

OS/2 Version 2.0
Volume 1: Control Program

Document Number GG24-3730-00

April 1992

International Technical Support Center
Boca Raton

Before using this information and the product it supports, be sure to read the general information under
"Special Notices" on page xvii.

First Edition (April 1992)

This edition applies to OS/2 Version 2.0.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed, address
your comments to:

IBM Corporation, International Technical Support Center
Dept. 91J, Building 235-2 Internal Zip 4423
901 NW 51 st Street
Boca Raton, Florida 33432 USA

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document describes the Control Program component of OS/2 Version 2.0. It
forms Volume 1 of a five volume set; the other volumes are:

• OS/2 Version 2.0 - Volume 2: DOS and Windows Environment, GG24-3731

• OS/2 Version 2.0 - Volume 3: Presentation Manager and Workplace Shell,
GG24-3732.

• OS/2 Version 2.0 - Volume 4: Application Development, GG24-3774.

• OS/2 Version 2.0 - Volume 5: Print Subsystem, GG24-3775.

The entire set may be ordered as OS/2 Version 2.0 Technical Compendium,
GBOF-2254.

This document is intended for IBM system engineers, IBM authorized dealers,
IBM customers, and others who require a knowledge of the operating system
features, functions, and implementation in OS/2 Version 2.0.

This document assumes that the reader is generally familiar with the function
provided in previous releases of OS/2.

PS (174 pages)

© Copyright IBM Corp. 1992 Ill

i:

Iv OS/2 V2.0 Volume 1

Acknowledgements

The project leader and editor for this project was:

Hans J. Goetz
International Technical Support Center, Boca Raton

The authors of this document are:

Bill Bolton
Westpac Banking Corporation, Australia

Calvin Bradshaw
IBM Australia

Gert Ehing
IBM Germany

Bo Falkenberg
IBM Denmark

Darryl Frost
ISM South Africa

Eddie Griborn
IBM Sweden

Tim Sennitt
IBM UK

Neil Stokes
IBM Australia

Katsutoshi Suzuki
IBM Japan

This publication is the result of a series of residencies conducted at the Interna­
tional Technical Support Center. Boca Raton.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Craig Bennett
IBM Programming Center, Boca Raton.

Sam Casto and his staff
IBM Programming Center, Boca Raton.

Phil Doragh
IBM Programming Center, Boca Raton.

Ari Erev
IBM Israel, Hebrew Competence Group.

C> Copyright IBM Corp. 1992 y

VI OS/2 V2.0 Volume 1

Alexandr Gregor
International Technical Support Center, Boca Raton.

Alfredo Gutierrez
IBM EMEA Education Center. Boca Raton.

Jamie Jamison
IBM Programming Center, Boca Raton.

John Keenleyside
IBM OS/2 C Library Development. Toronto.

Michael Kogan
IBM Programming Center. Boca Raton.

Debbe Mccombie
IBM Programming Center, Boca Raton.

Thanks also to the many people, both within and outside IBM, who provided sug­
gestions and guidance, and who reviewed this document prior to publication.

Thanks to the following people for providing excellent tools, used during pro­
duction of this document:

Dave Hock (CUA Draw)
IBM Cary.

Jurg von Kanel (PM Camera)
IBM Yorktown Heights.

Contents

Abstract . iii

Acknowledgements . v

Special Notices . xvii

Preface . xix

Related Publications . xxi
Prerequisite Publications . xxi
Additional Publications . xxi

Chapter 1. Overview . 1
1.1 Intel 80386 32-Bit Microprocessor Support 3
1.2 Memory Management . 4
1.3 Task Management . 5
1.4 32-Bit Programming Environment . 6
1.5 16-Bit Application Compatibility . 6
1.6 Installation . 7
1. 7 Hardware Exploitation . 7
1.8 Boot Manager . 8
1.9 Multiple Virtual DOS Machines . 8
1.10 Windows Application Support . 10
1.11 Workplace Shell . 10
1.12 Summary 11

Chapter 2. Memory Management . 13
2.1 Introduction 13
2.2 Flat Memory Model . 14
2.3 Memory Objects . 16

2.3.1 Allocation and Management 16
2.3.2 Guard Page Technique . 17
2.3.3 Virtual Memory Management . 18
2.3.4 Page Attributes 20
2.3.5 Memory Protection . 21

2.4 Physical Memory Management . 22
2.4.1 Address Translation . 23
2.4.2 Managing Paging . 24
2.4.3 Processing Page Faults 26

2.5 16-Bit Applications in a 32-Bit Environment 28
2.5.1 Address Conversion and Translation 28
2.5.2 Thunking . 30
2.5.3 Shared Memory . 32
2.5.4 Program Loading . 33

2.6 Summary . 34

Chapter 3. Task Management . 37
3.1 Dispatching . 37

3.1.1 16-Bit Application Support 37
3.1.2 32-Bit Application Support . 37

3.2 Interrupt Handling . 38

© Copyright I BM Corp. 1992 vii

VIII OS/2 V2.0 Volume 1

3.3 Signal and Exception Handling . 38
3.4 Thread Management 40

3.4.1 Creating Threads . 40
3.4.2 Controlling Threads . 40
3.4.3 Waiting On and Terminating Threads 41

3.5 Semaphores . 41
3.6 Summary 42

Chapter 4. Debugging Support . 43
4.1 Functional Description . 43
4.2 What Can Be Debugged . 44
4.3 DosDebug() Function . 45
4.4 Summary . 46

Chapter 5. Installation Considerations 47
5.1 Pre-Installation Planning 47

5.1.1 Processor Requirements 47
5.1.2 Memory Requirements 48
5.1.3 Fixed Disk Requirements 49

5.2 Beginning Installation . 49
5.3 Installation Options . 50

5.3.1 Installing Optional Features . 52
5.3.2 Configuring System Parameters . 52

5.4 Progress Indication . 53
5.5 After Installation . 54
5.6 Understanding the System Parameters . 55
5.7 Starting Programs Automatically . 63
5.8 Selective Install . 64
5.9 Recovering the Desktop 64
5.10 Installation from a LAN 65
5.11 Installing over Existing Versions . 65
5.12 Summary 65

Chapter 6. Hardware Considerations . 67
6.1 Device Driver Support . 68

6.1.1 Compatibility with OS/2 V1.3 68
6.1.2 Virtual Device Drivers . 69
6.1.3 Device Helper Functions . 69
6.1.4 New Disk Device Driver . 71
6.1.5 Layered Device Driver Architecture . 72
6.1.6 Base Device Drivers . 73

6.2 File System Considerations . 73
6.2.1 High Performance File System Changes 73
6.2.2 FAT File System Changes 74
6.2.3 Disk Volume Considerations . 74
6.2.4 UNDELETE Command . 75
6.2.5 Volume Manager 75
6.2.6 Pager (Swapper) . 76

6.3 Hardware Support Levels . 76
6.3.1 Large Main Memory Support . 77
6.3.2 Microprocessor Support 78
6.3.3 Disk and SCSI Device Drivers . 79
6.3.4 Video Display Support 79
6.3.5 AT Bus Serial Port Support . 81
6.3.6 Pointing Device Support 81

6.3. 7 When OS/2 Version 2.0 Will Not Run . 82
6.4 Summary 83

Chapter 7. Boot Manager 85
7.1 Boot Manager Architecture . 85

7.1.1 Partitions . 85
7.1.2 Logical Drives . 85
7.1.3 Logical Drive Boot Names . 86
7.1.4 Multi-Boot Block 86
7.1.5 Migration from Other Operating Systems 88
7.1.6 Performance Impacts . 89

7.2 Partitioning the Fixed Disk 89
7.2.1 Boot Manager Installation . 90
7.2.2 FDISKPM Program . 90
7.2.3 FDISK Program . 94

7.3 SETBOOT Utility 97
7.4 Selecting an Operating System . 98
7.5 Sharing Partitions between Operating Systems 100
7.6 AIX Considerations . 101
7.7 Operating System Restrictions . 102
7.8 Summary . 102

Chapter 8. National Language Considerations 103
8.1 Single-Byte Languages . 103

8.1.1 Iceland . 103
8.1.2 Czechoslovakia . 103
8.1.3 Hungary . 103
8.1.4 Poland . 104
8.1.5 Yugoslavia . 104
8.1.6 Turkey . 104

8.2 Double-Byte Languages . 104
8.3 Bidirectional Languages 104

8.3.1 Installation . 105
8.3.2 Programming Interface . 106
8.3.3 Bidirectional User Interface . 106

8.4 Message Files . 107
8.5 Information Presentation Facility . 107
8.6 Supported Countries . 109
8.7 Summary . 110

Appendix A. Intel 80386 Architecture . 111
A.1 Physical Characteristics . 111
A.2 Memory Addressing . 113

A.2.1 Real Mode . 113
A.2.2 Protected Mode (Segmented Memory Model) 114
A.2.3 Protected Mode (Flat Memory Model) 116

A.3 Paging . 116
A.4 Task Switching . 118
A.5 Protection . 119

A.5.1 Type Checking . 119
A.5.2 Limit Checking . 120
A.5.3 Privilege Levels . 120
A.5.4 Restriction of Procedure Entry Points 122
A.5.5 Reserved Instructions . 122

A.6 Interrupts . 123

contents Ix

X OS/2 V2.0 Volume 1

A.7 Input/Output Processing . 123
A.8 Virtual 8086 Mode . 124
A.9 Numeric Coprocessor Utilization . 125
A.10 Multi-Processing . 126
A.11 The Intel 80486 Processor . 126

Appendix B. Micro Channel Architecture and SCSI 129
8.1 Micro Channel Architecture . 129
B.2 Micro Channel Participants . 130

8.2.1 Bus Master Adapters . 131
8.2.2 OMA Adapters . 132
B.2.3 Simple Adapters . 132

8.3 Data Transfer Modes . 133
B.3.1 Basic Data Transfer Mode . 133
8.3.2 Streaming Data Mode . 134
8.3.3 Multiplexed Streaming Data Mode . 135

B.4 Data Integrity and Exception Handling . 135
8.4.1 Parity Checkin·g . 135
8.4.2 Synchronous Exception Signaling . 136

8.5 IBM SCSI Implementation . 136
B.5.1 What is SCSI? . 136
B.5.2 IBM SCSI Adapters . 137
B.5.3 Adapter Components . 138
B.5.4 SCSI BIOS . 140
B.5.5 Support for Generic SCSI Functions 141

B.6 Subsystem Control Block Architecture . 142
8.6.1 1/0 Port Definitions . 143
B.6.2 Delivery Service Structure . 144
B.6.3 Delivery Service Facilities . 145
B.6.4 Additional Information . 150

Appendix C. Lab Session· 32-Bit Memory Model 151
C.1 Objectives . 151
C.2 Exercise 1 - Memory Allocation . 151

C.2.1 Step 1 - Normal Memory Allocation 152
C.2.2 Step 2 - Memory Protection Violation 152
C.2.3 Step 3 - Large Memory Allocation . 152

C.3 Expected Results from Exercise 1 . 153
C.3.1 Step 1 . 153
C.3.2 Step 2 . 153
C.3.3 Step 3 . 153
C.3.4 Source Code MEMLAB1.C . 153

C.4 Exercise 2 - Memory Protection . 154
C.5 Expected Results from Exercise 2 . 155

C.5.1 Source Code MEMLAB2.C . 155
C.6 Exercise 3 - Multiple DOS Sessions . 156
C.7 Expected Results from Exercise 3 . 157

C.7.1 Source Code MEMLAB3.C . 158
C.7.2 Sample Input File for MEMLAB3.EXE 160

C.8 Exercise 4 - Multiple Threads . 160
C.9 Expected Results From Exercise 4 . 161

C.9.1 Source Code MEMLAB4.C . 161
C.10 Program to Display Swap File Size . 162

C.10.1 Source Code SWAPSIZE.C . 162
C.10.2 Include File SWAPSIZE.H . 164

C.10.3 Resource File Source SWAPSIZE.RC 164
C.10.4 MAKE File SWAPSIZE.MAK 164
C.10.5 Module Definition File SWAPSIZE.DEF 164
C.10.6 Linkage Parameters SWAPSIZE.L 165

Glossary . 167

Index . 173

Contents Xi

XII OS/2 V2.0 Volume 1

Figures

1. The New OS/2 Version 2.0 Logo . 1
2. Evolution of OS/2 . 3
3. 4GB Global Linear Address Space 15
4. Process Address Space Layout 19
5. Address Translation - Linear Address to Physical Address 23
6. Page Swapping . 27
7. Mapping 16:16 Memory References 29
8. Thunk Concept . 30
9. Thunks -16-Bit versus 32-Bit . 32

10. 16:16 Shared Address Ranges . 33
11. DosDebug Function 45
12. Sample DosDebug Function Call 46
13. OS/2 Version 2.0 Installation 50
14. The Initial System Configuration Screen 51
15. Selecting Features to Install . 52
16. Configuration Details 53
17. Installation Progress Indication 53
18. OS/2 Version 2.0 Tutorial . 54
19. A Typical OS/2 Version 2.0 CONFIG.SYS 55
20. OS/2 Version 2.0 1/0 Related Components 67
21. Hard Disk Layout . 87
22. FDISKPM Showing Disk One (of a Two Disk System) 91
23. FDISKPM Showing Disk Two (of a Two Disk System) 91
24. FDISK Utility (in Full-Screen Mode) . 94
25. Boot Manager Selection Menu . 99
26. Boot Manager Selection Menu - Advanced Mode 100
27. 80386 General, Segment, and Status Registers 112
28. Real Mode Addressing . 114
29. Protected Mode Addressing - without Paging 115
30. Protected Mode Addressing - with Paging 117
31. 80386 Ring-Oriented Privilege Scheme 121
32. Virtual 8086 Environment - Memory Management 125
33. Micro Channel Participants and Data Transfer Paths 131
34. Basic Data Transfer Mode . 134
35. Streaming Data Mode . 134
36. Multiplexed Streaming Data Mode . 135
37. SCSI Subsystem Block Diagram . 137
38. Adapter Component Block Diagram . 139
39. SCSI BIOS Interface Block Diagram . 140
40. IBM SCSI Adapter 1/0 Ports . 143
41. Overview of Delivery Support . 145
42. Locate Mode Control Block Delivery Structure 147
43. SCB Structure Used by the IBM SCSI Adapter 148
44. IBM SCSI Adapter Scatter/Gather List 149
45. IBM SCSI Adapter Termination Status Block 149

@ Copyright I BM Corp. 1992 XIII

..

xiv os12 v2.o Volume 1

Tables

1. Memory Object Classes . 20
2. Partition Format Accessibility . 101
3. IPF NLS Language Files . 108
4. NLS Country Codes and Codepages . 109
5. Data and Address Bus Widths for Micro Channel Participants 133

©Copyright IBM Corp. 1992 xv

XVi OS/2V2.0Volume1

Special Notices

This publication is intended to help customers and system engineers to under­
stand and utilize the new features in Version 2.0 of OS/2. The information in this
publication is not intended as the specification of the programming interfaces
that are provided by the Programming Tools and Information package for use by
customers in writing programs to request or receive its services. See the PUBLI­
CATIONS SECTION of the IBM Programming Announcement for OS/2 Version 2.0.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy completeness. The use of this infor­
mation or the implementation of any of these techniques is a customer responsi­
bility and depends on the customer's ability to evaluate and integrate them into
the customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee that
the same or similar results will be obtained elsewhere. Customers attempting to
adapt these techniques to their own environments do so at their own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

@Copyright IBM Corp. 1992 xvii

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

AIX
C/2
IBM
Micro Channel
Operating System/2
OS/2
PCAT
Personal System/1
Personal System/2
Presentation Manager
PS/1
PS/2
SAA
Systems Application Architecture
WIN-OS/2
Workplace Shell

The following terms, which are denoted by a double asterisk (* *) in this publica­
tion, are trademarks of other companies.

CompuServe is a trademark of CompuServe Incorporated.
HP and Hewlett-Packard are trademarks of Hewlett-Packard Corporation.
Intel is a trademark of Intel Corporation.
Logitech is a trademark of Logitech, Incorporated.
Lotus is a trademark of the Lotus Development Corporation.
MicroMaster is a registered trademark of AOX Inc.
Microsoft is a trademark of Microsoft Corporation.
Windows is a trademark of Microsoft Corporation.
Xenix is a trademark of Microsoft Corporation.
386, 486, SX are trademarks of Intel Corporation.
80286, 80386 and 80486 are trademarks of Intel Corporation.

XViii 05/2 V2.0 Volume 1

Preface

This document is intended to provide readers with an understanding of the func­
tions provided by the Control Program component in OS/2 Version 2.0 and its
implementation. The document should enable readers to make an evaluation of
the OS/2 Version 2.0 product and its components.

The document contains information on the implementation of operating system
functions such as task management, memory management, and the 32-bit appli­
cation programming interfaces provided by OS/2 Version 2.0. Information is also
provided on hardware support and interrupt management, application debugging
aids within the operating system, and the support for multiple bootable fixed disk
partitions. The document also discusses pre-installation planning consider­
ations, and the migration of existing applications from 16-bit versions of OS/2 to
OS/2 Version 2.0.

This document is intended for:

• Planners and technical support personnel who require an understanding of
the internal function implementation in OS/2 Version 2.0.

• Programmers who wish to develop applications which use the 32-bit applica­
tion programming interfaces and extended flat memory model provided
under OS/2 Version 2.0, and/or wish to migrate applications from previous
versions of OS/2.

The code examples used in this document are available in electronic form via
CompuServe** or through a local IBM Support BBS, as package RB3730.ZIP.
IBM employees may obtain the code examples from the GG243730 PACKAGE on
OS2TOOLS.

The document is organized as follows:

• Chapter 1, "Overview" provides a brief introduction to the topics covered in
this document.

This chapter is recommended for all readers of the document.

• Chapter 2, "Memory Management" describes the memory management
under OS/2 Version 2.0, including the implementation of the 32-bit flat
memory model and memory paging. The chapter also describes the allo­
cation and protection of memory objects, and support for 16-bit applications
under OS/2 Version 2.0.

This chapter is recommended for those readers who require an under­
standing of the way in which OS/2 Version 2.0 manages the allocation of real
and virtual memory, and the way in which this implementation differs from
that in previous versions of OS/2. Those readers who require a knowledge
of the hardware implementation of these components may also read
Appendix A, "Intel 80386 Architecture."

• Chapter 3, "Task Management" describes the task management, dispatching
implementation and interrupt handling under OS/2 Version 2.0. Process syn­
chronization through the use of semaphores is also discussed.

This chapter is recommended for those readers who are concerned with the
implementation of multitasking under OS/2 Version 2.0.

@Copyright IBM Corp. 1992 xix

XX OS/2 V2.0 Volume 1

• Chapter 4, "Debugging Support" describes the built-in application trace and
debugging aids provided as part of OS/2 Version 2.0, which enable debugger
and trace applications to provide additional information.

This chapter is recommended for those readers who desire an under­
standing of these capabilities, or who may wish to design their own trace
and/or debug applications.

• Chapter 5, "Installation Considerations" discusses pre-installation planning
and installation considerations to be borne in mind when installing OS/2
Version 2.0, particularly when installing it over existing versions of OS/2.
Hardware, memory, and fixed disk space requirements are also described.

This chapter is intended primarily for planners who will be developing imple­
mentation schemes for OS/2 Version 2.0.

• Chapter 6, "Hardware Considerations" discusses the OS/2 Version 2.0 device
driver structure, changes in the OS/2 V2.0 file system handlers and other
topics related to hardware support.

This chapter is recommended for those readers who require information
about OS/2 V2.0 support for IBM and OEM personal computers and related
hardware, such as disk subsystems.

• Chapter 7, "Boot Manager" describes the capability for multiple bootable
fixed disk partitions, which is supported by OS/2 Version 2.0. This support
enables different operating systems to be installed on different disk partitions
within the same machine, and for the active partition to be switched in order
to boot the machine with an alternative operating system.

This chapter is intended for those planners who may wish to have multiple
operating systems installed on machines in their enterprise.

• Chapter 8, "National Language Considerations" describes the support pro­
vided within OS/2 Version 2.0 for languages other than English, including
support for double-byte character sets.

This chapter is recommended for those readers who wish to use languages
other than English.

The following appendixes are included in this document:

• Appendix A, ''Intel 80386 Architecture" provides an overview of the Intel
80386 microprocessor architecture, with an emphasis on the exploitation of
this architecture by OS/2 Version 2.0.

This chapter is recommended for those readers who desire a more complete
understanding of OS/2 Version 2.0's use of 80386 capabilities.

• Appendix B, "Micro Channel Architecture and SCSI" provides a brief
description of the IBM Micro Channel architecture, as well as the Subsystem
Control Block (SCB) architecture and SCSI.

This chapter is recommended for those readers who desire a deeper under­
standing of the exploitation of these architectures in OS/2 Version 2.0.

• Appendix C, "Lab Session - 32-Bit Memory Model" provides an agenda for a
laboratory session which deals with the 32-bit memory model and multi­
threading capabilities of OS/2 Version 2.0.

This chapter is intended for those readers who will use this document as the
base material for an OS/2 Version 2.0 classroom course.

Related Publications

The following publications are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

Prerequisite Publications
• OS/2 Version 2.0 Installation Guide

• OS/2 Version 2.0 Overview Guide

• OS/2 Version 2.0 Online Documentation.

Additional Publications

© Copyright I BM Corp. 1992

• OS/2 V1 .2 Standard Edition Internals and Evaluation, GG24-3466

• OS/2 V1 .3 Volume 1: New Features, GG24-3630

• OS/2 V1 .3 Volume 2: Print Subsystem, GG24-3631

• OS/2 Version 2.0- Volume 2: DOS and Windows Environment, GG24-3731

• OS/2 Version 2.0 - Volume 3: Presentation Manager and Workplace Shell,
GG24-3732

• OS/2 Version 2.0 - Volume 4: Application Development, GG24-3774

• OS/2 Version 2.0- Volume 5: Print Subsystem, GG24-3775

• OS/2 Version 2.0 Remote Installation and Maintenance, GG24-3780

• Intel 80386 System Software Writer's Guide, ISBN 1-55512-023-7

• The Design of OS/2, Harvey M. Deitel and Michael J. Kogan, Addison Wesley
1992 ISBN 0-201-54889-5 (SC25-4005)

• Micro Channel Architecture Bus Master Release 1.0, GG24-3477

• SCSI - Architecture and Implementation, GG24-3507.

xxl

•

·,

xx ii OS/2 V2.0 Volume 1 '"

Chapter 1. Overview

IBM* OS/2* Version 2.0 is an advanced multitasking, single-user operating
system for IBM Personal System/2* computers and other machines equipped
with the Intel** 80386** or compatible microprocessors. It inherits a rich set of
features from previous versions of OS/2, such as support for multitasking, mul­
tiple threads, dynamic linking, interprocess communication, a graphical user
interface, and a graphics programming interface. Features such as a High Per­
formance File System, Extended Attributes, and long filenames are also available
in OS/2 Version 2.0.

Figure 1. The New OS/2 Version 2.0 Logo

Unlike previous versions of OS/2, Version 2.0 takes advantage of the advanced
features of the Intel 80386 processor architecture, such as a 32-bit memory
model, paged virtual memory, and an enhanced processor instruction set. More
extensive use is also made of IBM's Micro Channel* architecture for improved
hardware performance.

OS/2 Version 2.0 requires the features of the Intel 80386 or compatible 32-bit
microprocessors, and therefore does not run on computers that use the Intel
80286** processor, or its predecessors. In order to maintain compatibility, OS/2
Version 2.0 supports applications written for previous versions of OS/2 by pro­
viding both a 16-bit as well as a 32-bit application programming interface,
allowing existing applications to execute under OS/2 Version 2.0 without modifi­
cation. Note, however, that only the 32-bit interface provides the full features
and performance of OS/2 Version 2.0, and that while existing OS/2 Version 1.x
applications will execute under OS/2 Version 2.0, they must be modified in order
to take full advantage of the new features of Version 2.0.

©Copyright IBM Corp. 1992 1

2 OS/2 V2.0 Volume 1

The following new features have been implemented in OS/2 Version 2.0:

• Support for the Intel 80386 32-bit microprocessor instruction set; the 80386
was previously supported only in 80286 emulation mode.

• 32-bit memory management.

• Enhanced hardware exploitation.

• Increased maximum file and disk partition sizes.

• Multiple Virtual DOS Machines.

• Support for Windows** applications.

• New graphical installation program, which includes the ability to install from
a local area network (LAN) server.

• New, portable 32-bit programming environment.

• Binary compatibility with previous versions of OS/2, allowing 16-bit applica­
tions written for previous versions to execute under Version 2.0 without mod­
ification.

• An enhanced Presentation Manager* user shell, known as the Workplace
Shell*, which implements the 1991 IBM Systems Application Architecture*
(SAA*) Common User Access (CUA) Workplace Environment.

• Implementation of SOM - System Object Model.

V1.0

Boot Manager

New Install

Information Presentation Facility

FAT-16 Installable File Systems

MVDM
DOS Compatibility Box Windows

Text Workplace Shell

Intel 80286 80386

Figure 2. Evolution of OS/2

Many of these new features are described in this document. Others are
described in the remaining volumes in the series; see "Related Publications" on
page xxi.

1.1 Intel 80386 32-Bit Microprocessor Support
The basis for OS/2 Version 2.0 is its support for the Intel 80386 microprocessor.
This support means that a powerful set of 32-bit features now becomes available
to the operating system and applications, including enhanced memory manage­
ment and more sophisticated multitasking. The Intel 80386 and 80486** offer sig­
nificant improvements over the previous generation of 16-bit microprocessors,
while retaining compatibility with these processors.

The Intel 80386 architecture incorporates the following on-chip features, which
enhance the throughput and performance of the system:

• Multitasking support

• Memory management

• Instruction pipelining

Chapter 1. Overview 3

• Address translation cache

• High-speed bus interface.

Along with these features also comes the greater addressing capacity of the Intel
80386:

• 4 gigabyte (GB) physical address space, with up to 512 megabytes (MB) per
process under OS/2 Version 2.0.

Note: This figure applies to the 80386DX processor and all 80486 processors;
the 80386SX, 80386SL and 80386SLC may only address up to 16MB of phys­
ical memory.

• 1 byte to 4 gigabyte memory objects.

OS/2 Version 2.0 uses many of these processor features and capabilities to
provide a more powerful and flexible operating system platform. Note that OS/2
Version 2.0 does not implement the full 64 terabyte virtual address space pro­
vided by the 80386, since this requires use of the segmented memory model;
OS/2 Version 2.0 uses a flat memory model which is described below.

1.2 Memory Management

4 OS/2 V2.0Volume1

Memory management is the way in which the operating system allows applica­
tions to access the system's memory. This includes the way in which memory is
allocated, either to a single application or to be shared by multiple applications.
The operating system must check how much memory is available to an applica­
tion, and handle the situation where there is no longer any real memory left to
satisfy an application's requests.

In OS/2 Version 2.0, memory management has been enhanced to provide a flat
memory model, which takes advantage of the 32-bit addressing scheme provided
by the Intel 80386 architecture. This means that through memory management,
the system's memory is seen as one large linear address space of 4GB. Appli­
cations have access to memory by requesting the allocation of memory objects.
Under OS/2 Version 2.0, these memory objects can be of any size between 1
byte and 512MB. The use of a flat memory model removes the need for applica­
tion developers to directly manipulate segments, and thereby removes a signif­
icant obstacle in porting applications between OS/2 Version 2.0 and other 32-bit
environments such as AIX*. Application performance is also improved when
manipulating memory, since the use of a linear address space eliminates pointer
arithmetic and segment register loads.

OS/2 Version 2.0 manages memory internally using pages, each of which is 4KB
in size. Each memory object is regarded by the operating system as a set of
one or more pages. For practical purposes therefore, memory is allocated in
units of 4KB, although a page may be broken down into smaller parts and may
contain multiple memory objects.

One of the useful aspects of paged memory is the way in which memory over­
commitment is handled, that is, what happens when there is no more real
memory left to load applications. Under OS/2 Version 2.0, individual pages may
be swapped to and from disk, rather than entire memory objects. This technique
improves swapping performance, particularly when large memory objects exist
in the system. The fixed page size also improves swapping performance since
the operating system need not be concerned with moving objects in memory to

accommodate the various object sizes, as was the case with previous versions
of OS/2.

Memory management under OS/2 Version 2.0 is described in more detail in
Chapter 2, "Memory Management."

1.3 Task Management
The management of processes and threads executing in the system is greatly
simplified and streamlined under OS/2 Version 2.0. This improvement is due pri­
marily to the fact that support for processes executing in real mode (such as the
DOS Compatibility Box in previous versions of OS/2) is no longer required, since
the execution of DOS applications is supported using virtual DOS machines
which run as protected mode processes under OS/2 Version 2.0 (see section 1.9,
"Multiple Virtual DOS Machines" on page 8 for further information).

OS/2 Version 2.0 supports execution of the following types of applications:

• DOS applications, in full-screen mode or in windows on the Presentation
Manager desktop.

• Windows applications, running in a full-screen session or in windows on the
Presentation Manager desktop.

• 16-bit OS/2 applications developed for previous versions of OS/2.

• New 32-bit applications developed for OS/2 Version 2.0.

All applications execute as protected mode processes under OS/2 Version 2.0,
and are therefore provided with pre-emptive multitasking and full memory pro­
tection between processes.

Interrupt handling under OS/2 Version 2.0 is simplified by removal of the need to
handle real mode software interrupts. Interrupts issued by DOS and Windows
applications are trapped and translated to the appropriate device access com­
mands for the protected mode environment.

Signal handling has been combined with exception handling, g1vmg a more
elegant and flexible means for an application to handle events such as
Ctrl +Break and DosKillProcess() calls. Applications may register exception
handling routines to trap such events. These routines are registered on a per­
thread basis, allowing multiple applications to trap the same exception type, and
may be chained or nested. Exception handlers may be written in high-level lan­
guages such as C; the use of assembler language is not required.

The number of threads per process has been raised under OS/2 Version 2.0 to
4096, which is equal to the total system thread limit. Thus, a process may
consume as many threads as required, up to the total available after the oper­
ating system itself has consumed a number of threads for its own use.

The process of dispatching secondary threads has been streamlined through the
incorporation of stack allocation/deallocation into the DosCreateThread() function
under Version 2.0. This improvement simplifies the process of thread dis­
patching by removing the need for an application to explicitly allocate and free
memory for the secondary thread's stack.

Semaphores for maintaining synchronization between threads and processes are
more sophisticated under OS/2 Version 2.0, and their implementation is less

Chapter 1. Overview 5

dependent on the processor architecture. In addition, system functions are pro­
vided which enable a thread to wait for the completion of another thread, or to
forcibly terminate another thread. This functionality provides additional flexibility
compared to previous versions of OS/2.

1.4 32-Bit Programming Environment
OS/2 Version 2.0 provides a 32-bit programming interface, providing enhanced
performance through use of the 80386 instruction set, and allowing applications
to take full advantage of the 32-bit flat memory model. Since the application
developer is no longer concerned with the details of manipulating segments, this
simplifies the task of memory management within an application, particularly
where large memory objects are used. The lack of a segmented memory model
also facilitates porting of applications between OS/2 Version 2.0 and other 32-bit
environments.

The 32-bit environment also provides performance improvements since applica­
tions have access to 32-bit processor instructions and 32-bit arithmetic. The flat
memory model eliminates pointer arithmetic and segment register reloading,
which further improves overall performance.

