored in dynamic link libraries for use by multiple
applications.

Resources are defined using a resource script file, which is an ASCII text file
containing definitions for text-based resources and references to other files that
contain definitions for non-textual resources such as pointers and icons. The
resource script file is used as input to the resource compiler, which compiles
resource definitions and incorporates them into an executable module.

Resources may be incorporated into the application's main .EXE file, or may be
stored in a dynamic link library and loaded into memory using run-time dynamic
linking. Application procedures such as dialog procedures, which are associated
with such resources, may also be defined and stored in the same DLL module,
thus providing the opportunity to create libraries of standard resources, including
standard dialogs, which may be used by multiple applications.

Chapter 9. Presentation Manager Resources 203

204 OS/2 V2.0 Volume 4

Chapter 10. Multitasking Considerations

Systems Application Architecture CUA guidelines recommend that an application
should complete the processing of a user- or system-initiated event within 0.1
seconds and be ready to continue interaction with the end user. The particular
implementation of the message handling concept under Presentation Manager
means that the application's primary thread must complete the processing of a
Presentation Manager message before any further messages can be passed to
applications; thus it is possible for the user to be "locked out" of the system if
an application does not complete its processing within a reasonable period of
time.

While the 0.1 second time period is adequate for the processing of most events,
it may be insufficient for those that result in lengthy processing such as access
to a remote system. It is therefore recommended that any window procedure
performing some processing that is likely to take longer than 0.1 seconds to
complete should carry out this processing using a separate thread of execution
under OS/2. The application's primary thread may then initiate the secondary
thread and immediately return control to Presentation Manager, thereby
enabling the primary thread to continue with user interaction.

The separation of processing into a primary and one or more secondary threads
may occur in a number of ways:

• Where the window procedure is an object window procedure, and the
majority of its methods may result in lengthy processing, the window
procedure itself may be implemented in a secondary thread.

• Where only a single method results in lengthy processing, or where the
window procedure is concerned with a display object, a single subroutine
containing that method may be started in a secondary thread.

In certain circumstances where the different portions of an application's task are
entirely self-contained, and where it is desirable to isolate the portions from one
another, the application may be divided into separate processes. Division of the
application in this way means that each portion resides and executes in its own
address space, fully protected from other portions of the application. This
approach is particularly useful for applications that exploit the Workplace Shell,
since the implementation of the Workplace Shell in OS/2 Version 2.0 causes
Workplace Shell objects to execute, by default, under the control of the
Workplace Shell process. The use of multiple processes within an application
provides better protection for resources used by Workplace Shell objects.

Note that for performance reasons, the use of multiple threads within the same
process is preferable to the use of multiple processes. This is because
switching between threads involves far less system overhead than switching
between processes.

Processes and threads may communicate with one another in a number of ways
for the purposes of exchanging information, and for synchronizing execution
flow and access to data objects. The techniques of communication between
threads and processes are described in 10.5, "Communicating With a Secondary
Thread" on page 215 and 10.6, "Communicating With Another Process" on
page 216.

~Copyright IBM Corp. 1993 205

Maintaining synchronization between threads and processes is discussed in
10.7, "Maintaining Synchronization" on page 229.

10.1 Creating a Secondary Thread
In 4.3, "Application Structure" on page 43, it is mentioned that an application
must create its own input message queue to process messages intended for its
windows. The Presentation Manager message-handling implementation creates
message queues on a per-thread basis, and thus requires that any thread that
creates a window (whether that window is a display window or an object
window) and processes messages must have its own message queue.

The primary thread of an application is typically a user interface thread that
handles processing for display windows on the screen; this thread creates the
application's main message queue and processes messages caused by user
interaction. The primary thread may also create a secondary thread to deal
with messages that cause lengthy processing to be carried out, leaving the
primary thread free to respond to user input. A secondary thread may be
created in one of two ways:

• The _beginthread() function provided by the C compiler should be used to
create secondary threads that will contain object windows, or that contain
code which calls C run-time library functions. This function maintains certain
internal C library control data that is, by default, not maintained by the
DosCreateThread() function.

• The DosCreateThread() function provided by OS/2 may be used to create
secondary threads that will not contain object windows, and that do not call
C run-time library functions. The DosCreateThread() function offers a slight
performance advantage over the _beginthread() function.

The _beginthread() function is used since it establishes internal semaphores to
serialize access to the run-time library's global data and non-reentrant library
functions, transparently to the calling application. The _beginthread() function
also maintains information for each thread, such as the exception handling
environment and the calling address for reentrant functions. Since window
procedures are reentrant, use of DosCreateThread() in such situations may
cause execution errors.

Whenever a thread is created, a thread information block (TIB) is created by the
operating system. The TIB contains information such as the thread ID, priority
and stack size. This information may be accessed by the application using the
DosGetlnfoBlocks() function. This function also returns a pointer to information
on the thread's parent process, which resides in the process information block
{PIB). The DosGetlnfoBlocks() function is described in the IBM OS/2 Version 2.0
Control Program Reference.

10.1.1 Threads Containing Object Windows

206 OS/2 V2.0 Volume 4

In the case where the processing of an event involves access to and
manipulation of another data object, the secondary thread should create its own
message queue and one or more object windows with window procedures to
process any messages passed by the primary thread. This technique preserves
the object-oriented nature of the application by isolating data objects from one
another.

The primary thread then passes messages to the secondary thread's object
windows, in an identical manner to that used when passing messages to a
window procedure in the primary thread; it is recommended that this be
achieved using the WinPostMsg() function, since this call allows asynchronous
processing of the message and preserves the correct serialization of messages
in the system, as described in 4.3.2.1, "Invoking a Window Procedure" on
page 47.

Asynchronous threads with object windows are normally created by window
procedures in the application's primary thread issuing a _beginthread() function
call. This call is typically made by a window procedure during its processing of
the WM_ CREATE message; the secondary thread and its object window (or
windows) are then initialized and able to accept any requests passed to them.
An example of the _beglnthread() function is shown in Figure 95.

#define STACKSIZE 8192

case WMP DOLONGTASK:
_beginthread(thread,

&Stack,
STACKSIZE,
(PVOID) hwnd);

break;

/* Entry point of thread routine */
/* Pointer to stack memory object */
/* Size of stack memory object */
/* Initialization data for thread */

Figure 95. Creating a Thread With an Object Window

Note that when using the IBM C Set/2 compiler, the second parameter in the
_beginthread() function call (the pointer to the stack) is ignored, since the
_beginthread() function automatically allocates memory for the stack. This
parameter is included merely to allow source code compatibility with
applications written for the earlier IBM C/2 and Microsoft C compilers, which
required the application to explicitly allocate stack space for a secondary
thread. Note that the minimum recommended stack size for a thread containing
object windows is 8192 bytes (8 KB).

The handle of the window from which the secondary thread is being created is
passed to the thread in the _beginthread() call. The secondary thread's main
routine may then pass this handle to the object window created in the thread.
Upon successful creation, the object window can then pass an
acknowledgement message back to the window that created it, containing the
handle of the object window, in order that the calling window may then post
messages to the object window. This acknowledgement message also ensures
that the object window is correctly created and initialized before any messages
are posted to it.

The secondary thread's main routine is similar in structure to the main routine
of the primary thread in a Presentation Manager application. The main routine
registers the object window class, creates a window of that class and enters a
message processing loop.

It should be noted that the secondary thread's main routine is identical to that of
the application's primary thread, with the exception that a secondary thread
need not register itself to Presentation Manager, since this is typically done
once per application, by the primary thread. However, if certain functions such

Chapter 10. Multitasking Considerations 207

208 OS/2 V2.0 Volume 4

as error processing are required on a per-thread basis, a separate anchor block
must be created for the secondary thread, and hence an additional
Wlnlnitialize() call must be made.

Figure 96 shows a secondary thread that registers an object window class and
creates a window of that class.

void thread(HWND hWnd)
{

HMQ hMsgQ;
HWND hWindow;
QMSG qMsg;

/* Message queue handle */
/* Window handles */
/* Message queue structure */

WinRegisterClass(hAB, /* Register window class */
WCP_OBJECT,
(PFNWP)wpObject,
Ell,

/* Class name */
/* Window procedure */
/* No class style */

e); /* No extra window words */

hObject=WinCreateWindow(HWND_OBJECT, /* Create object window */
WCP_OBJECT, /* Object handle is parent */
(PSZ)e, /* No window text */
Ell, /* No style */
e,e,e,e, /* No position */
NULL, /* No owner * /
HWND_TOP, /* On top of siblings */
0, /* No window id */
hWnd, /* Handle in WM_CREATE */
0); /* No pres. parameters */

while (WinGetMsg(hAB, /* Loop until WM_QUIT */
&qMsg,
(ULONG)0,
e, e))

WinDispatchMsg{hAB, &qMsg);

WinDestroyWindow(hObject);
WinDestroyMsgQueue(hMsgQ);
_ endthread {);

/* Destroy object window
/* Destroy message queue
/* Terminate thread

*/
*/
*/

Figure 96. Secondary Thread Creating an Object Window

An object window is created using the normal WinCreateWindow() call, as
illustrated in Figure 96. The window's parent is specified as the conceptual
object window, the handle of which is obtained from the
WinQueryObjectWindow() function, or using the defined constant HWND_OBJECT.
Note that the handle of the window that created the thread is passed to the
object window in the Ct/Data parameter of the WinCreateWindow() call, in order
that the object window may pass its handle back to the calling window to
indicate its readiness to receive messages.

The secondary thread retrieves messages from its input queue in the
conventional manner using WinGetMsg(), and invokes Presentation Manager
using WinDispatchMsg() to pass the message to its object window procedure.
Thus a secondary thread has a message processing loop similar to that of the
application's (primary thread's) main routine.

An object window procedure is identical in structure to a "normal" display
window procedure. An example of an object window procedure is illustrated in
Figure 97 on page 209.

MRESULT EXPENTRY wpObject(HWND hWnd,
ULONG ulMsg,
MPARAM mpl,
MPARAM mp2)

HWND hNotify;
HWND hObject;

switch (ulMsg)
{
case WM CREATE:

Wi~DefWindowProc(hWnd,
usMsg,
mpl,
mp2);

<initialize instance data>
<open data objects>

hNotify=HWNDFROMMP(mpl);
hObject=MPFROMHWND(hWnd);
WinPostMsg(hNotify,

WMP _NOTIFY,
hObject,
0);

return((MRESULT)FALSE);
break;

case WMP PUTDATA:
<put data into database>
<post message to logging object>
return((MRESULT)TRUE);
break;

case WMP_GETDATA:
<get data from database>
<post data to caller in message>
return((MRESULT)TRUE);
break;

case WM DESTROY:
<close data objects>
<free any instance data areas>
return((MRESULT)0);
break;

default:
return(WinOefWindowProc(hWnd,

ulMsg,
mpl,
mp2));

Figure 97. Sample Object Window Procedure

Upon creation, an object window receives a WM_CREATE message in the same
way as a standard window. The window may capture and explicitly process this

Chapter 10. Multitasking Considerations 209

message in order to open or create data objects, initialize instance data, etc.,
as illustrated in Figure 97. Once opened, however,
an object window typically only receives a number of application-defined

messages requesting certain actions on data objects owned by the window.

The object window procedure shown in Figure 97 also extracts the handle of the
window that issued the WinCreateWindow() function call, which is normally
passed to the object window as part of the WM_ CREATE message. The window
procedure then uses this handle to send an acknowledgement message back to
this window, containing its own window handle and thus enabling the two
windows to communicate with one another. This is necessary when object
windows are created in secondary threads, as described in 10.5,
"Communicating With a Secondary Thread" on page 215. Note that the object
window procedure must use the system linkage convention; this is achieved
using the EXPENTRY keyword.

The only other system-defined message class normally received by an object
window is the WM_DESTROY message class passed to the window by
Presentation Manager when a WinDestroyWindow() call is issued by the thread.
An object window should respond to the WM_DESTROY message by closing,
destroying or freeing any data objects to which it has obtained access, and
backing out any uncommitted units of work.

Figure 97 on page 209 shows a number of application-defined message classes
being processed by the object window procedure. These message classes are
typically defined by the application during its initialization. For message classes
that will be processed by an object window procedure loaded from a DLL
module, the message classes should be defined in the include file for that DLL
module, rather than explicitly within the application that uses the DLL module.
This further enhances the isolation of the internal workings of the object
window from other components of the application, and facilitates reusability of
the code.

The window procedure in the primary thread must have some way of
determining when the object window has completed its processing, at which
point it may safely assume that the previous event has been processed
successfully and allow the user to continue operating upon the data object. or
take appropriate error action. This indication may be provided in a number of
ways, which are discussed in 10.7, "Maintaining Synchronization" on page 229.

10.1.2 Threads Without Object Windows

210 OS/2 V2.0 Volume 4

When the processing to be performed within a secondary thread is limited in
scope to the data objects "owned" by the current application object, an object
window is not warranted. A secondary thread without an object window is
similar in both appearance and behavior to a normal subroutine. However, the
routine executing in the secondary thread performs its tasks asynchronously to
the primary thread, although it still has access to the same data objects. Such
a thread is typically started when required by issuing a DosCreateThread() call
from within a window procedure in the primary thread. A sample invocation of
such a thread is illustrated in Figure 98 on page 211.

case WMP THREAD:
usReturn=DosCreateThread(ThreadID,

ThreadRoutine,
&InitData,
0L,
4096);

break;

/* Create thread */
/* Routine to run in thread */
/* Initialization data */
/* Start immediately */
/* Stack size for thread */

Figure 98. Creating a Thread Without an Object Window

Two considerations arise when processing asynchronous threads without the
use of object windows:

• The primary thread must not attempt to access a data object at the same
time as a secondary thread is updating that data object, since the state of
the data during the update is undetermined and unpredictable results could
occur.

• The primary thread must have some way of determining when the secondary
thread has completed its processing, at which point it may then access the
data objects that were manipulated by the secondary thread.

These two conditions may be achieved by adopting a convention whereby a
secondary thread has exclusive access to its data object{s) for the duration of its
execution. It is therefore only necessary for the primary thread to determine
when the secondary thread has completed processing, at which point it may
access the data objects.

Where this is not possible, mutex semaphores may be used to serialize access
to resources such as data objects. Each thread that requires access must bid
for the semaphore. If the semaphore is already held by another thread, the
requesting thread must wait for that thread to release the semaphore before
attempting to access the resource.

A number of mechanisms for synchronizing execution and/or access to
resources are described in 10.7, "Maintaining Synchronization" on page 229.

10.2 Creating Another Process
Each application running under OS/2 typically resides in its own process, and
therefore has its own address space. Resources created by or allocated to a
process are normally private to that process. If required for application
purposes, this process may in turn create one or more additional processes to
perform part of the application's processing. Additional processes may be
created in either of two ways:

• As a child process of the creating process, in which case the child process
will automatically terminate upon termination of the creating process. Such
processes are started using the DosExecPgm() function.

• As a separate process, in which case the process will not automatically
terminate when its creator terminates, and must be explicitly terminated
either by its creator or by another process in the system. Such a process is
started using the DosStartSession() function.

When an application uses multiple processes, it is usual for the first process to
be regarded as the "primary" process for the application, and for other

Chapter 10. Multitasking Considerations 211

212 OS/2 V2.0 Volume 4

processes to be started as children of this process. This is conceptually similar
to the use of primary and secondary threads.

It is therefore conventional to use the DosExecPgm() function to start a child
process. This function is illustrated in Figure 99.

CHAR szClient[7];
CHAR LoadError[100];
RESULTCODES Returnlnfo;
PIO pidServer;
APIRET re;

itoa(hWnd, szClient);

re = DosExecPgm(LoadError,
sizeof(LoadError),
EXEC_ASYNCRESULT,
szClient,
0
' &Return Info,

11 server.exe 11
);

pidServer = ReturnCodes.termcodepid;

<Store pidServer in window words>

/* ASCII form of win handle */
/* Buffer for failure reason */
/* Returned info from call */
/* Child process id */
/* Return code */

/* Convert handle to ASCII */

/* Start child process */
/* Size of buffer */
/* Execute asynchronously */
/* Window handle in ASCII */
/* No new environment vars */
/* Returned info address */
/* Name of program to start */

Figure 99. Starting a Child Process. This example shows the use of the DosExecPgm()
function to start a process from another process within the application.

The window handle of the window from which the DosExecPgm() call is made, is
passed to the child process as an argument, using the the fourth parameter of
the DosExecPgm() function. This enables the child process to post a message
to its parent upon completing its initialization, indicating the window handle of
its own window. In this way, communication via Presentation Manager
messages may be established in both directions.

Note that since the fourth parameter to the DosExecPgm() function is defined as
an ASCII string, the window handle is converted to its ASCII equivalent before
the call is issued. The main routine of the child process subsequently converts
the handle back to its true form.

Use of the EXEC_ASYNCRESUL T flag in the DosExecPgm() call causes the
operating system to save the termination codes of the child process so that they
may be examined at a later point by the parent process, using a DosWaitChild()
function call for synchronization purposes (see 10.7.4, "DosWaitChild() Function"
on page 234 for further information).

The process ID of the child process is returned by the DosExecPgm() function as
part of the RESUL TCODES structure in the sixth parameter. This value should
be stored by the parent process, since it is used if and when the parent process
needs to terminate the child at some later point during execution.

10.3 Destroying a Secondary Thread
Secondary threads should be terminated when they are no longer required, to
reduce the context-switching overhead of the operating system. The method of
termination depends upon how the secondary thread was created, and whether
or not it has created object windows.

10.3.1 Threads Containing Object Windows
A secondary thread with an object window should be terminated by the window
procedure in the primary thread that initially created the secondary thread. This
is achieved simply by posting a WM_QUIT message to the object window, which
will cause the message processing loop for the secondary thread to terminate.

The thread's main routine then issues WinDestroyWindow() calls for its object
windows. These calls cause WM_DESTROY messages to be posted to the
object windows, which will process these messages in order to close data
objects, release any resources, etc., in accordance with established
conventions.

Once all data objects and other resources have been released or destroyed, the
thread should terminate itself using the _endthread() function. The use of this
function will ensure that the semaphores and control structures used by the
_beginthread() function are correctly reset.

10.3.2 Threads Without Object Windows
Secondary threads without object windows are typically created to perform a
lengthy processing operation within the scope of a single event. A window
procedure under the control of the primary thread creates the secondary thread
to process a particular subroutine, and the secondary thread terminates
automatically when this subroutine reaches an exit point. However, the
DosExit() function should be called as the last action in the secondary thread, in
order to ensure that the memory allocated for the thread's stack is correctly
released by the operating system.

However, some checks may be necessary to ensure orderly termination of a
secondary thread, particularly where access to data objects is involved. Upon
termination of an application's primary thread, all secondary threads that have
not already been terminated by the application are forcibly terminated by OS/2.
Where the secondary thread's processing involves a critical data operation such
as the update of a database, the primary thread should ensure that the
secondary thread has completed its processing before allowing itself to
terminate.

It is recommended that before creating a secondary thread without an object
window, a window procedure should set an event semaphore, and pass the
handle of this semaphore to the secondary thread. The event semaphore is
then cleared by the secondary thread as the last action before it terminates.

Upon receiving a WM_DESTROY message, the window procedure in the primary
thread should test the state of the event semaphore and wait for the semaphore
to clear before completing the WM_DESTROY message processing (which
should include releasing the semaphore) and returning control to Presentation
Manager. This will ensure that the secondary thread terminates in an orderly
manner before the primary thread is terminated.

Chapter 10. Multitasking Considerations 213

The use of event semaphores is described in more detail in 10.7, "Maintaining
Synchronization" on page 229.

10.3.3 Forcing Termination of a Thread
In certain circumstances, it may be necessary to terminate a secondary thread
without waiting for the thread to complete its processing; for example, the user
may decide to exit from the application. This capability is provided under OS/2
Version 2.0 using the DosKillThread() function. This function is illustrated in
Figure 100.

<Retreive thread id from window words>

usReturn = DosKillThread(ThreadID); /*Destroy secondary thread */

Figure 100. DosKi/IThread() Function. This function allows the forced termination of a
thread.

Note that the DosKillThread() function cannot be used to terminate the current
thread; if the application attempts to issue a DosKillThread() function call for the
current thread, the function will return an error. To terminate a secondary
thread from within that thread, the _endthread() function should be used if the
thread was created with the _beginthread() function, or the DosExit() function
may be used if the thread was created using the DosCreateThread() function.

10.4 Terminating a Process

214 OS/2 V2.0 Volume 4

A process may terminate another process running in the system, provided it has
access to the process ID of the process it wishes to terminate. This process ID
is returned by the DosExecPgm() function when the process is created and since,
in the majority of cases, a process is terminated by the process that created it,
this presents no particular problem since the process ID can be stored as a
global variable or as instance data in window words, until it is needed to
termioate the process.

A process is terminated using the DosKillProcess() function. This function may
be used to terminate a single process, or to terminate a process and all its
descendants (that is, its children, along with their children, and so on). An
example of the DosKillProcess() function is given in Figure 101.

<Retrieve process id from window words>

re = DosKillProcess(l,
pidServer);

/* Kill only this process
/* Process ID to be killed

*/
*/

Figure 101. Terminating a Process. This example shows the use of the DosKil/Process()
function to terminate a single process.

The value of" 1" specified for the first parameter in the DosKillProcess() call
causes the function to terminate only the specified process and not its
descendants (if any).

10.5 Communicating With a Secondary Thread
The primary thread may wish to communicate with the secondary thread in order
to initiate an event or transfer data. The methods available for such
communication differ, depending upon whether the secondary thread contains
an object window.

10.5.1 Threads Containing Object Windows
When a secondary thread is created, and in turn creates an object window as
shown in Figure 96 on page 208, the handle of the calling window may be
passed to the object window as part of the WM_ CREATE message, and the
object window procedure uses this handle to pass its own window handle back
to the calling window as part of an acknowledgement message. This technique
is illustrated in the sample object window procedure shown in Figure 97 on
page 209.

Once the calling window receives this message and extracts the object
window's handle, it should store the handle in its own instance data. It may
then use the handle at any time to pass a Presentation Manager message to the
object window, in order to initiate an event in the object window.

By convention, messages passed to an object window should contain the
window handle of the calling window, within the message parameters. The
object window procedure may then use this handle to pass an
acknowledgement message or return data to the calling window in the primary
thread. This technique allows the same object window to process messages
from multiple sources. See 10.9, "Client-Server Applications" on page 236 for
additional considerations.

Note that messages passed to object windows in secondary threads should be
posted using the WinPostMsg() function, rather than being sent using the
WinSendMsg() function. This causes asynchronous processing of the message,
and allows the primary thread to return to Presentation Manager and continue
interaction with the end user.

In situations where the user must be prevented from carrying out certain actions
while the object window processes an event, the calling window procedure
should disable those actions in the action bar immediately before posting the
message to the object window, and re-enable those actions only after a
completion message has been received from the object window. This prevents
the user from carrying out such actions, but does not prohibit other actions
within the application, or interaction with other applications on the desktop.

10.5.2 Threads Without Object Windows
Where a secondary thread is created only to process a specific event, and
where the thread terminates upon completion of that event, communication
between the primary and secondary threads is usually not required. Necessary
data is communicated to the secondary thread as part of the DosCreateThread()
function, including pointers to the data objects upon which the thread must
operate. The secondary thread then proceeds to process the event,
independently of the primary thread.

The only communication from the secondary thread to the primary thread
occurs upon completion of the event, when the secondary thread signals this

Chapter 10. Multitasking Considerations 215

completion to the primary thread. Completion may be signalled by Presentation
Manager messages or via semaphores; see 10.7, "Maintaining Synchronization"
on page 229 for further discussion.

10.6 Communicating With Another Process
Communication between processes must use one of the architected methods
provided by OS/2, since the operating system by default prohibits different
processes from accessing the same resources. For this reason, communication
between processes is slightly more complex than communication between
threads, but requires less care on the part of the programmer to ensure
synchronization and data integrity.

The mechanisms provided by OS/2 for interprocess communication are:

• Presentation Manager messages
• Shared memory
• Queues
• Pipes (both named and anonymous)
• Atoms
• Dynamic data exchange (DOE).

Each of these mechanisms is explained in detail in the IBM 0512 Version 2.0
Application Design Guide, and simple examples are given in the following
sections.

10.6.1 Presentation Manager Messages
When a child process creates its own windows, Presentation Manager messages
can be used to signal events and/or pass information between the parent and
child processes, provided the windows' handles are known to one another. One
technique for passing window handles during process creation is described in
10.2, "Creating Another Process" on page 211. Even where the child process
does not create its own windows, it may use Presentation Manager messages
to indicate events and pass information to its parent process.

The amount of information which can be passed in a Presentation Manager
message is somewhat limited, due to the four-byte size of each message
parameter. The use of Presentation Manager messages for passing information
is therefore typically combined with other mechanisms such as shared memory
or atoms. The message parameters are then used to carry pointers to shared
memory objects, or string handles that are then used by the child process to
access the required information.

10.6.2 Shared Memory

216 05/2 V2.0 Volume 4

Shared memory objects may be allocated and used to pass information between
specific processes. Such memory objects may be named or anonymous.

The example that follows assumes that two processes are created in the
system: a client process that accepts user input and displays results, and a
server process that accepts requests from the client, accesses data objects and
returns the requested data to the client. Both of these processes create
windows.

In order to communicate a request to the server, the client must first allocate a
shared memory object, using the DosAllocSharedMem() function as described in

Chapter 5, "The Flat Memory Model." Since the process ID of the server
process is known to the client, the client can provide access to the shared
memory object for the server process, using the DosGiveSharedMem() function,
which is also described in Chapter 5, "The Flat Memory Model." This technique
is shown in Figure 102 .

REQUEST *Request;
REPLY *Reply;

CASE WMP_SENDREQUEST:
re = DosAllocShrMem(&Request,

NULL,
sizeof(REQUEST),
OBJ_GIVEABLE,
PAG_WRITE I
PAG_READ I
PAG_COMMIT);

re = DosGiveSharedMem(Request,
pidServer,
PAG_WRITE I
PAG_READ);

re= DosAllocShrMem(&Reply,
NULL,
sizeof(REPLY),
OBJ_GIVEABLE,
PAG _l1RITE I
PAG_READ I
PAG _COMMIT) ;

re = DosGiveSharedMem(Reply,
pidServer,
PAG_WRITE I
PAG_READ);

Request->hRequester = hWnd;

<Initialize other Request structure fields>

WinPostMsg(hServer,
WMP DOREQUEST,
(MPARAM) Request,
(MPARAM) Rep 1 y) ;

DosFreeMem(Request);
break;

case WMP_REQUESTCOMPLETE:
Reply=(PVOID)mpl;

<Copy contents of Reply to private memory>

DosFreeMem(Reply);
break;

/* Request structure */
/* Reply structure ptr */

/*Allocate memory obj */
/* Anonymous memory obj */
/* Size of memory obj */
/* Object is giveable */
/*Allow write access */
/*Allow read access */
/* Commit storage now */
/* Give access to object */
/* Process to get access */
/*Write access allowed */
/* Read access allowed */

/* Allocate memory obj */
/* Anonymous memory obj */
/* Size of memory obj */
/* Object is giveable */
/*Allow write access */
/*Allow read access */
/* Commit storage now */
/* Give access to object */
/* Process to get access */
/*Write access allowed */
/* Read access allowed */

/* Set requester handle */

/* Post msg to server */
/* DO_REQUEST message */
/* Ptr to request object */
/* Ptr to reply object */

/* Release request obj */

/* Release reply object */

Figure 102. Interprocess Communication Using Shared Memory (Part 1). This example
shows a "requester" window procedure issuing requests and receiving replies by way of
Presentation Manager messages.

Chapter 10. Multitasking Considerations 217

218 OS/2 V2.0 Volume 4

If the technique described in 10.2, "Creating Another Process" on page 211 is
followed, and the server process has posted a message to the client at the
completion of server initialization, containing the window handle of the server's
object window, the client can dispatch the request as an application-defined
Presentation Manager message to the server's object window, with a pointer to
the memory object as a message parameter. The server process then obtains
access to the object using the DosGetSharedMem() function, as shown in
Figure 103.

CASE WMP DOREQUEST:
Request = (REQUEST *)mpl;
Reply = (REPLY *)mp2;
DosGetSharedMem(&Request,

PAG_READ);
DosGetSharedMem(&Reply,

PAG_WRITE I
PAG_READ);

ServiceRequest(Request,Reply);

WinPostMsg(Request->hRequester,
WMP REQUESTCOMPLETE,
(MPARAM) Reply,
(MPARAM)0);

DosFreeMem(Request);
DosFreeMem(Reply);
break;

/* Get memory obj ptrs */

/* Obtain access to obj */
/*Allow read access */
/* Obtain access to obj */
/*Allow write access */
/*Allow read access */

/* Complete request */

/* Post msg to requester */
/* Message class */
/* Ptr to reply struct */

/* Free request object */
/* Free reply object */

Figure 103. Interprocess Communication Using Shared Memory (Part 2). This example
shows a "server" window procedure receiving and processing Presentation Manager
messages.

In the simplest case where the client process has only one window, the handle
of this window is passed to the server process when it is created, as part of the
DosExecPgm() call, as shown in Figure 99 on page 212. Hence the server has
access to the client's window handle and can pass the return data to the client.
In a more complex situation where the client process has several windows and
where a request can come from any of these, the handle can be passed as part
of the request structure, as shown in Figure 102 on page 217 and Figure 103.

Another issue that arises when using shared memory to communicate between
processes is that of freeing the shared memory object. When a process issues
a DosGiveSharedMem() or DosGetSharedMem() call, the operating system
increments a usage counter for the shared memory object, and will not release
the memory until all processes using the object have issued a DosFreeMem()
call.

For the server process that receives access to the shared memory object, the
DosFreeMem() call is simply made whenever the server process has finished
with the contents of the memory object. For the client process that initially
creates the memory object, the DosFreeMem() call can be made at either of two
points:

• If the client process does not care whether the request is correctly received
by the server process, the DosFreeMem() call can be made immediately

10.6.3 Atoms

after passing the message to the server, as shown in Figure 102 on
page 217.

• If the client wishes to guarantee delivery of the request, it must pass the
message, wait for an acknowledgement of receipt from the server, and then
issue ~he DosFreeMem() call. This acknowledgement may simply be an
indication of receipt, prior to the server processing the request, or may be
the returned data from the request.

Note that it is common for returned data from a request to be passed using the
same memory object as was used to contain the original request. In such
cases, the memory object cannot be freed by the client process until the
returned data is received and processed.

This example assumes that the two processes described in the previous
example require only to pass character strings, perhaps containing the request
and the returned information. In this case, the requester obtains the handle to
the system atom table using the WinQuerySystemAtomTable() function. It may
then add the request string to this table using the WinAddAtom() function, and
obtain an atom that represents the string in the table. This atom may then be
passed to the server process in an application-defined Presentation Manager
message. An example of this technique is shown in Figure 104 on page 220.

Chapter 10. Multitasking Considerations 219

220 OS/2 V2.0 Volume 4

CASE WMP SENDREQUEST:
hSysAtomTable = WinQuerySystemAtomTable();
ReqAtom = WinAddAtom(hSysAtomTable,

szRequest);
WinPostMsg(hServer,

WMP_DOREQUEST,
(MPARAM) ReqAtom,
(MPARAM) hWnd);

<Store ReqAtom in window words>

return((MRESULT)0);
break;

/* Get atom table handle */'
/* Add string to table */
/* String to be added */
/* Post msg to server */
/* DO_REQUEST message */
/* Atom to access string */
/* Return window handle */

/* Return zero */

case WMP REQUESTCOMPLETE:
hSysAtomTable = WinQuerySystemAtomTable(); /*Get atom table handle*/
ReplyAtom = (ATOM)mpl; /* Get atom for reply */
WinQueryAtomName(hSysAtomTable, /* Get string from atom */

ReplyAtom, /* Atom */
szReply, /* Buffer for string */
sizeof(szReply)); /*Size of buffer */

<Verify reply is correct>

WinDeleteAtom(hSysAtomTable,
ReqAtom);

WinDeleteAtom(hSysAtomTable,
ReplyAtom);

return(TRUE);
break;

/* Delete atoms */

Figure 104. Interprocess Communication Using Atoms (Part 1). This example shows a
"requester" window procedure issuing requests and receiving replies by way of
Presentation Manager messages.

When the server process receives this message, it may also obtain the handle
to the system atom table, and retrieve the string using the atom supplied in the
message. If the string is of a predefined length, the server may simply retrieve
the string using the WinQueryAtomName() function. If the string is of variable
length, the server may need to obtain the length of the string using the
WinQueryAtomLength() function, and allocate a buffer for the string. This is
illustrated in Figure 105 on page 221.

10.6.4 Queues

CASE WMP_DOREQUEST:
hAtomTable = WinQuerySystemAtomTable();
ReqAtom = (ATOM)mpl;
hRequester = (HWND)mp2;

/* Get atom table handle */
/* Get atom for request */
/* Get requester handle */

ullength = WinQueryAtomlength(hAtomTable, /* Get size of string */
ReqAtom);

szRequest = malloc(ullength);

WinQueryAtomName(hSysAtomTable,
ReqAtom,
szRequest,
sizeof(szRequest));

ServiceRequest(szRequest,szReply);

ReplyAtom = WinAddAtom(hSysAtomTable,
szReply);

WinPostMsg(hRequester,
WMP REQUESTCOMPLETE,
(MPARAM)ReplyAtom,
(MPARAM)0);

free(szRequest);
return((MRESULT)0);
break;

/*Allocate buffer */

/* Get string from atom */
/* Atom */
/* Buffer for string */
/* Size of buffer */

/* Complete request */

/* Add string to table */
/* String to be added */

/* Post msg to requester */
/* Message class */
/* Atom to access string */
/* Return window handle */

/* Free request buffer */
/* Return zero */

Figure 105. Interprocess Communication Using Atoms (Part 2). This example shows a
"server" window procedure receiving and processing Presentation Manager messages.

The server may return information to the requester using the system atom table.
The WinAddAtom() function is used by the server to add the result string to the
atom table, and the WinQueryAtomlength() and WinQueryAtomName() functions
are used by the requester to retrieve the string. In the example shown in
Figure 104 on page 220, it is assumed that the reply string returned to the
requester is of a predefined length, and the WinQueryAtomlength() function is
thus not required.

Note that the request string is not removed from the atom table until the server
process has returned the result to the requester. Once the result is obtained
and verified, the requester removes both the request and the result using the
WinDeleteAtom() function.

The functions used to manipulate atoms and atom tables are described in detail
in the IBM OS/2 Version 2.0 Presentation Manager Reference.

A queue can be used to pass information between the process that created it
and other processes in the system. The process that creates the queue is
known as the owner of the queue, and is the only process that can read and
remove elements from the queue. Other processes may only add elements to
the queue.

In a client-server environment, a queue is typically created by the server
process. If a requester wishes to receive returned data from the server

Chapter 10. Multitasking Considerations 221

222 OS/2 V2.0 Volume 4

process. it must therefore create its own queue. Figure 106 on page 222 shows
a requester process using the DosCreateQueue() function to create its own
queue, as well as using a queue owned by a server process.

#define SRVQUEUENAME = "\\QUEUES\\SRV_QUEUE"
#define REQQUEUENAME = 11 \\QUEUES\\REQ_QUEUE 11

HQUEUE hReqQueue, hSrvQueue;
REQUESTDATA Server;
REQUEST *Request;
REPLY *Reply;
BYTE Priority;
ULONG ulBytes;
APIRET re;

case WMP SENDREQUEST:
re ; DosCreateQueue{&hReqQueue,

QUE_FIFO I
QUE CONVERT ADDRESS,
REQQUEUENAME);

re = DosOpenQueue(&pidServer,
&hSrvQueue,
SRVQUEUENAME);

re= DosAlloeSharedMem{&Request,
NULL,
sizeof(REQUEST),
PAG_WRITE I
PAG_READ I
PAG_COMMIT);

re = DosGiveSharedMem(Request,
pidServer,
PAG_READ);

re = DosWriteQueue(hSrvQueue,
{ULONG)hWnd,
sizeof(REQUEST),
Request,
0);

re= DosCloseQueue(hSrvQueue);
DosFreeMem(Request);
break;

/* Server queue name */
/* Requester queue name */

/* Queue handles */
/* Control information */
/* Request data buffer */
/* Reply data buffer */
/* Priority information */
/* Bytes read/written */
/* Return code */

/* Create req queue */
/* First-in, first-out */
/* Convert addresses */
/* Name of queue */

/* Open srv queue */
/* Queue handle */
/* Server queue name */

/*Allocate shared mem */
/* object for request */
/* Size of memory object */
/* Allow write access */
/*Allow read access */
/* Commit storage now */
/* Give mem to server */
/* Server process id */
/*Allow read only */

/* Add request to queue */
/* Requester win handle */
/* Size of request */
/* Request buffer */
/* No priority */
/* Close srv queue */
/* Free request buffer */

Figure 106. Interprocess Communication Using Queues (Part 1). This example shows
elements being added to a queue by a "requester" process.

Queues may be created with a number of different ordering mechanisms. The
order of elements in a queue is determined when the queue is created, and
may be specified as FIFO, LIFO, or priority-based. When adding an element to a
priority-based queue, a process must specify a priority (from 0 to 15 with 0
being lowest and 15 being highest) for the element.

Processes other than a queue's owner may gain write access to the queue
using the DosOpenQueue() function to obtain a queue handle. Once this handle
is obtained, the process may use the DosWriteQueue() function to add elements
to the queue. The example in Figure 106 shows a requester process that

passes a request to a server process using a queue created by that server
process.

The requester process first creates its own queue for returned data, using the
DosCreateQueue() function. This queue will be accessed by the server to write
the returned data from the completed request, which can then be read by the
requester. The example shown in Figure 107 on page 224 creates a FIFO
queue with the name specified in the string constant REQQUENAME, and
specifies that the addresses of any elements placed in the queue by 16-bit
processes are to be automatically converted to 32-bit addresses by the
operating system. This conversion, specified using the
QUE_CONVERT_ADDRESS flag, is used by 32-bit queue owners to avoid the
need for the queue owner to explicitly convert addresses.

The requester obtains access to the server's queue using the DosOpenQueue()
function, passing the queue name as a parameter. This function returns both a
queue handle and the process identifier of the server process that owns the
queue.

The requester must allocate a shared memory object to contain the request; the
actual queue element contains only a pointer to that memory object. The
requester then invokes the DosGiveSharedMem() function to provide read-only
access (by specifying only the PAG_READ flag) to that object for the server
process, using the process identifier returned by the DosOpenQueue() function.

The requester adds its request as a element in the queue, using the
DosWriteQueue() function. Note that the second parameter to the function is an
unsigned long integer, which may be used to pass application-specific
information. The value specified in this parameter is passed to the queue
owner as the u/Data field of a REQUESTDATA structure, which is returned by the
DosReadQueue() function. In this example, the parameter is used to pass the
window handle of the requester's object window to the server process, so that a
notification message can be passed to the requester when the request has been
completed.

Once the element has been written to the queue, the requester immediately
relinquishes access to the server's queue by issuing a DosCloseQueue()
function call. The shared memory object allocated for the request buffer is then
released by the requester using the DosFreeMem() function.

The server process is very similar in structure to the requester, in that it creates
its own queue, then awaits and services requests. The server process is
illustrated in Figure 107 on page 224.

Chapter 10. Multitasking Considerations 223

224 OS/2 V2.0 Volume 4

#define SRVQUEUENAME = 11 \\QUEUES\\SRV_QUEUE 11

#define REQQUEUENAME = 11 \\QUEUES\\REQ_QUEUE"

HQUEUE hSrvQueue, hReqQueue;
REQUESTDATA Requester;
REQUEST *Request;
REPLY *Reply;
BYTE Priority;
ULONG ulBytes;
APIRET re;

re = DosCreateQueue(&hSrvQueue,
QUE_FIFO I
QUE CONVERT ADDRESS,
SRVQUEUENAME);

while (!ProcessEnded)
{
re = DosReadQueue(hSrvQueue,

&Requester,
&ulBytes,
&Request,
e,
DCW~J_WAIT,

&Priority,
e);

ServiceRequest(Request);

re= DosOpenQueue(&Requester.idpid,
&hReqQueue,
REQQUEUENAME);

re= DosAllocSharedMem(&Reply,
NULL,
sizeof(REPLY),
PAG_WRITE I
PAG_READ I
PAG_COMMIT);

re = DosGiveSharedMem(Reply,
&Requester.idpid,
PAG_READ);

re = DosWriteQueue(hReqQueue,
0L,
sizeof(REPLY),
Reply,
e);

re= DosCloseQueue(hReqQueue);

DosFreeMem(Request);
WinPostMsg((HWND)Requester.ulData,

WMP REQUESTCOMPLETE,
(MPARAM)Reply,
e);

DosFreeMem(Reply);
}

/* Server queue name *I
/* Requester queue name */

/* Queue handles */
/* Requester win handle */
/* Request data buffer */
/* Reply data buffer */
/* Element priority */
/* Bytes read/written */
/* Return code *I
/* Create queue *I
/* First-in, first-out *I
/* Convert addresses */
/* Name of queue *I
/* Until process ends *I
/* Read queue */
/* Control information */
/* Bytes read */
/* Data buffer pointer *I
/* Get first element */
/* Wait synchronously *I
/* Priority of element */
/* No event semaphore */

/* Process request */

/* Open queue */
/* Queue handle */
/* Server queue name */
/*Allocate shared mem */
/* object for request */
/* Size of memory object */
/*Allow write access */
/* Allow read access */
/* Commit storage now */
/* Give mem to requester */
/* Req process id */
/* Allow read only */
/* Add request to queue */
/* No control info */
/* Size of reply */
/* Reply buffer */
/* No priority */
/* Close queue */

/* Free request buffer */
/* Post notification msg */
/* to requester window */
/* Reply buffer pointer */

/* Free reply buffer */

Figure 107. Interprocess Communication Using Queues (Part 2). This example shows the
creation of a queue and the processing of items from the queue by a "server" process.

Note that the server process does not use an object window. It simply accepts
requests from its own queue, using the DCWW_WAIT flag to suspend itself in the
DosReadQueue() call until an element becomes available in the queue. Once a
request is complete, the server places the returned data on the requester's
queue, extracts the window handle of the requester from the REQUESTDATA
structure provided by the DosReadQueue() call, and posts a message to the
requester indicating that the request is complete. This message is processed
by the requester to retrieve the returned data from the queue.

After adding the request to the server's queue, the requester is notified by the
server when the request has been serviced. This is done using a Presentation
Manager message, since the requester's window handle is passed to the server
in the second parameter to the DosWriteQueue() function. The operating system
imbeds this value as the second doubleword of a REQUESTDATA structure
which is passed to the server by the DosReadQueue() function.

Once notification is received from the server process, the requester uses the
DosReadQueue() function to retrieve the returned data from its own queue, as
shown in Figure 108.

case WMP REQUESTCOMPLETE:
re ; DosReadQueue(hReqQueue,

&Server,
&ulBytes,
&Reply,
0,
DCWW_WAIT,
&Priority,
0);

< Process reply>

DosFreeMem(Reply);
break;

/* Read req queue */
/* Control information */
/* Bytes read */
/* Data buffer pointer */
/* Get first element */
/* Wait synchronously */
/* Priority of element */
/* No event semaphore */

Figure 108. Interprocess Communication Using Queues (Part 3). This example shows
returned data being read from a queue by a "requester" process.

The DCWW_WAIT flag causes the DosReadQueue() function to wait until an
element is available in the queue before returning control to the application. If
the process merely wishes to check whether a queue element is available, the
DCWW_NOWAIT flag may be specified, in which case an event semaphore must
be created and its handle passed to the DosReadQueue() functJon. This
semaphore is immediately set by the operating system, and is posted when an
element is added to the queue. If the queue is shared between processes (as in
the examples given herein). the semaphore must be shared, either by creating
it as a named semaphore or by setting the DC_SEM_SHARED flag in the
DosCreateEventSem() call.

It will be noted that the use of queues is very similar to that of shared memory,
except that the queue is used to pass a pointer to a shared memory object,
rather than a Presentation Manager message. However, queues have an
advantage in that they may be FIFO, LIFO or priority-based, without the need for
the application to handle the querying and sorting of elements.

Chapter 10. Multitasking Considerations 225

10.6.5 Pipes

226 OS/2 V2.0 Volume 4

While a queue may only be read by its owner, a pipe may be used for either
read access, write access or both. Pipes function in a similar way to files, and
once created, are accessed using the OS/2 file system programming functions
such as the DosRead() and DosWrite() functions. This means that pipes can be
accessed by other applications in the system that support file system
operations, including applications executing in virtual DOS machines. In this
way, interprocess communication can be supported between an OS/2
application and a DOS or Windows application.

Pipes may be either named or anonymous. Communication via an anonymous
pipe requires that the read and write handles for the pipe are known to both
processes involved in the communication. Since these handles are not shared
by default, another means of passing the handles, such as Presentation
Manager messages or shared memory, must be used. For this reason,
anonymous pipes are typically less useful than named pipes for interprocess
communication, and are therefore used mainly for "streaming" communication
between threads in the same process.

Named pipes are even more similar to files than anonymous pipes, since they
are initially accessed using predefined names rather than requiring handles.
Hence a process may easily obtain access to a named pipe, provided it knows
the name of the pipe. Once the pipe has been created or opened, the process
uses a pipe handle, which is similar to a file handle, to access the pipe via
DosRead() and DosWrite() function calls.

OS/2 V2.0 introduces a number of new functions for accessing named pipes,
which simplify programming in the client-server environment. These are the
DosCallNPipe() function and the DosTransactNPipe() function, both of which are
explained in the following text.

Note that while queues allow many processes to access and write to the queue,
a named pipe is typically a one-to-one connection; the creator of the pipe may
interact with only one other process at a time, and that process must relinquish
access to the pipe before another process may gain access. For this reason,
pipes have some limitations when used in a client-server environment with
many requesters being serviced by a single server, as will become evident from
the following examples.

A named pipe is normally created by the server process, using the
DosCreateNPipe() function. During creation of the pipe, the server specifies the
type of access that is allowed for the pipe. The following types of access are
valid:

• Inbound access (client to server)
• Outbound access (server to client)
• Duplex (both).

Since only one client process may have access to a named pipe at any given
time, the requester must wait for the named pipe to become available, using the
DosWaitNPipe() function.

Figure 109 on page 227 shows a secondary thread routine in a requester
process, which is dispatched to make a request to a server process.

#define NPIPE NAME •\\PIPE\\SRVPIPE"

void RequestThread(TRANS *Trans)
{

UL ONG
APIRET

ulBytes;
re;

re = DosWaitNPipe(NPIPE_NAME,
NP_WAIT_INDEFINITELY);

re = OosCallNPipe(NPIPE_NAME,
Trans->Request,
sizeof(REQUEST),
Trans->Reply,
sizeof(REPLY),
&ulBytes,
10000);

WinPostMsg(Trans->hReturn,
WMP_REQUESTCOMPLETE,
(MPARAM)Trans,
0);

DosExit(0);

/* Pipe name */

/* Requester thread */

/* Bytes read/written */
/* Return code */

/* Wait on named pipe */
/* Wait indefinitely *I

/* Pipe name */
/* Request buffer ptr *I
/* Size of buffer */
/* Reply buffer ptr */
/* Size of buffer */
/* No. of bytes read */
/* Timeout period */

/* Notify calling window * /
/* Request is complete */
/* Transaction structure */

Figure 109. Interprocess Communication Using Named Pipes (Part 1). This example
shows a secondary thread in a "requester" process, writing to and reading from a named
pipe.

In the example shown in Figure 109, the requester dispatches a secondary
thread that waits synchronously for the named pipe to become available. This
thread accepts a pointer to a data structure that contains the request and reply
buffers along with the window handle of the window that initiated the thread.
This window handle is included so that a notification message can be posted to
the window when the request is complete. Since a separate thread is
dispatched for each request, the thread terminates when the reply is returned
by the server. Hence no object window is necessary.

When the pipe becomes available, the requester opens the pipe, writes the
request, reads the reply and then closes the pipe. These functions are all
performed by a single call to the DosCallNPipe() function. This function actually
opens the pipe using a DosOpen() function call, and writes the request to the
pipe using the DosWrite() function. The reply is read using the DosRead()
function and the pipe is closed using the DosClose() function. Use of the
DosCallNPipe() function simplifies the application code by allowing the
programmer to combine these operations into a single function call.

Once the reply is received from the server and the DosCallNPipe() function
returns, the requester thread notifies the window from which the request was
made, by posting a Presentation Manager message to it. The pointer to the
transaction data structure initially passed to the thread is returned with the
message, enabling the window procedure to easily differentiate this request
from any others that may currently be active.

The server process creates the named pipe, as shown in Figure 110 on
page 228, using the DosCreateNPipe() function.

Chapter 1 O. Multitasking Considerations 227

228 OS/2 V2.0 Volume 4

#define NPIPE NAME 11 \\PIPE\\SRVPIPE 11

HFILE
REQUEST
REPLY
ULONG
ULONG
APIRET

hPipe;
*Request;
*Reply;
ulAction;
ulBytes;
re;

re = DosCreateNPipe(NPIPE_NAME,
&hPipe,
NP ACCESS DUPLEX,
NP=WAIT - I
NP_TYPE_MESSAGE I
NP_READMODE_MESSAGE,
exel,
sizeof(REPLY),
sizeof(REQUEST),
0);

while (!ProeessEnded)
{
re= DosConneetNPipe(hPipe);
re = DosRead(hPipe,

Request,
sizeof(REQUEST),
&ulBytes);

ServiceRequest(Request, Reply);

re = DosWrite(hPipe,
Reply,
sizeof(REPLY),
&ulBytes);

re= DosDisConnectNPipe(hPipe);
}

/* Pipe name

/* Pipe handle
/* Request buffer
f* Reply buffer
/* Open action
/* Bytes read/written
/* Return code

*/

*/
*/
*/
*/
*I
*/

/* Create named pipe */
/* Pipe handle */
/* Allow duplex access */
/* Blocking mode */
/* Msg oriented pipe */
/* Msg oriented read */
/* Single instance only */
/* Outbound buffer size */
/* Inbound buffer size */
/* Default timeout value */

/* Until process ends */

/* Connect to requester */
/* Read request */
/* Request buffer */
/* Size of buffer */
/* No. of bytes read */

/* Complete request */

/* Write reply to pipe */
/* Reply buffer */
/* Size of buffer */
/* No. of bytes written */
/* Disconnect from req */

Figure 110. Interprocess Communication Using Named Pipes (Part 2). This example
shows a "server" process creating and reading from a duplex named pipe.

Once the pipe is created, the server process makes the pipe available to a
requester process by issuing a DosConnectNPipe() function call. This enables
any requester processes currently waiting for the pipe to contend for ownership.
The requester that claims ownership returns from its DosWaitNPipe() call, while
other requesters continue to wait.

The server then uses the DosRead() function to retrieve a request from the pipe.
Since blocking mode is selected in the DosCreateNPipe() call by specifying the
NP _WAIT flag, the DosRead() call does not return until a request becomes
available.

Once the read operation completes, the server process services the request
and writes the returned data back to the pipe using the DosWrite() function. It
then informs the requester that the request has completed, using a Presentation
Manager message, and obtaining the window handle of the requester from the
Request structure.

Note that the server process cannot make the pipe available to other requesters
by issuing a DosDisconnectNPipe() call, until the current requester has
completed retrieval of the information from the pipe. If this call is issued before
the requester retrieves its returned data, the requester's DosRead() call will
fail. The server ensures that correct synchronization is maintained by passing
the completion message synchronously using the WinSendMsg() function. For
this reason, and in order to ensure that user responsiveness is maintained, it is
recommended that requesters interacting with named pipes should do so from
within object windows created in secondary threads under the control of the
application's primary process.

Once the pipe is made available once more, this cycle of operations continues
for each request issued to the server. The server process is suspended within
the DosConnectNPipe() call until a request is issued by a requester process.

Note that where a one-to-one relationship exists between the server and
requester processes, the requester need not relinquish access to the named
pipe between requests. In such situations, the named pipe would be opened by
the requester using the DosOpen() function directly, and accessed using the
DosTransactNPipe() function. This function combines the DosWrite() and
DosRead() functions. When the secondary thread is terminated, it can
relinquish access to the pipe using the DosClose() function.

10.7 Maintaining Synchronization
It is the responsibility of the application to ensure the appropriate level of
synchronization between threads or process accessing resources. Assuming the
convention suggested in 10.1.2, "Threads Without Object Windows" on page 210,
it is only necessary to indicate when a secondary thread or process has
completed processing a particular unit of work. This may be achieved in a
number of ways:

• By having the secondary thread or process post a completion message to
the calling window procedure before terminating

• By using an event semaphore in conjunction with the Presentation Manager
timer facility

• By using the DosWaitThread() function in the case of threads

• By using the DosWaitchild() function in the case of processes.

While it is possible, when using object windows in secondary threads or
separate processes, to ensure synchronization by using the WinSendMsg() call
for synchronous processing of the target window procedure, this method is not
recommended since it prevents the calling window procedure from processing
additional user input, and is thus potentially in violation of SAA CUA guidelines.
In addition, immediate invocation of a window procedure in this way may disturb
the natural sequence of message processing and compromise the user's
intention.

Chapter 10. Multitasking Considerations 229

10. 7 .1 Presentation Manager Messages

230 OS/2 V2.0 Volume 4

Since a process in OS/2 owns data resources, window handles are available to
any threads under the control of that process. It is therefore possible for a
secondary thread to post a message to the window procedure that invoked it,
advising that the secondary thread has completed its processing. The window
procedure may then process the message and take appropriate action.