The lack of segmentation also makes program compilation much simpler, since
the compiler (and hence the programmer) need no longer be concerned with
calling sequences and far versus near memory references. Only when creating
mixed model programs (see 1.5, "16-Bit Application Compatibility") does seg­
mentation become an issue.

Operations such as stack allocation for threads are also simplified in the 32-bit
environment. Additional capabilities have been built into the operating system
functions, removing the need for the application developer to explicitly perform
these functions within the application code. This allows easier exploitation of the
multithreading capabilities of OS/2 Version 2.0.

OS/2 Version 2.0 also provides application-transparent emulation of numeric
coprocessor functions. If a coprocessor instruction is issued by an application in
a machine with no coprocessor installed, the operating system traps the
resulting exception condition and emulates the coprocessor instruction, returning
the result to the application. Emulation is performed on a per-thread basis,
thereby preventing interference between instructions from different threads or
processes. All applications developed for Version 2.0 may therefore be compiled
with in-line coprocessor instructions, removing the need for conditional testing or
coprocessor emulation within the application itself.

Programming for the 32-bit environment is described in more detail in OS/2
Version 2.0- Volume 4: Application Development.

1.5 16-Bit Application Compatibility

6 OS/2 V2.0 Volume 1

An important feature of OS/2 Version 2.0 is its ability to run existing 16-bit appli­
cations, written for previous versions of OS/2, without alteration. This compat­
ibility is achieved internally by the operating system through a special interface
called a thunk. A thunk is a piece of code responsible for converting 16-bit seg­
mented memory references to 32-bit linear references and vice versa, as well as
realigning the thread's stack and data structures where necessary. This restruc-

1.6 Installation

turing allows the 16-bit applications to interface with 32-bit service layers within
the operating system, and allows 32-bit applications to utilize 16-bit service
layers, modules and resources.

Applications may also be written for the 32-bit environment, while making use of
existing 16-bit DLLs and resources. This technique is known as mixed model
programming, and allows the application developer to make the best possible
use of existing service routines, private window classes, etc., developed for pre­
vious versions of OS/2.

Note, however, that the use of mixed 16-bit and 32-bit modules within an applica­
tion requires special consideration by the application developer, since the 16-bit
modules utilize the segmented memory model, and therefore are restricted in
the size and location of the memory objects to which they have access. The
subject of mixed-model programming is discussed in greater detail in OS/2
Version 2.0 - Volume 4: Application Development.

The installation process for OS/2 Version 2.0 has been enhanced over that pro­
vided for previous versions of OS/2. After partitioning the fixed disk (if required)
and loading the base operating system, the remainder of the installation is
carried out using a graphical installation procedure based on Presentation
Manager, with full mouse and keyboard support. Indicators are provided to
allow the user to determine the progress of the installation.

Installation of optional features is carried out by selecting the required options
from a graphical menu displayed by the installation procedure. Default system
settings such as display type, mouse type, etc. are set by interrogating the hard­
ware; these defaults may be modified by the user during installation.

Many parameters such as disk cache size, maximum number of threads and so
on, may be set from within the installation procedure. These parameters are set
using a dialog box which is displayed when the user selects the Software Config­
uration option from the OS/2 Setup and Installation panel.

The installation procedure for OS/2 Version 2.0 is described in detail in
Chapter 5, "Installation Considerations."

OS/2 Version 2.0 may also be installed over a local area network (LAN) from a
server machine. When installing in this manner, optional features may be speci­
fied either by the user or in a response file tailored by a network administrator.
The process of installation over a LAN is described in OS/2 Version 2.0 Remote
Installation and Maintenance.

1.7 Hardware Exploitation
OS/2 Version 2.0 will operate on IBM and other manufacturer's personal com­
puters which are based on either the Intel 80386 or Intel 80486 (both SX and DX)
microprocessors. Included in this group are systems based on the 80386SL (the
low power version of the 80386SX) and the 80386SLC (the IBM version of the
80386SL with a 8KB cache included on the chip for improved performance).
Models in the IBM PS/2 range, which meet the microprocessor requirement, will
run OS/2 V2.0.

Chapter 1. Overview 1

In order to run OS/2 V2.0, systems should be configured with a minimum of 4MB
of memory. A hard disk of at least 60MB is also recommended.

IBM has established a large compatibility test facility in order to verify that
certain key functions of OS/2 Version 2.0 perform correctly on hardware manu­
factured by companies other than IBM. The list of systems, which have passed
these tests, is continually being updated and your PC dealer or IBM represen­
tative should be able to provide information on the OS/2 V2.0 compatibility of a
particular system.

Where a system unit is equipped with more than 16MB of real memory, OS/2
V2.0 will use all the available memory, providing the system unit is able to
support memory above 16MB. Before installing additional memory in a system,
it is advisable to check that the system unit is able to address memory above
16MB.

Cache management for disk access in OS/2 V2.0 is more intelligent than pre­
vious versions of OS/2. In particular the file system will attempt to prefetch
records when doing sequential file access.

OS/2 Version 2.0 exploits the capabilities of the IBM SCSI Busmaster adapters.
Requests to the adapter can be chained together and a single command can ini­
tiate multiple reads from and writes to the disk subsystem. Devices other than
disks attached to the adapter are also supported. OS/2 V2.0 also provides
support for some non-IBM SCSI adapters. Details will be found in the "Readme"
file which is installed with OS/2 V2.0.

The use and exploitation of hardware facilities by OS/2 Version 2.0 is described
in more detail in Chapter 6, "Hardware Considerations" on page 67.

1.8 Boot Manager
OS/2 Version 2.0 provides a tool that can enable execution of multiple operating
systems on the same physical machine, with selection of an operating system by
the user at boottime. This capability is provided by an OS/2 Version 2.0 feature
known as Boot Manager.

Using Boot Manager, the user may select from various operating systems such
as DOS, OS/2 Version 1.x, OS/2 Version 2.0 or AIX. Other operating systems
may also be supported, provided they do not directly modify the master boot
record of the fixed disk. With this feature, OS/2 V2.0 is now capable of installing
to and initializing from a logical disk, other than C:. For further details on Boot
Manager and its implementation, see Chapter 7, "Boot Manager."

1.9 Multiple Virtual DOS Machines

8 OS/2 V2.0 Volume 1

A significant part of OS/2 Version 2.0 is its ability to multitask DOS sessions
along with OS/2 sessions, using the Multiple Virtual DOS Machines feature of
OS/2 Version 2.0. In previous versions of OS/2, support for DOS applications
was limited, with low available memory and a single DOS session, which oper­
ated in full-screen mode only and suspended when in the background.

The DOS support has been totally rewritten in OS/2 Version 2.0, and allows mul­
tiple concurrent DOS applications where each is executed as a singie-threaded,
protect mode OS/2 program. This method of implementation uses the virtual

8086 mode of the 80386 processor, and provides normal OS/2 levels of memory
protection; that is, it provides protection of system memory and other applica­
tions, isolation from illegal memory accesses by ill-behaved applications, and
the ability to terminate sessions where applications are "hung". DOS sessions
may also be multitasked along with all other OS/2 sessions.

DOS support is achieved through the use of virtualization techniques, allowing
the creation of multiple instances of separate, independent virtual DOS
machines. In this way, a virtual interface is provided to each DOS machine,
giving the impression that each application owns all the required resources, both
hardware and software.

Each virtual DOS machine has more base memory than the DOS Compatibility
Box implemented in previous versions of OS/2; more than 630KB of free base
memory {that is, memory below the 640KB line) is available for each virtual DOS
machine. OS/2 Version 2.0 also supports the use of Lotus**-lntel-Microsoft**
(LIM) expanded memory {EMS) Version 4.0 emulation and extended memory
(XMS) Version 2.0 to provide additional memory for those DOS applications
which are capable of using such extensions. OS/2 Version 2.0 maps this
extended or expanded memory into the system's normal linear memory address
space, and manages it in the same manner as any other allocated memory. The
DOS Protect Mode Interface {DPMI) specification is also supported to allow
access to memory above 1 MB.

The ability of a virtual DOS machine to run within a Presentation Manager
window provides immediate productivity gains to existing DOS applications,
since they may utilize Presentation Manager desktop features. These features
include window manipulation and the ability to cut/copy/paste information
between applications using the clipboard.

Application compatibility in the virtual DOS machine is also enhanced over pre­
vious versions of OS/2. The virtual DOS machine can be used to execute
DOS-based communications applications and other applications which address
hardware 1/0 devices, through the use of virtual device drivers which map the
device driver calls from the applications to the appropriate physical device driver
within the operating system. Applications using hardware devices which are not
required to be shared with other applications in the same system may be
accessed using the standard DOS device drivers, without the need for a virtual
device driver. Certain restrictions still apply with respect to communications line
speed and time-critical interrupt handling.

Application compatibility in a virtual DOS machine is further enhanced by the
DOS Settings feature, which allows virtual DOS machines to be customized to
suit the requirements of the applications running in them. Properties such as
video characteristics, hardware environment emulation, and the use of memory
extenders can all be customized using this feature.

The concept of Multiple Virtual DOS Machines, and its implementation in OS/2
Version 2.0, is described in more detail in OS/2 Version 2.0 - Volume 2: DOS and
Windows Environment.

Chapter 1. overview 9

1.10 Windows Application Support
OS/2 Version 2.0 provides the capability for Windows applications to run under
OS/2 Version 2.0 using its WIN-OS/2* component. This support allows applica­
tions written for Windows 3.0 and previous versions of Windows to coexist and
execute in the same machine.

Each Windows application executes as a protected mode process. Windows
applications are, therefore, subject to the full application protection facilities pro­
vided to protected mode applications under OS/2 Version 2.0, and are protected
from one another and from DOS or OS/2 applications executing in the system.
This protection is in contrast to the native Windows 3.0 environment, where pro­
tection is limited to Windows 3.0 applications only, provided these applications
use Windows' memory management services. Protection for DOS applications is
provided only when Windows is running in 386 enhanced mode.

The execution of Windows applications as protected mode tasks also allows
these applications to take full advantage of the pre-emptive multitasking capabili­
ties of OS/2 Version 2.0, with full pre-emptive multitasking between Windows
applications, DOS applications, and OS/2 applications. This protection is again
in contrast to the native Windows 3.0 environment, where pre-emptive multi­
tasking is available only when Windows 3.0 is running in 386 enhanced mode,
and only for DOS applications, thereby impacting performance and preventing
many applications written for previous versions of Windows from executing.
OS/2 Version 2.0 has no such restriction.

Support for Windows applications under OS/2 Version 2.0 is discussed in more
detail in OS/2 Version 2.0 - Volume 2: DOS and Windows Environment.

1.11 Workplace Shell

10 OS/2 V2.0 Volume 1

The component of the operating system which is responsible for interaction with
the end user is known as the user shell. OS/2 Version 2.0 provides an
enhanced, object-based user shell known as the Workplace Shell, which imple­
ments the 1991 SAA CUA Workplace Environment.

In the Workplace Shell, system resources such as files, printers, etc. are
regarded as objects, and represented by graphical icons on the screen. Users
may manipulate objects {open them for editing, copy them, print them, etc.) by
direct manipulation of the icons. For example, a file is copied from one location
to another by pointing to it with the mouse, dragging the object's icon to the
required destination, and dropping the icon by releasing the mouse button. This
action is known as drag and drop manipulation.

The Workplace Shell allows users to become more task-oriented by simplifying
the user interface and reducing the amount of system-specific knowledge
required to perform work tasks. The performance of these tasks using the
Workplace Shell is more analogous to the way in which such tasks would be per­
formed manually, thereby requiring less user education on the operation of the
system.

The Workplace Shell is described in detail in OS/2 Version 2.0 - Volume 3: Pres­
entation Manager and Workplace Shell.

1.12 Summary
OS/2 Version 2.0 provides significant enhancements over previous versions of
OS/2. It provides a sophisticated memory management and task management
architecture, allowing full exploitation of the power of the Intel 80386 processor.

OS/2 Version 2.0 provides the ability to execute multiple concurrent DOS applica­
tions, in full-screen mode or in windows on the Presentation Manager desktop.
These applications may address 1/0 devices such as printers, scanners, and
communications adapters. Each DOS application typically has approximately
630KB of memory in which to execute and store its data; for those applications
which require more memory, OS/2 Version 2.0 provides emulation of the LIM.
EMS, and XMS memory extenders.

OS/2 Version 2.0 provides the ability for Windows applications, written for
Windows 3.0 and previous versions of Windows, to execute under OS/2 Version
2.0, concurrently with DOS and OS/2 applications. Windows applications execute
as protected mode processes, and full memory protection and pre-emptive multi­
tasking are, therefore, provided for these applications.

OS/2 Version 2.0 provides a more powerful 32-bit programming environment
which, due to the use of the flat memory model, is free from the limitations and
inherent complexity of the segmented memory model used by DOS and previous
versions of OS/2. Memory management within applications is greatly simplified,
allowing applications to be developed faster, with better performance due to
reduced memory manipulation overheads.· Through the use of the flat memory
model, applications may be more easily ported to or from other operating
system platforms.

OS/2 Version 2.0 also provides an enhanced user shell, known as the Workplace
Shell, through enhancements to Presentation Manager. The Workplace Shell is
object-based and implements the 1991 SAA CUA workplace environment. This
shell is more intuitive than the Presentation Manager shell implemented in pre­
vious versions of OS/2, and allows users to become familiar with the system
more quickly.

Chapter 1. Overview 11

12 os12.v2.o Volume 1

Chapter 2. Memory Management

2.1 Introduction

OS/2 Version 2.0 is based on the Intel 80386 microprocessor architecture, and
exploits the 32-bit features of the 80386 processor. The features used by OS/2
Version 2.0 are:

• 32-bit register set

• 32-bit instructions/addressing

• Large memory objects (greater than 64KB)

• Paging.

Version 2.0 introduces a flat memory model with a linear address space of 4
gigabytes (GB), and removes many of the memory management restrictions
experienced in previous versions of OS/2. The purpose of this chapter is to
provide the reader with an understanding of the way that OS/2 Version 2.0
manages memory and the impact of this on system administrators and applica­
tion developers.

Memory management is the way in which an operating system allows applica­
tions to access memory, either for private use by a single application or to be
shared between applications. In either case, it is the responsibility of the oper­
ating system's memory management component to supervise the correct use of
memory and to ensure that no application gains access to memory outside its
own address space.

Previous versions of OS/2 were based upon the Intel 80286 processor architec­
ture. In this architecture, there is a limitation on the amount of memory that can
be addressed as a single unit. This is due to the fact that memory is managed
in segments of up to 64KB in size. Previous versions of OS/2 maintained a
series of descriptor tables for memory segments, and 16 bits were allocated in
each table entry for the length of the segment. Thus, each descriptor table entry
gave access to a segment of up to 21a = 64KB in size.

The particular implementation of the segmented memory model within the 80286
processor allowed a minimum segment size of 1 byte. Hence an application
could request the allocation of a memory segment from 1 byte to 64KB in size, in
a single operation. These segments formed the basis of memory allocation
within the system, and of the virtual memory implementation by which memory
overcommitment was supported.

If the need arose for more than 64KB to be used for a single memory object or
data structure, the programmer and the operating system had to take this limita­
tion into consideration, and implement appropriate algorithms to use multiple
memory segments for a single logical structure.

OS/2 Version 2.0, however, is based upon the Intel 80386 processor architecture.
This processor has a 32-bit addressing scheme in place of the 24-bit overlapped
scheme used in the 80286, thereby giving access to 2a2 = 4GB of memory in a
single logical unit.

© Copyright I BM Corp. 1992 13

However, if a unit of this size were to be allocated and manipulated in the same
segment-oriented manner as implemented in the 80286, severe problems would
arise. For instance, the segment could potentially be larger than the available
memory in the system. An alternative mechanism for memory manipulation is
therefore required with the 80386.

In the 80386 architecture, memory is split into fixed size units of 4KB. All
memory allocation, addressing, swapping and protection is based on pages. As
with previous versions of OS/2 the total memory, allocated to all processes
running in the system, may exceed the physical memory available. Memory
objects or parts of memory objects, which are not required by the currently exe­
cuting process, may be temporarily migrated out to secondary storage (disk).
When used with a paged memory management scheme, this procedure is known
as paging. An application may request a large amount of memory, in which
case multiple pages are allocated. However, since virtual memory is managed
on a page-by-page basis, such units of storage may now exist partly in real
memory and partly in a file on disk, thereby significantly easing the constraints
on memory overcommitment.

OS/2 Version 1.3 moved complete segments between main memory and the
swap file. The fact that segments were variable in length complicated the man­
agement of both main memory and space in the swap file. There was also the
requirement to compress memory regularly to reclaim the gaps, which formed
when memory was freed. Under OS/2 V2.0, in most cases there is no require­
ment to find contiguous pages in memory to satisfy an allocation request. Con­
sequently there is no need to move pages around in memory. The exception to
this is the need for buffers used in OMA 1/0 transfer, which must be in contig­
uous locations in memory.

The remainder of this chapter will explore the memory management capabilities
of the 80386, as implemented by OS/2 Version 2.0, in more detail.

2.2 Flat Memory Model

14 OS/2 V2.0 Volume 1

The memory model used by OS/2 Version 2.0 is known as a flat memory model.
This term refers to the fact that memory is regarded as a single large linear
address space of 4GB, using 32 bits for direct memory addressing. This view
applies for each and every process in OS/2 Version 2.0. Memory addresses are
defined using a 32-bit addressing scheme, which results in a linear address
space of 4GB in size.

Like the 80286 processor, the 80386 also supports a segmented memory model,
except that in the case of the 80386 the maximum segment size is 4GB. While
the 80386 processor does not explicitly provide a facility for disabling the seg­
mented memory model, OS/2 Version 2.0 implements the flat memory model by
mapping the 4GB address space as a single code segment and a single data
segment, each of Which has a base address of zero and a size of 4GB. Only two
segment selectors are therefore required in the system; an executable/readable
code segment in the CS register, and a read/write data segment in the OS, ES,
FS, GS, and SS registers. These selectors are known as aliases, since they all
map to the same linear address range. The way, in which the address space is
implemented using the Intel 80386 processor, is explained in Appendix A, "Intel
80386 Architecture."

The 32-bit addressing scheme used by OS/2 Version 2.0 will hereafter be
referred to as 0:32, in order to differentiate it from the 16-bit segmented
addressing scheme used by previous versions of OS/2, which will be referred to
as 16:16. These terms reflect the fact that the older segmented memory model
uses a 16-bit segment selector and a 16-bit offset to refer to a specific memory
location, whereas the newer flat memory model has no need of a segment
selector, and simply uses a 32-bit offset within the system's linear address
space.

The system's global address space is the entire 4GB linear address space. Each
process has its own process address space, completely distinct from that of all
other processes in the system. All threads within a process share the same
process address space. This address space is theoretically also 4GB in size.
However, the maximum size for process address spaces is defined at system
initialization time and is somewhat less than 4GB, to allow space for memory
used by the operating system.

Figure 3 shows the mapping of a process address space into the system's
global address space. The NN shown in Figure 3 represents the maximum
defined linear address of the process address space, set at system initialization
time. OS/2 Version 2.0 sets this limit to 512MB, reserving the linear address
range above this point for operating system use. The space above 512MB is
known as the system region.

4GB

SYSTEM REGION

NN
CURRENT PROCESS

32·BIT REGION

512MB

CURRENT PROCESS

Compatablllty Region

0

Figure 3. 4GB Global Linear Address Space. Note that the 32-bit region within the
process address space is not used by OS/2 Version 2.0, since "NN" is set to 512MB.

This limitation on the size of the process address space is used by the operating
system to ensure protection of the system region from access by applications.
See 2.3.5, "Memory Protection" on page 21 for further explanation.

Conceptually, the process address space is divided into two different regions, as
shown in Figure 3. One of these regions may be accessed by both 16:16 and
0:32 applications, and is known as the 16/32-bit region or compatibility region.
The other region is accessible by 0:32 applications only, and is known as the
32-bit region.

The 16:16 addressing scheme allows access of up to 512MB per process, since
the local descriptor tables used in this model contain up to 8192 entries, each of
which can point to a segment of up to 64KB in size. In order to ensure that there

Chapter 2. Memory Management 15

is no problem in coexisting 16-bit and 32-bit applications under OS/2 V2.0, the
maximum size of the process address space has been set at 512MB. This
means that all memory in the process address space can be addressed using
either the 16:16 or the 0:32 addressing scheme. This capability is important
since it allows applications to be composed of mixed 16-bit and 32-bit code,
allows 32-bit applications to make function calls to 16-bit service layers, and
permits 16-bit applications written for OS/2 Version 1.x to run unmodified, effec­
tively allowing a "hybrid" memory management environment.

The 32-bit nat memory model greatly simplifies the migration of 32-bit applica­
tions to OS/2 Version 2.0 from other operating system platforms, and the
migration of OS/2 Version 2.0 applications to other platforms. This is in contrast
to the segmented memory model implemented by the 80286 processor. All the
features described above arise from the fact that a flat linear memory model is
used, taking advantage of the advanced features of the 80386 processor. The
paging scheme is more general than the segmentation scheme used by the
80286, and the flat memory model will facilitate any future migration of OS/2 to a
hardware platform other than the Intel 80x86 family.

2.3 Memory Objects
A memory object is the term used under OS/2 Version 2.0 for a linear, contig­
uous range of memory addresses, which is regarded and manipulated as a
single logical unit by an application. A memory object is actually composed of
one or more discrete 4KB pages, and is viewed as such by the operating
system. With minor exceptions however, an application need not be aware of
the paged nature of a memory object, since OS/2 Version 2.0 handles all paging
internally. See 2.4, "Physical Memory Management" on page 22 for further dis­
cussion of paging.

Each process under OS/2 Version 2.0 uses memory objects, and all memory allo­
cation and sharing from an application viewpoint is based on memory objects.
The reader may conceptually regard memory objects as similar to segments, but
the means of addressing memory objects is greatly simplified, since there is no
need to construct the address using a segment selector.

2.3.1 Allocation and Management

16 OS/2 V2.0 Volume 1

OS/2 Version 2.0 allows a memory object to have any size between 1 byte and
512MB, which is the maximum amount of memory addressable in a process
address space. A program uses the DosAllocMem() and DosAllocSharedMem()
function calls to allocate memory objects. The use of these and other available
functions to manipulate memory objects is described in OS/2 Version 2.0 -
Volume 4: Application Development.

Allocating a memory object with a size of 1 byte will in reality reserve a full 4KB
page, since the operating system allocates memory on a page-by-page basis. In
order to avoid large amounts of wasted memory, an application, which uses
many small memory objects, should request the allocation of a storage pool
from the operating system, and then suballocate this storage as required. This
technique reduces memory fragmentation and allows more efficient use of
memory resources. It is described in detail in OS/2 Version 2.0 - Volume 4:
Application Development.

When a memory object is allocated, its base address and maximum size are
defined. The location of the object and the size of the object is fixed for the life­
time of the object. It can be neither re-sized or moved within the virtual address
space. By default, however, no physical storage is reserved for a memory object
at allocation time; the operating system merely reserves a range of addresses in
the process address space for that object. A memory object which is allocated
in this way is known as a sparse object.

Before an application can write to a memory object, the object must be com­
mitted; upon commitment, physical storage is reserved for the memory object.
Storage can be committed at either of two points:

• The memory object may be committed in its entirety at the time the object is
allocated. This method is typically used for small memory objects, the size
of which is fixed and predetermined prior to execution.

• The memory object or any part of it may be committed after allocation, in
4KB (page) units. This method is typically used for memory objects such as
documents or spreadsheets, which are likely to increase in size during exe­
cution.

This effectively allows an application to increase the size of a memory object in
a series of steps, as the storage requirements for that object increase during
application execution. A mer:nory object can therefore be allocated at its
maximum possible size during initialization, without imposing large memory
overheads on the system as a whole, since real storage is reserved only as it is
required.

Each page within the memory object can be individually committed, or a group of
pages may be committed at the same time, up to the maximum size of the
memory object stipulated during allocation. Note that this is one of the few
instances where an application developer must be aware of the paged memory
architecture.

2.3.2 Guard Page Technique
When the amount of real storage reserved for a memory object is increased
dynamically by progressive commitment of pages, the application is not required
to explicitly determine whether the next write operation will exceed the limit of
the storage already reserved. When such a write operation occurs. the oper­
ating system may notify the application, by raising a guard page fault exception.

This technique is useful for situations where storage requirements grow linearly.
OS/2 V2.0 implements automatic stack growth by using guard pages. When
wishing to limit physical storage requirements but at the same time allow for sit­
uations where large data areas might be needed, an application should consider
using guard pages. A memory object is allocated with the largest possible size
that might be required. The application then commits the minimum number of
pages, that are required. Usually this would start at the lowest address in the
memory object and proceed upwards. The application then marks the next
highest page as a guard page. The guard page is also a committed page.

The application must also register an exception handler. Exception handlers are
described in 3.3, "Signal and Exception Handling" on page 38. When the appli­
cation tries to write data into the guard page, a guard page fault will be raised
and control passed to the application's exception handler. The application must
then unguard the current guard page, commit the next highest page and then set

Chapter 2. Memory Management 17

guard on that page. Should the application try to access uncommitted storage
above the guard page, a general protection exception will occur.

OS/2 Version 2.0 provides a default guard page exception handler, which
commits the next lower page in the object; this is done because the default
handler is written to handle dynamic stack growth. Stacks are always propa­
gated downward. For all threads other than the first in any process, OS/2 V2.0
allocates the stack as a sparse object. The page with the highest address is
committed and the page immediately below it is marked as a guard page. No
other pages are committed. When the guard page is accessed, the default
handler tries to get another guard page below the current one. If successful, the
original guard page becomes a normal stack page. An application could allow
the default handler to process guard page exceptions on its private memory
objects; however, in most cases the actions taken by this default handler will not
be appropriate and an application should register its own exception handler.

Use of the guard page technique is strongly recommended whenever the amount
of data to be written into a memory object is variable, or when the size of a
memory object may increase during execution. The process of creating and reg­
istering an exception handler and of using guard pages and the handling of
guard page exceptions within applications is described in OS/2 Version 2.0 -
Volume 4: Application Development.

2.3.3 Virtual Memory Management

18 OS/2 V2.0 Volume 1

The virtual address space is split into two regions:

• System Region

This is the region above the 512MB, which is only accessible to tasks
running at operating system privilege level.

• Process Region

This is the first 512MB of the virtual address and only memory objects in this
region are mapped into a process's address space when that process is
running at user privilege level. Each process present in the system has its
own mapping of this region. The process region is further split into:

A shared area

This is used to hold shared memory objects such as DLL code and
shared data areas.

A private area

This contains EXE code and process private data.

In order to manage virtual memory, OS/2 V2.0 uses the concept of an arena.
There are three arena types in the system:

• The system arena

• The shared arena

• Per-process private arenas.

Associated with each arena is the virtual address space, which it maps. The
system arena contains all the memory objects that are in the system region. It
maps the virtual address space between 512MB and 4GB. The shared arena
describes all the shared memory objects in the process region.

Each process has its own private arena, which contains EXE code and the proc­
ess's private data. The private arena starts at the lowest address of the process
region's virtual address space and has a minimum size of 64MB. A program
loaded into the address space will be loaded at the low end of the address
space. Because. of this, a particular EXE will always occupy the same range of
addresses. If a program is used by more than one process it is possible to
share one copy of the program code.

The shared arena is allocated starting at the top end of the process region and
moves down towards the private arena. It has a minimum size of 64MB. The
upper limit of the private arena and the lower limit of the shared move towards
one another. Each object in the shared arena is allocated its own linear address
range. It will have the same address range in each of the process address
spaces, into which it is mapped.

Each process has its own address space, which maps memory objects in the
process's private arena and the shared arena. Only those objects in the shared
arena, which a process requires access to and is authorized to access. will be
mapped into the process's address space.

4GB....-----------------------.

SYSTEM REGION

32-Blt Region

5J2}4~D~--------------------------1~~--~
;. .. :·:::<·::. _; .

;

.. ·\·PROCESS SHARED MEMORY

Instance data Instance data Instance data
.~--------.__ _____ __ ,___.~

CdlNea

'
private

private

private EXE
..... ------------------~ code&data shared EXE code

Figure 4. Process Address Space Layout

Minimum
reserved
64MB

Minimum
reserved
64l'4B

Both private and shared storage for memory objects may be allocated within
each arena. For example, DLL instance data is located within the shared
memory arena, but each instance of the data uses a separate memory object in

Chapter 2. Memory Management 19

order to preserve data integrity, and hence each memory object is treated as
private storage. Although separate memory objects, they each map to the same
range of addresses in the shared arena. Table 1 on page 20 shows the types of
storage (private or shared) available within each memory arena, and the uses to
which these types of storage may be put by applications.

Table 1. Memory Object Classes. This table shows the way in which memory objects
may be placed in shared or private storage.

Arena Private Storage Shared Storage

Private EXE read/write data Shared run-time data
Process run-time data Shared DLL data

Shared DLL instance data DLL code and global data

Note: Code includes read-only objects such as Presentation Manager resources

Private storage in the private arena is used for read/write data, allocated at
either loadtime or runtime, which is accessed only by a single process. Shared
storage in the private arena is used for executable code, which may be shared
between processes.

Shared storage in the shared arena is used for DLL code and read-only data, as
well as DLL read/write data, which is not instance-specific. Such objects may be
accessed by all processes in the system. Private storage in the shared arena is
used for DLL instance data, which is unique to each process accessing the DLL.

For a more detailed discussion of the process of virtual memory management,
readers should refer to The Design of OS/2.

2.3.4 Page Attributes

20 OS/2 V2.0 Volume 1

An application may specify the types of access permitted for memory objects
when those objects are allocated, thereby ensuring the proper use of each
memory object. The type of access for individual pages within the memory
object may be altered subsequent to allocation. The attributes available for
memory objects and their component pages are:

• Commit

The pages within a memory object must be committed in order to be used
for read or write operations. Until it is committed, the system merely
reserves a linear address range without reserving physical storage. The
committing of a page obtains a page frame for the page; see 2.4.1, "Address
Translation" on page 23 for further explanation.

• Read

Read access to the page is allowed. All other access attempts will result in
a page fault.

• Write

Write access to the page is allowed. Write access implies both read and
execute access.

• Execute

Execute access to the page is allowed. Execute access implies read access.

• Guard

When an application attempts to write into the guard page, a guard page
fault exception is generated for the thread that referenced the guard page.
This exception can be handled by an application-registered exception
handler for this thread. This process is described in 2.3.2, "Guard Page
Technique" on page 17.

• Tile

Defining a memory object to be tiled causes it to be placed in the compat­
ibility region and mapped using the 16:16 addressing scheme, even though
the object may be used by a 0:32 process.

Specifying this attribute has no effect under OS/2 Version 2.0 as all
application-created storage must reside below the 512MB address limit, and
is therefore within the compatibility region. This attribute is provided to
allow applications to be developed that will be forwardly compatible with
future versions of the operating system. It is likely that in a future release of
OS/2 the 32-bit region (above 512MB) will be enabled for application use.
This attribute must then be specified for a memory object that will be used
by 16-bit code.

The 80386 processor does not distinguish between read and execute access.
The one implies the other. Write access implies both read and execute access.