This technique may be used by secondary threads that use object windows and
those which do not. It requires only that the secondary thread have
addressability to the window handle of the window procedure that invoked it.
This handle may be obtained directly from Presentation Manager, but it is
recommended that the handle of the invoking window procedure is passed to
the secondary thread upon invocation. This may be done in one of two ways:

• By including the handle in the Ctr/Data parameter of the WinCreateWindow()
call if the secondary thread is using an object window. This also requires
passing the handle as a parameter to the _beginthread() call used to create
the secondary thread's main processing routine.

• By including the handle as a parameter to the DosCreateThread() call if
using a secondary thread without an object window.

The second method described above is illustrated in Figure 111.

case WMP THREAD:
DosCreateThread(ThreadID,

Thread,
(PVOID) hwnd,
0L,
4096);

break;

case WMP ENDOFTHREAD:

<perform end-of-thread processing>

break;

int cdecl thread(hReturn)
HWND hReturn;

<Perform lengthy processing task>

WinPostMsg(hReturn,
WMP_ENDOFTHREAD,
e 0)· , ,

DosExit(EXIT_THREAD,
0L);

/* Start secondary thread
!* Thread ID
/* Entry point for thread
/* Invoking window handle
/* Start immediately
/* Stack size for thread

/* Thread has completed

/* Thread routine
/* Handle of calling window

/* Post message to caller
/* Message class
/* No parameters
/* Terminate thread

Figure 111. Synchronization Using Presentation Manager Messages

*/
*/
*/
*/
*/
*/

*/

*/
*/

*/
*I
*/
*/

Where the two communicating windows are under the control of different
processes, the window handles must be explicitly communicated from one to
the other since by default, the window handle of a window in one process is not
available to a window in another process. One technique for achieving this

communication involves passing the window handle of the first window when
the second process is created, and having the second window return a message
to the first window after initialization, containing the window handle of the
second window. This technique allows both communication and synchronization
between windows. An example is given in 10.2, "Creating Another Process" on
page 211.

10.7.2 Timers and Semaphores
Another method of achieving synchronization between threads or processes
involves the use of an event semaphore and the Presentation Manager timer
facility. The timer facility may be used from within a window procedure to create
and start a timer that periodically sends messages of class WM_ TIMER to the
window, at intervals specified by the window procedure when the timer is
created.

In this case, the WM_ TIMER message is used by the window procedure in the
primary thread or process, to periodically check the state of an event
semaphore that indicates whether the secondary thread or process has
completed its processing. The secondary thread or process sets the event
semaphore upon commencing its processing, and releases (posts) it upon
completion. The primary thread or process queries the state of the semaphore
to determine when the secondary thread or process has completed its
processing.

Note that when using this technique for synchronization between processes
(rather than between threads within the same process), the event semaphore
must be created as a shared semaphore, either by giving it a name or by
specifying the DC_SEM_SHARED flag when invoking the DosCreateEventSem()
function.

An example of a secondary thread using this technique is shown in Figure 112.

int cdecl thread()
{

ulResult = DosCreateEventSem(11 \SEM32\THREAD 11
, /* Name of semaphore */

hSem, /* Semaphore handle */
NULL, /* Not used */
FALSE); /*Set immediately */

<Perform lengthy processing task>

usResult = DosPostEventSem(hSem);
DosExit(0);

/* Release semaphore */
/* Terminate thread */

Figure 112. Synchronization Using an Event Semaphore (Part 1). This example shows
the routine executing in the secondary thread.

Note that the event semaphore is created as a shared semaphore and named.
A named semaphore is recommended since, if the secondary thread routine is
placed in a dynamic link library for subsequent use by other applications, or the
secondary thread executes in a separate process, the name of the semaphore
may be included in the documentation for that library, enabling calling window
procedures to access the semaphore using the DosOpenEventSem() function
(see Figure 113 on page 232). Using this technique promotes code reusability.

Chapter 10. Multitasking Considerations 231

232 OS/2 V2.0 Volume 4

Figure 113 on page 232 shows a window procedure using the WinStartTimer()
function to start a timer, immediately after dispatching a secondary thread such
as the one shown in Figure 112. This timer in this example will cause a
WM_ TIMER message to be passed to the window every 0.5 seconds (500
milliseconds).

case WMP THREAD:
usReturn = DosCreateThread(ThreadID,

Thread,
NULL,

WinStartTimer(hAB,
hwnd,

break;

case WM TIMER:

TIO THREAD,
500);

0L,
4096);

/* Create thread */
/* Entry point for thread */
/* No initialization data */
/* Start immediately */
/* Stack size for thread */
/* Start timer */
/* Window to get WM_TIMER */
/* ID of timer */
/* Period in milliseconds */

ulResult=DosOpenEventSem(11 \SEM32\THREAD", /* Get semaphore handle */
hSem); /*Semaphore handle */

ulResult=DosWaitEventSem(hSem,
0);

if (ulResult!=ERROR_TIMEOUT)
{
<perform end-of-thread processing>
}

ulResult=DosCloseEventSem(hSem);
break;

/* Check semaphore state */
/* Immediate timeout */

/* Semaphore not set */

/* Thread has completed */

/* Close semaphore */

Figure 113. Synchronization Using an Event Semaphore (Part 2). This example shows
the window procedure in the primary thread, periodically testing to determine whether the
event semaphore has been released.

Since the primary thread or process must remain responsive to the end user
and thus cannot wait indefinitely for the semaphore to be released, the
Presentation Manager timer facility is used to generate periodic WM_ TIMER
messages to the invoking window procedure in the primary thread or process.
Upon receipt of each WM_ TIMER message, the window procedure checks the
state of the semaphore, timing out immediately if the semaphore has not yet
been released by the secondary thread or process. This technique is illustrated
in Figure 113.

Note once again the use of a named shared semaphore, in order to reduce the
level of interdependence between the primary and secondary threads/processes,
thus facilitating the inclusion of the secondary routine into a dynamic link library
for subsequent use by other applications.

10.7.3 DosWaitThread() Function
Where a secondary thread must complete its processing and terminate before
the primary thread can continue, the primary thread may use the
DosWaitThread() function to determine whether the secondary thread has
terminated. This function is used in conjunction with the Presentation Manager
timer facility, to periodically check whether the secondary thread has issued a
DosExit() function call. An example of a secondary thread using this technique
is given in Figure 114.

int cdecl thread()
{

<Perform lengthy processing task>

DosExit(EXIT_THREAD,
0L);

/* Terminate thread */
/* Return code */

Figure 114. Synchronization Using the DosWaitThread() Function (Part 1). This example
shows the routine executing in the secondary thread.

When the secondary thread has been started, the window procedure in the
primary thread stores the thread identifier in its instance data area (typically
using window words), and uses the Presentation Manager timer facility to send
periodic WM_ TIMER messages to itself, as shown in Figure 115.

case WMP THREAD:
usReturn = DosCreateThread(ThreadID,

Thread,
NULL,
0L,
4El96);

<Store ThreadID in instance data block>

WinStartTimer(hAB,
hwnd,

break;

case WM TIMER:

TIO THREAD,
5El);

<Get ThreadID from instance data block>

ulReturn=DosWaitThread(ThreadID,
DCWW_NOWAIT);

if (ulReturn==ERROR_THREAD_NOT_TERMINATED)
break;

else
<perform end-of-thread processing>

break;

/* Create thread */
/* Entry point for thread */
/* No initialization data*/
/* Start immediately */
/* Stack size for thread */

/* Start timer */
/* Window to get WM_TIMER */
/* ID of timer */
/* Period in milliseconds */

/* Check thread status */
/* Immediate timeout */
/* Thread still running */
/* Continue waiting */
/* else */
/* Thread has completed */

Figure 115. Synchronization Using the DosWaitThread() Function (Part 2). This example
shows the window procedure in the primary thread, periodically testing to determine
whether the secondary thread has terminated.

Chapter 10. Multitasking Considerations 233

Whenever it receives a WM TIMER message, the window procedure retrieves
the thread identifier from its-instance data area and uses the DosWaitThread()
function to determine whether the thread has terminated. If so, it performs the
required processing. If the thread has not yet terminated, it immediately returns
control to Presentation Manager. Note the use of the DosExit() function in
Figure 114. This assumes that the processing performed by the routine does
not use an object window, and does not call C run-time library functions. As
mentioned earlier in this chapter, secondary threads without object windows are
typically used to perform a single, lengthy task, and terminate upon completion
of this task. Since they are able to use the DosExit() function and the
completion of their task causes the termination of the thread, such threads are
ideal candidates for use of the DosWaitThread() function. For situations where
the progress of execution must be indicated to the primary thread, an event
semaphore is more suitable.

As already mentioned, there is very little difference between the use of the
DosWaitThread() function and the use of an event semaphore. Both are used in
conjunction with the Presentation Manager timer facility and in fact, both use an
event semaphore. The DosWaitThread() function avoids the need for the
application to explicitly open and check the semaphore, since the
DosWaitThread() function performs these operations transparently. However,
while an event semaphore may be used to indicate any significant event during
execution of a secondary thread, while the DosWaitThread() function can only
signal termination of the thread. Hence the DosWaitThread() function is slightly
less flexible than the explicit use of an event semaphore with the Presentation
Manager timer facility.

10. 7.4 DosWaitChild{) Function

234 OS/2 V2.0 Volume 4

The DosWaitChild() function allows a thread within a process to wait upon the
termination of an asynchronous child process, in a similar manner to the
DosWaitThread() function. The DosWaitChild() function allows a thread to wait
for the termination of a single child process, or the termination of an entire
process tree (that is, a process and all of its descendants).

Note that only the calling thread in the parent process is suspended during a
DosWaitChild() call. If the parent process has other threads, they will continue
to be dispatched.

The DosWaitChild() function can also be used to check the termination status of
a child process that has already terminated, provided that process was started
with the EXEC_ASYNCRESULT flag specified in the DosExecPgm() call. The use
of this flag causes OS/2 to store the result code from the child process, for
future reference by a DosWaitChild() call.

An example of the DosWaitChild() function is given in Figure 116.

re = DosWaitChild(DCWA_PROCESS,
DC~JW_WAIT,

&Return Info,
&pidServer,
pidServer);

/* Wait for this process only */
/* Wait until termination */
/* Returned info */
/* Returned process ID */
/* Process id to wait on */

Figure 116. DosWaitChi/d() Function. This example assumes that the DosExecPgm() call
shown in Figure 99 on page 212 has already been executed.

Specifying the DCWA_PROCESS flag in the first parameter of the DosWaitChild()
call causes the calling thread to wait only upon the specified process, and not
upon its children (if any). If a thread is to wait upon the entire process tree, the
DCWA_PROCESSTREE flag must be specified.

The DCWW_WAIT flag in the second parameter causes the calling thread to wait
until the specified process has terminated. The DCWW_NOWAIT flag would
cause the DosWaitChild() call to return immediately, without waiting for a child
process to end. The DCWW_NOWAIT flag is typically used when checking the
termination status of a child process that has already ended.

10.8 Preserving Data Integrity
Since data resources are owned by a process, rather than by threads within the
process, multiple threads may have addressability to the same static data
storage areas, and potential problems arise with regard to serialization of data
access and maintenance of data integrity. Similarly when multiple processes
have access to a shared memory object, it is the responsibility of the
application to ensure the integrity of shared resources; neither OS/2 nor
Presentation Manager provide any automatic methods of avoiding such
problems. However, mechanisms are provided whereby the application
developer may prevent problems from occurring. Some suggested techniques
for private data are as follows:

1. For any data that is private to a thread, use local variables defined within
the thread, or automatic storage assigned from the stack {because each
thread has its own stack memory object, this data is automatically protected
since no other thread has addressability to this area of memory).

2. For any data that is private a particular window (as distinct from the window
class), create a memory object to store this data and place a pointer in the
window words, as described in 6.5.4, "Instance Data and Window Words" on
page 81.

3. Specific data areas may be used to contain data that is passed between
threads or processes. If this data is only accessed in response to particular
messages passed between the threads or processes, and if these messages
are only generated at predefined points in the application's execution (such
as on entry to and exit from a window procedure), it is relatively simple for
an application to control access to these data areas.

Static allocation of such data areas is permissible where the accessing
routines reside and execute solely under the control of a single application.
However, where such routines are placed in a library and accessed by
multiple applications, the potential for data corruption through application
error increases significantly, and dynamic data allocation prior to invoking a
secondary thread or passing a request to another process should be
considered to ensure the integrity of data areas.

4. For any code that will be placed in a DLL, it is important that a separate set
of memory objects is created for the data of each process that will access
the DLL. In order to ensure this, a DATA NONSHARED statement should be
specified in the module definition file (see 14.2.1, "Module Definition File" on
page 278).

Note that the above techniques apply to data shared between threads within a
process; OS/2 provides a variety of mechanisms for dealing with data and

Chapter 10. Multitasking Considerations 235

memory areas that are shared between processes. These techniques are
described in the IBM 0512 Version 2.0 Control Program Reference.

10.9 Client-Server Applications

236 OS/2 V2.0 Volume 4

In situations where an object window is created in a secondary thread to
manipulate a data object such as a database, or to handle access to a remote
device or system, it is often desirable to have a single object window
performing the requested actions, in response to requests from multiple display
windows. This follows the basic architecture of a client-server application, in
accordance with the object-oriented rule of allowing access to a data object only
from a single application object, and therefore implements the concept of
encapsulation.

For example, a user may use different display windows to access different views
of the same database. However, for reasons of efficiency and data integrity, the
actual database access should be coordinated by a single object window,
preferably in a secondary thread in case a database access request causes a
lengthy search.

The question then arises of how the handle of the object window may be made
available to multiple display windows. A number of options are available:

• The handle may be stored as a global variable. This is not recommended
however, since global variables are open to inadvertent modification, and
their use imposes programming restrictions with respect to variable names.

• Immediately after the object window is created, its handle may be passed to
all display windows that require communication with the object window.
However, if subsequent modification of the application introduces a new
display window, additional modifications would be required to the module
that created the object window. This increases the interdependence
between application objects, and is therefore not recommended.

• The handle of the object window may be stored in the window words of the
application's main window. The handle of this window is available to all
windows in the application, by querying the application's switch entry (as
shown in 6.6.5, "Identifying the Destination Window" on page 91). If the
window words of the application's main window are used to store a pointer
to a data structure, which in turn contains the handles of object windows
and other items of a global nature, these items may be retrieved by window
procedures when required.

The final method described above is therefore the recommended solution.
Object windows that will perform 11 server" tasks on behalf of a number of
display window "clients" should be created by the window procedure for the
application's main window, immediately upon creation of the main window, and
the handles of the object windows stored in a data structure accessed via the
window words of the main window.

10.10 Summary

OS/2 allows multiple threads of execution to be initiated within an application.
Each thread is regarded as a distinct unit by the operating system, and is
scheduled independently of other threads and processes in the system. Each
application has a primary thread, created when the application is started. An
application may optionally create one or more additional threads, known as
secondary threads.

In certain circumstances, an application may also create additional processes to
perform some portion of the application's processing. The use of additional
processes may be necessary where different portions of the application's
processing must be isolated from one another. It is also useful for applications
that exploit the Workplace Shell since by default, all Workplace Shell objects
share the same process and are hence unprotected from one another. The use
of multiple processes has performance implications due to additional system
overhead and should thus be implemented with care.

Secondary threads and processes may contain object windows, which do not
appear on the display screen but act as addresses to which messages may be
sent in order to initiate application processing. An object window typically
"owns" a data object such as a database or controls access to an external
entity such as a remote system. Where the processing in response to an
application event requires access to another data object, the use of object
windows in a secondary thread is recommended.

Communication with an object window is performed in the normal way using
Presentation Manager messages. With suitable programming conventions, the
handle of the object window may easily be made available to the calling window
in order for such messages to be posted.

A single object window may receive messages from multiple windows, and
perform actions on its data object on behalf of those windows. This approach
allows easy coordination of requests for access to a data object, enhancing data
integrity and efficiency of access. Applications that use this technique follow the
basic client-server architecture, within the boundaries of the Presentation
Manager application model.

Where the scope of a long-running event is restricted to a single method within
the current application object, a secondary thread or process may be initiated
without an object window. In such cases, a subroutine is initiated in the
secondary thread, and the thread terminates immediately upon exiting that
subroutine.

Presentation Manager provides a number of methods by which an application
can synchronize access to data objects and determine whether a secondary
thread or process has completed processing an event. These methods involve
the use of functions such as DosWaitThread() or DosWaitChild(), Presentation
Manager messages and/or event semaphores.

The multitasking capabilities of OS/2 allow greater application responsiveness
since lengthy application processing may be performed in an asynchronous
manner, leaving the application's primary thread free to continue interaction
with the end user. This also facilitates conformance with the Systems
Application Architecture CUA guideline stipulating that an application should

Chapter 10. Multitasking Considerations 237

238 05/2 V2.0 Volume 4

complete the processing of an event and be ready to handle further user input
within 0.1 seconds.

Chapter 11. Systems Application Architecture CUA Considerations

The Presentation Manager environment provides the application developer with
a rich set of functions that enable tasks to be performed in a variety of ways.
However, within the general Presentation Manager application model, there are
a number of considerations which, if observed, enable the design and
development of applications that comply more closely with the guidelines and
emerging conventions of the Systems Application Architecture CUA component.
This chapter will discuss some of the considerations involved in designing an
object-oriented, CUA-conforming Presentation Manager application.

The Presentation Manager programming interface enables the creation and
manipulation of windows in a variety of ways by an application developer.
However, there is considerable value in adopting a series of standard practices
for developing Presentation Manager applications, from the viewpoint of
consistency and ease of maintenance, and to enhance the degree of
conformance to SAA CUA guidelines. The following points provide some
guidelines on the interpretation of CUA specifications, and outline some
emerging trends in the development of applications that use the Presentation
Manager user interface.

11.1 Standard Windows
Standard windows are used to display the contents of data objects. The contents
of a data object may, in turn, be comprised of other objects. For example, if the
data object is a directory on a workstation's fixed disk, its contents are files,
which are themselves objects. Alternatively, a data object may contain
information in the form of text or formatted data. Note that an object may be
defined by the user during execution; for example, if the user is editing a text
file and selects a block of text to be operated upon, then that block of text
becomes the scope of the following series of actions, and is thus defined as an
object.

By convention, the nature of a user's interaction with a standard window should
be unformatted and modeless; a standard window is used to display objects or
their contents, from which the user selects an object upon which to perform one
or more actions. The exact sequence of actions performed by the user in the
window should not be of concern to the application. If a modal or otherwise
structured dialog with the user is required, the application developer should
implement this dialog as a dialog box. For this reason, it is recommended that
the use of control windows be confined wherever possible to dialog boxes only.
An allowable exception to this rule is the instance where a standard window
displays a list of objects; in this case, the client window may be created as a
container window or listbox.

This is relatively simple for normal listboxes; however, for a listbox with special
display requirements and which is therefore created with the style
LS_OWNERDRAW, the application must subclass the frame window in order to
intercept and process the WM_DRAWITEM messages which are sent to the
listbox's owner (the frame) whenever a listbox item must be redrawn on the
screen.

©Copyright IBM Corp. 1993 239

A standard window should normally be both sizable and movable on the screen,
allowing the user to configure the visual appearance of the desktop to suit the
tasks being performed. A standard window should therefore be created with the
FCF SIZEBORDER style attribute in order to generate a sizing border for the
window. Similarly, the user should be able to maximize and minimize the
window in order to more clearly display information, unless the logical
requirements of the application scenario dictate otherwise; the standard window
should thus also be created with the FCF _MINMAX style attribute. A window that
is neither sizable nor able to be minimized or maximized is by definition an
optimized window, and should be implemented using a dialog box.

A standard window should always possess a title bar, to indicate the nature of
the window's contents, and to provide a "handle" for moving the window on the
screen; the frame window should therefore be created with the FCF _TITLEBAR
style attribute. For an application's main window, the text displayed in the title
bar should be the same as that displayed in the OS/2 Window List entry for the
application, and should follow the convention "Object Name - View."

For child windows containing objects or their contents, the window title should
be the same as the name or identifier of the item in the parent window that
caused the child window to be created. For instance, the selection of a
"Customer List" entry in the main window of an "Address Book" application
might cause the display of a child window containing a list of customers' names;
the title of this window would be "Customer List - Details View. 11 Since a
standard window represents an object or group of objects, the title should
always be a noun rather than a verb.

A standard window is created using the WinCreateWlndow() or
WinCreateStdWindow() functions. WinCreateWindow() creates the frame and
client windows in separate steps, whereas WinCreateStdWindow() creates both
in a single step. A standard window is typically created with the
FCF _SIZEBORDER, FCF _SYSMENU, FCF _ TITLEBAR, FCF _MINMAX and
FCF _MENU style attributes specified for the frame window. See Figure 19 on
page 77 for an illustration of the use of these style attributes.

240 OS/2 V2.0 Volume 4

If an icon and/or accelerator table will be associated with the window, the
FCF _ICON and FCF _ACCEL TABLE style attributes should be specified. The icon
and accelerator table definitions will then be loaded from the specified resource
file when the window is created.

If the application does not wish to explicitly size and position a frame window on
the desktop, the FCF _SHELLPOSITION style attribute may be specified.
Presentation Manager will then determine a default size and position for the
window.

As an alternative to specifying all of the above attributes, the FCF _STANDARD
attribute may be specified. This attribute is assumed if the
WinCreateStdWindow() call or the WinCreateWindow() call for a frame window
contains no control data.

11.2 The Menu Bar
The menu bar is a menu which, in conjunction with its associated pulldown
menus, enables the user to select an action from a list of valid actions, to be
applied to a selected object or group of objects displayed in a window. The
following guidelines should be followed in the design and layout of the menu
bar, tor the purpose of consistency and ergonomic behavior:

• A menu bar is not required for fewer than six actions, unless these are
actions specifically defined by CUA.

• The number of entries within an menu bar should be kept to a minimum; it is
better to have a "deep" pulldown menu with many choices than to have a
"broad" menu bar. This reduces the number of options displayed to the user
at any one time.

• A menu bar must have a pulldown menu associated with it.

• A pulldown menu item always represents an action, and therefore should
always be a verb.

• Where selection of a menu bar entry results in the display of a pulldown
menu, the menu bar entry should indicate the generic nature of the group of
actions contained in the pulldown menu. If these actions pertain to a
particular object or object class, the name of the object or class may be
used as part of the menu bar entry. In such a case, the menu bar entry may
be either a verb or a noun.

• If multiple distinct groups of actions, pertaining to a single object or class,
are contained within the same pulldown menu, they should be separated by
a horizontal separator bar within the pulldown menu.

• A pulldown menu item that when selected, results in the display of a dialog
box,4 should have its text succeeded in the pulldown menu by an ellipsis (...)
to indicate that the dialog continues.

The SAA CUA guidelines stipulate that each standard window has a menu bar,
which contains actions specific to the object represented by that window.
However, certain actions may be inapplicable at certain points during application
execution. If an action is not necessarily applicable at all stages of processing
or for all data objects displayed within a window, that action should remain in
the menu bar or pulldown menu, but should be disabled (that is, made
non-selectable) until the point at which the action is valid.

Selection of a valid menu bar or pulldown menu item should result in the
immediate performance of the action, or the display of a dialog box to obtain
necessary information before performance of the requested action may take
place. Selection of an invalid menu bar or pulldown menu item will result in a
"beep" and the continued display of the pulldown. The menu bar and pulldown
menus are discussed in the IBM Systems Application Architecture CUA
Advanced Guide to User Interface Design and the IBM Systems Application
Architecture CUA Advanced Interface Design Reference.

Presentation Manager provides mechanisms to achieve the insertion/deletion
and enabling/disabling of menu bar items, as explained in the following sections.

' Note that a dialog box is known as an action window under CUA'91. However, the term dialog box is used in most
Presentation Manager documentation, and will be used throughout this document for consistency.

Chapter 11. Systems Application Architecture CUA Considerations 241

11.2.1 Inserting/Deleting Menu Bar Items

242 OS/2 V2.0 Volume 4

The insertion of an item is achieved by sending a message of class
MM_INSERTITEM to the system menu (or to the menu bar or appropriate
pulldown menu) using the WinSendDlgltemMsg() function. The menu item
information is placed into a data structure of type MENUITEM, as shown in
Figure 117.

hFrame = WinQueryWindow(hwnd,
QW_PARENT);

hMenu = WinWindowFromID(hFrame,
FID_MENU);

Menuitem.iPosition = MIT_END;
Menuitem.afStyle = MIS_TEXT;
Menuitem.afAttribute = 0;
Menuitem.id = MI_OPENOBJECT;
Menuitem.hitem = 0;
Menuitem.hwndSubmenu = 0;

re = WinSendDlgitemMsg(hMenu,
MI_FILE,
MM_INSERTITEM,
&Menu Item,
szitemText);

Figure 117. Dynamically Inserting a Menu Bar Item

/* Current Window
/* Parent

/* Get handle of
/* menu bar

*/
*/

*/
*/

/* Item position */
/* Item style */
/* No attributes */
/* Item identifier */
/* No handle */
/* No p 1 down handle */

/* Send message */
/* to File pulldown */
/* Message class */
/* Pointer to item */
/* Text of menu item */

In the example shown above, an item is to be inserted into a standard "File"
pulldown menu. The menu item information is placed into the data structure
Menultem, and the text to appear in the pulldown menu is contained in the
string variable szltemText.

Note however, that the menu bar is a child of the frame window, and the
pulldown menu is a child of the menu bar. In order to successfully pass the
message, the handle of the frame window must be obtained, and used to obtain
the handle of the menu bar window. This handle is then used in the
WinSendDlgltemMsg() call, along with the window identifier MN_FILE, to send
the MM_INSERTITEM message to the pulldown menu. The frame window
handle is obtained using the WinQueryWindow() function, and the QW_PARENT
attribute causes the function to return the handle of the client's parent (that is,
the frame window).

Once the frame window's handle is obtained, the various attributes of the
Menultem structure are initialized. An MM_INSERTITEM message is then sent
directly to the pulldown menu.

Deletion of an item is accomplished in a similar fashion using a message of
class MM_DELETEITEM. Both message classes and the MENUITEM data
structure are described in the IBM 0512 Version 2.0 Presentation Manager
Reference.

11.2.1.1 Inserting/Deleting Separators
Where more than one logical group of items is contained within a single
pulldown menu, these groups should be divided by a separator, which is a
horizontal bar appearing between the last item of one group and the first item of
the next, in order to provide a visual indication of the group's distinct identities.
A separator may be defined within the resource script file (see Chapter 9,
"Presentation Manager Resources") or may be inserted and deleted dynamically
by the application. This dynamic insertion/deletion is carried out in a similar
manner to that already described for "normal" pulldown menu items. However,
the afSty/e field in the MENUITEM structure is specified as MIS_SEPARATOR,
and the text of the item is set to NULL. In such cases, an item identifier is not
required for the separator, although it is recommended since an identifier must
be specified in order to delete the separator from the pulldown menu should
this be necessary at a later time.

Deletion of a separator is achieved in exactly the same manner as that
described for a normal pulldown menu item, using a message of class
MM_DELETEITEM and specifying the identifier of the separator to be deleted.

11.2.1.2 Inserting/Deleting Pulldown Menus
The technique for dynamically inserting a pulldown menu or cascade pulldown
into the menu bar is basically similar to that already described for inserting a
menu bar or pulldown menu item. An example is given in Figure 118.

HWND hPulldown;

hPulldown = WinCreateMenu(hFrame,
NULL);

Menuitem.iPosition = MIT_END;
Menuitem.afStyle = MIS_TEXT;
Menuitem.afAttribute = 0;
Menuitem.id = MN_OPENOBJECT;
Menuitem.hitem = 0;
Menuitem.hwndSubmenu = hPulldown;

re = WinSendDlgitemMsg(hMenu,
MN_FILE,
MM_INSERTITEM,
&Menu Item,
szitemText);

Figure 118. Dynamically Inserting a Pulldown Menu

/* Create empty menu */
/* template */

/* Item position */
/* Item style */
/* No attributes */
/* Item identifier */
/* No handle */
/* No p'down handle */

/* Send message */
/* to File pulldown */
/* Message class */
/* Pointer to item */
/* Text of menu item */

The difference lies in the fact that a pulldown menu or cascade pulldown
requires a menu template to be reserved in memory in order to contain the
items that will subsequently be inserted into the pulldown. This template is
created using the WinCreateMenu() function, which returns a handle to the menu
template. This handle is then used in the hwndSubmenu field of the MENU ITEM
structure.

Chapter 11. Systems Application Architecture CUA Considerations 243

11.2.2 Enabling/Disabling Items
Disabling an item is achieved using the WinEnableMenultem()
function.Figure 119 shows how to disable the menu bar item Ml_VIEW.

hMenu = WinWindowFromID{hFrame,
FID_MENU);

re = WinEnableMenuitem(hMenu,
MI VIEW,
TRUE);

/* Get menu bar handle

/* Menu bar handle
/* Menu item identifier
/* Enable menu item

Figure 119. Disabling an Menu Bar/Pu/ldown Menu Item

Enabling an item is achieved with the same message class, but FALSE is
specified as the last attribute in the WinEnableMenultem() function call.

*/

*/
*/
*/

Note that the WinEnableMenultem() function is new in OS/2 Version 2.0; previous
versions of OS/2 required use of the WinSendDlgltemMsg() function to send an
MM_SETITEMATTR message to the menu.

11.2.3 Indicating Selected Items

244 05/2 V2.0 Volume 4

A pulldown menu may be used to display a list of options from which one or
more items may currently be selected; for example, a pulldown menu might
provide a list of fonts to be used by a word-processing or desktop publishing
application. SAA CUA guidelines stipulate that in such a case, the currently
selected item or items within the pulldown menu should be indicated by a check
mark next to the item. Presentation Manager provides support for this
convention by allowing a check mark to be displayed within the pulldown menu.
This is achieved using the WinCheckMenultem() function; Figure 120 shows how
to place a check mark next to the item Ml_OPTION1.

hMenu = WinWindowFromID{hFrame,
. FID_MENU);

re = WinCheckMenuitem(hMenu,
MI_OPTIONl,
TRUE);

/* Get menu bar handle

/* Menu bar handle
/* Menu item identifier
/* Set check mark

Figure 120. Placing a Check Mark on a Pu/ldown Menu Item

*/

*/
*/
*/

Note that the WinCheckMenultem() function is new in OS/2 Version 2.0; previous
versions of OS/2 required the use of a WinSendDlgltemMsg() function call to
send an MM_SETITEMATTR message to the menu.

If a checked item is selected for a second time, the check mark should be
removed by the application. This is achieved by sending the same message to
the menu bar, with FALSE specified for the last attribute in the function call.

Note that the use of a check mark in a pulldown menu provides an alternative to
the use of radio buttons or check boxes in simple dialogs. See 11.3.4, "Use of
Control Windows" on page 253 for further information. When a pulldown menu
with a check mark is used to display more than one set of mutually exclusive
items, each set should be separated by a horizontal bar in the pulldown menu.
See Chapter 9, "Presentation Manager Resources."

11.3 Action Windows

Under the guidelines provided by CUA'91, a dialog box is known as an action
window. Since this chapter discusses CUA guidelines, this term will be used
herein when referring to the provisions made by CUA. The term "dialog box"
will be used when referring to the implementation of these concepts under
Presentation Manager.

Action windows used by an application may be either modal or modeless,
although modeless windows are preferred under CUA. Both types of action
window are defined as optimized windows; that is, they are created at a
predefined optimal size for their function, and may not be resized by the user.
However, the use of each type of action window is different, as explained below.

A dialog box is typically created using the Dialog Box Editor application supplied
as part of the IBM Developer's Toolkit for OS/2 2.0, and is defined in a dialog
template which is stored in a .DLG file and referenced from the application's
resource script file. Dialog templates are fully described in the IBM OS/2
Version 2.0 Application Design Guide.

It is recommended that wherever possible, action windows should be created
with a title bar. Since action windows typically appear as the result of a menu
bar item being selected, the title bar should contain the name of the parent
object, plus the same text as the menu bar item. This provides the user with a
visual indication of the action which led to the action window being displayed.

As already mentioned, an action window should not be sizable by the user,
although it may be movable. Similarly, a modal action window should not
include minimize or maximize icons, since the user must complete the
interaction with the action window at its optimal size prior to continuing with
execution. In the case of a modeless action window, there is no point in
providing a maximize icon since the window is created at an optimal size for the
information it will contain. However, since a user may wish to suspend the
dialog in order to interact with other windows, the user may wish to remove the
action window from the desktop. In such cases, a modeless action window
should include a minimize icon.

11.3.1 Modeless Action Windows
A modeless action window is preferred in situations where the dialog with the
user need not be completed before other user interaction with the application
may occur. For instance, in an application object that performs an
administrative procedure, data entry would typically be performed by the use of
control windows. Since the control windows should remain displayed at all
times, their parent window should not be sizable. By definition, the parent
window is an optimized window, and should therefore be created as a dialog
box. However, it may not be mandatory for the user to complete the dialog
befora interacting with other windows, and the dialog box should therefore be
modeless.

Since the WinDlgBox() function automatically creates and executes a modal
dialog box, a modeless dialog box must be created in one of two alternative
ways:

Chapter 11. Systems Application Architecture CUA Considerations 245

• Using the standard WinCreateWindow() function, with the FCF _BORDER
frame creation flag set. Control windows such as entry fields and buttons
may then be created as children of the dialog box window.

• Using a WinloadDlg() call to load the dialog template from a resource into
memory, and then using the WinShowWindow() or WinSetWindowPos()
functions to make the dialog box visible. The dialog template should have
the FCF _BORDER attribute set. Control windows within the dialog box are
defined in the dialog template.

The latter method is recommended for reasons of simplicity, since the dialog box
and its control windows may be defined and stored in a resource file (see
Chapter 9, "Presentation Manager Resources"), making the definition of the
dialog box easier for the application developer.

The dialog box may be explicitly positioned on the screen, regardless of the
method used. With the former method using the WinCreateWindow() function,
the dialog box is positioned at the time it is created. With the latter method, the
dialog box is positioned during its processing of the WM_INITDLG message.

The FCF _BORDER attribute results in the dialog box being displayed with a thin
blue line as the dialog border. This is in accordance with the SAA CUA
guidelines for modeless action windows.

Note that the two methods described above will result in different initialization
messages being received. When created with the WinCreateWindow() function,
the dialog box is regarded as a "normal" window, and a WM_CREATE message
is passed to it. When created with the WinLoadDlg(} function however, a
WM_INITDLG message is passed instead. The application developer must bear
this in mind when creating the dialog procedures for such dialog boxes.

11.3.2 Modal Action Windows

246 OS/2 V2.0 Volume 4

Modal action windows are used to carry out a dialog with the user in order to
define or qualify the properties of a data object upon which the user is operating
or wishes to operate. It is important to differentiate the properties of a data
object from its contents; for instance, the properties of a text file might be its
name, parent directory, archive/hidden/read-only attributes etc, whereas its
contents would be the text within the file. Under Presentation Manager,
manipulation of an object's contents is typically carried out in a standard
window, whereas definition or alteration of attributes is done using a dialog box.

Note that where the dialog with the user is limited to a simple decision, a
Presentation Manager message box should be used in preference to a dialog
box for the implementation of an action window, since the coding effort and
processing overhead associated with a message box is mu~h less than that
associated with loading and processing a dialog box. See 11.3.5, "Message
Boxes" on page 256 for more information on the use of message boxes.

A modal dialog box is typically loaded and processed in a single step using the
WinDlgBox() call. The modal nature of the dialog box is indicated to the user by
a double blue line as the border for the dialog box, rather than the standard
window border. The different border indicates that the dialog box is modal, and
also indicates that it may not be sized by the user. This border is specified in
the dialog template using the FCF _DLGBORDER attribute.

By default, a modal dialog box is application-modal; that is, the user must
complete interaction with the dialog box before any further interaction may take
place with windows in the current application. A dialog box may also be
system-modal, in which case the user must complete interaction with the dialog
box before interacting with any other window in the system. A system-modal
dialog box is created in the same way as an application-modal dialog box, but
with the additional attribute FS_SYSMODAL specified in the dialog template.

11.3.3 Standard Dialogs
OS/2 Version 2.0 provides standard dialog boxes for handling the selection of
files and fonts. These dialogs conform to SAA CUA guidelines, and are
implemented within Presentation Manager. Applications are therefore not
required to explicitly design and code such dialog functions, nor to modify them
should the CUA guidelines change in the future.

The standard dialogs are displayed using two Presentation Manager functions
new to OS/2 Version 2.0; these are the WinFileDlg() and WinFontDlg() functions.

11.3.3.1 File Dialog
The standard file dialog enables a user to specify a file to be opened or a file
name under which current work is to be saved, including the ability to switch
directories and logical drives. The file dialog provides basic capabilities, and is
designed in such a way that it may be modified if additional function is required.

The file dialog is displayed using the WinFileDlg() function. The dialog may be
displayed as either an "Open" dialog or a "Save as" dialog, depending upon the
value of control nags specified in a FILEDLG structure passed as a parameter to
the function call. The WinFileDlg() function is shown in Figure 121 on page 248.

The appearance of the file dialog is controlled by the FDS_* style nags specified
in then field in the FILEDLG structure. The fields in this structure are:

Field

cbSize

fl

I User

I Return

ISRC

pszTitle

pszOKButton

Usage

Defines the size of the FILEDLG structure, and should be
initialized using the sizeof() function.

Style flags of the form FDS_*, which control the attributes
of the dialog. These nags are described in the IBM OS/2
Version 2.0 Presentation Manager Reference.

Used by applications to store their own state information if
subclassing the dialog in order to modify its appearance or
behavior.

Identifier of the button used to dismiss the dialog. This is
typically DID_OK or DID_CANCEL, unless the application
has subclassed the dialog and added its own buttons.

System return code which indicates the reason for dialog
failure, if a failure has occurred. This field is used to
assist in debugging.

Dialog title text. If set to NULL, the text will default to
"Open" or "Save As", depending upon the FDS_* flags
selected.

Text used for the OK pushbutton on the dialog. If set to
NULL, the text defaults to "OK".

Chapter 11. Systems Application Architecture CUA Considerations 247

248 OS/2 V2.0 Volume 4

USHORT OpenFile(HWND hOwner)
{

extern PFNWP WinFileOlg();
extern FILEDLG fild;
extern HFILE hFileToOpen;
extern USHORT usAction;
static BOOL fFirstTime = TRUE;
USHORT usReturn;

if (f Fi rs t Ti me)
{
fild.cbSize = sizeof(FILEDLG);
fild.fl = FDS_OPEN_DIALOG]

FOS CENTER]
FDS_HELP_BUTTON;

fild.pszTitle =NULL;
fild.pszOKButton =NULL;
fild.pfnDlgProc = NULL;
fild.hmod = NULL;
fild.idOlg = 0;
fild.pszIType = NULL;
fild.ppszITypeList =NULL;
fild.pszIDrive = NULL;
fild.ppszIDriveList = NULL;
fFirstTime = FALSE;
}

WinFileDlg(hOwner,
&fil d);

re= DosOpen(fild.szFullFile,
&hFileToOpen,
&usAction,

return(rc);

0L,
e ' 0x0001,
0x00C2,
0L);

/* Function prototype */
/* File dlg control structure */
/* File handle */
/* Action indicator */
/* Flag *I
/* Return code */

/* If invoked for first time */
/* build control structure */
/* Set size of control struct */
/* Set dialog type to "Open" */
/* Centered in parent window */
/* Include help button */
/* Use default title bar text */
/* Use default button text */
/* Use standard dlg proc */
/* n 11 11 11 * /
I* II II II II

/* No initial type setting
/* No list of types
/* No initial drive setting
/* No list of drivers
/* Set flag to false

*/
*/
*/
*/
*/
*/

/* Invoke file dialog */
/* Control structure pointer */

/* Open returned file name
/* File handle
/* Action indicator
/* File size not applicable
/* File attribute ignored
/* Open file if it exists
/* Non-shared, read-write
/* No sharing mode
/* Return

*/
*/
*/
*/
*/
*I
*/
*/
*/

Figure 121. Standard Dialogs - WinFileD/g{) Function

pfnDlgProc

pszlType

pszlTypelist

pszlDrive

ppszlDriveList

Pointer to custom dialog procedure, for custom dialogs
with the FDS_CUSTOM style flag set.

String pointer to a string defining the initial Extended
Attribute type filter to be applied to the file name field in
the dialog.

Pointer to a table of string pointers. Each points to a null
terminated string defining an Extended Attribute type filter.
The filters are displayed in ascending order in the Type
pull-down box.

Pointer to a string specifying the initial logical drive to be
applied in the dialog.

Pointer to a table of string pointers. Each points to a null
terminated string defining a valid logical drive.

hMod

szFullFile

ppszFQFilename

IFQFCount

id Dig

If the FDS_CUSTOM style flag is set, this field defines the
DLL module handle that contains the file dialog template to
be used. If set to NULL, the dialog template is loaded from
the application's EXE file.

On initialization, this field contains the initial fully qualified
path and file name, and on completion of the dialog,
contains the selected or user-specified fully qualified file
name. Upon invocation of the dialog, all drive and path
data is stripped from the name, and moved to the
appropriate fields in the dialog box.

Pointer to a table of pointers. Each points to a null
terminated string containing a fully qualified file name.
This table is used by applications that require multiple files
to be selected from within the file dialog (indicated by
specifying FDS_MULTIPLESEL). The storage is allocated
by the file dialog procedure, and must be freed after dialog
completion using the WinFileFreeFilelist() function.

Number of file names selected in the file dialog, for dialogs
with multiple selection enabled.

Window identifier of the dialog window. If the
FDS_CUSTOM style flag is set, this is also the resource
identifier of the dialog template.

x,y Position of the dialog, relative to its parent. These fields
are automatically updated by the dialog procedure when
the dialog is moved by the user, so that if the same
FILEDLG procedure is used on subsequent invocations, the
dialog will appear in the same location. The FDS_CENTER
style flag overrides any settings specified.

sEAType Extended Attribute file type to be be assigned to the file.
This field contains the returned value specified in the Type
field in the dialog. This field is valid only for a "Save As"
dialog; the value -1 is returned for an "Open" dialog.

For applications with specialized file handling requirements, the standard file
dialog may be subclassed, allowing these requirements to be handled while
retaining standard processing for the majority of events. This subclassing is
invoked by specifying the address of an application-defined dialog procedure in
the pfnD/gProc field in the FILEDLG structure, and by specifying the resource
identifier of an application-defined dialog template if controls are to be added or
removed from the dialog.

Note that application-defined dialog procedures should invoke the
WinFileDlgProc() function as their default case for message processing, to
ensure that messages not explicitly processed by the application are passed to
the standard file dialog procedure for correct default processing.

11.3.3.2 Font Dialog
The standard font dialog enables a user to specify a choice of font names, styles,
and sizes from the range available within a given application. The font dialog is
intended to fit basic application needs, and is designed in such a way that
additional function may be added by subclassing the dialog procedure.

Chapter 11. Systems Application Architecture CUA Considerations 249

250 OS/2 V2.0 Volume 4

The font dialog is displayed using the WinfontDlg() function, specifying the owner
window for the dialog box, and a FONTDLG control structure. The use of the
WinfontDlg() function is shown in Figure 122 on page 251.

The appearance of the dialog is determined by the FNTS_* flags specified in the
n field of the FONTDLG structure, and by the other fields in this structure. The
fields in the FONTDLG structure are:

Field Usage

cbSize Defines the size of the structure, and should be initialized using
the sizeof() function.

hpsScreen If not NULL, this field specifies the screen presentation space,
which the dialog procedure queries for available fonts.

hpsPrinter If not NULL, this field specifies the printer presentation space,
which the dialog procedure queries for available fonts.

pszTitle Title text for the dialog box. If set to NULL, the default text
"Font" is used.

pszPreview Text to be displayed in the Preview field in the dialog box. If set
to NULL, the default text "abcdABCD" is used.

pszPtSizellst String containing a list of numeric point sizes, to be displayed in
the Point Size drop-down list in the dialog box. Point sizes
within the string must be separated by spaces. If set to NULL,
the defaults of 8, 10, 12, 14, 18, and 24 are used.

pfnDlgProc Pointer to custom dialog procedure, for dialogs with the
FNTS_CUSTOM flag set.

szFamllyname Font family name to be used by an application to select a font.

fxPointSize

fl

fl Flags

fl Type

flTypeMask

flStyle

flStyleMask

If set to NULL, the system default is used.

Vertical point size of the font.

Flags which specify the characteristics of the dialog box: these
may be any combination of FNTS_CENTERED, FNTS_CUSTOM,
FNTS_HELPBUTTON, FNTS_MULTIFONTSELECTION, and
FNTS_MODELESS. Flags are combined using the "or" operator.

Flags; specifying FNTF _ VIEWPRINTERFONTS specifies whether
printer fonts should be included if both hpsScreen and
hpsPrinter are non-NULL. FNTF _PRINTERFONTSELECTED is set
upon return, if the user selects a printer font.

Specifies additional font attributes specified by the user, and
may be used as the options field in a QFSATTRS structure for
the GpiQueryFaceString() function.

Specifies which flags in the flType field are required to change.
This is only relevant where selections may be for different types
and styles when multiple fonts are being selected.

Specifies any additional selections, and may be used for the
selection indicators in a FATTRS structure supplied to the
GpiCreatelogf ont() fun ct ion.

Specifies which flags in the nstyle field are required to change.
This is only relevant where selections may be for different types
and styles when multiple fonts are being selected.

void SetFont(HWND hOwner, HPS hpsScreen, USHORT usCodePage)
{

extern PFNWP WinFontDlg();
extern FONTDLG fntd;
static BOOL fFirstTime = TRUE;
CHARBUNDLE cbnd;

i f (Fi rs t Ti me)
{
fntd.cbSize
fntd. fl

= sizeof(FONTDLG);
= FNTS_CENTER]

FNTS_HELPBUTTON;
fntd.hpsPrinter = NULL;
fntd.pszTitle = "Fonts";
fntd.pfnDlgProc = NULL;
fntd.hmod = NULL;
fntd.idDlg = 0;
fntd.pszPreview = NULL
fntd.pszPtSizeList = NULL;
fntd.flFlags = 0L;
fntd.szFamilyname[] = 1\0 1

;

fntd.fxPointSize = MAKEFIXED(12,0);
fntd.usWeight = FWEIGHT_NORMAL;
fntd.usWidth = FWIDTH_NORMAL;
fntd.flType = 0L;
fntd.flStyle = 0L;
fntd.flCHSOptions = 0L;
fntd.clrFore = CLR_BLACK;
fntd.clrBack = CLR_WHITE;
fntd.fAttrs.usCodePage = usCodePage;
fFirstTime=FALSE;
}

fntd.hpsScreen=hpsScreen;

WinFontDlg(hOwner,
&fntd);

GpiCreatelogFront(hpsScreen,
11 Name ",
0,
fntd.fAttrs);

cbnd.lColor = fntd.clrFore;
cbnd.lBackColor = fntd.clrBack;
GpiSetAttrs(hpsScreen,

PRIM CHAR,
CBB_COLOR] CBB_BACK_COLOR,
0L,
(PBUNDLE)&cbnd);

GpiCharStringPos(hpsScreen,
NULL,
fntd.flCHSOptions,
4,
11 Text 11

,

NULL);

Figure 122. WinFontD/g() Function - Sample Code

/* Function prototype */
/* Dialog control struct */
/* Flag */
/* Attributes */

/* If invoked for 1st time */
/* build control structure */
/* Set size of structure */
/* Specify centered dlg */
/* Include help button */
/* No printer font */
/* Dialog title text */
/* Use standard dlg proc */
/* II II */
/* II II */
/* Default preview string */
/* Default point sizes */
/* Default flags */
/* System default */
/* 12-point vertical size */
/* Weight or thickness */
/* Character width */
/* No additional attribs */
/* No additional styles */
/* No additional options */
/* Black characters */
/* White background */
/* Specified code page */
/* Reset flag */

/* Set presentation space */

/* Invoke font dialog */
/* Control structure ptr */

/* Create logical font */
/* Name of font */
/* Local font identifier */
/* Returned attributes */
/* Set foreground color */
/* Set background color */
/* Set attributes */
/* Character attributes */
/* Attributes to be set */
/* Defaults mask */
/* Attribute structure */
/* Write character string */
/* No rectangle */
/* Options */
/* Number of bytes */
/* Text string */
/* Increment values */

Chapter 11. Systems Application Architecture CUA Considerations 251

252 OS/2 V2.0 Volume 4

flCHSOptions These are equivalent to the CHS_* option flags used by the
GpiCharStringPos() and GpiCharStringPosAt() functions.

flCHSMask Similar to flStyleMask.

clrFore Foreground color for the font.

clrBack Background color for the font.

IUser May be used by applications to pass information if subclassing
the font dialog.

IReturn Identifier of the button used to dismiss the dialog. This is
typically DID_OK or DID_CANCEL, unless the application has
subclassed the dialog and added its own buttons.

ISRC System return code that indicates the reason for dialog failure, if
a failure has occurred. This field is used to assist in debugging.

IEmHeight Value that may be used within a FONTMETRICS structure by
applications.

IXHeight As above.

iExternalLeading

fAttrs

As above.

Complete font attribute (FATTRS) structure for the selected font.
Only the codepage field may be modified by the application
prior to invoking the dialog.

sNominalPolntSize

us Weight

us Width

x,y

ldDlg

hmod

Nominal point size of selected font.

Character thickness (for example, normal or bold). The returned
value may be used in the weightclass field in the QFSATTRS
structure for the GpiQueryFaceString() function.

Character width. The returned value may be used in the
widthclass field in the QFSATTRS structure for the
GpiQueryF aceString() function.

Position of the dialog relative to its parent. These fields are
automatically updated by the dialog procedure when the dialog
is moved by the user, so that if the same FONTDLG structure is
used on subsequent invocations, the dialog will appear in the
same location. The FNTS_CENTERED style flag overrides any
settings specified.

Window identifier of the dialog window. If the FNTS_ CUSTOM
style flag is set, this is also the resource identifier of the dialog
template.

If the FNTS_ CUSTOM style flag is set, this field defines the DLL
module handle that contains the file dialog template to be used.
If set to NULL, the dialog template is loaded from the
application's EXE file.

Applications may customize the font dialog through subclassing, by specifying
the FNTS_CUSTOM style flag, giving the resource identifier and module handle
of the application's customized font dialog template, and the address of an
application-defined dialog procedure, in the FONTDLG structure. The
WinFontDlg() function then performs the subclassing operation on the
application's behalf.

Note that application-defined dialog procedures should invoke the
WinFontDlgProc() function as their default case for message processing, to
ensure that messages not explicitly processed by the application are passed to
the standard font dialog procedure for correct default processing.

An application that uses its own dialog template must include all of the standard
controls within the dialog box, in addition to its own customized controls. Those
controls, which are not required, may be rendered invisible in order to provide
the correct appearance.

Control window identifiers in the range OxOOOO to OxOFFF are reserved for use by
standard controls. The application's own controls should therefore use window
identifiers greater than OxOFFF.

11.3.4 Use of Control Windows
A number of control window classes are provided by Presentation Manager.
Under CUA guidelines, these control windows should be displayed in standard
windows, although their use is more typically in dialog boxes. This is in
accordance with the convention that windows display objects or the contents of
objects, and other more structured information such as object attributes is
displayed in a dialog box. See also the proviso regarding listboxes under 11.1,
"Standard Windows" on page 239. The use of control windows is defined in the
IBM Systems Application Architecture CUA Advanced Guide to User Interface
Design. However, there are some emerging conventions as to the exact
interpretation of the CUA guidelines, and these are discussed in the following
sections.

11.3.4.1 Entry Field
Entry fields are used where textual or numeric data is required from the user,
and where the set of possible entries is open-ended. Examples of such data
items include file names, object descriptions etc.

11.3.4.2 List Box
A listbox is used to display a list of objects, where the contents of that list may
change from one execution to the next, based upon various external or
user-specified criteria. One or more items may be selected from a listbox. The
listbox is typically created with a size sufficient to display a certain number of
items, and a scroll bar is provided if the number of items increases such that not
all items may be displayed at once.

Note that a listbox should not be used to display a set of choices where that set
is finite and unchanging. In such a case, radio buttons may be used where the
choices are mutually exclusive, or check boxes used where more than one
choice may be made concurrently.

11.3.4.3 Combo Box
A combo box, also known as a prompted entry field is a combination of the
entry field and listbox control window styles, and is supported by Presentation
Manager in OS/2 Version 1.2 and above. A combo box is used where textual or
numeric data is required from a user, where the set of possible entries is finite,
and where the application wishes to prompt the user for a valid entry. A combo
box may be of three distinct types:

• A simple combo box is displayed as an entry field with a listbox directly
below it. The user may enter textual or numeric data into the entry field in

Chapter 11. Systems Application Architecture CUA Considerations 253

254 OS/2 V2.0 Volume 4

the same way as for a normal entry field, or may select an item from the
listbox. The selected item will then appear in the entry field. The simple
combo box provides a similar function to that of a single-selection listbox.

• A drop-down combo box is displayed as an entry field with an icon to its
immediate right. The user may enter textual or numeric data into the entry
field, or may select the icon. When selected, the icon causes a listbox to
appear below the entry field, containing a list of valid entries for the entry
field. When selected, an item appears in the listbox. The drop-down combo
box is recommended where the set of valid entries is finite and limited, but
where the user may already know the required entry and may wish to save
time by entering it him/herself.

• A drop-down list combo box is displayed in a similar manner to a drop-down
combo box, as an entry field with an icon to its immediate right. However,
the user may not enter data directly into the entry field, but must select an
item from the listbox. A drop-down list combo box is recommended in
situations where a number of control windows are located in a dialog box,
where the optimization of space is of primary importance, and where the
default entry is likely to be used.