At allocation, all pages within the object will be given the attributes specified on
the DosAllocMem or DosAllocSharedMem. After allocation, attributes of indi­
vidual pages or groups of pages within the memory object may be changed
using the DosSetMem() function. This function is described in OS/2 Version 2.0 -
Volume 4: Application Development.

2.3.5 Memory Protection
With the flat memory model, OS/2 V2.0 implements memory protection using two
machine states (user and supervisor) and by providing separate address spaces
for the supervisor and each of the processes running in the system. The global
address space encompasses the entire linear address space and consists of the
system region and the current process's address space. The global address
space is only accessible when the processor is running at ring 0, which is
reserved for the operating system. All other processes run in ring 3 (privilege
level 3). The ring protection architecture of the 80386 processor is described in
A.5.3, "Privilege Levels" on page 120. While executing at ring 3, the system
region is not visible to the current process. Neither are the addresses spaces of
any of the other processes running in the system accessible.

Since memory is managed by the operating system on a page-by-page basis,
even the allocation of a 1 byte memory object will actually reserve a full page
(4KB) in memory. Furthermore, as the memory protection scheme has also
changed under OS/2 Version 2.0, a memory reference outside the expected
range but within the 4KB page boundary will not give the Trap 0000 segmenta­
tion violation experienced in previous versions of OS/2. Instead, an exception is
generated only when an invalid page is referenced or an invalid access occurs
(such as write operation to a page previously declared as read-only). An invalid
page is a page that has not been committed in the process address space or is
outside the limit of the address space.

Here is where we see a major difference between the segmented memory model
and the linear or flat memory model. A 32-bit program can address the entire

Chapter 2. Memory Management 21

4GB address space with a 32-bit offset. Memory is seen as a single continuum.
16-bit applications see memory as discrete areas each with their own defined
size. 16-bit applications running under OS/2 V2.0 are subject to segment limit
checking and generally behave as they did under previous versions of OS/2.
The discussion here refers to 32-bit applications.

For example, an application may request the allocation of 1 KB of memory; the
operating system will allocate a full 4KB page. The application can then write up
to 4096 bytes of data into the memory object, and the operating system will not
detect an error. However, if the application attempts to write 4097 bytes into the
memory object, a general protection exception (Trap 0000) may occur. Such an
exception is only generated when the next page in the process address space is
invalid. If the next page exists in the process address space, no exception is
generated.

Note that any of these exceptions may be trapped and processed using excep­
tion handlers registered by the application. See Chapter 3, "Task Management"
for further discussion of exception handling.

Since 32-bit programs can address the entire address space with a 32-bit offset,
it is easier for 32-bit programs to corrupt data in the shared region than for 16-bit
programs. OS/2 V2.0 provides a facility for DLL routines to have their shared
data areas allocated in a protected area of memory, which is not accessible to
32-bit programs, thereby providing a level of protection. There is a new
PROTECT option on the MEMMAN statement in the CONFIG.SYS, which is used
to enable memory protection for Dlls.

2.4 Physical Memory Management

22 OS/2 V2.0 Volume 1

The previous discussion has concentrated on the application's view of memory
management. Applications running under OS/2 Version 2.0 need not even be
aware of the mechanism through which the 0:32 addressing scheme is imple­
mented; the application only deals with 32-bit addresses, and is not concerned
with the way these are mapped to physical addresses in processor storage.

When using the flat memory model, the 80386 processor regards each memory
address as a 32-bit address, seen solely as an offset from address 0 into a linear
address space. If the 80386 processor is running with paging disabled, this
linear address and the physical address in memory are equal. Physical memory
is now divided 4KB blocks, which is allocated as required to processes running
in the system. There is no direct correlation between the linear address of a
page and its address in physical storage. In fact, not all pages in the linear
address space will be represented in physical memory. The 80386 processor
has a paging subsystem, which handles the conversion of the linear address into
a physical address and also detects situations where there is no physical page
corresponding to a page in the linear address space.

Paging is usually carried out without any awareness on the part of an applica­
tion.

2.4.1 Address Translation
With paging enabled the 80386 processor maps the linear address using an entry
in the page directory and an entry in one of the page tables currently present in
the system. The page directory and page tables are structures created in the
linear address space. The address translation process is shown in Figure 5.
The linear address is split into three parts:

• Page Directory Entry or PDE (10 bits)
• Page Table Entry or PTE (10 bits)
• Page Offset or PO (12 bits).

31 0

OFFSET from Address O Logical Address

31 21 '~ 11 0

---•DIRECTORY! T~.~ \ I• Logical Address

PAGE DIRECTORY PAGE TABLE PAGE

.....
PDE

Base
Add res

PDBR

~ <:::PTE·.··· ·•t-..__----11~• 11
Base
Address

PDBR: Page Directory Base Register

Base
Address

Figure 5. Address Translation - Linear Address to Physical Address

OS/2 Version 2.0 maintains a single page directory for the entire system; the
entries contained within the page directory are unique for each process in the
system, and are copied into the page directory by the operating system when a
task switch occurs. The page directory entries contain pointers to the page
tables, which in turn point to the memory pages (both shared and private)
belonging to the current process. The page directory and each page table are
defined to be one page (4KB) in size, and are aligned on 4KB page boundaries.
There is a maximum of 1024 entries per page 1able, and a maximum of 1024
page tables per page directory. Since each page is 4KB in size, this means a

Chapter 2. Memory Management 23

single page table gives access to 4MB of memory. 1024 page tables, the
maximum, gives access to the full 4GB global address space.

The format of page directory entries and page table entries are identical. The
upper 20 bits in each page directory entry specify the address of the page table,
and the lower 12 bits are used to store control and status information. This
20-bit address is possible since each page table is aligned on a 4KB boundary.
Hence, the lower 12 bits of the address are assumed to be zero for addressing
purposes; these 12 bits are in fact used to contain control and status information.
A page table contains entries pointing to the physical memory location of the
page.

The address resolution may appear complex, but in fact very little overhead is
involved since the 80386 maintains a cache buffer for page table entries, known
as the translation lookaside buffer (TLB). The TLB satisfies most access
requests for page tables, avoiding the necessity to access system memory for
PDEs and PTEs.

When page table entries are changed or during a task switch, the TLB must be
flushed in order to remove invalid entries. Otherwise, invalid data might be used
for address translation.

For each page frame, a bit in the page table entry known as the present bit indi­
cates whether the address in that page table entry maps to a page in physical
memory. When the present bit is set, the page is in memory. When the present
bit is clear in either the page directory or in the page table, a page fault is gen­
erated if an attempt is made to use a page table entry for address translation.

2.4.2 Managing Paging

24 05/2 V2.0 Volume 1

Pages can have the following types:

Fixed

Swappable

Discard able

Invalid

These are pages that are permanently resident in storage. They
may not be moved or swapped out to secondary storage.

When there is a shortage of physical memory, these pages can
be swapped to disk.

It is possible to reload these pages from either an EXE or a DLL
file. When memory becomes overcommitted, space used for
discardable pages can be freed up, and when the pages are
required again they are loaded from the original file.

These are pages that have been allocated but not committed.

The operating system needs information over and above that contained in the
page directories and the page tables to manage the paging process. OS/2 V2.0
builds three arrays of data structures that represent:

1. Committed pages in the process and system address spaces

2. Pages in physical memory

3. Pages held on secondary storage.

The following sections describe these arrays and the way in which OS/2 V2.0
uses them.

2.4.2.1 Virtual Pages
A virtual page· structure (VP) is allocated whenever a page is committed in
response to an application request. No physical memory is allocated for the
page at this time. The PTE is updated to point to the VP but the present bit in
the page table is not set. When the page is first referenced, a page fault occurs.
The allocation of physical memory is left to the last possible moment.

The virtual page structure describes the current disposition of a page. When a
page fault occurs, the virtual memory manager obtains the address of the VP
from the page table entry, and uses the information held in the VP to determine
the required action which must be taken to resolve the page fault. The possible
actions are:

• The page manager will provide a page, initialized to zeros if required

• The page will be loaded from an EXE or DLL file

• The page will be loaded from the swap file on secondary storage.

If the page is to be loaded from an EXE or DLL, the VP contains a pointer to the
loader block. If from the swap file, it points to a page in the swap file.

2.4.2.2 Page Frames
A page frame (PF) exists for each page of physical memory in the system. Page
frames are stored in an array, which is indexed by the physical frame number
within the system.

A page frame may have one of three states:

• Free, in which case the page frame is available for allocation to a process in
the system. The page frame addresses of all the free pages in the system
are held in a doubly linked list known as the free list, with PFs for fast planar
memory at one end of the list, and PFs for the slower memory on adapters at
the other end. This permits the allocation of faster memory before the
slower memory.

• In-use, in which case the page has been allocated to the current process in
the system.

• Idle, in which case the page frame has been allocated to a process, but no
page table entries for the current process reference this frame. This lack of
reference normally indicates that the process, which is using the page, has
been switched out; that is, the process is not the current process.

When the system is overcommitted, the number of free and idle page frames
begins to fall. When it reaches a threshold level, pages are migrated from the
in-use state to the idle state by a page ager. The page ager looks for pages that
have not been accessed since the last time the page ager ran. The ager exam­
ines the accessed bit in the PTE. If clear, it marks the page not present. If a
page is referenced by more than one PTE, a shared page, all PTEs must be
marked not present before the page is placed on the idle list. The idle list is
also a doubly linked list and least recently used (LRU) entries are at one end of
the list and most recently used (MRU) entries are at the other end of the list.

Pages are also classified as dirty or clean. A dirty page is one that has been
written to and must have its contents swapped to disk before it can be allocated
to another process. A clean page does not need to be swapped out, since it
typically contains code o .. read-only data, which can be reloaded from the ori-

Chapter 2. Memory Management 25

ginal file on disk. It could also be that a copy of the page currently exists in the
swap file.

Placing a page frame on the idle list does not destroy its contents. The page
frame is only reused when the operating system is forced to steal a page frame
from the idle list in order to accommodate the loading of a page after a page
fault. The swapping of an idle swappable page to disk is also usually delayed
until there is a need to reuse the page frame to satisfy a page fault. To take
advantage of the capability of certain 1/0 adapters to chain operations, other
pages on the idle list may be swapped out at the same time.

2.4.2.3 Swap Frames
A swap frame (SF) is similar to a page frame except that an SF refers to a slot in
the swap file, which can be used to hold a page when main storage becomes
overcommitted. The swap frame array is used to control allocation of space in
the swap file. If the SWAP option is present on the MEMMAN statement in the
CONFIG.SYS, the SWAPPER.DAT file will be created in the directory pointed to in
the SWAPPATH statement. The initial size of the file is 512KB.

The size of the swap file is determined by the amount of memory overcommit­
ment in the system. The algorithm used in this calculation takes into account
the amount of storage needed for all the fixed pages and swappable pages in
the system and the amount by which this exceeds the physical storage installed
in the system. The memory overcommitment is recalculated each time pages
are committed. It should not be necessary to increase the size of the swap file
each time pages are committed because of the fact that increases to the swap
file will always be in steps of 512KB.

However allocation of VPs to SFs does not take place when the page is com­
mitted. All the operating system ensures at this time is that there will be space
in the swap file for the page when it becomes necessary to swap it out. The SF
is allocated to the page when it is first selected from the idle list for swapping.
When the page is swapped back in, the SF will not be immediately freed up, but
a link to the VP is maintained. If the page is then again selected for swapping
out before it has been changed, it will not be necessary to write it to disk as a
copy of it still exists in the swap file.

The OS/2 V2.0 swap file can also decrease in size. Decrements to the size of
the swap file will be in 512KB blocks. When the overcommitment calculation
indicates that the swap file is too large by one or more multiples of 512KB, the
area at the end of the swap file is marked for shrinking. No new allocations of
SFs in the area marked for shrinking will take place. When all SFs in the
shrinkable area are free, the swap file is reduced in size. No attempt is made to
force the freeing of SFs in this area; consequently there can be a longish delay
in the swap file becoming eligible for shrinking and the shrinking actually taking
place.

2.4.3 Processing Page Faults

26 05/2 V2.0 Volume 1

When a process attempts to access a page, for which the present bit in the PTE
is not set, a page fault occurs. The page fault is passed to OS/2 Version 2.0's
page fault handler, and the following sequence of events takes place:

1. A PF is allocated from the free list or the LRU end of the idle list. Should the
PF be taken from the idle list, and its current contents be marked as "dirty",
it will be necessary to first write the page to the swap file.

2. Once the PF is available, its contents will be loaded based on information
contained in the VP. The source could be one of the following:

• If the page is marked 11 allocate on demand" 1 the physical memory
manager will provide the page. If requested the page is initialized to
zeros.

• If the page is discardable, it is reloaded from an executable file on disk.

• If the page is swappable but is currently on the idle list, it can be
reclaimed because it is still present in memory.

• If the page is swapped out, it is reloaded from the swap file.

3. The PTE is updated with the PF address and the present bit is set on.

4. The TLB is flushed.

5. The program instruction that caused the exception is restarted.

Free/Idle List
Vlrtual Page

Physical Page Structures

free page address J
page

page frame

page address page

free page address ~ .. page
page frame

page address page

free
page frame

Figure 6. Page Swapping

Chapter 2. Memory Management 27

2.5 16-Bit Applications in a 32-Bit Environment
One of the major concerns when developing OS/2 Version 2.0 was to ensure
compatibility with applications written for previous versions of OS/2. Since there
are a significant number of 16:16 modules and resources in existence, consider­
ation was also given to the coexistence and interaction of 16:16 and 0:32
modules and resources within an application, with issues such as:

• 0:32 applications using existing 16:16 DLLs and libraries

• 16:16 applications using 0:32 DLLs and libraries

• "Huge" segments (greater than 64KB in size).

The 16:16 applications are placed in the compatibility region and accessed
through tiled local descriptor tables (LDTs); see 2.5.1, "Address Conversion and
Translation" for further explanation. Such applications take advantage of the fact
that memory in the compatibility region may be addressed with both 16:16 and
0:32 addressing schemes. Addressing memory objects from both 16-bit and
32-bit applications is therefore quite simple, since no physical movement of the
memory object is required. Since the entire process address space under OS/2
Version 2.0 is located within the compatibility region, this also means that com­
munication between 16-bit and 32-bit applications and modules may take place.

2.5.1 Address Conversion and Translation

28 OS/2 V2.0 Volume 1

Under previous versions of OS/2, an application addressed memory using the
segmented memory model, which was translated to physical memory addresses
by the operating system using a local descriptor table (LDT), with one LDT per
process. Under OS/2 Version 2.0, 16:16 references (see 2.2, "Flat Memory
Model" on page 14) are managed by a technique called LDT tiling, which pro­
vides compatibility for 16-bit applications and provides a mechanism for 32-bit
applications to utilize 16-bit libraries.

A tiled LDT contains up to 8192 descriptors, where the segment base address in
each descriptor is a multiple of 64KB, and each descriptor therefore points to a
64KB region of memory. Contiguous descriptors map into a contiguous linear
address space, thereby using a potential maximum of 512MB, and allowing a
16-bit application to address the 512MB of the process address space in the
compatibility region. Figure 7 on page 29 shows the way in which memory
addresses within the tiled LDT are mapped into the process address space.

The addresses within the process address space may be referenced by applica­
tions or modules using the 16:16 addressing scheme, in a similar manner to pre­
vious versions of OS/2. However, the same physical memory locations may also
be accessed by 32-bit applications and modules using the 0:32 addressing
scheme. Both the LDT entries used by the 16:16 scheme and the page table
entries used by the 0:32 scheme may translate to the same memory locations.
This translation enables 32-bit applications to make use of 16-bit modules and
resources, and allows 32-bit and 16-bit applications to coexist and communicate
with one another.

Process Address Space
Memory

Object Name
~ ~ ©

256KB 40,000H
Segment Size 100 5120 64KB

Number of
1 2 16

Pages

18:18
7:0 F:O ·17:0

Addressing

0:82 OH 10.ooaH lG,OODH
Addressing

Local Descriptor Table

20,000H
Selec­

tor

1F

10,000H 17

~F

Figure 7. Mapping 16:16 Memory References

I

l
!
l

Base Address Limit

20,000H 64KB-1

10,000H 5119

OH 99

LDTs are managed in a different way from previous versions of OS/2. Each LDT
is allocated as a sparse object until descriptors are inserted upon loading an
application. Descriptors for shared memory objects are inserted downwards
commencing at the top of the LDT, whereas private memory object descriptors
are inserted upwards commencing at the bottom of the LDT. This order reflects
the management of the linear address space by the operating system. Therefore
the minimum LDT size is 8KB, using one page for the shared descriptors and
one page for the private descriptors. Note that each code or data selector
reserves a full 64KB of linear address space to be able to handle an eventual
reallocation of segments to the maximum size of 64KB. See Figure 7.

The following memory objects use LDT descriptors:

• 16-bit .EXE files

• 16-bit .DLL files

• DosAllocSeg() calls

Chapter 2. Memory Management 29

2.5.2 Thunking

30 OS/2 V2.0 Volume 1

• DosAllocMem() calls with tiling

• 32-bit .EXE files with tiling

• 32-bit .DLL files with tiling.

This use of descriptors is effectively equivalent to the implementation used in the
previous versions of OS/2. It must be noted, however, that a memory object
greater than 64KB may not be handled in an orderly manner by a 16-bit applica­
tion.

A memory object allocated in the compatibility region has both a 16:16 address
(far16) and a 0:32 address (near32), allowing access by applications using either
addressing scheme. The two types of addresses are related by the following
arithmetic functions:

• near32 = SEL (far16) > > 3 < < 16 + OFFSET(far16)

• far16 = MAKEP (HIGH (near32) < < 3 + 7, LOW (near32)).

The term near32 refers to the fact that all 0:32 calls are of type near (based on
offset only). The term far16 refers to the fact that 16:16 calls are based on the
segment selector and offset used in combination. Bit shift right is shown as
> >, and bit shift left is shown as < <.

32-bit executable modules can therefore create 16:16 aliases for memory objects
in the compatibility region and conversely, 16-bit modules may create 0:32 bit
aliases. As these conversions are arithmetically based, a high performance
address conversion layer may be implemented, assuring automatic address con­
version between 16:16 and 0:32 memory objects. See 2.5.2, "Thunking."

Address conversion between 16:16 and 0:32 addressing models is achieved by
the use of a thunk. A thunk exists for each programming interface in the system.
Thunking implies:

• Converting the addressing scheme used (0:32 • 16:16)

OS/2 Version 2.0 uses a flat linear (0:32) addressing scheme. 16:16 program
modules expect a selector:offset (16:16) addressing scheme. The thunk con­
verts memory references between these two schemes. See Figure 8.

Linear

Address THUNK 64.KB
MODULE MODULE

Space
Segmenu

LAYER

0:32 16:16
(DWORD) (WORD)

Figure 8. Thunk Concept. Note that a thunk performs services other than address trans·
lation. such as structure and stack realignment. See text.

• Different parameter sizes (DWORD versus WORD)

The 0:32 addressing scheme uses 32-bit (LONG or DWORD) values as the
basic data type. The 16:16 scheme uses a 16-bit (SHORT or WORD) value as
the basic data type. The thunk converts between WORD and DWORD length
data.

• Structure alignment

The 16:16 addressing scheme normally causes data structures to be WORD
aligned, whereas the 0:32 addressing scheme defaults to DWORD alignment;
blank space is included within the structure so that each element. is aligned
on a DWORD boundary. The thunk must realign data structures where nec­
essary.

• Stack conversion

The 0:32 stack is DWORD-based. The 16:16 stack is WORD-based. Stack­
based addressing between the two schemes is therefore different. The thunk
must make a new copy of the parameters on the stack, realigning when
needed.

• Restrictions on the 16:16 addressing scheme

The 16:16 code can only address up to 64KB in any segment. The only limit
on the 0:32 code is the maximum size of the linear address space (4GB).
This disparity creates a problem when a data item in the 0:32 module or
resource is larger than 64KB or is allocated across a 64KB boundary, and
must be passed to a 16:16 routine. Where possible, the thunk must make the
data item addressable by the 16:16 routine.

• Different call models

The 0:32 addressing scheme uses near calls for all operating system func­
tions. The 16:16 scheme uses far calls for operating system functions. If a
procedure using one scheme tries to call a procedure of the other scheme,
different return values may be placed on the stack. The thunk is responsible
for producing the correct calling sequence.

The above considerations apply to all executable programs, libraries (both stat­
ically and dynamically linked) and Presentation Manager messages.

OS/2 Version 2.0 provides a number of thunks to handle function calls from 16-bit
applications to 32-bit service layers, and vice versa. Almost all of the thunks in
OS/2 Version 2.0 are of the 0:32 to 16:16 conversion kind, except for those that
handle semaphores and DosSubxxxx() service calls. Thunks are packaged with
the module that contains the supporting code for the 16-bit and/or the 32-bit
entry point. See Figure 9 on page 32 for an overview of the two different types
of thunks.

Chapter 2. Memory Management 31

i~lltl
16-BitAPI 32-Bit AP/

0:32 _.....,. ... 16:16 16:16 ----·· 0:32

Figure 9. Thunks -16-Bit versus 32-Bit

This implementation of mixed 16:16 and 0:32 applications also raises a number of
considerations:

• Each resource will effectively occupy at least 4KB (one page), since this is
the minimum allocated in the 32-bit environment.

• Stack size is a maximum of 64KB, since this is the maximum addressable by
the 16-bit portion of the application.

• In Presentation Manager applications, caution must be exercised when
passing user-defined messages between window procedures in modules that
use different addressing models; such messages will require application­
defined thunks.

• Presentation Manager hooks should only be used with system-defined
message contents.

When developing 32-bit applications using 16-bit modules, the programmer is
responsible for supplying appropriate address conversion via thunks, for pointers
passed as parameters and for application-defined messages under Presentation
Manager. These considerations and restrictions are discussed further in OS/2
Version 2.0 - Volume 4: Application Development.

2.5.3 Shared Memory

32 05/2 V2.0 Volume 1

When memory objects are shared between processes in the 16-bit environment,
the processes may share either the linear address spaces or the actual physical
pages, depending upon the way in which the memory is shared. The allocation
of shared memory by 16-bit applications using the DosAllocShrSeg() function
involves shared linear addresses, which are referenced by different LDT entries
in each 16-bit process. This mapping of LDT entries to linear addresses is
shown in Figure 10 on page 33.

LDT1

Entry xxxx0004
8K·1

8K • 2 xxxxOOOB

0 xxxxfJOOO

Lln•r Address

LDT2

.... ;: ... : ... : ·.,., .. ·.:··

'~i\ll!P_'._~:t::;_::i
/:·······.·.<.;:::>:':··'·,·

Figure 10. 16:16 Shared Address Ranges

Memory objects are shared using the alias technique, whereby the different
16:16 memory references used by each application are mapped by the operating
system, using the tiled LDTs, to the same locations in memory. This is very
similar to the technique used for shared memory in a pure 0:32 environment.

2.5.4 Program Loading
OS/2 V2.0 will load programs linked by both LINK386 (the linear executable
linker) and by LINK (the segmented executable linker). Executables linked under
previous versions of OS/2 can be executed without relinking on OS/2 V2.0.

Included in the executable files are relocation records (also referred to as fixup
records), because not all address references can be resolved at the time of
linking. These records are used by the OS/2 program loader to resolve
addresses that were unknown at link time. There is a difference in the way that
LINK386 and LINK packages fixup records. LINK386 fixup records are identified
by the page to which they belong, whereas LINK produces fixup records by
segment.

LINK386 executables are page orientated. LINK executables are segment orien­
tated. The loader employs different strategies when handling modules produced
by the different link editors. In both cases there is no preloading of any part of
the executable. Loading only takes place when an attempt is made to access a
section of the module, which is not already loaded.

Chapter 2. Memory Management 33

2.6 Summary

34 OS/2 V2.0 Volume 1

In the case of LINK386, the executable will be loaded on a page-by-page basis.
Reloading parts of a module that has been discarded is no problem since when
a page fault occurs, the contents of the page and its fixup records can easily be
recovered from the EXE or DLL file on disk.

With LINK executables, the situation is different as everything is segment based.
Th' procedure that is followed depends on whether a particular segment is
swappable or discardable. Again there is no preloading of segments. The initial
load of a particular segment is triggered by a segment not present fault. At this
time, sufficient pages to hold the segment will be allocated. The complete
segment is loaded and fixups applied. If the segment and hence the pages that
contain it are swappable, the fixup records are discarded. In the case of
discardable segments, the fixup data is reorganized on a per-page basis and
held in swappable memory. Pages of a swappable segment are recovered from
the swap file. When a page of a discardable segment needs to be recovered, it
must be reloaded from the EXE or DLL file. After the first load of the segment,
only the page needs loading, as the fixup data is now available by page. Gener­
ally read-only pages are discardable, read/write pages are swappable.

However there is a further complication. Memory is always allocated in a mul­
tiple of 4KB pages. If a segment contains 20 bytes or 4000 bytes, one page will
be allocated to contain it. There is a potential for using far more memory to load
a program than the program actually requires. To overcome this, OS/2 V2.0
uses a technique called segment packing. A single page may contain parts from
twQ or more segments. When segments are packed onto a page, the page is
always marked swappable. This is true even if all segments on the page are
read-only.

By default, segment packing is enabled. The MEMMAN statement has a new
option NOPACK, which turns off segment packing. A segment will be considered
for packing, if there are other qualifying segments, its is less than a certain size
and if loaded on its own, would result in there being significant free space in the
last or only page into which the segment is loaded. The current recommenda­
tion would be to leave segment packing enabled.

OS/2 Version 2.0 provides significant enhancements in memory management
over previous versions of OS/2. Full use is made in Version 2.0 of the 32-bit
addressing and paged virtual memory capabilities of the Intel 80386 processor,
·giving theoretical access to 4GB of memory per process. In practical terms,
however, it is unlikely that the full amount of memory could be used, due to
other constraining factors such as hardware limitations.

OS/2 Version 2.0 manages its memory as a single linear address space of up to
4GB in size. This global address space is divided into a number of regions. The
region below 512MB is known as the process address space, and is available to
applications for storage of executable code, resources and data. The region
above 512MB is reserved for operating system use. The choice of 512MB as the
dividing line between the two regions allows 16-bit applications and resources,
written for previous versions of OS/2, to be executed and address memory within
the process address space.

OS/2 Version 2.0 allocates memory in multiples of 4KB; each 4KB unit is known
as a page. An application may request larger memory objects, and may access

and manipulate these objects as logical entities, but the operating system inter­
nally manages each page as a separate unit. This allows a more efficient virtual
memory implementation, since individual pages may be swapped in and out of
real storage, rather than entire memory objects. Page swapping is typically
faster, especially when memory objects become very large.

OS/2 Version 2.0 allows 16-bit applications and resources to execute within any
process, since all processes execute in memory within the 16:16 addressing
scheme limit of 512MB. OS/2 Version 2.0 also allows interaction between 16-bit
and 32-bit modules within a process, and provides address conversion, param­
eter conversion, stack alignment, etc., between 16:16 and 0:32 addressing
schemes using thunk layers.

The memory management implementation under OS/2 Version 2.0, therefore,
provides access to larger amounts of physical and virtual storage in a more effi­
cient manner than previous versions of OS/2, and removes many of the con­
straints imposed by previous versions. At the same time, it maintains
compatibility with 16-bit applications and resources.

'

Chapter 2. Memory Management 35

.. · ,

36· OS/2 V2.0 Volume 1

Chapter 3. Task Management

3.1 Dispatching

The task management component of OS/2 Version 2.0 controls the execution and
dispatching of processes and threads started by the user or by applications. The
design objective of task management in OS/2 Version 2.0 was to meet the fol­
lowing criteria:

• Support a// existing 16-bit applications written for previous versions of OS/2

• Support the development and execution of 32-bit applications

• Relieve system constraints on resources such as threads

• Simplify the management of processes and threads within applications.

This chapter discusses the implementation of task management under OS/2
Version 2.0 in order to satisfy these criteria.

OS/2 Version 2.0 treats all processes executing in the system as protected mode
processes. No real mode support is provided by OS/2 Version 2.0; such support
is not necessary since the Multiple Virtual DOS Machines feature allows DOS
and DOS extender applications such as Microsoft Windows 3.0 applications to
run in virtual DOS machines, which are regarded by the operating system as
protected mode tasks in their own right. In this way, full pre-emptive multi­
tasking and memory protection are available to all applications executing in the
system, including DOS and Microsoft Windows applications.

3.1.1 16-Bit Application Support
OS/2 Version 2.0 supports the execution of 16-bit applications directly, with no
modification required. These applications execute as protected mode processes
under operating system control, exactly as they did under previous versions of
OS/2. Full memory protection and interprocess communication facilities are
available to such applications.

OS/2 Version 2.0 also allows both 16-bit and 32-bit modules and resources to
reside and execute within the same process. Address conversion and trans­
lation is accomplished using tiled local descriptor tables and thunks. These con­
cepts are fully described in 2.5, "16-Bit Applications in a 32-Bit Environment" on
page 28.

3.1.2 32·Bit Application Support
To take full advantage of the 32-bit flat memory model implemented by OS/2
Version 2.0, a full set of 32-bit application programming interfaces is provided for
developers. This allows memory allocation in logical units dictated by the
requirements of the application rather than by the constraints of the segmented
memory model implemented under previous versions of OS/2. Simplified
memory management within an application allows developers to write applica­
tions that may be more easily migrated to other operating system platforms,
perhaps running on non-Intel processors.

These 32-bit applications are executed as protected mode processes within the
system, and have the same multitasking, mt.ltithreading, memory protection and

@Copyright IBM Corp. 1992 37

interprocess communication facilities available to 16-bit applications, plus some
additional facilities implemented under OS/2 Version 2.0.

3.2 Interrupt Handling
The interrupt manager component of the operating system is responsible for
maintaining the interrupt context for the system. It dispatches hardware inter­
rupts to device drivers which are registered for those interrupts. The interrupt
manager is also responsible for supervising the use of the programmable inter­
rupt controller (8259 PIC). Since performance is always a major issue in inter­
rupt handing, particularly with time-critical applications, special considerations
have been taken to ensure the maximum possible performance levels.

The functions performed by the interrupt manager are basically similar to those
implemented for previous versions of OS/2. The interrupt manager provides the
following:

• High-performance routing of interrupts to device drivers

• Compatibility with 16-bit DevHlp() interfaces

• Support for PS/2-like interrupt devices (level-triggered interrupt sharing)

• Support for PC AT-like interrupt devices (edge-triggered interrupts)

• Efficient interrupt packaging/adaptation for OEM extensions.

The internal implementation of the interrupt manager is very similar to previous
versions of OS/2. The only major difference between the interrupt manager in
OS/2 Version 2.0 and previous versions is that real mode interrupt handling is no
longer supported; this method of interrupt handling is no longer needed due to
the provision of the Multiple Virtual DOS Machines feature in OS/2 Version 2.0,
which supports DOS applications as virtual 8086 mode tasks. All hardware and
software interrupts from virtual 8086 mode tasks in an 80386 system cause a
switch to protected mode. Thus interrupt requests issued by DOS applications
are translated to the appropriate protected-mode device service requests by the
virtual DOS machine. This process is explained more fully in OS/2 Version 2.0 -
Volume 2: DOS and Windows Environment.