The use of a combo box is typically recommended in place of a listbox in order
to save room within a dialog box, or in place of an entry field where the
application wishes to prompt a user with a list of valid entries.

11.3.4.4 Radio Button
Radio buttons are used to indicate a group of mutually exclusive options; that is,
only one of the items in the group is selectable at any one time, and selecting
one item automatically deselects any previously selected item. Selecting a radio
button does not complete the dialog; a user may revise his/her selection any
number of times during the dialog. Once a final decision is made, the user
completes the dialog using a push button (see below).

Radio buttons are always displayed in groups; it makes no sense to have a
single mutually exclusive selection item. Text is displayed along with the
buttons to indicate the choice represented by each button. If multiple groups of
radio buttons are present within a dialog box or window, or if radio buttons are
combined with other types of control window, it is recommended for reasons of
clarity that the radio buttons be placed within a group box, and that this group
box be named to indicate the nature or purpose of the group as a whole.

As described above, radio buttons should be used to denote a set of mutually
exclusive options in the creation or manipulation of an object, as part of a more
complex dialog. They should not be used to present a set of options in response
to an application or system event, where this set of options is the sole purpose
of the dialog. In such cases, a message box is the preferred mechanism to
achieve this type of communication with the user, since the processing overhead
associated with a message box is less than that associated with a dialog box.
For example, a warning that the user is about to exit the application without
saving his/her latest set of changes would be presented using a message box
rather than a dialog box with radio buttons.

The equivalent function of a group of radio buttons may also be provided by a
pulldown menu displaying a set of options, only one of which may be selected at
any one time, with the selected item indicated by a check mark. The use of a
pulldown menu is the recommended option in situations where the selection of
an option is the only action to be performed. The use of radio buttons is

recommended where the selection of an option indicated by the radio buttons is
part of a more complex dialog.

Note that from a programming viewpoint, "auto" radio buttons should be used in
preference to standard radio buttons since these buttons are drawn and
maintained by Presentation Manager. The application need not concern itself
with redrawing the buttor.s when their state changes, thereby allowing simpler
programming.

11.3.4.5 Check Box
A check box is used to indicate a single option that may be toggled on or off by
the user. Multiple check boxes may appear in a single dialog box or window,
and may refer to different attributes of the same object. However, these
attributes are related to each other only by their application to that same object,
and should not be mutually exclusive.

A 3-state button is a special type of check box that, in addition to being marked
selected or non-selected, may be "grayed out" to indicate that a choice is
non-selectable in the current dialog. A 3-state button should be used whenever
a dialog box is applicable to a range of objects, but where certain options within
the dialog box are not valid for all objects dealt with by that dialog box. A
3-state button may be enabled or disabled using the WinEnableWindow()
function, obtaining the window handle of the button from a WinWindowFromlD()
call.

The equivalent function to a check box may be provided by a pulldown menu
displaying a list of options, from which multiple items may be selected at any
one time, with the selected items indicated by check marks. The use of a
pulldown menu is recommended where the selection of such an option is the
only action to be performed. The use of a check box or 3-state button is the
preferred solution where the selection is part of a more complex dialog.

Note that the "auto" versions of check boxes and 3-state buttons should be used
in preference to the standard versions, since the auto versions are maintained
by Presentation Manager, and the application need not concern itself with
redrawing these buttons when their state changes.

11.3.4.6 Push Button
Push buttons are used to initiate an immediate action by the application. If
desired, push buttons can be used in conjunction with the menu bar and context
menu, to provide easy access to commonly used functions in both primary
windows and action windows.

Push buttons should not be used to form menus of selectable options that cause
child windows to appear when a push button is selected. Such a practice
effectively forms a hierarchical user interface, which is in violation of
object-oriented user interface principles.

An exception to this rule is a "Help" push button, which immediately displays a
window containing help information, while maintaining the previous window or
dialog on the screen. Dismissing the help window returns the user to the
original window in which the "Help" push button was displayed.

Chapter 11. Systems Application Architecture CUA Considerations 255

11.3.4.7 Slider
The slider is used where a single value must be selected from a continuous
range of options. For example, the brightness of the screen, the saturation of a
color or the speed of the mouse cursor on the screen are all values selected
from a continuous, though finite, range of options.

Under previous versions of 03/2, scroll bars were often used to provide a
portion of the slider's functionality. The provision of the slider control under
OS/2 Version 2.0 allows the scroll bar to be used only for its intended purpose of
scrolling information within a window; this improves the consistency of the user
interface and removes a potential source of user confusion.

11.3.4.8 Value Set
The value set control is used in a similar way to a set of radio buttons, to
indicate a group of mutually exclusive options. Many of the comments made for
radio buttons apply equally to value sets.

However, while the use of radio buttons is effectively limited to text items, a
value set allows the use of text or graphical items, as well as color patches.
Thus a value set provides additional flexibility where a selection must be made
from a set of mutually exclusive options, providing a mechanism for the display
of those options to the user, and allowing the user to directly select the required
choice.

11.3.5 Message Boxes

256 OS/2 V2.0 Volume 4

By convention, message boxes are used to inform the user of an event, and to
carry out a dialog with the user in the following circumstances:

• Where the information to be conveyed to the user is simple and limited to no
more than a few lines of text

• Where the input to be gained from the user is limited to a single decision
from a limited list of mutually exclusive options.

The type of decision available to the user from a message box is also limited to
simple choices such as "Yes/No," "OK/Cancel," or "Yes/No/Help." Since the
buttons displayed in the message box are push buttons, selecting any button
will result in the removal of the message box from the screen and immediate
action on the part of the application. An exception to this rule is the "Help"
button, which should result in the message box being left on the screen, and the
simultaneous display of a window containing help information. This help window
should be a child of the message box, so that it is dismissed when the message
box is closed, and the input focus should return to the message box when the
help window is dismissed.

A message box is created and processed using the WinMessageBox() function as
follows:

re = WinMessageBox(hDesktop,
hwnd,
szMessageText,
11Warning 11

,

0 ,
MB_YESNO I
MB_DEFBUTTONl I
MB_CUAWARNING);

/* Desktop is parent */
/* Curr. window is owner */
/* Message text */
/* Title of message box */
/* No message box ident. */
/* Yes/No choices */
/* Yes is default choice */
/* Warning style */

Message boxes may be of three types:

• Notification message boxes inform the user of a system event that requires
his/her attention, but does not signify an error or potential error condition.
Such message boxes are created with the message style
MB_CUANOTIFICATION.

• Warning message boxe~ inform the user of a potential error condition that
may affect the integrity of the application or its data; for example, the user
may try to exit the application without saving the latest set of changes to a
data object. Such message boxes are created with the message style
MB_CUAWARNING.

• Critical message boxes inform the user of an error condition that requires
his/her immediate attention; for example, a diskette may be unreadable.
Such message boxes are created with the message style MB_CUACRITICAL.

These message box styles may be combined with other style identifiers that
determine the buttons to be displayed in the message box, the default action and
the modality of the message box (that is, system- or application-modal). These
identifiers are described, along with the WinMessageBox() function, in the IBM
OS/2 Version 2.0 Presentation Manager Reference.

A message box should always be created with a title; while Presentation
Manager provides a default message title if a null title string is specified in the
WinMessageBox() function, the use of this feature is not recommended. A
message box title should identify the object or action from which the message
originated; for example, a message originating from a "Parts List" object would
have the title "Parts List," whereas a message occurring as a result of an
incorrectly completed dialog during an "Open File" action would have a title of
"Open File."

A message box is created as an optimized window, and by default is neither
moveable nor sizable. However, the situation may arise where the message is
related to some information displayed in a window, and the decision to be made
by the user is dependent upon the nature and context of that information. The
user must therefore be able to view the information in order to make the
decision required by the message box, and the information may be hidden by
the message box itself. To avoid this situation, a message box may be specified
with the style identifier MB_MOVEABLE, which allows the message box to be
moved (although not sized) by clicking the mouse on its title in a similar fashion
to that used for a standard window.

11.4 Maintaining User Responsiveness
The particular implementation of the message handling concept under
Presentation Manager means that it is possible for a user to be "locked out" of
the system if a window procedure does not return from processing a message
within a reasonable period of time, since Presentation Manager only dispatches
messages from the system queue to other applications when the currently active
application attempts to retrieve a message from its queue.

The "reasonable" period of time is defined under Presentation Manager
guidelines to be 0.1 seconds; a window procedure should complete the
processing of a message within this period and return control to the
application's main routine in order that the main routine may issue its next
WinGetMsg() call. While this time period is adequate for processing of most

Chapter 11. Systems Application Architecture CUA Considerations 257

11.5 Summary

258 OS/2 V2.0 Volume 4

messages, it may be insufficient for some messages; for examples, those that
involve lengthy operations such as access to a remote system.

In order to avoid the situation where an application or the entire Presentation
Manager environment is unresponsive to the end user, OS/2 allows applications
to create secondary threads of execution to handle lengthy processing, thus
enabling the application's prima:y thread to continue responding to user
interaction. Presentation Manager also provides a number of methods by which
synchronization between threads may be achieved in order to ensure the
integrity of the user's intention and of data resources manipulated by the
application. The use of secondary threads, and techniques for synchronizing
execution between threads and processes, are discussed in Chapter 10,
"Multitasking Considerations."

It can be seen that there are emergent programming conventions governing the
use of Presentation Manager and operating system constructs to implement
CUA-conforming, object-oriented applications under the Presentation Manager
application architecture. These principles facilitate the achievement of the many
benefits attributable to the use of an object-oriented design approach, while
remaining within the framework of Systems Application Architecture.

Guidelines have been established, in accordance with emerging conventions,
with regard to the use of standard and control windows, dialog boxes and
message boxes, and the nature of their interaction with the user. Each type of
window has its own particular role in the interaction between the application and
the end user; adherence to these conventions will provide a greater level of
consistency between applications, within the parameters of the CUA
specifications.

The CUA guidelines specify that an application should have a response time of
no more than 0.1 seconds, after which time the application should be ready to
process the next user interaction. However, the situation may arise where a unit
of processing takes longer than the allowed time period. A number of ways exist
by which the application may overcome this problem, typically involving the use
of asynchronous threads, either with or without object windows.

The embodiment of these principles into Presentation Manager applications at
the design stage results in closer conformance to Systems Application
Architecture guidelines. The enterprise may thereby achieve the benefits of a
consistent and intuitive approach to the human-machine interface between users
and applications.

Chapter 12. Application Migration

12.1 Data Types

08/2 Version 2.0 provides application compatibility at the executable code level
for applications written to run under previous versions of 08/2. Hence no
modification is necessary to enable such applications to run under Version 2.0.
However, in order to take full advantage of the enhanced capabilities of 08/2
Version 2.0, such as the 32-bit flat memory model and the additional features
implemented by Presentation Manager, applications will require modification of
their source code.

Application developers who wish to migrate their code to the 32-bit programming
environment under 08/2 Version 2.0 should experience little difficulty. Changes
between the 08/2 Version 2.0 programming environment and that provided
under previous versions of 08/2 fall into the following basic categories:

• Data types

• Function name changes

• Function enhancements

• Memory management

• New Presentation Manager functions.

The remainder of this chapter will describe each of these categories in detail,
and suggest methods by which the required changes may be made.

Note that it is not mandatory for an application to migrate all its modules and
resources to the 32-bit programming environment. 08/2 Version 2.0 allows
mixed model programming, where 32-bit applications may make use of existing
16-bit modules and resources. The subject of mixed model programming is
discussed in Chapter 13, "Mixing 16-Bit and 32-Bit Application Modules."

A number of the function type declarations and data type definitions used by
Presentation Manager map into different "standard" C language type definitions
under 08/2 Version 2.0. This is due to the differences between the 16-bit
architecture of previous versions and the 32-bit architecture of Version 2.0.

For example, the Presentation Manager data type EXPENTRY, used to declare
exportable entry points, is defined under 08/2 Version 1.3 in the following way:

#define EXPENTRY pascal far

However, the pascal linkage convention is not used in the 32-bit 08/2 Version 2.0
programming environment, since all function calls use the standard C calling
convention. The only exception is when creating applications that access 16-bit
functions; see Chapter 13, "Mixing 16-Bit and 32-Bit Application Modules."

In addition, far memory references are not used, since the 32-bit flat memory
model allows addressability to all locations in the process address space. In the
32-bit programming environment therefore, the EXPENTRY type is defined as
blanks; 32-bit applications are not required to use the EXPENTRY keyword.

The 08/2 header file os2.h provided with the IBM Developer's Toolkit for 0512 2.0
provides transparent remapping of the Presentation Manager type definitions to

©Copyright IBM Corp. 1993 259

their new C language equivalents, and thus no modification is required to
existing functions and data definitions that use the Presentation Manager types.
However, applications that have used standard C language type definitions in
place of the Presentation Manager types will require modification. For this
reason, it is recommended that all Presentation Manager applications should
use the Presentation Manager function and data type definitions.

12.2 Function Name Changes
Under OS/2 Version 2.0, certain function names for operating system kernel
functions and Presentation Manager functions have been changed to provide
improved consistency. These changes obey the following rules:

• The use of the terms Create, Get, Set and Query in function names is in
accordance with SAA conventions, as follows:

Create implies that a new resource is created as the result of a function
call.

Get implies that a resource is made available to the application as the
result of a function call.

Set implies that a system value is changed as a result of a function call.

Query implies that a system value or handle to an existing function is
returned as the result of a function call.

• Verbs are placed before nouns in function calls.

• Similar actions have similar semantics, although they may operate on
different types of resources.

These changes have been made in order to provide improved consistency in
function names, simplifying the task of learning the various function names.

Applications that use operating system functions should be checked and function
names altered where necessary. A list of corresponding function names in OS/2
Version 1.3 and OS/2 Version 2.0 is given in OS/2 Version 2.0 - Volume 1:
Control Program.

12.3 32-Bit Interface Constraints

260 OS/2 V2.0 Volume 4

The following subsystems, present in OS/2 Version 1.3, have no 32-bit
equivalents, since they are not portable and are device-dependent.

VIO Video subsystem; these function calls should be replaced with
Presentation Manager GPI calls or AVIO (advanced video) calls.

KBD Keyboard subsystem; these function calls should be replaced by
processing WM_CHAR messages from a Presentation Manager
application.

MOU Mouse subsystem; these function calls should be replaced by
processing WM_MOUSEMOVE and WM_BUTTON messages.

MON Device monitor subsystem; these function calls should be replaced
by using appropriate message queue hooks in a Presentation
Manager application.

Note that these subsystems are supported under OS/2 Version 2.0 as 16-bit
service layers. for access by existing applications. However, OS/2 Version 2.0

does not provide thunk layers to enable 32-bit applications to access these
service layers. 32-bit applications that use these subsystems must employ
mixed model programming techniques to access the 16-bit services; see
Chapter 13 1 "Mixing 16-Bit and 32-Bit Application Modules" for further
discussion.

Only two forms of input/output arc supported in the 32-bit environment; the
stdinlstdout C interface (producing command line-based applications that can be
run in a text window) and Presentation Manager applications. Programs wishing
to perform graphics, handle keyboard or mouse input, or intercept and modify
device information should do so using Presentation Manager functions.

Certain other functions have also been removed from the 32-bit programming
interface. These are primarily concerned with the management of memory in
the segmented memory model. Therefore functions such as DosSizeSeg(),
DosLockSeg() and DosUnlockSeg(), DosR2StackRealloc() etc are not
implemented in the 32-bit programming interface, although the 16-bit entry points
are still supported for compatibility purposes.

12.4 Function Enhancements
A number of enhancements have been made to existing operating system
functions in OS/2 Version 2.0. These include the semaphore functions for
synchronization between threads and processes, and the DosCreateThread()
function for initiating secondary threads.

12.4.1 Semaphore Functions
The enhanced semaphore functions available under OS/2 Version 2.0 were
described in Chapter 2, "Operating System/2." Previous versions of OS/2
provided only basic semaphore facilities with limited capability to handle
multiple events. Where these semaphores were used in applications under
previous versions of OS/2, they may be updated to the new OS/2 Version 2.0
semaphore facilities using the following guidelines:

• Where a semaphore is used to serialize the access to a particular data
object or system resource from multiple threads, a mutex semaphore should
be used.

• Where a semaphore is used to signal an event occurring in one thread to
other threads having an interest in this event, an event semaphore should be
used.

• Where an application waits upon the clearing of one semaphore from a
range of semaphores using the DosMuxWaitSem() function, this function may
be replaced by the use of a muxwait semaphore.

The muxwait semaphore has additional flexibility over the use of the
DosMuxWaitSem() function with normal semaphores under previous versions
of OS/2, since with a muxwait semaphore, a thread may wait for any one of a
list of mutex semaphores or event semaphores to be cleared (as with
previous versions), or may wait for all of the semaphores to be cleared. This
latter capability is not available under OS/2 Version 1.3.

The enhanced semaphore functions available under OS/2 Version 2.0 are
described in the IBM 0512 Version 2.0 Control Program Reference.

Chapter 12. Application Migration 261

12.4.2 Thread Management
The DosCreateThread() function has been enhanced in OS/2 Version 2.0 to
facilitate the creation of secondary threads. Under previous versions of OS/2, an
application was required to explicitly allocate a memory segment for the stack to
be used by a secondary thread. Under OS/2 Version 2.0 however, stack
allocation is performed as a built-in part of the DosCreateThread() function, and
deallocation is performed automatically by the operating system upon
termination of a thread.

Applications that use the DosCreateThread(} function should be modified to use
the new form of the function call, as shown in Figure 123.

APIRET re;
PTID Thread ID;
MYSTRUCT *ParmBlock;

re = DosCreateThread(ThreadlD,
Thread,
ParmBlock,
0L,
8192);

/* Return code
/* Thread identifier
/* Initialization data

/* Create thread
/* Entry point for thread
/* Parameters for thread
/* Start immediately
/* Stack size for thread

*/
*/
*/

*/
*/
*/
*I
*/

Figure 123. DosCreateThread() Function. This example shows the enhanced form of this
function as implemented under 0512 Version 2.0.

Note that the DosCreateThread() function under OS/2 Version 2.0 also allows
parameters to be passed to the thread as part of the DosCreateThread(} function.
The third parameter to the function is a 32-bit pointer, which may be used to
pass the address of an application-defined data structure containing the required
parameter data.

The DosCreateThread() function and its implementation under OS/2 Version 2.0
are described in greater detail in IBM 0512 Version 2.0 Control Program
Reference.

OS/2 Version 2.0 also allows an application to forcibly terminate a thread using
the DosKillThread() function. This function allows an application's primary
thread to terminate any secondary threads prior to its own shutdown, in a more
elegant manner than was possible under previous versions of OS/2.

12.5 Memory Management

262 OS/2 V2.0 Volume 4

The 64KB segment size limitation imposed by the Intel 80286 processor
architecture has been eliminated in OS/2 Version 2.0, avoiding the need for
applications to allocate large data structures in individual units of 64KB. The flat
memory model implemented under OS/2 Version 2.0 allows applications to
request the allocation of individual memory objects up to 512MB in size, using
the DosAllocMem() function, an example of which is shown in Figure 124 on
page 263.

APIRET
PVOID

re;
pObject;

re = DosAllocMem(&pObject,
73727,
PAG COMMIT
PAG=READ I
PAG _WRITE) ;

/* Return code
/* Pointer to memory object

/*Allocate memory object
/* Size of memory object
/* Commit memory immediately
/*Allow read access
/*Allow write access

*/
*/

*/
*I
*/
*I
*I

Figure 124. DosAl/ocMem() Function. This function replaces the DosAl/ocSeg() function
implemented in previous versions of OS/2.

The above example shows the allocation of 73KB of memory as a single memory
object, with read and write access permitted. The PAG_COMMIT flag is set in
the DosAllocMem() function call, in order to commit the storage immediately.

12.6 New Presentation Manager Functions
A number of new functions have been added to Presentation Manager under
08/2 Version 2.0. While these functions do not add new capabilities to the
Presentation Manager interface, they simplify application development by
combining operations that previously required multiple steps into a single
Presentation Manager function call.

Table 5 (Page 1 of 2). New Presentation Manager Functions in OS/2 Version 2.0

Function Description

Win I nsertlboxltem() Inserts a listbox item

WinDeletelboxltem() Deletes a listbox item

Wi nSetlbox Item Text() Sets the text of a specified listbox item

Wi nQuerylboxCount() Returns the number of items in a listbox

WinQuerylboxSelectedltem) Returns the offset (item number) of the selected item in
a listbox

Wi nQuerylbox Item Text() Returns the text of a specified listbox item

WinQuerylboxltemTextleng h6eturns the length of the text of a specified listbox item

WinPopupMenu() Creates and presents a context (popup) menu

WinCheckMenultem() Sets a check mark against a pulldown menu item

WinlsMenultemChecked() Determines whether a menu item is currently checked

WinEnableMenultem() Enables or disables a menu bar or pulldown menu item

WinlsMenultemEnabled() Determines whether a menu bar or pulldown menu
item is currently enabled

WinSetMenultemText() Sets the text of a specified menu bar or pulldown menu
item

Win Fi leDlg() Displays the standard SAA-conforming file dialog box

Win DefFi leDlg Proc() Default processing function for subclassing file dialog
box

WinFontDlg() Displays the standard SAA-conforming font dialog box

WinDefFontDlgProc() Default processing function for subclassing font dialog
box

Chapter 12. Application Migration 263

12.7 Summary

264 OS/2 V2.0 Volume 4

Table 5 (Page 2 of 2). New Presentation Manager Functions in 0512 Version 2.0

Function Description

WinQueryButtonCheckstate(D Determines the current check state of a check box or
3-state button.

WinSetDesktopBkgnd() Sets the current desktop background

WinQueryDesktopBackgrou~ d(4)ueries information about the current desktop
background

A number of other functions are also added in OS/2 Version 2.0, and are used to
deal with the passing of messages between 16-bit and 32-bit modules in
Presentation Manager applications. These functions are discussed in
Chapter 13, "Mixing 16-Bit and 32-Bit Application Modules."

These functions are described in more detail in the IBM OS/2 Version 2.0
Presentation Manager Reference.

Existing 16-bit applications written for OS/2 Version 1.3 may execute under OS/2
Version 2.0 without modification. However, significant enhancements to
performance and functionality are possible by taking advantage of additional
features provided by the 32-bit OS/2 Version 2.0 environment. In order to take
full advantage of the 32-bit environment, applications must be modified to use
the new features.

In addition, a number of changes have been made in the 32-bit programming
environment to provide improved consistency and ease of use, simplifying the
task of learning the operating system interfaces and reducing the amount of
coding required by application developers. The incorporation of these changes
into applications will also require source code modification.

It is not necessary for applications to migrate all their modules and resources to
the 32-bit environment, since OS/2 Version 2.0 allows mixing of 16-bit and 32-bit
code and resources within the same application. However, 32-bit modules that
make calls to 16-bit modules or resources must be aware of the differences in
addressing schemes between the the 16-bit and 32-bit environments.

Chapter 13. Mixing 16-Bit and 32-Bit Application Modules

Under OS/2 Version 2.0, 32-bit applications may make use of existing 16-bit
application code and resources; this practice is known as mixed model
programming. For example, a 32-bit Presentation Manager application may
access an object window procedure contained in a 16-bit DLL created for OS/2
Version 1.3. This capability allows 32-bit applications to make use of existing
application objects, avoiding the necessity to rewrite existing object libraries to
accommodate the 32-bit programming environment.

Applications that make use of 16-bit modules and resources must be aware of
the particular characteristics of the 16-bit environment, which affect the way that
application modules interface with one another and pass parameters or
messages. Such characteristics include:

• Pointers in the 16-bit environment are made up of a segment selector and an
offset; this addressing scheme is therefore known as 16:16. Pointers in the
32-bit environment are composed of a linear offset only; hence the
addressing scheme is known as 0:32. Note that this difference in
representation applies not only to memory pointers, but also to window and
resource handles under Presentation Manager.

• Memory objects passed as parameters between 16-bit and 32-bit routines
must not be greater than 64KB in size, in order to avoid problems with the
16-bit segmented memory model.

• Memory objects passed as parameters from 32-bit applications to 16-bit
routines must not lie across a segment boundary.

Obviously, conversion of pointers and possible realignment of memory objects is
required when passing control between 16-bit and 32-bit modules. This
conversion between addressing schemes is known under OS/2 Version 2.0 as
thunking. Thunking is performed using a simple algorithm known as the
Compatibility Region Mapping Algorithm (CRMA). This algorithm, along with
sample code, is described in OS/2 Version 2.0 - Volume 1: Control Program.

13.1 Function Calls to 16-Bit Modules
Thunking considerations affect the way in which a 16-bit function must be
declared within the 32-bit module, and the way in which parameters to be
passed to the 16-bit function are defined. Such functions and parameters must
be declared using the #pragma linkage directive and the far16 keyword, as
shown in Figure 125.

#pragma stack16(8192)

USHORT MyFunction(USHORT FirstNum, HWNO _Seg16 hWnd);

#pragma linkage (MyFunction, far16 pascal)

Figure 125. Declaring a 16·Bit Function in 32-Bit Code

Note the use of the #pragma stack16 directive to set the stack size for all 16-bit
function calls made from the 32-bit module.

©Copyright IBM Corp. 1993 265

Declaring a 16-bit function in this manner will cause the operating system to
automatically perform thunking for all "value" parameters (that is, those other
than pointers). Pointers passed as parameters must be explicitly defined using
the _Seg16 keyword, as shown in Figure 125.

The #pragma linkage and #pragma stack16 directives are discussed in more
detail in the IBM C Set/2 User's Guide.

13.2 Using 16-Bit Window Procedures
A 32-bit application may access window procedures that reside in 16-bit
modules, either statically linked or as Dlls. However, the differences between
addressing schemes require some consideration on the part of the developer,
since both the window handles and any pointers passed as message parameters
will differ in their representation.

13.2.1 Creating a Window

266 OS/2 V2.0 Volume 4

When a 32-bit application module creates a window, and the window procedure
for that window resides in a 16-bit module (either statically linked or in a DLL),
the calling routine must explicitly declare the 16-bit nature of the window
procedure's entry point when registering the window class. This may become
rather complex, since it involves invoking a 32-bit entry point from a 32-bit
module, but passing a 16-bit entry point as a parameter.

A simpler solution is to build a registration routine within the 16-bit module,
which registers the window class and creates the window. The 32-bit module
then need only invoke this routine, and allow for the resulting 16-bit window
handle. This technique has the added advantage that Presentation Manager
records the fact that the window was registered from a 16-bit module, and will
automatically perform thunking for system-defined message classes. The
technique is illustrated in Figure 126 on page 267.

Since the 16-bit module would typically be a DLL, the registration routine is
declared in the 16-bit module as an exportable entry point using the EXPENTRY
keyword.

The 32-bit module declares the registration routine MakeMyWindow() as a 16-bit
function using the #pragma linkage directive with the far16 keyword. Since in
16-bit code, the EXPENTRY keyword forces use of the pascal calling convention,
the directive also specifies this calling convention. Note that if the registration
routine and the window procedure were to reside in a DLL, this declaration
would typically take place within a header file provided by the developer of the
DLL.

The 32-bit module invokes the registration routine that registers the window
class and creates the window. The registration routine then returns the window
handle to the 32-bit module, which stores it in 16:16 format. Note that the
registration routine in the 16-bit module is not aware that it is being called from
a 32-bit module.

32-bit Module

#pragma stack16(8192)

HWND MakeMyWindow(void); /* 16-bit function prototype */
#pragma linkage (MakeMyWindow, far16 pascal)

HWND _Seg16 hWindow; /* 16:16 window handle */

hWindow = MakeMyWindow(); /*Call registration routine */

16-bit Module

HWND EXPENTRY MakeMyWindow(void)
{

HWND hCurrWindow;

WinRegisterClass(•••);
hCurrWindow = WinCreateWindow(•••);

/* Registration routine

/* 16:16 window handle

/* Register window class
/* Create window

*/

*/

*/
*/

return(hCurrWindow); /* Return 16:16 window handle */

Figure 126. Creating a 16-bit Window From Within a 32-bit Module

This approach allows the same DLL to be accessed by both 16-bit and 32-bit
applications concurrently. The developer of the DLL simply provides two
separate header files containing declarations of the DLL's entry points, in the
appropriate format for each programming environment.

13.2.2 Passing Messages to 16-Bit Windows
Passing data between 16-bit and 32-bit window procedures via message
parameters also requires consideration of the internal representations of the
data types passed within the parameter. For system-defined message classes,
this is handled automatically by OS/2 Version 2.0, but for application-defined
message classes the conversion between addressing schemes must be handled
by the application, since the operating system has no way of determining the
intended contents of each parameter.

Simple "value" parameters (such as integers, characters, etc.) may be passed
without the need for translation. It is recommended that message parameters
be constructed using the standard Presentation Manager macros described in
6.6.6, "Creating Message Parameters" on page 93.

When a pointer or handle is passed in a message parameter to a 16-bit window
procedure, the pointer or handle must be translated to the 16:16 addressing
scheme by the application. Since the 16-bit module is unlikely to have been
written with code to achieve this conversion, it is the responsibility of the 32-bit
module.

Conversion may be achieved using the _Seg16 keyword to explicitly define a
16:16 pointer or handle, which is then placed in a message parameter using the
MPFROMP macro. This is illustrated in Figure 127 on page 268.

Chapter 13. Mixing 16-Bit and 32-Bit Application Modules 267

typedef struct mystruct { /* Define data structure */
CHAR * _Seg16 Name;
ULONG ulA;
ULONG ulB;
USHORT usC;
} MYSTRUCT;

pragma seg16(MYSTRUCT) /* Define pragma directive */

MYSTRUCT * _Seg16 MyStruct;

APIRET re;

MPARAM mpl;

re= DosAllocMem(&MyStruct,
4096,
PAG_READ I
PAG_WRITE I
PAG _COMMIT) ;

<Initialize structure if required>

mpl = MPFROMP(MyStruct);

/* 16:16 pointer */

/* Return code */

/* Message parameter *I
/*Allocate data structure */
/* Size of data structure */
/*Allow read access */
/*Allow write access */
/* Commit storage immediately*/

/* Set message parameter */

Figure 127. Passing a 16:16 Pointer as a Message Parameter. This example shows the
32-bit code necessary to define and initialize a 16:16 pointer to be passed to a 16-bit
window procedure.

The resulting message parameter may then be passed to a window in a 16-bit
module using the normal WinPostMsg() or WinSendMsg() functions, using a 16:16
window handle obtained in the manner shown in Figure 126. Note that the data
structure referenced by the pointer may not be greater than 64 KB in size, and
must not cross a segment boundary. This is ensured in Figure 127 by using the
#pragma seg16 directive, since a structure defined using this pragma will
automatically be aligned on a segment boundary by the C Set/2 compiler.

Note also that defining a structure with the #pragma seg16 directive does not
implicitly qualify pointers within the structure with the _Seg16 keyword. Such
pointers must be explicitly qualified, as shown in Figure 126. Further information
on the #pragma seg16 directive can be found in the IBM C Set/2 User's Guide.

A 0:32 pointer may also be converted to a 16:16 pointer using the DosflattoSel{)
function provided by OS/2 Version 2.0. This function provides the correct
remapping of pointer formats from the 32-bit flat memory model to the 16-bit
segmented memory model.

13.2.3 Passing Messages to 32-Bit Windows

268 OS/2 V2.0 Volume 4

The technique described above handles messages passed to a window in a
16-bit module. However, messages passed from that window to the 32-bit
module may also require thunking. In order to perform this thunking, the 32-bit
application may define a thunk procedure and register this procedure to
Presentation Manager, which then invokes the thunk procedure whenever a
message is passed from within the window.

This registration is achieved using the WinSetWindowThunkProc() function, which
is illustrated in Figure 128 on page 269.

WinSetWindowThunkProc(hWindow, /* Window handle */
(PFN)ThunkProcl6to32); /*Thunk proc entry point */

Figure 128. Mixed Model Programming • WinSetWindowThunkProc() Functior:

The WinSetWindowThunkProc() function call is made from the 32-bit module.
Since the window class for the window has been registered in the 16-bit module,
Presentation Manager recognizes that the thunk procedure is to handle 16-bit to
32-bit conversion.

A thunk procedure may be deregistered, by issuing a WinSetWindowThunkProc()
function call with the thunk procedure entry point address set to NULL.

Whenever Presentation Manager invokes a thunk procedure for a message, it
passes the normal four parameters accepted by a window procedure, along with
the entry point address of the window procedure to which the message was to
be passed. This may be the window procedure defined for the destination
window when its class was registered, or a subclass window procedure defined
by the application. Thus thunking may take place, irrespective of whether a
window has been subclassed.

A sample thunk procedure is shown in Figure 129.

MRESULT EXPENTRY ThunkProcl6to32(HWND hwnd,

switch (ulMsg)
{

ULONG ulMsg,
MPARAM mpl,
MPARAM mp2,
PFNWP wpWindow);

case WMP MSGl:
mpl=DosSeltoFlat(mpl);
mp2=DosSeltoF1at(mp2);
break;

case ~IMP MSG2:
mpl:DosSeltoFlat(mpl);
break;

}
return((*wpWindow)(hwnd,

ulMsg,
mpl,
mp2));

Figure 129. Mixed Model Programming - Thunk Procedure

/* Window handle */
/*Message identifier */
/*Message parameters */

/* Window procedure */

/* Thunk parameters */

/* Thunk 1st parameter */

/* Call window proc */

The thunk procedure is invoked whenever a message is passed by the window
in the 16-bit module to a window in the 32-bit module. The thunk procedure is
similar in structure to a "normal" window procedure, but need contain cases
only for application-defined message classes, since thunking for system-defined
message classes is performed by Presentation Manager.

Chapter 13. Mixing 16-Bit and 32-Bit Application Modules 269

13.3 Summary

270 OS/2 V2.0 Volume 4

Note that since the thunk procedure is invoked by Presentation Manager, it must
use the system linkage convention, and is thus declared using the EXPENTRY
keyword.

In Figure 129, the 16-bit window contains two application-defined message
classes, WMP _MSG1 and WMP _MSG2. The first of these contains pointers in
both parameters, and thus both parameters are thunked by the thunk procedure.
The second message class contains a pointer in the first message paramater
only; the second may contain an integer or some simple value parameter which
does not require explicit thunking. Thunking is performed using the
DosSeltoFlat() function provided by OS/2 Version 2.0.

After performing the necessary thunking, the thunk procedure directly calls the
window procedure entry point supplied by Presentation Manager when the thunk
procedure is invoked. Note that this is one of the few instances where direct
invocation of a window procedure should be used. The correct sequence of
message processing is preserved in this case because the thunk procedure itself
is invoked either synchronously or asynchronously by Presentation Manager,
depending upon whether the message was sent or posted by the 16-bit window.

An alternative to the use of the DosSeltoFlat() function is the explicit use of the
Compability Region Mapping Algorithm discussed in OS/2 Version 2.0 - Volume
1: Control Program. This algorithm is implemented in the subroutine
CRMA 16to32 shown in Figure 130.

PVOID CRMA16to32(PVOID pPointer)
{

USHORT usTemp;

if (pPoi nter)
{
usTemp=HIUSHORT(pPointer) >> 3;
return(MAKEP(uTemp,

}
else

return(NULL);

LOUSHORT(pPointer)));

Figure 130. 16:16 to 0:32 Address Conversion

/* Perform conversion */

/* Temporary variable */

/* If not NULL */

/* Shift right 3 bits */
/* Swap hi & lo words */

The use of the DosSeltoFlat() function should be the preferred option, since the
CRMA routines may fail under certain circumstances. Explicit use of CRMA
should be restricted to those situations where special processing must be
performed on the parameters being passed.

OS/2 Version 2.0 allows applications and resources from both 16-bit and 32-bit
environments to coexist and communicate. A 32-bit application may make
function calls to 16-bit code, and 16-bit and 32-bit window procedures may pass
messages between one another.

Conversion between the 16:16 and 0:32 addressing schemes is achieved using
thunks, which implement an algorithm known as the Compatibility Region

Mapping Algorithm. The IBM C Set/2 compiler provides transparent thunking for
most function calls and parameters, using the #pragma linkage directive in
conjunction with the _Seg16 keyword.

For threads that will make calls to 16-bit code, the stack must also be aligned on
a 64KB segment boundary, to avoid possible problems with stack overflow in the
16-bit code. Again, the IBM C Set/2 compiler facilitates this alignment through
use of the #pragma stack16 directive, which causes the thread's stack to be
automatically aligned on a 64KB boundary.

Thunking becomes slightly more complex when communicating between 16-bit
and 32-bit window procedures, since pointers passed in message parameters
must be thunked. While Presentation Manager provides transparent thunking for
all system-defined message classes, application-defined messages must be
thunked explicitly by the application.

Presentation Manager provides some assistance to the application developer by
allowing thunk procedures to be registered for a window. Presentation Manager
automatically invokes the thunk procedure whenever a message to passed to
that window from a window of another memory model.

The ability to mix 16-bit and 32-bit code in the same application provides
considerable flexibility and protects investment in existing application functions
and resources. This in turn eases the task of migrating the organizational
development environment from the 16-bit to the 32-bit environment, since the
transition need not be accomplished in a single step.

Chapter 13. Mixing 16-Bit and 32-Bit Application Modules 271

272 QS/2 v2.o Volume 4

Chapter 14. Compiling and Link Editing an Application

A Presentation Manager application, written in a high-level language such as C,
is compiled and link-edited in a similar fashion to a regular OS/2 or DOS
application. System Object Model object classes are created in a similar way.
However, additional steps are required for the creation of a Workplace Shell
object class, prior to compilation of the C source code.

This chapter describes the process of creating an executable Presentation
Manager application or system object model object class. The chapter
describes the process of precompilation for system object model object classes,
and the compilation, link edit and resource compilation stages for both system
object model object classes and Presentation Manager applications.

The following diagram shows the overall process used to create a new class in
the Workplace Shell:

©Copyright IBM Corp. 1993 273

274 OS/2 V2.0 Volume 4

-
•.c
•.H
•.PH
•.IH
•.sc
•.PSC
•.DEF

Figure 131. Development Process for New WPS Classes

The starting point for a system object model class is the class definition file
which, for classes written using the C language, has an extension of .CSC. The
class definition file is used as input to the SOM Precompiler, which will generate
a number of files from the class definition file:

.H A public header file for programs that use the class .

. PH A private header file, which provides usage bindings to any private
methods implemented by the class .

. IH An implementation header file, which provides macros, etc., to support
the implementation of the class .

. C A template C file, to which code may be added to implement the class .

. SC A language-neutral class definition .

. PSC A private language-neutral core file, which contains private parts of the
interface for the class.

.DEF An OS/2 DLL module definition file containing the relevant exports
needed to implement the class.

14.1 Running the SOM Precompiler
Once the class definition file has been created, the SOM Precompiler is used to
generate the source files for the class. The options for the SOM Precompiler are
described in detail in the IBM SOM Programming Reference; however, a brief
description of the options used to create the folder example is given below.

14.1.1 The Makefile
The instructions to be used are placed into a makefile. The new make facility
NMAKE, provided with the IBM Developer's Toolkit for OS/2 2.0 is extremely
flexible and rich in function. It is recommended that programmers read the
NMAKE section of the IBM OS/2 Version 2.0 Programming Tools Reference if
unfamiliar with makefiles.

The SOM Precompiler environment variables are set as follows:

!if [set SMINCLUDE=.;$(SCPATH);] I I \
[set SMTMP=$(SOMTEMP)] I I \
[set SMEMIT=ih;h;ph;psc;sc;c;def]

!endif

The use of the !if directive is somewhat confusing, as the statement has nothing
to do with a conditional command. In fact, the OS/2 SET command is being
executed to initialize the environment variables. The NMAKE utility executes any
OS/2 command placed within square brackets in a !if directive.

The SMEMIT environment variable tells the SOM Precompiler which C source
files are to be generated; the suffixes correspond to the file types described
earlier in this chapter.

The SMINCLUDE and SMTMP environment variables are set from two NMAKE
macros, which are defined at the top of the makefile:

SCPATH = D:\toolkt20\sc
SOMTEMP = .\somtemp

The SMINCLUDE variable tells the SOM Precompiler where to find the class
definition (.SC) include files.

The SMTMP variable locates the SOM Precompiler temporary workspace
directory.

This brings us to the next part of the makefile that is responsible for ensuring the
existence of the temporary directory.

!if [cd $(SOMTEMP)]
! if (md $ (SOMTEMP)]
! error Error creating $(SOMTEMP) directory
! endif
!else

if [cd •.]
error Error could not cd •• from $(SOMTEMP) directory

Chapter 14. Compiling and Link Editing an Application 275

! endif
!endif

This code checks for the existence of the directory and if it cannot be found,
attempts to create it.

14.1.2 SOM Precompiler Invocation
The SOM Precompiler is invoked as a consequence of the following NMAKE
inference rule:

.csc.c:
SC $<

This infers that to go from a .CSC file to a ".C" file the SOM Precompiler (sc.exe)
will be invoked on the .CSC file ("$ < ").

Note that for the folder example, many default SOM Precompiler options are
used. Readers may wish to investigate some of the other options that are
available, by checking the IBM SOM Programming Reference.

14.2 Compiling C Source Code

276 OS/2 V2.0 Volume 4

The following files are required to generate a system object model object class
or Presentation Manager application from "C" source code:

Source

H

DEF

RC

An application may contain one or more source modules;
multiple source modules are normally bound at link-edit time.
However, application routines may be compiled and placed in a
DLL for binding at execution time.

An application may use a header file that contains data type
definitions, constants and macro definitions for use by the
application.

A module definition file, while not required for all Presentation
Manager applications, is definitely recommended. This file
contains information for input to the link editor, as described in
14.2.1, "Module Definition File" on page 278.

A resource script file contains definitions for Presentation
Manager resources, and/or statements that include resources
from other files.

DLG If an application uses a dialog box, a dialog file is normally
created containing a definition for the dialog box and its control
windows. This file is normally included into the resource script
file using an appropriate statement.

The role of these files in the development of a Presentation Manager application
is illustrated in Figure 132 on page 277.

Module
Definitit)n

File

·····•A.;,,i::.~~::; :
Source Cotf:e· (

I · Compil~' •I

+
.· ::..A.ppucaiiO.n

:• ·:>-01,;;~t'tsaat:~,::.::::

tiht~rutiz~:: -.1 ;.~~ii~~~1111!1I
•

Resource
. Script.
:. File

l
Reso'llr.ce.
·compiler

Figure 132. Compiling and Linking an OS/2 Presentation Manager Application

Note that certain additional header files are generated by the SOM Precompiler
and used in compiling a system object model object class. These files are
typically header files used to link the class with its parent, and have no direct
bearing on the compilation process.

The following steps are required to compile and link-edit a Presentation Manager
application:

1. Compile the source file using a high-level language compiler, to produce an
object file (usually with an extension of .OBJ).

2. Link-edit the object file with any other required object files, and possibly one
or more run-time libraries, to create an executable file (usually with an
extension of .EXE).

3. Compile any Presentation Manager resources using the resource compiler,
and incorporate these resources into the application's executable code or
place them in a DLL module.

A number of compiler and link editor options are specified for Presentation
Manager applications; these are shown in the example below. The executable
file may then be run as a Presentation Manager application under OS/2.

Note that the third step above is not required if Presentation Manager resources
are not used by the application. However, it is envisaged that virtually all
Presentation Manager applications will make some use of resources, due to the

Chapter 14. Compiling and Link Editing an Application 277

benefits to be gained through externalization of logic-independent or
language-specific application components.

Note that the command sequences for compiling and link editing an application
may be combined and placed in a parameterized OS/2 command file for
automated execution. Alternatively, a makefile may be created and the NMAKE
utility used to compile and link edit the application.

14.2.1 Module Definition File

278 OS/2 V2.0 Volume 4

The module definition file is a simple text file required by most Presentation
Manager applications. Module definition files are used when link editing both
programs and dynamic link libraries. By convention, the module definition file
has the same name as the program or library source file, but with an extension
of DEF.

A sample module definition file for a simple Presentation Manager application is
shown Figure 133:

; Sample Presentation Manager Module Definition File

NAME
DESCRIPTION
PROTMODE

STUB

STACKSIZE
HEAPSIZE

EXPORTS

MYPROG WINDOWAPI
'Sample PM Application (C) IBM Corporation 1991'

10S2STUB.EXE'

8192
1024

ThisWindowProc
ThatWindowProc
TheOtherWindowProc

Figure 133. Sample Module Definition File for Presentation Manager

A module definition file normally begins with a NAME or LIBRARY statement,
which identifies the module as a program or DLL respectively, and assigns it a
module name. The keyword WINDOWCOMPAT may be used to specify a
full-screen application that may be run in a Presentation Manager text window,
or WINDOWAPI may be used to specify a full Presentation Manager application.

The module definition file also contains a DESCRIPTION entry, containing text
that is embedded by the link editor into the header of the executable module.
This text may contain information such as a copyright notice or author
information concerning the module.

The PROTMODE keyword should be used to indicate that the application will be
run only in protect mode under OS/2 (note that this is a standard provision; all
Presentation Manager applications must run in protect mode). This allows the
link editor to shorten the header in the executable module.

The STUB keyword instructs the link editor to set up a stub file that generates an
error message if the user attempts to execute the application in a DOS
environment. OS2STUB.EXE is a DOS executable file that performs this function,
and is provided with the IBM Developer's Toolkit for 0512 2.0.

A DATA statement may be used in the module definition file to indicate the
disposition of data segments created by the module. Data segments may be
specified as SHARED, NONSHARED or NONE. If SHARED is specified, different
processes using the code segments of a dynamic link library will share the same
data segments; if NONSHARED is specified, the operating system will create a
new set of data segments for each process using a DLL. NONSHARED is
recommended.

The STACKSIZE and HEAPSIZE statements specify the size of the memory areas
to be reserved for the application's stack and for the local heap in the program's
automatic data segment. Note that the recommended minimum stack size for
Presentation Manager applications is 8 KB. Note also that ST ACKSIZE is not
used for dynamic link library modules, since a DLL has no stack (see 14.5.1,
11 Creating a DLL" on page 281).

The module definition file may also contain an EXPORTS statement for all
exportable entry points (such as window procedures) window procedures
contained in the module. This statement causes the entry points for window
procedures to be defined in the header of an executable module, so that they
may later be called from outside the current executable module (since window
procedures are actually invoked by Presentation Manager on behalf of the
application, rather than directly by the application itself).

An IMPORTS statement may be used to define the entry points for those
functions and/or resource definitions that will be imported from a dynamic link
library. However, an IMPORTS statement is not required if an import library is
being link edited with the application (see 14.5.2, "Using a DLL" on page 282).

The module definition file, and the statements it may contain, are described fully
in the IBM OS/2 Version 2.0 Application Design Guide.

14.2.2 Compiler Options
Using the IBM C Set/2 compiler, the following command sequence is
recommended:

cc /C+ /L+ /G3 /Ti+ MYPROG

The /C+ option indicates that only the compile step should be run, and not the
link-edit step, which is then performed explicitly at a later point using the
LINK386 utility. The /L + option causes the compiler to produce a source listing
file.

The /G3 option optimizes the code for execution on an Intel 80386 processor.
The code will also execute on an 80486 processor. However, for code that will
mainly be executed on 80486 hardware, use of the /G4 option is recommended.
See the IBM C Set/2 User's Guide for further information.

The /Ti+ option instructs the compiler to generate symbolic debugging
information which may then be used when debugging the application with the
IBM C Set/2 debugging tool.

Chapter 14. Compiling and Link Editing an Application 279

14.3 Link Edit
When using the IBM C Set/2 compiler, an application may be compiled and
link-edited in a single operation. The following command sequence is used to
compile and link edit a program for Presentation Manager under OS/2 Version
2.0:

CC /L- /G3 /Ti+ /Gm+ MYPROG 052386.LIB MYPROG.DEF

This command sequence directs the linkage editor to compile the file MYPROG.C
to produce an object file named MYPROG.OBJ, and to link this file to produce an
executable file named MYPROG.EXE, without creating a list file, to use the
run-time library named 082386.LIB and the module definition file named
MYPROG.DEF.

Note the use of the /Gm+ option. This option causes the multithreading "C"
run-time libraries to be used in linking, thereby enabling multithreadingin the
resulting application code.

14.4 Resource Compilation
Presentation Manager resources used by the application and defined in a
resource script file are compiled using the resource compiler provided in the
IBM Developer's Toolkit for OS/2 2.0. The command sequence used to invoke
the resource compiler is as follows:

re MYPROG.RC MYPROG.EXE

This command sequence causes the resource compiler to read the resource
definitions from the resource script file MYPROG.RC and compile them to
produce an intermediate resource file MYPROG.RES, which is then incorporated
into the executable module MYPROG.EXE.

Resources may also be compiled and incorporated into dynamic link libraries,
simply by specifying the name of the DLL rather than the EXE file when invoking
the resource compiler. Note that certain additional considerations may apply;
see 14.5.3, "Presentation Manager Resources in a DLL" on page 282 for further
information.

Note that under OS/2 Version 2.0, 32-bit applications may use existing 16-bit
application modules and resources. This concept is known as mixed model
programming, and is discussed in Chapter 13, "Mixing 16-Bit and 32-Bit
Application Modules."

14.5 Dynamic Link Libraries

280 OS/2 V2.0 Volume 4

Since window procedures that communicate using the standard Presentation
Manager message conventions have no exterior interfaces aside from these
messages, window procedures are essentially "black boxes" and are invisible to
the application. It is thus possible to produce a number of window procedures to
perform standard or often-used functions, and to store these window procedures
in a library from which they may be accessed by a number of applications.

The recommended way to achieve this capability is to place such window
procedures in an OS/2 dynamic link library.5 Applications using these window
procedures then reap the benefits of Dlls; namely that changes to window
procedures contained in the Dlls do not require the applications to be re-linked
and that multiple applications may use the same memory-resident copy of the
window procedure code, since Dlls are re-entrant. The use of Dlls therefore
maximizes the potential for code reuse, and facilitates the containment of
change within a single application module.

Note that where existing 16-bit Dlls contain application objects, functions or
resources required by 32-bit applications under OS/2 Version 2.0, these
applications may access the 16-bit Dlls. This technique, known as mixed model
programming, is discussed in Chapter 13, "Mixing 16-Bit and 32-Bit Application
Modules."

14.5.1 Creating a DLL
To build a DLL from a particular source code module, the code is compiled in a
similar manner to that used for any other ~resentation Manager application
code. However, use of the /Ge- option will cause the C Set/2 compiler to
produce a DLL module.

CC /L- /G3 /Ti+ /Gm+ /Ge- MYDLL OS2386.LIB MYDLL.DEF

This command sequence instructs the compiler to take the file MYPROG.C, to
compile and link edit it to produce a dynamic link library named MYPROG.DLL,
and to use the file named MYPROG.DEF as input to the linking process. Use of
the /Gm+ option enables multithreading, and use of the /Ge- option directs C
Set/2 to produce a DLL module.

A sample module definition file for use when creating a DLL is shown in
Figure 134:

; Sample PM Module Definition File for Creating a DLL

LIBRARY
DESCRIPTION
PROTMODE
DATA

EXPORTS

MYDLL INITINSTANCE TERMINSTANCE
'Sample PM Dynamic link Library (c) IBM 1991'

MULTIPLE

RoutineNumberOne
RoutineNumberTwo
RoutineNumberThree

Figure 134. Sample Module Definition File to Create a DLL

The following rules apply to module definition files when used to create dynamic
link libraries:

• The LIBRARY statement must be used, and the module name declared must
be the same as the file name of the DLL. The keywords INITINSTANCE and
TERMINSTANCE may be used to indicate that any initialization code should
be executed for each process which accesses the DLL.

s See 2.7, "Dynamic Linking" on page 20 for an explanation of the concept of dynamic linking.

Chapter 14. Compiling and Link Editing an Application 281

• If the DLL will be accessed by separate processes within the system,
separate data segments should be created for each process; this is achieved
by specifying DATA MULTIPLE in the module definition file

• The STACKSIZE statement must not be used since a DLL does not use a
stack.

• An EXPORTS statement must be included, defining each functicn that will be
exported from the DLL.

The DLL module must be copied to a directory referenced by the LIBPATH
statement in CONFIG.8Y8. This is typically the C:\082\DLL directory, although
another directory may be used if so desired.

14.5.2 Using a DLL
When an application is to use functions contained in a DLL, these functions must
first be declared at compilation time. This is typically achieved by the use of an
include file containing function prototypes for all exportable entry points within
the DLL; such an include file is normally created along with the DLL and
supplied to all application developers who will use the DLL.

Once the functions are declared within the application's source code, the
external references must be resolved at the time the program is link edited.
This may be performed in one of two ways:

• The functions may be identified in the application's module definition file
using an IMPORTS statement, as described in 14.2.1, "Module Definition
File" on page 278. For example, the statement:

IMPORTS MYPROG.funcl

defines the function funct, which will be imported from a DLL named
MYPROG.DLL.

• The functions may be included in an import library, which is a library
specified at link edit time. An import library is created using the IMPLIB
utility provided with the IBM Developer's Toolkit for 08/2 2.0. For example,
the command:

implib MYLIB.LIB MYLIB.DEF

causes IMPLIB to create an import library named MYLIB.LIB. using
information contained in a module definition file named MYLIB.DEF. The
import library file should be placed in a directory referenced by the INCLUDE
environment variable.

Note that the file 082.LIB. used when link editing 08/2 application programs, is
in fact an import library containing definitions for 08/2 system functions that are
themselves implemented using Dlls.

14.5.3 Presentation Manager Resources in a DLL

282 05/2 V2.0 Volume 4

As noted in 2.7, "Dynamic Linking" on page 20, Presentation Manager resources
may be defined and stored in a DLL for use by multiple applications. However,
the implementation of dynamic linking under 08/2 requires that each DLL must
contain an executable module, and resources are not executable modules in
their own right. If a DLL will contain only resources and will not contain an
executable routine such as a dialog procedure, a dummy executable module
must be provided for the DLL by the application developer, as shown below:

int ARCTUSED = 1;

void EXPENTRY dummy()
{
}

The declaration for the variable ARCTUSED is provided in order to avoid an error
generated by the IBM C/2 compiler when it cannot find a module named main
within the source file.

Editor's Note -----------------------

The above statement may not be true for the C Set/2 compiler. This must be
determined.

This dummy module is compiled and link-edited into an executable file in the
normal way. The resource compiler is then used to compile and incorporate the
resource definitions into the executable file.

14.5.4 Using Dialogs in System Object Model Objects
In the folder example, a dialog box is used to prompt the user for the folder's
password, and for the user to enter the password. Creating and invoking the
dialog is done in the normal way. However, invoking an object's methods from
within a dialog procedure requires that the dialog procedure know the pointer to
the object that invokes the method (that is, somSe/f). This is done through the
use of the pCreateParams parameter of the WinDialogBox() function. In this way,
the pointer to somSelf is passed to the dialog procedure as follows:

pCreateParams = (PVOID)somSelf;

The dialog procedure may then store the pointer in the reserved window word
QWL_USER:

case WM INITDLG:
WinSetWindowULong(hwndDlg, /* Set window word */

QWL_USER, /* Offset of window word */
(ULONG) mp2); /*Value to be stored */

break;

When an instance method must be invoked from the dialog procedure, the object
pointer may easily be retrieved from the window words and used to invoke the
method.

{
PWFolder *aPWF; /* Object pointer */

PWF_INFO pwfolderlnfo; /* Folder info struct */

aPWF = (PWFolder *)WinQueryWindowULong(/* Get object pointer */

_Querylnfo(

hwndDlg, /* Dialog box handle */
QWL_USER); /*Offset of win word */

aPWF,
&pwfolderlnfo);

/* Invoke method */
/* Object pointer */
/* Folder info struct */

Chapter 14. Compiling and Link Editing an Application 283

14.6 Summary

284 OS/2 V2.0 Volume 4

In the above example, a WinQueryWindowULong() call is used to retrieve the
object pointer from the window word, and store it in aPWF. This variable is then
used as the first parameter when invoking the method _Querylnfo.

Note that the method name _Querylnfo is in fact fully defined as
pwfolder_Query/nfo. However, as noted in 7.3.3, "C Implementation of an Object
Class" on page 119, the SOM Precompiler automatically generates a ;nacro to
define the abbreviated form of the function name, in order to avoid the necessity
for the programmer to type the full name.

The steps required in compiling and link-editing a Presentation Manager
application are generally similar to those required to generate any other OS/2
application. Some files are required in addition to those used by a
"conventional" application, due to Presentation Manager's use of externalized
definitions for application resources such as menus, string tables and dialog
boxes.

The module definition file provides a mechanism whereby various attributes of
an application or dynamic link library may be specified. The module definition
file also allows the developer to specify copyright information that is imbedded in
the executable code.

The creation of dynamic link libraries, while essentially similar to that of normal
application code, requires certain special considerations, notably with regard to
the module definition file and the options that are specified at link-edit time.
Code modules and Presentation Manager resources that are likely to be subject
to change, or are of a potentially reusable nature may be placed in dynamic link
libraries and thus isolated from the remainder of the application. The remainder
of the application code is thus protected from changes that may be necessary to
these dynamic link libraries in order to accommodate changes in such areas as
organizational procedures or government legislation. Dynamic link libraries may
also be used by multiple applications concurrently, by virtue of their reentrant
nature.

Chapter 15. Adding Online Help and Documentation

In line with the philosophy of making applications easy to use through the
provision of an intuitive, graphical user interface, it is extremely useful to have
an application provide online, context-sensitive help and tutorial facilities to the
end user. Such facilities further encourage learning by exploration.

Presentation Manager provides such capabilities in the form of the Information
Presentation Facility (IPF), which allows help panels to be generated and
displayed in help windows under Presentation Manager. These help windows
are linked with the normal application windows in such a way that when the user
presses the "Help" key, selects a "Help" item from the menu bar or presses a
"Help" button in a dialog box, the appropriate help window is displayed.

In addition to providing online help for Presentation Manager applications, IPF
can also be used in a stand-alone mode, to provide online documentation for
applications, or for business procedures that are independent of any single
application. Using capabilities provided by IPF, an online procedure manual may
initiate appropriate applications, thus providing a "real-life" tutorial capability for
new or inexperienced users.

This chapter will describe the use of IPF for creating help libraries and online
documents, and examine some ways in which IPF may improve the ease-of-use
of Presentation Manager applications.

15.1 Creating Help Information
Help information is created in ASCII source files using an IPF tag language,
which embeds formatting tags in the text. These tags define the formatting
characteristics of the text which appears in help windows, and the appearance of
the windows themselves. Once the source files are created, the IPF compiler is
then used to translate the source files into an IPF library format. The IPF
compiler can generate a table of contents and an index for help information.

15.1.1 IPF Tag Language
The IPF tag language is similar in structure and syntax to the Generalized
Markup Language (GML) used by IBM's Document Composition Facility• (DCF*)
product. Source files are simple ASCII text files, and can be created using any
normal text editor.

Tags are embedded in the files simply by inserting the tag into the text at the
required point. For example, this document was created and formatted using
GML tags, and the opening sentences of this chapter were created using the
format shown in Figure 135 on page 286.

©Copyright IBM Corp. 1993 285

:hl.Adding Online Help and Documentation
:p.In line with the philosophy of making applications easy to use
through the provision of an intuitive, graphical user interface,
it is extremely useful to have an application provide online,
context-sensitive help and tutorial facilities to the end user.
Such •••

Figure 135. /PF Tag Language Example

Note that the chapter heading is preceded by a "header level 1" tag which
causes the header text to be formatted in a particular manner. Similarly, the
header is followed by a "paragraph" tag which caused a new paragraph to
begin. The formatting of the text within the source file is not significant; there is
no requirement for a tag to begin at the left margin, or for each tag to begin on a
separate line. A developer may organize the source files in the most
appropriate manner for readability.

The first statement in a source file must be a :userdoc tag, and the last
statement must be a :euserdoc tag. These tags are required by IPF. Comments
may also be imbedded within a source file using the :* tag; comments are
ignored by the IPF compiler, and do not appear in the formatted text.

A complete description of the formatting tags available under the IPF tag
language is beyond the scope of this document. Some examples are given in
the remainder of this chapter, and each tag is described in detail in the IBM
OS/2 Version 2.0 Information Presentation Reference.

15.1.2 Defining Help Panels

286 OS/2 V2.0 Volume 4

The IPF tag language contains "header" tags with levels from 1 to 6; by default,
levels 1 to 3 define the start of a new help panel, and are automatically included
in the table of contents for online documentation. Each help panel therefore
begins with one of these header tags, followed by the help text to be displayed
within that panel.

:h2 res=12345 x=left y=bottom cx=50% cy=25%.Help Window Heading
:p.The sequence of operations you have performed was never
envisaged by the person who wrote this program, and no help
information has been written into these panels to deal with
this contingency. You are therefore totally beyond help.
Exciting, isn't it?

Figure 136. Simple Help Panel Source

The res= attribute specified in the :ht through :h6 tags is used by IPF to
uniquely identify the help panel, and to enable an application to link to that panel
when the user requests help. See 15.3, "Linking Help Windows With
Applications" on page 291 for further information.

The x=, y=, ex= and cy= attributes define the position and size of the window
within its parent. In the case of a help window, the parent is the application
window from which the help window was invoked.

The header levels 1 to 3 are used when organizing help panels within the table
of contents. Panels defined with header level 3 are grouped under the last

defined header level 2, and those defined with header level 2 are similarly
grouped under the last defined header level 1. Thus the order of definition
within the source file is significant.

Note that multiple help panels may be placed within a single source file, simply
by including additional header tags. By default, header levels 4 to 6 will not
cause the display of a new help window, but will appear as formatted subject
headings within a help panel.

15.1.3 Displaying Graphics
In addition to text information, graphics may also be displayed in help panels.
Either character graphics or bitmaps may be used. Character graphics are
embedded directly within the help text, using the :xmp tag to ensure correct
formatting. Bitmaps are referenced from within the help text using the :artwork
tag. An example of this tag is shown in Figure 137.

:h2 res=223.Bitmap Help Example
:p.This example shows how to display a bitmap in a help window
using the :artwork tag.
:artwork name= 1BITMAP.BMP 1 align=left.

Figure 137. Displaying a Bitmap in a Help Window

The align= attribute on the :artwork tag allows a bitmap to be aligned either
left-justified, right-justified or centered in the window. In situations where the
bitmap must fill the entire window, the fit attribute may be specified, which
causes the bitmap to be scaled to fit the window size.

15.1.4 Hypertext and Hypergraphics
Help windows may be nested through the use of links embedded within the help
information. Both text and graphics may be defined as selectable; selection of
these items can then be used to trigger events such as:

• Display of another help window with supporting help text

• Dispatch of message to the application window which invoked the help
window

• Initiation of a new application.

Selectable items are known as links; text items are hypertext links, and graphical
items are hypergraphic links. Each of these link types is described in the
following sections.

15.1.4.1 Hypertext Links
Text items are defined using the :link tag, which defines the type of event
triggered by the link operation, and details of the target object activated by the
link. An example of a :link tag is shown in Figure 138.

:h2 res=004.Hypertext Example
:p.This example shows the use of a
:link reftype=hd res=1013.hypertext link:elink.
to display another help window when the user selects the
hypertext item.

Figure 138. Hypertext Link

Chapter 15. Adding Online Help and Documentation 287

288 OS/2 V2.0 Volume 4

The :link tag shown in the example above uses the reftype = attribute to identify
the type of event to be triggered (in this case, the display of another help
window). The res= attribute identifies the help window to be displayed when
the hypertext item is selected.

Different values for the reftype = attribute will trigger different types of events:

• Specifying reftype = hd causes the display of another help window, as shown
in Figure 138. The res= attribute must also be specified in order to identify
the help window to be displayed.

• Specifying reftype=fn causes the display of a popup window containing a
footnote. The refid= attribute must also be specified in order to identify the
footnote.

• Specifying reftype =inform causes a message to be sent to the application
window which invoked the help window. The res= attribute must also be
specified, and its value is passed back to the application.

• Specifying reftype =launch causes another application to be started by the
operating system. The name of the program to be started is specified in the
object= attribute, and parameters may be passed to the program in the
data= attribute.

The use of hypertext links provides a powerful means to develop sophisticated
help text and online documentation, and to implement tutorials and
"self-teaching" applications. This subject is discussed further in 15.8,
"Self-Teaching Applications" on page 298.

15.1.4.2 Hypergraphic Links
Bitmapped graphic items are defined in a slightly different manner to text items,
using the :art/ink tag. The :art/ink tag is specified on the line immediately
following the :artwork tag in the source file.

Multiple :art/ink tags may be defined for the same bitmap, in order that the user
may select different portions of the bitmap to trigger different events. If multiple
:artlink tags are specified however, they must be placed in a link file, which is
referencea using the linkfile = attribute to the :artwork tag.

Both techniques are illustrated in Figure 139.

:h2 res=0005.Hypergraphic Example
:p.This example shows how to define hypergraphic links in a
bitmap.
:p.The first item shows a single hypergraphic link.
:artwork name='BITMAP.BMP' align=left.
:artlink.
:link reftype=hd res=0107.
:eartlink.
:p.The next item shows multiple hypergraphic links in the same
bitmap.
:artwork name='BITMAP2.BMP' align=center linkfile='BMP2'.

Figure 139. Hypergraphic Link

The use of a link file is mandatory where multiple hypergraphic links exist for the
same bitmap. The format of a link file is shown in Figure 140 on page 289.

15.1.5 Viewports

:artlink.
:link reftype=hd res=0110 x=0 y=0 cx=30 cy=20.
:link reftype=hd res=0111 x=31 y=21 cx=30 cy=20.
:link reftype=launch object= 1C:\APPLS\APPLl.EXE 1

x=61 y=41 cx=20 cy=l0.
:eartlink.

Figure 140. Link File With Multiple Hypergraphic Links

Multiple :link tags are nested within a single :art/ink tag, and define various
selectable areas of the bitmap, each of which triggers a specific event when
selected by the user. Any of the types of events normally triggered by a :link tag
may be initiated from a hypergraphic link.

Information within help windows is displayed in viewports. In the default case, a
single viewport is defined that occupies the entire help window and contains the
text. This is known as a simple viewport. However, multiple viewports may be
defined within the same help window, and handled separately. For example, two
viewports may be defined in a help window; the first may be used to display a
graphical diagram, while the second may contain a text narrative relating to the
diagram. The user may scroll the text in the window, but the diagram remains
displayed since it lies in a separate viewport. This type of definition is known as
a complex vlewport.

Multiple viewports are normally defined within a help window using :link tags
which are known as automatic links. These operate in a similar manner to
hypertext links, but are invoked automatically when the help window is
displayed. An example of a help window containing such links is shown in
Figure 141.

:h2 res=0120
x=center y=center width=50% height=50%.
Multiple Viewports Example

:link reftype=hd res=0121
auto dependent
vpx=left vpy=bottom vpcx=50% vpcy=l00%
scroll=none titlebar=none rules=none.

:link reftype=hd res=0122
auto dependent
vpx=right vpy=bottom vpcx=50% vpcy=l00%
scroll=vertical titlebar=none rules=none.

Figure 141. Multiple Viewports Using Automatic Links

The auto attribute specifies that the viewport is to be opened automatically when
its parent help window is opened. The dependent attribute specifies that the
viewport is to be closed when its parent is closed. The vpx =, vpy =, vpcx = and
vpcy = attributes specify the position and size of the viewport within the parent
window. In Figure 141, two viewports are opened, positioned side-by-side within
the parent window.

The scroll=, titlebar= and rules= attributes determine whether each viewport
possesses its own scroll bars, title bar and sizing borders. In Figure 141, neither
viewport contains a title bar or sizing border (both make use of the parent's title

Chapter 15. Adding Online Help and Documentation 289

bar and border), but the right-hand viewport contains its own scroll bar. This
allows the right-hand viewport to be scrolled while the left-hand viewport
remains unchanged.

15.1.5.1 IPF-Controlled Viewports
By default, the presentation of information in viewports is under the control of
IPF, using instructions defined in the source files. Such viewports are known as
IPF-controlled viewports. When an !PF-controlled viewport is used, text is
automatically formatted within the viewport by IPF, and presented in the help
window.

15.1.5.2 Application-Controlled Viewports
A viewport may also be defined as an application-controlled viewport, using the
:acviewport tag. This tag allows an application to take direct control of a
viewport, and to present information in this viewport in a manner determined by
that application. For example, a full-motion video application could be used to
display information in video format.

The :acviewport tag is shown in Figure 142.

: hl res=0Hll
x=center y=center width=50% height=50%.
scroll=none.Application-Controlled Viewport Example

:acviewport dll= 1SAMPLES 1 objectname= 1flight 1 objectid=l
vpx=left vpy=bottom vpcx=50% vpcy=50%.

Figure 142. Application-Controlled Viewport

The :acviewport tag causes IPF to load a dynamic link library as specified in the
di/= attribute, and to pass control to the entry point identified by the
objectname = attribute.

15.2 Compiling Source Files
Once the text has been generated in source files, it must be compiled in order to
produce a help library. By default, source files have an extension of IPF. The
IPF compiler does not require this extension, but if the compiler finds two files
with the same name, the file with the IPF extension is used in the compilation.

For source files that will be used to produce online documents rather than help
libraries, the extension INF should be used. See 15.6, "Stand-Alone Online
Documentation" on page 297 for further information.

15.2.1 The IPFC Command

290 OS/2 V2.0 Volume 4

The IPF compiler is invoked using the IPFC command, as follows:

IPFC SOURCE.IPF /X /W3 >ERRORS.TXT

The above command invokes the IPF compiler with the input file SOURCE.IPF.
The IX parameter instructs the compiler to produce a cross-reference listing for
all headings, diagrams, etc. The /Wn command specifies the level of
error-reporting to be performed; valid levels are 1 (/W1) to 3 (/W3). The final
parameter pipes any error messages to the file ERRORS.TXT in order that they
may be examined later. The IPFC command is fully documented in the IBM 0512
Version 2.0 Information Presentation Reference.

When creating online documentation that will function in a stand-alone format
rather than as help associated with an application, the /INF parameter is
specified. This causes the IPF compiler to search for source files with the INF
extension, and to format the output for use with the online viewing utility
VIEW.EXE.

15.2.2 National Language Support
Support for languages other than U.S. English may be provided in help files by
specifying the /COUNTRY, /CODEPAGE and /LANGUAGE parameters in the IPFC
command. These parameters affect the collating sequence used when creating
a table of contents or index, and the titles displayed for note (:nt), warning
(:warning) and caution (:caution) tags.

These parameters and the use of national languages in help windows and online
documentation is described in more detail in the IBM 0512 Version 2.0
Information Presentation Reference.

15.3 Linking Help Windows With Applications
In order for an application to display help information using IPF, a number of
steps must be performed to link the application's windows with the
corresponding help windows. Each of these steps is described in the following
sections.

15.3.1 Creating a Help Table
A help table is a Presentation Manager resource, and is defined in a resource
script file using the HELPTABLE resource. An example of a help table is shown
in Figure 143.

HELPTABLE MAINHELP
BEGIN

HELPITEM MAIN, SUBTABLE_MAIN, EXTHELP MAIN
HELPITEM DIALOGl, SUBTABLE_DIALOGl, EXTHELP DIALOGl

END

HELPSUBTABLE SUBTABLE MAIN
BEGIN

END

HELPSUBITEM MI_FILE, 0010
HELPSUBITEM MI_EDIT, 0020
HELPSUBITEM MI_VIEW, 0030
HELPSUBITEM MI_EXIT, 0040

HELPSUBTABLE SUBTABLE DIALOGl
BEGIN

END

HELPSUBITEM EF_ITEMl, 0101
HELPSUBITEM EF_ITEM2, 0102
HELPSUBITEM CK_ITEM3, 0103
HELPSUBITEM PB_ITEM4, 0104
HELPSUBITEM PB_ITEM5, 0105

Figure 143. Help Table Resource Definition

Chapter 15. Adding Online Help and Documentation 291

The HELPITEM resources within the help table define each application window
for which help is to be provided, and point to a HELPSUBTABLE resource. Each
HELPITEM resource also defines the panel identifier of the optional extended
help panel for that window.

A HELPSUBTABLE resource is defined for each window, and contains
HELPSUBITEM resources that identify each item within the window for which
help is to be provided, and the panel identifier of the help panel for that item.

For example, Figure 143 shows a main window with the window identifier MAIN,
and a dialog box with the identifier DIALOG1. A subtable is defined for MAIN,
which defines the menu bar items within that window, and identifies a help panel
for each of these items. For DIALOG1, the subtable specifies the identifiers of
the control windows within the dialog box, and identifies a help panel for each
control window. The identifiers of the help panels must correspond to the
identifiers specified in the res= attribute of the header tags.

15.3.2 Creating a Help Instance

292 OS/2 V2.0 Volume 4

Once the help table for an application has been created, the application must
pass this help table to IPF and create a help instance, using the
WinCreateHelplnstance() function. This function is shown in Figure 144.

PHELPINIT Helplnit;
HWND hHelp;

Helplnit=DosAllocMem(Helplnit,
sizeof(HELPINIT),
PAG_READ I
PAG_WRITE I
PAG_COMMIT;

Helplnit->cb=sizeof(HELPINIT);
Helplnit->pszTutorialName=NULL;
Helplnit->phtHelpTable=MAINHELP;
Helplnit->phtHelpTableModule=NULL;
Helpinit->hmodAccelActionBarModule=NULL;
Helplnit->idAccelTable=0;
Helplnit->idActionBar=0;
Helplnit->pszHelpWindowTitle="Help";
Helplnit->usShowPanellD=CMIC_HIDE_PANEL_ID;
Helplnit->pszHelplibraryName="APPLHELP11

;

hHelp = WinCreateHelplnstance(hAB,
Helplnit);

Figure 144. WinCreateHelplnstance() Function

/*Allocate memory object */
/* Size of HELPINIT struct */
/*Allow read access */
/*Allow write access */
/* Commit storage now */

/* Specify size of struct */
/* No tutorial */
/* Help table identifier */
/* Help table in EXE file */
/* Resource in EXE file */
/* Resource in EXE file */
/* Default used */
/* Help window title */
/* Do not show panel ids */
/* Name of help library */

/* Create help instance
/* HELPINIT structure

*/
*I

The WinCreateHelplnstance() function is normally called from an application's
main routine, immediately after creating the application's main window, but
before entering the message processing loop.

The WinCreateHelplnstance() function creates the application's main help
window, which is initially invisible, and passes appropriate information to that
window to enable the specified help library to be loaded and access to be
obtained to required resources. See 15.5, "Main Help Window" on page 294.

15.3.3 Associating a Help Instance
Once the help instance has been created, it must be associated with an
application window. The help instance is normally associated with the
application's main frame window, and help may therefore be provided for any
children of the frame window, including the menu bar and client window. The
WinAssociateHelplnstance() function is used to associate a help instance with an
application window; an example of this function is shown in Figure 145.

re = WinAssociateHelplnstance(hHelp,
hFrame);

Figure 145. WinAssociateHe/plnstance() Function

/* Help instance handle
/* Frame window handle

*I
*I

The WinAssociateHelplnstance() function is normally called from the
application's main routine, immediately following the WinCreateHelplnstance()
function call.

15.3.4 Ending a Help Instance
Upon termination of the application, the help instance should be ended using a
WinDestroyHelplnstance() function call, as shown in Figure 146.

re= WinDestroyHelplnstance(hHelp); /* Destroy help instance */

Figure 146. WinDestroyHelplnstance() Function

This function is invoked immediately after termination of the application's
message processing routine, and prior to destroying the application's main
window.

15.4 Displaying Help Panels

15.4.1 F1 Key

Help panels are displayed in help windows by IPF as a result of user interaction.
A user may cause a help panel to be displayed in one of three ways:

• Hitting the F1 key

• Selecting a "Help" item on the menu bar or a pulldown menu

• Pressing a Help pushbutton in a dialog box.

Each of these actions normally results in a WM_HELP message being generated.
This message is trapped by IPF, which then determines the active application
window and uses the current help table to identify the help panel for that
window.

Under the default accelerator table maintained by Presentation Manager for all
windows, the F1 key causes a WM_HELP message to be generated and posted to
the queue for the window that possessed the input focus when the key was
pressed. Explicit definition of the accelerator key by the application is not
required.

Chapter 15. Adding Online Help and Documentation 293

15.4.2 Help Menu Bar Item
A "Help" menu bar item, whether it is defined on the menu bar or in a "Help"
pulldown menu, should be defined using the MIS_HELP style. This will cause the
item to generate a WM_HELP message, rather than a WM_COMMAND message.
The definition of such an item is shown in Figure 92 on page 199.

15.4.3 Help Pushbutton
A "Help" pushbutton in a dialog box should be defined using the BS_HELP and
BS_NOPOINTERFOCUS styles. The WM_HELP message is passed to IPF, which
then determines the control window within the dialog box that currently
possesses the input focus, and displays the help panel for that control window.

15.5 Main Help Window
The WinCreateHelplnstance() function returns a window handle. This is the
handle of the application's main help window. The main help window is created
by IPF, with a standard format and with a window procedure supplied by
Presentation Manager. Whenever a help panel is displayed, it appears as a
child window of the main help window.

The main help window has a title bar, which contains a title specified by the
application. The application passes this title in the pszHelpWindowTitle
parameter to the WinCreateHelplnstance() function.

The main help window contains a menu bar with several pulldown menus
allowing the user to perform text searches, view the index, etc. An application
developer may modify this menu bar using the resource definitions contained in
the hmtailor.rc file provided with IPF. This file includes an hmtailor.h file, which
contains the integer constant definitions for the menu bar and pulldown menu
items. Additional items may be defined within the help pulldown menu, but their
resource identifiers should be between 7FOO and 7FFF to avoid confticts with
identifiers already defined.

When the menu bar of the main help window has been modified, it must be
resource-compiled in the normal way, and combined with the application's
executable file or with a DLL. Its resource identifier must then be specified in
the idActionBar parameter of the WinCreateHelplnstance() function call. If
additional accelerator keys have been defined, the identifier of the accelerator
table must also be defined in the idAcce/Table parameter.

If the menu bar and accelerator table definitions have been combined with a
DLL, the module handle of this DLL must be specified in the
hmodAcce/IActionBarModule parameter. The module handle must first be
obtained using the DosloadModule() or DosGetModuleHandle() functions. These
functions are described in 9.3.2, "Loading Resources From a DLL" on page 200.

15.5.1 The Help Pulldown Menu

294 OS/2 V2.0 Volume 4

The menu bar of the main help window contains a "Help" pulldown menu which
in turn contains a number of options. The resource definition for this pulldown
menu is included in the hmtailor.rc file provided with IPF, and illustrated in
Figure 147 on page 295.

SUBMENU
BEGIN

END

MENUITEM n-Help for help .•. n,
MENUITEM n-Extended help ••. n,
MENUITEM "-Keys help •.• ",
MENUITEM "Help -index ... ",

ID HELP

ID_HELP_FOR_HELP
SC_HELPEXTENDED, MIS_SYSCOMMAND
SC_HELPKEYS, MIS_SYSCOMMAND
SC_HELPINDEX, MIS_SYSCOMMAND

Figure 147. Help Pulldown Menu Definition. This example shows the "Help" pulldown
menu included in the menu bar of the default main help window used by /PF.

When the user selects an item from the help pulldown menu, a message is
generated, and is trapped by IPF and processed. Typically, this message causes
IPF to query the application for the correct help panel. The message generated
is dependent upon the pulldown menu item selected by the user.

15.5.1.1 Help For Help
When the user selects this item, IPF sends a WM_ COMMAND message to the
active application window, with the first parameter containing the
ID_HELP _FOR_HELP identifier. The application's window procedure should
process this message by sending an HM_REPLACE_HELP _FOR_HELP message
containing the panel identifier of its own "Help for help" panel if one exists, or by
sending an HM_DISPLA Y _PANEL message with both parameters set to zero in
order to display the default panel.

15.5.1.2 Extended Help
When the user selects this item, IPF responds by displaying the "Extended help"
panel defined for the active application window in the help table. If no such help
panel is defined for that window, IPF sends an HM_EXT_HELP _UNDEFINED
message to the application (see 15.5.2.3, "HM_EXT _HELP _UNDEFINED" on
page 296).

15.5.1.3 Keys Help
When the user selects this item, IPF sends an HM_QUERY_KEYS_HELP message
to the active application window. The application's window procedure should
process this message by returning the panel identifier of its own "Keys help"
panel in the return code to Presentation Manager.

15.5.1.4 Help Index
Selecting this item causes IPF to display the index of the current help library.

15.5.2 Communication Between IPF and Applications
Information may be communicated from IPF to an application in response to user
interaction in a help window. This information may be in the form of application
events or errors, and is communicated to the application in the form of a
message passed to the application window specified in the
WinCreateHelplnstance() function. Such messages originate from the main help
window, as part of the window procedure supplied by Presentation Manager for
that window.

Chapter 15. Adding Online Help and Documentation 295

296 OS/2 V2.0 Volume 4

15.5.2.1 HM_INFORM Message
This message is passed to the application when the user selects a hypertext or
hypergraphic item in a help window, for which the reftype=inform attribute has
been specified. The first parameter of the HM_INFORM message contains the
identifier specified by the res= attribute in the hypertext or hypergraphic link
definition.

An application window typically processes the HM_INFORM message by
examining the identifier in the first message parameter, and dispatching a
message of the appropriate class to itself or another application window, in
order to initiate the action requested by the HM_INFORM message.

15.5.2.2 HM_ERROR
This message is passed to the application when an error occurs during a user
interaction with a help window. This message allows the application to display
its own error message in such cases, thereby providing a consistent appearance
for error messages. The first parameter of the message indicates the reason for
the error. These reasons are documented in the IBM 0512 Version 2.0
Information Presentation Reference.

An application typically processes the HM_ERROR message by displaying an
appropriate message box and returning zero to Presentation Manager. ff the
application does not process the message, Presentation Manager takes no
action.

15.5.2.3 HM_EXT_HELP _UNDEFINED
This message indicates that the user selected the "Extended help" item on the
"Help" pulldown menu, and that no such help panel was defined for the active
application window.

An application may process this message in one of three ways:

• Display a message box indicating that no help is available

• Display its own help window by explicitly creating and displaying the window
on the screen

• Pass a HM_DISPLAY _HELP message back to IPF, instructing IPF to display a
particular help panel.

If the application does not process this message, no panel is displayed and the
user's request is simply ignored.

15.5.2.4 HM_SUBITEM_NOT_FOUND
This message indicates that the user issued a help request on an item for which
no help panel is defined in the current help table. The application may process
this message in one of three ways, as described in 15.5.2.3,
"HM_EXT_HELP _UNDEFINED." The application should then return TRUE to
Presentation Manager.

If the application does not process this message, the extended help panel for the
currently active window is displayed by IPF.

15.6 Stand-Alone Online Documentation
Panels containing text produced using IPF need not be called from an
application; IPF can be used to produce "stand-alone" online documentation,
which is viewed using the VIEW.EXE utility provided with OS/2 Version 2.0.
Online documents have similar capabilities to help libraries; both text and
graphics may be included, and hypertext and hypergraphic links are supported.

Online documents also have a number of differences from help libraries:

• In an online document, a panel may be identified by using the name= or
id= attributes in the heading, rather than the res= attribute. These
attributes allow the use of alphanumeric characters, where the res=
attribute must specify an integer identifier. Links are then defined using the
refid= attribute in the :link tag.

Note that the name= or id= attributes may not be used if files will be
concatenated and hypertext or hypergraphic links are required between files.

• Online documents may not use hypertext or hypergraphic links with
reftype =inform, since there is no associated application for the help
instance, and IPF cannot determine the window to which the message should
be directed.

• An online document has a main window created by IPF, which contains the
table of contents for the document. The title of this main window is
determined by a :title tag.

Note that the :title tag may only be used for online documents, and not for
help libraries. The title of an application's main help window is specified in
the WinCreateHelplnstance() function call.

The ability to include hypertext and hypergraphics in online documents allows
the creation of online procedure manuals that automatically invoke the
appropriate application or applications for each step of the procedure. This is
achieved by defining the hypertext or hypergraphic items with reftype=launch,
specifying the name of the executable file for the required application. See 15.8,
"Self-Teaching Applications" on page 298 for further discussion of such
applications.

15.6.1 Compiling Online Documents
Source files that will be used for online documents are created in an identical
manner to those used for help text. When the IPFC command is invoked to
compile the source files, the /INF parameter should be specified, as follows:

!PFC SOURCE.IPF /X /W3 /INF >ERRORS.TXT

The IPF compiler will then include the necessary hooks to enable VIEW.EXE to
display the online document. Note that online documents compiled with the /INF
parameter have a default extension of .INF, rather than the normal extension of
.HLP for help libraries.

Chapter 15. Adding Online Help and Documentation 297

15.6.2 Concatenating Source Files
Multiple document files may be concatenated to produce a single online
document. Concatenation is achieved by creating an OS/2 environment variable
that contains the names of the concatenated files. For example:

SET BIGDOC=DOC1.INF+DOC2.INF+DOC3.INF+DOC4.INF

This environment variable is typically set from within a batch file, which also
contains the command VIEW BIGDOC to view the resulting concatenated
document.

Hypertext links are permitted between panels in different files, but a panel must
use the res= attribute in the heading tag to identify itself, rather than the
name= or id= attributes. The global attribute must also be specified in the
panel heading.

15. 7 Application Tutorials
For any application, the developer or developers may supply a tutorial, which is
effectively another Presentation Manager program which provides step-by-step
guidance to the user. IPF enables tutorials to be started from within help
windows, in a number of ways:

• Within a help panel, a hypertext or hypergraphic link may be defined with
reftype=launch, and with the objectname= attribute specifying the name of
the tutorial program. When the user selects the hypertext or hypergraphic
item, the tutorial is started automatically.

• A "Tutorial" item may be included in the "Help" pulldown menu in the
application's main help window. This is done automatically by IPF if any
help panel heading tag (:h1 through :h6) contains the tutorial attribute.

In this case, the name of a tutorial program must be specified in the
pszTutorialName parameter of the WinCreateHelplnstance() function call.

When the user selects the "Tutorial" item from the "Help" pulldown menu, an
HM_ TUTORIAL message is sent to the active application window, with the first
parameter containing the name of the tutorial program. The application typically
processes this message by calling the DosExecPgm() function to start the tutorial
program.

15.8 Self-Teaching Applications

298 OS/2 V2.0 Volume 4

An extension of the tutorial concept is possible, where the user invokes an
online procedure manual that describes a business process; hypertext and
hypergraphic finks can be imbedded in this manual to start the application or
applications that support the business process. This can be performed in either
of two ways:

• Where the steps in the business process are largely independent of one
another, a separate application may be used for each step.

• Where the steps are interdependent, a single application can be used, with
links triggering application events by way of messages.

Note that this is an extension of the procedural entity concept originally
discussed in Chapter 3, "Object-Oriented Applications."

15.8.1 Loosely Coupled Applications
Where the steps in a business process are independent of one another and do
not require any great coordination between supporting application functions,
separate programs may be used to carry out each step. In this case, the
procedure manual is created as an online document with links for each step.
Each link is specified with reftype =launch.

15.8.2 Tightly Coupled Applications

15.9 Summary

Where interdependencies exist between the steps in a business process 1 and
where the application functions that support these steps must therefore interact
closely with one another, a single application is used. In this case, the
procedure manual is created as a help library! and execution is handled as
follows:

1. The application creates a help instance for the help library in the normal
manner, creates its own main window but does not make this window visible.

2. The application's main window makes itself the active window, and sends an
HM_DISPLAY _HELP message to the main help window to cause the initial
help panel to be displayed.

3. Each step in the business is defined using hypertext or hypergraphic links
with reftype=inform. When such an item is selected, it causes an
HM_INFORM message to be posted to the application's main window (the
active window).

4. When the application's main window receives the HM_INFORM message, it
examines the message parameters to determine the required action, then
creates one or more additional display windows or dialog boxes and makes
these visible, allowing the user to complete the required step.

5. When the current step is complete, the user selects an appropriate menu bar
item or pushbutton, and returns to the procedure manual.

Using this technique, the application's main window retains overall control of the
application, and can ensure coordination between steps and impose a sequence
of execution if this is required.

The Information Presentation Facility allows an application developer to create
online context-sensitive help panels and stand-alone online documentation for
Presentation Manager applications. The ability to link between panels and
between a panel and applications provides a flexible and powerful tool for
developing:

• Presentation Manager applications that contain comprehensive help
information

• Online manuals both for applications and for business processes

• Interactive tutorials for applications and business processes

• "Self-teaching" business processes where the online manual automatically
starts the required applications and leads the novice user through the
process.

The flexibility of IPF and the high level of interaction between a help instance
and its controlling application allows the application to exercise significant

Chapter 15. Adding Online Help and Documentation 299

300 OS/2 V2.0 Volume 4

control over the way in which help information is displayed to the end user. The
ability to combine multiple viewports in a single help window allows the
simultaneous use of text, graphics and other technologies such as image or
full-motion video to provide help, documentation and tutorial information.

Chapter 16. Problem Determination

The steps required for identification and resolution of application errors and
"bugs" in the Presentation Manager application environment are basically
similar to those required for conventional programming environments. However,
the event-driven nature of the Presentation Manager application model often
causes unnecessary confusion when developers attempt to test and debug their
applications. This chapter describes a simple approach to problem
determination and resolution under Presentation Manager, which will help in
locating and removing the majority of application problems.

Successful problem determination in the Presentation Manager environment, as
in any programming environment, requires some basic ingredients:

• Effective problem documentation

• A methodical approach to problem resolution

• Knowledge and experience of the application environment

• A symbolic debugging tool such as CodeView or Multiscope**

• A measure of luck {!)

When these requirements are satisfied, problem determination may proceed
through the following three phases:

1. Documentation

2. Isolation

3. Diagnosis and resolution.

The remainder of this chapter describes each of these phases in detail,
discussing each step in the resolution process, and also describes the symptoms
and likely solutions for some common application problems.

16.1 Problem Documentation
Problems in Presentation Manager applications typically occur within window
procedures, or in subroutines invoked from within window procedures. This is
not surprising, since all processing within a Presentation Manager application
takes place as a result of messages, which are received and processed by
window procedures. However, the event-driven nature of the Presentation
Manager application model provides a built-in means of narrowing down the
location of a problem, provided the event that caused the problem can be
determined.

The initial documentation of an error may be performed by whoever is
responsible for application testing, since no great level of technical expertise is
required at this stage. It is important that the error is effectively documented in
writing, at the time it occurs, along with relevant supporting information.
Effective documentation greatly eases the task of recreating the error and
identifying the underlying problem.

A worksheet that may be used for problem documentation, and that records the
information required by the guidelines given in this chapter, is contained in
Appendix D, "Problem Reporting Worksheet."

©Copyright IBM Corp. 1993 301

16.1.1 Window
In order to narrow down the location of the problem, it is first necessary to
identify the window that was active when the error occurred. This is usually
self-evident when the window is a display window, but may be less so if the
window is an object window. However, an object window is activated upon
receiving a message that typically originates from a display window, and
therefore the problem may be effectively tracked down by beginning the search
with the display window.

The first step is therefore to determine the display window with which the user
was interacting when the error occurred. For documentation purposes, the
window's title may be used to identify the window.

Step #1 -----------------------..

Identify the window with which the user was interacting when the error
occurred, and note its title.

Identification of the active window allows the search for the problem to be
focused on the window procedure for that window. It is likely that the problem
lies within that window procedure or a subroutine invoked from that window
procedure. If not, the active window usually passes a message to another
window which in turn causes the problem; this may be determined in the
isolation phase (see 16.2, "Problem Isolation" on page 303).

16.1.2 Event/ Action
Once the active window has been identified, it is necessary to determine the last
user action before the error occurred. The name of the last menu bar or
pulldown menu item, button or icon selected should be noted for documentation
of the problem.

Step #2 -------------------------.

Identify the last user action before the error occurred, and record the name
of the menu bar or pulldown menu item, button or icon.

Identification of the last user action provides the initial location, within the
window procedure for the active window, at which to begin searching for the
problem. The problem is likely to be within the scope of processing for the
message resulting from this action, or within that of another message generated
during the processing of this action.

16.1.3 First Time vs Repetitive Actions

302 05/2 V2.0 Volume 4

The third important step in documenting a problem is to determine whether the
error occurs every time a particular action is performed, or if it only occurs after
the action has been performed a number of times.

Step#3---

Note whether the problem occurred when the action was performed for the
first time, or only when the action had been repeated a number of times.

Problems that occur after a number of repetitions of an action typically indicate a
resource limitation being exceeded, and provide a short-cut to problem
resolution; see 16.3.2, "Repetitive Action Problems" on page 306.

16.2 Problem Isolation
Once the problem has been documented and narrowed down to a specific event
within a particular window, the developer must determine the Presentation
Manager message that results from that event. or the first such message if
multiple messages are generated.

A symbolic debugging tool is then applied to the application code, and a
breakpoint is set at the commencement of processing for that message class.
The program is then single-stepped to determine the operation or function call at
which the error occurs.

Step #4 -------------------------.

Single-step with a symbolic debugging tool to determine the code statement
at which the error occurs.

It is important during this stage to note any WinPostMsg(), WinSendMsg() or
WinBroadcastMsg() function calls performed by the program, which will generate
additional Presentation Manager messages in the system. If the initial pass
through the processing for the current message does not reveal the error, the
same process must be performed for each of these messages and the window
procedures that process them.

Note that this single-stepping process is most useful in situations where the
error occurs every time a particular action is performed. In cases where the
error only appears after a large number of repetitions, single-stepping will be
time-consuming and unproductive. In such cases, the problem resolution
process may be expedited by omitting the isolation phase and immediately
checking the logic of the processing for the failing message, to ensure that all
resources allocated during processing are subsequently released. See 16.3.2,
"Repetitive Action Problems" on page 306 for more details.

16.3 Problem Diagnosis
Once the cause of the error is narrowed down to a single statement within the
source code, the problem with that statement must then be identified.
Syntactical errors can generally be ruled out as a cause of failure during run
time, since such errors are almost always identified during compilation of the
application code. However, the items listed below are common causes of
run-time errors, and should be checked for failing program statements:

• Logic: is the sequence of operations performed during the processing of a
message in accordance with the application design? Have any steps been
accidentally omitted?

• Parameters: are the correct variable names being used for parameters in
the program statement? Do the parameter definitions in the program
statement directly match those given in the function declaration?

Chapter 16. Problem Determination 303

• Pointers: do they contain valid references. and/or have they been correctly
initialized prior to the program statement?

• Operating system or Presentation Manager resources: have they been
successfully allocated prior to the program statement? Are resources
released at the completion of processing for the event and if not, is there a
valid reason for retaining them?

Step #5 -------------------------,

Diagnose the cause of the problem by carefully checking the program
statement, and correct the error.

The following sections provide descriptions of some common application
problems against which failing programs may be checked.

16.3.1 First Time Problems

304 OS/2 V2.0 Volume 4

Problems that occur whenever a program statement is executed indicate an
error in that statement or in a parameter used by that statement. These errors
may often be indicated by the nature of the error. Some common errors are
given below.

16.3.1.1 Trap 0000
This error indicates that the program attempted to access a location in memory
that was not within the area allocated to its parent process. Since such access
might violate the integrity of other applications or of the operating system itself,
OS/2 disallows the access. Note that the pointer may directly reference a
memory location, or may be the handle to a resource such as a window,
presentation space etc.

The usual cause of such an error is that a pointer passed as a parameter in a
function call is incorrect. The pointer may not have been initialized, or may have
been set to an incorrect value as a result of a failed allocation request or
incorrect pointer arithmetic.

Resolution actions are typically as follows:

• Check that the function call which allocated the resource referenced by the
pointer completed without error, and that a valid pointer was returned.

• Ensure that any pointer arithmetic carried out on the pointer between
allocation and the failing program statement is error-free.

• If the pointer is stored in an instance data area (that is, a data block
normally stored in the window words), ensure that the pointer to the instance
data area itself has been correctly read from the window words at the start
of processing for the current message.

The allocation of a Presentation Manager resource may also fail for reasons
associated with its parent window. See 16.3.1.3, "Failure to Allocate Resources"
on page 305.

One additional cause of this error is the application releasing an instance data
block too early in the processing of a WM_DESTROY message. If the memory
object containing this data block is released, and the application then attempts
to release other resources whose handles are contained within the data block,

OS/2 will not allow access to the memory. This problem is easily resolved by
releasing the instance data block after other resources.

16.3.1.2 Trap OOOE
This error indicates that an application under OS/2 Version 2.0 attempted to
access an area in memory for which an address range had been allocated, but
no storage committed. This error typically occurs when writing data objects into
application data areas, since most operating system and Presentation Manager
resources are automatically committed upon allocation.

The usual cause of such an error is that the application failed to include the
PAG_COMMIT flag in the DosAllocMem() function call that allocated the
resource, or failed to issue a DosSetMem() call when increasing the size of a
memory object. The problem may be easily resolved simply by including the
PAG_COMMIT flag or including a DosSetMem() call to ensure that sufficient
storage is available before writing to a memory object.

16.3.1.3 Failure to Allocate Resources
A common error shows itself when Presentation Manager resources cannot be
allocated correctly by an application. This occurs most frequently with resources
allocated upon creation of a window, during processing of the WM_ CREATE
message.

The cause of the error is a failure, on the part of the application, to complete the
default processing of the WM_ CREATE message, before carrying out
application-specific processing. Part of this default processing involves the
allocation of a Presentation Manager control block for the window, allocation of a
window handle etc. If this processing is not performed, via a
WinDefWindowProc() function call, at the commencement of processing for the
WM_CREATE message, function calls which use parameters such as the window
handle will fail.

The problem may be easily resolved by placing a WinDefWindowProc() function
call as the first statement in the processing for the WM_ CREATE message.

16.3.1.4 Stack Space Exceeded
This error may appear in either of two places:

• If it appears during a call to an application subroutine, it usually indicates
that the space reserved for the application's stack is insufficient for the
number of nested function calls, local variables, etc., being used by the
application.

• If it appears during a call to an operating system or Presentation Manager
function, it may indicate the same cause as above, or that the limit of the
application's Ring 2 stack, used by system-level code invoked by the
application, has been exceeded.

The application's stack size may be exceeded in situations where the application
makes a large number of nested subroutine calls, particularly where extensive
recursion is used, and/or where large numbers of local variables are defined. In
such cases, the stack may be need to be increased beyond the recommended
minimum of BKB, using the STACKSIZE statement in application's module
definition file.

The Ring 2 stack limit is normally exceeded only in situations where a
system-level function attempts to retrieve more items from the stack than were

Chapter 16. Problem Determination 305

originally placed there. This can occur where an application passes an incorrect
parameter to a function; for example, if a parameter is declared by the function
as an array of eight elements, but the application passes an array containing
only seven elements, an error may occur when the function attempts to retrieve
eight elements from the Ring 2 stack for processing.

While such an error may reveal itself during compilation, certain C typecasting
conventions may mask the problem until run time. Where this error occurs
during execution, careful checking of parameters is recommended.

16.3.1.5 Window Fails to Appear
This error occurs when an application issues a WinCreateWindow() or
WinCreateStdWindow() function call to create a display window, but the window
fails to appear on the desktop, even though the function returns a valid window
handle. This error may result from either of two causes:

• The WS_ VISIBLE flag may not be set in the frame creation flags for the
window.

• The application may include the FCF _ICON or FCF _ACCEL TABLE frame
creation flags, but no icon or accelerator table resources are defined with
resource identifiers which match the window identifier.

f n both cases, the WinCreateWindow or WinCreateStdWindow() function will
return a valid window handle, since the window has been created.

In the first case, the problem may be rectified by including the WS_ VISIBLE flag
in the frame creation flags, or by using the WinShowWindow() function to
explicitly make the window visible.

In the second case, resources should be defined in the application's resource
script file to match the FCF _ICON and FCF _ACCEL TABLE frame creation flags.
These resources must have identifiers that match the window identifier given in
the WinCreateWindow() or WinCreateStdWindow() calls, since Presentation
Manager uses this identifier to load the resources.

16.3.2 Repetitive Action ·Problems

306 OS/2 V2.0 Volume 4

Application errors that only reveal themselves after an action has been
performed many times typically result from the application exceeding an
operating system or Presentation Manager resource constraint. Resources such
as window handles, presentation spaces, memory objects and so on, have finite
limits. If an application repeatedly requests allocation of such resources without
releasing them, these limits may be exceeded, in which case the resource will
not be allocated and the application may fail when attempting to use the
resource.

Such problems may manifest themselves as Trap 0000 errors that will result in
application termination, or may simply corrupt execution of the application. The
effect is dependent upon the (invalid) contents of the resource handle when the
application issues a function call that uses the resources. In certain cases, a
function call may cause the application to enter an endless loop within the
processing of one message, in which case the entire Presentation Manager
desktop may "lock up."

This problem may be avoided by ensuring that all resource requests (DosGet ... ()
and WinGet. .. () function calls) in the code are matched by corresponding

DosRelease ... () and WinRelease() function calls. In accordance with the principle
of encapsulating function, resources required for processing a particular
message should be allocated, used and released during the processing of that
message.

An exception to this rule occurs in the case of resources such as control blocks,
presentation spaces for display windows, etc. These are typically allocated
during processing of the WM_ CREATE message, and persist throughout the life
of the window, until released during processing of the WM_DESTROY message.

16.4 Post-Resolution Action

16.5 Summary

Once a problem has been identified and corrections made to the application, the
resolution of the problem should be documented and placed, along with the
original problem documentation, in some form of log. In this way, similar
problems encountered at a later date may be more easily identified and resolved
by reference to the log.

After resolving the problem, document the resolution for future reference.

Logging systems for such information may range widely in complexity and
sophistication, from simple paper files to automated database systems with
keyword search capabilities. The level of system implemented by a
development organization is dependent upon cost and the perceived productivity
benefit to be gained from such information; organizations with an ongoing
involvement in the development of complex Presentation Manager applications
will derive greater benefits than those with only a single development project.

Problem determination in the Presentation Manager environment is similar to
that for other application environments, and proceeds through a number of
phases:

1. Documentation

a. Failing window

b. User action which caused the failure

c. Whether the failure occurs upon first performing the action, or only upon
repetitive actions

2. Isolation

3. Identification and resolution.

The documentation phase is normally part of the application testing cycle, and is
performed by those responsible for such testing. No particular technical or
programming skills are required for this phase.

Proper documentation of the failure usually allows a developer to determine the
window procedure and message which caused the failure. This provides a
useful starting point at which to search for the underlying problem.

Chapter 16. Problem Determination 307

308 OS/2 V2.0 Volume 4

The isolation phase is normally employed only for those failures that occur every
time a particular action is performed, and involves the use of a symbolic
debugging tool to single-step through the processing of the failing message, in
order to determine the statement in the source code at which the error occurs.

Problems that occur only after many repetitions of a particular user action
normally indicate that an operating system or Presentation Manager resource
limit has been exceeded. This is usually the result of an application acquiring
resources and failing to release them. In such cases, the resolution process
may be expedited by immediately checking the processing of the offending
message for resource allocation statements, and ensuring that each of these is
matched by a corresponding statement that releases the resource.

Once the problem is narrowed down to a single application statement, the
identification phase determines the cause of the problem and makes appropriate
corrections to the source code. This phase requires familiarity with the OS/2
and Presentation Manager environments.

When the application has been corrected and submitted once more for testing,
the problem and its resolution should be documented and this information made
available for future problem determination activities. The availability of such
information may be used to more quickly determine likely causes of similar
problems in the future.

Chapter 17. Generic Application Modules

As mentioned throughout this document, the Presentation Manager application
model promotes the reuse of application objects, by facilitating code modularity
through data abstraction and encapsulation. With correct design procedures, it
is possible to create generic application objects that may be used by multiple
applications. Should subsequent applications require modification to allow
different processing of particular message classes, this may be achieved through
subclassing. The Workplace Shell application model introduced in OS/2 Version
2.0 provides even more potential for reuse, due to its enhanced support of
inheritance and subsequently enhanced provision for object reuse.

Standardization and reuse of application code promotes consistency between
applications in terms of processing techniques and user interfaces, and helps to
enforce organizational programming and interface design standards. It also
reduces the amount of new code required for applications, potentially shortening
development time, and the use of previously developed and tested code may
also decrease application testing time.

In situations where reusability at the application object level is either not
possible or impractical, common application functions may still be developed as
subroutines, and placed in libraries for access by multiple applications. The use
of such subroutines reduces application development time.

This chapter examines the creation of such generic objects and subroutines
within the Presentation Manager application model, and their placement in
dynamic link libraries for subsequent use by applications. Since Workplace Shell
objects are by definition placed in Dlls and available for reuse, they are not
explicitly discussed in this chapter.

17 .1 Generic Application Objects
Within the Presentation Manager application model, a window procedure
provides both the definition of a data object and the methods that operate upon
that data object. A window procedure may therefore be considered as a
complete application object in its own right.

Where the data object to be manipulated by a window will be accessed by a
number of applications, it makes sense to define the data object and its methods
once, in a single window procedure, and to make that window procedure
available to any application that needs to manipulate the data object. Any
changes to the data object's characteristics or processing requirements can then
be contained within the application object, avoiding the need to modify and
recompile multiple applications. The dynamic linking capabilities of OS/2
facilitate such a technique, enabling such modifications to be automatically
incorporated into applications at load time or run time.

©Copyright IBM Corp. 1993 309

17.1.1 Display Windows
A display window may be created as a generic application object, and its
window procedure placed in a dynamic link library. The following steps are
typically followed in creating such a window procedure:

1. Both the window procedure and a calling routine to create the window are
written in the normal manner.

2. The routine containing the code to create the window is declared as an
exportable entry point, and may thus be called by applications.

3. This routine returns the handle of the newly created window to the calling
application, along with a success or failure code.

4. The source code is compiled and link edited as described in 14.5.1, "Creating
a DLL" on page 281.

The calling application then simply issues a single function call, such as:

usSuccess = CreateEditWindow(hEdit);

The CreateEditWindow{) function within the DLL handles all necessary operations
including registration of the window class and creation of the window, places the
resulting window handle in the address indicated by the hEdit parameter, and
returns a success or failure code (usSuccess) to the calling application.

Note, however, that the above example assumes that the window is created with
a predetermined title, size and position on the desktop. Should this not be the
case, additional parameters to the CreateWindow() function would be required.

The definition of the CreateEditWindow() function as the only entry point in the
DLL enforces the consistency of using this function. The calling application is
still provided with the window handle, which allows it to communicate with the
window and to subclass the window if required.

17.1.2 Object Windows

310 05/2 V2.0 Volume 4

Object windows may be created and placed into dynamic link libraries in a
similar manner to that already explained for display windows. However, object
windows have an additional complication in that they are frequently created in
secondary threads in order to handle long-running application tasks.

The steps in creating an object window for inclusion in a DLL are therefore as
follows:

1. The window procedure, the calling routine to create the window and a
routine to start the secondary thread from which the window is created, are
written in the normal manner, as described in 10.1.1, "Threads Containing
Object Windows" on page 206.