Upon servicing an interrupt, the interrupt manager reschedules all threads cur­
rently pending in the system. This rescheduling is done to ensure that high pri­
ority threads are scheduled and dispatched as soon as possible. The only
exception is the operating system kernel, which cannot be preempted. Forced
actions such as Ctrl +Break or DosKillProcess() must be serviced before more
application code is executed. This priority is necessary to avoid situations
where a process is terminated by the user and an instruction from this process
is then executed before the operating system processes the interrupt. Interrupt
priorities are therefore checked by the interrupt manager upon receiving each
interrupt.

3.3 Signal and Exception Handling

38 OS/2 V2.0 Volume 1

Under previous versions of OS/2, signals were dispatched from a number of
sources and were used to interrupt executing processes. These signals included
Ctrl-C, Ctrl-Break, and signals generated by the DosKillProcess() function call.

Under OS/2 Version 2.0, signal handling has been merged with exception han­
dling to provide a general, portable mechanism for handling all such events.
OS/2 Version 2.0 provides four new system functions for exception handling on a
per-thread basis:

• DosRaiseException()

• DosSetExceptionHandler()

• DosUnsetExceptionHandler()

• DosUnwindException().

The DosSetSignalExceptionFocus() function is used to allow 32-bit applications to
inform the operating system that they are to be the focus for Ctrl +Break and
Ctrl-C signals. However, these signals are dispatched and treated as
exceptions.

Applications may register their own routines using the DosSetExceptionHandler()
function to handle specific types of exceptions, including general protection
exceptions which could not be trapped by applications under previous versions
of OS/2. These exception handlers may be written in high-level languages such
as "C"; they are not required to be written in assembly language, as was the
case with previous versions of OS/2.

One significant difference in exception handling between OS/2 Version 2.0 and
previous versions of OS/2 is the ability, under Version 2.0, to handle general pro­
tection exceptions within the application. Under previous versions, such
exceptions invariably resulted in application termination with a Trap 0000 error;
with Version 2.0 however, an application may recover or at least terminate in an
orderly manner.

The generalized exception-handling approach has several advantages:

• Exception handlers may be chained and/or nested, and each handler may
decide whether or not to pass an exception to subsequent handlers.

• Exception handlers under OS/2 Version 2.0 may be written entirely in a high­
level programming language; assembly language routines are not required.
This reduces the dependence on the Intel 80386 architecture, and facilitates
porting applications to other operating system and hardware platforms.

Note that OS/2 Version 2.0 does not allow applications to register an exception
handler for a "coprocessor not found" exception. Instead, the operating system
itself traps such exceptions and provides transparent floating-point emulation on
a per-thread basis.

Note that OS/2 Version 2.0 provides its own exception handlers within the
service layers for all 32-bit system functions. These exception handlers allow
the service routines to recover from page fault exceptions and general protection
exceptions encountered due to bad pointers in applications' function calls. The
function call returns an ERROR_BAO_PARAMETER code rather than a Trap 0000
or Trap OOOE code, thereby allowing the application to more easily recover from
the error. This recoverability represents a significant enhancement over pre­
vious versions of OS/2, since it allows easier debugging and more flexible
pointer handling, without the necessity for application-registered exception han­
dlers to process these exceptions.

Chapter 3. Task Management 39

Exception handling within applications is described in detail in OS/2 Version 2.0 -
Volume 4: Application Development. The reader will also find programming
examples of other topics, covered in this chapter, in that volume.

3.4 Thread Management
Under previous versions of OS/2, there was a limitation of 53 threads per
process. Under Version 2.0, this limitation is lifted, and the thread limit for each
process is now the same as the overall system limit, that is, a total of 4096
threads. Note, however, that the operating system itself consumes some
threads, so the practical number of threads available to an application will be
fewer than 4096.

The number of threads available is also affected by the THREADS= statement in
CONFIG.SYS. This statement sets the maximum number of threads available in
the system; hence the number of threads available to applications will be the
number specified in this statement, less the number of threads consumed by the
operating system.

3.4.1 Creating Threads
The preparation and dispatching of secondary threads within applications is
greatly simplified under OS/2 Version 2.0. Under previous versions of OS/2, the
application was required to explicitly allocate and deallocate memory for the
stack segment of a secondary thread. Version 2.0 allows the operating system
to perform the allocation of the stack memory object on the application's behalf
as part of the DosCreateThread() function, and to free the stack segment when
the thread terminates. The application need only specify the required size of the
segment in the DosCreateThread() call.

OS/2 Version 2.0 uses the guard page technique described in Chapter 2,
11 Memory Management" to progressively commit each thread's stack during exe­
cution, up to the maximum size specified in the DosCreateThread() function.
This minimizes the real storage requirement of the stack, makes the most effi­
cient use of available real storage, and thereby improves overall system per­
formance.

3.4.2 Controlling Threads

40 OS/2 V2.0 Volume 1

Under previous versions of OS/2, control information for threads was stored in a
number of different locations and accessed via a number of function calls.
Under Version 2.0, much of this information has been combined into a thread
Information block (TIB). The TIB contains the following information for the
current thread:

• Process identifier
• Parent process identifier
• Module handle
• Command line pointer
• Environment block pointer
• Thread identifier
• Priority
• Base address of the thread's stack
• Stack size
• Pointer to the exception handler chain for the thread.

The TIB is accessed using the DosGetlnfoBlocks() function, which replaces the
DosGetPrty(), DosGetPID(), DosGetPPID() and DosGetlnfoSeg() functions.

3.4.3 Waiting On and Terminating Threads

3.5 Semaphores

Under previous versions of OS/2, when an application wished to determine
whether an asynchronous thread had completed execution, it was required to do
so through the use of semaphores, which were periodically checked by the
waiting thread. OS/2 Version 2.0 provides a DosWaitThread() function which
allows an application to determine whether a given thread is currently executing,
and to either wait for the thread to complete, or time-out immediately.

A thread may also be terminated from within an application using the
DosKillThread() function. Under previous versions of OS/2, a thread could not be
forcibly terminated by another thread, unless its parent process was also termi­
nated.

OS/2 Version 2.0 provides significantly enhanced semaphore facilities for syn­
chronization between threads and processes. In order to maintain compatibility
with 16-bit applications, the task management component handles both the older
semaphores implemented in previous versions of OS/2, and the new types intro­
duced in Version 2.0.

OS/2 Version 2.0 provides two classes of semaphores: private and shared
semaphores. A process may have up to 64KB of private semaphores, available
only to threads within that process, and may also access up to 64KB of shared
semaphores, available to all processes in the system.

There are three different types of semaphores in OS/2 Version 2.0:

• Mutex semaphores provide mutually exclusive access to a particular
resource.

• Event semaphores are used to signal system or application events.

• MuxWait semaphores may be used when waiting for multiple events to occur
or multiple mutex semaphores to clear.

A particular area of enhancement is that of the suspension/reactivation of
threads based on semaphores. In previous versions of OS/2, the internal reacti­
vation of threads was based on a "multiple wakeup" approach. When a thread
wished to wait for some event, it was placed in an event ID table. Threads
waiting for that event were queued in the order in which their wait request
occurred. When the event occurred, all threads waiting for this event would
contend for the semaphore, and the first queued thread or the thread with the
highest priority would be dispatched. However, this algorithm led to consider­
able system overhead.

Under previous versions of OS/2, the event ID table was examined using a linear
search to find waiting threads. While this method was acceptable for a system
with a maximum of 512 threads, it is clearly not suitable for a system with 4096
threads. OS/2 Version 2.0 provides more sophisticated semaphore services,
allowing both "single wakeup" and 11 multiple wakeup" services in a more effi­
cient manner.

Chapter 3. Task Management 41

3.6 Summary

42 OS/2 V2.0 Volume 1

Under Version 2.0, the event ID table is implemented using a hashing algorithm,
thereby increasing the speed of access to the table and thereby improving per­
formance when resolving thread contention. This algorithm provides a more effi­
cient method of handling the 4096 threads allowed under Version 2.0.

The task management component of OS/2 Version 2.0 is greatly improved over
that implemented in previous versions of OS/2, while maintaining backward com­
patibility for applications and resources written to previous versions. Significant
effort has been made to enhance performance and remove system limitations
experienced in previous versions.

The result of these efforts is summarized below:

• All 16-bit applications and resources may be used in the OS/2 Version 2.0
environment.

• New 32-bit applications are able to exploit the benefits of the 80386
processor.

• The thread limitation of 53 threads per process is removed.

• The thread limitation for the entire system is increased from 512 to 4096
threads.

• The process limitation for the entire system is increased to 4095.

• The operating system contains more swappable code, thereby reducing its
real memory requirements and allowing more storage to be used by applica­
tions.

These enhancements provide a greater diversity of function for the application
developer, allowing more sophisticated applications to be written and executed
under OS/2 Version 2.0 using multiple threads and processes, while reducing the
effort required to synchronize and communicate between threads and processes.

Threads may be more easily created, controlled and terminated under OS/2
Version 2.0 than under previous versions of OS/2, thereby reducing the effort
required to generate high-function, multithreaded applications which fully exploit
the 08/2 Version 2.0 platform.

Improved efficiency in module loading and execution results in enhanced appli­
cation performance. Improved mechanisms for resolution of semaphore con­
tention allow improved dispatching and thereby reduce overhead, further
enhancing overall performance.

Chapter 4. Debugging Support

The debug component of OS/2 Version 2.0 consists of a set of system services
which make it possible to trace and locate problems in programs, in order to
increase productivity during the testing phase of the application development
process. These services make use of the debug registers present in the Intel
80386 processor to implement features such as data watchpoints and soft
instruction breakpoints. By using these registers, it becomes possible to imple­
ment watchpoints and breakpoints without making modifications to the code
being debugged.

The debug component does not provide a complete debugging tool, but merely
provides a mechanism whereby one process may control and monitor the exe­
cution of one or more related processes. It provides the services which are
used by debugging tools such as the C Set/2 debugger. Debug provides func­
tions such as single-stepping through a program, interrogation of processor reg­
isters and locations in memory and changing the contents of registers and
locations in memory. The debugging tool provides the user interface which dis­
plays source code listings, allows the user to set breakpoints, start execution of
a program and to monitor changes in the value of program variables.

4.1 Functional Description
The main objective of the debug component is to provide the required services
to enable developers to build powerful debugging tools. The interface provided
by the debug component is designed to be:

• Fast
• Powerful
• Flexible
• Non-intrusive
• Accurate
• As portable as possible
• Able to debug programs and Dlls
• Able to debug mixed or pure 16 and 32-bit applications.

The term "non-intrusive 11 means that debugging services must:

• In no way compromise the integrity of the operating system
• Minimize any impact on system performance
• Have no effect on processes, other than the process or processes being

debugged.

Debuggers usually require that a program, to be debugged be preprocessed
accordingly, compiled and linked with special options. If a program is prepared
for debugging but not actually being debugged, the debugging services should
have no impact on the execution of the program. Particularly application per­
formance should not be affected in any way. These design objectives of the
OS/2 V2.0 debug component should be kept in mind by the developers of debug­
ging tools.

The power of the debug component is an important issue to consider when
designing and developing debugging tools. Since the debugger gains access to
the memory and registers of the application being debugged, it is the responsi-

CC) Copyright IBM Corp. 1992 43

bility of the debugging tool developer to ensure the correct use of these
resources to prevent deadlocks or inadvertent corruption of application
resources.

Debuggers should not be used as tools for evaluating program performance.
The debug component does not provide reliable timings for the execution of
program steps. It is useful, however, for examining the execution path of a par­
ticular transaction through a program.

4.2 What Can Be Debugged

44 OS/2 V2.0 Volume 1

The debug component sees a process as the unit that will be debugged. Debug­
ging is managed on the basis of a connection between a debugger and a
process that was started to run the program that is to be debugged. The debug­
ging tool will usually issue either a DosExecPgm or a DosStartSession call to
start the program. When starting the program, flags must be set in the call to
request that the program be started for debugging. Whether the program is
started as a child process in the same session as the debugger or as a process
in a child session, the connection between the debugger and the program is
process to process.

The debug component can be used to debug programs running in:

• The same screen group (foreground session)
• Another screen group
• Detached mode {background session).

A debugger may debug more than one process simultaneously, but any process
can only be connected to one debugger at any one time. All threads within a
process are accessible to the debugger.

The debugging services allow access to code and data in both a primary execut­
able module and in DLLs. Resources such as DLLs are not associated directly
with threads, but are accessed and manipulated by threads. The debug compo­
nent, therefore, supports debugging of the DLLs by permitting the debugger to
observe the memory of the DLL and the registers of a thread while it uses the
DLL.

The debug component notifies the debugging tool when a DLL is loaded, and
provides the debugging tool with the handle of the module table entry (MTE) of
the DLL. From this the debugging tool is able to determine the name of the DLL
by issuing a DosQueryModuleName call.

The debug component provides control and information at a hardware level. It
provides access to a process's registers and memory. It can be used to start a
process executing and provide feedback when the process stops executing,
usually because a breakpoint has been encountered. It provides a notification
when a new thread is created in a process and when the contents of designated
memory location change. It does not trace the passage of system API calls
through the system. It does not understand resources implemented by the oper­
ating system. The debug component provides no information about:

• Semaphores
• Pipes
• Queues
• Files.

The debugging tool, therefore, cannot give feedback on the status of semaphores
or the contents of pipes and queues. It is up to the debugging tool to provide
facilities that the application programmer would find useful. One way of pro­
viding these facilities is for the debugging tool to include additional routines in
an executable module that is being prepared for debugging. The execution of
these routines could be controlled in the same way that the debugging tool con­
trols execution of the program being debugged.

The debug component cannot be used to debug processes running in virtual
8086 mode (that is, applications executing within a virtual DOS machine).

4.3 DosDebug() Function
The debugging services provided by the operating system are accessed using
the DosDebug() function. Debugging services are obtained by repeated calls to
DosDebug(), thereby simplifying the interface and increasing portability.

This function replaces the DosPTrace() function implemented in previous ver­
sions of OS/2. However, the DosPTrace() function is still available under OS/2
Version 2.0 as a 16-bit entry point, thus allowing debugging tools written for pre­
vious versions of OS/2 to be used to debug 16-bit applications.

The typical application programmer is unlikely to use the DosDebug() function. It
is intended to be used by developers of high-level application debugging tools.

The syntax of DosDebug call is shown in Figure 11.

DosOebug enables the calling application to control another application for
debugging purposes.

#define INCL OOSPROCESS
#include <os2.h>

PVOID pObgBuf;
APIRET re;

/*Pointer to the Debug Buffer Structure*/
/* Return code */

re= OosOebug(pDbgBuf);

Return codes

OosDebug returns the following values:

0 NO_ERROR
87 ERROR_INVALID_PARAMETER
95 ERROR_INTERRUPT
115 ERROR_PROTECTION_VIOLATION

Figure 11. DosDebug Function

The DbgBuf parameter is a pointer to a data structure, which contains values
used to control the execution of the DosDebug() function. One of the fields within
the structure is used to hold a command word. On return, the same field con­
tains a notification code. Commands may result in the reading or writing of
memory, single stepping through the program, changing values in registers or

Chapter 4. Debugging Support 45

4.4 Summary

46 0512 V2.0 Volume 1

the setting of watchpoints. The notifiers indicate events such as the loading of a
DLL, encountering a breakpoint during program execution and watchpoint hits.
The command to be executed is placed in the DbgBuf structure together with the
necessary additional information for that specific command. The structure con­
tains fields for all registers present in the system. There are other fields in the
structure which are command specific. There are also fields for the process ID
and the thread ID which identify the target for the debug command.

The DosDebug() function, its commands, parameters and return codes are
described in detail in the IBM 0512 Version 2.0 Control Program Reference.

The DosDebug() function executes synchronously; that is, the debugging process
executing the call must wait for the function to complete and return control
before it may continue execution.

The result of the DosDebug() call is a return code and an update of the command
field with a notification code. See Figure 12.

DbgBuf .Pid = Pid; /* The process ID to receive the command */
DbgBuf .Cmd = DBG_C_Go; /* The command to be issued */

re= DosOebug (ObgBuf); /*Issue the command */

/* Display the result */
printf(11 Return code= %u, command field= %u \n 11

, re, ObgBuf.Cmd);

Figure 12. Sample DosDebug Function Call

If this is the first DBG_C_Go command to be issued, a typical return code is RC
= 0, and the notifier placed in the command field is set = DBG_N_ModuleLoad.
This return implies that the application has just loaded an executable module
and will always occur at program start. A notification is generated for each
module loaded. Because there may be several DLLs loaded when the program
is started, there will be several notifications pending. Only a single notification
is returned on each DosDebug call. The debugger must issue DBG_C_Stop com­
mands to retrieve all the outstanding DBG_N_ModuleLoad notifications.

08/2 Version 2.0 provides a comprehensive set of debugging facilities which
may be used to develop powerful application debugging tools. These facilities
make use of the debug registers present in the 80386 processor, and allow
debugging on a per-process basis. The debugging of multi threaded applications
is possible. It is also possible to debug code residing in DLLs.

Access to the debugging facilities is provided through the DosDebug() function
call. Debugging services are requested by repetitive use of this function call
with different command parameters.

The DosDebug() function replaces the DosPTrace() function implemented in pre­
vious versions of 08/2. However, the DosPTrace() function is implemented
under 08/2 Version 2.0 as a 16-bit entry point, thereby allowing debugging tools
written for previous versions of 08/2, and which use the DosPTrace() function, to
be used under Version 2.0.

Chapter 5. Installation Considerations

The installation of OS/2 Version 2.0 is greatly simplified when compared to pre­
vious versions of OS/2, through the provision of a graphical installation proce­
dure. This installation procedure addresses a number of the shortcomings
experienced in previous versions of OS/2:

• It provides greater feedback to the user during installation.

• It provides a more flexible way for users to customize their system.

The user is able to add optionally installable features at any time and to
change the system configuration without having to boot from diskette.

• It uses the standard OS/2 Presentation Manager user interface to guide the
user through the installation process.

• It supports installation from any drive to any drive.

This feature makes it possible to install OS/2 V2.0 from a drive on a LAN
server, CD-ROM or any other media which can be accessed as a "normal"
drive letter. The process of installation over a LAN is described in OS/2
Version 2.0 Remote Installation and Maintenance.

The installation procedure provided in Version 2.0 will in most cases be able to
sense the hardware configuration of the system on which it is being installed,
and will select the required device drivers. This awareness applies to the video
and disk subsystems, keyboard arid pointing devices. The user will be given the
option to change or add to the configuration determined by the installation pro­
cedure.

5.1 Pre-Installation Planning
The following considerations should be addressed prior to commencing installa­
tion of OS/2 Version 2.0.

5.1.1 Processor Requirements
OS/2 Version 2.0 is designed to use the instruction set of the Intel 80386
processor, and therefore requires a system unit equipped with either an Intel
80386 DX, SX, SL or SLC processor, or subsequent Intel processors such as the
80486 series, which implement the same processor instruction set. IBM
machines equipped with such processors include:

• IBM Personal System/1*
• IBM Personal System/2 Model N33 SX
• IBM Personal System/2 Model 35 SX
• IBM Personal System/2 Model 40 SX
• IBM Personal System/2 Model L40 SX
• IBM Personal System/2 Model N51 SLC/SX
• IBM Personal System/2 Model CL51 SX
• IBM Personal System/2 Model 55 SX
• IBM Personal System/2 Model 56 SX
• IBM Personal System/2 Model 57 SX
• IBM Personal System/2 Model 57 SLC
• IBM Personal System/2 Model 65 SX
• IBM Personal System/2 Model 70 386

©Copyright IBM Corp. 1992

(2121)
(8533)
(8535)
(8540)
(8543)
(8551)
(8554)
(8555)
(8556)
(8557)
(8557)
(8565)
(8570)

47

• IBM Personal System/2 Model 70 386
System/2 Power Platform*

• IBM Personal System/2 Model 70 486
• IBM Personal System/2 Model P70 386
• IBM Personal System/2 Model P75 486
• IBM Personal System/2 Model 80 386
• IBM Personal System/2 Model 90 XP 486
• IBM Personal System/2 Model 95 XP 486

(8570) with the IBM Personal

(8570)
(8573)
(8575)
(8580)
(8590)
(8595).

Exception ----------------------------,

The IBM PS/2 N33 SX Model A13, which was available only in certain coun­
tries, does not support OS/2 V2.0.

OS/2 Version 2.0 will not run on machines equipped with an Intel 80286
processor. Hence machines such as the IBM PC AT*, PS/2 Model 30-286, and
Models 50, 50Z, and 60 may not be used to run OS/2 Version 2.0. However, OS/2
V2.0 does support 80286-based machines which have been upgraded with a 386
or 486 processor using cards such as the AOX MicroMaster** card.

The use of OS/2 Version 2.0 is not limited to IBM hardware; the operating system
will execute on other manufacturers' machines, provided they are sufficiently
compatible and equipped with an appropriate processor and hardware configura­
tion. For information on hardware compatibility with OS/2 Version 2.0, readers
should consult their dealer, hardware supplier or IBM marketing representative.
Information is also available on CompuServe** and IBM bulletin board systems.
Documentation shipped with OS/2 V2.0 contains details of gaining access to
these systems.

Note ----------------------------,

This new 32-bit OS/2 Version 2.0 uses advanced features of PC systems that
were not exploited with the earlier 16-bit operating systems. In order to
avoid any problems with installing or running OS/2 V2.0, it is advisable to
update the PC system configuration to the latest release levels. Depending
on the manufacturer of the system, this may involve different steps from
running the system configuration software through to replacing the BIOS.
Users of IBM PS/2s should obtain the latest version of their PS/2 reference
diskette from IBM. Running automatic system configuration with this refer­
ence diskette will ensure the system is updated to the new level. This partic­
ularly applies to PS/2s such as the Models 90 and 95 which load their BIOS
from disk.

5.1.2 Memory Requirements

48 05/2 V2.0 Volume 1

The OS/2 Version 2.0 installation procedure examines the hardware of the
machine to determine the amount of installed memory. Since the recommended
minimum memory configuration is 4MB, the installation procedure will indicate
an error if less than this amount of memory is present at installation time.

Although 4MB is the minimum memory to start OS/2 V2.0, better performance
will be achieved with 6MB or more. This is especially true if the workplace sce­
nario involves running many large or complex applications, or multiple DOS or

Windows applications. Some examples of typical user scenarios can be found in
OS/2 Version 2.0- Volume 3: Presentation Manager and Workplace Shell.

5.1.3 Fixed Disk Requirements
When all installable options are selected, OS/2 Version 2.0 requires 30MB of
fixed disk space in which to install itself. Approximately 26MB is used by the
operating system files and 4MB used in the initial SWAPPER.DAT file. This
usage may be substantially reduced if some of the installable options are
omitted. Users should ensure that the required amount of fixed disk space is
available in their system.

If partitioning the fixed disk for multiple partitions, users should ensure that the
partition into which OS/2 Version 2.0 is to be installed is of sufficient size to
accommodate the operating system and required options. A recommended
minimum partition size is 40MB.

Don't forget to plan for the appropriate amount of fixed disk space to hold the
SWAPPER.DAT file. This file will grow rapidly when overcommitting the system
resources {memory). Also, the \SPOOL subdirectory holds print jobs that have
been spooled and are waiting to be printed. This subdirectory can quickly use
up available disk space if large or complex print jobs are sent. The default path
for the spool path is \SPOOL on the drive the operating system is installed on.
The spool path can be changed by opening Spooler settings by selecting in turn
OS/2 System from the Desktop, System Setup and Spooler.

Partitioning fixed disks for support of OS/2 Version 2.0 is also discussed in
Chapter 7, "Boot Manager."

5.2 Beginning Installation
Upon commencing the installation of OS/2 Version 2.0, using the installation
diskette, the user is presented with a simple character-based screen which
requests the user to insert the initial operating system diskette into the diskette
drive. The first six diskettes {installation diskette and operating system diskettes
1 to 5) are used to prepare and partition the fixed disk, install Boot Manager and
dual boot if required, and load the basic code required to drive the graphical
installation procedure.

Once this code is transferred to the system's fixed disk, the installation proce­
dure prompts the user to reboot the system. When the system restarts, the
Presentation Manager shell is loaded and the graphical installation procedure is
immediately invoked. Since the operating system has now been loaded off the
fixed disk, paging is enabled, relieving constraints on real memory.

The graphical installation procedure supports both mouse and keyboard input. A
generic mouse driver is provided by the graphical installation procedure, in
order to support mouse input before the specific mouse driver is identified and
loaded. This means that certain pointing devices might not be usable at this
time and only keyboard input will be accepted.

The graphical installation procedure first presents the user with a single dialog
box, centered on the screen. This dialog box enables the user to select one of
several options:

Chapter 5. Installation Considerations 49

O Srl Setup and Installation

\I) .beam how to use a mouse

"Install preselected features (25MB)

~Install all features (31MB)

" Select features and Install (18-31 MB)

Help

Figure 13. 0512 Version 2.0 Installation

• Learn how to use a mouse.

• Install a basic set of preselected features.

• Install all features of OS/2 Version 2.0, accepting the default values for
system options and parameters as assigned by the installation procedure.

• Select particular options and features to install, allowing modification of
system parameters.

These options are displayed to the user as radio buttons. Since both mouse and
keyboard support are fully enabled within the graphical installation procedure,
the user may use either method to select an option. The user then selects the
OK pushbutton to continue.

If the user elects to install all options, the installation procedure immediately
requests that the user insert the next diskette into the diskette drive.

If the user wishes to select particular options to install, the installation procedure
presents a further series of dialog boxes from which the user selects the
required options and features. See 5.3. "Installation Options," below.

5.3 Installation Options

50 OS/2 V2.0 Volume 1

The user is presented with a panel which displays icons for mouse, keyboard,
display, and country options, along with the default setting for each. These set­
tings are determined by the installation procedure by interrogating the installed
hardware in the system. The user may elect to alter one or more of these set­
tings by selecting a check box next to each icon, and then selecting the OK
pushbutton on the dialog box.

System Confi9uralion

Use the mouse or the spacebar to place a check mark in the box next to each opHon
you would like to change.

itlMousei ____ ...

ii!eyboard

idtountry

it frlmary Display

II ~econdary Display

QK tt I

PS/2 (tm) Style Pointing Device

United States

United States

Extended Graphics Array

None

Help

Figure 14. The Initial System Configuration Screen

For each selected option, the installation procedure then displays a dialog box
which contains a list of the valid settings for that option. This list is displayed
using a standard Presentation Manager list box. The user selects the required
setting with the mouse or keyboard, and commits the choice by selecting the OK
pushbutton.

The default options selected by the installation procedure are as follows:

Setting Default

Mouse The installation procedure automatically detects the type of mouse
currently attached to the system (if any) and sets the default option
accordingly. The user need only make alterations to the default if
mouse support is required and no mouse is currently attached.

Keyboard The installation procedure automatically detects the type of key­
board currently attached to the system and sets the default option
accordingly.

Display The installation procedure automatically detects the type of display
adapter currently installed in the system, and sets the default
option accordingly. The user need only make alterations if some
nonstandard type of display option is required (for example, the
user has an XGA adapter installed, but only wishes to use it in VGA
emulation mode).

Country Unless a National Language Support (NLS) version of OS/2 Version
2.0 is being installed, the country settings default to those for the
United States, with appropriate time, date, and numeric representa·
tions, and use of primary codepage 437 and secondary codepage
850. Users who require codepages other than these should make
the appropriate alterations.

Chapter 5. Installation considerations 51

5.3.1 Installing Optional Features
For optional installable features, the user is prompted to indicate which options
are required. The name of each option is displayed, along with the amount of
fixed disk space required by that option. Selections are made using check
boxes, as shown in Figure 15.

t~ OSI?. Sch1p ilnr1 ln~lalliltion
ilpllons ~oltware conflguraUon Help

Make sure there Is a check In the bo>e ne><t to the features you wish to Install. Select "More ••. " to
make additional choices tor a feature.

11J CD-ROM Device Support (0.1 MB) ·-···-···-···-········-···· .. ·-···-··-··-.. -···' More.-

II! Documentation (0.8MB) nM•n-mmMOHMHONHOMNONOUM .. _ .. _ , More._

lW'J Fonts (I. I MB) ... - .. -·-·-·-·-.... - - .. -·-·-·-.. -·-·-.............. _ .. _,_, I More ...

liil!I Opttonal system UUllttes (1.2MB) ... 1 More ...

[jJ Tools and Games (5. 7MB) .. _ .. _ _ I More .. .

flJ osri DOS and WIN-0512 Supporl (UMB) _ _, .. _,.,_, - j More ...

ffJ High Performance Ale System (0.4MB)

lfJ REXX (0.4MB)

il'l Serlal Device support (0.1 MB)

ii Servlceablllty and Diagnostic Aids (O.&MB)

Figure 15. Selecting Features to Install

Jn'>lall

!Disk Space

AY-clilable (bytes)
6424064

Needed (bytes)

1<&039391

In certain cases, additional information may be specified to install a particular
option; for example, the Tools and Games option represents a group of individ­
ually installable applications, of which the user may elect to install any or all.
The presence of additional information is indicated using More ... pushbuttons
adjacent to each such option. Selecting one of these pushbuttons displays a
dialog box which allows the user to configure the option.

When the user has selected all the required options to be installed, the installa­
tion is commenced by selecting the OK pushbutton on the dialog box.

5.3.2 Configuring System Parameters

52 OS/2 V2.0 Volume 1

The graphical installation procedure removes the need for a user to directly
access and modify system configuration files such as CONFIG.SYS and
AUTOEXEC.BAT during installation. Instead, the installation procedure provides
a simple interface to allow the alteration of system parameters. This interface is
invoked by the user selecting the Software Connguration menu item in the OS/2
Setup and Installation window. Selection of this item displays an additional
window, as shown in Figure 16 on page 53.

osr2 Confi uration

r
Prlnler Monitor Bulle_r.Size

- LPTl I 134!11 LPT2 134fil

Buffers 30~!) {!)Protect
Memman Protect

~ Noprotect
Dlskcache 64~

3111
ff> Swap

Maxwalt Memman Swap ri Noswap

Swap Mlnfree 20401;11 {91 Dynamic
Priority @)Absolute

Threads 25611
Swappath j C:\OS2\SYSH: M

!!l~ tt Cancel Help

Figure 16. Configuration Details

Other parameters are added to CONFIG.SYS based upon the chosen settings for
country, mouse type, etc.

5.4 Progress Indication
Once options are configured (or the user indicates that the default options are to
be used), the user is prompted to insert the next diskette into the machine. A
progress indicator is then displayed, which shows the name of the file currently
being installed, and the percentage of data on the current diskette that has
already been copied.

Transferring files to your hard disk.

Please wait. ••

current File:

C:\O S2\D LL\TUTDLLDLL

\~~:> f·R ·· .. ~~;~:J ... ··.~.:·1~!~'

·~ri~t~,~~:6;
o" 50% 100%

6 7 0 9 10 11 12 13 14 15

Figure 17. Installation Progress Indication

Chapter 5. Installation Considerations 53

The progress through the installation is also displayed by the use of diskette
icons at the bottom of the screen; the diskette currently being copied is dis­
played with a highlighted border around it.

5.5 After Installation

54 OS/2 V2.0 Volume 1

When installation is complete, the installation procedure instructs the user to
reboot the system. OS/2 Version 2.0 is then loaded in the normal way.

Notes ~~~~~~~~~~~~~~~~~~~~~~~~~~---

1. Upon loading the operating system for the first time, the Workplace Shell
must initialize itself and build its desktop. This initialization means that,
for this first IPL after installation, the loading time will be significantly
longer than normal.