2. The routine containing the code to start the secondary thread is declared as
an exportable entry point, and may thus be called by applications.

3. The source code is compiled and link edited as described in 14.5.1, "Creating
a DLL" on page 281.

Note that the routine called by the application does not return the handle of the
newly created window. Indeed, it cannot do so. since the creation of the window
takes place asynchronously, in a secondary thread.

This obstacle is overcome by having the calling application (typically a window
procedure) pass its own window handle as a parameter. This is passed to the

object window, which then passes an acknowledgement message to the calling
window procedure, containing its window handle. The calling window procedure
may subsequently communicate with or subclass the object window as required.
This technique is described, along with an example, in 10.1.1, "Threads
Containing Object Windows" on page 206.

17.1.3 Subclassing
When a generic application object (that is, window class) does not quite meet the
requirements of an application, a developer may choose to use the generic
object and modify its behavior, through subclassing, to meet the specific
requirements. This may be easily achieved in conjunction with the methods
described above, since the handle of the newly created window is either
returned directly by the called routine or indirectly by the window itself. This
handle can then be used in the WinSubclassWindow() function call.

The subject of subclassing is described in detail in 6.5.5, "Subclassing a
Window" on page 84, along with examples of both the WinSubclassWindow()
function and a subclass window procedure.

17.2 Dialog Boxes
Standard dialog boxes to handle commonly performed user dialogs may also be
generated and placed in dynamic link libraries. The inclusion of a dialog box in
a DLL however, is slightly more complicated than the inclusion of a "normal"
display or object window, due to the definition of the dialog template as a
Presentation Manager resource. The DLL must therefore include not only the
dialog procedure and the invoking routine, but also the dialog template
definition.

This necessitates the invoking routine within the DLL not only executing the
WinDlgBox() function call, but also obtaining a module handle for the DLL and an
entry point address for the dialog procedure. The necessary steps are as
follows:

1. The dialog procedure and the invoking routine are developed and placed in a
dynamic link library.

2. The invoking routine is declared as an exportable entry point and may thus
be called by applications.

3. The dialog template is created using the Dialog Box Editor, resource
compiled and combined with the DLL.

The invoking routine for a dialog box loaded from a DLL is described, along with
an example, in Figure 94 on page 202.

17.3 Generic Subroutines
In addition to code reuse at the application object level, significant productivity
gains can be achieved by the reuse of application code at the subroutine level,
to carry out common operating system and Presentation Manager functions.

For example, initialization functions are required to perform tasks related to
initializing the Presentation Manager environment and any data areas to be used
by utility routines. Functions required to be performed include:

Chapter 17. Generic Application Modules 311

17 .4 Granularity

312 OS/2 V2.0 Volume 4

• Registration of the application to Presentation Manager
• Creation of a message queue
• Creation of an entry in the Workplace Shell Window List.

These functions may be combined into one or more standard initialization
routines, which may be invoked upon entry to an application or thread.
Examples of the necessary code are given in Figure 18 on page 76, Figure 19 on
page 77 and Figure 20 on page 78.

Termination functions required by Presentation Manager applications could also
be standardized; these functions include:

• Removing the application from the Workplace Shell Window List
• Destroying the application's main window
• Destroying the primary thread's message queue
• Deregistration of the application from the Presentation Manager

environment.

These operations are performed by Presentation Manager upon termination of
the application if the application does not perform them explicitly. However, it is
recommended that the application carries out these actions, since they may then
be achieved in a controlled manner. Examples of the necessary code are given
in Figure 19 on page 77.

Other functions may often be required during the execution of an application,
such as:

• Obtaining the window handle of the application's main client window. An
example of this procedure is given in 6.6.5, "Identifying the Destination
Window" on page 91.

• Passing a message from a subclass window procedure to the original
window procedure for that window class. An example is given in Figure 25
on page 86.

These functions may also be combined into standard subroutines and placed in
a library, thereby avoiding the need for application developers to repetitively
code such functions.

A final function often used in the stepwise development of object-oriented
Presentation Manager applications is a small routine to display a message box
with the message "Action Not Yet Implemented," invoked when the user selects
a menu bar or pulldown entry for which a method has not yet been coded. This
function is typically invoked as the default case for the WM_COMMAND message
class. In this way, methods within a window procedure may be implemented in
a stepwise manner, and testing of existing methods may occur while new ones
are being added. Selecting an action for which no method has yet been
implemented will always result in the same message box being displayed.

When placing generic code in a dynamic link library, whether that code is at the
application object level or at the functional level, the question arises as to the
way in which the code should be partitioned into individual DLL modules, and
thus the level of granularity that will be achieved within the reusable code.

This decision must be made on the basis of interdependence; where routines are
interdependent and are required or likely to be used together, it is advisable to

17.5 Packaging

17.6 Summary

place them in a single dynamic link library. For example, a group of standard
window manipulation routines would typically reside in single DLL.

However, generic application objects should bear no predefined relationship to
one another, and generic window classes may therefore be used independently.
In such a case, the window procedure and invoking routine for each window
class should be placed in a separate DLL. along with any subroutines specific to
that window procedure. Applications that desire to use more than one such
application object may then access multiple DLLs.

When a set of application objects and/or subroutines has been created and
placed into a dynamic link library, the following items will have been generated:

• The dynamic link library containing the application objects and/or
subroutines

• A header file containing declarations for the routines that will be called by
applications in order to create the application objects or invoke the
subroutines

• An import library file, containing entry point definitions for those routines that
will be called by applications.

These items must be stored in a location from which application developers may
access them. The use of a local area network to provide and manage access to
such items is discussed in Chapter 18, "Managing Development."

In addition, appropriate entries must be included in an interface control
document. which defines all common application objects and subroutines along
with their external interfaces, and acts as a reference for application developers
who wish to use such objects or routines.

The Presentation Manager application model affords the opportunity for
significant standardization and reuse of application code. at both the application
object and function levels. The dynamic linking facilities provided by OS/2 allow
this capability to be carried over to executable code as well as source code.
Such reusability reduces the amount of new code required for applications,
thereby reducing the development time and cost of new applications.

Common application elements such as windows and dialogs may be defined and
stored in dynamic link libraries for access by one or more applications, thus
implementing reusability at the application object or dialog level. At a lower
level, a large number of common Presentation Manager application tasks may
be identified, which may also be placed in standard routines for purposes of
enhancing programmer productivity.

A further benefit of using standardized routines is the improvement in the
consistency of both the application code and the user interface. Such
standardization provides an easy means of enforcing Systems Application
Architecture CUA standards without the need for programmers to repetitively
code definitions for an CUA-conforming user interface. In addition, the
standardized implementation of various functions and techniques eases the task

Chapter 17. Generic Application Modules 313

314 OS/2 V2.0 Volume 4

of application maintenance, since all applications will behave in a similar
manner through the use of common code.

Although the functions mentioned in this chapter are restricted to Presentation
Manager functions, the same principles may be applied to other functions,
dialogs etc., which are common to multiple applications within the organization.
The creation of standard routines for such functions, and the incorporation of
these routines into dynamically linked modules under OS/2, may enhance the
modularity and granularity of applications and bring additional benefits through
reduced development time for new applications, and through easier application
maintenance and change management.

Chapter 18. Managing Development

In order to enable the implementation of large-scale applications in the
programmable workstation environment, with multiple application developers
participating in design, coding and testing, it is important not only to have an
appropriate technological and architectural base for development, but also to
provide appropriate and effective management of and control over the
development process and development resources. Established techniques exist
in the host-based application development environment for addressing such
issues, but historically, the considerations of large-scale management and
control have been overlooked in the workstation environment due to the
relatively minor nature of workstation-based development projects in the past.

Two areas worthy of note in the workstation-based development environment are
the management of developmental risk, and the management and control of
development resources that are used and created during the application
development process. This chapter will briefly describe these issues and offer
some suggestions as to how they may be effectively resolved. Much of the
discussion in this chapter will deal with Presentation Manager applications
written using the C programming language, but the techniques described may be
adapted to suit other environments and programming languages.

18.1 Risk Management
In any application development project, there are risks imposed by the use of
new technologies and methods. These risks may be divided into two basic
types:

• Technological risk; that which is imposed by new or unfamiliar technologies
which will be used in an application or during the creation of the application.

• Managerial risk; that which arises from the lack of established management
techniques to support new technologies and methods.

These two elements of risk are closely related, and affect one another in a
variety of ways. The following sections discuss both elements and suggest some
mechanisms for their mitigation.

18.1.1 Technological Risk
Technological risks may take a wide variety of forms, and vary from simple risks
to highly complex instances involving the interrelationship of many divergent
technologies. Some relatively simple examples of technological risk are:

• Use of a new prototyping tool

• Use of a programming language other than that which is normally used by
the particular development organization

• Use of a new programming interface

• Incorporation of new analysis techniques for the gathering of requirements.

The element of risk in the incorporation of new technologies arises from the
simple fact that they are new, and likely to be unfamiliar to the majority of
development personnel. A period of learning will be necessary, and the
probable length of this period must be assessed in the light of required
development schedules. Technological risk is always greater where new

©Copyright IBM Corp. 1993 315

techniques and procedures must be evolved in order to support and exercise the
new technologies, since elements of managerial risk are then involved. Simple
technological tools are relatively easy to learn and use, but techniques for their'
effective employment are often learned over a longer period.

The decision as to whether to utilize new technologies in a development project
must be based upon the question of whether the development organization
possesses the requisite skills to effectively exercise the new technologies, or can
acquire such skills within the timeframe of the development project, without
adversely affecting the schedule and budget of the project. If the first question
can be answered in the positive, there is no risk involved; if not, then it is the
second question that constitutes the element of risk.

Technological risk may be mitigated by ensuring that development personnel
possess the necessary skills to effectively utilize the new technologies, through
the provision of relevant education. The potential benefit to be gained from the
use of these technologies must be identified and quantified, in terms of
enhanced application functionality, reduced development time and cost, etc.
This benefit must be weighed against the time and cost involved in training
personnel to a sufficient skill level in order to effectively mitigate the risk, and
against the schedule and budget imposed upon the development organization.

Technological risk may also be mitigated by minimizing the managerial risk
involved in the use of new technologies. If established managerial techniques
can be adapted and applied to the implementation of new technologies, the use
of these mechanisms may provide a greater degree of control over the
development process, and help to control and reduce the associated
technological risk. Thus it can be seen that technological and managerial risk
are closely related and complimentary to one another.

18.1.2 Managerial Risk

316 OS/2 V2.0 Volume 4

Managerial risk is somewhat more complex than technological risk, since it
involves the effective administration of and control over the use of new
technologies. While it is possible to train or employ development personnel in
order to gain the required skills in the use of new technologies, it is less easy to
obtain the managerial skills necessary to ensure the maximum benefit is gained
from their use.

Like technological risk, managerial risk may also vary from the relatively simple
to the highly complex. Some examples of managerial risk are:

• Transformation of new analysis techniques into application design
specifications

• Establishment of effective control procedures for a new development
environment

• Measurement of programmer productivity when using a new programming
tool or language.

The managerial risk arises not from the question of whether sufficient skills are
present to utilize new technO'logies, but from the question of whether managerial
personnel are sufficiently well-versed in the concepts underlying these
technologies to provide effective administration and control over the use of the
technologies, in order to ensure that maximum benefit is gained from their use.

Managerial risk may be mitigated by ensuring that managerial personnel
possess a sufficient grounding in the principles underlying new technologies, in
order that they may successfully adapt existing managerial techniques to the
administration and control of the new technologies. These skills may be
acquired in a similar manner to the technological skills required by
programmers, through training and familiarity with the technologies involved.
The decision must be made as to whether the benefit to be gained from the use
of these technologies is sufficient to offset the time and effort involved in
acquiring the necessary skills and establishing the managerial techniques to
effectively control their use.

Managerial risk may also be mitigated by reducing the associated technological
risk. For example, a new technology such as object-oriented programming
principles can be implemented using tools such as the C programming language
and Presentation Manager. There is likely to be a higher degree of familiarity
with such tools in the development organization than with tools such as C + + or
Smalltalk V. Therefore, implementation of object-oriented principles may be
more effectively controlled by the application of established managerial
techniques for C application development. While this will not eliminate the
element of risk altogether, it will significantly reduce the managerial risk
involved, and also help to mitigate the technological risk by facilitating effective
control over the development process.

18.2 Configuration/Library Management
While the same techniques of management are valid in both host and
workstation environments, the distributed nature of the workstation environment
presents difficulties for the centralized control and administration of development
resources. This section provides some suggestions as to the ways in which a
local area network (LAN) may be used to provide centralized control and
administration to a workstation-based application development environment.

In the case of C language applications developed for the Presentation Manager
environment, development resources include:

• Application source modules. An application source module is defined to
comprise not only the source code itself, but also the local and external
interface include files that accompany the source code (see Appendix B,
"Application Program Construction").

• Existing code libraries; these may need to be modified or additional routines
generated in order to meet the requirements of the application.

• Presentation Manager resources such as icons, fonts, bitmaps and dialog
definitions.

• Test data sets or databases.

• Compilers, link-editors, run-time libraries and other development tools; in an
evolving development environment, it is crucial to ensure that all
development personnel use the same version and modification level of
compiler and linkage editor software, and that programming language
runtime libraries are consistent in their version.

These resources must be created, tested and placed in locations from which
they may be accessed easily and concurrently by a number of application
developers, while at the same time maintaining adequate control over their
access and particularly over any modifications made to individual modules.

Chapter 18. Managing Development 317

A LAN provides a useful means of enabling access by multiple developers to a
common repository of application resources. The ways in which a LAN may be
used to address the configuration management issues arising from the PWS
development environment are described in the following sections.

18.2.1 Terminology
In the subsequent discussion of configuration and library management, the
following terminology will be used. The term application resource will be used
to indicate a particular development resource such as a source module (along
with its supporting include file). a custom-developed dynamic link library (that is,
a dynamic link library not taken from a group of generic library modules), a
Presentation Manager resource such as an icon or dialog definition etc., which is
specific to the current application. Other development resources such as
compilers, link-editors, programmers' toolkits, generic code libraries and so on,
may be used in the development of an application, but are not considered to be
application resources.

The term production level will be used to indicate a version of an application
resource that has been created, tested and approved for placement in a
production library. The process of testing and subsequent approval for
placement in a production library is called baselining.

The term user level will be used to indicate a version of an application resource
that is currently undergoing modification, and has not been either tested or
placed in a production library. The actual transfer of an application resource
from a developer's local work library to a production library is called promotion.

18.2.2 Network Organization

318 05/2 V2.0 Volume 4

The topology of a local area network is very much determined by the structure of
the development organization, and by the size and nature of the projects
undertaken by that organization. The techniques of LAN installation,
configuration and management are beyond the scope of this document.
However, it is possible to formulate some simple guidelines which facilitate
management of the development process.

Local area networks are typically divided into logical partitions known as
domains. A domain is defined as a logical subgroup of a network, which
contains a defined group of network nodes (machines), a defined set of network
resources such as shared disks, directories and printers, and a defined set of
authorized users. Each domain thus forms a logical network in its own right, and
multiple domains may exist on a single physical network. A domain may include
resources residing on multiple network server nodes, and multiple domains may
access the resources of any particular server. Each user on the network is
provided with a unique user ID and password. An application developer may be
defined as an authorized user of multiple domains within the same physical
network; the same or different user IDs and passwords may be used.

L-----------------------------------

Figure 148. Network Domains

Figure 148 illustrates a network with three domains, each containing a number
of network nodes. Each domain has one or more server nodes (marked S) upon
which reside shared resources accessible by users on other nodes. Note that
the servers may be accessed from within a single domain or from multiple
domains, and that other network nodes may also belong to multiple domains.
Note also that there. is no direct mapping between a network node and a network
user; a user may, in principle, sign on and access server resources from any
network node in the domain.

Assuming a project-team orientation in the development organization, it is
expedient to logically group the members of a particular project team, in order
that they may be treated as a distinct group and separated from other project
teams for purposes of resource access and administration.

In the simplest case, a number of project teams in the same physical location
would use the same physical network, partitioned into separate domains for
each project team. Each domain would possess its own set of production
libraries for application resources; other development resources such as
compilers and generic code libraries, which are common across the entire
development organization, would be stored in a production library on a single
server, and defined within all domains. This technique provides isolation of
application resources while also allowing common access to other development
resources, and eases the task of maintaining and updating these common
resources since only one copy need exist on the network.

The principle of one domain per project team is obviously a "rule of thumb" and
must be evaluated in light of the individual development organization. In the
case of very large projects, it may be necessary to subdivide the project team
into manageable subgroups. This would probably be necessary purely for
managerial purposes, irrespective of whether a LAN were to be used.
Conversely, very small project teams may not warrant the effort of establishing a
separate domain, and several such small teams may be combined in a single
management unit with a single network domain.

Chapter 18. Managing Development 319

18.2.3 Common Access to Resources

320 OS/2 V2.0 Volume 4

On a local area network server node, directories may be created that act as
production libraries. Production libraries for a particular development project
may exist on one or more network server nodes. depending upon the size and
organization of the LAN.

These libraries serve as repositories for the current production-level versions of
all development resources. The exact number and type of libraries created is
highly dependent upon the structure of the development organization and the
application under development, but the following skeleton structure is
recommended.

Server Root Directory Compilers and link-editors

Application source code

Application include files

Presentation Manager resources

Installation code libraries

Test data

Figure 149. Production Libraries on a LAN Server

All application developers should be given read-only access to production
libraries. This will enable those developers to access compilers, link-editors and
programming language run-time libraries, and to access the current
production-level versions of application source modules, Presentation Manager
resources and test data, but not to update those production versions.

Application resources currently undergoing modification (that is, user level
resources) are held in a work directory on the developer's own workstation, from
which only that developer may access them. This restriction of access is implicit
since only appropriately declared and configured server nodes may share their
disks and directories on the network.

Production level application resources may be transparently accessed at
compile or link-edit time by ensuring that each developer's compiler search path
specifies the production libraries. The search path should first specify an
application developer's local work directory, in order to pick up any user level
resources currently being worked upon by that developer. and then search the
appropriate production libraries in order to pick up production level copies of
other resources not currently subject to modification by that developer. This
technique ensures that each application build accesses the latest tested and
baselined versions of all application resources, except for those resources that
exist in the developer's local work directory, and that are therefore likely to be
under test.

Each application resource should have an owner appointed at the start of
development. This owner may be the application developer primarily
responsible for the creation of a source module, or in the case of larger and
more complex development projects, may be a developer responsible for the

testing of a number of modules that together comprise a coherent code unit. In
either case, the owner is given update access to the files in the production
libraries that comprise the module or modules under his/her jurisdiction, and
only to those files. The updating of each application resource may then be
achieved in a controlled manner.

This assumes that the name of the file or files containing each application
resource is known at the outset of development. This in turn requires a sound
approach to application design and to the correct partitioning of the application
at the design stage. It also requires the adoption of a set of file or data set
naming conventions across the development organization.

18.2.4 Update/Modification of Resources
When an application developer wishes to make a modification to an application's
resources, those resources should be copied from the production library to the
developer's local work directory. This is known as drawdown, and must be
recorded, including the date, time, the identity of the developer and the name of
the module being copied. This recording process is known as checkout. Only
one daveloper at any time must be allowed to check out and draw down a
particular module, in order to avoid the problems inherent in the well-known
simultaneous update situation. Control over checkouts may be achieved in a
number of ways. However, it is recommended that the drawdown process be
achieved by way of a simple utility application that performs the following steps:

1. Accesses a central database that contains the name of each application
resource under development, and determines whether that resource is
currently checked out.

2. If the resource has been checked out, the utility application returns the
identity of the developer by whom the resource has been checked out

3. If the resource has not been checked out, the utility application performs a
checkout operation, recording the identity of the application developer and
that of the application resource in the central database, and draws down the
application resource into the developer's local work directory, ready for
modification.

When modification of a resource is complete and the resource has been
adequately tested. the user level version should be passed to the resource's
owner who, after determining that appropriate testing has been satisfactorily
carried out, should then promote the new version to production level, ready for
access by other developers.

When a user level version of an application resource is consigned to the
resource owner, that version must be deleted from the developer's local work
directory, in order to ensure that only the latest production level version is
accessed by the compiler or link editor during the next build .. This operation
may be automated as part of the promotion process, or may be left as an explicit
task for the developer.

18.2.5 Administration
As in any multi-user environment, some degree of system administration is
necessary in a LAN environment. When a LAN is used to provide a workstation
application development platform, the LAN administrator must perform the
following duties:

Chapter 18. Managing Development 321

18.3 Summary

322 OS/2 V2.0 Volume 4

• At the outset of development for a particular application, create a network
domain for that development project. This is optional, and it may be
considered expedient to combine a number of smaller projects into a single'
network domain.

• Create the production libraries for the project's network domain.

• Register each developer as a user of the project's network domain, and
define each developer to have read-only access to production libraries.

• Provide the appointed owner of each application resource with write access
to the resource or resources under his/her jurisdiction.

• In the case where an application resource has been checked out and
remains checked out for an unnecessary length of time (for example, a
developer checks out a resource and then goes on vacation without first
submitting the new version for promotion), provide an override capability to
cancel the checkout.

It is recommended that the LAN administrator be the same person responsible
for administration of the production libraries that contain system software such
as compilers and link-editors, in order to place all such system administration
responsibilities with the same person.

The management and mitigation of risk during the application development
process is an important aspect of managing application development,
particularly where new or unfamiliar technologies are to be used. There are two
closely related elements of risk that arise from the incorporation of new
technologies. These are technological risk, which arises from the need for
adequate skills to exercise the technologies, and managerial risk, which arises
from the need for adequate administration and control mechanisms to ensure
that maximum benefit is gained from the use of the technologies. It is the
responsibility of a development manager to assess, quantify and weigh the
potential benefits of new technologies against the risk involved in their use, and
to provide adequate mitigation of these risks.

The issue of configuration management in a distributed, workstation-based
development environment is another issue that must be addressed in order to
support the large-scale development of workstation-based applications. The use
of a local area network as a development platform for such applications has a
number of benefits, particularly from the viewpoint of configuration management
and control over application resources such as source code, Presentation
Manager resources, test data and the like. The use of a LAN provides:

• Common access by all developers to production level versions of application
resources

• The ability to directly access these production level versions during the build
process

• The ability to combine production level versions with user level versions of
application resources during the build process

• The ability to manage and regulate the modification and update of production
level application resources.

The proper use of a LAN in the workstation-based development environment,
and the achievement of the aforementioned benefits, requires the adoption of

and adherence to a consistent set of standards in the areas of module naming.
access and testing, and a measure of discipline on the part of application
developers. However, it is considered that the increased time and effort
expended in maintaining these standards is more than offset by the reduced
incidence of error and wastage of development time and effort imposed by the
lack of adequate coordination and control in a multi-developer project.

The issues of management and control in the workstation-based development
environment are of increasing importance as organizations begin to develop and
deploy line-of-business applications on workstation platforms. These issues may
be adequately addressed by the use of appropriate tools and the adaptation and
application of existing management techniques. With the proper care and
planning, the maximum benefit may be obtained from the use of the workstation
as a development and delivery platform for business applications.

Chapter 18. Managing Development 323

t•.

·:.'

.-. I

324 OS/2 V2.0 Volume 4 ;

Appendix A. Naming Conventions

It is often a desirable practice to implement common naming conventions for
application routines and for symbolic constant and variable names. The
adoption of such techniques facilitates application readability and code
maintenance, since the nature and role of various routines and data items used
by an application may be more easily understood. This chapter proposes some
naming conventions; it is not suggested that application developers should use
these conventions slavishly, but that they should use the suggestions provided
as guidelines in developing their own consistent set of organizational standards.

The conventions proposed herein will cover the following areas:

• Symbolic names and constants
• Subroutine names
• Window and dialog procedure names
• Variable names.

The conventions proposed will adhere to most "standard" C programming
conventions, in that lowercase characters will be used for routine and variable
names, with uppercase characters used for symbolic names and constants.
Application developers wishing to use standardized naming conventions for
applications written in other languages will obviously need to adapt these
conventions to suit their particular language implementation.

The conventions proposed herein will also use a notational concept known as
Hungarian notation, named for its inventor, Charles Simyoni. Under this
notational system each variable, symbolic name or procedure name is prefixed
by a one-, two- or three-character mnemonic that indicates its type or function.

A.1 Symbolic Names and Constants
In a PM application, symbolic names are typically used within an application to
represent numeric values such as message classes or control window identifiers
by a meaningful name rather than a less meaningful numeric representation. A
list of suggested prefixes is given in Table 6, to give an indication of type when
using a symbolic name or constant.

Table 6. Type Prefixes for Symbolic Constants

Item Constant Type Prefix

Menu Item (Command) Integer Ml -
Check Box Integer CK -
Entry Field Integer EF -
List Box Integer LB -
Push Button Integer PB -
Radio Button Integer RB -
Static Text String String STR -
Window Class String we_
Dialog Class String DC_

Message Class (Application-defined) Integer WMP_

C Copyright IBM Corp. 1993 325

These one-, two- or three-letter prefixes may be concatenated with the actual
symbolic names of control windows, window classes etc., in order to provide a
more meaningful representation of the symbolic name in the source code.

A.2 Subroutine Names
For the purpose of discussion, a distinction will be made between subroutines
invoked using normal programming language calling mechanisms, and window
or dialog procedures invoked by Presentation Manager in response to the
application issuing a WinDispatchMsg(), WinPostMsg() or WinSendMsg() call.
Window and dialog procedures are discussed in the following section.

When examining application code, it is useful to know the type of event handled
or processing carried out by a particular function or subroutine, without the need
for detailed examination of the code for that subroutine. This capability can be
facilitated by the use of a prefix to the function or subroutine name, which
indicates the type of the function or subroutine to the reader.

Since the types of functions carried out within applications may be extremely
diverse, no standards will be suggested here. However, readers should note the
potential benefits of such a practice, and may wish to adopt a suitable
convention for their own applications.

A.3 Window and Dialog Procedure Names
In order to indicate that a particular subroutine within an application is a window
procedure, it is suggested that all window procedure names should be prefixed
with wp in lowercase letters. Similarly, dialog procedures for processing modal
dialog boxes, should be prefixed with "dp" to identify the nature of their
processing and to differentiate them from normal window procedures.

A.4 Variable Names

326 OS/2 V2.0 Volume 4

It is far easier to determine the nature and usage of a variable if its data type is
known to the reader. Variable names may be prefixed with mnemonics
indicating their data type, in a similar way to that proposed for symbolic names
and constants. A list of suggested prefixes for various data types is given in
Table 7.

Table 7 (Page 1 of 2). Type Prefixes for Variables

Data Type Definition Prefix

Boolean BOOL (flag) f

Character CHAR ch

Unsigned character UC HAR uch

String CHAR[] sz

Short integer SHORT s

Unsigned short integer US HORT us

Long integer LONG I

Unsigned long integer ULONG ul

Table 7 (Page 2 of 2). Type Prefixes for Variables

Data Type Definition Prefix

Handle HWND, h
HMODULE, etc

For example, a character string variable (a zero- or null-terminated string)
named WindowTitle might have an attached mnemonic prefix of sz to indicate
the data type, making the variable name szWindowTitle. This is a simple
example; to take a more complex instance, a handle to a window might have a
variable name hMainWindow, which would differentiate it in the source code
from a window procedure wpMainWindow or other data items relating to the
window, while maintaining an indication of the relationship between the items by
the similarity in their names.

Prefixing variable names in this way has the additional advantage that a
compiler cross-reference listing will group together all variables of the same
data type. Any redundancies may thus be seen at a glance.

A pointer to a variable is indicated by using an additional prefix p before the
prefix indicating the data type of the variable. Some examples are shown in
Table 8.

Table 8. Type Prefixes for Pointers

Data Type Definition Prefix

Pointer to CHAR CHAR• pch

Pointer to string PSZ psz

Pointer to function PFN, PFNWP pfn

As a further example, an unsigned integer UserResponse might have a prefix of
us making the variable name usUserResponse. A pointer to this variable would
have the name pusUserResponse. The name thus indicates both the data type of
the pointer and its relationship with the variable to which it points.

Appendix A. Naming Conventions 327

.'·!

328 OS/2 V2.0 Voh.Jm~ 4
.·,,·

Appendix B. Application Program Construction

This section of the document presents guidelines for the structuring of
applications and their component modules, in order to achieve the optimum level
of modularity and granularity within an application. The guidelines contained
herein are particularly applicable to the C programming language, although they
may also apply to other languages with similar structures.

B.1 Modularization
Within a Presentation Manager application, it is recommended that the
application code be separated into distinct source modules, as follows:

• Each window procedure (that is, application object) should be placed in its
own separate source module, along with functions and subroutines created
for and exclusively called by that window procedure. This creates the
situation where a single window is contained per source module, which
preserves isolation and facilitates independence of application objects.

• Type definitions, variable and constant declarations (including private
message classes) and function prototypes that are local to a particular
source module should be placed in a private header file or alternatively,
included in the source module itself.

• Function prototypes for those window procedures or subroutines that will
become the entry points to the source module should be placed in a
separate header file, along with type definitions, variable and constant
declarations that will be required by other source modules calling those
procedures or subroutines. This header file may then be referenced by each
source module that requires access to these procedures or routines. This
header file is known as the public header file.

• Global type definitions, variable and constant declarations should be placed
in a global header file that may be referenced by each source module. In the
ideal case, global variables and constants should not be used by an
application, and this header file would therefore not be required.

• Generic functions and subroutines accessed by more than one window
procedure should be placed in a separate source module with its own
header file (known as a generic routines header file), which may be
referenced by each module requiring access to the generic routines. This
includes "functions" such as dialog definitions and dialog procedures that
are accessed from multiple window procedures, and message handling
routines.

• Presentation Manager resources used by modules within an application
should be placed in a resource script file, and their associated identifiers
defined in the application's public header file.

Note that a Workplace Shell object's source code is automatically partitioned in
a similar manner to that described above, since the various files are created by
the SOM Precompiler from the object's class definition file.

Separation of the application code into its constituent application objects in this
manner facilitates the isolation and independence of application objects, and
enhances the potential for their subsequent reuse. It also eases the task of
application maintenance and change management, by effectively modularizing

©Copyright IBM Corp. 1993 329

an application and therefore helping to contain the scope of change within a
single source module and its dependent header files.

The separation of header files into private, public and global definitions in the
manner described above further enhances the independence of application
objects and facilitates change management, in the following ways:

• The separation of an application object's public interfaces means that other
application objects are aware only of those interfaces, and not of the internal
definitions and operations of the application object. Changes within an
application object, to local type, variable or constant definitions, do not
impact other application objects with which the changed object
communicates

• The separation of the private and public interfaces explicitly defines each of
these interfaces, so that a maintenance programmer is clearly aware of
changes that will or will not impact other application objects. Other
applications that do require modification as a result may be easily identified,
since their source modules will contain a reference to the changed object's
external interface header file.

When managing the development of large projects, an "owner" should be
appointed for each source module. This owner is typically a member of the
development team who bears responsibility for that module. A module's owner
should also have the responsibility for that module's private and public header
files.

B.2 Header Files
Header files should be used wherever possible in order to isolate data and
function declarations from the application code, thereby enhancing modularity
and improving readability.

For management purposes and to facilitate subsequent maintenance of the
application code, a header file should include a prolog identifying the application
and source module with which it is associated, its author and owner, and
whether the header file is a private, public, global or generic header file (see
below for definitions of these terms).

B.2.1 Private Header File

330 OS/2 V2.0 Volume 4

Each source module should have its own private header file, or have the
contents of such a file included in the source module itself. The private header
file should itself include:

• Declarations for all local constants used within the source module; that is,
those constants that are not accessed or referenced from outside the source
module. This includes those application-defined message classes used by a
window procedure in indicating events to itself, or by dependent functions
and/or subroutines to indicate messages to their parent window procedure.

• Declarations for all non-local variables used within the source module; that
is, those variables that are accessed from more than one routine within the
source module, but are not accessed from outside the source module.

• Prototypes for all functions and subroutines that are accessed only from
within the source module.

A private header file should be referenced, using an appropriate #include
statement, only by its own source module.

B.2.2 External Interface Header File
Each source module should possess its own public header file. The public
header file should contain:

• Function prototypes for the entry-point functions or subroutines within the
source module, and only for those routines. This preserves the isolation of
the source module's internal workings from the calling application.

• Type definitions for any application-defined data types required by the
entry-point functions or subroutines.

• Message class definitions for application-defined message classes that will
be used to signal events to a window procedure within the source module.

A public header file should be referenced by its own source module and by any
other source module which requires access to the entry points of the module. In
an ideal case, where optimum isolation is achieved by relating all processing
within the source module to a single window, access to these entry points would
be achieved by:

• A single "conventional" subroutine call to create the window, with the caller
specifying appropriate parameters and the called routine returning a handle
to the window. The public header file must therefore contain definitions for
any application-defined data types to be passed as parameters to this call.

• Passing a series of messages to the window in order to indicate events and
request actions. The public header file must therefore also contain
definitions for any application-defined message classes used by the window.

Since the public header file contains the interfaces to its parent window (that is,
application object) it should be carefully documented, and the entry points and
their means of access should be placed in the application's design
documentation. Interfaces to those application objects that are identified as
having potential for reuse should also be placed in an Interface Control
Document from which they may be accessed for future reuse of the application
object (see 8.4, "Packaging" on page 333).

B.2.3 Global Header File
An application may contain a global header file, which itself should contain:

• Declarations for all global constants used by the application; that is, those
constants that are accessed from more than one source module within the
application.

• Declarations for all global variables used by the application; that is, those
variables that are accessed from more than one source module within the
application. Note that this does not include those variables that are used by
multiple routines within the same source module.

The global header file should be referenced, using an appropriate #include
statement, by all source modules within the application, other than the module(s)
containing generic routines.

Appendix B. Application Program Construction 331

B.2.4 Generic Routines Header File
One or more source modules in an application may contain generic routines that
are accessed from multiple source modules within the application. These source
modules may possess their own local header files to define data and functions
accessed only from within their own module. In addition, such source modules
should possess a single generic routines header file per application, which
should contain:

• Prototypes for all generic functions and subroutines that will be accessed
from other source modules within the application

• Declarations for data types and constants necessary to the invocation of
these generic routines.

The generic routines header file should be referenced, via an appropriate
#include statement by its own source modules and by each source module
within the application that requires access to generic routines.

B.2.5 System-Supplied Header Files
Source modules in an application will typically require access to operating
system or C language functions. Prototypes for these functions and declarations
for their associated data types and constants are provided in system-supplied
header files. Examples of system-supplied header files are the OS/2 system
functions file os2.h and the C language run-time library files such as stlib.h and
string.h.

B.3 Data Abstraction and Encapsulation

332 OS/2 V2.0 Volume 4

In order to enhance reusability and to facilitate the containment (and therefore
the management) of change, data definition and initialization should, wherever
possible, be encapsulated within source modules as follows:

• Local variables should be used wherever possible. Where the value of a
variable must be held between invocations of the same function or
subroutine, the static keyword may be used in declaring the variable.

• For window procedures where the values of variables must be held beyond
the scope of processing a single message, a memory object may be
allocated for the variable(s) and a pointer to that object stored in the window
words of the window.

• External data objects such as files, databases, etc., should be defined and
accessed only from within a single window procedure and its dependent
functions and subroutines. Definition of and/or establishment of access to
such data objects should be performed upon window creation as part of the
WM_ CREATE message processing, and termination of access should be
performed upon window closure as part of the WM_ CLOSE message
processing.

• The use of global variables should be avoided wherever possible, although it
is recognized that global variables are necessary in certain circumstances
within a Presentation Manager application. Where global variables are to be
used, they should be declared in the application's main source module (that
is, the module that contains the application's main routine) and referenced
from the application's global header file using the extern keyword.

• Except in the case noted above, the use of external variable declarations
using the extern keyword should be avoided wherever possible, since this

B.4 Packaging

creates an interdependence between source modules (and therefore
between application objects) that may subsequently limit the potential for
reuse of those objects. Variables should preferably be defined locally within
a source module or alternatively, defined globally and referenced in the
application's global header file.

• Where non-local variables and/or constants (that is, variables and/or
constants that are accessed only from within a particular source module, but
are not local to any routine within that module) are declared, they should be
placed in that source module's private header file or, if the module does not
possess its own header file, placed at the beginning of the source module.

The practice of maximizing the use of local and encapsulated data, and of
minimizing and simplifying the external interfaces of application objects, will
achieve the maximum level of isolation and therefore of independence between
application objects, thus enhancing the potential for their reuse and facilitating
their future maintenance by isolating their internal workings from those of other
application objects.

As already mentioned in B.1, "Modularization" on page 329, application code
should be separated into distinct source modules. These source modules are
then compiled to produce individual object modules, which in turn are link-edited
to produce executable code. However, the executable application code may
itself consist of more than one executable module, by virtue of the dynamic
linking capabilities of the OS/2 operating system.

B.4.1 Application Object Modules
If the foregoing guidelines are followed, each object module produced by the C
language compiler will contain the following:

• Definitions for all locally defined data types, variables and constants required
by routines within the module, obtained from the module's private header file
at compile time

• Prototypes for all local window procedures, functions and subroutines
accessed only by routines within the module, obtained from the application's
private header file at compile time

• Definitions for all external data structures, variables and constants required
to communicate with other source modules, obtained from one or more
public header files at compile time

• Prototypes for all external window procedures, functions and subroutines
accessed by routines within the module, other than those that constitute
generic routines, obtained from one or more public header files at compile
time

• Declarations for all global variables and constants required by routines
within the module, obtained from the application's global header file at
compile time

• Prototypes for all generic routines, obtained from the application's generic
routines header file at compile time

• Code for those routines contained within the module.

Appendix B. Application Program Construction 333

Each object module therefore exists as a coherent identity in its own right, and
ideally has no dependence upon other object modules, other than the need to
communicate with and make use of window procedures, functions and
subroutines contained within those modules, which is achieved through public
interfaces that are clearly defined and documented. The separation of source
modules is now carried over to the object code, in that each object module
represents a separate application object.

It is therefore possible to assemble a number of object modules in various ways
to achieve an executable application. The following guidelines are offered for
the construction of the executable application.

B.4.2 Application Executable File
The application's main executable file (that is, the file that is invoked to start the
application) should contain those object modules which are required to execute
the application, and that do not contain generic routines or generic Presentation
Manager resources.

Where it is envisaged that an application object is usable only by the current
application, and has no possible potential for future reuse, it may be bound with
the application's main executable file. However, if such potential for reuse
exists, the application object should be placed in a dynamic link library.

B.4.3 Dynamic Link Libraries

334 05/2 V2.0 Volume 4

The following routines and objects should, wherever possible, be placed in
dynamic link libraries:

• Those application objects that have been identified as having potential for
future reuse by other applications

• Those routines identified as generic routines, which will be accessed from
more than one window procedure

• Those Presentation Manager resources (for example, dialog definitions,
along with their associated dialog procedures) that are accessed from
multiple window procedures within the application.

The placement of such items in dynamic link libraries enhances their
independence from the application's code, enabling changes to be made without
affecting the code or requiring application maintenance. In addition, placement
in dynamic link libraries facilitates reuse of such items by multiple applications.
It is thus possible to achieve object code reuse at both the application object and
at the subroutine level.

To this end, all items placed in dynamic link libraries should have their external
interfaces documented, baselined and included in an Interface Control
Document, for subsequent use as development library routines. It is the
responsibility of the development organization to establish procedures for the
testing and acceptance of reusable code modules into libraries from which they
may subsequently be accessed by application developers, and the creation of a
repository of documentation detailing the application objects that are available,
their behavior and external interfaces.

Appendix C. 05/2 Kernel API Functions

This section of the document describes the functions that are available to
application programs for accessing operating system services. Note that only
the operating system kernel functions are described in this section, since the
Presentation Manager programming interface has not significantly changed,
although a number of new Presentation Manager functions have been added.

The following tables list the kernel functions available under OS/2 Version 1.3
and their equivalent function under OS/2 Version 2.0, categorized by function
area.

C.1 Memory Allocation and Management
Memory management under OS/2 Version 2.0 is greatly simplified through use of
the 32-bit flat memory model, eliminating the need for applications to create and
manipulate separate memory segments.

Table 9 (Page 1 of 2). Memory Management Functions. This table compares the
OSl2 Version 1.3 and 0512 Version 2.0 memory allocation and management functions.

16-Bit Function Name 32-Bit Function Name

DosAllocSeg NIA

DosAI locShrSeg NIA

DosGetShrSeg NIA

DosGetSeg NIA

DosGiveSeg NIA

Dos Real locSeg NIA

DosFreeSeg NIA

DosAllocHuge NIA

DosGetHugeShift N/A

DosReallocHuge NIA

DosCreateCSAlias NIA

DosLockSeg NIA

DosUnLockSeg NIA

DosMemAvail NIA

DosSizeSeg NIA

DosGetResource DosGetResource

DosSubAlloc DosSubAlloc

DosSubFree DosSubFree

DosSubSet DosSubSet

NIA DosSubUnSet

NIA DosAllocMem

N/A DosAllocSharedMem

NIA DosGetNamedSharedMem

NIA DosGetShared Mem

©Copyright IBM Corp. 1993 335

Table 9 (Page 2 of 2). Memory Management Functions. This table compares the
OSl2 Version 1.3 and OSl2 Version 2.0 memory a/location and management functions.

16-Bit Function Name 32-Bit Function Name

N/A DosGiveSharedMem

NIA DosFreeMem

NIA DosSetMem

NIA DosQueryMem

C.2 Session Management
There are few changes in session management functions between OS/2 Version
1.3 and OS/2 Version 2.0. Only the DosSMRegisterDD() function has been
removed from OS/2 Version 2.0.

Table 10. Session Management Functions. This table compares the OSl2 Version 1.3
and OSl2 Version 2.0 session management functions.

16-Bit Functions Name 32-Bit Function Name

Doss tartSession DosStartSession

DosSetSession DosSetSession

DosSelectSession DosSelectSession

DosStopSession DosStopSession

DosSMRegisterDD NIA

C.3 Task Management

336 05/2 V2.0 Volume 4

A number of function names have changed in the task management area. These
changes are primarily due to the simplified 32-bit programming environment.

Table 11 (Page 1 of 2). Task Management Functions. This table compares the OS/2
Version 1 .3 and OS/2 Version 2 .0 task management functions.

16-Bit Function Name 32-Bit Function Name

DosCreateThread DosCreateThread

DosCWait DosWaitChild

N/A DosWaitThread

DosResumeThread DosResume Thread

DosSuspendThread DosSuspendThread

DosEnterCritSec DosEnterCritSec

DosExecPgm DosExecPgm

DosExit DosExit

DosExitCritSec DosExitCritSec

DosExitlist DosExitlist

DosGetlnfoSeg NIA

NIA DosGetlnfoBlocks

DosGetPrty NIA

DosKillProcess Dos Kill Process

Table 11 (Page 2 of 2). Task Management Functions. This table compares the OS/2
Version 1.3 and OS/2 Version 2.0 task management functions.

16-B/t Function Name 32-Bit Function Name

NIA DosKillThread

DosSetPrty DosSetPriority

DosGetPID N/A

DosGetPPID NIA

DosR2StackRealloc N/A

DosCallBack N/A

DosRetForward N/A

NIA Dos Debug

DosPTrace N/A

The following comments apply to the functions described in the table above:

• The DosCreateThread() function is enhanced in Version 2.0 to allow dynamic
stack growth, operating system management of stacks for secondary
threads, and the ability to create a suspended thread.

• The lnfoSeg architecture of 16-bit OS/2 versions is redefined for the flat
memory model. The equivalent per thread and per process data is obtained
under Version 2.0 using the DosGetlnfoBlocks() function, whereas the
non-changing values can be obtained using the DosQuerySyslnfo() function.

• The DosGetPrty(), DosGetPID(), and DosGetPPID() functions are not
implemented since this information is available through the
DosGetlnfoBlocks() function.

• DosPTrace() support is provided under OS/2 Version 2.0 for 16-bit debugging
tools such as CodeView. For 32-bit debugging tools, the DosPTrace()
function is replaced by the DosDebug() function.

• DosWaitThread() is a new function allowing a thread to suspend itself,
waiting for other threads within a process to terminate.

• DosKillThread() is a new function allowing a thread to forcibly terminate
another thread within the current process.

• The DosR2StackRealloc(), DosCallBack(), and DosRetForward() functions are
not applicable in the 32-bit flat memory model environment.

C.4 Signal and Exception Handling
OS/2 Version 2.0 removes the function handling signals and combines signal
handling with hardware exception handling, providing a more unified approach
that allows greater flexibility.

Table 12 (Page 1 of 2). Exception Handling Functions. This table compares the
OS/2 Version 1.3 and OS/2 Version 2.0 signal and exception handling functions.

16-Blt Function Name 32-B/t Function Name

DosHoldSignal N/A

DosSetSignal Handler NIA

DosSendSignal N/A

Appendix C. OS/2 Kernel API Functions 337

Table 12 (Page 2 of 2). Exception Handling Functions. This table compares the
0512 Version 1.3 and 0512 Version 2.0 signal and exception handling functions.

16-Bit Function Name 32-Bit Function Name

NIA DosSetKBDSigFocus

DosSetVec NIA

NIA DosSetExceptionHandler

NIA DosUnSetExceptionHandler

NIA DosRai seException

NIA DosUnwindException

The DosSetKBDSigFocus() function is used to allow 32-bit programs to inform the
operating system that they are "primed for signals", although the signals are
dispatched as exceptions.

Note the following:

• 16-bit DosSetVec() exceptions are supported under OS/2 Version 2.0.

• The 32-bit OS/2 Version 2.0 exception manager allows per-thread exception
handling.

• 05/2 Version 2.0 does not allow an exception handler to be registeed for the
numeric processor exception (NPX).

C.5 Interprocess Communication
OS/2 Version 2.0 provides the same interprocess communication and
synchronization facilities as OS/2 Version 1.3. Differences in functions used to
invoke these facilities are shown in the following tables.

C.5.1 Anonymous Pipes
The name of the DosMakePipe() function has been changed to DosCreatePipe()
to conform with the consistent naming rules introduced in 05/2 Version 2.0.

Table 13. Anonymous Pipe Functions. This table compares the 0512 Version 1 .3 and
0512 Version 2.0 anonymous pipe functions.

16-Bit Function Name 32-Bit Function Name

DosMakePipe DosCreatePipe

Other functions used to access anonymous pipes are basic file 110 functions, and
are described in C.10, "File 110" on page 342.

C.5.2 Named Pipes

338 05/2 V2.0 Volume 4

Changes to the functions used to create and manipulate named pipes have been
made in order to conform to the consistent naming rules introduced in 05/2
Version 2.0.

C.5.3 Queues

Table 14. Named Pipe Functions. This table compares the OS/2 Version 1 .3 and
OS/2 Version 2.0 named pipe functions.

16-Bit Function Name 32-Bit Function Name

DosCallNmPipe DosCall N Pipe

DosConnectNmPipe DosConnectN Pipe

DosDisConnectNmPipe Dos Di sConnectN Pipe

DosMakeNmPipe DosCreateNpipe

DosPeekNmPipe DosPeekNPipe

DosQNmPHandState DosQueryN PHState

DosQNmPipelnfo DosQueryN Pi pelnfo

DosQNmPipeSemState DosQueryNPipeSemState

DosRawReadNmPipe DosRawReadNPipe

DosRawWriteNmPipe DosRawWriteN Pipe

DosSetNmPHandlnfo DosSetN PHState

DosSetNmPipeSem DosSetN PipeSem

DosTransactNmPipe DosTransactNPipe

DosWaitNmPipe DosWaitNPipe

No changes have been made to function names for queue manipulation between
the OS/2 Version 1.3 and OS/2 Version 2.0 implementations.

Table 15. Queue Functions. This table compares the OS/2 Version 1.3 and OS/2
Version 2.0 queue management functions.

16-Bit Function Name 32-Blt Function Name

DosCreateOueue DosCreateQueue

DosOpenQueue DosOpenQueue

DosCloseQueue DosCloseQueue

DosPeekQueue DosPeekQueue

DosPurgeQueue DosPurgeQueue

DosQueryQueue DosQueryOueue

DosReadQueue DosReadQueue

DosWriteQueue DosWriteQueue

The queueing functions for the 16-bit and 32-bit environments are virtually
identical; the only difference is that the 32-bit API uses 0:32 addressing and may
use element sizes greater than 64KB. Note that a a 32-bit application may not
open a queue created by a 16-bit application using the 16-bit DosCreateQueue()
function.

Appendix C. OS/2 Kernel API Functions 339

C.5.4 Semaphores

340 OS/2 V2.0 Volume 4

Significant changes have been made to semaphore functions under OS/2 Versiqn
2.0, in order to provide additional flexibility and enhance the architectural
independence of applications using semaphores.

Table 16. Semaphore Functions. This table compares the 0512 Version 1.3 and 0512
Version 2.0 semaphore functions.

16-Bit Function Name 32-Bit Function Name

DosSemClear NIA

DosSemRequest NIA

DosSemSet NIA

DosSemSetWait NIA

DosSemWait NIA

DosMuxSemWait NIA

DosCloseSem NIA

DosCreateSem NIA

DosOpenSem NIA

DosFSRamSemRequest NIA

DosFSRamSemClear NIA

NIA DosCreateM utexSem

NIA DosOpenMutexSem

NIA DosCloseMutexSem

NIA DosRequestMutexSem

NIA DosReleaseMutexSem

NIA DosQueryM utexSem

NIA DosCreateEventSem

NIA DosOpen EventSem

NIA DosCloseEventSem

NIA DosResetEventSem

NIA DosPostEventSem

NIA DosWaitEventSem

NIA DosQueryEventSem

NIA DosCreateM uxWaitSem

NIA DosOpenMuxWaitSem

NIA DosCloseMuxWaitSem

NIA DosWaitMuxWaitSem

NIA DosAddMuxWaitSem

NIA DosDeleteMuxWaitSem

NIA DosQueryMuxWaitSem

OS/2 Version 2.0 provides 16-bit entry points allowing compatibility with 16-bit
applications that use the old system semaphores, RAM semaphores and Fast
Safe RAM (FSR) semaphores.

C.6 Message Retrieval
Few changes have been made to the kernel message retrieval functions. Only
the name of the DoslnsMessage() function has been changed to
DoslnsertMessage() in order to conform with the consistent naming rules
introduced in OS/2 Version 2.0.

Table 17. Message Retrieval Functions. This table compares the OS/2 Version 1 .3
and OS/2 Version 2.0 message retrieval functions.

16-Sit Function Name 32-Bit Function Name

DosGetMessage DosGetMessage

DoslnsMessage DoslnsertMessage

Dos Put Message DosPutMessage

C.7 Timer Services
A number of timer function names have changed under OS/2 Version 2.0, in
order to conform to the consistent naming rules introduced in OS/2 Version 2.0.

Table 18. Timer Services Functions. This table compares the OS/2 Version 1.3 and
OS/2 Version 2.0 timer services functions.

16-Sit Function Name 32-Bit Function Name

Dos Get Date Time DosGetDateTime

DosSetDateTime DosSetDateTime

DosSleep DosSleep

DosTimerAsync DosAsyncTimer

Dos Ti mer Start DosStartTimer

DosTimerStop Doss top Timer

C.8 Dynamic Linking
A number of dynamic linking function names have been changed in order to
conform to the consistent naming rules introduced in OS/2 Version 2.0.

Table 19 (Page 1 of 2). Dynamic Linking Functions. This table compares the OS/2
Version 1.3 and OS/2 Version 2.0 dynamic linking functions.

16-B/t Function Name 32-Bit Function Name

Dos Load Module DosloadModule

DosFreeModule DosFreeModule

DosGetProcAddr DosQueryProcAddr

DosGetModHandle DosQueryModuleHandle

DosGetModName DosQueryModuleName

DosQAppType DosQueryAppType

DosGetMachineMode NIA

BadDynLink N/A

DosGetVersion N/A

Appendix C. OS/2 Kernel API Functions 341

C.9 Device 1/0

C.10 File 1/0

342 OS/2 V2.0 Volume 4

Table 19 (Page 2 of 2). Dynamic Linking Functions. This table compares the OS/2
Version 1.3 and OS/2 Version 2.0 dynamic linking functions.

16-Bit Function Name 32-Bit Function Name

DosGetEnv NIA

No changes have been made to device 1/0 functions under 08/2 Version 2.0.

Table 20. Device 110 Functions. This table compares the 0512 Version 1.3 and OS/2
Version 2.0 device 110 functions.

16-Bit Function Name 32-Bit Function Name

Dos Beep Dos Beep

DosCLIAccess NIA

DosPortAccess NIA

DosDevConfig DosDevConfig

DosPhysicalDisk Dos Physical Disk

A number of changes have been made to file 1/0 functions, in order to conform
to the consistent naming rules introduced in 08/2 Version 2.0.

Table 21 (Page 1 of 2). File 110 Functions. This table compares OS/2 Version 1.3
and 0512 Version 2.0 file 110 functions.

16-Bit Function Name 32-Bit Function Name

DosBufReset DosResetBuffer

DosChDir DosSetCurrentDir

DosChg FilePtr DosSetFilePtr

DosClose DosClose

Dos Delete Dos Delete

Dos Dev IOCTL Dos Dev IOCTL

DosDupHandle DosDupHandle

DosEditName DosEditName

DosFilelO DosFilelO

DosFilelocks DosSetFilelocks

DosFindClose DosFindClose

DosFindFirst DosFindFirst

DosFindNext DosFindNext

DosFindNotifyClose DosFindNotifyClose

DosFindNotifyFirst DosFindNotifyFirst

DosFindNotifyNext DosFindNotifyNext

DosFSAttach DosFSAttach

DosFSCtl DosFSCtl

Table 21 (Page 2 of 2). File 110 Functions. This table compares OS/2 Version 1.3
and OS/2 Version 2.0 file 110 functions.