2. After the system has been started for the first time, it is strongly recom­
mended that the system be immediately shutdown, followed by a reboot.

It Is important that this shutdown be performed before any DOS or
Windows applications are started.

When OS/2 V2.0 is first started after installation, startup time will be longer than
normal. However OS/2 V2.0 will load the tutorial so that the user has the option
to view the OS/2 Version 2.0 Tutorial while the operating system is initializing
itself. This tutorial provides a basic introduction to OS/2 Version 2.0 and the
graphical user interface, including use of the mouse and keyboard to interact
with Presentation Manager.

OSRT~m~ ·· . · . .· . . .

Welcome to the 0$12 Tutorial. H you are unfamiliar with
0512 2.0. It Is recommended that you view the enUre
Tutorial.

To continue. place the mouse pointer on the Next push
button located at the bottom of the window and click
once. or press Enter.

Figure 18. OS/2 Version 2.0 Tutorial

The tutorial provides very simple instructions to allow the user to navigate
through the tutorial panels. Using the tutorial teaches the user about the various
capabilities of OS/2 Version 2.0, while at the same time allowing the user to
become familiar with the ways of interacting with a typical OS/2 Presentation
Manager application.

5.6 Understanding the System Parameters
The installation of OS/2 Version 2.0 provides the user with a chance to tailor the
OS/2 and DOS system parameters from the OS/2 Setup and Installation panel.
During normal operation of OS/2 V2.0 there is little need to directly edit system
files such as CONFIG.SYS. The installation of OS/2 generates a CONFIG.SYS file
in the root directory of the installation drive, similar to that shown in Figure 19.
Note that in this example the user has installed OS/2 V2.0 on the "D:" logical
drive.

81 IFSaD:\OS2\HPFS. IFS /CACHE:384 /CRECL:4 /AUTOCHECK:CDEFG
82 PROTSHELL 110:\0S2\PHSHELL.EXE
83 SET USER INI 11D:\OS2\0S2. INI
84 SET SYSTEM INl 11D:\OS2\0S2SYS. INI
es SET os2 sHELL11D:\os2\CMD.EXE
86 SET AUTOSTART 11PROGRAMS. TASKLI ST, FOLDERS
87 SET RUNWORKPLACE11D:\OS2\PHSHELL.EXE
98 SET COHSPEC.,D:\OS2\CHD.EXE
89 LI BPATH=.; O:\OS2\Dll; D:\OS2\MDOS;D:\; D:\OS2\APPS\Dll;
19 SET PATHaD: \ OS2; D: \ OS2\ SYSTEM; D: \ OS2\MDOS\ WI NOS2; D: \ OS2\ INSTALL; D: \; 0: \ OS2\MDOS; D: \ OS2\APPS;
11 SET DPATH=O: \ OS2; D: \ OSZ\ SYSTEM; D: \ OS2\MOOS\ WI NOS2; D: \ OS2\ INSTALL; D: \; D: \ OS2\BITMAP; D: \ OS2\MOOS:

O:\OS2\APPS;
12 SET PROHPT.,$i [$p]
13 SET HELP=O: \ OS2\ HELP; 0: \ OS2\ HELP\ TUT OR I AL:
14 SET GLOSSARY .. O:\OS2\HELP\GLOSS;
15 PRIORITY DISK IO=YES
16 FILES .. 28- -
17 DEV I CE 11D: \ OS2\ TESTCFG. SYS
18 DEVICE11D:\OS2\DOS.SYS
19 DEVICE .. D:\OS2\PHDD.SYS
29 BUFFERS,.39
21 IOPL=YES
22 DISKCACHE 1164.LW
23 MAXWAIT .. 3
24 MEKMAN .. SWAP.PROTECT
25 SWAPPATHaD:\OS2\SYSTEM 2948 4996
26 BREAK .. OFF
27 THREADS=256
28 PR I NTMONBUFS I ZE"' 134 , 134 .134
29 COUNTRY=991,D:\OS2\SYSTEM\COUNTRY .SYS
39 SET KEYS 110N
31 REM SET DELDI R11C: \DELETE• 512: D: \DELETE. 512 0 E: \DELETE. 512: F: \DELETE• 512; G: \DELETE. 512;
32 BASEDEV .. PRI NT82. SYS
33 8ASEDEV 11 I BH2FLPY. ADD
34 BASEDEV11JBH2SCSI .ADD /LED
35 BASEDEV=OS2SCSI .OMO
36 BASEDEV110S20ASD. OMO
37 REM I FS=O: \ OS2\ COFS. IFS /Q
38 REM DEVICE .. D:\OS2\CDROM.SYS /Q /I /N:4
39 SET BOOKSHELF =D: \ OS2\ BOOK
49 SET EPATHi=O:\OS2\APPS
41 DEV I CE 11D: \ OS2\APPS\SASYNCOB. SYS
42 PROTECTONLY=NO
43 SHELL::O:\OS2\MOOS\COMHAND.COM D:\OS2\MDOS /P
44 FCBS11l6,8
45 RHSI ZE=649
46 DEV I CE=D: \ OS2\MOOS\VEMM. SYS
47 DEV I CEaD: \ OS2\MOOS\ VMOUSE. SYS
48 DOS11LOW.NOUMB
49 DEVICEaD:\OS2\MOOS\VDPX.SYS
59 DEVICE .. D:\OS2\MDOS\VXHS.SYS /UHB
51 DEVI CE.=O:\OS2\HDOS\VDPMI .SYS
52 DEV I CE.aD: \ OS2\HOOS\VWI N. SYS
53 DEVI CE.=O: \ OS2\HOOS\ VCOROM. SYS
54 DEV INF 011SCR, VGA• 0: \ OS2\V I OTBL. DCP
55 SET VIDEO DEVICES11VIO VGA
56 SET VIO VGA::OEVICE(BVHvGA)
57 DEV I CE 11D: \ OS2\MOOS\VVGA. SYS
58 DEVI CE11D: \ OS2\HDOS\ V8514A. SYS
59 DEVICE11D:\OS2\POINTDD.SYS
68 DEV I CE=D: \ OS2\HOUSE. SYS
61 DEVICE=D:\OS2\COH.SYS
62 DEVICE 11D:\OS2\HDOS\VCOH.SYS
63 CODEPAGE=437.859
64 DEV I NF O=KBD. US• D: \ 052\ KEYBOARD. DCP

Figure 19. A Typical OS/2 Version 2.0 CONF/G.SYS

Chapter 5. Installation Considerations 55

56 OS/2 V2.0 Volume 1

The CONFIG.SYS files for OS/2 V2.0 are similar to those in previous versions of
OS/2 with a few exceptions. Here is a brief explanation of the function per­
formed by each line in the CONFIG.SYS used as an example above. A full
description of each of the statements used can be found in the Online Command
Reference.

01 IFS=D:\OS2\HPFS.IFS /CACHE:384 /CRECL:4 /AUTOCHECK:CDEFG

This line installs the High Performance File System (HPFS) driver.
Installable File System (IFS) drivers load code to manage disks and
other storage media with file systems other than FAT (File Allocation
Table).

The /CACHE parameter specifies the amount of memory (KB) that the
HPFS file system driver will use for file system disk caching. The
cache for the FAT file system is handled by the DISKCACHE = state­
ment, line 22 in this example. The amount of cache specified in the
CONFIG.SYS can have a significant impact on performance. The OS/2
V2.0 installation process will select an amount of cache for the system
based on the amount of installed memory, the disk size and the file
system being used. The optimum amount of cache to use will depend
on the factors just mentioned, and the mix of operations performed by
the system. For example, an 110 intensive system, such as a server,
may perform better with a larger cache.

The /CRECL parameter specifies the maximum record size (in multi­
ples of 2KB) for caching. This value is also important for performance
as it represents the maximum size an 1/0 can be, and still be read
into the HPFS cache.

For more information on the parameters associated with the HPFS
driver, refer to the Online Command Reference.

02 PROTSHELL=D:\OS2\PMSHELL.EXE

This line loads PMSHELL.EXE as the user interfac~ program and OS/2
command processor. PROTSHELL replaces the default OS/2
command processor (CMD.EXE) with another command processor.

03 SET USER_INl=D:\OS2\0S2.INI
04 SET SYSTEM_INI=D:\OS2\0S2SYS.INI
05 SET OS2_SHELL=D:\OS2\CMD.EXE
06 SET AUTOSTART=PROGRAMS,TASKLIST,FOLDERS
07 SET RUNWORKPLACE=D:\OS2\PMSHELL.EXE
ea SET COMSPEC=D:\OS2\CMD.EXE
10 SET PATH=D:\OS2;0:\0S2\SYSTEM;D:\OS2\MDOS\WINOS2;D:\OS2\INSTALL;D:\;

D:\OS2\MDOS;D:\OS2\APPS;
11 SET DPATH=D:\OS2;0:\0S2\SYSTEM;D:\OS2\MDOS\WINOS2;D:\OS2\INSTALL;D:\;

D:\OS2\BITMAP;D:\OS2\MDOS;D:\OS2\APPS;
12 SET PROMPT=$i[$p]
13 SET HELP=D:\OS2\HELP;D:\OS2\HELP\TUTORIAL;
14 SET GLOSSARY=D:\OS2\HELP\GLOSS;

These lines set OS/2 V2.0 system variables stored in the OS/2 V2.0
environment. The environment is a special place in storage used by
the operating system and applications to store and look up values of
variables. DOS sessions and OS/2 sessions operate independently;
therefore each command processor that starts a session can have its
own environment. For information on how command processors

within a session inherit the environment, refer to the Online Command
Reference.

The main change from OS/2 V1.3 is the inclusion of some variables
used by the Workplace Shell, namely lines 3 though 7.

09 LIBPATH=.;D:\OS2\DLL;D:\OS2\MDOS;D:\;D:\OS2\APPS\DLL;

This sets the LIBPATH variable. It is used to identify a set of directo­
ries to be searched when OS/2 loads dynamic link libraries. LIBPATH
is not a part of the environment and therefore cannot be viewed with
the SET command. Also, unlike the PATH environment variable, the
current directory is not searched first. The entry " .; " at the begin­
ning of the LIBPATH statement is used to force OS/2 V2.0 to search
the current directory.

15 PRIORITY_DISK_IO=YES

Specifies disk input/output priority for applications running in the fore­
ground. When PRIORITY _DISK_IO =YES is specified, applications .
running in the foreground will receive disk 1/0 priority over applica­
tions running in the background.

16 FILES=20

Determines the maximum number of files available in DOS sessions.
Regardless of the FILES= setting, all DOS programs are initialized to
a maximum of 20 files. It is the responsibility of an application to
increase the number of files up to the maximum set by the FILES=
statement. Each DOS session can also be customized by changing
the appropriate DOS setting. This statement has no effect in OS/2
sessions.

17 DEVICE=D:\OS2\TESTCFG.SYS
18 DEVICE=D:\OS2\DOS.SYS
19 DEVICE=D:\OS2\PMDD.SYS

Install device drivers using the DEVICE= statement. Both DOS and
OS/2 device drivers can be loaded with this statement in the
CONFIG.SYS. OS/2 V2.0 device drivers are initiaJized when you start
OS/2 and can process requests from either DOS or OS/2 programs.
DOS device drivers are also initialized when you start the OS/2 oper­
ating system but they can only process requests from DOS programs.

TESTCFG.SYS is a new device driver in OS/2 V2.0 which is used
during the install process to test the system configuration. This
DEVICE statement should not be removed from the CONFIG.SYS as it
is also used by the selective install process and during device driver
installation.

20 BUFFERS=30

Sets the number of disk buffers the system will keep in memory.
Each buffer uses 512 bytes of available memory. If you run many pro­
grams in OS/2 sessions, you can increase the speed of your system
by increasing the value specified for BUFFERS (for example,
BUFFERS= 70). However, remember that when you increase the
number of disk buffers, you decrease the available memory by 512
bytes for each buffer specified. In memory-constrained systems
(4MB) reduce the number of buffers to 20.

Chapter 5. Installation Considerations 57

58 OS/2 V2.0 Volume 1

21 IOPL=YES

Allows 1/0 privilege to be granted to requesting processes in OS/2
sessions.

22 OISKCACHE=64,LW

Specifies the number of blocks of storage (KB) allocated to the FAT
file system cache. This parameter can have a marked effect on per­
formance. See the comments on line 01 of this example CON FIG.SYS
and also the Online Command Reference for more information on the
parameters associated with DISKCACHE.

23 MAXWAIT=3

Sets the length of time, in seconds, a process waits before the system
assigns· it a higher priority. The most appropriate length of time to
set MAXWAIT to depends on the number of applications that must run
concurrently and the kinds of activities the applications perform. The
default is 3 seconds.

24 MEMMAN=SWAP,PROTECT

This line specifies the various memory management options for the
OS/2 V2.0 environment. SWAP enables paging whereas NOSWAP
disables paging. PROTECT enables the use of protected memory by
DLLs. There is also the MOVE/NOMOVE parameter which has no
effect under OS/2 V2.0 and is provided for compatibility with OS/2 V1.3
only.

25 SWAPPATH=D:\OS2\SYSTEM 2048 4096

The swap file (SWAPPER.DAT) is used to temporarily store pages that
the system has removed from physical memory in order to free up
space to satisfy page-in requests generated as a result of page faults.
If paging is enabled, this command specifies the location and initial
size of the swap file. The first parameter specifies the amount of disk
space (in KB) at which the system will begin to warn you that there is
less than this amount of space left on the partition containing your
SWAPPER.DAT file. The second par~meter specifies the size of the
swapper file (in KB) initially allocated at the time OS/2 is started.

26 BREAK=OFF

The Ctrl-Break keys sequence will stop a command from completing
its task. The BREAK parameter instructs the system to check if you
pressed Ctrl-Break before the system carries out a program request.
BREAK= ON could decrease overall performance, but means the
operating system will probably intercept Ctrl-Break faster.

27 THREADS=256

This specifies the maximum number of threads available to OS/2 V2.0
and its applications. The maximum that can be specified here is
4095. Normally the system default of 256 is sufficient. In memory­
constrained systems (4MB) reduce this to 128.

28 PRINTMONBUFSIZE=l34,134,134

This sets the parallel-port device-driver buffer size. Each number cor­
responds to the buffer size for LPT1, LPT2, or LPT3 respectively. The
minimum value that can be specified is 134 bytes and the maximum is
2048 bytes. The system will default to 134 bytes if
PRINTMONBUFSIZE is not specified or is out of this range. Changing
these values will allow you to increase the size of the parallel-port
device-driver buffers and thereby increase performance of data
transfer to devices connected to the parallel ports.

29 COUNTRY=001,D:\OS2\SYSTEM\COUNTRY.SYS

This specifies the country code and the file containing the country
information used. This information is selected by the user at installa­
tion. Refer to the Online Command Reference for more details and
information on code-page switching.

30 SET KEYS=ON

This permits commands issued at the OS/2 command prompt to be
retrieved later and reissued and/or edited.

31 REM SET DELDIR=C:\DELETE,512;D:\DELETE,512;E:\DELETE,512;F:\DELETE,512;
G:\DELETE,512;

The DELDIR environment variable is new with OS/2 V2.0 and is used
by the UNDELETE command. DELDIR specifies a path used to store
files that have been DELETED or ERASED. A separate directory and
maximum directory size must be specified for each logical disk.
Installation will add an appropriate DELDIR statement to the
CONFIG.SYS but remarks it out. To enable UNDELETE, remove the
'REM' from the beginning of this line.

32 BASEDEV=PRINT02.SYS
33 BASEDEV=IBM2FLPY.ADD
34 BASEDEV=IBM2SCSl.ADD /LED
35 BASEDEV=OS2SCSI.DMD
36 BASEDEV=OS2DASD.DMD

These lines install base device drivers for the following:
PRINT02.SYS; Device support for locally attached printers on Micro
Channel workstations.
IBM2FLPY.ADD; Device support for diskette drives on Micro Channel
workstations.
IBM2SCSl.ADD; Device support for Micro Channel SCSI adapters.
The /LED parameter is only applicable when running on a PS/2 Model
95 and if present, the device driver will use the system information
display panel to simulate a disk activity light.
OS2SCSl.DMD; General-purpose device support for non-disk SCSI
devices.
OS2DASD.DMD; General-purpose device support for disk drives.

In addition, OS/2 V2.0 includes the following base device drivers:
PRINT01.SYS; Device support for locally attached printers on non­
Micro Channel workstations.
IBM1FLPY.ADD; Device support for diskette drives on non-Micro
Channel workstations.
IBM1S506.ADD; Device support for non-SCSI disk drives on non-Micro
Channel workstations.

Chapter 5. Installation Considerations 59

60 OS/2 V2.0 Volume 1

IBM2ADSK.ADD; Device support for non-SCSI disk drives on Micro
Channel workstations.
IBMINT13.113; General-purpose device support for non-Micro Channel
SCSI adapters.

A device driver is a file that contains the code that the OS/2 operating
system needs to recognize a device and correctly process information
received from or sent to that device. A base device driver is one that
is needed when the OS/2 operating system is first started.

The BASEDEV statement is used to load base device drivers. Device
support for disks, diskettes, printers connected to the workstation, and
other devices, is loaded with the BASEDEV statement.

Unlike the DEVICE statement, the BASEDEV statement cannot contain
either drive or path information because the OS/2 operating system
cannot process such information at the stage of the startup sequence
when the BASEDEV statements are processed. The root directory of
the startup partition is first searched for the specified file name, then
the \OS2 directory of the startup partition. If drive or path information
is included in a BASEDEV statement, an error is generated.

In addition, BASEDEV statements are not necessarily processed in the
order in which they appear in your CONFIG.SYS file. The extensions
of the file names specified in the BASEDEV statements are examined;
the statements are then processed in the following order of file name
extensions: .SYS .BID .VSD .TSO .ADD .113 .FLT then .DMD

37 REM IFS=D:\OS2\CDFS.IFS /Q
38 REM DEVICE=D:\OS2\CDROM.SYS /Q /I /N:4

These lines contain the CD-ROM file system IFS driver and the IBM
CD-ROM device driver for OS/2 V2.0 If CD-ROM device support was
selected at the OS/2 Setup and Installation screen during installation,
then these lines will be present. Refer to the Online Command Refer­
ence for an explanation of the parameters used.

39 SET BOOKSHELF=D:\OS2\BOOK
40 SET EPATH=D:\OS2\APPS

Lines 39 and 40 are two more environment variables used by OS/2
V2.0 or applications. For example, the BOOKSHELF environment vari­
able points to the path of the system .INF files. These files are used
by the system VIEW.EXE.

41 DEVICE=D:\OS2\APPS\SASYNCDB.SYS

The SASYNCDx.SYS device driver loads the asynchronous communi­
cations device interface (ACDI) support for the PM terminal program.
If the PM Terminal program was not installed, this line may be
REMarked out. If this is the case, delete "REM" from the beginning of
the line to enable ACDI support. Remember, after changes are made
to the CONFIG.SYS the system needs to be rebooted for the changes
to come into effect. Refer to the Online Command Reference entries
for Device Drivers (COM.SYS) for an explanation of how device
drivers such as SASYNCH.SYS and COM.SYS are used.

42 PROTECTONLY=NO

This line allows OS/2 to run both DOS and OS/2 processes. If only
OS/2 applications are required, specify PROTECTONL Y =YES.

43 SHELL=D:\OS2\MDOS\COMMAND.COM D:\OS2\MDOS /P

The SHELL= line specifies the DOS command processor
(COMMAND.COM), or allows you to replace the DOS command
processor with another command processor. In this example we are
loading and starting the DOS COMMAND.COM processor. The
parameters following it are specific to the command processor. In
this case the parameters are the path for COMMAND.COM and /P,
which is used to retain COMMAND.COM in storage. The SHELL=
statement does not affect either the OS/2 SET command, or the
SHELL command in BASIC.

44 FCBS=l6,8
45 RMSIZE=640
46 DEVICE=D:\OS2\MDOS\VEMM.SYS
47 DEVICE=D:\OS2\MDOS\VMOUSE.SYS
48 DOS=LOW,NOUMB
49 DEVICE=D:\OS2\MDOS\VDPX.SYS
50 DEVICE=D:\OS2\MDOS\VXMS.SYS /UMB
51 DEVICE=D:\OS2\MDOS\VDPMI.SYS
52 DEVICE=D:\OS2\MDOS\VWIN.SYS
53 DEVICE=D:\052\MDOS\VCDROM.SYS

Lines 44 through 53 are needed to configure and load drivers for the
DOS environment.

The first line sets the file control block (FCB) management information
for DOS sessions. A FCB is a record that contains all of the informa­
tion about a file (for example, its structure, length, and name). If a
program tries to open more than the number of files specified in the
FCBS statement, the system closes the least recently used file control
block and opens the new file. This parameter should not need to be
changed and has no effect on OS/2 sessions.

The RMSIZE = statement specifies the highest storage address
allowed for the DOS operating environment. In certain circumstances
this can be used to limit the size of the DOS environment.

In line 48, the DOS= parameter specifies whether the DOS kernel will
reside in the high memory area (HMA) and whether the operating
system or DOS applications will control upper memory blocks
(UMBs). The HMA refers to space between 1MB and 1MB+64KB and
UMBs reside between 640KB and 1 MB.

If DOS= HIGH/LOW,UMB is specified in CON FIG.SYS, then the oper­
ating system controls the UMBs. This means that DOS applications
can be loaded into upper memory but cannot allocate UMBs.

On the other hand, if DOS= HIGH/LOW,NOUMB is specified in
CONFIG.SYS, then the operating system will not control any UMBs
and DOS applications can allocate UMBs but cannot be loaded there.

Lines 46 and 47, and 49 through 53 contain the device drivers for the
virtual DOS/Windows environment. More information on these spe­
cific drivers and a complete discussion of tailoring the DOS environ­
ment under OS/2 V2.0 may be found in OS/2 Version 2.0 - Volume 2:
DOS and Windows Environment.

Chapter 5. Installation Considerations 61

62 OS/2 V2.0 Volume 1

54 DEVINFO=SCR,VGA,D:\OS2\VIOTBL.DCP
55 SET VIDEO DEVICES=VIO VGA
56 SET VIO_VGA=DEVICE(BVHVGA)
57 DEVICE=D:\OS2\MDOS\VVGA.SYS
58 DEVICE=D:\OS2\MDOS\V8514A.SYS

These lines configure the display environment under OS/2 V2.0

The DEVINFO = statement in line 54 is used to prepare a device (such
as a keyboard (KBD). display terminal (SCR), or printer (LPT#)) for
codepage switching. Separate DEVINFO statements are required for
each device to be used for codepage switching.

This line prepares the display screen for codepage switching. The
display statement specifies your display name and a file named
VIOTBL.DCP that contains a video font table for displaying characters
in each of the codepages supported by the system.

Lines 55 and 56 set environment variables related to the display
driver being used.

Lines 57 and 58 load virtual device drivers for the VGA and 8514/A
devices, for use by the DOS/Windows environment. In this example,
the user specified VGA resolution with an 8514/ A adapter installed.

If OS/2 V2.0 were installed on a system with an XGA adapter, and
high resolution was specified for the Windows environment (that is,
Windows was to be run full-screen only), then the appropriate lines in
the CONFIG.SYS would be:

DEVINFO=SCR,VGA,D:\OS2\VIOTBL.DCP
SET VIDEO DEVICES=VIO XGA
SET VIO_XGA=DEVICE(BVHVGA,BVHXGA)
DEVICE=D:\052\MD05\VVGA.SY5
DEVICE=D:\052\MD05\VXGA.SYS

Adding or changing your display adapter support after installation can
be performed automatically using the OS/2 V2.0 selective install
process. A complete description of how this is done can be found in
the Master Help Index under adding display adapter support.

59 DEVICE=D:\OS2\POINTDD.SYS
69 DEVICE=D:\052\MOUSE.SYS

POINTDD.SYS provides mouse-pointer draw support in all text modes
for OS/2 sessions. To function, an appropriate mouse device driver
must also be loaded. In this example, this is done in line 60 with the
MOUSE.SYS driver. These two lines will provide support for a
PS/2-style mouse.

If the pointing device used was a Microsoft mouse attached to the
COM1 port, line 60 would change to:

69 DEVICE=D:\OS2\MOUSE.SY5 5ERIAL=COM1

Some pointing devices such as the Logitech** mouse need a device­
dependent device driver as well as the MOUSE.SYS device­
independent device driver.

Refer to 6.3.6, "Pointing Device Support" on page 81 and the Online
Command Reference, if installing support for a pointing device not
directly supported by the OS/2 installation procedure.

61 DEVICE=D:\052\COM.5Y5
62 DEVICE=D:\052\MD05\VCOM.5Y5

The COM.SYS device driver supports ports COM1, COM2, COM3, and
COM4. It does not provide support for specific devices that are
attached to the COM port. Instead, it provides enabling support for
the asynchronous communications interface itself. Application pro­
grams, subsystems, and system programs must provide the support
needed to use devices attached to the COM port. VCOM.SYS is a
virtual device driver that provides support in DOS sessions for up to
four COM ports.

Note ------------------------,

The COM.SYS device driver is used for all IBM PS/2 models.
There is no COMDMA.SYS device driver for the IBM PS/2 Models
90 and 95 as described in the Online Command Reference.

Some devices which attach to the COM ports provide their own
device drivers. COM.SYS allows other drivers which support COM
ports to be installed, provided they are listed in the CONFIG.SYS
before COM.SYS. When COM.SYS is loaded, it will claim all COM
ports not already allocated to other device drivers.

In the following example DEVCOM1 .SYS uses COM1 and
PRINTER4.SYS uses COM4. COM2 and COM3 are available for use
by COM.SYS.

DEVICE=C:\052\DEVCOM1.SY5
DEVICE=C:\052\PRINTER4.5Y5
DEVICE=C:\052\COM.SY5

63 CODEPAGE=437,850
64 DEVINFO=KBD,U5,D:\052\KEYBOARD.DCP

Line 63 sets the system codepages (defined character sets) to be pre­
pared by the OS/2 operating system for codepage switching. Line 64
is DEVINFO specification for the keyboard. It specifies the keyboard
layout and a file named KEYBOARD.DCP that contains a keyboard
layout table for translating keystrokes into the characters of each
codepage supported by the system. Codepage support in OS/2 V2.0
is similar to that provided under previous versions of OS/2. More
information on DEVINFO and CODEPAGE can be found in the Online
Command Reference.

5. 7 Starting Programs Automatically
While the system is starting, programs will be started as a result of:

Inclusion of commands In STARTUP.CMD

This command file is used exactly as it was in previous releases of OS/2.
During installation of IBM OS/2 LAN Server components, a STARTUP.CMD
file is optionally built, which automatically starts the LAN Server components
that were installed. STARTUP.CMD is useful for running programs where:

• The order in which programs run is important; one program must com­
plete before the next one is started

• A program must be run only if the previous program ran successfully.

Chapter 5. Installation Considerations 63

Program objects in the Startup folder

The Startup folder contains program objects which are to be run when the
Workplace Shell is started. An example is LOGON.EXE which performs a
logon to the server. It should not be used to start programs which are to run
continuously. The Startup folder is found in the OS/2 System folder which
appears on the OS/2 desktop. For a detailed discussion of folders and
objects see OS/2 Version 2.0 - Volume 3: Presentation Manager and
Workplace Shell.

Programs not closed before the last system shutdown

All programs that were started and were still running when the system was
last shutdown will be restarted when the system is next started. This is the
preferred method for starting those programs which will run continuously.
An example is the Communications Manager when it is used to provide host
terminal emulation.

It possible to suppress automatically starting programs from the Startup folder
and programs that were not closed. During startup of the Workplace Shell after
rebooting the operating system, press and hold the Ctrl, left Shift and F1 keys
when the white screen first appears and hold them down till the icons appear on
the screen.

5.8 Selective Install
The graphical installation procedure provides for the reinstallation of particular
operating system features, and the subsequent installation of required features
which have not been installed during the initial installation process. This is
achieved by allowing the graphical installation procedure to run as a stand-alone
process under Presentation Manager.

The graphical installation procedure may, therefore, be executed at any time by
choosing Selective Install from the System Setup option in the OS/2 System
folder.

5.9 Recovering the Desktop

64 OS/2 V2.0 Volume 1

During the installation of OS/2 V2.0, copies of certain system files (CONFIG.SYS,
OS2.INI, and OS2SYS.INI) are placed in the \OS2\INSTALL subdirectory. If the
system becomes corrupted and the desktop is no longer usable (after rebooting
no icons appear on the desktop or the system TRAPs when starting), it is pos­
sible to use these copies to restore the system files to their initial state.

Warning ---------------------------.

Using this function will restore the desktop to the same state it was in imme­
diately after installation. Any customization done to the desktop after instal­
lation will be lost.

To perform this restore function, do the following;

1. Restart the computer.
2. Before the first OS/2 Logo panel appears, hold down Alt+ F1 for 20 seconds.

When you perform the recovery function described above, the current versions of
those files are automatically renamed and are replaced by the default installa­
tion versions. If you have a STARTU P.CMD file, that file is also renamed, so that
it will not be executed during the next ~ystem startup.

5.10 Installation from a LAN
OS/2 Version 2.0 may be installed from another machine on a local area
network. This method of installation is typically much faster than installation
using diskettes. Remote installation over a LAN is described in detail in OS/2
Version 2.0 Remote Installation and Maintenance.

5.11 Installing over Existing Versions

5.12 Summary

OS/2 Version 2.0 is designed to be installed over OS/2 Version 1.2, OS/2 Version
1.3, OS/2 Version 2.0 Limited Availability (LA), DOS, or Windows 3.0. No special
considerations are necessary when carrying out such an installation. However,
if Boot Manager is to be used, the machine's fixed disk might need reparti­
tioning to make space for the Boot Manager partition. See Chapter 7, "Soot
Manager" for further information.

The process of installation has been greatly improved for OS/2 Version 2.0 over
previous versions of OS/2. Once partitioning of the fixed disk and installation of
the base operating system has been accomplished, the remainder of the installa­
tion procedure is carried out using a graphical installation procedure which runs
under Presentation Manager. Full mouse and keyboard support is provided.

Progress indicators are given, allowing the user to easily determine the current
point in the process. Optional features are jnstalled by selecting them from a
list of icons. Default settings for properties such as display and mouse type are
determined by interrogating the hardware; these defaults may easily be altered
by the user.

For those users who may not be familiar with use of the system, a tutorial is
provided as part of the graphical installation procedure. This tutorial illustrates
the use of windows, the keyboard and mouse, and drag-and-drop manipulation
using icons.

Installation of specific optional features may be carried out after the operating
system is installed, in an easier manner than with previous versions of OS/2.
The graphical installation procedure is available from the Presentation Manager
desktop or from the command line, and may be invoked to install only specific
optional features.

Chapter 5. Installation Considerations 65

I
) .

66· OS/2 V2.0Volume1

Chapter 6. Hardware Considerations

This chapter describes the enhancements made to OS/2 Version 2.0 in the area
of hardware support. We begin by focusing on the 1/0-related components of the
operating system which are collectively known as the 1/0 supervisor. Later in
this chapter we investigate IBM and OEM hardware support. The changes in
OS/2 Version 2.0 are specifically targeted to optimize disk device requests
through improvements to the High Performance File System (HPFS) and FAT file
system drivers, and to make use of the capabilities of the new SCSI adapters
and disks. Figure 20 provides an overview of the 1/0 related components of OS/2
Version 2.0.

Vlrtual

Dev.SvC9.

Vlrtual
Device
Drlv.1'9

Devloa'Volume
l.tlnager

Requ .. t Routl

Volume Control

Kernel
Service
lnt.rfece

Kern.I S.rvlca

I Timer Service•

I Taeklng

l•mory l.tlnagement I
I Monitor Dlepatchlng I
IDD Specific function• I

Software
Management

Hardware
Management

Figure 20. OS/2 Version 2.0110 Related Components

The enhancements in the 1/0 supervisor result in:

0 Copyright IBM COrp. 1992

• Improved overall system 1/0 throughput capability by:

Using new protocol and data structures designed to optimize the sub­
mission of 1/0 requests
Allowing 1/0 command chaining by permitting file systems to submit a
list of 1/0 operations to the device driver rather than submitting them one
at a time
Providing a high-performance mechanism for transferring data to and
from buffers for which pages are physically discontiguous in real storage

67

- Providing reductions in the overhead of interrupt processing and 1/0
request completion

• An architected and effective set of interfaces for an Installable File System
(IFS) to allow paging 1/0 requests to be managed by a File System Driver
(FSD).

The remainder of this chapter will discuss device driver and file system changes
made under OS/2 Version 2.0, and IBM and OEM hardware support.

6.1 Device Driver Support
While OS/2 Version 2.0 is a 32-bit operating system, its device drivers and
Device Helper (DevHlp) functions remain 16-bit. OS/2 V1 .3 device drivers are
generally compatible with OS/2 V2.0. New in OS/2 V2.0 is a layered device
driver architecture. Also new are virtual device drivers for use by programs
running in virtual DOS machine.

6.1.1 Compatibility with OS/2 V1 .3

68 OS/2 V2.0 Volume 1

OS/2 Version 2.0 generally provides compatibility with OS/2 V1.3 device drivers
written to the published OS/2 V1.3 device driver interface. Device driver incom­
patibilities with OS/2 V2.0 are summarized here:

• Drivers that directly modify or utilize the contents of the Global Descriptor
Table (GOT)

• The PhysToVirt DevHlp returns different results to what is expected

• Drivers that set up their own GOT call gate will not work

• Drivers that switch to real mode will fail

• Device drivers that were written to support a single DOS session can fail if
accessed by more than one DOS session concurrently.

Although OS/2 V2.0 device drivers remain 16-bit, the 32-bit architecture of OS/2
V2.0 can affect performance characteristics:

• OS/2 V2.0 provides 32-bit demand-paging virtual memory management based
on Intel 386 while OS/2 V1.3 provides 16-bit segment-swapping virtual
memory based on Intel 286

Therefore, 1/0 requests are no longer guaranteed to occur in a single phys­
ically contiguous memory range. For compatibility, OS/2 V2.0 detects an
OS/2 V1.3 device driver and breaks application 1/0 requests into multiple 110
requests to the OS/2 V1 .3 driver at physical memory boundaries rather than
a single 1/0 request as before in OS/2 V1.3.

• OS/2 V2.0 supports more than 16 MB of physical memory

For compatibility, when a device driver utilizes an OS/2 V1.3 compatible
request to lock memory for OMA transfers, OS/2 V2.0 rearranges memory so
that the requested physical memory address range is below 16 MB.

6.1.2 Virtual Device Drivers
OS/2 Version 2.0 makes use of two distinct types of device drivers to communi­
cate between the operating system and hardware devices:

• Physical device drivers communicate directly with hardware devices

Th~y operate in protected mode, and are accessed by protected mode proc­
esses and by virtual device drivers.

• Virtual device drivers (VDD) do not communicate directly with hardware
devices; instead, they provide a virtual device driver interface for DOS appli­
cations running in virtual DOS machines

Some VDDs have an associated physical device driver to which they pass
requests. VDDs are 32-bit device drivers and make it possible for devices to
be shared between processes running in virtual DOS machines and OS/2
screen groups.

See OS/2 Version 2.0 - Volume 2: DOS and Windows Environment for a complete
discussion of OS/2 Version 2.0 virtual device drivers.

6.1.3 Device Helper Functions
OS/2 Version 2.0 still uses a 16-bit device driver model. In order to optimize
existing device drivers for the 32-bit flat memory model, new DevHlp() functions
have been added for memory management.

• Locking specific address ranges

Since paging is used in OS/2 Version 2.0, segments no longer need to be
physically contiguous in memory. Thus, when locking these segments in
memory, the memory manager may need to "shuffle" pages to make them
contiguous.

This shuffling can greatly increase the amount of time it takes to perform the
locking. Locking of entire segments should therefore be avoided by using
the new VMLock DevHlp() function, which locks only the required range of
addresses within a memory object.

• Address context conversion without locking

In previous versions of OS/2, device drivers were required to lock the user's
buffers to gain context-free addressability. Since locking degrades perform­
ance and reduces available pageable system memory, new DevHlp() func­
tions have been added to convert these addresses without the need for
locking.

• Removal of frequent selector loads

Device drivers can reduce the amount of selector loading by using the new
flat memory model DevHlp() functions to allocate memory. All of the memory
allocated by the new VMAl/oc DevHlp() function can be addressed via one
flat selector available to device drivers at initialization time.

• Scatter/gather DMA support

Scatter/gather OMA adapters {such as the IBM SCSI adapters described in
Appendix B, "Micro Channel Architecture and SCSI") allow OMA operations
on physically discontiguous pages of memory. This ability provides a signif­
icant performance advantage over contiguous OMA operations.

By using the new VMLock DevHlp() function, a device driver can specify that
pages should be locked without being physically contiguous in memory.

Chapter 6. Hardware Considerations 69

70 OS/2 V2.0 Volume 1

VMLock will then return the physical addresses of each page that was
locked.

• Address-limited devices

Address-limited devices (using 24-bit addressing) do not support memory
above 16MB. The device drivers for these products will use a new bit on the
VMLock and VMAl/oc calls, which specifies that the memory must be locked
or allocated below the 16MB line.

The following are some of the new DevHlp() functions implemented in OS/2
Version 2.0:

• VMA/loc - Allocate block of physical memory

VMAl/oc is used to allocate linear and/or physical address space in memory.
These allocations can exceed 64KB in size and can be either fixed, movable
or swappable memory. This call can be used to map non-system memory
into the current process context.

• VMFree - Free memory allocated via VMAl/oc

Memory allocated via VMAl/oc can be freed with the VMFree DevHlp() func­
tion. VMFree is also used to remove the mappings created by
VMG/oba/ToProcess and VMProcessToG/obal.

• VMLock - Locks a range of memory within a segment

VMLock is used to lock a linear address range into physical memory. If the
lock is needed for scatter/gather OMA, then a list of physical page addresses
is returned.

• VMUnlock - Unlocks a range of memory within a segment

VMUnlock is the counterpart of the VMLock function. It is used to unlock
memory previously locked via VMLock.

• VMProcessToGlobal - Map process address into global address space

The VMProcessToG/obal DevHlp() function is used to convert an address that
is in the context of the current process to an address in a global context.
This allows context-free addressability to the memory objects of a process.

• VMGlobarroProcess - Map global address into process address space

VMG/oba/ToProcess can be used to map a global context address into the
address space of the current process. When used for video buffers, the
calling process can specify if the memory should be under screen group
control. This will cause the memory to be validated or invalidated at task
switch time.

• VirtToLln - Converts a selector:offset address to a linear address

VirtToLin will convert a selector:offset address into a flat 32-bit linear
address.

• LlnToGDTSelector - Convert a linear address to a virtual address

LinToGDTSelector is used to convert a linear address to a virtual
(selector:offset) address by mapping the given GOT selector to the memory
region referred to by the given linear address and range.

• PhysToGDTSel - Maps a physical address to a GOT selector

PhysToGDTSel converts a 32-bit physical address to a GOT selector:offset
pair.

• FreeGDTSelector - Free selector allocated via A/locateGDTSelector

FreeGDTSelector frees up a GOT selector allocated via the AllocGDTSelector
DevHlp() function.

• PageListToGDTSelector - Maps given physical addresses to selector

PageListToGDTSelector is used to map physical addresses to a GOT
selector, setting the access byte of the descriptor to the requested type. The
virtual memory needed to map the physical ranges described by the page
list array must not exceed 64KB.

• GetDesclnfo - Return information on the contents of the descriptor

GetDesclnfo is used to return the access byte, linear address, and size of a
descriptor allocated via the AllocGDTSelector DevHlp() function.

• PageListToLin - Maps physical pages to a linear address

PageListToLin is used to map physical memory pages described in an array
of page list structures to a linear address.

• LinToPageList - Returns the physical pages mapped by a linear range

LinToPageList is used to translate a linear address range to an array of page
list structures that describe the physical pages mapped.

6.1.4 New Disk Device Driver
A new disk device driver interface has been defined for use by OS/2 V2.0 file
systems. The request-passing mechanism employs a request list of prioritized
commands which the device driver may reorder to optimize access. Read and
write operations use scatter/gather descriptors (as used by SCSI adapters)
allowing data transfer to and from discontiguous memory buffers. The interface
is designed to be data-structure compatible with future versions of OS/2 in order
to minimize work at the time of migration.

With this extended device driver support, both the standard OS/2 interface (using
ABIOS read/write) and the new high performance interface (using the ABIOS
Transfer SCB) allow both OS/2 file systems and the OS/2 kernel to access the
disk.

The following is a summary of the device driver changes:

• The disk device driver records the information indicating the type of DASO
(ESOl/ST506 or SCSI) and the level of caching support for each logical drive
(LID)

• Support is provided for the new device command 1Dh • GetDevlceSupport.
The device driver will return addresses to two structures in the request
packet:

1. The Driver Capabilities Structure (DCS) indicates the specific features
that are supported by the device driver

Examples are disk mirroring, disk duplexing and whether the device sup­
ports more than 16MB of memory.

2. The Volume Characteristics Structure (VCS) for the device identified by
the unit code in the device command

Examples of characteristics reported in this structure are read-only,
removable media, average seek time, outboard caching supported, SCB
protocol supported and read prefetch supported.

Chapter 6. Hardware Considerations 71

• Support is provided for the new device command 1Ch • ExecuteChain

• Support is provided for the new device commands 1Eh, 1Fh, and 20h • Read,
Write and WriteVerify

• Support is provided for the new device command 21h • Prefetch

• 1/0 requests are placed on the device queue based on a priority passed in
the request list

To optimize the 1/0 operation, all requests are sorted in logical block number
sequence. If a specific flag is on in the request list indicating that the exe­
cution order is critical, then the list will not be sorted.

The possible priorities are:

Priority Meaning

OOh Prefetch requests

01h Low priority request - (lazy-write)

02h Read ahead, low priority pager 1/0

04h Background synchronous user 1/0

08h Foreground synchronous user 1/0

10h High priority pager 1/0

80h Urgent request - used by kernel in critical situations.

• Calling threads with ExecuteChain() requests are no longer blocked by the
device driver strategy routine

The strategy routine instead returns control to the caller after the 1/0 is initi­
ated or queued.

• Upon 1/0 completion, the device driver calls the notification routine specified
in the request list.

6.1.5 Layered Device Driver Architecture

72 OS/2 V2.0 Volume 1

An OS/2 Version 2.0 DASO or SCSI device driver is no longer one large module
as with previous versions of OS/2 but a layered device driver. The higher layer
that interfaces with the OS/2 file systems and the OS/2 kernel is the Device
Manager. The lower layer that interfaces with the device adapter is the adapter
device driver (ADD). In addition, a filter ADD can exist in the middle between the
Device Manager and the ADD. A filter ADD can be used to provide special ser­
vices such as data compression or data encryption.

The new Adapter Device Driver interface for an ADD module defines direct call
commands that are issued by the Device Manager or filter ADDs down to the
registered entry point of an ADD.

It is now possible to add new device support to OS/2 V2.0 merely by writing the
device support portion of the device driver. The higher level routines, required
to support disk and SCSI devices, are only written once.

6.1.6 Base Device Drivers
In order to be more flexible in providing support for OEM machines, OS/2
Version 2.0 introduces a new class of device driver, a base device driver. A
base device driver is one which is needed during the loading of the operating
system. In order to identify and initiate the loading of base device drivers a new
CONFIG.SYS statement BASEDEV is introduced. The BASEDEV statement is
used to load support for disks, diskettes and printer devices.

Only the name of the base device driver is included on the BASEDEV statement
as base device drivers are load during an early stage of OS/2 initialization and
there is insufficient support available at this point to process a path. Base
device drivers are installed in the root directory of the partition from which OS/2
is loaded or alternatively in the \OS2 directory in that partition.

The BASEDEV statement makes it possible to specify the device drivers required
for system initialization. In previous releases of OS/2 this information was
included as part of the system loader and this restricted the range of hardware
that these releases could support.

6.2 File System Considerations
The following components are new to OS/2 Version 2.0 or contain changes from
previous versions:

• HPFS device driver

• FAT file system device driver

• UNDELETE command

• Volume manager

• Pager. (swapper).

6.2.1 High Performance File System Changes
The following changes have been made to the High Performance File System
(HPFS) driver under OS/2 Version 2.0:

• At initialization time, the level of support provided by the device driver is
determined using the new device command 1DH - GetDeviceSupport.

• The HPFS driver passes physical addresses for data pointers, in the appro­
priate request format, to the device driver.

• The HPFS driver now supports command chaining, calling the volume
manager with a list of all contiguous sector requests required to fulfill an 1/0
request.

This function is supported for all DASO types.

• The HPFS driver supports scatter/gather by passing physical pointers to
each page in the data buffer (physically discontiguous) as part of the 1/0
request.

This allows 1/0 controllers such as the IBM SCSI adapters which support the
scatter/gather capability to perform the 1/0 in a single operation.

• The HPFS driver now supports disk caching in the IFS driver, rather than in
the device driver.

Chapter 6. Hardware Considerations 73

• The HPFS driver is able to recognize devices which have outboard caches
(non-system memory), and incorporate them into the total caching scheme.

The HPFS file system under OS/2 Version 2.0 supports a maximum file size
of 2GB. The maximum size for an HPFS volume is 512GB.

6.2.2 FAT File System Changes
Changes have also been made to the FAT file system driver under OS/2 Version
2.0, in order to provide improved performance and enhanced support for disk
hardware devices:

• The FAT driver now supports command chaining

The driver attempts to call the volume manager with a list of all contiguous
sector requests required to fulfill an 1/0 request, thus allowing multiple
page-in and page-out requests in a single logical operation.

• The FAT driver provides faster allocation of free space on the logical drive,
using a bitmap to track free clusters on the disk.

Disk caching is now supported within the FAT driver, and has been removed
from the device driver. A cache buffer is provided to support disk caching with
the following features:

• Lazy writing

• Lazy reading on writes, that is, the ability to write to the cache and flush the
cache to disk, but then to read the updated information from the cache rather
than requiring a physical disk read operation

• Asynchronous read-ahead through a multi-purpose asynchronous read
thread

• Large cache size (theoretical maximum of 64MB, although practical limita­
tions will necessitate a smaller cache)

• The ability to dynamically enable and disable the cache in response to a
user command

• Bad sectors are automatically bypassed on reads.

There are a number of advantages in performing caching in the FAT driver
rather than the device driver; more operating system kernel services are avail­
able at this level, and intelligent read-ahead operations can more easily be per­
formed. Lazy writing is also more easily implemented at the file system level
than at the device driver level.

The FAT file system under OS/2 Version 2.0 supports a maximum file size of
2GB. The maximum supported size for a FAT volume is also 2GB.

6.2.3 Disk Volume Considerations

14 OS/2 V2.0 Volume 1

The maximum size for a disk volume under OS/2 Version 2.0 is 512GB using
HPFS and 2GB using the FAT file system, with the following· conditions:

1. OS/2 V2.0 requires that the bootable partition be within the 1023rd cylinder of
the disk

When a machine's BIOS reports on the characteristics of a disk, it returns
three values; it determines the number of sectors per head, the number of
heads per cylinder, and the number of cylinders. The IBM BIOS sets the disk
geometry such that one cylinder equals one megabyte of disk storage. For

IBM disk drives, 1023 cylinders corresponds to one gigabyte. Other man­
ufacturers may use different sector and head values causing the 1023 cyl­
inder limit to be greater than or less than one gigabyte.

2. A FAT file system volume must not exceed the 1023rd cylinder of the disk
drive.

It may also not exceed 2GB even if, due to the manufacturer's disk geometry,
the 1023rd cylinder is beyond 2GB.

Imagine a 10GB disk where the geometry of the disk has sector/head/cylinder
values such that the 1023rd cylinder corresponds to 7.4GB, as is the case with
some OEM SCSI disks. Using the FAT file system, the way to configure the
volumes to maximize their size would be to have three volumes of 2GB and one
volume of 1.4GB. In this case the 2.6GB of free space (beyond the 1023rd cyl­
inder) would be unusable by OS/2 using the FAT file system. These volumes
may exist in primary partitions or an extended partition, or both. In an extended
partition, the volume would occupy one or more of the logical partitions defined
in the extended partition.

Although an HPFS volume can take up the entire disk, for performance reasons
the practical limit is much less than 512GB.

There are 24 drive letters available for hard disk drives (a: and b: are reserved
for diskette drives), and currently the largest tested IBM SCSI hard disk available
for the PS/2 is 400MB. Using 24 single SCSI disks chained on four SCSI adapters
we would get a maximum of 24 x 400MB, or 9.6GB of online DASO.

6.2.4 UNDELETE Command
OS/2 Version 2.0 provides a facility to delay the permanent removal of files that
have been deleted. By default, files that are deleted or erased are stored (as
hidden system files) in the \DELETE subdirectory. The UNDELETE command
gives the user the ability to recover such deleted files and restore them to their
original path.

A new environment variable DELDIR is provided to specify the path used to store
deleted files. A separate directory and maximum directory size must be speci­
fied for each logical disk. The absence of a DELDIR environment variable in the
CONFIG.SYS or a DELDIR statement with no path specified will disable the
facility.

The function DosForceDelete() has been added to allow files to be deleted per­
manently without first making them recoverable.

6.2.5 Volume Manager
A number of changes have been made to the volume manager, in order to
provide enhanced support for SCSI adapters, and to support the new SCB archi­
tecture request list data structures.

During the ABIOS initialization, one SCSI adapter-type logical ID (LID) will be
generated for each SCSI adapter in the system. These LIDs cannot be allocated
by the device driver, so in order to secure access to these LIDs, the device
manager must include them in its list of LIDs.

The volume manager also supports fast path processing for the new request list
data structures. These structures need no longer be transformed into request

Chapter 6. Hardware Considerations 75

packets. However, volume verification must still be performed by the volume
manager. This function is required since the system must support removable
media.

If the device driver written for previous versions of OS/2 is used with the OS/2
Version 2.0 volume manager, it will give an "invalid device command" return
code to the GetDeviceSupport() command from the file system. In this case, the
file system must be structured in a compatible form for the device driver. The
volume manager then functions as before with no changes.

6.2.6 Pager (Swapper)
The swapper builds its 1/0 requests in a format similar to the ExecuteChain()
format, using the SCB architecture and 32-bit physical page frame addresses. It
then calls the file system to perform the paging operations.

When memory is overcommitted, page-in operations will occur in conjunction
with page-outs which will free memory frames for the requested pages. The
swapper may build request chains that contain both page-in and page-out oper­
ations, which results in a significant reduction in start 110 and interrupt proc­
essing overhead, thereby providing improved paging performance.

Normally the device driver has the possibility to sort 1/0 requests in order to
optimize physical disk access. However, since a paging 1/0 request may contain
both page-out and page-in instructions that address the same physical page in
memory (as described above), the execution order of the individual operations
may be critical.

In such circumstances, a flag indicating a critical 110 request is set by the
swapper when issuing the request. The device driver will then not sort the
chain, but will execute the operations in the exact sequence they were
requested. The pager/swapper, therefore, optimizes 110 requests wherever pos­
sible, while maintaining the integrity of critical requests.

OS/2 Version 2.0 also contains a new interface (new calls) for those who
program their own file systems. The new calls provide a clear interface between
the file system and the FSD for paging. All calls are guaranteed to be used only
for paging operation~. so that the underlying FSDs may be optimized in sup­
porting them. This guarantee implies that no argument checking, address verifi­
cation. or size control takes place.

6.3 Hardware Support Levels

76 OS/2 V2.0 Volume 1

OS/2 Version 2.0 has been designed to run on both IBM and non-IBM (OEM) per­
sonal computers which incorporate processors from the Intel 80386 or 80486 fam­
ilies. The specific OEM models and their devices that are supported is a matter
of testing and verification. IBM in conjunction with OEMs have tested OS/2 V2.0
on many OEM models and verified correct operation for those models tested.
This process of verification is ongoing and more models are being added to the
list of personal computers, on which OS/2 V2.0 will run, all the time. The archi­
tecture and design of OS/2 V2.0 supports OEM models in the following ways:

• All Machine Readable Information (MRI), text messages, online help, etc. is
generic wherever possible. This generality means end user system text
does not contain IBM or OEM specific references.

• Program code is generic wherever possible. This generality means it is not
hard coded to recognize and handle only IBM specific systems or conditions.

• The device driver architecture has been enhanced to allow OEMs and Inde­
pendent Hardware Vendors (IHVs) to more easily replace and add device
support through the layered device driver architecture.

In this section we discuss the factors that determine whether OS/2 V2.0 will run
on a particular hardware configuration. We also look at which of the hardware
features of the system OS/2 V2.0 exploits.

A design point of OS/2 V2.0 is that it will enable support for a feature if it can do
so without compromising the integrity of the system. This design point means
that OS/2 V2.0 will only use a feature if it can do so reliably.

The first topic covered is the usage of large main memory, that is, systems with
more than 16MB of RAM.

6.3.1 Large Main Memory Support
The Intel 80386 and 80486 families of microprocessors are capable of addressing
64TB of virtual memory. At present, OS/2 Version 2.0 has the capability of sup­
porting up to 4GB of virtual memory and 4GB of real memory. In order to
support more than 16MB of memory however, certain requirements must be met.

Firstly, the OS/2 V2.0 physical memory manager needs to know how much
memory is present. This is done during kernel initialization by calling the BIOS
interrupt 15 with subfunction code x'88'. This call will return the total amount of
memory present. If the BIOS supports interrupt 15 with subfunction code x'C7',
"return memory map information", then this function will be used to return an
array giving the layout of the different levels of memory; for example, system
board memory and adapter memory available in the machine, together with
address ranges for the different memory types. Should the function not be
present, the interrupt will return with the carry flag set. Support for this function
is not mandatory. Information obtained is used by OS/2 V2.0 to prioritize the
areas of physical memory that are allocated first.

The second requirement for supporting more than 16MB is that the paging
device fixed disk controller can support data transfers to or from memory
locations above the 16MB line. This ability usually requires the availability of a
OMA controller with a 32-bit addressing capability, either on the system board or
on a busmaster SCSI adapter. To determine whether this OMA is available, the
disk device driver level is queried. If it is a level 3 device driver, it is further
interrogated to find out if the OMA that the disk controller uses has support for
32-bit addressing. If this second requirement is satisfied and the disk controller
can handle 32-bit addresses larger than 16MB, then all of memory is used by
OS/2 for programs and data. If it cannot, then the OS/2 page manager allocates
all of the memory above 16MB as a paging cache to be used before paging to
the disk. This substitution is a good use of the memory above 16MB, but not as
good as using it directly.

A final requirement for supporting more than 16MB is that the machine's ABIOS
is capable of handling requests with addresses above the 16MB line.

Presently in the IBM PS/2 range, only the Models 90 and 95 have support for
more than 16MB of memory and when using 8MB SIMMs will support up to
64MB. Machines using 80386SX, 80386SL or 80386SLC processors are not able

Chapter 6. Hardware Considerations 77

to support more than 16MB as they only support 24-bit addressing external to the
processor.

If OS/2 V2.0 detects the presence of a device that does not support 32-bit
addressing, and if support for more than 16MB is enabled, it will ensure that
buffers used by that device's driver are locked below the 16MB line during 1/0
operations. Level 3 device drivers are then given a permanent buffer below the
16MB line. For level 1 and 2 device drivers the OS/2 V2.0 virtual memory
manager, when requested to lock a user buffer for that device, will move the
buffer below the 16MB line.

The only device for which 32-bit addressing support is mandatory is the paging
device. Pages are written to or read from their exact physical location in
memory and are not moved before 1/0 takes place. Should paging be disabled
by specifying MEMMAN=NOSWAP in the CONFIG.SYS, then more than 16MB
can be supported even though there is no disk subsystem support for it.

When determining whether an OEM machine will support more than 16MB, the
considerations are:

• Is the BIOS/ABIOS in the machine capable of supporting the memory size?

• Is the BIOS capable of telling OS/2 that more than 16MB is present in the
machine?

• If paging is enabled, does the paging device support 32-bit addressing?

• If the paging device does support 32-bit addressing, does its device driver
have the capability of responding correctly to OS/2 V2.0 with this informa­
tion?

6.3.2 Microprocessor Support

78 OS/2 V2.0 Volume 1

As with software, there are different releases of the Intel 80386 and 80486 family
processors. The different releases of the processors are known as stepping
levels. Later stepping levels fix bugs that were found in earlier stepping levels
of the processor. OS/2 V2.0 will take into account the different stepping levels of
processors and handle any nuances. An example would be when OS/2 V2.0 is
running on an 80386 at B1 stepping level, with a numeric coprocessor present;
05/2 V2.0 will disable the coprocessor and provide emulation for the
coprocessor, as it would do if the coprocessor were not present. This is one of
the ways in which OS/2 V2.0 will circumvent the known bugs in a 80386 at B1
stepping level. Bugs such as these were fixed in the 80386SX and 80486
processors. In the case of the 80386 processor, a stepping level of DO or higher
is preferred.

Some early IBM PS/2s might have B1 stepping level 80386 processors on their
system boards and might qualify for a free engineering change (EC) to upgrade
the system board. If you experience problems running OS/2 on an older system,
contact your dealer or the IBM service organization in your country to have your
system unit checked.

6.3.3 Disk and SCSI Device Drivers
The layered device driver architecture has made it possible to easily support
IBM and non-IBM disk and SCSI controllers. At the device management driver
level, OS/2 V2.0 supplies two drivers:

OS2DASD.DMD General-purpose support for disk drives

OS2SCSl.DMD General-purpose support for non-disk SCSI devices.

OS2DASD.DMD will always be loaded. OS2SCSl.DMD is only needed when a
SCSI adapter is present.

OS/2 V2.0 provides a number of adapter device drivers (ADDs) which are specific
to the adapter or adapters installed in the system. At installation time, OS/2 V2.0
can in most cases sense the adapters installed and will then load the necessary
ADDs and include the necessary BASEDEV statements in the CONFIG.SYS.
ADDs are currently available for all IBM disk devices and some selected
non-IBM adapters. See the OS/2 V2.0 Online Command Reference and the
README file, which comes with OS/2 V2.0, for details of the supported adapters.
The README file should always be consulted when using a non-IBM SCSI
adapter.

At general availability of OS/2 V2.0, support was available for IBM, Future
Domain** and Adaptec** SCSI adapters.

Shipped with OS/2 V2.0 is a generic disk device driver IBMINT13.113. When spe­
cific support is not provided for a particular adapter, it should be possible to use
this driver.

6.3.4 Video Display Support
At general availability OS/2 Version 2.0 provides the most complete support for
video systems which provide VGA resolution. This is the only resolution sup­
ported for "seamless 11 WIN-OS/2 sessions at this time and if using "seamless 11

WIN-OS/2 on a particular system, the Presentation Manager desktop must be
configured to use this resolution even if the display hardware is capable of
higher resolution output.

OS/2 V2.0 provides support for devices with lower resolutions than VGA, namely
CGA and EGA, for all types of sessions except "seamless" WIN-OS/2. Use of
CGA for Presentation Manager is not recommended.

Devices with resolutions above VGA (640x480, 16 colors) are known as Super
VGA (SVGA). The OS/2 installation process will detect display systems capable
of running in SVGA mode. However, because of the wide variety of display
systems currently available that fall into this category, full support is not pro­
vided.

Support is provided for 8514 and XGA display systems and drivers for Presenta­
tion Manager and WIN-OS/2 full-screen sessions will be installed during system
installation. All other SVGA display systems will be supported in VGA mode.
Systems with 8514 and XGA display hardware can also run in VGA mode.

Support however is provided to allow DOS full-screen and WIN-OS/2 full-screen
sessions to use the display system in SVGA mode even though Presentation
Manager is using it as a VG.\ device. A base video device handler (VDH) is pro-

Chapter 6. Hardware Considerations 79

80 OS/2 V2.0 Volume 1

vided which permits switching the display system between VGA and an SVGA
mode. The list of video modes currently supported is:

• Graphic

1. 640x480
2. 800x600
3. 800x256
4. 1024x768
5. 1024x768

• Text

256 colors
16 colors
256 colors
16 colors
256 colors

1. 132x25 characters
2. 132X43 characters
3. 132X44 characters

SVGA support is enabled by:

• Including the SVGA base VDH, which is installed along with the VGA VDH, by
changing the SET VIO_VGA statement in the CONFIG.SYS to:

SET VIO_VGA=DEVICE(BVHVGA,BVHSVGA)

• By running SVGA.EXE

From a DOS full-screen command prompt issue the command:

SVGA ON

Executing this program will result in a file called SVGADATA.PMI being
created in the OS2 directory. This file contains the information about the
video modes supported by the video adapter present in the system.

This file also serves a flag to say that SVGA mode is enabled in the system.
The SVGA support is only active once the SVGA program has been run.
SVGA VDHs will run in VGA mode if the SVGADATA.PMI file is not present.

• Install the SVGA virtual VDH instead of the VGA VDH.

This substitution provides support for DOS full-screen sessions to run in
SVGA mode. The VVGA.SYS virtual VDH is replaced by VSVGA.SYS by
changing the DEVICE statement in the CONFIG.SYS to read:

DEVICE=x:\052\MDOS\VSVGA.SYS

where x = the drive letter of the system partition

• Install a Windows V3.0 driver for the SVGA adapter in the system to provide
support for WIN-OS/2 full-screen sessions.

If a Windows V3.0 driver is available for the adapter, this should work under
OS/2 V2.0. Update the "display.drv = 11 line in the SYSTEM.IN! file in the
\OS2\MDOS\WINOS2 directory to point to the new driver. The DEVICE state­
ment for the video driver in the CONFIG.SYS also needs to be changed.

To disable SVGA support run the SVGA.EXE program with the OFF parameter:

SVGA OFF

Changing DOS settings may rectify problems experienced when running with
SVGA enabled:

• If corruption occurs when switching to the WIN-OS/2 full-screen session, turn
VIDEO_SWITCH_NOTIFICATION ON.

• If difficulty is experienced with animated graphics, turn
VIDEO _RETRACE_EMULATION OFF.

Some manufacturers of SVGA hardware are working to develop OS/2 V2.0 video
device drivers that will support Presentation Manager. It is advisable to check
with the hardware supplier about the availability of drivers for a particular video
subsystem. Information will also be posted on OS/2 bulletin boards and these
can be checked for the latest information.