16-Bit Function Name 32-Bit Function Name

DosMkDir DosCreateDir

Dos Move Dos Move

DosNewSize DosSetFileSize

DosOpen DosOpen

DosQCurDir DosQueryCurrentDir

DosQCurDisk DosQueryCurrentDisk

DosQFHandState DosQueryFHState

DosQFilelnfo DosQueryFilelnfo

DosQFileMode DosQueryFileMode

DosQFSAttach DosQueryFSAttach

DosQFSinfo DosQueryFSlnfo

DosQHandType DosQuery HType

DosQPathlnfo DosQueryPathlnfo

DosQSyslnfo DosQuerySyslnfo

DosQVerify DosQueryVerify

Dos Read Dos Read

DosReadAsync NIA

DosRmDir DosDeleteDi r

OosScanEnv DosScanEnv

DosSearch Path DosSearchPath

DosSelectDisk DosSetOefaultDisk

DosSetFH andState DosSetFHState

OosSetFilelnfo DosSetFilelnfo

OosSetFileMode DosSetFi le Mode

OosSetFslnfo DosSetFslnfo

OosSetMaxFH DosSetMaxFH

OosSetPathlnfo DosSetPathlnfo

DosSetVerify DosSetVerify

DosWrite DosWrite

DosWriteAsync N/A

C.11 Code Page Support
Code page support has been simplified under OS/2 Version 2.0, and a number of
function names have been changed to conform to the consistent naming rules
introduced in Version 2.0.

Appendix C. OS/2 Kernel API Functions 343

Table 22. Code Page Functions. This table compares the OS/2 Version 1.3 and OS/2
Version 2.0 file code page support functions.

16-Bit Function Name 32-Bit Function Name

DosSetCp NIA

DosSetProcCp DosSetProcessCp

DosGetCp DosQueryCp

DosGetCtrylnfo DosQueryCtryl nfo

DosCaseMap NIA

DosGetDBCSEv DosQueryD BCSEnv

DosGetColl ate DosQueryColl ate

The DosSetCp() function is no longer implemented, since under OS/2 Version 2.0
an application may only set the code page for its own process, using the
DosSetProcessCp() function.

The DosCaseMap() function is no longer implemented since the same task is
performed by the WinUpper() function.

C.12 Error Management

344 OS/2 V2.0 Volume 4

No changes have been made to error management functions under OS/2 Version
2.0.

Table 23. Error Management Functions. This table compares the OS/2 Version 1 .3
and OSl2 Version 2.0 error management functions.

16-Bit Function Name 32-Bit Function Name

DosErrClass DosErrClass

Dos Error Dos Error

Appendix D. Problem Reporting Worksheet

The following page contains a worksheet that may be used for reporting
problems encountered during application testing. This worksheet follows the
guidelines given in Chapter 16, "Problem Determination," and requires the
application user to complete the following information:

• The name of the application. This is necessary in order that developers may
search for the error in the correct program.

• The title of the active window when the error occurred. This is necessary in
order to identify the window procedure in which the problem most likely
resides.

• The title of the last user action prior to the error occurring. This is required
in order to identify the Presentation Manager message that is likely to have
caused the error; it is probable that the problem lies in the processing for
this message.

• Whether the action was attempted for the first time, or whether the action
had already been successfully completed one or more times during the
current execution of the application. This indicates whether the problem is
probably a resource allocation error, or whether another cause is more
likely.

• A description of the error, including an error message if one was provided by
the application, Presentation Manager or the operating system.

• The name of the user who discovered the error, along with a telephone
number for future contact if any clarification is required.

• The date and time at which the error occurred. While not necessary from a
problem determination viewpoint, this information allows a problem
management coordinator to monitor the amount of time necessary to
respond to and rectify application problems, and therefore allows
management to determine the effectiveness of the testing and debugging
process.

The worksheet also contains a space at the foot of the page, into which readers
may insert the name of the person responsible for coordinating problem
determination and resolution activities, and to whom completed worksheets
should be sent. This person would then typically allocate the isolation, diagnosis
and resolution of problems to specific developers.

For a more complete description of Presentation Manager problem
determination procedures, readers should refer to Chapter 16, "Problem
Determination."

Readers may photocopy the worksheet on the following page, insert the name of
the appropriate coordinator, and distribute the worksheet within their
organizations for problem-reporting purposes.

© Copyright I BM Corp. 1993 345

Problem Reporting Worksheet

This worksheet is to be completed by application testers, for all problems encountered during testing of
Presentation Manager applications.

Application: What was the name of the application you were running when the error occurred?

Window: What was the title of the window you were accessing when the error occurred?

Action: What was the last action bar entry or accelerator key combination you selected?

D First time action was attempted I o Action was repeated multiple times

Error Description: Provide a description of the error. including the error message if one was displayed.

Reported by l Name: Ext:

Include the date/time at which the error occurred l Date: Time:

When completed, please forward this worksheet to:

346 05/2 V2.0 Volume 4

Appendix E. Source Code for the PWFolder and PWFinanceFile
objects

This appendix details the source code for the PWFolder and PWFinanceFile
objects.

E.1 Source Code for the PWFolder Object
This section list the source code necessary to generate the dynamic link library
(DLL) file PWFOLDER.DLL.

E.1.1 Source Code for the PWFolder.CSC file
###############H###H#####H#######H#####################H##

PWFOLDER.CSC (c) IBH Corporation 1992 #

This class derives from WPFolder, and is used to #
represent a folder which is protected by a password. #

##l################################H##H###################

Include the class definition file for the parent class

include <wpfolder.sc>

II
Define the new class

class: PWFolder,

file stem a pwfolder,
external prefix = pwfolder_,
class prefix " pwfoldercls ,
major version " 1, -
minor version = 1,
local;

-- PWFolder is a Password protected folder.
-- It is derived as follows:

SOHOject
- WPObject

- WPF il eSys tern
- WPFolder

- PWFolder

Specify the parent class

parent: WPFolder;

Specify the release order of new methods

release order: LockFolder;

Passthru a debug message box to the .ih file
(for inclusion in the .c file)

passthru: C.h, after;

#define DebugBox(title, text) WinHessageBox(HWND_DESKTOP,HWND_DESKTOP, \
(PSZ) text , (PSZ) title, 0, \
HB_OK I HB_INFORHATION)

endpassthru;

©Copyright IBM Corp. 1993 347

348 OS/2 V2.0 Volume 4

II
II Passthru private deffnftions to the .ph file
(for fnclusfon fn the .c file)
II
passthru: C.ph;

typedef struct _PWF_INFO {
CHAR szPassword[2e];
CHAR szCurrentPassword[20];
CHAR szUserid[20];

} PWF INFO;
typedef PWF_INFO *PPWF_INFO;

endpassthru;

Define instance data for the class
II
data:
CHAR szPassword[20];
-- This is the password which locks the folder

CHAR szCurrentPassword[20];

/* Define password structure */
/* Folder current password */
/* User-entered password */
/* Userid */

/* Define pointer type */

-- This is the password the user has typed in to be
-- checked against the lock password

CHAR szUserid[20];
-- Userid

II
II Define new methods

methods:

BOOL Querylnfo(PPWF_INFO pPWFolderlnfo), private;

METHOD: Querylnf o PRIVATE

PURPOSE: Copies instance data into the PWF_INFO structure.

INVOKED: From PasswordDlgProc

BOOL Setlnfo(PPWF_INFO pPWFolderlnfo), private;

METHOD: Setlnfo PRIVATE

PURPOSE: Sets instance data from the PWF_INFO structure.

INVOKED: From PasswordDlgProc

BOOL LockFolder();

METHOD: lockFolder PUBLIC

PURPOSE: Invalidates the current password, thereby locking the folder.

INVOKED: From _wpMenultemSelected

fl
fl Specify methods being overridden

override wplnf tData;

METHOD: wplnf tData

PURPOSE: Initializes instance data

PUBLIC

INVOKED: By Workplace Shell, upon instantiation of the object instance.

override wpHodifyPopupHenu;

METHOD: wpHodifyPopupHenu PUBLIC

PURPOSE: Adds an addHional "Lock" item to the object's context menu.

INVOKED: By Workplace Shell, upon instantiation of the object instance.

override wpHenuitemSelectedi

METHOD: wpHenuitemSelected PUBLIC

PURPOSE: Processes the user's selections from the context menu. The
overridden method processes only the added "Lock" item, before
invoking the parent's default processing to handle other items.

INVOKED: By Workplace Shell, upon selection of a menu item by the user.

override wpOpenj

METHOD: wpOpen PUBLIC

PURPOSE: Only allows a folder to be opened if the folder is unlocked, or
if the user supplies the correct password in response to the
dialog.

INVOKED: By Workplace Shell, upon selection of the •open" menu item by
the user.

override wpSetTitle;

METHOD: wpSetTitle PUBLIC

PURPOSE: Sets the folder's title (icon text) to have the phrase <Locked>
as a suffix if the folder is locked, or removes this suffix if
the folder is unlocked.

INVOKED: By wpOpen to set the unlocked state, and by Lockfolder to set
the locked state.

override wpSetupj

METHOD: wpSetup PUBLIC

PURPOSE: Sets folder properties based upon a setup string passed by the
object's creator as part of the WinCreateObject() call. The
overridden method simply processes the PASSWORD keyword to set
the folder's password ill'mediately upon instantiation, before
invoking the parent's default processing to handle all other
keywords.

INVOKED: By the Workplace Shell, upon instantiation of the object
instance.

override wpSaveStatej

METHOD: wpSaveState PUBLIC

PURPOSE: Saves the object instance's persistent state data. The
overridden method simply saves the password data, then invokes
the parent's default processing to handle any other instance
data defined by ancestor classes.

INVOKED: By the Workplace Shell, when the object becomes donnant.

override wpRestoreStatei

METHOD: wpRestoreState PUBLIC

PURPOSE: Restores the object instance's persistent state data. The
overridden method simply restores the password data, then

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 349

invokes the parent's default processing to handle any other
instance data defined by ancestor classes.

INVOKED: By the Workplace Shell, when the object becomes awake.

override wpSeticon;

~ETHOD: wpSetlcon PUBLIC

PURPOSE: This class method returns the handle to the correct icon for
the object.

INVOKED: -

override wpclsQueryTitle, classmethod;

METHOD: wpclsQueryTitle PUBLIC

PURPOSE: This class method returns the default folder title for any
instance of the password protected folder class. This title
is used if a title is not supplied in the WinCreateObject()
call.

INVOKED: By the Workplace Shell, upon instantiation of the object
instance.

override wpclslnitData, classmethod;

METHOD: wpclsinitData PUBLIC

PURPOSE: This class method allows the initialization of any class data
items. The overridden method simply obtains a module handle
to be used when accessing Presentation Manager resources, then
invokes the parent's default processing.

INVOKED: By the Workplace Shell, upon loading the class DLL.

override wpclsQuerylcon, classmethod;

HETHOD: wpclsQueryicon PUBLIC

PURPOSE: This class method returns the handle to the default icon for
the class. This method is not used in the current version,
but could be used if different icons are to be used for the
locked and unlocked states.

INVOKED: -

override wpclsUninitData, classmethod;

HETHOD: wpclsUninitData PUBLIC

PURPOSE: This class method allows the release of any class data items
or resources. The overridden method releases the module handle
obtained by wpclslnitData, then invokes the parent's default
processing.

INVOKED: By the Workplace Shell, upon unloading the class OLL.

E.1.2 Source Code for the PWFolder.C file

350 OS/2 V2.0 Volume 4

/***/
/* */
/* ITSC Redhook OS/2 v2.0 Sample Program */
/* */
/* */
/* PWFOLDER.C */
/* */
/* */
/***/

/*
* This file was generated by the SOM Compiler.
* FileName: pwfolder.c.
* Generated using:
* SOM Precompiler spc: 1.22
* SOM Emitter emitc: 1.24
*/

#define INCL WIN
#define INCL-DOS
#define INCL-GPIBITHAPS
#define INCL-WPCLASS
#define INCL=WPFOLDER

/**/
/1' System-defined header files */
/**/
#include <os2.h>

#include <pmwp.h> /* eventually will be #define INCL_WINWORKPLACE */

#include <string.h>
#include <stdio.h>
#include <memory.h>
#include <stdlib.h>

/**/
/* Function prototype for dialog proc */
/**/
HRESULT EXPENTRY PasswordDlgProc(HWND hwndDlg,

ULONG msg,
HPARAH mpl,
HPARAH mp2);

/**/
/* Dialog definitions header file */
/**/
#include hdialog.h"

/**/
/* Global data */
/**/
HHODULE hmodThisClass; /* Module handle */
HPOINTER hLockedlcon; /* Handle for locked icon */
HPOINTER hUnlockedicon; /* Handle for unlocked icon */

PSZ DefaultClassTitle = "Password Folder"; /* Default folder title

#define PWFolder Class Source
#include "pwfolder. ih"-

/*
*
* METHOD: Query Info PRIVATE
*
*
*
*
*
*/

PURPOSE: Copies instance data into the PWF_INFO structure.

INVOKED: From PasswordDlgProc

SOM_Scope BOOL SOHLINK pwfolder_Querylnfo(PWFolder *somSelf,
PPWF_INFO pPWFolderlnfo)

*/

PWFolderData *somThis c /* Get ;nstance data pointer */

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 351

352 OS/2 V2.0 Volume 4

}

/*
*

PWFolderGetData(somSelf);
PWF o 1 derMethodDebug ("PWF o 1 der •• 1

"pwfolder_Querylnfo");

strcpy(pPWFolderlnfo->szCurrentPassword 1

szCurrentPassword);
s trcpy (pP~/Fo 1 der Inf o->szPassword 1

_szPassword);
strcpy(pPWFolderlnfo->szUserid 1

_szUserid);

return (BOOL) 0;

* METHOD: Setlnfo

/* Set debug info */

/* Set user-entered password */

/* Set folder password */

/* Set useri d *I

/* Return */

PRIVATE

PURPOSE: Sets instance data from the PWF_JNFO structure.
*
*
*
*/

INVOKED: From PasswordDlgProc

SOM_Scope BDOL SOMLINK pwfolder_Setinfo(PWFolder *somSelf 1

PPWF_INFO pPWFolderlnfo)
{

}

/*
*

PWFolderData *somThis a

PWFolderGetData(somSelf);
PWfolderHethodDebug("PWFolderu,

"pwfolder_Queryinfo");

strcpy(_szCurrentPassword,
pPWfolderinfo->szCurrentPassword);

strcpy(_szPassword 1

pPWFolderlnfo->szPassword);
strcpy(_szUserid 1

pPWFolderinfo->szUserid);

return (BOOL) 0;

* METHOD: LockFolder

/* Get instance data pointer */

/* Set debug info */

/* Save user-entered p'word */

/* Save folder password */

/* Save useri d */

/* Return */

PUBLIC

PURPOSE: Invalidates the current password, thereby locking the folder.
*
*
*
*/

INVOKED: From _wpHenuitemSelected

SOM Scope BOOL SCHLINK pwfolder_LockFolder(PWFolder *somSelf)
{ -

}

/*
*

BOOL bSuccess;

PWFolderData *somThis a

PWFolderGetData(somSelf);
PWFolderMethodDebug(11 PWFolder 11

1

"pwfolder_Queryinfo");

strcpy(_szCurrentPassword,"NOPASSWO");

wpSetTitle(somSelf,
- _wpQuerylitle(somSelf));

bSuccess•_wpSeticon(somSelf,
hlockedlcon);

_wpSavelmmediate(somSelf);
return (BOOL) 0;

/* Get instance data pointer */

/* Set debug info

/* Invalid user-entered
/* password
/* Set folder title to
/* locked state

*/

*/
*/
*/
*/

/* Set icon to locked state */

/* Rember this state
/* Return

*/
*/

* METHOD: wpinitData PUBLIC
*
* PURPOSE: Initializes instance data
*
*
*

INVOKED: By Workplace Shell, upon instantiation of the object instance.

*/

SOH_Scope void SCHLINK pwfolder_wpinitData(PWFolder *somSelf)
{

CHAR ErrorBuffer[lOO];

PWFolderData *somThis g

PWFolderGetData(somSelf);
PWFolderHethodDebug("PWFolder",

"pwfolder_wpinitData");

/* Get instance data pointer */

}

/*

*

parent_wpinitData(somSelf);

strcpy(_szCurrentPassword,"password 0
);

strcpy(_szPassword,"password");

/* Set debug info */

/* Invoke default processing */

/* Initialise folder in the */
/* unlocked state */

* METHOD: wpHodifyPopupHenu PUBLIC

* PURPOSE: Adds an additional 0 Lock" item to the object's context menu.
*
*
*
*/

INVOKED: By Workplace Shell, upon instantiation of the object instance.

SOH_Scope BOOL SOMLINK pwfolder_wpModifyPopupHenu(PWFolder *somSelf,
HWND hwndHenu,
HWND hwndCnr,
ULONG iPosition)

{
PWFolderData *somThis ~ /* Get instance data pointer */

/*

PWFolderGetData(somSelf);
PWFolderMethodDebug("PWFolder", /* Set debug info */

"pwf o 1 der _wpHodi f yPopupHenu") ;

_wpinsertPopupHenuitems(somSelf,
hwndMenu,
f Position,
hmodThisClass,
ID CXTHENU LOCK,
e); -

/* Insert menu item
/* Menu handle
/* Default position
/* Module handle
/* Menu item identifier
/* No submenu identifier

*I
*I
*/
*/
*/
*/

return(parent_wpModifyPopupHenu(somSelf, /* Invoke default processing */
hwndHenu,
hwndCnr,
iPosition));

* METHOD: wpHenultemSelected PUBLIC

*
*
*
*
*
*
*/

PURPOSE: Processes the user's selections from the context menu. The
overridden method processes only the added "lock" item, before
invoking the parent's default processing to handle other items.

INVOKED: By Workplace Shell, upon selection of a menu item by the user.

SOH_Scope BOOL SCHLINK pwfolder wpHenuitemSelected(PWFolder *somSelf,
HWND hwndFrame, -

{
ULONG ulHenuld)

PWFolderData *somThis n

PWFolderGetData(somSelf);
PWFo 1 derHethodDebug ("PWFo 1 der",

/* Get instance data pointer */

/* Set debug info */

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 353

354 OS/2 V2.0 Volume 4

}

/*
*

gpwfolder_wpHenultemSelected");

switch(ulMenuid)
{

}

case IDH LOCK:
_lockFolder(somSelf);
break;

default:
parent_wpHenuitemSelected(somSelf,

hwndFrame,
ulHenuid);

break;

/* Switch on item identifier */

/* Lock item selected */
/* Invoke _lockFolder method */

/*All other items */
/* Invoke default processing */

* METHOD: wpOpen PUBLIC
*
*
*
*
*
*
"'
*
*/

PURPOSE: Only allows a folder to be opened if the folder is unlocked, or
if the user supplies the correct password in response to the
dialog.

INVOKED: By Workplace Shell, upon selectfon of the "Open" menu item by
the user.

SOH_Scope HWND SCHLINK pwfolder_wpOpen(PWfolder *somSelf,
HWND hwndCnr,

{

ULONG ulView,
ULONG param)

UL ONG
CHAR
PVOID

ulResult;
szTitle[HlO];
pCreateParam;

PWFolderData *somThis =
PWFolaerGetData(somSelf);

PWFolderHethodDebug("PWFolder",
"pwfolder_wpOpen");

if ((strcmp(szCurrentPassword,
_szPassword)) == O)

{

}

return(parent_wpOpen(somSelf,
hwndCnr,
ulView,
param));

pCreateParam = malloc(sizeof(ULONG));

"'((PULONG)pCreateParam) z (ULONG)somSelf;

ulResult a WinDlgBox(HWND DESKTOP,
HWND-DESKTOP,
PasswordDlgProc,
hmodThisClass,
ID DLG PASSWORD,
pCreateParam) ;

if (ulResult == DID OK)
{ -
if ((strcmp(_szCurrentPassword,

_szPassword)) •= O)
{
strcpy(szTitle,

wpQueryTitle(somSelf));
szTitle[strlen(szTitle)-9] = '\0';
_wpSetTitle(somSelf ,szTitle);

_wpSeticon(somSelf,

I* Return value
/* Folder title buffer

*I
*I

I* Get instance data pointer "'/

/* Set debug info */

/* If folder is not locked */

/*Allow open to proceed in */
/"' normal way using default */
/* processing "'I

/*Allocate memory to pass a*/
/* ULONG to the dialog proc */
/* Put the somSelf pointer */
I* in the CreateParam memory */

/"' Display password dialog */
I* Desktop is owner */
/"' Dialog procedure address */
/"' Module handle */
/"' Dialog resource id */
/* Create Param holding the */
/"' pointer to this object "'/

/* If user hit OK button

/* If password is correct

/* Get title string

/* Remove <LOCKED>
/* Reset title string

/* Set icon to unlocked

*/

*/

*/

"'/
*/

*/

}

/*
*

hUnlockedlcon);

return(parent_wpOpen(somSelf,
hwndCnr,
ulView,
pa ram));

}

/* state */

/* Allow open to proceed in */
/* nonnal way using default */
/* processing */

else /* Password is incorrect */

}

~
WinHessageBox(HWND_DESKTOP, /* Display message to user */

HWND DESKTOP,
"Password incorrect. Folder remains locked.",
"Password Failed\
0,
MB OK I
HB-CUAWARNING);

return ((HWND) 0); - /* Return NULL handle "'/
}

* METHOD: wpSetTitle PUBLIC
*
*
*
*
*
*
*
*
*/

PURPOSE: Sets the folder's title (icon text) to have the phrase <Locked>
as a suffix if the folder is locked, or removes this suffix if
the folder is unlocked.

INVOKED: By wpOpen to set the unlocked state, and by lockFolder to set
the locked state.

SOH_Scope BOOL SCHLINK pwfolder_wpSetTitle(PWFolder *somSelf,
PSZ pszNewTitle)

{
CHAR szBuf[lOO]; /* Character buff er */

PWFolderData *somThis = /* Get instance data pointer */

}

/*
*

PWFolderGetOata(somSelf);
PWFolderHethodDebug("PWFolder",

"pwfo lder _wpSetTi t 1 e");

strcpy(szBuf,pszNewTitle);

if ((strcmp(_szCurrentPassword,
_szPassword)) != O)

{
if ((strstr(szBuf,"LOCKED")) ==NULL)
{

strcat(szBuf," <LOCKED>");
}

}

/* Set debug info */

/* Get current title */

/* If folder is locked */

/* and <LOCKED> not in */
/* current title */
/* Add <LOCKED> to title */

return (parent_wpSetTitle(somSelf ,szBuf)); /* Invoke default processing */

* METHOD: wpSetup PUBLIC
*
*
*
*
*
*
*
*
*
*
*
*/

PURPOSE: Sets folder properties based upon a setup string passed by the
object's creator as part of the WinCreateObject() call. The
overridden method simply processes the PASSWORD keyword to set
the folder's password inrnediately upon instantiation, before
invoking the parent's default processing to handle all other
keywords.

INVOKED: By the Workplace Shell, upon instantiation of the object
instance.

SOH_Scope BOOL SCHLINK pwfolder_wpSetup(PWFolder *somSelf,

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 355

356 OS/2 V2.0 Volume 4

{

}

/*
*

PSZ pszSetupString)

CHAR pszlnitPword[20];
BOOL bFound;
ULONG Length;

PWFolderData *somThis a

PWFolderGetData(somSelf);
PWFolderMethodDebug("PWFolder",

"pwfolder_wpSetup");

if (*pszSetupString !• '\0')
{
bFound=_wpScanSetupString(somSelf,

pszSetupString,
"PASSWORD",
pszlnitPword,
&Length);

if (bfound)
{

}

strcpy(_szPassword,
pszlnitPword);

strcpy(_szCurrentPassword,
pszlnitPword);

}

return(parent_wpSetup(somSelf,
pszSetupString));

/* Character buff er
/* Success flag
/* Returned length

*/
*/
*/

/* Get instance data pointer */

/* Get debug info */

/* If string is present */

/* Parse setup string to */
/* find PASSWORD keyword */

/* Buffer for keyword value */
/* Length of returned string */

/* Initialize folder */
/* password */
/* Initialize user-entered */
/* password */

/* Invoke default processing */

* METHOD: wpSaveState PUBLIC
*
*
*
*
*
*
*
*
*/

PURPOSE: Saves the object instance's persistent state data. The
overridden method simply saves the password data, then invokes
the parent's default processing to handle any other instance
data defined by ancestor classes.

INVOKED: By the Workplace Shell, when the object becomes donnant.

SOM Scope BOOL SCHLINK pwfolder_wpSaveState(PWFolder *somSelf)
{ -

}

PWFolderData *somThis =
PWFolderGetData(somSelf);

PWFolderMethodDebug("PWFolder",
"pwfolder_wpSaveState");

_wpSaveString(somSelf,
"PWFolder",
lL,
_szPassword);

_wpSaveString(somSelf,
"PWFolder•,
2L,
_szCurrentPassword);

return(parent_wpSaveState(somSelf});

/* Get instance data pointer */

/* Set debug info */

/* Save folder password */
/* Class name */
/* Class-defined key */
/* String to be saved */
/* Save user-entered p'word */
/* Class name */
/* Class-defined key */
/* String to be saved */

/* Invoke default processing */

/*
*
* METHOD: wpRestoreState PUBLIC
*
*
*
*
*
*

PURPOSE: Restores the object instance's persistent state data. The
overridden method simply restores the password data, then
invokes the parent's default processing to handle any other
instance data defined by ancestor classes.

* INVOKED: By the Workplace Shell, when the object becomes awake.
*
*/

SOM_Scope BOOL SOMLINK pwfolder_wpRestoreState(PWFolder *somSelf,
ULONG ulReserved)

{

}

ULONG ulRetLength; /* Length of returned string */

PWFolderData *somThis = /* Get instance data pointer */
PWFolderGetData(somSelf);

PWFo 1 derMPthodDebug (" PWFo l der", /* Set debug info *I
"pwfo 1 der _wpRestoreState");

_wpRestoreString(somSelf,
"PWFolder",
lL,
szPassword,

iulRetLength);
_wpRestoreString(somSelf,

11 PWF0 l der",
2L,
szCurrentPassword,

iulRetLength);

if ((strcmp(_szCurrentPassword,
_szPassword)) !; 0)

{

}
_wpSetlcon(somSelf, hLockedlcon);

/* Restore folder password */
/* Class name */
/* Class-defined key */
/* String to be restored */
/* Length of returned string */
/* Restore user-entered pwd */
/* Class name */
/* Class-defined key */
/* String to be restored */
/* Length of returned string */

/* If folder is locked */

/* Set icon to locked state */

return(parent_wpRestoreState(somSelf, /* Invoke default processing */
ulReserved));

/*
*
* METHOD: wpSetlcon PUBLIC
*
* PURPOSE: This class method returns the handle to the correct icon for
* the object.
*
* INVOKED:
*
*/

SOM_Scope BOOL SOHLINK pwfolder_wpSetlcon(PWFolder *somSelf,
HPOINTER hptrNewlcon)

{
PWFolderData *somThis = PWFolderGetData(somSelf);
PWFolderHethodDebug("PWFolder","pwfolder_wpSetlcon");

if ((strcmp(szCurrentPassword,
:szPassword)) :; 0)

{

/* If password is correct */

return (parent_wpSetlcon(somSelf,
hUnlockedlcon)); /* return pointer to unlocked */

}

}
else
{

}

return (parent_wpSetlcon(somSelf,
hLockedlcon));

/* otherwise */

/* return locked icon pointer */

fundef SOH_CurrentClass

Ndef ine SOM CurrentClass SOHHeta
/* -
*
* METHOD: wpclsQueryTitle PUBLIC
*
* PURPOSE: This class method returns the default folder title for any
* instance of the password protected folder class. This tH 1 e
* is used if a title is not supplied in the WinCreateObject()
* call.
*
* INVOKED: By the Workplace Shell, upon instantiation of the object

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 357

358 OS/2 V2.0 Volume 4

instance.

*/

SOM Scope PSZ SCHLINK pwfoldercls_wpclsQueryTitle(H_PWFolder *somSelf)
{ -

/* M_PWFolderData *somThis = H_PWFolderGetData(somSelf); */

H_PWFo 1 derHethodDebug ("H_PWFo 1 der" I r Set debug info
"pwfo 1 dercls_wpc lsQueryTi t 1 e");

return(DefaultClassTitle); /* Return default title
}

/*
*
* METHOD: wpclsQuerylcon PUBLIC

*
*
*
*
*

PURPOSE: This class method returns the handle to the default icon for
the class. This method is not used in the current version,
but could be used if different icons are to be used for the
locked and unlocked states.

* INVOKED:

*/

SOH_Scope HPOINTER SOMLINK pwfoldercls_wpclsQueryicon(H_PWFolder *somSelf)
{

*/

*/

/* H PWFolderData *somThis = H PWFolderGetData(somSelf); */
PWFolderData *somThis = - /* Get instance data pointer */

PWFolderGetData(somSelf);

H_PWFolderHethodDebug("H_PWFolder", /* Set debug info */
"pwfo 1derc1 s_wpcl sQueryicon");

return(hUnlockedicon);
}

/*
*
* METHOD: wpclslnitData PUBLIC

*
*
*
*
*
*
*
*/

PURPOSE: This class method allows the initialization of any class data
items. The overridden method simply obtains a module handle
to be used when accessing Presentation Manager resources, then
invokes the parent's default processing.

INVOKED: By the Workplace Shell, upon loading the class DLL.

SOM Scope void SCHLINK pwfoldercls_wpclsinitData(H_PWFolder *somSelf)
{ -

}

CHAR ErrorBuffer[lOO]; /* Error buff er */

/* H_PWFolderData *somThis = M_PWFolderGetData(somSelf); */

M_PWFolderHethodDebug("H_PWFolder•, /* Set debug info */
"pwfoldercls_wpclsinitData");

DosLoadModule((PSZ) ErrorBuffer,
sizeof(ErrorBuffer),
"PWFOLOER",
&hmodThisClass);

/* Obtain DLL module handle */

/* Module name */
/* Module handle

hlockedlconmWinLoadPointer(HWND DESKTOP, /* Load icons
hmodlhisClass,

*/

ID LOCK);
hUnlockedicon=WinLoadPointer(HWND_DESKTOP,

hmodThisClass,
ID_UNLOCK);

parent_wpclsinitData(somSelf); /* Invoke default processing */

*/

/*
*
* METHOD: wpclsUnlnitData PUBLIC

*
*
*

*

PURPOSE: This class method allows the release of any class data items
or resources. The overridden method releases the module handle
obtained by wpclsinitData, then invokes the parent's default
pMcessing.

* INVOKED: By the Workplace Shell, upon unloading the class DLL.
*
*/

SOH_Scope void SCHLINK pwfoldercls_wpclsUnlnitData(H_PWFolder *somSelf)
{

/* H_PWFolderData *somThis a H_PWFolderGetData(somSelf); */

H_PWFo 1 derHethodDebug ("H_PWFo 1 der", /* Set debug info
"pwfoldercls_wpclsUnlnitOata");

*/

WinDestroyPointer(hlockedicon);
WinDestroyPointer(hUnlockedlcon);

/* Free icons */

DosFreeHodule(hmodThisClass); /* Free module handle */

parent_wpclsUninitData(somSelf);
}

/**/
/* */
/* PROCEDURE NAME: PasswordOlgProc */
/* */
/* description: Dialog procedure for password dialog */
/* */
/* invoked: By Presentation Manager, in response to folder issuing */
/* WinDlgBox() call from _wpOpen method. */
/* */
/**/
HRESULT EXPENTRY PasswordOlgProc(H~IND hwndDlg,

ULONG msg,
HPARAH mpl,
HPARAH mp2)

{
PWFolder *aPWF;
PWF_INFO pwfolderlnfo;
CHAR szTemp (100];

switch (msg)
{

case WH_INITDLG:

WinSetWindowUlong(hwndDlg,
QWL_USER,
*((PULONG)mp2));

free(mp2);
break;

case WH_COMHAND:

/* Define SOH pointer */
/* Define password structure */
/* Character buff er */

/* Determine message class */

/* Dialog being initialized */

/* Store SCH pointer in */
/* window word QWL_USER */

/* Free Create Param memory */

/* User hit a pushbutton */

aPWF a (PWFolder *)WinQueryWindowUlong(hwndDlg, QWL_USER);

_Querylnfo(aPWF,
&pwfolderlnfo);

switch (SHORTlFROHMP(mpl))
{

case DID_OK:

WinQueryDlgltemText(hwndDlg,
ID EF PASSWORD,
sfzeof(szTemp),
(PSZ)szTemp);

/* Get password data */

/* Which button was hit? */

/* Okay button */

/* Get text from entryfield */

/* Copy to password data */

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 359

}

strcpy(pwfolderlnfo.szCurrentPassword, szTemp);

_Setinfo(aPWF,&pwfolderJnfo);
WinDismissDlg(hwndDlg,DJD_OK);
break;

case DID_CANCEL:

WinDismissDlg(hwndDlg,
DIO_CANCEL);

break;
}
return(HRESULT)TRUE;
break;

}
return(WinDefDlgProc(hwndDlg,

msg,
mpl,
mp2));

/* Set instance data
/* Dismiss dialog

/* Cancel button hit

/* Dismiss dialog

/* Return from WH_COHHAND

*/
*/

*/

*/

*/

/* Invoke default PH message */
/* handling */

E.1.3 Source Code for the PWFolder.MAK file

360 05/2 V2.0 Volume 4

#**
I Dot directive definition area (usually just suffixes)
#**

.SUFFIXES: .c .obj .dll .csc .sc .h .ih .ph .psc .re .res

#**
Environment Setup for the component(s).
#**

SOHTEHP .\somtemp
SCPATH = D:\toolkt20\sc
HPATH D:\toolkt20\c\os2h
LIBPATH; D:\toolkt20\os21ib

!if [set SHINCLUDE=.;S(SCPATH);] II\
[set SHTHP=S(SOHTEHP)] II \
[set SHEHIT=ih;h;ph;psc;sc;c;def]

!endif

!if [cd S(SOHTEHP)]
! if [md $(SOHTEHP)]

error Error creating S(SOMTEHP) directory
! endif
!else

if [cd ••]
error Error could not cd •• from $(SOHTEMP) directory

! endif
!endif

II
I Compiler/tools Macros

'
cc
LINK
LO FLAGS
#LIBS
LIBS

" ice /c /Ge- /Gd- /Se /Re /ss /Ms /C':ln+
" link386
a /noi /map /nol /nod /exepack /packcode /packdata /align:l6 /infonnation

R som. lib os2386. lib dde4sbs. lib dde4nbs. lib
a som. lib os2386.lib dde4nbs. lib

#**
Set up Macros that will contain all the different dependencies for the
#executables and dlls etc. that are generated.
#**

OBJS • pwfolder.obj

#**
I Setup the inference rules for compiling source code to
II object code.
#**

.c.obj:
S(CC) -IS(HPATH) -c S<

.cse.c:
SC S<

all: pwfolder.dll

pwfolder.obj: $*.c $*.ih $*.h $*.se

pwfolder.dll: S(OBJS) pwfolder.res
$(LINK) S(LDFLAGS) S(OBJS),S@,,S(LIBS),$*;
re $*.res $*.dll
mapsym pwfolder.map

pwfolder.res: pwfolder.re
re -r $*.re $*.res

E.1.4 Source Code for the PWFolder.RC file

E.1.5

#define INCL WIN
#include <osZ.h>

#include "dfalog.h"

ICON ID LOCK LOCKED.ICO
ICON ID:UNLOCK UNLOCKED.ICC

MENU ID CXTMENU LOCK LOADONCALL MOVEABLE DISCARDABLE
BEGIN - -

MENUITEM 11 Lock Fo 1 der", IDM_LOCK
END

DLGTEHPLATE ID DLG PASSWORD LOADONCALL MOVEABLE DISCARDABLE
BEGIN - -

DIALOG "Password", ID DLG PASSWORD, 35, 26, 224, 76, FS SYSMODAL I
FS_SCREENALIGN-1 WS_VISIBLE, FCF_TITLEBAR -

END

BEGIN
ENTRYFIELD

LTEXT

DEF PUSHBUTTON
~USHBUTTON

END

MU' ID_EF_PASSWORD, 13, 38, 97, 8, NOT ES_AUTOSCROLL I
ES MARGIN I ES UNREADABLE
•folder is locked. Please enter password to openM,
102, 10, 56, 197, 8
"Oku, DID OK, 36, 9, 40, 14
"Caneel",-DID_CANCEL, 137, 10, 40, 14

Source Code for the DIALOG.H file
xmpcodl.

#define ID_CXTMENU_LOCK 0x6501
#define IDM LOCK 0x6502
#define IDM_QUERY 0x6503

#define ID DLG PASSWORD 100
#define ID_EF_PASSWORD 103

#define ID_DLG_FIND 200
#define ID_EF _ TELNUMBER 201
#define ID EF SURNAME 203

#define ID LOCK 300
#define ID UNLOCK 301

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 361

E.2 Source Code for the PWFinanceFile Object
This section list the source code necessary to generate the dynamic link library
(DLL) file PWFIN.DLL.

E.2.1 Source Code for the PWFin.CSC file

362 OS/2 V2.0 Volume 4

###############################H##############################

pwFin.CSC (c) IBM Corporation 1992 ti

This class derives from WPDataFile, and is used to #
represent a FinanceFile which is protected by a password. #

II
Include the class definition file for the parent class

include <wpdataf .sc>

Define the new class

class: PWFinanceFile,

file stem g pwFin,
external prefix ; pwFinanceFile ,
class prefix ; pwFinanceFilecls:,
major version = 1,
minor version ; 1,
local;

-- PWFinanceFile is a Password protected FinanceFile.
It is derived as follows:

SOHOject
- WPObject

- WPFileSystem
- WPDataFil e

- PWFinanceFile

Specify the parent class

parent: WPDataFile;

II
II Specify the release order of new methods

release order: LockFinanceFile;

Passthru a debug message box to the .ih file
(for inclusion in the .c file)
fl
passthru: C.ih, after;
#define INCL PH
#define INCL-SSE
#define INCL-OOSERRORS
#include <wppgm.h>
#include <wppgmf .h>
#include <stdio.h>
#include <os2.h>

II force SOH to output all debug information to the Communications Port

int myReplacernentForSOHOutChar (char c)
{
static FILE *fdebug ; NULL;

if (!fdebug) {
fdebug = fopen("COHl","w");

if (!fdebug) return 0; I* failed to open COHl: *I

}
fputc(c,fdebug);
fflush(fdebug);
/*if (cu='\n') fflush(fdebug);*/
return l;
}

/*
*
*

The following structures will be used to st~re window specific data
and a pointer to the object that created the window/dialog.

*
*
*
*
*

They're allocated when the Client window is created. This
allows us to pass the *somSelf pointer and use it in our
window and dialog procedures (the system only passes this
pointer to methods).

*/
typedef struct _WlNDOWDATA
{

USHORT cb;
PWFinanceFile *somSelf;

USEITEH Useltem;
VIEWITEH Viewltem;
LONG x;
LONG Yi
LONG xOir;
LONG yDir;

} WINDOWDATA;

/* size of this structure */
/* pointer to this instance k/
/* global class usage information */
/* global class view information */
/* x position of car in open view */
/* y position of car in open view */
/* x direction */
/* y direction */

typedef WINDOWDATA *PWINDOWDATA;

endpassthru;

ti
Passthru private definitions to the .ph file
ti (for inclusion in the .c file)
II
passthru: C.ph;

typedef struct _PWF_INFO {
CHAR szPassword[20];
CHAR szCurrentPassword[20];
CHAR szUserid[20];

} PWF INFO;
typedef PWF_INFO *PPWF_INFO;

endpassthru;

II
Define instance data for the class
fl
data:
CHAR szPassword[20];

/* Define password structure */
/* FinanceFile current password */
/* User-entered password */
/* Useri d */

/* Define pointer type */

-- This is the password which locks the FinanceFile

CHAR szCurrentPassword[20];
-- This is the password the user has typed in to be
-- checked against the lock password

CHAR szUserid(20];
-- Userid

ti
ti Define new methods
II
methods:

BOOL Querylnfo(PPWF_INFO pPWfinanceFilelnfo), private;

METHOD: Querylnf o PRIVATE

PURPOSE: Copies instance data into the PWF_INFO structure.

INVOKED: From PasswordDlgProc

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 363

364 05/2 V2.0 Volume 4

BOOL Setlnfo(PPWF_INFO pPWFinanceFilelnfo), private;

METHOD: Setinfo PRIVATE

PURPOSE: Sets instance data from the PWF_INFO structure.

INVOKED: From PasswordDlgProc

BOOL lockFinanceFile();

METHOD: LockFinanceFile PUBLIC

PURPOSE: Invalidates the current password, thereby locking the FinanceFile.

INVOKED: From _wpMenultemSelected

If
N Specify methods being overridden
If
override wpFilterPopupMenu;

METHOD: wpFilterPopupMenu PUBLIC

PURPOSE: This class method is called when the user asks for the context
(popup) menu.

INVOKED: -

override wpPrintObject;

METHOD: wpPrintObject PUBLIC

PURPOSE: This class method allows this object to format it's output for
printing.

INVOKED: -

override wpOraggedOverObject;

METHOD: wpDraggedOverObject PUBLIC

PURPOSE: Checks to see that the file is unlocked if user wants to
drop the object on a program.

INVOKED: -

override wpDragOver;

METHOD: wpOragOver PUBLIC

PURPOSE: Checks to see that the object being dragged over me is also
either of my class or derived from me.

INVOKED: By Workplace Shell, when an object is being dragged over this
object.

override wpOrop;

METHOD: wpOrop PUBLIC

PURPOSE: To receive a dropped object.

INVOKED: By Workplace Shell, when another object has been dropped on
this object.

override wpinitData;

-- METHOD: wpinitData PUBLIC

PURPOSE: Initializes instance data

INVOKED: By Workplace Shell, upon instantiation of the object instance.

override wpHodifyPopupHenu;

METHOD: wpModifyPopupt.lenu PUBLIC

PURPOSE: Adds an additional "Lock" item to the object's context menu.

INVOKED: By Workplace Shell, upon instantiation of the object instance.

override wpHenultemSelected;

METHOD: wpHenuitemSelected PUBLIC

PURPOSE: Processes the user's selections from the context menu. The
overridden method processes only the added "Lock" item, before
invoking the parent's default processing to handle other items.

INVOKED: By Workplace Shell, upon selection of a menu item by the user.

override wpOpen;

METHOD: wpOpen PUBLIC

PURPOSE: Only allows a FinanceFile to be opened if the FinanceFile is unlocked, or
if the user supplies the correct password in response to the
dialog.

INVOKED: By Workplace Shell, from the parent wpViewObject method

override wpSetTitle;

METHOD: wpSetTitle PUBLIC

PURPOSE: Sets the FinanceFile's title (icon text) to have the phrase <Locked>
as a suffix if the FinanceFile is locked, or removes this suffix if
the Financefile is unlocked.

INVOKED: By wpOpen to set the unlocked state, and by LockfinanceFile to set
the locked state.

override wpSetup;

METHOD: wpSetup PUBLIC

PURPOSE: Sets FinanceFile properties based upon a setup string passed by the
object's creator as part of the WinCreateObject() call. The
overridden method simply processes the PASSWORD keyword to set
the FinanceFile's password i1T111ediately upon instantiation, before
invoking the parent's default processing to handle all other
keywords.

INVOKED: By the Workplace Shell, upon instantiation of the object
instance.

override wpSaveState;

METHOD: wpSaveState PUBLIC

PURPOSE: Saves the object instance's persistent state data. The
overridden method simply saves the password data, then invokes
the parent's default processing to handle any other instance
data defined by ancestor classes.

INVOKED: By the Workplace Shell, when the object becomes donnant.

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 365

366 OS/2 V2.0 Volume 4

override wpRestoreState;

METHOD: wpRestoreState PUBLIC

PURPOSE: Restores the object instance's persistent state data. The
overridden method simply restores the password data, then
invokes the parent's default processing to handle any other
instance data defined by ancestor classes.

INVOKED: By the Workplace Shell, when the object becomes awake.

override wpSeticon;

METHOD: wpSeticon PUBUC

PURPOSE: This class method returns the handle to the correct icon for
the object.

INVOKED: -

override wpAddFileTypePage;

METHOD: wpAddFileTypePage PUBLIC

PURPOSE: This class method replaces the type page with the it's own one
that only allows the FinanceFile Types.

INVOKED: By the Workplace Shell, upon unloading the class DLL.

override wpclsQueryTitle, classmethod;

METHOD: wpclsQueryTitle PUBLIC

PURPOSE: This class method returns the default FinanceFile title for any
instance of the password protected FinanceFile class. This title
is used if a title is not supplied in the WinCreateObject()
call.

INVOKED: By the Workplace Shell, upon instantiation of the object
instance.

override wpclslnitData, classmethod;

METHOD: wpclsinitData PUBLIC

PURPOSE: This class method allows the initialization of any class data
items. The overridden method simply obtains a module handle
to be used when accessing Presentation Manager resources, then
invokes the parent's default processing.

INVOKED: By the Workplace Shell, upon loading the class DLL.

override wpclsQueryicon, classmethod;

METHOD: wpclsQuerylcon PUBLIC

PURPOSE: This class method returns the handle to the default icon for
the class. This method is not used in the current version,
but could be used if different icons are to be used for the
locked and unlocked states.

INVOKED: -

override wpclsUnlnitData, classmethod;

METHOD: wpclsUninitData PUBLIC

PURPOSE: This class method allows the release of any class data items

or resources. The overridden method releases the module handle
obtained by wpclsinitData, then invokes the parent's default
processing.

INVOKED: By the Workplace Shell, upon unloading the class DLL.

E.2.2 Source Code for the PWFin.C file
/***/
/* */
/* ITSC Redhook OS/2 v2.0 Sample Program */
/* */
/* */
/* PWFinanceFile.C */
/* */
/* */
/***/

/*
* This file was generated by the SOM Compiler.
* FileName: pwFinanceFile.c.
* Generated using:
* SOM Precompiler spc: 1.22
* SOM Emitter emitc: 1.24
*/

#define INCL_WIN
#define INCL DOS
#define JNCL-GPIBITHAPS
#define JNCL-WPCLASS
#define INCL-WPFOLDER
#define INCL-WINWORKPLACE
Hdef ine INCL=DOSERRORS

/**/
/* System-defined header files */
/**/
#include <os2.h>

#include <pmwp.h> /* eventually will be #define INCL_WINWORKPLACE */

#include <string.h>
#include <stdio.h>
#include <memory.h>
#include <s~dlib.h>

/**/
/* Function prototype for dialog proc */
/**/
MRESULT EXPENTRY PasswordDlgProc(HWND hwndDlg,

ULONG msg,
MPARAH mpl,
HPARAH mp2);

/**/
/* Dialog definitions header file */
/**/
#include 0 dialog.h"

/**/
/* Global data */
/**/
HPOINTER hlockedlcon; /* Handle for locked icon */
HPOINTER hUnlockedlcon; /* Handle for unlocked icon */

HHODULE hmodThisClass;

PSZ

CHAR
UC HAR

DefaultClassTitle a "Password FinanceFileM; /* Default FinanceFile title

szFinanceFileWindowClass[] "' "Finance File Sample";
szFinanceFileClassTitle[CCHHAXPATH] a "";

*/

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 367

368 OS/2 V2.0 Volume 4

#define PWFinanceFile Class Source
ffnclude •pwFin.ih• - -

/**/
/* Non Method Function Prototypes */
/**/
HWND PWFinanceFflelnit (PWFinanceFfle*);

MRESULT EXPENTRY FinanceFileWndProc (HWND hwnd, ULONG msg, HPARAH mpl, HPARAH mp2);

#define OBJECT_FROH_DRAGITEM(di) (di&&di->ulitemID? OBJECT_FROH_PREC(di->ulltemID) : NULL)

/*
*
* METHOD: Queryinf o PRIVATE
*
*
*
*
*
*/

PURPOSE: Copies instance data into the PWF_INFO structure.

INVOKED: From PasswordDlgProc

SOH_Scope BOOL SCHLINK pwFinanceFile_Querylnfo(PWFinanceFile *somSelf,
PPWF_INFO pPWFinanceFileinfo)

{
PWFinancefileData *somThis =

PWFinanceFileGetData(somSelf);
PWFinanceFileHethodDebug(•PWFinanceFile•,

"pwFinanceFile_Queryinfo");

/* Get instance data pointer */

/* Set debug info

strcpy(pPWFinanceFilelnfo->szCurrentPassword,
_szCurrentPassword);

strcpy(pPWFinanceFf leinfo->szPassword,
szPassword);

strcpy(pPWFinanceFilelnfo->szUserid,
_szUserid);

/* Set user-entered password */

/* Set FinanceFile password

/* Set userid

return (BOOL) 0; /* Return
}

/*
*
* METHOD: Setlnfo PRIVATE

*
*

*/

PURPOSE: Sets instance data from the PWF_INFO structure.

INVOKED: From PasswordDlgProc

SOM_Scope BOOL SOHLINK pwFinanceFile_Setlnfo(PWFinanceFile *somSelf,
PPWF_INFO pPWFinanceFileinfo)

{

*/

*/

/* Get instance data pointer */

*/

*/

PWFinanceFileData *somThis =
PWFinanceFileGetData(somSelf);

PWFinanceFf leMethodDebug("PWFinanceFile",
"pwFinanceFile_Queryinfon);

/* Set debug info */

}

/*
*
*
*
*
*
*

strcpy(_szCurrentPassword, /* Save user-entered p'word */
pPWFinanceFilelnfo->szCurrentPassword);

strcpy(_szPassword, /* Save FinanceFile password */
pPWFinanceFileinfo->szPassword);

strcpy(szUserid, /* Save userid */
pPWFinanceFilelnfo->szUserid);

return (BOOL) 0; /* Return */

HETl:IOD: Lock Fi nancef; 1 e PUBLIC

PURPOSE: Invalidates the current password, thereby locking the FinanceFf le.

INVOKED: From _wpMenultemSelected

*/

SOH_Scope BOOL SOMLINK pwFinancefile_LockFinanceFile(PWFinanceFile *somSelf)
{

BOOL bSuccess;

PWFinanceFileData *somThis
PWFinanceFileGetData(somSelf);

PWFinanceFileMethodDebug("PWFinanceFile",
"pwFinanceFile_Queryinfo");

/* Get instance data pointer */

}

/*
*

strcpy(_szCurrentPassword, "NOPASSWD");

_wpSetTitle(somSelf,
_wpQueryTitle(somSelf));

bSuccess=_wpSeticon(somSelf,
hlockedicon);

_wpSaveimmediate(somSelf);
return (BOOL) E>;

/* Set debug info */

/* Invalid user-entered
/* password
/* Set FinanceFile title to
/* locked state

/* Set icon to locked state

/* Rember this state
/* Return

*/
*/

*/

*/

*/
*/

*/

* METHOD: wpinitData PUBLIC

* PURPOSE: Initializes instance data

INVOKED: By Workplace Shell, upon instantiation of the object instance.

*/

SOM Scope void SOHLINK pwFinanceFile_wplnitData(PWFinanceFile *somSelf)
{ -

CHAR ErrorBuffer[lE>O];

PWFinanceFileData *somThis = /* Get instance data pointer */
PWFinanceFileGetData(somSelf);

PWFinanceFileMethodOebug("PWFinanceFile", /* Set debug info */
"pwFinanceFile_wpinitData")i

/* set up the debug and tracing */
SOM Tracelevel=2;
SOMOutCharRoutine a myReplacementForSOHOutChar;

}

/*
*
*
*
*
*
*
*
*/

parent_wpinitData(somSelf);

st rcpy (_szCurrent Password, "password") ;
strcpy(_szPassword, "password");

METHOD: wpHodifyPopupMenu

/* Invoke default processing */

/* Initialise Financefile in the */
/* unlocked state */

PUBLIC

PURPOSE: Adds an additional ulockN item to the object's context menu.
Adds a NOpen Finance FileN item to the uopen" item

INVOKED: By Workplace Shell, upon instantiation of the object instance.