6.3.5 AT Bus Serial Port Support
COM.SYS will support COM3 and COM4 ports on AT bus machines. This is in
addition to the published support for COM1 and COM2. In order to use COM3
and/or COM4 on AT bus machines it is necessary to include parameters on the
DEVICE= COM.SYS command in the CONFIG.SYS. The format of the statement
is:

DEVICE=COM.SYS (N,XXX,I)

where N is the COM port number (3 or 4)
XXX is the I/O port address (3E8, 2E8, etc)
I is the IRQ (interrupt) level (from 1 to 15)

The 110 port address will be found in the specifications for the adapter card. The
port address must be unique for each COM port. The port address for COM1 is
3F8 and for COM2 it is 2F8.

The IRQ level must be chosen in such a way that it does not conflict with another
adapter card in the system. COM1 uses IRQ 4 and COM2 uses IRQ 3. It is pos­
sible that the IRQ level of the COM3 or COM4 adapter cards is not settable and
will default to either IRQ 3 or IRQ 4. In this case it is still possible to have up to
four COM ports installed. However, if two or more ports use the same IRQ level,
it is only possible to have one of those ports active at any one time. If the IRQ
level is settable on the adapter card, choose an IRQ level not used in the
system. Levels that are usually available include 5, 10 and 15.

6.3.6 Pointing Device Support
OS/2 Version 2.0 provides support for some of the popular pointing devices such
the IBM PS/2 mouse and several mouse types which attach to the serial port.
Some pointing devices are supplied with their own device drivers. An example
of this is the Hewlett-Packard** (HP) mouse. Support for these devices can only
be activated after installation of OS/2 V2.0 is completed. The OS/2 V2.0 installa­
tion will have to be carried out using the keyboard. During the installation,
install support for the IBM PS/2 style pointing device.

After the system has been restarted, support for the pointing device can be
installed. This installation will usually involve copying one or more device
drivers to the \OS2 directory and updating the CONFIG.SYS. In the case of the
HP mouse and assuming OS/2 is installed on the C: partition, the steps involved
are:

1. Copy the EXBIOS.SYS and HILMOU.SYS to the C:\OS2 directory from the
diskette supplied with the mouse

2. Update the CONFIG.SYS as follows:

Chapter 6. HardWare Considerations 81

add-----> DEVICE=C:\OS2\EXBIOS.SYS
add-----> DEVICE=C:\OS2\HILMOU.SYS
modify--> DEVICE=C:\OS2\MOUSE.SYS TYPE=HILMOU$

6.3.7 When OS/2 Version 2.0 Will Not Run

82 OS/2 V2.0 Volume 1

IBM has been working with a number of OEMs of IBM-compatible PCs to ensure
that OS/2 Version 2.0 will work on as wide a range of hardware as possible.

At general availability of OS/2 V2.0 1 a list of OEM machines that have been
tested and support OS/2 V2.0 will be published. The updating of this list will be
an ongoing process. Even if your machine appears on this list, you will need to
check if there are any special considerations for installing OS/2 V2.0 on your
machine. The dealer from whom you purchased the machine will be able to
provide you with details supplied by the manufacturer and any special device
drivers you may need.

Also to be considered is the support required for any adapters installed in the
machine, which are not normally standard for the machine. This consideration
applies to IBM PS/2s as well. For example, it is common to replace the disk
controller in older machines with a newer SCSI controller. If this is an IBM con­
troller, it is not a problem. However if a controller from an OEM is used, then a
different device driver might be required.

If OS/2 V2.0 fails to run on a particular machine, these are some of the things
that can be checked:

1. Check the documentation shipped with OS/2 V2.0 such as the online
README File, which is found in the Information folder, for any special instal­
lation considerations which apply.

2. If any OS/2 bulletin boards are available, access them for any revised instal­
lation instructions or device driver requirements for the machine's configura­
tion.

3. Check that the microprocessor on the system board is from the 80386 or
80486 families of processors.

4. If it is an 80386 processor, check that it has a stepping level of DO or later.

5. Check that at least 4MB of memory is installed and available.

6. Check that there is sufficient free space in the disk partition containing
SWAPPER.DAT to allow for growth of this file.

7. Check that the BIOS/ ABOIS installed is the latest available for the machine.

8. Check if the disk system needs a special device driver and if there any
special instructions for installing it.

9. Check for any other device driver requirements.

10. If installing on an IBM PS/2 Model 57, 90 or 95 update the system partition
using the latest available reference diskette.

6.4 Summary
The 1/0 supervisor components of OS/2 Version 2.0 are designed to make
greater use of advanced 1/0 devices than previous versions of OS/2. Particular
emphasis has been given to the optimization of disk access through the use of
the High Performance File System and SCSI devices.

New to OS/2 V2.0 is the Layered Device Driver architecture which enables the
device drivers to be developed more easily to support OEM hardware. This
interface expedites the development of new DASO and SCSI device support by
OEM's by reducing device driver code and complexity. This architecture allows
OS/2 to better support a broad range of OEM platforms and devices.

Device drivers are provided with new device help commands to enable drivers to
more efficiently use the 32-bit flat memory model and the paging facility for
virtual memory management.

A new disk devi.ce driver has been defined for use by the High Performance File
System, which optimizes access to SCSI devices by allowing request
prioritization and making use of the command chaining capabilities of the SCSI
adapters. This optimization allows more efficient use of the physical devices.
For paging operations where the sequence of read and write operations may be
critical. the device driver allows the request optimization to be disabled.

Chapter 6. Hardware considerations 83

84 os12 v2.o Volume 1

Chapter 7. Boot Manager

OS/2 Version 2.0 provides the capability to support multiple operating systems
on the same machine, by providing an operating system independent boot utility
known as Boot Manager.

For example, OS/2 Version 2.0, DOS and AIX may be installed on the same phys­
ical machine, using separate fixed disk partitions and/or disks as supported by
Boot Manager. When starting the machine, a user is presented with a panel
allowing selection of the required operating system. The partition which con­
tains the desired operating system is then activated, and that operating system
is loaded and started.

7 .1 Boot Manager Architecture

7.1.1 Partitions

The following is a brief description of the Boot Manager architecture provided by
OS/2 Version 2.0, and is provided in order to facilitate planning for Boot Manager
support. Readers who are primarily interested in using Boot Manager rather
than understanding its implementation may wish to skip this section and proceed
to 7.2, "Partitioning the Fixed Disk" on page 89.

Each physical disk drive in a machine is divided into partitions. A partition
defines the area of the disk that belongs to a particular operating system. Each
disk can be divided into multiple primary partitions and/or one extended
partition. Each operating system formats its partition in its own way; this format
may or may not be supported by other operating systems.

Only one primary partition on each physical disk drive is accessible at any one
time; other primary partitions on that drive are hidden. Boot Manager allows up
to four primary partitions on each physical disk drive.

Note that the first physical disk drive in the machine must have a primary parti­
tion.

An extended partition can be created in place of one of the four primary parti­
tions when logical drives are desired. All logical drives in an extended partition
are accessible at any time, regardless of which primary partition is active, pro­
vided that the format of the logical drives is supported by the currently active
operating system.

7.1.2 Logical Drives
Operating systems typically access partitions through logical drives, each of
which is assigned a logical drive letter. A primary partition contains only one
logical drive, but an extended partition may be subdivided into one or more
logical drives. An operating system only assigns logical drive letters to those
partitions with a recognizable format, that is, supported by the operating system.

The assignment of drive letters is done by the operating system's volume
manager when the operating system is loaded. The first physical disk drive is
searched for a recognizable primary partition. This partition is assigned the
logical drive letter "C" and the next physical disk is searched. After logical

©Copyright IBM Corp. 1992 85

drives in primary partitions have been assigned for all physical drives, drive
letters are assigned to the recognizable logical drives in extended partitions.

A different operating system may reside on each of the logical drives in an
extended partition (with certain limitations; see 7.7, "Operating System
Restrictions 11 on page 102). Usually, DOS 5.0 and OS/2 V1.3 will only be
installed on a primary partition on the first physical disk. An exception could be
with DOS, for example, where there are no recognizable primary partitions on
the first physical disk. In this case DOS (V4.1 or later) may recognize the
primary partition(s) on the first physical drive to be formatted with the HPFS or
Boot Manager, and treat them as unusable to DOS. In these situations, the first
drive letter C: may be assigned to a primary partition on the next physical disk.

Logical drives in extended partitions are shareable; any data installed on these
logical drives can be used by an operating system running from any other logical
drive in the system, provided the partition formats are compatible. Although 26
logical drive letters are available (A: through Z:), A: and B: are typically reserved
for diskette media. Under DOS or OS/2, up to 24 logical drives may be created
using the logical drive support for extended partitions.

7.1.3 Logical Drive Boot Names
A user may assign a boot name to a logical drive, to simplify its identification. A
boot name is a unique name which identifies the logical drive for booting, and is
independent of the logical drive letter assigned to the drive by the currently
active operating system. The boot name is only recognized by the Boot
Manager.

Boot names are useful in the event of a hardware reconfiguration where addi­
tional fixed disks are added to the machine. Boot names assigned to logical
drives on the original fixed disk will not change and will still identify the same
area on the disk, unlike the logical drive letters which may change due to the
reconfiguration.

7.1.4 Multi-Boot Block

86 OS/2 V2.0 Volume 1

The Boot Manager architecture distinguishes between system-independent and
system-dependent components as part of the startup process of an operating
system. The system-independent components are used to connect the POST
code sequence executed on a PS/2 or compatible machine to a system selection
sequence supplied as part of Boot Manager, which then chains to the operating
system-dependent initialization sequence. The system-independent components
are:

• The Master Boot Record (MBR) located in the first sector of the physical disk
drive.

• A Multi-Boot Block (MBB) which resides in a primary partition on the phys-
ical drive, outside of the logical disks accessible by _operating systems.

When Boot Manager is enabled as a startable primary partition, the MBR boots it
first, like traditional MBR environments. The MBB manages the remainder of the
boot process.

The layers of system independent and system dependent code on the physical
disk drive are shown in Figure 21 on page 87.

Primary Partition 2 I OS 1 Data

Primary Partition 3 I OS 2 Data

c ,,, ~

- -t:_ Loglcal Partlon 1 I Shared Data
/'--.._ ~ -----------

1- _Logical Partlon 2 I Shared Dal!_ .,, -----------1- _L~~·~~lon~/~hared~~ _

Logical Partlon N I Shared Data

-C-- - - -S Loglcal Pertlon 2 /Shared Data / - ,,, - 'I: -_...__ - - - - -1 Loglcal Pertlon 3 / Shared Data,_, /

- - - _,,__ - - - - -c ! Loglcal Pertlon NI Shared Data

Figure 21. Hard Disk Layout

The MBB is installed in a 1 MB primary partition which must be created at the
request of the user, by installing Boot Manager. This space is allocated on
request by OS/2 Version 2.0's FDISK/FDISKPM utilities and can be created at any
location on the disk after track zero. It uses one of the four available primary
partitions on the first physical disk.

The MBB contains code that:

• Displays the logical drive selection menu.

• Allows the user to select the logical drive from which to start the system.

• Gives control to the boot record of the selected logical drive.

• Manages a timer tracking the time available for logical drive selection before
using a default logical drive.

Chapter 7. Boot Manager 87

• Contains a data area for the names of the designated default, fallback, and
selectable logical drives, the time-out value for the selection menu and some
reserved data space.

• Contains a data area reserved for boot error messages.

• Contains a data area describing locations and status of logical drives by boot
name.

The operating system dependent code resides within the logical drives assigned
to each operating system. Upon selection of a specific system to be started, this
system specific code is executed, loading the chosen operating system.

The logical drives are allocated using the FDISK/FDISKPM utilities provided with
OS/2 Version 2.0. These tools update the MBR to indicate which areas on the
physical disk have been defined as logical drives containing the operating
systems. Boot Manager logical drives can be defined on any ST-506, ESDI or
SCSI interface fixed disk drive which is accessed through INT 13h. This pre­
cludes logical drives from being created on SCSI devices which are accessed
through INT 4Bh; for example, logical drives may not be created on removable
media devices.

Once one or more physical drives are set up and logical drives created, the spe­
cific operating system's formatting utility is used to supply the operating system
boot record within the logical drive. It is important to note that the OS/2 Dual
Boot function operates with the system-dependent boot code. Boot Manager
neither enhances nor disables the Dual Boot function, since Boot Manager does
not affect the contents of any logical drive. Therefore, Dual Boot will work in
conjunction with and independent of Boot Manager.

No operating system may store its own information in the MBB or MBR. Any
such information must be held within the logical disks owned by that operating
system. Operating systems which do not obey this rule will not function cor­
rectly in the Boot Manager environment nor in any other "multi-boot" environ­
ment, and may compromise disk integrity. Operating systems which are known
to obey this rule, and operate correctly in the Boot Manager environment,
include:

• DOS Version 3.2 or above, 4.x and 5.0
• OS/2 Version 1.x
• OS/2 Version 2.0
• AIX.

7.1.5 Migration from Other Operating Systems

88 OS/2 V2.0 Volume 1

The Boot Manager architecture requires repartitioning of fixed disks already set
up under any operating systems other than OS/2 Version 2.0. Although this may
seem troublesome, it must be remembered that Boot Manager is only of use
when multiple partitions are allocated, so it is likely that repartitioning would be
necessary to support multiple operating systems.

Migration from previous versions of OS/2 to OS/2 Version 2.0 with Boot Manager
is eased by installation support that allows migration to the new Boot Manager
scheme with minimal user impact, other than the possible repartitioning dis­
cussed above. A Boot Manager installation on a system that had previous ver­
sions of OS/2 or DOS installed attempts to minimize the impact by providing as
much automatic support during installation time as possible.

Note ~~~~~~~~~~~~~~~~~~~~~~~~~--

The re seems to be the possibility of a conflict between OS/2 V2.0's Boot
Manager and other third party disk organizers and boot utilities. In order to
avoid any trouble which could come up after installation of OS/2 V2.0 in
these situations, it is highly recommended that a /ow-level format be per­
formed before installing OS/2 V2.0. On a PS/2, such a /ow-level format can
be performed by booting from the appropriate reference diskette and exe­
cuting the Advanced Diagnostics (CTRL-A). Once Boot Manager is installed,
future migration steps will not require such an operation.

7 .1.6 Performance Impacts
The path length added to the overall system startup time path consists solely of
the instructions contained in the MBB. The OS/2 Version 2.0 MBB is approxi­
mately 16KB in size, with about 50% being instructions and the remaining 50%
being data and space for the boot table and error messages. Tests have shown
no measurable increase in overall startup time, counting the time from POST exit
to display of the selection menu, plus the time from the selection being entered
to the appearance of the first OS/2 or DOS operating system message on the
screen. Based on these tests, the impact of Boot Manager during boot time is
considered negligible.

The MBB is loaded into memory during startup, and is later overwritten by the
operating system boot record loaded from the logical drive from which the
system is IPLed. Thus, no memory impact is realized when using Boot Manager.
Memory requirements for the various operating systems participating in a Boot
Manager environment do not change.

7.2 Partitioning the Fixed Disk
Boot Manager can be installed, the machine's fixed disks partitioned, and logical
disks created at the beginning of OS/2 Version 2.0 installation. It is possible to
install Boot Manager after the operating system has been installed by use of
OS/2 V2.0's full-screen FDlSK command. See 7.2.1, "Boot Manager Installation"
on page 90 for further information.

The names of the logical drives presented at the Boot Manager startup menu are
stored in the MBB for primary partitions and in the Extended Boot Record (EBR)
for logical drives in extended partitions. For SCSI drives that may be moved
freely between different workstations, this approach allows Boot Manager to
identify that drive continuously via the same logical name, even though the
internal drive letter assignment may have changed.

Operating systems such as OS/2 and DOS are installed on the logical drives,
and the user may then switch back and forth between operating systems via the
selection menu displayed at IPL time.

OS/2 Version 2.0 provides two programs to create and maintain partitions on
fixed disks. These programs provide substantially similar function and differ pri­
marily in their presentation support requirements:

• FDISK operates in character mode in a full-screen session, and supports
command line parameters and options, but does not support pointer device
(mouse) input. FDISK is provided for use during the initial installation of

Chapter 7. Boot Manager 89

OS/2 Version 2.0, before the Presentation Manager components are loaded,
and for occasions when it is not possible to load Presentation Manager or a
command line parameter-driven interface is required.

• FDISKPM operates on the Presentation Manager desktop and supports
pointer devices, but does not support command line parameters and options.

The normal expectation is that FDISKPM will be utilized for partition mainte­
nance, unless there is some reason that Presentation Manager cannot be
loaded.

An FDISK utility was supplied with OS/2 Version 1.3. However, its only function
was to completely erase any existing partition information and as such it was
only intended for use by the installation process, had no meaningful user inter­
face and was not documented. The primary difference between FDISKPM sup­
plied with OS/2 Version 1.3 and the FDISK/FDISKPM supplied with OS/2 Version
2.0 is the addition of a facility for the creation and management of multiple
primary partitions together with additional facilities for management of logical
drives, as well as support for managing multiple operating systems installed on
the logical drives.

7.2.1 Boot Manager Installation
Since the only way that a physical drive may be partitioned for Boot Manager is
to utilize OS/2 Version 2.0, it must be the first operating system installed.

Note ~~~~~~~~~~~~~~~~~~~~~~~~~---.

OS/2 Version 2.0 will not specifically prompt for the installation of Boot
Manager as part of the normal installation process. To ensure that Boot
Manager is installed, the user should elect not to accept the default disk par­
titioning when prompted by the installation procedure. The user should take
the option to modify the default partitioning if Boot Manager is required to be
installed.

Any disk partitioning required during installation is provided through the full­
screen FDISK utility. To ensure that Boot Manager support is installed, "Install
Boot Manager ... " must be chosen and remain startable. If users wish to install
an operating system on any one of the partitions available, they must make this
partition installable. The FDISK utility provides advisory warning messages to
remind users of this requirement.

Note that after installing OS/2 V1 .3 or DOS 5.0 on one of the primary partitions,
this partition will automatically become startable. To reactivate Boot Manager,
the user has to use the FDISK command in order to make Boot Manager
startable again.

7.2.2 FDISKPM Program

90 05/2 V2.0 Volume 1

The following description applies to the FDISKPM program. The facilities pro­
vided by the full-screen interface of the FDISK program are generally the same,
though they are accessed slightly differently. Since there are such strong simi­
larities between FDISK and FDISKPM, only the FDISKPM program will be
described in this section. The command line interface for FDISK is described in
7.2.3, "FDISK Program" on page 94.

FDISKPM is used to create or delete logical drives in primary or extended parti­
tions on a fixed disk. With FDISKPM, a user can use Boot Manager to set up
fixed disks on the system. The FDISKPM interface is shown in Figure 22 on
page 91 and Figure 23 on page 91.

;; Flxe<1 Disk Ulilily •
.Qptions Jjelp

Partition Information

Name Status Access Ale System Type MBytes

. _______ --------- _ ------· ~t;$.bll,' •• ___ • _. _ -·· __ .. ;~r:n.an!. _________ . J)OQH4.~11~GER _______ •• _____ J_ ··- I~
0512 2.0 Bootable C :Prlmmy HPFS 60
OR-DOS Bootable :Prlmmy FAT 10

Hone E :Logical HPFS 44

I~

Figure 22. FDISKPM Showing Disk One (of a Two Disk System)

~ Fixed Disk lJlility .m
.Qptions Jjelp

Partition Information

Name status Access Ale System Type MBytes

. 9~~-Q~--- __ •.. ______ ... 899~1~ .. _______ . _ P.:Pl:lr:nan!. _. _ . _ •.... JtJ>FS .. _______ • _____________ ~g ___ lti
Hone :PrULog Free Space 2
Hone F :Logical HPFS 10
Hone G :Logical HPFS 15

I~

Figure 23. FDISKPM Showing Disk Two (of a Two Disk System)

The FDISKPM window has five columns containing specific information about the
partitions that exist on the hard disks in the system. Each hard disk is repres­
ented by an icon at the top of the FDISKPM window. When a hard disk is
selected, its partition information is displayed in the window. Partitions are
either primary partitions or logical drives within an extended partition. Any free
space {space within the hard disk that is available for more partitions) is also
displayed in the window.

This information includes:

• Name: Displays the name that has been assigned to any primary partition or
logical drive to be displayed on the Boot Manager menu. This name is spec­
ified using the Add to Boot Manager menu choice and can be changed by
using the Change Partition Name choice.

• Status: Shows the partition status, which may be one of the following.

Installable: the partition is used as the target for installing another oper­
ating system.

Bootable: the partition is displayed on the Boot Manager menu when the
system is restarted.

Startable: the system will restarts directly to this partition. This option is
available for primary partitions only. Remember, one of the primary par­
titions must be set as startable for the Sjstem to restart successfully.

Chapter 7. Boot Manager 91

92 05/2 V2.0 Volume 1

• Access: specifies if a partition is accessible. The letter in the column indi­
cates that the partition is accessible. This column also indicates if the parti­
tion is a primary partition or a logical drive within the extended partition.

• File System Type: indicates the type of file system on the partition. Any par­
titions that have not been formatted will be displayed as unformatted. Any
area on the hard disk not assigned to a partition will be displayed as free
space.

• MBytes: indicates the size in megabytes of the partition or free space.

The user may select choices on the options pull-down to:

• Install the Boot Manager partition.
• Create a primary partition or logical drive.
• Add a partition to the Boot Manager menu.
• Change the partition name.
• Assign the accessibility of primary partitions.
• Specify startup values such as a default partition, startup selection time, or

mode for the Boot Manager menu.
• Remove a partition from the Boot Manager menu.
• Delete a primary partition or logical drive.
• Set a primary partition as installable.
• Specify a primary partition as being startable.
• Exit FDISKPM.

Note that a hard disk and partition must be selected before these operations can
be performed.

Setting a Partition Installable
The FDISKPM Set Installable menu option is used to set the
selected partition as the target for continuing the OS/2 installa­
tion, or as a target to install another operating system. When a
partition is set installable, the installable indicator will be dis­
played in the Status column.

Creating and Deleting a Partition
The FDISKPM Create menu option is used to create logical
drives in primary or extended partitions on the selected physical
drive. In addition, the user may do the following:

• Create multiple primary partitions (up to four for each phys­
ical drive).

• Place the partitions in relation to the beginning or end of
each free area on the physical drive.

• Assign extended partition space as each logical drive is
created. This provides flexibility for later assignment of free
space. For example, if free space exists between a primary
and extended partition, it may subsequently be allocated to
another primary partition or for expanding the extended par­
tition.

The FDISKPM Delete menu option is used to delete primary or
extended partitions on the selected physical drive.

Warning ------------------­

All data in such a partition is lost after saving changes on
exiting FDISK.

Making a partition Bootable
The Add to Boot Manager menu option is used to name the par­
tition and add it to the Boot Manager menu at startup. When
Bootable appears in the Status column, the partition will be dis­
played. To remove the partition so that it is not displayed on
the Boot Manager menu, select Remove from Boot Manager
menu.

Assign Primary Partition
The Assign x: partition option is used to specify the accessibility
of primary partitions. Because only one primary partition for
each hard disk can be active (accessible) at a time, other
primary partitions are effectively hidden (inaccessible). This
feature exists for primary partitions only. All logical drives are
accessible.

Making a partition Startable

Partition Names

Use Make startable to make a primary partition that you have
highlighted on the FDISKPM window the one that will be acti­
vated each time you start the system. To have Boot Manager
support active and have the Boot Manager menu displayed
when the system is started, the Boot Manager partition must be
set as startable. To deactivate Boot Manager support so that
the Boot Manager menu is not displayed, set another primary
partition as startable, that is, the partition that you want started
when the system is turned on. Only one primary partition is
startable at a time.

Partition names are important especially in the event of a hard­
ware reconfiguration such as adding other physical disks to the
system. The names assigned to partitions will not change and
still identify the same area on the disk, unlike the drive letters
which can change if your system is reconfigured. Names are up
to eight characters in length and are case sensitive. Use the
Change partition name to rename any bootable partitions.

Setting Startup Values
The FDISKPM Set startup values is used to specify the startup
values for the partitions on the system. The values are for the
following:

• A default partition to be started automatically without being
selected from the Boot Manager menu.

• A startup selection time allowing you to specify the amount
of time you want the menu to be displayed before the default
partition is started automatically.

• A mode for the menu allowing you to indicate how much
information about the partitions you want displayed on it.

Chapter 7. Boot Manager 93

7.2.3 FDISK Program

94 OS/2 V2.0 Volume 1

The full-screen version of FDISK is used during installation of the operating
system. It provides users with the same functions as the FDISKPM version. The
full-screen version looks and acts in much the same way as FDISKPM, but does
not support a mouse. The FDISK full-screen interface is shown in Figure 24.

:'···>Y/:f;t~~,f~£jJ:t:~~~j/6JJSA~i~j~~~iiS~lin~JitP:JJJlir~~·,~;,?··'·· 1. ·t;<

Figure 24. FD/SK Utility (in Full-Screen Mode)

In order to enable the initial installation environment where Presentation
Manager facilities are not available, the FDISK program provides a command
line interface with similar capabilities to those provided by the FDISKPM
program. When combined with the setboot command line utility, the FDISK
command line interface also allows modification of logical drive environments
and changes to Boot Manager values via batch files or remote command line
interfaces such as DCAF, for use in unattended environments.

The following syntax shows how to use the FDISK command:

<Drive:><path> FDISK parameter:value </option:value>

The PARAMETERS:VALUE specified in the FDISK command may be one of the
following:

/QUERY Displays a list of all partitions and free space on the hard disks
of the system. To display a list of all partitions and free space
on the hard disks of the system, type:
FDISK /QUERY

/CREATE:name Creates a primary partition or logical drive in an extended parti­
tion. You can specify an optional name for the created partition.
You must specify the type of partition being created by using the
/VTYPE:n option where n = 1 for a primary partition and 2 for a
logical drive in an extended partition. To create a logical drive
in an extended partition on disk 1 with the name OS2FAT, type:
FDISK /CREATE:OS2FAT /VTYPE:2 /DISK:1

/DELETE Deletes a logical drive or primary partition. This parameter
must be used with one or more options. You can use
/DELETE:all to delete all logical drives on a disk. If you use
/DELETE:all, however, you must specify the disk using the /DISK
option. To delete a logical drive with the name OS2FAT, type:
FDISK /DELETE /NAME:OS2FAT

/SETNAME:name
Specifies names for primary partitions or logical drives and
makes them bootable from the Boot Manager. If the name is
left blank, the boot name is removed and the partition will not
be bootable from the Boot Manager menu. To specify the name
DOS4.0 of a primary partition, type:
FDISK /SETNAME:DOS4.0

/SETACCESS Sets a primary DOS partition as accessible. Once a primary
DOS partition has been set as accessible, all other primary DOS
partitions on the same drive are inaccessible. If there are two
primary DOS partitions on a hard disk, specifying this parameter
with no options makes the previously inaccessible partition
accessible and changes the previously accessible partition to
inaccessible. To specify a primary DOS partition as accessible
type:
FDISK /SET ACCESS

/STARTABLE Specifies a partition as startable. To specify a partition as
startable, type:
FDISK /STARTABLE

/FILE:fllename Processes all FDISK commands in the specified file allowing the
batching of FDISK commands. You must have commas sepa­
rating the arguments of each command in the file and the com­
mands are processed just once. For example, the file MYFILE
contains the following commands:

/query
/create:OS2,/vtype:l,/disk:l,/name:01000030,/size:20
/startable,/name:OS2
/query,/name:OS2

The processing of these commands is as follows:

Command 1: displays a list of all partitions and unused
space on all hard disks.
Command 2: creates a primary partition on disk 1 with a
size of 20MB in the free space alias 01000030 and assigns it
a boot name of OS2.
Command 3: sets the partition named OS2 to be the
startable partition.
Command 4: displays the partition information of the parti­
tion named OS2. To process FDISK commands in the file
MYFILE, type:
FDISK /FILE:myfile

OPTIONS limit the actions of the FDISK command and parameters. The valid
options and their associated values are:

/NAME:name Indicates the name of a partition. A name can be up to eight
characters in length and is case-sensitive. The /NAME option
can be used with all FDISK parameters except /FILE.

Chapter 7. Boot Manager 95

/DISK:n

/FSTVPE:x

/START:m

/SIZE:m

NTYPE:n

96 OS/2 V2.0 Volume 1

Note: During a QUERY operation, a temporary name is
assigned to every partition and free space that does not have a
boot name assigned. This name is not set as the partition
name, but is only used as a temporary identifier for the user.
Because they will not have a visual representation of the FDISK
screen, these temporary names can be used in place of real
names for the NAME option. To delete a partition named dos,
type:
FDISK /DELETE /NAME:dos

Specifies the number of the hard disk that you want to work with
using the FDISK command and parameters. The /DISK option
can be used with all FDISK parameters except /FILE. To display
all partitions on drive 2, type:
FDISK /QUERY /DISK:2

Specifies the file system type of the partition. The type x =DOS,
FAT, IFS, Free, Hnn, or other. "Hnn" is the hex value (nn) of the
partition system ID value.

The /FSTYPE option can be used with all FDISK parameters
except /FILE and /SETACCESS. To display a partition with a FAT
file system, type:
FDISK /QUERY /FSTYPE:FAT

Specifies the partition starting location. Specify m =tor m =b,
where t =top of the partition and b =bottom of the partition. The
/ST ART option can be used with all FDISK parameters except
/FILE. To create a primary partition starting at the top of the
partition, type:
FDISK /CREATE /ST ART:t

Specifies the size of the partition where m is the size in MB.
The /SIZE option can be used with all FDISK parameters except
/FILE. To create a primary partition with a size of BMB, type:
FDISK /CREATE /SIZE:B

Specifies the type of the partition. The value of n can be as
follows:

0 Space is not usable
1 Primary partition (not shared)
2 Logical drive (shared in an extended partition)
3 Free space that can be used to create a primary or
extended partition.

The /VTYPE option can be used with all FDISK parameters
except /FILE, /SETACCESS, and /STARTABLE.
To display unusable space on a disk, type:
FDISK /QUERY /VTYPE:O
To specify a primary partition to be displayed, type:
FDISK /QUERY /VTYPE:1
To specify a logical drive in an extended partition to be dis­
played, type:
FDISK /QUERY /VTYPE:2
To display free space that can be used to create a primary or
extended partition, type:
FDISK /QUERY /VTYPE:3

/BOOTABLE:s Indicates the bootable status of partitions; s =O for partitions
that are not bootable; s = 1 for partitions that are bootable. The
/BOOTABLE option can be used with all FDISK parameters
except /FILE. To display all partitions that are bootable from the
Boot Manager menu, type:
FDISK /QUERY /BOOTABLE:1

/BOOTMGR Specifies an action for the Boot Manager partition. To create
the Boot Manager partition, type:
FDISK /CREATE /BOOTMGR

7 .3 SETBOOT Utility
The SETBOOT utility provides a command line interface which enables the user
to configure the parameters associated with the Boot Manager environment.

Invoking the SETBOOT utility is achieved using the following command:

<Drive:><path> SETBOOT parameter <:value>

where parameter:va/ue is one of the following:

/IBD:X Restarts the system from the specified logical drive, X, without going
through the Boot Manager menu. The parameter X is the drive letter
of a startable partition. If Boot Manager is not present then only drive
C can be specified. For example, to reboot the system immediately
from drive D without going through Boot Manager type:
SETBOOT /IBD:D

/T:x Sets the time-out value of the timer for the Boot Manager selection
menu. The specified value of x may be 0 to 999 or NO. A specified
value of nnn is the time in seconds that the Boot Manager selection
menu will remain displayed before automatically starting the default
logical drive. A specified value of 0 seconds bypasses the Boot
Manager selection menu entirely, booting the default system without
any intervention. When the time-out value is NO, the timer is disa­
bled, leaving the Boot Manager selection menu displayed until the
user makes a selection.