SOH_Scope BOOL SCHLINK pwFinanceFile_wpHodifyPopupHenu(PWFinanceFile *somSelf,
HWND hwndHenu,
HWND hwndCnr,
ULONG iPosition}

{
PWFinanceFileData *somThis = /* Get instance data pointer */

PWFinanceFileGetData(somSelf);
PWFinanceFileHethodOebug("PWFinanceFile", /*Set debug info */

"pwFinanceFile_wpHodifyPopupHenu");

_wplnsertPopupHenuitems(somSelf, /* Insert menu item */

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 369

370 OS/2 V2.0 Volume 4

}

/*
*

hwndHenu,
iPosition,
hmodlhisClass,
IO CXTHENU LOCK,
a); -

_wplnsertPopupHenultems(somSelf,
hwndMenu,
a,
hmodThisClass,
ID OPENFinanceFile,
WPMENUID_OPEN);

/* Menu handle
/* Default position
/* Module handle
/* Menu item identifier
/* No submenu identifier

/* Insert menu item
/* Menu handle
/* at the top!
/* Module handle
/* Menu item identifier
/* Submenu identifier

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

return(parent_wpHodifyPopupMenu(somSelf, /* Invoke default processing */
hwndHenu,
hwndCnr,
iPosition));

* METHOD: wpHenuitemSelected PUBLIC
*
*
'lit

*
'lit

PURPOSE: Processes the user's selections from the context menu. The
overridden method processes the added "Lock" & •oPENFinanceFile•
items, and passes all others to the parent method

* INVOKED: By Workplace Shell, upon selection of a menu item by the user.
*
*/

SOH_Scope BOOL SCHLINK pwFfnanceFile_wpHenultemSelected(PWFinanceFile *somSelf,
HWND hwndFrame,

{

}
/*
*

ULONG ulHenuld)

PWFinanceFileData *somThis = /* Get instance data pointer */
PWFinanceFileGetData(somSelf);

PWFinanceFileHethodOebug("PWFinanceFilen, /* Set debug info */
"pwFinanceFile_wpHenultemSelected•);

switch(ulHenuid)
{

/* Switch on item identifier */

/*

}

*
*
*
*
'lit

*
*/

case IDH LOCK:
LockFinanceFile(somSelf);

break;

/* Lock item selected */
/* Invoke _LockFinanceFile method */

We could call wpOpen here, but, if the object is already opened,
the following API detennines whether the object should be
resurfaced, or if multiple views are desired.
Hust call wpViewObject not wpOpen. If you use wpOpen, multiple
concurrent views won't work. User can set object to open multiple views
or switch to. this function is free if you use wpViewObject.

case IDH_OPENFinanceFile: /* Open a view selected */
somPrintf("Open my finance file view\n");
_wpViewObject(somSelf, NULLHANDLE, OPEN_FinanceFile, O);
somPrintf(•After open my finance file view \n");
break;

default:
parent_wpHenultemSelected(somSelf,

hwndFrame,
ulHenuld);

break;

/*All other items */
/* Invoke default processing */

* METHOD: wpOpen PUBLIC
*
'lit PURPOSE: Only allows a FinanceFile to be opened if the FinanceFile is unlocked, or

""
""
*
""
*
*
*/

;f the user supplies the correct password in response to the
dialog.

INVOKED: By Workplace Shell, upon selection of the "Open" menu item by
the user.

SOH_Scope HWNO SCHLINK pwFinanceFilP_wpOpen(PWFinanceFile *somSelf,
HWND hwndCnr,
ULONG ulView,
ULONG param)

/* Return value ""/ ULONG
CHAR
PVOID
BOOL

ulResult;
szTitle[lOO];
pCreateParam;
bAllowAccess = FALSE;

/* FinanceFile title buffer */

PWFinanceFileOata *somThis =
PWFinanceFileGetOata(somSelf);

PWFinanceFileltethodDebug("PWFinanceFile",
"pwFinanceFile_wpOpen");

if ((strcmp(_szCurrentPassword,
_szPassword)) I= 0)

{
somPrintf("ask for a password\n");

pCreateParam = malloc(sizeof(ULONG));

*((PULONG)pCreateParam) = (ULONG)somSelf;

ulResult = WinDlgBox(HWND_DESKTOP,
HWND DESKTOP,
PasswordDlgProc,
hmodThisClass,
ID DLG PASSWORD,
pCreateParam) ;

if (ulResult == DID_OK)
{
if ((strcmp(_szCurrentPassword,

_szPassword)) == 0)
{

/* user is allowed in *I

/* Get ;nstance data pointer */

/* Set debug info ""/

I* If FinanceFile is locked */

/*Allocate memory to pass a */
I* ULONG to the dialog proc *I
I* Put the somSelf pointer */
I* in the CreateParam memory ""/

I* Display password dialog */
I* Desktop is owner ""/
/* Dialog procedure address ""/
/* Module handle *I
/* Dialog resource id */
/* Create Param holding the */
/* pointer to this object */

I* If user hit OK button */

/* If password is correct *I

I* Get title string */ strcpy(szTi t 1 e,
_wpQueryTitle(somSelf));

szTitle[strlen(szTitle)-9] = '\O';
_wpSetTitle(somSelf,szTitle);

/* Remove <LOCKED> */
/* Reset title string */

_wpSeticon(somSelf,
hUnlockedicon);

I* Set icon to unlocked
/* state

/*now we can allow the user access to the object proper */
bAllowAccess =TRUE;

}

*/
*/

else /* Password is incorrect */

}

{
WinHessageBox(HWNO DESKTOP, /* Display message to user */

HWND - DESKTOP,
•Password incorrect. FinanceFile remains locked.~,
•Password Failed",
0,
MB OK I
MB-CUAWARNJNG);

return((HWND)O);- I* Return NULL handle *I
}

} else {
bAllowAccess • TRUE;

}
somPrintf("now test if allow access\n");

if (bAllowAccess} {
switch (ulView) {

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 371

372 OS/2 V2.0 Volume 4

case OPEN FinanceFile:
somPrintf("allow-access ••• \n");

if (!_wpSwitchTo(somSelf, ulView)) {
/* Create a basic frame and client window for this instance */
return PWFinanceFilelnit(somSelf);

} /* endf f */
break;

default:
somPrintf("default processfng\n");

return(parent_wpOpen(somSelf,
hwndCnr,
ulView,
pa ram));

} /* endswitch */
} else {

/*Allow open to proceed in */
/* normal way using default */
/* processing */

somPrintf("not allowed access\n");
} /* endif */

}

/*
*
* METHOD: wpSetTitle PUBLIC
*
*
*
*
*
*
*
*
*/

PURPOSE: Sets the financeFile's title (icon text) to have the phrase <locked>
as a suffix if the FinanceFile is locked, or removes this suffix if
the FinanceFile is unlocked.

INVOKED: By wpOpen to set the unlocked state, and by lockFinanc,File to set
the locked state.

SOH_Scope BOOL SOHLINK pwFinanceFile wpSetTitle(PWFinanceFile *somSelf,
PSZ pszNewTitle) -

{

}

/*
*

CHAR szBuf[HlO]; /* Character buff er */

PWFinanceFileData *somThis ; /* Get instance data pointer */
PWFinanceFileGetData(somSelf);

PWFinanceFi leMethodDebug("PWFinanceFile" 1 /* Set debug info */
"pwFinanceFile_wpSetTitle");

strcpy(szBuf ,pszNewTitle);

if ((strcmp(s2CurrentPassword 1

:szPassword)) != O)
{

}

if ((strstr(szBuf,"LOCKED")) :a NULL)
{

strcat(szBuf 1 11 <LOCKED>");
}

/* Get current title */

/* If FinanceFile is locked */

/* and <LOCKED> not in
/* current title
/* Add <LOCKED> to title

*/
*/
*/

return (parent_wpSetTitle(somSelf,szBuf)); /*Invoke default processing*/

* METHOD: wpSetup PUBLIC
*
*
*
*
*
*
*
*
*
*
*
*/

PURPOSE: Sets FinanceFile properties based upon a setup string passed by the
object's creator as part of the WinCreateObject() call. The
overridden method simply processes the PASSWORD keyword to set
the FinanceFile's password inmediately upon instantiation, before
invoking the parent's default processing to handle all other
keywords.

INVOKED: By the Workplace Shell, upon instantiation of the object
instance.

SOH_Scope BOOL SCHLINK pwFinanceFile_wpSetup(PWFinanceFile *somSelf 1

{

}

/*
*

PSZ pszSetupString)

CHAR pszlnitPword[20]; /* Character buffer */
BOOL bFound;
ULONG Length;

PWFinanceFfleData *somThis ;
PWFinanceFileGetData(somSelf);

PWFinanceFileMethodDebug("PWFinanceFilea,
"pwFinanceFile_wpSetup");

if (*pszSetupString !a '\0')
{
bFoundR_wpScanSetupString(somSelf,

pszSetupString,
"PASSWORD",
pszlnitPword,
&Length);

if (bFound)
{

}

strcpy(_szPassword,
pszlnitPword);

strcpy(_szCurrentPassword,
pszlnitPword);

}

return(parent_wpSetup(somSelf,
pszSetupString));

/* Success flag
/* Returned length

*/
*/

/* Get instance data pointer */

/* Get debug info */

/* If string is present */

/* Parse setup string to */
/* find PASSWORD keyword */

/* Buffer for keyword value */
/* Length of returned string */

/* Initialize FinanceFile */
/* password */
/* Initialize user-entered */
/* password */

/* Invoke default processing */

* METHOD: wpSaveState PUBLIC

*
*
*
*
*
*
*
*/

PURPOSE: Saves the object instance's persistent state data. The
overridden method simply saves the password data, then invokes
the parent's default processing to handle any other instance
data defined by ancestor classes.

INVOKED: By the Workplace Shell, when the object becomes donnant.

SOH_Scope BOOL SCHLINK pwFinanceFile_wpSaveState(PWFinanceFile *somSelf)
{

}

/*
*

PWFinanceFileData *somThis ; /* Get instance data pointer */
· PWFinanceFileGetData(somSelf);

PWFinanceFileMethodDebug("PWFinanceFfle", /*Set debug info */
"pwFinanceFile_wpSaveState");

_wpSaveString(somSelf,
"PWFinanceFi 1 e",
lL,
szPassword);

_wpSaveString(somSelf,
"PWFinanceFile",
2L,
_szCurrentPassword);

return(parent_wpSaveState(somSelf));

/*Save FinanceFile password */
/* Class name */

/* Class-defined key */
/* String to be saved */
/* Save user-entered p'word */

/* Class name */
/* Class-defined key */
/* String to be saved */

/* Invoke default processing */

* METHOD: wpRestoreState PUBLIC
* .,,
.,,

*
*
*
* .,,

*/

PURPOSE: Restores the object instance's persistent state data. The
overridden method simply restores the password data, then
invokes the parent's default processing to handle any other
instance data defined by ancestor classes.

INVOKED: By the Workplace Shell, when the object becomes awake.

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 373

374 OS/2 V2.0 Volume 4

SOH_Scope BOOl SOHlINK pwFinanceFile_wpRestoreState(PWFinanceFile *somSelf,
UlONG ulReserved)

{

}

/*
*

UlONG ulRetlength; /* Length of returned string */

PWFinanceFileData *somThis R /* Get instance data pointer */
PWFinanceFileGetData(somSelf);

PWFinanceFileHethodDebug("PWFinanceFile", /*Set debug info */
"pwFfoancefile_wpRestoreState");

_wpRestoreString(somSelf,
"PWFinanceFile",
ll,
szPassword,

iulRetlength);
_wpRestoreString(somSelf,

"PWFinancefi le",
2L,
szCurrentPassword,

iulRetlength);

if ((strcmp(_szCurrentPassword,
_szPassword)) != 0)

{

}
_wpSetlcon(somSelf, hlockedicon);

/*Restore FinanceFile password */
/* Class name */

/* Class-defined key */
/* String to be restored */
/* length of returned string */
/* Restore user-entered pwd */

/* Class name */
/* Class-defined key */
/* String to be restored */
/* length of returned string */

/* If FinanceFile is locked */

/* Set icon to locked state */

return(parent_wpRestoreState(somSelf, /* Invoke default processing */
ulReserved));

* METHOD: wpSeticon PUBLIC

*
*
*

PURPOSE: This class method returns the handle to the correct icon for
the object.

* INVOKED:

*/

SOH_Scope BOOl SOHlINK pwFinanceFile_wpSeticon(PWFinanceFile *somSelf,
HPOINTER hptrNewicon)

{

}

PWFinancefileData *somThis = PWFinanceFileGetData(somSelf);
PWFinanceFileHethodDebug("PWFinanceFile","pwFinancefile_wpSetlcon");

if ((strcmp(szCurrentPassword,
:szPassword)) R= 0)

{

}

return (parent_wpSetlcon(somSelf,
hUnlockedicon));

else
{

}

return (parent_wpSeticon(somSelf,
hlockedlcon));

/* If password is correct */

/* return pointer to unlocked */

/* otherwise */

/* return locked icon pointer */

#undef SOM CurrentClass
#define SOM CurrentClass SOMHeta
/* -
*
* METHOD: wpclsQueryTitle PUBLIC

*
*
*
*
*
*
*

PURPOSE: This class method returns the default FinanceFile title for any
instance of the password protected FinanceFile class. This title
is used if a title is not supplied in the WinCreateObject()
call.

INVOKED: By the Workplace Shell, upon instantiation of the object
instance.

.,.,

SOH_Scope PSZ SCHLINK pwFinanceFilecls_wpclsQueryTitle(H_PWFinanceFile *somSelf)
{

}

/*
*

/* M_PWFinanceFileData *somThis a H_PWFinanceFileGetData(somSelf); */

H_PWFinanceFileHethodDebug("H_PWFinanceFile 1
' 1 /* Set debug info

"pwFinanceFi lecl s_wpclsQueryTitle");

return(DefaultClassTitle); /* Return default title

* METHOD: wpclsQuerylcon PUBLIC
*
*
*
*
*
*

PURPOSE: This class method returns the handle to the default icon for
the class. This method is not used in the current version,
but could be used if different icons are to be used for the
locked and unlocked states.

* INVOKED:
*
*/

*/

SOH_Scope HPOJNTER SCHLINK pwFinanceFilecls_wpclsQueryJcon(H_PWFinanceFile *somSelf)
{

/* H PWFinanceFileData *somThis a H PWFinanceFileGetData(somSelf); */
PWFinanceFileData *somThis = - /*Get instance data pointer*/

PWFinanceFileGetData(somSelf);

M_PWFi nanceFil eMethodDebug ("H_PWFinanceFil e11
1 /* Set debug info

"pwFi nanceFi lee ls_wpcl sQuerylcon");

return(hUnlockedlcon);
}

/*
*
* METHOD: wpclsinitData PUBLIC
*
*
*
*
*
*

PURPOSE: This class method allows the initialization of any class data
items. The overridden method simply obtains a module handle
to be used when accessing Presentation Manager resources, then
invokes the parent's default processing.

* INVOKED: By the Workplace Shell, upon loading the class DLL.
*
*/

SOH_Scope void SCHLINK pwFinanceFilecls_wpclslnitData(H_PWFinanceFile *somSelf)
{

APIRET apiret;

/* H_PWFinanceFileData *sornThis • H_PWFinanceFileGetData(somSelf); */

H_PWFinanceFileHethodDebug(0 H_PWFinanceFile 11
1 /* Set debug info

"pwFinanceFilecls_wpclslnitData");

apiret • DosQueryHoduleHandle("PWFin", & hmodThisClass);

if (apiret a: ND_ERROR)
scmPrintf("Handle OK\n•);

else
{
somPrintf("Handle Not OK tell me Why???\n");
}

hlockedlcon=WinloadPointer(HWND DESKTOP, /* load icons
hmodThisClass,
ID LOCK);

hUnlockedlcon=WinloadPointer(HwND DESKTOP,
hmodThisClass,

*/

*/

*/

*/

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 375

376 OS/2 V2.0 Volume 4

ID_UNLOCK);

parent_wpclsinitData(somSelf); /* Invoke default processing */
}

/*
*
* METHOD: wpclsUninitData PUBLIC

* PURPOSE: This class method allows the release of any class data items
* or resources. The overridden method releases the module handle
* obtained by wpclslnitData, then invokes the parent's default

*
*
*
*/

processing.

INVOKED: By the Workplace Shell, upon unloading the class DLL.

SOH_Scope void SCHLINK pwFinanceFilecls_wpclsUnlnitData(H_PWFinanceFile *somSelf)
{

}

/* M_PWFinanceFileData *somThis a H_PWFinanceFileGetData(somSelf); */

H_PWFinanceFil eHethodDebug ("H_PWFinanceFil e", /* Set debug info
"pwFinanceFilecls_wpclsUnlnitData•);

WinDestroyPointer(hlockedlcon);
WinDestroyPointer(hUnlockedlcon);

parent_wpclsUnlnitData(somSelf);

/* Free icons */

/**/
/* */
/* PROCEDURE NAME: PasswordDlgProc */
/* */
/* description: Dialog procedure for password dialog */
/* */
/* invoked: By Presentation Manager, in response to FinanceFile issuing */
/* WinDlgBox() call from _wpOpen method. */
/* */
/**/
HRESULT EXPENTRY PasswordDlgProc(HWND hwndDlg,

ULONG msg,
MPARAH mpl,
HPARAH mp2)

{
PWFinancefile *aPWF;
PWF_JNFO pwFinanceFilelnfo;

/* Define SOH pointer */
/* Define password structure */

CHAR szTemp[l08]; /* Character buff er */

switch (msg)
{

case WH_INJTDLG:

WinSetWindowULong(hwndDlg,

free(mp2);
break;

case WH_COHHAND:

QWL USER,
*((PULONG)mp2));

/* Detennine message class */

/* Dialog being initialized */

/* Store SOH pointer in
/* window word QWL_USER

*/
*/

/* Free Create Param memory */

/* User hit a pushbutton */

aPWF a (PWFinanceFile *)WinQueryWindowULong(hwndDlg, QWL_USER);

_Querylnfo(aPWF,
&pwFinanceFilelnfo);

switch (SHORTlFROHHP(mpl))
{

case DID_OK:

WinQueryDlglternText(hwndDlg,
ID_EF _PASSWORO,
sizeof(szTemp),
(PSZ)szTemp);

/* Get password data *I

/* Which button was hit? *I

/* Okay button */

/* Get text from entryfield */

*/

}

I*
*

I* Copy to password data *I
strcpy(pwFinanceFilelnfo.szCurrentPassword, szTemp);

_Setlnfo(aPHF,&pwFfoanceFilelnfo); I* Set instance data
WinDismissDlg(hwndDlg,DID_OK); I* Dismiss dialog */
break;

case DID_CANCEL:

WinDismissDlg(hwndDlg,
DID_CANCEL);

break;
}
return(HRESULT)TRUE;
break;

}
return(WinDefDlgProc(hwndDlg,

msg,
mpl,
mp2));

I* Cancel button hit */

/* Dismiss dialog */

I* Return from WH_COHHAND */

I* Invoke default PH message */
I* handling */

* METHOD: wpDraggedOverObject PUBLIC
*
*
*
*
*
*
*I

PURPOSE: Checks to see that the file is unlocked if user wants to
drop the object on a program.

INVOKED: By Workplace Shell, upon instantiation of the object instance.

*/

llSOH_Scope HRESULT SCHLINK pwFinanceFile_wpDraggedOverObject(PWFinanceFile *somSelf,
HRESULT SOMLINK pwFinanceFile_wpDraggedOverObject(PWFinanceFile *somSelf,

{
WPObject *DraggedOverObject)

CLASS PWFinanceFileClass;

PWFinanceFil eData *somThi s a PWFinanceFil eGetData (somSe lf);
PWFinanceFil eHethodDebug ("PWFi nanceFi 1 e", "pwFi nanceFi 1 e_wpDraggedOverObj ect "};

somPrintf("pwFinanceFile_wpDraggedOverObject");/* DHP *I

PWFinanceFileClass ; _somClassFromid(SOHClassHgrObject,
SOH_IdFromString("PWFinanceFile"));

II somPrintf(PWFinanceFileClass);

/*
*

if ((strcmp(_szCurrentPassword,
_szPassword)) !• 0)

{

I* If Financefile is locked

return (HRFROH2SHORT(DOR_NODROP,DO_UNKNOWN));
}
if (somisA(DraggedOverObject, WPProgram) II

:somisA(OraggedOverObject,-PWFinanceFileClass) II
_somlsA(OraggedOverObject,_WPProgramFile)) {

return (MRFROH2SHORT(DOR DROP,DO MOVE));
} I* end if *I - -

return (parent_wpDraggedOverObject(somSelf ,DraggedOverObject));

* METHOD: wpAddFileTypePage PUBLIC
*
*
*
*

PURPOSE: This class method replaces the type page with the it's own one
that only allows the FinanceFile Types.

*/

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 377

378 05/2 V2.0 Volume 4

* INVOKED: By the Workplace Shell, upon unloading the class OLL.

*I

SOH_Scope ULONG SOHLINK pwFinanceFile_wpAddFileTypePage(PWFinanceFile *somSelf,
HWND hwndNotebook)

PSZ psztype;
PWFinanceFileOata *somThis • PWFinanceFileGetOats(somSelf);
PWFinanceFileHethodOebug(•PwFinanceFile","pwFinanceFile_wpAddFileTypePage•);

II PAGEINFO pageinfo;

memset((PCH)&pageinfo,0,sizeof(PAGEINFO));
pageinfo.cb • sizeof (PAGE INFO);
pageinfo.hwndPage • NULLHANDLE;
pageinfo.usPageStyleFlags c BKA_HAJOR;
pageinfo.usPagelnsertFlags = BKA_FIRST;
pageinfo.pfnwp • DashBoardOlgProc;
pageinfo.resid • hmod;
pageinfo.dlgid • IDD_PWFILETYPES;
pageinfo.pszName • "File Type";
pageinfo.pCreateParams • somSelf;
pageinfo.idDefaultHelpPanel • ID_HELP_DASHBOARD;
pageinfo.pszHelplibraryName • szHelplibrary;

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II return _wplnsertSettingsPage(somSelf, hwndNotebook, &pageinfo);

II psztype • _wpQueryType(somSelf);
II somPrintf(•oata Type = >");
II somPrintf(psztype);
II sornPrintf("<\n");

return (SETTINGS_PAGE_REHOVED);
II return (parent_wpAddFileTypePage(somSelf ,hwndNotebook)); II do nothing

}

I*
*
* METHOD: wpDragOver PUBLIC

*
*
*
*
*
*I

PURPOSE: Checks to see that the object being dragged over me is also
either of my class or derived from me.

INVOKED: By Workplace Shell, upon instantiation of the object instance.

SOHAny *queryObjectFromDragltem(PORAGITEH pDragltem)
{

WPObject *Object•NULL;

if (DrgVerifyRHF (pDragltem, "ORM OBJECT", NULL)) {
Object .. OBJECT_FROM_DRAGITEH(pDragltem);
somPrintf ("OBJECT! !\n");

} else {
somPrintf(11 NOT AN OBJECT!!\n•);

I* add code in here to deal with non-objects, eg datafiles, and lines *I
I* selected from a listbox from a PWFinanceFile etc etc *I

} /* endif *I
return(Object);

}

SOH_Scope HRESULT SOHLINK pwFinancefile_wpDragOver(PWFinanceFile *somSelf,
HWND hwndCnr,

{
PDRAGINFO pdrglnf o)

ULONG ulltemCount •0;
ULONG ulltem •0;
CLASS PWFinanceFileClass;
SOHAny *ObjectBeingDragged;
HRESULT mr;
USHORT dropOperation,

drop Indicator;

PWFinanceFileData *somThis = PWFinanceFileGetData(somSelf);
PWFinanceFileMethodDebug("PWFinanceFile","pwFinanceFile_wpDragOver");

if ((strcmp(_szCurrentPassword,
_szPassword)} !a 0)

/* If FinanceFile is locked

{

}
return (HRFROM2SHORT(DOR_NODROP,DO_UNKNOWN));

/*for each of the items being dragged, check to see that they are all */
/* derived from PWFinanceFileClass */

PWFinanceFileClass = _somClassFromid(SOMClassMgrObject,
SOM_IdfromString("PWFinancefile"));

/* firstly will all the source object(s) pass my parents tests? */
mr m parent_wpDragOver(somSelf ,hwndCnr,pdrginfo);
dropindicator = SHORTlFROMMR(mr);
dropOperation = SHORT2FROMHR(mr);

if (dropindicator != DOR NEVERDROP)
{ somPrintf("passed parents testing\n");

/*passed the parent's tests, so unless
/* tests we will allow the DROP
dropindicator = DOR_DROP;
dropOperation = DO_COPY;

it fails this object's*/
*/

/* how many items are being dragged ? */
ulltemCount = DrgQueryDragitemCount(pdrginfo);

/* search through the objects and abort if we find any that aren't derived */
/* from PWFinanceFileClass */

somPrintf ("Number of Items being dragged "' %i. \n" ,ulltemCount);
for (u1Itema0; ulltem<ulitemCount; ulltem++) {

PDRAGITEM pDragltem; /* temporary variable*/

/* get one of the one or more drag items that we are receiving */
pDragitem = DrgQueryDragitemPtr(pdrginfo, ulitem);

ObjectBeingDragged = queryObjectFromDragltem(pDragitem);

if (ObjectBeingDragged) {
if (!_somlsA(ObjectBeingDragged,PWFinancefileClass)) {

*/

somPrintf("Object %i, is rejected because it is not derived from PWFinanceFileClass\n",ulltem);
return (HRFROH2SHORT(DOR_NEVERDROP,DO_UNKNOWN));

} /* endif */
somPrintf("Object %i, ;s acceptable for dropping\n",ulltem);

} else {
somPrintf("Object %i, is not a WPS object\n" ,ulltem);
/I return (MRFROM2SHORT(DOR_NEVERDROP,DO_UNKNOWN)); /*not an object*/

} /* endif */

} /* for */
} /* endif */

return (HRFROH2SHORT(dropindicator, dropOperation));

/* if we do the following line, the icon stays at the do not do symbol, why */
/* return (parent_wpDragOver(somSelf ,hwndCnr,pdrginfo)); */
}

/* .,,
* METHOD: wpPrintObject PUBLIC
*
*
*
*

PURPOSE: This class method allows this object to format it's output for
printing.

* INVOKED:

*/

SOH_Scope BOOL SCHLINK pwFinanceFile_wpPrintObject(PWFinanceFile *somSelf,
PPRINTDEST pPrintDest,

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 379

380 OS/2 V2.0 Volume 4

ULONG ulReserved)
{

BOOL worked;

PWFinanceFileData *somThis = PWFinanceFileGetData(somSelf);
PWFinanceFileHethodDebug("PWFinanceFile","pwFinanceFile_wpPrintObject");

somPrintf("Yes this is the new PrintObject, printing is disabled\n");
/* disable printing for now *I
return (FALSE);

II return(parent_wpPrintObject(somSelf,pPrintOest,ulReserved));
}

I*
*
* METHOD: wpDrop PUBLIC
*
*
*
*
*
*
*I

PURPOSE: To receive a dropped object.

INVOKED: By Workplace Shell, when another object has been dropped on
this object.

SOH_Scope HRESULT SCHLINK pwFinanceFile_wpDrop(PWFinanceFile *somSelf,
HWND hwndCnr,
PDRAGINFO pdrglnf o,
PORAGITEH pdrgltem)

CHAR
CHAR

szName[CCHHAXPATH];
szPath[CCHHAXPATH];
cbPath ~ CCHHAXPATH; UL ONG

UL ONG
UL ONG
CLASS
SOHAny
HRESULT
USHORT

ulltemCount =O;
ul Item =O;
PWFinanceFileClass;

*ObjectBeingDragged;
mr;
dropOperation,
drop Indicator;

BOOL flPrepared = TRUE; /I Assume we do not need to do a prepare
BOOL flRendering = FALSE;
PDRAGTRANSFER pOragTransf er;

PWFinanceFileOata *somThis = PWFinanceFileGetData(somSelf);
PWFinanceFileHethodDebug("PWFinanceFile","pwFinanceFile_wpDrop");

if ((strcmp(szCurrentPassword,
:szPassword)) == 0)

I* If FinanceFile is NOT locked */

{

I* make sure we are not dragging ourselves, and dropping onto ourselves *I
if (pdrglnfo->hwndSource != hwndCnr)
{

I* for each of the items being dropped, check to see that they are all */
I* derived from PWFinanceFileClass */

PWFinanceFileClass " _somClassFromld(SOHClassHgrObject,
SOH_ldFromString("PWFinanceFile"));

I* passed the parent's tests, so unless it fails this object's *I
I* tests we will allow the DROP */
droplndicator = OOR_OROP;
dropOperation = DO_COPY;

I* how many items are being dragged ? */
ulltemCount = DrgQueryOragitemCount(pdrglnfo);

I* search through the objects and abort if we find any that aren't derived */
I* from PWFinanceFileClass *I
somPrintf("Number of Items being dropped .. %i.\n",ulltemCount);
for (ulltem=O; ulltem<ulltemCount; ulltem++) {

PDRAGITEH pDragltem; I* temporary variable*/

/* get one of the one or more drag items that we are receiving *I

pDragltem 11 DrgQueryDragitemPtr(pdrglnfo, ulltem);

ObjectBeingDragged 11 queryObjectFromDragltem(pDragltem);

if (ObjectBeingDragged) {
if (!_somlsA(ObjectBeingDragged,PWFinanceFileClass)) {

somPrintf (11 0bject %i, is rejected for drop because it 1
' ,ulltem);

somPrintf("is not derived from PWFinanceFileClass\n");
} else {

somPrintf("Object %i, is acceptable for dropping, by wpDROP\n",ulltem);
} /* endif */

} else {
somPrintf("Object %i, is not a WPS object, can we render it\n 11 ,ulltem);

/* start of code to render item */

if (DrgVerifyRMF (pDragltem, "DRM_OS2FILE", NULL))
{

somPrfntf("An OS2FILE rendering method!\n");
/*Protocol allows the source object to propose a target name •••
*
* If it does, then try to use it, if it does not, then
* try to use the source name, if present. Finally, just
*make up our own name •••
*/

if (pDragltem->hstrTargetName &&
DrgQueryStrNameLen(pDragltem->hstrTargetName)

{

}

DrgQueryStrName(pDragltem->hstrTargetName,
sizeof(szName),szName);

somPrintf("Source proposes the target filename\n");

else
{

}

if (pDragltem->hstrSourceName &&
DrgQueryStrNamelen(pOragltem->hstrSourceName))

{
OrgQueryStrName(pOragltem->hstrSourceName,

sizeof(szName),szName);
somPrintf("Source proposes the source filename\n•);

}
else
{

szName [0] .. '\0';
somPrintf("no source, nor target name\n•);

}

/* Allocate and initialize a drag transfer structure
*/

somPri ntf ("a 11 ocati ng pDragtransf er structure\n");
pOragTransfer s DrgAllocDragtransfer(l);

if (pDragTransfer)
{

somPrintf("pDragtransfer structure allocated ok\n");
/* create a file or directory now to get its true name
*/

ObjectBeingDragged • _wpclsNew(_WPDataFile,
szName,
NULL,
wpclsQueryFolder(WPDataFile,u<WP NOWHERE>•, TRUE),

TRUE) ; - -

if (ObjectBeingDragged)
{

somPrintf(110bjectBeingDragged has been successfully allocated\n ..);
_wpQueryRealName(ObjectBeingOragged,szPath,&cbPath,TRUE);
somPrintf ("The ObjectBeingDragged filename is %s\n", szPath);

/* fill in the struct now
*/

pDragTransf er->cb
pDragTransfer->hwndClient

a sizeof(DRAGTRANSFER);
11 hwndCnr;

Appendix E. Source Code for the PWFolder and PWFlnanceFile objects 381

382 OS/2 V2.0 Volume 4

}

pDragTransfer->pditem • pDragltem;
pDragTransfer->hstrSelectedRHF a

DrgAddStrHandle("<DRH_OS2FILE,DRF_UNKNOWN>");
pDragTransfer->hstrRenderToName • DrgAddStrHandle(szPath);
pDragTransfer->ulTargetlnfo = OL;
pDragTransfer->usOperation = pdrglnfo->usOperation;
pDragTransfer->fsReply a O;

/*Now, if the source wants prepared, do it •••
*/

if (pDragltem->fsControl & DC_PREPARE)
{

somPrintf("Source wants prepared\n");
flPrepared a (BOOL)DrgSendTransferHsg(pdrglnfo->hwndSource,

DH RENDERPREPARE,
(HPARAM)pDragTransfer,
(HPARAH) NULL) ;

} else {
somPrintf("Source does not want prepared\n");

}
/* See if either we did not need to send a RENDERPREPARE, or
*we have successfully done so •••
*/
if (fl Prepared)
{

}

somPrintf("not prepared\n");
1~ Tell the source object where to put the file.
*/

flRendering a (BOOL)DrgSendTransferHsg(pDragltem->hwndltem,
DH RENDER,
(HPARAH)pDragTransf er,
(HPARAH)NULL);

if {!flRendering)
{

/* The partner object did not render, so delete
* the object we just created.
*/

_wpFree(ObjectBeingDragged);
somPrintf(•not rendering, we are deleting the object we just created\n");

} else {
somPrintf("rendering\n");

}

else
{

}

sornPrintf("Our partner wanted us to send him a prepare, and");
sornPrintf("now has changed his mind about things ••• , ABORT\n");

/* Our partner wanted us to send him a prepare, and
*now has changed his mind about things .••
* We cannot even send him an end conversation, as
* we do not know that the hwnd is any good.
*
* For now, we will treat this as an error.
*/

mr = (HRESULT)RC_DROP_ERROR;

} else {
sornPrintf("ObjectBeingDragged has NOT been successfully allocated\n");

}
if (fl Rendering)
{

mr = RC_DROP_RENDERING;
}
else
{

}

DrgDeleteStrHandle(pDragTransfer->hstrRenderToName);
DrgFreeDragtransfer(pDragTransfer);

} else {
somPrintf("Not an OS2FILE rendering methid\n");

}

}

I*
*

} I* endif *I

} I* for *I
} else {

somPrintf("we are try;ng to drop onto ourselves, not allowed\n")i
} I* end;f *I

} else {
somPrintf("LOCKED, drop ;s disallowed\n");

} r endif *I

return((HRESULT) NULL);

* METHOD: wpFilterPopupMenu PUBLIC
*
*
*
*

PURPOSE: This class method is called when the user asks for the context
(popup) menu.

* INVOKED:
*
*I

SOH_Scope ULONG SCHLINK pwFinanceFile_wpFilterPopupHenu(PWFinanceFile *somSelf,
ULONG ulflags,
HWND hwndCnr,
BOOL fMultiSelect)

{ ULONG ulPopupFlags;

PWFinanceFileData *somThis a PWFinanceFileGetData(somSelf);
PWFinanceFileHethodDebug("PWFinanceFile","pwFinanceFile_wpFilterPopupHenu");
somPrintf("We were passed %0\n",ulFlags);

I* first find out what our ancestors have done! *I
II ulPopupFlags = parent_wpFilterPopupMenu(somSelf,ulFlags,hwndCnr,fHultiSelect);
II somPrintf("Our ancestor changed this to %0\n",ulPopupFlags);

ulPopupFlags = ulFlags;

}

I* now what have the done to the .. Create another" menu item *I
if ((ulPopupFlags & CTXT_NEW) ="' CTXT_NEW) {

I* the "Create another" menu item is on our Popup, so remove it *I
somPrintf("'Create another' menu item is being removed\n");
ulPopupFlags 2 ulPopupFlags & -cTXT_NEW;

} else {
I* the "Create another" menu item is NOT on our Popup, so add it *I
somPrintf(••create another' menu item is being added\n");
ulPopupFlags = ulPopupFlags I CTXT_NEW;

} /"' endif *I
somPrintf("We changed this to %0\n",ulPopupFlags);

return(ulPopupFlags);

I************************** ORDINARY CODE SECTION ***************************
***** *****

Any non-method code should go here. *****

**I
#undef SOM_CurrentClass

I***
* *
*
*
*
*
*
*

ROUTINE: PWfinanceFilelnit()

DESCRIPTION: PWFinanceFile Inisialisation

RETURNS: Handle of PWF;nancefile frame window, NULL if error

*
*
*
*
*
*

***I
HWND PWFinanceFilelnit (PWF;nancefile* somSelf)
{

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 383

384 OS/2 V2.0 Volume 4

HAS hab;
HWND hwndFrame = NULLHANDLE;
HWND hwndClient = NULLHANDLE;
PWINDOWDATA pWindowData;

/* PH anchor block handle */
/* Frame window handle */

BOOL fSuccess;
SWCNTRL swcEntry;
FRAHECDATA flFrameCtlData;

/* Switch Entry */
/* Frame Ctl Data */

somPrintf("PWFinanceFilelnit\n");

hab a WinQueryAnchorBlock(HWND DESKTOP);
if (!WinRegisterClass(hab , szFinanceFileWindowClass, (PFNWP)FinanceFileWndProc ,

cs_SIZEREDRAW I CS_SVNCPAINT, sizeof(pWindowData)))
{

}

/*
*
*
*
*/

somPrintf(NFinanceFilelnit Failure in WinRegisterClass\n");
return NULLHANDLE ;

Allocate some instance specific data in Window words of Frame window.
This will ensure our window procedure can use this object's methods
(our window proc isn't passed a* somSelf pointer).

pWindowData a (PWINDOWDATA) _wpAllocHem(somSelf, sizeof(*pWindowData), NULL);

if (!pWindowData)
{

somPri ntf (" FinanceFi le lni t wpAl l ocMem failed to a 11 ocate pWi ndowData\n");
return NULLHANDLE;

}

memset((PVOID) pWindowData, 0, sizeof(*pWindowData));
pWindowData->cb • sizeof(*pWindowData); /*first field= size*/
pWindowData->somSelf = somSelf;

/* Create a frame window
*/

flFrameCtlData.cb a sizeof(flFrameCtlData);
flFrameCtlData.flCreateFlags = FCF_SIZEBORDER FCF_TITLEBAR FCF_SVSHENU

FCF HINHAX ;
flframeCtlData.hmodResources = hmodThisClass;
flFrameCtlData.idResources = ID_UNLOCK;

hwndFrame "
WinCreateWindow(

/* create frame window */

HWND DESKTOP,
WC FRAME,
_wPQueryTitle(somSelf),
a,
a, a, a, e,
NULLHANDLE,
HWND TOP,

/* parent-window handle
/* pointer to registered class name
/* pointer to window text
/* window style
/* position of window
/* owner-window handle
/* handle to sibling window
/* window identifier
/* pointer to buff er

*/
*/
*/
*/
*/
*/
*/
*/
*/

(USHORT) ID FRAME,
(PVOID) &flFrameCtlData,
NULL); /* pointer to structure with pres. params. */

if (!hwndFrame)
{

}

somPrintf("FinanceFilelnit Failure ;n WinCreateWindow\n");
return NULLHANDLE;

hwndClient a /* use WinCreateWindow so we can pass pres params */
WinCreateWindow(

hwndFrame, /* parent-window handle */
szFinanceFileWindowClass, /* pointer to registered class name */
NULL, /* pointer to window text */
a, /* window style */
e, e, a, a, /* position of window */
hwndFrame, /* owner-window handle */
HWND_TOP, /* handle to sibling window */
(USHORT)FIO CLIENT, /* window identifier */
pWindowData~ /* pointer to buffer */
NULL); /* pointer to structure with pres. params. */

if (!hwndClient)
{

WinDestroyWindow(hwndFrame);
return NULLHANDLE;

WinSendMsg(hwndFrame,WH_SETICON,HPFROHP(_wpQuerylcon(somSelf)),NULL);
WinSetWindowText(WinWindowFromID(hwndFrame,(USHORT)FID_TITLEBAR),

_wpQueryTitle(somSelf));

/*
* Restore the Window Position
*/

f Success =
WinRestoreWindowPos(

szFinanceFileClassTitle,
_wpQueryTitle(somSelf),
hwndFrame);

ff (!fSuccess)
{

SWP swp;

/*Get the dimensions and the shell's suggested
* location for the window
*/

WinQueryTaskSizePos(hab,e,&swp);

/* Set the frame window position
*/

/* class title */
/* object title */

swp.fl = SWP SIZEISWP HOVEISWP RESTOREISWP ZORDER;
WinSetWindowPos(hwndFrame,-HWND TOP~ swp.x, swp.y, swp.cx,

swp.cy, swp.fl);-
}

WinShowWindow(hwndFrame,TRUE);

return hwndFrame; /* success */

} /* end FinanceFilelnit() */

/**
*
*
*

FinanceFileWndProc()

* DESCRIPTION: FinanceFile Window Procedure
*
**/
HRESULT EXPENTRY FinanceFileWndProc(HWND hwnd, ULONG msg, HPARAH mpl, HPARAH mp2)
{

UL ONG
PWINDOWDATA
HWND

Menu Id;
pWindowData;
hwndFrame;
acBuffer[l0];
fSuccess;
szPath[CCHHAXPATH];
cbPath z CCHHAXPATH;

CHAR
BOOL
CHAR
ULONG

hwndFrame a WinQueryWindow(hwnd, QW_PARENT);

switch{ msg)
{

case WH_CREATE:

pWindowData = {PWINDOWDATA) mpl;

if (pWindowData aa NULL)
{

}
/*
*

somPrintf (11 FinanceFileWndProc:WH_CREATE couldn't get window words");
return FALSE;

Fill in the class view/usage details and window specific data

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 385

386 OS/2 V2.0 Volume 4

* for this instance.
* Hust create useitemt add it to the object's use list and register
* the view
*!

pWindowData->Useltern.type = USAGE OPENVIEW;
pWindowData->Viewltem.view = OPEN_FinanceFile;
/*
*Hust be frame. be careful because this procedure is for the client.
*must get parent and pass that as Viewltem.handle.
*/

pWindowOata->Viewltem.handle = hwndframe;
pWindowOata->x = 10;
pWindowData->y = le;
pWindowOata->xDir = e;
pWindowData->yDir = 0;

/*
*
*

Set window pointer with object pointer and instance view info.
Then add view to the in-use list so wpSwitchTo works.

*/
WinSetWindowPtr(hwndt QWL_USERt pWindowOata);
/*
* wpAddToObjUseList will tell the shell to store the view in
*the internal linked list for the object to enable wpSwitchTo and other
*methods to find the view. The shell will also subclass the view window
*this gives you title bar context menu when you call wpRegisterView.
* wpRegisterView also puts the view in the window list and sets up
*the title bar like: nobject Title - View Title"
*/

_wpAddToObjUseList(pWindowData->somSelft&pWindowData->Useltem);
_wpRegisterView(pWindowData->somSelf t hwndFramet

_wpQueryTitle(pWindowData->sornSelf));
WinSetFocus(HWND_DESKTOPt hwndFrame);

/*what is the filename of the file */
if (_wpQueryRealName(pWindowData->somSelf,szPatht&cbPath,TRUE))

{
somPrintf("File name is %s, size %1 \n",szPatht cbPath);

} else {
somPrintf ("failed to get filename\n");

} /* endif */

break;

case WH_COMHANO:

break;

case WM PAINT:
pWindowData = (PWJNDOWDATA) WinQueryWindowPtr(hwndt QWL_USER);

if (pWindowData cc NULL)
{

}

somPrintf(•financeFileWndProc:WH_PAINT couldn't get window words\n");
return FALSE;

else
{

}

HPS
RECTL

hps;
rectl;

hps = WinBeginPaint(hwndt (HPS)NULLHANDLEt &rectl);
WinfillRect(hps, &rectl, SYSCLR_WINDOW);
WinEndPaint(hps);

break;

case WM CLOSE:
{ -

HAB hab;

hab = WinQueryAnchorBlock(HWND_DESKTOP);

}

}

pWindowData = (PWINDOWDATA) WinQueryWindowPtr(hwnd, QWL_USER);

if (pWindowData == NULL)
{

}

somPrintf(•FinanceFileWndProc:WH_CLOSE couldn't get window words\n•);
return FALSE;

fSuccess =
WinStoreWindowPos(szFinanceFileClassTitle,_wpQueryTitle(pWindowData->somSelf),

hwndFrame);
/*
* Must remove from obj use list when window is closed. (can be done
* on WH_DESTROY instead)
*/

_wpOeleteFromObjUseList(pWindowData->somSelf ,&pWindowData->Useltem);
_wpFreeMem(pWindowData->somSelf,(PBVTE)pWindowData);

WinDestroyWindow (hwndFrame)

break;

default:
return WinOefWindowProc(hwnd, msg, mpl, mp2);

return FALSE;

} /* end FinanceFileWndProc() */

E.2.3 Source Code for the PWFin.MAK file

Appendix E. Source Code tor the PWFolder and PWFinanceFile objects 387

388 OS/2 V2.0 Volume 4

#**
Dot directive definition area (usually just suffixes)
#**

.SUFFIXES: .c .obj .dll .csc .sc .h .ih .ph .psc .re .res

#**
N Environment Setup for the component(s).
#**

SOHTEHP ... \somtemp
SCPATH a D:\toolkt20\sc
HPATH .. D:\toolkt20\c\os2h
LIBPATH :: D:\toolkt20\os2lib

! if [set SHINCLUDE::. ; $ (SC PATH) ;] 11 \
[set SHTMP=S(SOHTEHP)] II\
[set SHEHJT::ih;h;ph;psc;sc;c;def]

!endif

!if [cd S(SOHTEHP)]
! if [md S(SOMTEHP)]

error Error creating S(SOHTEHP) directory
endif

!else
I if [cd ••]
I error Error could not cd •• from S(SOMTEHP) directory
I endif
lendif

N
N Compiler/tools Macros
II

cc
LINK
LDFLAGS
LIBS

ice /c /Ge- /Gd- /Se /Re /ss /Ms /~+ /l+ /Li+ /ls+ /lx+ /la+
link386
/noi /map /nol /nod /exepack /packcode /packdata /align:16 /information

~ som. lib os2386. lib dde4mbs.lib

#**
H Set up Macros that will contain all the different dependencies for the
H executables and dlls etc. that are generated.
#**

OBJS = pwFin.obj

#**
N Setup the inference rules for compiling source code to
N object code.
//**

.csc.c:
SC -r $<

.c.obj:
S(CC) -I$(HPATH) -c S<

all: pwFin.dll

pwFin.ih: $*.csc

pwFin.obj: $*.c $*.ih S*.h $*.sc

pwFin.dll: S(OBJS) pwFin.res
$(LINK) S(LDFLAGS) S(OBJS),S@,,$(LIBS),$*;
re $*.res $*.dll
mapsym pwFin.map

pwFin.res: pwFin.rc
re -r $*.re $*.res

E.2.4 Source Code for the PWFin.RC file
#define INCL WIN
#include <os2.h>

#include ndialog.h"

ICON ID LOCK LOCKED.ICO
ICON ID=UNLOCK UNLOCKED.ICO

MENU ID CXTMENU LOCK LOADONCALL MOVEABLE DISCARDABLE
BEGIN - -

HENUITEM "-lock Finance File", IDM LOCK
END -

MENU ID OPENFinanceFile LOADONCALL MOVEABLE DISCARDABLE
BEGIN -

HENUITEH "Open Finance File•, IDH_OPENFinanceFile
END*/

DLGTEMPLATE ID DLG PASSWORD LOADONCALL MOVEABLE DISCARDABLE
BEGIN - -

DIALOG "Password", ID DLG PASSWORD, 35, 26, 224, 76, FS SYSHODAL
FS_SCREENALIGN-1 WS_VISIBLE, FCF_TITLEBAR -

END

BEGIN
ENTRYFIELD

LTEXT

DEF PUSHBUTTON
PUSHBUTTON

END

••, ID EF PASSWORD, 13, 38, 97, 8, NOT ES AUTOSCROLL
ES MARGIN-I ES UNREADABLE -
"Finance File is locked. Please enter password to open 1

',

102, 10, 56, 197, 8
•ok", DID OK, 36, 9, 40, 14
"Cancel",-DID_CANCEL, 137, 10, 40, 14

E.2.5 Source Code for the Dialog.H file
#define ID DLG PASSWORD 100

103 #define ID=EF_PASSWORD

#define IO DLG FIND
#define ID-EF TELNUHBER
II define I(EF)URt~AME

l#defi ne ID LOCK
/#define ID=UNLOCK

#define ID CXTHENU LOCK
#define JOH LOCK -
/#define IOH=QUERY

200
201
203

300
301

Ox6501
Ox6502
Ox6503

/*
*
*
tr

The following user-defined Popup menu items (ID_xxx) should be higher
than WPHENUID_USER.

* The JD OPENFinanceFile will become a submenu of the system's popup open menu
* id, WPHENUID_OPEN.

* These menu ids don't really matter. The MENU could be any number.
* It is the HENUJTEHS that have to be greater WPHENUIO+*
*/

#define ID OPENFinanceFile
#define IDH_OPENFinanceFile

/* Set unique view ids. */

0x6504
0x6505

/* define OPEN_ constant to represent the new view. */
/* *Hust* be equal to the menu id used for this view.*/
#define OPEN_Financefile IDH_OPENFinanceFile

#define ID_FRAHE 3000 /* client window id */

Appendix E. Source Code for the PWFolder and PWFinanceFile objects 389

390 · OS/2 .v2.o Volume 4

Glossary

ACDI. Asynchronous Communication Device
Interface; programming interface which supports
device-independent communication between devices
on an asynchronous communications link. ACDI is
supported by OS/2 Extended Edition Version 1.x, OS/2
Extended Services, and by a number of other
hardware and software vendors.

action. A user-specified operation that is applied to
an object.

action window. Term used in SAA CUA'91
documentation to refer to a short-lived window used
to display information and receive input from the user
in a structured dialog format. The information is
typically related to a particular action being
performed by the application. Implemented in
Presentation Manager using a dialog box.

address conversion. The process of converting a 0:32
memory reference to a 16: 16 memory reference, and
vice versa. Part of thunking.

address translation. (1) The process of resolving a
0:32 memory reference into a physical memory
address. When using the paged memory option in the
80386 processor, a memory pointer passed by an
application consists of Page Directory and Page Table
entries, and an offset within a physical page. This is
resolved by the processor into a 32-bit physical
memory address. The validity and legality of the
memory reference is also checked during the
translation process, and a general protection
exception is generated if necessary. (2) The process
of resolving a 16:16 memory reference into a physical
memory address using a process's local descriptor
table. The validity and legality of the memory
reference is also checked during the translation
process, and a general protection exception is
generated if necessary.

ancestor. Term used in Workplace Shell
programming to refer to any object class from which
a new object class inherits methods and/or data. An
ancestor may be the parent of the new object class, a
parent of the parent, etc. See also descendant.

API. Application Programming Interface; term used
to described the set of functions provided by which an
application may gain access to operating system
services.

APPC. Advanced Program-to-Program
Communication; programming interface for peer-level
communication between applications over an SNA
LU6.2 communications link. APPC is supported in the
PWS under DOS (using the APPC/PC product), and
under OS/2 Extended Edition Version 1.x and OS/2
Extended Services using the Communications

@Copyright IBM Corp. 1993

Manager. It is also supported in AS/400 systems and
in System/370 hosts running VM/CMS and CICS.

application-controlled viewport. Viewport within a
help window or online document window, where the
display of information within that viewport is
controlled by an application, which is specified by the
developer of the source information.
Application-controlled viewports may be used to
display image, video or other types of information
under the control of the Information Presentation
Facility. See also !PF-controlled viewport.

application-modal. Term used to describe a message
box or dialog box for which processing must be
completed before further interaction with any other
window owned by the same application may take
place. Interaction with windows owned by other
applications is unaffected.

application object. An object consisting of a
particular representation of a data entity, along with
its associated methods; the term is used in this
document for clarity, in order to differentiate the
concept from that of a data object.

application resource. Term used to describe a
development resource that is application-specific.
Such resources include source code modules and
dynamic link libraries that will be used by only a
single application.

ASCII. American Standard Code for Information
Interchange; system which defines a standard for the
representation of alphanumeric information within
computer systems.

asynchronous processing. Invocation of another
procedure whereby that procedure is dispatched as a
separate thread of execution, independent of the
caller. Control returns to the caller as soon as
dispatching is complete; the caller may then continue
execution without waiting for the dispatched
procedure to complete its processing. Asynchronous
processing enables a Presentation Manager
application to preserve the user responsiveness goals
laid down by Common User Access guidelines, by
executing lengthy operations as separate threads of
execution.

baselinlng. Process of establishing that a user-level
application resource passes defined unit testing
criteria before being promoted to production level.
See also promotion and production-level.

base storage class. Term used to describe the three
System Object Model object classes that form the
basis of the inheritance hierarchy implemented by the
Workplace Shell.

391

bit. A binary digit, which may have a value of either
zero or one. Bits are represented within a computing
device by the presence or absence of an electrical or
magnetic pulse at a particular point, indicating a one
or zero respectively.

byte. A logical data unit composed on eight binary
digits (bits).

CASE. Computer Aided Software Engineering; term
used to describe the concept of automated application
design and code generation, based upon a set of
requirements entered by a user. Products that
implement CASE concepts are known as CASE tools.

cdecl. Linkage convention used in 16-bit "C"
language programming under the IBM C/2 compiler,
which causes the compiler to generate object code for
a function or subroutine, such that parameters are
placed on the stack in right-to-left order when the
subroutine is called, and the calling routine clears the
stack after control is returned. This is the default for
"C" programs. Contrast with pascal linkage
convention.

checkout. Process of recording the drawdown of an
application resource by a developer for modification.

child window. A window that resides wholly within
another window, known as its parent window. and that
is restricted to the boundaries of the parent window.

class-based. Term used to describe an
implementation of object-oriented programming,
whereby object classes are defined in terms of other,
previously-defined object classes; the new class takes
on the properties and methods of the existing class or
classes, in accordance with the principle of
inheritance. The various dependencies thus formed
constitute an inheritance hierarchy. Such an
approach facilitates the creation of new object classes
with minimal effort, but at the expense of increased
interdependence and reduced object granularity.
Compare with module-based approach.

class data. Data item for which the definition and
contents are determined for an entire object class
rather than an individual instance of that class;
contrast with instance data.

class definition file. ASCII file that defines the
characteristics of a Workplace Shell object class; used
as input to the SOM Precompiler.

client area. See client window.

client-server. Term used to describe an application
architecture whereby an application module (the
server) accepts requests from a number of other
application modules (the clients) and performs actions
on behalf of these clients. Presentation Manager
applications may be designed in such a way as to
embody a client-server architecture.

392 OS/2 V2.0 Volume 4

client window. The area within a window that is used
by an application to display information. The client
window is actually a child window of the frame
window within which it resides.

Common Programming Interface. Component of
Systems Application Architecture that defines a set of
programming languages and interfa~es.

Common User Access. Common User Access;
component of Systems Application Architecture that
comprises a set of guidelines for defining user
interface elements of an application. CUA includes
such items as screen layout, PF key usage, etc.

compatability region. In the OS/2 Version 2.0 flat
memory model, the address region below 512 MB,
which may be addressed by a 16-bit application using
the 16:16 addressing scheme. Under OS/2 Version
2.0, this region is equivalent in size to the process
address space.

compatability region mapping algorithm. Algorithm
used to perform address translation between 16:16
and 0:32 addressing schemes. See also thunking.

complex viewport. Term used to describe the
creation of multiple viewports within the same help
window or online document window, with separate
formatting and scrolling characteristics. For example,
one viewport may contain a bitmap, while another
contains supporting text. The text viewport may be
scrolled, while the other viewport containing the
bitmap remains constant in the window. See also
simple viewport.

context switching. In a multitasking operating
system, the act of halting a currently executing task,
saving its task state, and loading and dispatching a
new task. Note that OS/2 undertakes context
switching on the basis of threads rather than
hardware-defined tasks.

control. See control window.

Control Panel. Application provided by the OS/2
Presentation Manager user shell, which allows a user
to set and customize various system parameters and
attributes such as screen colors, default printer
settings, etc.

control window. A specialized window created for a
specific purpose, such as a text entry field, a push
button or a list box. The general concept of control
windows also includes children of the frame window
such as the title bar, menu bar and system, minimize
and maximize icons. Also known simply as a control.

cooperative multitasking. Multitasking
implementation whereby applications executing in the
system must voluntarily relinquish control of the
processor in order to allow another task to execute.

Cooperative multitasking is typically less reliable than
pre-emptive multitasking, and results in lower system
throughput.

CPI. See Common Programming Interface.

CRMA. See compatability region mapping algorithm.

CUA. See Common User Access.

DASO. Direct Access Storage Device; in traditional
personal computer parlance, a fixed disk drive.

data object. A specific representation of a logical
data entity; for example, the same logical data entity
may exist both in memory and on a disk file. These
representations are considered to be distinct data
objects. See also application object.

descendant. Term used in Workplace Shell
programming to denote any object class which
inherits methods and/or data from the current object
class. See also ancestor.

desktop. The screen background in the OS/2
Presentation Manager environment, upon which
windows are displayed.

development resource. Identifiable component of an
application, such as a source code module, dynamic
link library, Presentation Manager icon, etc;
alternatively, a utility or tool used to develop an
application, such as a compiler, link-editor or
programmers' toolkit.

dialog. An interaction between an application and a
user, based upon the need to achieve a single logical
task, such as the opening of a file.

dialog box. A special, short-lived window created by
an OS/2 Presentation Manager application to display
information and receive input from the user in a
structured dialog format. The information is typically
related to a particular action being performed by the
application.

Dialog Box Editor. Utility application provided with
the IBM Developer's Toolkit for OS/2 2.0, which allows
the design and creation of templates for dialog boxes.

dialog procedure. Special case of a window
procedure; associated with a dialog box rather than a
standard window.

direct manipulation. User interface technique
whereby application functions are initiated by the user
manipulating objects, represented by icons, on the
Presentation Manager or Workplace Shell desktop.
The user typically initiates an action by selecting an
icon, pressing and holding down a mouse button while
.. dragging" the icon over another object's icon on the
desktop. The user then "drops" the icon over the
target object by releasing the mouse button. For this

reason, the technique is also known as "drag and
drop" manipulation.

DLL. See dynamic link library.

domain. Logical grouping of users, applications and
devices in a network. which is treated as a coherent
unit for network administration purposes.

dormant. Term used to denote the state of a
Workplace Shell object when no views of that object
are currently open. Dormant objects typically do not
"own" system resources, and their instance data is in
an unknown state.

DOS. Disk Operating System; operating system for
programmable workstations, originally developed by
Microsoft Corporation as MS DOS, and marketed
under license by IBM. Later versions were developed
jointly by Microsoft and IBM.

DOS Compatibility Box. Facility provided by OS/2
Version 1.3 that allows a single real mode (DOS)
application to execute under control of OS/2,
occupying the lowest 640 KB of physical memory. A
real mode application executing in this way may
coexist with other protected mode applications in the
same system. Certain restrictions are imposed on
applications executing in the DOS Compatibility Box;
an application may not be a TSR application, nor
should it be a time-dependent application (such as a
terminal emulator). These limitations are overcome
by the Multiple Virtual DOS Machines feature
implemented by OS/2 Version 2.0.

DOS settings. Feature implemented within the
Multiple Virtual DOS Machines component of OS/2
Version 2.0, enabling a virtual DOS machine to be
customized to suit the requirements of an application
running within it. This feature enables greater
application compatibility for virtual DOS machines.

drag and drop. See direct manipulation.

dragitem. In the context of direct manipulation, an
item that is currently being dragged on the desktop
by the user.

drawdown. Process of copying an application
resource from a master-level library to a developer's
own working library.

dynami~ linking. Process under OS/2, whereby
resolution of external references within an application
to modules in dynamic link libraries (DLLs) is deferred
until load time or run time. This allows modification
of modules contained in DLLs without the need to
link-edit an application once more. Since DLLs are
normally written as reentrant code, dynamic linking
also allows multiple applications to use the same
copy of a DLL in memory, thus reducing the storage
requirements of OS/2 applications.

Glossary 393

dynamic link library. Library containing OS/2
application code and/or resources, which may be
linked by one or more applications using the OS/2
dynamic linking process.

EHLLAPI. Emulator High-Level Language Application
Programming Interface; progr~mming interface
provided by OS/2 Extended Edition Version 1.x and
OS/2 Extended Services, which enables PWS
applications to emulate keystroking for host terminal
emulation sessions.

encapsulation. Concept whereby the definition of a
data object is included as part of the application
object that owns and manipulates the data object.

entity. Data item that must be manipulated by an
application. See also logical data entity, data object
and application object.

event-driven. Term used to describe an application
environment where the sequence of processing is
determined primarily by the application's response to
external events, which may be initiated by the user,
the operating system or other applications.

event semaphore. Semaphore used by applications
to signal an event such as the termination of a
thread.

exception handler. Application-supplied routine that
is registered with OS/2 Version 2.0 on a per-thread
basis, and invoked by the operating system whenever
an exception condition occurs for that thread.
Multiple exception handlers may be chained for each
thread, and a handler may process an exception or
allow it to pass on down the chain. OS/2 Version 2.0
itself provides default exception handlers for all
exception conditions.

execution instance. An individual process executing
a reentrant code module. Such a module may have
multiple execution instances in existence at any one
time; under OS/2, the operating system maintains a
separate task state for each execution instance.

exportable entry point. Entry point for an application
function that is invoked from outside the current
executable module; for example, window procedures,
which are invoked by Presentation Manager on the
application's b_ehalf, rather than by the application
itself.

external entity. An entity such as a remote system
or data entry device which exists outside the
application, and interacts with the application. Such

. an entity and the methods to manipulate it may be
encapsulated in an application object.

external reference. Program call to a memory
address outside the current executable module; the

394 OS/2 V2.0 Volume 4

target of the call is typically a library routine.
Examples of external references are OS/2 system
service calls.

EXPORTS statement. Statement used in a module
definition file to define exportable entry points.
Required by all OS/2 Presentation Manager
applications under OS/2 Version 1.3 uniess the -Alfu
option is specified at compile time.

far call. When using the segmented memory model, a
program call to a routine located in a different
memory segment; such a call must use both a
segment address and an offset in the branch
instruction, rather than just the offset as is the case
with a near call. By default, C programs compiled
with the medium or large memory models generate
far calls.

FIFO. First In, First Out; term used to describe a
queueing algorithm whereby items are serially
inserted into and removed from a queue structure,
and where the first item placed into a queue structure
is the first item to be removed.

flat memory model. Conceptual view of real memory
implemented by OS/2 Version 2.0, where the
operating system regards memory as a single linear
address range of up to 4 GB.

focus. See input focus.

Font Editor. Utility provided with the IBM
Developer's Toolkit for OS/2 2.0. which enables the
design and creation of new fonts.

frame area. See frame window.

frame window. A window that contains the border
visible on the screen; various control windows such
as the title bar, menu bar and icons are children of
the frame window. The client window, used by the
application to display information, is also a child of
the frame window.

functional decomposition. Application design
technique also known as structured programming,
whereby procedures become the focus of the
application design and are progressively divided into
smaller units of work until an atomic level is reached
that may be implemented by a series of operations in
a conventional programming language.

GB. Gigabyte; 1024 Megabytes, or 1024 x 1024 x
1024 bytes.

graphical model. Object-action, event-driven user
interface model defined in the IBM Systems
Application Architecture CUA Advanced Guide to User
Interface Design. The graphical model makes
extensive use of windows and graphical visual cues,
and is supported by Presentation Manager.

GRE. Graphical Rendering Engine; component of the
OS/2 Version 2.0 operating system responsible for
drawing graphical items on the display.

guard page. Uppermost committed page of a private
memory object, or lowermost committed page of a
shared memory object, set using the PAG_GUARD
flag. A write operation into a guard page generates a
guard page exception, which may be trapped by an
application-registered exception handler, which may
then commit additional pages of storage. See
exception handler.

guard page exception. Exception condition generated
by OS/2 Version 2.0 when an application writes into a
guard page. Like other exception conditions, the
guard page exception may be trapped by an
exception handler registered by the application. See
exception handler.

help instance. A link between an application and the
Information Presentation Facility, which allows
information to be passed between the two, in order to
display help panels and enable the application to be
informed of events occurring within help windows.

help library. A file produced by the IPF compiler,
which contains a collection of help panels related to a
particular application, and which is used by the
Information Presentation Facility to display help
information for that application.

help panel. A unit of help information, displayed in a
help window under the control of the Information
Presentation Facility.

help window. A window displayed by the Information
Presentation Facility at the request of an application,
containing a help panel with information pertaining to
the active application window.

Hungarian notation. Technique for including data
typing in variable and procedure names within
application source code; devised by Charles Simonyi
of Microsoft.

hypergraphics. Under the Information Presentation
Facility, a portion of a bitmap displayed in a help
panel or online document, which may be selected by
the end user. Selecting such an item causes an event
to occur, such as the display of another help panel, a
popup window, the dispatch of a message to the
parent application or the start of a new application.
See also hypertext.

hypertext. Under the Information Presentation
Facility, a word or phrase in a help panel or online
document, which may be selected by the end user.
Selecting such an item causes an event to occur, such
as the display of another help panel, a popup window,
the dispatch of a message to the parent application or
the start of a new application. See also
hypergraphics.

icon. In the Presentation Manager user interface, a
small graphical image that represents an application,
window or other object such as a file or device. The
user may directly manipulate icons on the desktop to
perform work tasks.

Icon Editor. Utility application provided with OS/2
Version 2.0, which may be used to de:;ign and create
icons.

import library. Library file containing information on
functions and resources contained in a dynamic link
library. Used as input to the OS/2 linkage editor. Use
of an import library negates the need for an IMPORTS
statement in an application's module definition file.

IMPORTS statement. Statement used in a module
definition file to denote functions that will be imported
from a dynamic link library. Required for any
application that uses a DLL, unless an import library
containing information on the DLL functions is
specified at link-edit time.

Information Presentation Facility. Facility provided by
OS/2 Version 1.2 and above (including OS/2 Version
2.0), by which application developers may produce
online documentation and context-sensitive online
help panels for their applications, using an IPF tag
language and an IPF compiler.

inheritance. Concept whereby an application object
takes on the properties of the object class to which it
belongs; such properties may include the definition of
instance variables and data objects. Object classes
may also be defined in terms of other, previously
defined object classes; the new object class then
takes on the properties and methods of its parent
class or classes (which themselves may be defined in
terms of other classes).

inheritance hierarchy. Term used to describe the
chain of interdependence formed when object classes
are defined in terms of other currently existing
classes, and where the definition of an object class is
thus dependent upon the presence of its parent class
or classes.

input focus. In the Presentation Manager
environment, the user interacts with a single window
at any given moment; that window is said to have the
input focus.

instance. An individual application object (or
Workplace Shell object) that belongs to a particular
object class. See also execution instance.

instance data. A data item that is created and owned
by a single instance of an application object class. An
instance variable is typically defined by the class, and
the definition is thus common to all instances of that
class, but a separate data item is maintained for each
instance.

Glossary 395

Interface Control Document. Document that contains
descriptions of all generic library objects and
functions, along with their external interfaces
including both input and output data. The interface
control document is used by application developers
who wish to utilize library objects and functions in
their applications.

IPF. See Information Presentation Facility.

IPF compiler. Compiler provided with the IBM
Developer's Toolkit for OS/2 2.0, which allows the
compilation of source files into help libraries or online
documents that may be displayed using the
Information Presentation Facility.

IPF-controlled viewport. Viewport within a help
window or online document window, where the
formatting and display of information within that
window is controlled by the Information Presentation
Facility. This is the default case for information
displayed using the Information Presentation Facility.
See also application-controlled viewport.

IPF tag language. Text formatting language used by
the Information Presentation Facility, whereby tags
are inserted into the ASCII source text to cause
formatting to occur. The tags and syntax of the IPF
tag language are similar to IBM's Generalized Markup
Language (GML).

KB. Kilobyte; 1024 bytes.

LAN. See local area network.

LIFO. Last In, First Out; term used to describe a
queueing algorithm whereby items are serially
inserted into and removed from the queue structure,
and where the most recently inserted item is the first
item to be removed.

load-time dynamic linking. Form of dynamic linking
where resolution of external references takes place
during loading of the application into memory.
Load-time dynamic linking is typically used to share a
single memory-resident copy of common application
service routines, or to isolate portions of application
code from the remainder of the application, thereby
facilitating any future change management. See also
run-time dynamic linking.

local area network. A network, typically composed of
programmable workstations, in which the constituent
nodes are situated in direct geographical proximity to
one another, usually within the same property
boundary. A number of local area networks may be
"bridged" together to form a wide area network that
may extend across multiple geographical locations.

logical data entity. Term used to describe a coherent
unit of logical data, such as a block of text. This data
may simultaneously exist in numerous
representations within the system, either in memory

396 OS/2 V2.0 Volume 4

or on secondary storage devices. See also data
object and application object.

MB. Megabyte; 1024 kilobytes, or 1024 x 1024 bytes.

memory object. Logical unit of memory requested by
an application, which forms the granular unit of
memory manipulation from the applicatior. viewpoint.
A memory object may be up to 512 MB in size under
OS/2 Version 2.0.

menu bar. Area near the top of a CUA-conforming
window, which contains a horizontally oriented list of
actions that relate to the data object being
manipulated in the window.

message. Data structure used by OS/2 Presentation
Manager for communication between window
procedures, or between Presentation Manager and a
window procedure. Messages may be system-defined
or user-defined. See also message class.

message box. Within Presentation Manager, a
specialized type of dialog box that carries out a
simple structured dialog with the user. This dialog is
limited to the display of some textual information, and
the input of a single choice from a limited, finite set of
mutually exclusive options. A message box is simpler
to process than a dialog box, and is useful in
circumstances where the sophistication of a dialog
box is unnecessary.

message class. Logical grouping of messages with
common properties. Under Presentation Manager,
messages are grouped into classes with the name of
the message class and the definitions of message
parameters being common to all instances of that
class. Individual instances differ in their destination
window and in the contents of their message
parameters.

metaclass. Term used to describe the conjunction of
an object and its class information; that is, the
information pertaining to the class as a whole, rather
than to a single instance of the class. Each class is
itself an object, which is an instance of the metaclass.

method. In object-oriented terms, a routine or
procedure used to manipulate a data object. A group
of methods, together with a definition of the data
object itself, constitute an application object.

mixed model programming. Technique of combining
16-bit and 32-bit modules and resources within the
same application under OS/2 Version 2.0. Mixed
model programming requires some special
considerations when passing control and parameters
between 16-bit and 32-bit modules and resources.

modal. Term used to describe a message box or
dialog box for which processing must be completed
before user interaction may continue. Two types of

modal dialog are possible: application-modal and
system-modal. See also modeless.

modeless. Term used to describe a dialog box which
is displayed on the screen, but which does not require
immediate interaction with the user, who may
continue to interact with other windows while the
dialog box is displayed.

module-based. Term used to describe an
implementation of object-oriented programming,
whereby an object class is completely defined in its
own right, and does not depend upon the definitions
of other classes. Such an approach provides
increased levels of granularity and thus enhances
object reusability, albeit at the expense of additional
complexity during creation of the object. Compare
with class-based approach.

module definition file. ASCII text file typically used
with OS/2 Presentation Manager applications to define
information such as module names, stack and heap
sizes and exportable entry points. Used as input to
the OS/2 link-editor.

Multiple Virtual DOS Machines. Feature of OS/2
Version 2.0 that enables multiple DOS applications to
execute concurrently in full-screen or windowed mode
under OS/2 Version 2.0, in conjunction with other
16-bit or 32-bit applications, with full pre-emptive
multitasking and memory protection between tasks.

multiprogramming. Term used to describe an
operating system environment that allows the
concurrent execution of multiple applications in the
same system.

multitasking. Extension of the multiprogramming
concept, whereby processor time is distributed among
multiple applications by giving each application
access to the processor for short periods of time.
Multitasking may be cooperative or pre-emptive in
nature.

multithreading. Extension of the multitasking
concept, whereby multiple "tasks" may exist within a
single application, allowing different portions of the
application to execute asynchronously to one another.
Multithreading allows an application to continue to
respond to user input while lengthy processing takes
place in the background.

Mutex semaphore. Semaphore used to control
access to a resource that may be safely accessed
only by a single application thread at any time.

MuxWait semaphore. Semaphore used when waiting
for multiple events to occur or for multiple resources
to be freed.

near call. Under the segmented memory model, a
program call to a routine located within the same
memory segment. Such a call provides only the offset

of the routine within the segment; a segment address
is not needed since all application code is assumed to
reside in the same memory segment. By default, C
programs compiled using the small or compact
memory models generate near calls. See also far
call.

NPX. Numeric Processor Extension; tenn used in
reference to the exception condition generated by the
80386 processor when an application issues a
numeric coprocessor instruction in a machine with no
coprocessor installed. Note that OS/2 Version 2.0 will
trap the NPX exception and emulate the numeric
coprocessor function within the operating system,
returning the result to the application exactly as if a
physical coprocessor were installed.

object. A collection of data and methods
(procedures) that operate on that data, which together
represent a logical entity in the system. In
object-oriented programming, objects are grouped
into classes that share common data definitions and
methods. Each object in the class is said to be an
instance of the class. See also instance, object class,
data object, application object.

object class. Logical grouping of application objects
with similar properties; methods are normally
associated with an object class, rather than with
individual instances of that class. Under the
Workplace Shell, an object class is defined using a
class definition file.

object window. A conceptual window that does not
appear on the screen, and is associated with a data
object such as a file or database. In effect, an object
window is merely an address to which messages may
be sent to cause manipulation of a particular data
object.

online document. A set of information relating to an
application or a business process, which is developed
using the IPF tag language, compiled and viewed
using the Information Presentation Facility. An online
document, unlike a help library, is not necessarily
related to a single application, and exists in a
"standalone" environment.

online document window. A window displayed by the
Information Presentation Facility, using the VIEW.EXE
utility, and which contains information from an online
document.

Operating System/2. Operating system for
programmable workstations, offering more
sophisticated multiprogramming and multitasking
capabilities and larger memory support than DOS.

optimized window. Term used to describe a dialog
box; such a window is created for a specific purpose,
containing a number of control windows, and is
deemed to have been created at the optimum size to
display those control windows. Thus an optimized

Glossary 397

window may not be resized by the user, nor may it be
minimized or maximized.

optlink. Default linkage convention using in C
programming under the IBM C Set/2 compiler, which
causes the compiler to generate object code for a
function or subroutine, such that parameters are
placed on the stack in right-to-left order, and the
stack is cleared by the calling function when control is
returned. The opt/ink linkage convention differs from
the system linkage convention in the preservation of
register values and the handling of return values.

OS/2. See Operating System/2.

page. Granular unit for memory management using
the 80386 or 80486 processors with the paging feature
enabled. A page is a 4 KB contiguous unit of
memory, which the processor manipulates as a single
entity for the purpose of memory manipulation and
swapping.

parent. Immediate ancestor of a Workplace Shell
object class; the object class from which the current
object class was created by subclassing. See also
ancestor, descendant.

pascal. Linkage convention used in C programming
that causes the compiler to generate object code for a
function or subroutine, such that parameters are
placed on the stack in left-to-right order when the
subroutine is called, and the stack is cleared by the
called subroutine when control is returned. Originally
introduced by Microsoft with early versions of
Microsoft Windows, when this convention saved
several hundred bytes of system memory, and
adopted by Presentation Manager under OS/2 Version
1.3. Contrast with cdecl linkage convention.

PC DOS. Personal Computer Disk Operating System;
see DOS.

persistent. Term used to describe Workplace Shell
objects that are registered with the operating system
and that continue to exist in the Workplace Shell after
the system is re-I PLed.

pipe. Facility provided by OS/2 for communication
between threads and/or processes. Pipes may be
named or unnamed.

polymorphism. Concept whereby the behavior of an
application object is dependent solely upon the class
and contents of the messages received by that object,
and is not affected by any other external factor.
Similarly, the effect of the same message class is
dependent upon the application object to which it is
passed, and that object's interpretation of the
message.

pre-emptive multitasking. Multitasking
implementation whereby the operating system

398 05/2 V2.0 Volume 4

provides a scheduler that periodically interrupts an
executing task, saves its current state information and
dispatches another task, thereby sharing system
resources across multiple applications.

Presentation Interface. Component of Systems
Application Architecture Common Programming
Interface, which defines an application programming
interface for presentation services.

Presentation Manager. Windowed, graphics-oriented
user interface provided by OS/2 Version 1.1 and
above; allows object-oriented applications to be
written in conformance with Common User Access
guidelines. The Presentation Manager programming
interface conforms to the Systems Application
Architecture Common Programming Interface
Presentation Interface specifications.

presentation space. In the context of Presentation
Manager, a conceptual display surface onto which
information is written. A presentation space is a data
object normally associated with a window.

primary thread. The first thread of execution created
by an OS/2 application upon application startup. In a
Presentation Manager application, the primary thread
typically provides processing for user interaction and
short-lived application functions. Lengthy processing
is typically carried out by a secondary thread, to
preserve user responsiveness goals as defined in
Common User Access guidelines.

private semaphore. See semaphore.

procedural entity. An entity, such as an
administrative procedure, that interacts with other
logical entities within an object-oriented application,
and that itself may be encapsulated within an
application object.

process. In the context of OS/2, an instance of a
particular program, which owns system resources
such as threads, file handles and a memory map
described by the process' local descriptor table. A
process may consist of one or more threads.

process address space. Region of memory
addressable by a single process under OS/2 Version
2.0. Each process address space may be up to 512
MB in size.

production-level. Term used to describe an
application resource that has been unit-tested and
baselined, and is placed in a production library from
which multiple application developers may access it.

programmable workstation. An intelligent
workstation device, containing its own processor,
memory and possibly its own storage devices; for
example, the IBM Personal System/2 family.

promotion. Process of migrating a user-level
application resource to production level after
baselining.

protect mode. Native mode of execution for the Intel
80286 processor, whereby memory addresses are
made by segment and offset, and a separate set of
descriptors is maintained for memory addressable by
each application, thereby providing memory isolation
in a multiprogramming environment.

PTDA. Per Task Data Area; storage area maintained
by OS/2 for each process executing in the system,
containing process-specific execution data.

pulldown menu. A menu that appears when the user
selects an item in a window's menu bar. The
pull down menu acts as a "submenu," and contains a
list of entries from which the user may select the
required action. Pulldown menus may be nested.

PWS. See programmable workstation.

queue. Facility provided by OS/2 for communication
between threads and/or processes.

real mode. Mode of execution for the Intel 80286
processor, whereby the processor emulates the
operation of an 8086/8088 processor. In this mode,
memory addresses are made to physical locations in
memory, and addressability is limited to 1 MB. Real
mode is the mode used by the DOS operating system;
the design of this operating system further restricts
applications' memory addressability to 640 KB.

rendering mechanism. Protocol that defines the
communication between two windows or objects
during a drag/drop operation. Presentation Manager
provides three standard rendering mechanisms for
commonly used data types, and application
developers may define their own rendering
mechanisms to meet specific requirements.

resource. Item such as a window or dialog template,
string table, menu table, etc., which may be defined
externally and used by one or more Presentation
Manager or Workplace Shell applications.

resource compiler. Utility provided with IBM
Developer's Toolkit for OS/2 2.0, which takes a
resource script file and produces a precompiled
resource or group resources that may be
incorporated into an executable code module.

resource script file. ASCII text file with .RC
extension, used to define resources for a Presentation
Manager application. Used as input to resource
compiler.

REXX. Restructured Extended Executor; procedural
language included as part of OS/2 Version 2.0, which
provides batch language functions along with

structured programming constructs such as loops,
conditional testing and subroutines. Programs or
subroutines written using the REXX language may be
invoked directly from the command line, or from an
application written in REXX or another programming
language.

run-time dynamic linking. Form of dynamic. linking
whereby modules and resources are loaded into
memory during application execution, by the
application issuing a WinLoadModule() function call.
Run-time dynamic linking is typically used for portions
of the application code that are rarely required (such
as fatal error handling routines); they are therefore
explicitly loaded into memory when needed. In this
way, the memory requirements of the application may
be reduced.

SAA. See Systems Application Architecture.

scheduler. Component of OS/2 which provides
automated task dispatching.

secondary thread. Separate thread of execution
created by a Presentation Manager application to
handle lengthy processing of a specific type of
message using an object window.

segment. Unit of memory addressable by the Intel
80x86 processors. With the 8086 and 80286
processors, a segment may be from 16 bytes to 64 KB
in size. With the 80386 and 80486 processors, a
segment may be up to 4 GB in size.

segmented memory model. Mode of addressing used
by Intel 80x86 processors, whereby memory is
addressed in segments. Individual units of up to 64
KB (8086/80286) or 4 GB (80386/80486) in size may be
allocated by an operating system that uses this
memory model.

seg16. #pragma directive used in C language
programming under the IBM C Set/2 compiler, which
ensures that automatic data structures do not cross a
64 KB segment boundary, and are thus addressable
by both 16-bit and 32-bit code. This directive is used
when declaring data structures that will be used as
parameters when invoking 16-bit functions or
subroutines from 32-bit applications.

semaphore. Data structure provided by OS/2, and
used for synchronization between threads and/or
processes. OS/2 Version 2.0 allows mutex
semaphores, event semaphores and muxwait
semaphores. Semaphores may also be private
(owned and accessible by a single process) or shared
(accessible by all processes in the system). A
process may create up to 65,535 private semaphores,
and there may be a system-wide total of up to 65,535
shared semaphores in existence at any time.

shared semaphore. See semaphore.

Glossary 399

siblings. Term used in the Presentation Manager
environment to describe two or more windows that
have the same parent window.

simple viewport. A viewport within a help window or
online document window that is the only viewport
within that window. This is the default case for the
display of text or graphics using the Information
Presentation Facility. See also complex viewport.

SNA. System Network Architecture; defined series of
layered interfaces and protocols for communication
between systems and devices.

SOM. See system object model.

SOM Precompiler. Precompiler which generates C
source code and header files from a class definition
file. The resulting code may then be edited by a
programmer to add application logic, and then
compiled using a normal C compiler such as C Set/2.

source. In a direct manipulation operation, the object
or program from which a dragitem is being dragged.
See also direct manipulation, dragitem, target.

sparse object. Under OS/2 Version 2.0, a memory
object that has been allocated but for which no
storage has yet been committed. A sparse object has
a valid address range in the process address space,
but cannot be the target of a write operation until one
or more pages within the object are committed.

SQL. Structured Query Language; Systems
Application Architecture-conforming language for the
definition and manipulation of data stored in relational
database management systems. SOL is supported in
the programmable workstation by OS/2 Database
Manager, in the AS/400 midrange systems and in
System/370 hosts by the DB2 and SOLIDS products.

SRPI. Server-Requester Programming Interface;
programming interface enabling master-slave
communication between a workstation application (the
requester) and a host application (the server) using
an SNA LU2.0 communications link. SRPI is
supported in the PWS under DOS, OS/2 Extended
Edition V1 .x and OS/2 Extended Services, and in
System/370 hosts running VM/CMS and MVS/TSO.

structured programming. Application design
technique whereby applications are successively
broken down into their component functions until a
level is achieved at which application code may easily
be generated. See functional decomposition.

subclassing. Technique whereby messages destined
for a particular object are diverted to another object
that may perform special processing for a particular
message type or provide additional methods not
provided by the parent object. Subclassing is

400 OS/2 V2.0 Volume 4

typically performed on individual instances of an
object class, rather than on the entire class.

synchronous processing. Invocation of another
procedure whereby control does not return to the
caller until that procedure has completed its
processing.

system. Linkage convention used in C programming
under the IBM C Set/2 compiler, which causes the
compiler to generate object code for a function or
subroutine, such that parameters are placed on the
stack in right-to-left order, and the stack is cleared by
the calling function when control is returned. The
system linkage convention differs from the default
opt/ink linkage convention in the preservation of
register values and the handling of return values. Use
of the system linkage convention is required for
functions that are invoked by the operating system or
Presentation Manager, such as window and dialog
procedures. The system linkage convention is
specified using the #pragma linkage directive.

system-modal. Term used to describe a message box
or dialog box for which processing must be completed
before further interaction with any other window in
the system may take place.

system object model. Set of base object classes and
object-relationship protocol definitions that defines a
basic object-oriented layer on top of Presentation
Manager, and which is exploited by the Workplace
Shell.

Systems Application Architecture. Set of guidelines
for application development, covering areas such as
user interfaces, application programming interfaces
and communications environments. Systems
Application Architecture facilitates ease of use and
application portability between environments.

target. In a direct manipulation operation, the object
or program to which a dragitem is being dragged.
See also direct manipulation, dragitem, source.

task state. Set of information that embodies the
current state of a thread (task) in the system;
composed of the register contents and stack
belonging to a thread at the time it is pre-empted by
the scheduler.

thread. Atomic unit of dispatch under OS/2. One or
more threads make up a process; the threads within a
process may share resources belonging to that
process.

thunking. Term used to describe the process of
address conversion, stack and structure realignment,
etc., necessary when passing control between 16-bit
and 32-bit modules under OS/2 Version 2.0.

thunk procedure. Application procedure that
performs thunking.

timer. Facility provided under OS/2 Presentation
Manager, whereby Presentation Manager will dispatch
a message of class WM_ TIMER to a particular window
at specified intervals. This capability may be used by
an application to perform a specific processing task at
predetermined intervals, without the necessity for the
application to explicitly keep track of the passage of
time.

title bar. Area at the top of a CUA-conforming
window that contains the title of the window (typically
identifying the data object or device to which the
window relates).

transient object. A Workplace Shell object that does
not persist beyond a system IPL Transient object
classes are descendants of the WPTransient object
class.

TSR. Terminate-and-Stay-Resident; term used to
describe a DOS application that modifies an operating
system interrupt vector to point to its own location
(known as hooking an interrupt). This process is not
permitted under OS/2, although facilities exist under
OS/2 to provide the same capability for applications.

user-level. Term used to describe an application
resource that is currently undergoing modification and
unit testing; when unit testing is complete, the
resource is then submitted for baselining and
subsequent promotion to production level.

view. In the Workplace Shell, a view is a window that
displays the contents or properties of an object is a
particular manner. For example, an "icon view"
displays the contents of a container object as a series
of icons. The same object may also have a "settings
view," which displays the characteristics of the object.

viewport. Under the Information Presentation
Facility, a portion of a help window or online
document window that may be separately
manipulated. The use of multiple viewports in a
window enables the display of different types of
information in the same window, with separate
formatting and scrolling. Viewports may be either
simple or complex, and may be I PF-controlled or
application-controlled.

VIO. Term used to describe the OS/2 Video
Subsystem, used by text-windowed and full-screen
protect-mode applications executing under OS/2.

window. A conceptual identity under OS/2
presentation manager; a window is essentially a
handle associated with a data object such as a
presentation space on the screen or a database that,
along with an associated window procedure,
comprises an application object. Hence a window
may be considered as equivalent to an application
object.

window class. A group of windows having a common
set of data object definitions and processing
requirements, and which therefore share a common
window procedure. In object-oriented terms, a
window class equates to an object class.

window handle. Unique identifier of a window,
generated by Presentation Manager when the window
is created, and used by applications to direct
messages to the window.

window procedure. A procedure in an OS/2
Presentation Manager application that processes
messages intended for a particular window class. In
object-oriented terms, a window procedure contains
the data object definitions and methods associated
with a particular application object.

window words. Storage area within the control block
maintained for each window by Presentation Manager
that is available for an application to store
inform~tion such as a pointer to a memory object
containing instance data.

winproc. See window procedure.

Workplace Environment. User interface model
defined in the 1991 IBM Systems Application
Architecture CUA Advanced Guide to User Interface
Design, whereby direct manipulation of icons is used
to provide a conceptual analogy of the user's physical
working environment.

Workplace Shell. Standard user interface component
of OS/2 Version 2.0 that provides an object-oriented
interface for the end user. The implementation of the
Workplace Shell is based upon the system object
model.

Workplace Shell object. An object created by the
Workplace Shell, typically at the request of the user
or an application. A Workplace Shell object is very
similar in concept to an application object, in that it
possesses data and methods that operate upon that
data. See also application object.

z-order. Conceptual order of windows on the
desktop; windows are considered to be located "one
on top of another."

0:32. Term used to describe the addressing scheme
used for the 32-bit flat memory model, where a
memory address is expressed as a 32-bit linear offset
within the linear address range.

16:16. Term used to describe the addressing scheme
used for the 16-bit segmented memory model, where
a memory address is expressed as a 16-bit segment
selector, and a 16-bit offset within that segment.

80286. Intel 80286 microprocessor, 16-bit
microprocessor that provides both real and virtual
memory support, and allows multitasking and

Glossary 401

automated task dispatching. Successor to the Intel
8086/8088 family.

80386. Intel 80386 microprocessor; the 32-bit
processor upon which the OS/2 Version 2.0 operating
system is based.

80486. Intel 80486 microprocessor; a 32-bit processor
that implements a superset of the 80386 processor
instruction set.

8086/8088. Microprocessor family developed by Intel
Corporation for use in personal computers. The
8086/8088 family provides 8-bit real memory
addressing mode only, and is limited to an address
space of 1 MB.

_far16. Linkage convention used in C programming
language within the #pragma linkage directive under
the IBM C Set/2 compiler, to indicate that a function
or subroutine resides in a 16-bit module, and that

402 OS/2 V2.0 Volume 4

thunking is required when the function or subroutine
is invoked.

_Seg16. Keyword used in C programming language
under the IBM C Set/2 compiler, to indicate that a
pointer should be stored in 16:16 format rather than
0:32 format. See also seg16.

#pragma linkage. Directive used with the IBM C
Set/2 compiler to determine the linkage convention
for a function or function type declaration. See also
opt/ink and system.

#pragma seg16. Directive used with the IBM C Set/2
compiler to ensure that a data structure is aligned on
a 64 KB segment boundary, and is thus addressable
by 16-bit application code. See also seg16.

#pragma stack16. Directive used with the IBM C
Set/2 compiler to set the stack size for all 16-bit
function calls made from a 32-bit application module.

Index

Special Characters
_beginthread() 206
_Seg16 keyword 266, 267
#pragma linkage directive 265, 266
#pragma seg16 directive 268
#pragma stack16 directive 265

A
Accelerator keys 194, 196
Action identification 31
Action window

definition 245
modal 246

Allocating memory 62
Application design

functional decomposition 25, 26, 32
object-oriented programming 23, 30

Application granularity 312
Application help 285
Application migration

additional functions 263
data type definitions 259
function names 260
memory management 262
semaphores 261
thread management 262

Application object
administrative procedures 35
definition 3, 23
instance 24
instance data 24
maintenance 31
messages 3
Presentation Manager implementation 59
user view vs application view 29

Application structure
dialog procedures 49
dynamic link libraries 52
initialization requirements 44, 75
main processing routine 44, 75
termination requirements 45, 77
window procedures 46

Application tutorials 298
Asynchronous message processing 48, 87, 96
Atoms

definition 17
use in interprocess communication 219

B
Bitmaps 191
Broadcasting messages 94

©Copyright IBM Corp. 1993

c
C programming language 73
C Set/2 compiler 68
c+ + 33
Change management 31
Check box 255
Class definition file 114
Client-server applications 236
COBOL programming language 73
Combo box 253
Committing memory 62
Communication between threads 215
Compiling 279
CONFIG.SYS 200, 282
Configuration management 27, 317
Control window

check box 255
combo box 253
communicating with 89
conventions for use of 253
entry field 253
frame controls 55
guidelines for use of 239
listbox 253
push button 255
radio button 254

Cooperative multitasking 13
Cooperative processing 34

D
Data integrity 235
Data object 2, 23, 34
Designing methods 32
Desktop 54
Dialog box

communicating with 88
dialog procedure 49
guidelines for use of 246
loading from a DLL 201
modal 35, 49, 197, 246
modeless 50, 197, 245
standard dialogs 247
template 197
use of control windows 253

Dialog Box Editor 245
Dialog procedure 49
Dialog template 197
Direct manipulation

data structures 174
definition 171
dragging over a target 182
dropping 183
events 172

403

Direct manipulation (continued)
initiating a drag 177
rendering mechanisms 173, 175, 187
sequence of events 171
transferring information 185

Direct manipulation API
DrgAddStrHandle() 175
DrgAllocDraglnfo() 174, 180
DrgAI locDragtransfer() 185
DrgDrag() 180
DrgFreeDraginfo() 185
DrgFreeDragtransfer() 185
DrgQueryDragitemPtr() 183
DrgQueryStrName() 175
DrgSendTransferMsg() 181, 185, 187
DrgSetDragltem() 180
DrgVerifyRMF() 183

Display window 39, 54
DLL

See also Dynamic link library
load-time 20
run-time 20

DOS application support 18
DOS Compatability Box 18
Drag and drop

See Direct manipulation
Drag and drop API

See Direct manipulation API
Dynamic link library

creating a DLL 281
creating reusable code 21, 53, 281, 313
definition 20
granularity 52, 312
module definition file 281
Presentation Manager resources 200, 282
sharing data between instances 235, 279, 282
using an import library 282
using functions from a DLL 282
Workplace Shell object 103

Dynamic linking
definition 20
for dialogs 201
load-time 201

E

reducing memory requirements 52
reusability 53, 265, 309
run-time 201

Encapsulation 3, 24, 47, 49, 75, 236
Entity

data entity 23
external entity 34
procedural entity 35

Entity-relationship model 30
Entry Field 253
Exception handling 69
EXPENTRY keyword 47, 50, 77, 87, 210, 259, 270

404 OS/2 V2.0 Volume 4

F
F1 key 293
far16 keyword 265, 266
Flat memory model 13, 61, 262
Font Editor 191
Fonts 191
FORTRAN programming language 73
Frame controls

maximize icon 245
menu bar 192, 241
minimize icon 245
pulldown menu 192, 241
sizing border 240
title bar 240

free() function 68
Functional decomposition 25, 26, 32

G
General protection exception 68
Granularity 312
Graphics Programming Interface

GpiloadBitmap() 192
GpiloadFonts() 191

Guard page 64
Guard page exception 68

H
Handle 39, 91
Header files 199, 259, 313
heapmin() function 68
Help instance 292, 293
Help menu bar item 294
Help pushbutton 294
Help table 291
Help windows 285
Hypergraphics 8, 287, 297
Hypertext 8, 287, 297

Icon Editor 52, 191
Icons 52, 191
Import library 282, 313
Include files

See Header files
Information Presentation Facility

compiling source files 290, 297
concatenating source files 298
creating procedure manuals 298
definition 8, 285
graphics 287
help instance 292, 293
help pulldown menu 294
help table 291
hypergraphics 8, 287, 297
hypertext 8, 287, 297

Information Presentation Facility (continued)
main help window 294
national language support 291
online documentation 285, 297
tag language 285
tutorials 298
viewports

application-controlled 290
complex 289
definition 289
I PF-controlled 290
simple 289

Inheritance 26, 29, 43, 54, 58, 101
Inheritance hierarchy 26, 102
Instance 24, 40
Instance data 24, 40, 75, 81, 304
Interprocess communication

atoms 219
DOS and Windows applications 226
messages 17,216
pipes 16, 226
queues 16, 221
semaphores 18, 231, 261
shared memory 16, 216

IPF
See Information Presentation Facility

L
Library management 317
Link edit 280
Listbox 253

M
Maintenance 31
malloc() function 68
Management 27, 317
Managerial risk 316
Memory allocation 61
Memory management

allocating memory 61, 62
committing memory 62
DosAllocMem() function 42, 61, 82, 262
DosSubAlloc() function 67, 82
flat memory model 13, 262
free() function 68
guard page 64
heapmin() function 68
malloc() function 68
memory objects 13
paging 13, 62, 66
protection 63, 64
segmented memory model 13, 262
shared memory 69
suballocating memory 67

Memory protection 63, 64
Menu bar

check marks 244, 254, 255

Menu bar (continued)
design guidelines 241
mnemonics 194
pulldown menu 192
resource script file 192

Message box
communication with 91
guidelines for use of 256
processing of 51
types 257

Message queue 40, 75, 206
Messages

asynchronous 43,48, 87, 96
broadcasting 94
macros 93
message cl asses 32, 41
object-oriented programming 3, 23
parameters 42, 93
Presentation Manager 17, 39, 40
processing 47, 48, 96
structure 41
synchronous 43,47, 87, 96
types 40

Method design 32
Migration

See Application migration
Mixed model programming 265
Mnemonics 194
Module definition file 278, 281
MS DOS

See DOS application support
Multiple processes

creating 211
terminating 214
uses 205

Multiple Virtual DOS Machines 18
Multiprogramming 13
Multitasking 13

data integrity 235
data sharing 235
implementation 205
synchronization 229

Multi threading
_beginthread() 206
_endthread() 213
communication between threads 215
definition 15
destroying threads 213
DosCreateThread() 206
DosExit() 213
synchronization between threads 17, 18
thread information block 206

N
Named

1

pipes 226
National language support 202, 291

Index 405

0
Object classes 24, 28, 31
Object identification 31
Object Interface Definition Language 114
Object window 39, 56, 206, 213, 215
Object-oriented design

action identification 31
message definition 32
method design 32
object identification 31
use of existing object classes 32

Object-oriented programming
application design 29
class-based 3, 26
containment of change 24, 31
definition 2, 23
design steps 30
encapsulation 3, 24, 47, 49, 75, 117, 236
entity-relationship model 30
inheritance 3, 26, 29, 43, 54, 58, 101
messages 23, 32
methods 3, 23, 104
module-based 3, 27
object classes 3, 24, 31
passing control 95
polymorphism 3, 23, 48, 75
reusability 7, 24, 27, 28, 30, 32, 53, 210, 309
stepwise implementation of methods 49
subclassing 5, 7, 28, 122
testing 32

Online documentation 285, 297
Operating System/2

CONFIG.SYS 200, 282
definition 11
DOS application support 18
dynamic linking 20, 53, 200, 281, 309
interprocess communication 17

messages 17
pipes 16
queues 16
semaphores 18
shared memory 16

memory management
See Memory management

Microsoft Windows application support 19
multitasking 205
multithreading 15
thunking 265

Optimized window 245
OS/2

See Operating System/2
OS/2 API

DosAllocMem() 42, 61, 82, 262
DosAllocSharedMem() 69, 216
DosCallNPipe() 227
DosClose() . 227
DosCloseQueue() 223
DosConnectNPipe() 228

406 05/2 V2.0 Volume 4

OS/2 API (continued)
OosCreateNPipe() 226
DosCreateQueue() 222
DosCreateThread() 206, 210, 215, 262
OosDisconnectNPipe() 229
OosExecPgm() 211, 214
DosExit() 213
DosFlattoSel() 268
DosFreeMem() 69, 83, 218
DosGetlnfoBlocks() 206
OosGetModuleHandle() 148, 200, 294
OosGetNamedSharedMem() 69
OosGetProcAddr() 201
DosGetSharedMem() 69, 218
DosGiveSharedMem() 69, 217, 218
DosKillThread() 214, 262
DosLoadModule() 148, 200, 294
DosOpen() 227
DosOpenQueue() 222
DosRead() 226, 227
DosReadQueue() 225
DosSeltoFlat() 270
DosSetExceptionHandler() 66
DosSetMem() 82
DosStartSession() 211
DosSubAlloc() 62, 67, 82
DosSubFree() 67
DosSubSet() 67
DosSubUnset() 67
DosTransactNpipe() 229
DosUnsetExceptionHandler() 69
DosWaitChild() 234
DosWaitNPipe() 226
DosWaitThread() 233
DosWrite() 226, 227
DosWriteQueue() 222

Ownership 56

p
Page fault exception 68
Paged memory 13, 62, 66
Partitioning the application 52
pascal linkage convention 259
Passing control 95
Pipes 16, 226
Pointers 191
Polymorphism 3, 23, 48, 75
Pre-emptive multitasking 14
Presentation Manager

application structure 43, 44
initialization requirements 44, 75
main processing routine 44
termination requirements 45, 77
window procedure 46

bitmaps 191
compiling and link editing 273
creating an application 73

module definition file 278

Presentation Manager (continued)
definition 6
execution environment 6, 39
icons 52, 191
macros 93
messages 17

definition 6, 39
description 40
message classes 41
passing between threads 206
processing 47, 48
structure 41

multitasking 205
pointers 191
presentation space 39
programming languages 73
resources 21, 52, 191, 282
reusability 7
subclassing 54, 57, 311
subroutines 51, 95
termination requirements 98
thunking 265
window procedure

definition 6, 40
description 46
invoking 47
re-entrancy 79
return codes 47, 49
structure 47

Presentation Manager API
WinAddAtom() 219
WinAddSwitchEntry() 76, 78
WinAssociateHelplnstance() 293
WinBeginEnumWindows() 57
WinBroadcastMsg() 94
WinCheckMenultem() 244
WinCreateHelplnstance() 292, 294
WinCreateMenu() 194, 243
WinCreateMsgQueue() 75
WinCreateObject() 125, 143, 147, 149, 150, 151
WinCreateStdWindow() 76, 192, 193, 194, 196, 240
WinCreateSwitchEntry() 76
WinCreateWindow() 76, 79, 192, 193, 194, 196,

208, 240, 246
WinDefDlgProc() 51
WinDefWindowProc() 47, 48
WinDeleteAtom() 221
WinDeletelboxltem() 90
WinDeregisterObjectClass() 147
WinDestroyHelplnstance() 293
WinDestroyMsgQueue() 77
WinDestroyObject() 146
WinDestroyWindow() 77, 80, 213
WinDismissDlg() 51, 88
WinDispatchMsg() 77, 96
WinDlgBox() 50, 88, 198, 201, 246
WinDrawBitmap() 192
WinEnableMenultem() 244

Presentation Manager API (continued)
WinEnableWindow() 255
WinEndEnumWindows() 57
WinFileDlg() 247
WinFontDlg() 247, 250
WinGetMsg() 77, 98
WinGetNextWindow() 57
Winlnitialize() 75, 208
Winlnsertlboxltem() 90
WinloadAccelTable() 196
WinloadDlg() 50, 197, 198, 246
WinloadPointer() 108, 192
WinloadString() 195
WinMessageBox() 91, 256
WinPostMsg() 48, 49, 87, 89, 91, 96, 207
WinProcessDlg() 50, 88, 197, 198
WinQueryAtomlength() 220
WinQueryAtomName() 220
WinQueryClasslnfo() 87
WinQueryClassName() 87
WinQueryCp() 203
WinOueryDlgltemText() 90
WinOuerylboxltemText() 90
WinOuerylboxSelectedltem() 90
WinQueryObjectWindow() 208
WinQuerySwitchEntry() 92
WinQuerySwitchHandle() 92
WinQuerySysPointer() 192
WinQuerySystemAtomTable() 219
WinQueryWindow() 57, 92, 242
WinQueryWindowUlong() 83
WinRegisterClass() 75, 79, 81
WinRegisterObjectClass() 122
WinRemoveSwitchEntry() 77, 78
WinSendDlgltemMsg() 89, 92, 242
WinSendMsg() 47, 48, 49, 87, 91, 96
WinSetAccelTable() 196
WinSetDlgltemText() 90
WinSetObjectData() 126
WinSetPointer() 192
WinSetWindowPos() 246
WinSetWindowThunkProc() 269
WinSetWindowULong() 82
WinShowWindow() 50, 197, 246
WinStartTimer() 232
WinSubclassWindow() 57, 84, 311
WinTerminate() 77
WinWindowFromlD() 55, 89, 92, 255

Presentation space 39
Problem determination 301
Procedure manuals 298
Process information block 206
Program maintenance 31
Programming languages

assembler 73
c 73
COBOL 73
FORTRAN 73

Index 407

Programming languages (continued)
OS/2 Presentation Manager 73
re-entrancy 73
recursion 73

Protection 63, 64
Pulldown menu 241, 243, 244, 254, 255
Push button 255
pwFinanceFile

pwFinanceFile 169
pwFolder

pwFolder 169

Q
Queues

R

interprocess communication 16, 221
Presentation Manager

See Message queue

Radio button 254
RCINCLUDE statement 197
Re-entrancy 73, 79
Recursion 73
Remote systems 34
Rendering mechanisms

definition 173
identification 185
in DRAGITEM structure 175
private 189
specification 187
standard 173, 188
verifying support 183

Resource compiler 53, 280
Resource script file 53, 191, 198
Resources 21, 52, 148, 191, 282
REXX 97
Risk management 315

s
Segmented memory model 13, 262
Semaphores 18, 231, 261
Shared memory 16, 69
Sizing border 240
Smalltalk V 33
SOM Precompiler 103, 114
Stack 279, 282, 305
Standard window

guidelines for use of 239
String tables 195
Structured programming

See Functional decomposition
Suballocating memory 67
Subclass window procedure 84
Subclassing 5, 7, 28, 54, 57, 122, 311
Subroutines 51, 95, 114

408 OS/2 V2.0 Volume 4

Synchronous message processing 47, 87, 96
System API

SysCreateObject() 125
SysDeregi sterObjectCI ass() 147
SysRegi sterObjectCI ass() 122

system linkage convention 47, 50, 77, 210, 270
System Object Model

definition 101
SOM Precompiler 103, 114

System Object Model API
_somFindClass() 148, 152
_somGetClass() 152
SOM_ldFromString() 148

Systems Application Architecture
Common Applications 1

T

Common Programming Interface 6
Common User Access

action window 245
control windows 253
graphical model 30
menu bar 193, 241
message box 256
object-action interface 30
responsiveness 257
standard window 239

Technological risk 315
Terminating an application 98
Test plan 32
Thread information block 206
Thunk procedure 268
Thunking 265
Timer facility 231
Title bar 240
Trap 0000 68, 304
Trap OOOE 63, 68, 82, 305
Tutorials 298

u
use for interprocess communication
User interface 4, 30
User responsiveness 75, 88, 205, 257

v
Virtual DOS machine 18

w
Window

as application object 6, 59
child window 54
client window 55
closure 80
communication between windows 87
control window 55, 89, 253

Window (continued)
creation 79
definition (application view) 6, 39
definition (user view) 6
dialog box 49, 88, 246
display window 39, ~
frame window 55
message box 51, 256
object window 39, 56, 206, 213, 215
ownership 56
parent window 54
standard window 197, 239
subclassing 54, 57
template 197
title 240
window classes 6, 40, 75
window handle 39, 91
window identifier 55
window procedure 6, 40
window words 40, 75

Window procedure
communication between window procedures 41,

87,207
declaration 77
definition 6, 40, 46
invoking 47
message processing 48
object window 209
parameters 48
re-entrancy 79
return codes 47, 49
structure 47
subclass window procedure 84

Window template 197
Window words 40, 75, 81
Workplace Shell 52

application structure 164
base storage classes 103
class data 123
class definition file 103, 114
inheritance hierarchy 102
instance data 106, 127, 144
metacl ass 103
method 104
object class 101
Object Interface Definition Language 114
object structure 104
transient object 148

Workplace Shell API
_wpAddToObjUselist() 131, 141
_ wpClose() 144
_wpclslnitData() 123
_ wpclsQueryObject() 151
_wpclsUnlnitData() 124
_wpCreateObject() 143
_ wpDeleteFromObjUselist() 132
_ wpDragOver() 153, 182
_wpDrop() 159, 183

Workplace Shell API (continued)
_wpFormatDragltem() 152, 175, 177, 180
_wplnitData() 127
_wplnsertPopupMenultem() 108, 133
_wpMenultemSelected 131
_wpMenultemSelected() 109, 129, 135
_wpModifyPopupMenu() 108, 133
_ wpOpen() 128, 136
_ wpQueryDefaultView() 129
_wpQueryRealName() 141
_wpQueryTitle() 136, 138, 141
_ wpRegisterView() 131, 141
_ wpRender() 185
_ wpRenderComplete() 187
_wpRestoreData() 146
_wpRestorelong() 146
_wpRestoreState() 145
_wpRestoreString() 145
_ wpSaveData() 145
_wpSavelong() 145
_wpSaveState() 144
_wpSaveString() 144
_wpScanSetupString() 126
_wpSetlcon() 108
_ wpSetTitle() 106, 136
_wpSetup() 126, 143
_wpSwitchTo() 136
_ wpViewObject() 128, 135
&wpcN() 148
&wpUID() 147

Workplace Shell object
behavior 121

z

class 101
class data 123
class methods 103, 111
creation 122
handle 150
implementation 103, 119
instance data 106, 127, 144
instance methods 103, 111
metacl ass 103
methods 104
OBJECTID 150
opening a view 128
Presentation Manager resources 148
SOM ID 152
SOM pointer 151
SOM_ldFromString() 152
structure 104
subroutines 114

z-Order 57

Index 409

.... ~ :.

~ -..

41Q 9~1~ v~.o Volume 4