/M:m Sets the mode for the Boot Manager selection menu:

• m = n sets the mode to display only the boot names of the
logical drives marked bootable. This is the default mode.

• m = a (advanced mode) sets the mode to display additional infor­
mation such as physical drive, file system type, etc.

IQ Queries the current Boot Manager environment. Returns the default
volume boot names, time-out value, mode, and unattended operation
logical drive assignments.

/B Performs an shutdown and then reboots the system, booting to the
system set to the marked index value at the time of boot.

Note: This is not the complete system shutdown which can be per­
formed via the &wps's desktop context menu. All it does is basically
flushing all file system buffers and close all currently open files. PM
Applications will not receive any message, they will just be cut off,
where ever they were left.

Chapter 7. Boot Manager 97

/X:x This is an index which indicates the logical drive to Boot Manager
from which the system is to be started:

• A value of O sets Boot Manager to attended mode operation and
provides for a default system selection.

• A value of 1 to 3 puts Boot Manager in an unattended operation
mode, in which case all attended mode functions are bypassed,
including the selection menu. This is provided as a mechanism
that unattended operation can use to implement a fallback boot
sequence. For example, if an operating system fails to access a
program to set the index, the subsequent boot will attempt to start
the next fallback system (probably a more trusted system) and so
on.

Boot Manager will start the system from the logical drive corre­
sponding to the index and then, before exiting, will decrement the
value by 1 so long as the value is greater than 1. If the value is not
set by SETBOOT before the next boot, Boot Manager will start the
system from a different logical drive.

/N:name Sets the partition or logical drive specified by the boot name and its
corresponding index value as the operating system to be started. Up
to four pair-combinations can be given, one for each index value, Oto
3. A boot name is case-sensitive, and if it contains blanks, the
/N:name pair must be enclosed in quotation marks.

The following shows the values for N:

N = 0 assigns the specified boot name as the default operating
system.
N = 1 to 3 specifies the boot name to be started when the corre­
sponding index is chosen to start.

To specify the logical drive with the boot name MYSYSTEM as the
default operating system to be started type:
SETBOOT /O:MYSYSTEM

SETBOOT will provide a return code and the requested information. The infor­
mation is output to STDOUT and can be piped and redirected. Return codes are
0 for successful operation and 1 for unsuccessful operation.

7.4 Selecting an Operating System

98 OS/2 V2.0 Volume 1

The selection of the logical drive from which the system is to be started is per­
formed at IPL time. The user is presented with a panel containing a list of
selectable logical drives. The user may explicitly select a logical drive, or may
allow the selection timer to expire and have Boot Manager start the system
from the default logical drive without further intervention.

If the time-out value was set to zero using the SETBOOT utility or
FDISK/FDISKPM, the selection menu is circumvented and Boot Manager imme­
diately starts the system from the default logical drive.

If the time-out value is other than zero, the selection menu is displayed as
shown in Figure 25 on page 99.

If no default logical drive was specified, then the last system booted becomes
the default.

DR-DOS
OS/2 2.0
OS2 Devl

Boot Manager
Menu

No selection within 30 seconds, boots OS/2 2.0
Press Esc to disable Timer
Use t or l to select. Press Enter to Boot

Figure 25. Boot Manager Selection Menu

The up/down cursor keys are used to select a particular logical drive. By
default, the cursor is located at the current default logical drive. If more logical
drives are configured in a workstation environment than lines are available on
the screen to display them, a scroll bar will appear in the selection screen indi­
cating to the user whether more logical drives are available for display.

The selection menu displays the current time-out value, and the boot name of
the current default logical drive. In order to allow the user to suspend or resume
the timer while the selection menu is displayed, the Esc key may be used in
toggle mode. The current status of the timer is displayed (enabled/disabled) and
the Esc key will toggle a status switch.

The selection menu shown in Figure 25 is the standard mode normally seen at
power-on or IPL time. Only the boot names of selectable logical drivers are dis­
played; no additional information about the type of logical drive and physical
location is shown in order to keep the standard user interface simple and
straightforward.

However, in order to accommodate advanced users and system administrators
who wish to see more details about the available logical drives, an advanced
mode menu is available. This advanced mode menu can be activated via an
option in FDISK, FDISKPM or via the SETBOOT utility.

The advanced mode selection. menu shows not only the boot names of the
logical drives, but will also indicate the physical disk upon which the logical
drive resides, the type of partition (primary/extended), the file system for which
the logical drive was formatted, and the accessibility of the logical drive. The
advanced mode selection menu is shown in Figure 26 on page 100.

Chapter 7. Boot Manager 99

DR-DOS
OS/2 2.0
OS2 Devl

Disk l
Disk l
Disk 2

Boot Manager
Menu

Primary
Primary
Primary

(hidden)

No selection within 30 seconds, boots OS/2 2.0
Press Esc to disable Timer
Use t or l to select. Press Enter to Boot

Figure 26. Boot Manager Selection Menu - Advanced Mode

Note that the third column displays the partition type for a logical drive boot
name. Logical indicates that the drive resides in an extended partition.

The fifth column displays the accessibility of the logical drive. Hidden means the
system will not have access to this volume; however, if a hidden boot name is
selected as the logical drive from which to start the system, Boot Manager will
"unhide" it. Boot Manager will automatically hide any other primaries on that
physical drive, since only one primary partition may be active at any time.

Note: Only primary partitions can be marked as hidden, extended logical drives
(partitions) are always accessible.

7.5 Sharing Partitions between Operating Systems

100 OS/2 V2.0 Volume 1

Boot Manager allows for both primary and extended partitions on a single phys­
ical drive. Only one primary partition may be active at a time. However, the
extended partition will always be active, regardless of which primary partition is
active. Logical drives in an extended partition may therefore be accessed by
multiple operating systems started from primary partitions or from logical drives
in the extended partition. This access is dependent on the operating system
supporting the format of the extended partition.

Table 2 on page 101 illustrates some of the dependencies between operating
systems and extended partitions.

Table 2. Partition Format Accessibility

Format DOS 3.3 DOS 4.0 DOS 5.0 OS/2 AIX

FAT-16 Yes Yes Yes Yes Yes

BIG-FAT No Yes Yes Yes No

HPFS No No No Yes No

Note that it is not possible for an operating system loaded from a primary parti­
tion to access any other primary partition on that hardfile; only the logical drive
on the operating system's own primary partition and those on extended parti­
tions may be accessed.

Where it is desirable to have a common set of application or data files which
may be accessed by different operating systems, a workable strategy is to locate
only those files which are specific to the operating system on the appropriate
primary partition, while locating common application and data files on logical
drives in extended partitions. This implies that the primary partitions should be
created to be comfortably large enough to accommodate the desired configura­
tion of the operating system concerned, but no larger.

Since the amount of disk space required to configure any operating system to
meet particular needs will vary widely with those needs, readers should consult
the installation and configuration instructions for the operating system con­
cerned, in order to determine a reasonable partition size.

When setting up a complex set of operating systems and extended partitions,
readers should carefully consider the implications of logical drive letters that
each operating system will automatically assign to all logical drives visible to the
operating system. This especially applies to applications which reference other
applications or data located on different logical drives. The logical drive letters
may not be consistent between operating systems; for example, a logical parti­
tion formatted for HPFS will be completely invisible to DOS 3.3, but visible though
not accessible to DOS 4.0 (CSD UR31300). This may result in different logical
drive letters being assigned to other logical drives, depending upon which oper­
ating system is currently active in the machine, which in turn holds implications
for the configuration of applications and the design of batch files.

7 .6 AIX Considerations
It is possible to install AIX, OS/2 and DOS in different partitions on the same disk
and use Boot Manager to switch between the different operating systems. There
are some things, however, to be aware of:

1. When AIX installs it creates two partitions on the disk. The first partition
which is 1 MB in size contains the MBR for AIX. The second partition con­
tains several AIX minidisks. The AIX partitions cannot be created using
either the DOS or OS/2 FDISK programs, but are created by the AIX install
process.

2. The order that AIX, QS/2 or DOS are installed is not important. If installing
AIX first, remember to leave sufficient free space available in which to create
partitions for OS/2 or DOS. If installing OS/2 or DOS first, when running
FDISK, do not create partitions across the entire disk. Also only allocate the
Boot Manager partition and one other, thus leaving two available for AIX.

Chapter 7. Boot Manager 101

3. The OS/2 V2.0 FDISK and FDISKPM programs will recognize the AIX parti­
tions. Us.e FDISK or FDISKPM to make the smaller AIX partition bootable. If
AIX is installed second, it will be necessary to shutdown AIX and to boot
from the OS/2 install diskettes, escape out of the install process and run
FDISK from the full-screen command prompt to make Boot Manager startable
and the smaller AIX partition bootable.

4. It is possible to install AIX on the second disk of a two-disk system. However
AIX will still create a partition with its MBR on the first disk. This partition
should be marked startable. On the second disk it also creates a partition to
contain the MBR as well as the partition for the AIX minidisks.

7. 7 Operating System Restrictions

7.8 Summary

102 OS/2 V2.0 Volume 1

Several restrictions apply to the manner in which various versions of operating
systems may be installed under Boot Manager. These include:

• Only DOS Versions 3.2 and above are supported by Boot Manager.

• All supported versions of DOS must be installed on a primary partition on the
first drive and therefore, end up working on the C: drive only.

• DOS Versions 3.2 and 3.3 must be installed in a partition that falls wholly
within the first 32MB of a fixed disk.

• OS/2 Version 1.3 and earlier versions may only be installed on a primary
partition on the first drive and therefore, end up working on the C: drive only.

Notes:

1. An operating system may NOT store its own information in the Multi-Boot
Block or in the Master Boot Record on the physical drive. Any such informa­
tion must be held within the logical disks owned by that operating system.
Operating systems which do not obey this rule may not function correctly in
the Boot Manager environment, and will compromise disk integrity.

2. Other operating systems may leave their partition startable following installa­
tion. The user would have to use their FDISK program or boot the OS/2 V2.0
installation diskette to mark the Boot Manager partition as startable again to
enable the Boot Manager menu at startup. See also 7.2.1, "Boot Manager
Installation" on page 90.

Boot Manager provides the capability to install and run multiple operating
systems concurrently in the same machine. The user may select the desired
operating system at system power-on or at IPL-time, using a selection menu pro­
vided by Boot Manager.

Operating systems reside on logical drives in both primary and extended fixed
disk partitions. Partitions are created and manipulated using the FDISK,
FDISKPM, and SETBOOT utilities provided with OS/2 Version 2.0.

Operating systems may share applications and data files, provided that the disk
formats supported by each operating system are compatible. In order to be
shared, such files must reside on logical drives in extended fixed disk partitions,
or on physically separate disks.

Chapter 8. National Language Considerations

OS/2 Version 2.0 provides support for additional national languages over and
above those supported by OS/2 Version 1.3. The discussion in this chapter will
concentrate on the new languages supported, and will not cover the languages
that were already supported in OS/2 Version 1.3.

8.1 Single-Byte Languages

8.1.1 Iceland

New single-byte codepage support is added in OS/2 Version 2.0 for the following
countries:

• Iceland

• Latin (Group 2) countries:

Czechoslovakia
Hungary
Poland
Yugoslavia

• Turkey.

Czechoslovakia uses two common national languages: Czech and Slovak.
Support is provided for both these languages by providing two keyboard layouts:
a primary keyboard layout for Czech/Czech, and a secondary keyboard for
Czech/Slovak. This is similar to the method used to support countries such as
the United Kingdom and France where more than one keyboard layout is in
common use.

OS/2 Version 2.0 provides the following support for Iceland:

• Country code: 354
• Keyboard layout: 197
• Primary codepage: 850
• Secondary codepage: 861.

8.1.2 Czechoslovakia
OS/2 Version 2.0 provides the following support for Czechoslovakia:

• Country code: 42
• Keyboard layout: 243 (Czech) or 245 (Slovak)
• Primary codepage: 852
• Secondary codepage: 850.

8.1.3 Hungary
OS/2 Version 2.0 provides the following support for Hungary:

• Country code: 36
• Keyboard layout: 208
• Primary codepage: 852
• Secondary codepage: 850.

© copyright 1 BM corp. 1992 103

8.1.4 Poland
OS/2 Version 2.0 provides the following support for Poland:

• Country code: 48
• Keyboard layout: 214
• · Primary codepage: 852
• Secondary codepage: 850.

8.1.5 Yugoslavia
OS/2 Version 2.0 provides the following support for Yugoslavia:

• Country code: 38
• Keyboard layout: 234
• Primary codepage: 852
• Secondary codepage: 850.

8.1.6 Turkey
OS/2 Version 2.0 provides the following support for Turkey:

• Country code: 90
• Keyboard layout: 179
• Primary codepage: 857
• Secondary codepage: 850.

8.2 Double-Byte Languages
OS/2 Version 2.0 provides additional support for double-byte character sets, with
four new SAA codepages supported. These are:

• 942 - Japanese
• 944 - Korean
• 946 - People's Republic of China
• 948 - Taiwanese.

This support is in addition to the previously supported codepages 932, 934, 936,
and 938.

Double-byte codepages may only be used on hardware which supports the use
of double-byte character sets, such as the IBM PS/55 family, and with the Asian
version of OS/2.

8.3 Bidirectional Languages

104 05/2 V2.0 Volume 1

Support is provided in OS/2 Version 2.0 for national languages such as Hebrew
and Arabic, which require video display output and printer output to be pre­
sented for reading from left-to-right or right-to-left, and for the nesting of phrases
in either direction. This bidirectional support is used in conjunction with the
Hebrew and Arabic codepages, and uses a bidirectional video device handler
(VDH) and a bidirectional printer monitor. This VDH is chained to the device­
specific VDH and handles all the bidirectional aspects of the video output.

This support is only available for full-screen screen groups.

The bidirectional language support provided in OS/2 Version 2.0 will support
those countries with country codes 785 (Arabic) and 972 (Hebrew), and which use

8.3.1 Installation

either codepages 864 (Arabic) or 862 (Hebrew) as the primary codepage. These
countries may also use either codepage 437 or 850 as a secondary codepage.

A number of function calls are provided to allow querying and setting of
bidirectional screen group attributes and the manipulation of character strings
from within applications. This enables the development of bidirectional aware
applications.

The OS/2 Version 2.0 installation program allows installation of bidirectional
support for Arabic and Hebrew countries in a similar manner to other supported
countries. The following configuration commands are affected:

• COUNTRY
• CODEPAGE
• DEVINFO
• RUN
• SET.

Note that the bidirectional support will not become active at installation time; it
requires an IPL of the system in order to load the correct drivers and the device
monitors.

8.3.1.1 Arabic
The following commands are used in CONFIG.SYS to support those countries
using the Arabic language:

COUNTRY=785,C:\OS2\SYSTEM\COUNTRY.SYS
CODEPAGE=864,437
DEVINFO=KBD,AR,C:\OS2\KEYBOARD.DCP
RUN=C:\052\SYSTEM\BDPRTM.EXE

For each SET VIO_xxx=DEVICE(BVHxxx), the BDBVH driver is appended after
the name of the device-specific video handler. For example when installing
support for a VGA display, the SET=VIO_VGA line will be:

SET VIO_VGA=DEVICE(BVHVGA,BDBVH)

Please refer to 0512 Version 2.0 - Volume 5: Print Subsystem, GG24-3775 for
details of using the DEVINFO statement to prepare a printer which supports the
Arabic codepage, to use the codepage and any specific fonts associated with the
codepage.

8.3.1.2 Hebrew
The following commands are used in CONFIG.SYS to support those countries
using the Hebrew language:

COUNTRY=972,C:\OS2\SYSTEM\COUNTRY.SYS
CODEPAGE=862,437 (or CODEPAGE=862,850)
RUN=C:\052\SYSTEM\BDPRTM.EXE

For each SET VIO_xxx=DEVICE(BVHxxx), the BDBVH driver is appended after
the name of the device specific video handler. For example when installing
support for a VGA display, the SET=VIO_VGA line will be:

SET VIO_VGA=DEVICE(BVHVGA,BDBVH)

Please refer to OS/2 Version 2.0 - Volur.1e 5: Print Subsystem, GG24-3775 for
details of using the DEVINFO statement to prepare a printer which supports the

Chapter 8. National Language Considerations 105

Hebrew codepage, to use the codepage and any specific fonts associated with
the codepage.

8.3.2 Programming Interface
The following 16-bit functions are provided for application developers to use the
bidirectional language support provided in OS/2 Version 2.0:

• NlsQueryBidiAtt() returns the current bidirectional attributes that are in effect
for the current screen group.

• NlsSetBidiAtt() sets specific values in the bidirectional control blocks (per
screen group).

• NlsShapeBidiString() shapes or reshapes an Arabic string of specified length.

• NlsEditshape() reshapes an Arabic character (typically in an input or editing
sequence) based on the two preceding characters, or reshapes the current
and surrounding characters after an editing function has been carried out.

• NlslnverseString() inverts the sequence of characters in a specific string.

• NlsConvertBidiNumerics() converts numerics in a string to Arabic character
codes.

• NlsConvertBidiString() converts a Sidi string conforming to a certain set of
bidirectional attributes, to a form which conforms to a different C!et of
bidirectional attributes.

• NlsSetBidiPrint() associates a given set of Sidi attributes with a particular
print file.

8.3.3 Bidirectional User Interface

106 OS/2 V2.0 Volume 1

The following keyboard key combinations are supported in a full-screen screen
group in a bidirectional support enabled system:

• National-Language Layer (Alt+ Rig ht Shift) switches the keyboard to its
national language mode. Typed keys produce NL characters.

• Latin Layer (Alt+ Left Shift) switches the keyboard to its Latin language
mode. Typed keys produce Latin characters.

• Screen Reverse (Alt+Newline) switches the orientation of the screen. Screen
maybe either in Left-to-Right or Right-to-Left orientation.

• Field Reverse (Alt+ Numlock) temporarily switches the direction of the
cursor within a line or field.

• PUSH (Shift+ NumLock) temporarily switches the direction of the cursor
within a line or field. Characters are PUSHed (as in a pocket calculator) in
the direction which is opposite to the screen orientation.

• End Push (Shift+NumPad /)ends PUSH mode.

• AutoPush (Alt+ NumPad /) Toggle key that enables automatic activation and
deactivation of PUSH mode, based on the keys that are typed on the key­
board.

• Bidi Status (Alt+ScrollLock) activates a pop-up window that displays the
bidirectional settings for the current screen group. The user is able to
change these settings by manipulating fields in the pop-up window.

The following are Arabic-specific keyboard functions.

ITSC Technical Bulletin Evaluation

Technical Bulletin Title:

Technical Bulletin Form Number:

This is an evaluation form to assess the quality of ITSC publications. Your feedback will help maintain the
high quality of ITSC standards. Please fill out this questionnaire and send it to the address on the back of
this page. No postage stamp is required if mailed in the U.S. Elsewhere, you may choose to have your
IBM Marketing Representative forward your reply to the address listed on the reverse side of this form.

Date publication was ordered (MM/DD/YY) __ / __ / __

Date publication was received (MM/DD/YY) __ / __ / __

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Technical Bulletin organization Grammar/punctuation/spelling
Accuracy of the information Ease of reading and understanding
Relevance of the information Ease of finding information
Completeness of the information Lack of redundant information
Value of illustrations Overall satisfaction

Please answer the following questions:

a) Was the level of detail of the information adequate?

b) Did you find information duplicated that was available in other
IBM publications?

If yes, please name the publication:

c) Was the bulletin published in time for your needs?

d) Did this bulletin meet your needs?

If no, please explain:

Comments/Suggestions:

Thank you for your feedback.

Your name, company name, and address (optional):

Yes __ No __

Yes __ No __

Yes __ No __

Yes __ No __

ITSC Technical Bulletin Evaluation Form

, ••• IH 1.,. Pl 1111 11 Ill Sllpl1

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:
IBM International Technical Support Center
Department H52, Building 930
P.O. Box 950
Poughkeepsie, New York 12602
U.S.A.

A TfN: Quality Coordinator

,, ..

--------- ----- - -- - ---- - ------------·-®

,, ,,,.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

,. ..
""tJ
~
z
-f
m
0

z
-f
:::c
m
c
i:n
)>

• AutoShape/Base (Alt+ NumPad 4) toggles the keyboard between automat-
ically (context dependent) shaped characters and base shapes.

• Shape Isolated (Alt+NumPad 2) typed characters are in isolated shape.

• Shape Initial (Alt+ NumPad 1) typed characters are in initial shape.

• Shape Middle (Alt+ NumPad 7) typed characters are in middle shape.

• Shape Final (Alt+ Num Pad 8) typed characters are in final shape.

8.4 Message Files
Previous .versions of OS/2 supported only a single codepage for message files
used by the system and by applications within the system. This created a
problem where a process used a codepage other than the system's primary
codepage, since messages appeared using the primary codepage rather than
the codepage specific to that process. OS/2 Version 2.0 resolves this problem by
allowing multiple codepages in a single message file, and allowing a message to
be retrieved by a process using the codepage currently used by that process.
This level of support has resulted in changes in the following areas:

• The message file structure is modified to include codepage and language
identification.

• The MKMSGF utility is enhanced to create multiple codepage message files.

• The MSGBIND utility is enhanced to allow the binding of messages for mul­
tiple codepages to a single application program.

• The DosGetMessage() function call in MSG.DLL is enhanced to retrieve mes­
sages based on the current codepage of a process.

• A new DosQueryMessageCp() function is added to MSG.DLL to retrieve the
list of codepage and language identifiers present in the application's
message file.

Using this support, an application may query the current codepage for its parent
process using the DosQueryCp() function, ensure that codepage is supported by
the application's message file by issuing a DosQueryMessageCp() call, and then
issue DosGetMessage() calls specifying the appropriate codepage for the
message to be retrieved. For most applications, it is recommended that the
multinational codepage 850 be used where support for multiple national lan­
guages is required.

8.5 Information Presentation Facility
The following table shows the language files used by the Information Presenta­
tion Facility (IPF), in order to provide national language support.

Chapter 8. National Language Considerations 107

108 OS/2 V2.0 Volume 1

Table 3. /PF NLS Language Files

ID Language NLS Fiie

CHT Chinese IPFCHT.NLS

DAN Danish IPFDAN.NLS

DEU German IPFDEU.NLS

ENG English UK IPFENG.NLS

ENU English US IPFENU.NLS

ESP Spanish IPFESP.NLS

FIN Finnish IPFFIN.NLS

FRA French IPFFRA.NLS

FRC Canadian French IPFFRC.NLS

ITA Italian IPFITA.NLS

JPN Japanese IPFJPN.NLS

KOR Korean IPFKOR.NLS

NLD Dutch IPFNLD.NLS

NOR Norwegian IPFNOR.NLS

PTG Portuguese IPFPTG.NLS

SVE Swedish IPFSVE.NLS

UNO User Defined IPFUND.NLS

These files are installed as part of the IBM Developer's Toolkit for 0512 2.0, and
are used during execution of the IPF compiler. The compiler requires a symbol
file APSYMBOL.APS to be available. When using DBCS languages, the default
symbol file must be overwritten with a symbol file appropriate for the language
being used. See IBM OS/2 Version 2.0 Information Presentation Reference for
details.

8.6 Supported Countries
The supported countries and codepages are shown in Table 4.

Table 4. NLS Country Codes and Codepages

Country Country Code Codepages Supported
(primary/secondary)

Arabic 785 864 I 437 or 850

Asian English 099 437 I 850

Australia 061 437 I 850

Belgium 032 437 / 850

Canadian English 001 437 / 850

Canadian French 002 863 I 850

Czechoslovakia 042 852 / 850

Denmark 045 8651850

Finland 358 437 / 850

France 033 437 / 850

Germany 049 437 1850

Hebrew 972 862 I 437 or 850

Hungary 036 852 / 850

Iceland 354 850 / 861

Italy 039 437 / 850

Japan 081 932 or 942 I 437 or 850

Korea 082 934 or 944 / 437 or 850

Latin America 003 437 / 850

Netherlands 031 437 / 850

Norway 047 865 / 850

People's Republic of 086 936 or 946 / 437 or 850
China

Poland 048 852 / 850

Portugal 351 8601850

Spain 034 437 / 850

Sweden 046 437 / 850

Switzerland 041 437 / 850

Taiwan (Traditional 088 938 or 948 I 437 or 850
Chinese)

Turkey 090 857 1850

United Kingdom 044 437 / 850

United States 001 437 / 850

Yugoslavia 038 852 / 850

Chapter 8. National Language Considerations 109

8.7 Summary

110 OS/2 V2.0 Volume 1

OS/2 Version 2.0 has national language support for twenty-two languages:

• Arabic
• Canadian French
• Czech (Czech)
• Czech (Slovak)
• Danish
• Dutch
• Finnish
• French
• German
• Hebrew
• Hungarian
• Icelandic
• Italian
• Norwegian
• Polish
• Portuguese
• Spanish
• Swedish
• Turkish
• United Kingdom English
• United States/Universal English
• Yugoslavian.

OS/2 Version 2.0 provides support for all countries supported by OS/2 Version
1.3, with additional single-byte and double-byte national languages supported.
Where a number of the newly supported countries use more than one common
language, these languages are supported by OS/2 Version 2.0 as part of the
national language support for that country.

OS/2 Version 2.0 provides support for message files which use multiple
codepages. This allows an application to select messages from the file using
the current codepage for the application's parent process, thereby enabling
more comprehensive national language support by applications.

OS/2 Version 2.0 also provides support for bidirectional languages such as
Arabic and Hebrew, in conjunction with the national language codepages for
these languages, and keyboard and printer monitors implemented by the oper­
ating system. In addition, OS/2 Version 2.0 provides enabling support for those
countries using bidirectional alphabets such as Arabic and Hebrew.

Appendix A. Intel 80386 Architecture

The Intel 80386 is a powerful 32-blt microprocessor and is the first hardware plat­
form on which OS/2 Version 2.0 has been implemented. The 80386 incorporates
multitasking support, sophisticated memory management, pipelined architecture,
address translation caching, and a high-speed bus interface, all combined within
the processor chip. While the 80386 represents a significant improvement over
previous generations of Intel microprocessors, it retains software compatibility
with older 16-bit microprocessors such as the 8086 and 80286 families.

The capacity of the 80386 processor is significant. Some figures are presented
below, in comparison with 80286 processors:

• 4, 5, or 6 million instructions per second (corresponding to clock speeds of
16, 20, and 25 MHz).

• 4 gigabyte physical address space, compared with the maximum of 16 mega­
bytes available on the 80286.

Note: The 80386SX is an exception as it still is limited to a maximum of
16MB of physical memory. Internally the 80386SX is a full 32-bit processor
but externally it has only a 16-bit data bus and a 24-bit address bus.

• 64 terabyte virtual address space, compared with the 1 gigabyte available on
the 80286.

• Ability to handle memory objects from 1 byte to 4 gigabytes in size. com­
pared to segments of 16 bytes to 64 kilobytes on the 80286.

• Paged memory management using 4 kilobyte pages, compared to the 80286
which offered only segmented memory management.

This chapter provides an overview of the 80386 processor architecture. in order
to serve as a base for understanding the changes made in OS/2 Version 2.0.
More detailed information about the 80386 can be found in:

• Intel 80386 Hardware Reference Manual (ISBN 1-55512-069-5)

• Intel 80386SX Hardware Reference Manual (ISBN 1-55512-105-5)

• Intel 386 DX Programmer's Guide (ISBN 1-55512-082-2)

• IBM PS/2 Model 80 Technical Reference (IBM P/N 84X1508).

A.1 Physical Characteristics
The 80386 processor consists of six dedicated units:

• Bus Interface Unit
• Code Prefetch Unit
• Instruction Decode Unit
• Execution Un it
• Segmentation Unit
• Paging Unit.

These individual units are connected by 32-bit buses and operate in parallel to
provide a six-stage pipelined execution of instructions. This implies that up to
six different instructions may be held concurrently within the chip, at different
stages of execution. To further improve performance, the 80386 uses on-chip

©Copyright IBM Corp. 1992 111

112 OS/2 V2.0 Volume 1

caching and implements sophisticated memory management and bit manipu­
lation (such as a 64-bit barrel shifter) in hardware.

The 80386 chip contains eight 32-bit general registers. To provide compatibility
with the 8086 and 80286 processors, the 80386 provides the capability to use the
lower-order 16 bits of these registers to represent the 16-bit registers used in
these preceding processors. This is illustrated in Figure 27.

31 1615 8 7 0 15 0 31

Status Register

111111•111,
New in the 386

i11~\llll'
Segment Register

General Register

Figure 27. 80386 General, Segment, and Status Registers

Programs running m virtual 8086 mode may utilize the full register set of the
80386 (all 32-bit registers including the new FS, GS, debug, control, and test reg­
isters). The programs can also use instructions with 32-bit operands by over­
riding the operand size by including an operand size prefix on the instruction.

The 80386 a1so provides six 16-bit segment registers, which are used to contain
segment selectors, thus providing support for the same segmented memory
model used in the 80286 processor. Note that the FS and GS segment registers
are new in the 80386.

The instruction pointer (EIP) register and the flags (EFLAGS) register are both
32-bit registers.

Applications written for the 80286 run unmodified on the 80386. This is because
the 80286 instructions, addresses, limits, segment types, etc., are a subset of
those available in 80386, and run in 16-bit mode automatically. The 80386
handles this very simply; if the upper word (16 bits) of a memory reference is
zero, then that reference must be an 80286 reference.

The registers described above are available to application programmers, either
directly using assembly language or indirectly through the use of higher-level
programming languages. The 80386 processor provides a number of additional
registers which are available for use by the operating system. These registers
are protected and are not accessible by application programs:

• The 80386 provides. four registers, which contain pointers to data structures
used to implement the segmented memory model:

GOTR (global descriptor table register)
LOTR (local descriptor table register)
IDTR (interrupt descriptor table register)
TR (task register).

• Four control registers (CRO to CR3) are used to hold pointers to data struc­
tures used by the paged memory model and for status information. These
registers are new in the 80386 processor, since previous processors did not
support the paged memory model.

• Eight debug registers (ORO to OR7) are provided to aid in real-time system
and application debugging. These registers are also new in the 80386.

• Two test registers (TR6 and TR7) are provided to allow for verification of the
integrity of the translation lookaside buffer hardware used by the processor's
paging subsystem.

A.2 Memory Addressing

A.2.1 Real Mode

The 80386 processor, like its predecessor the 80286, can operate in two
addressing modes: real mode or protected mode. The memory addressing
schemes used in each of these modes are described in the following sections.

When the 80386 is powered up or re-initialized via a hardware reset, the
processor is set into real mode. In real mode, the 80386 effectively operates as
a 16-bit processor. While in real mode the 80386 is emulating an 8086 processor.
Program addresses correspond directly to physical memory addresses. Memory
is addressed using the segmented memory model only (paging is not supported),
and the system's physical address space is limited to 1MB of real memory.
Virtual memory is not supported in real mode.

While running in real mode, the Intel 80386 does not implement any memory pro­
tection scheme. Real mode is not suitable for running multiple applications con­
currently. When more than one program is loaded at a time, there is the
possibility of one program accessing another program's memory. Also there is
no protection for the operating system code, and application programs can over­
write operating system code and data.

Segment registers are used to supply the base address for each type of memory
segment (OS - data segment, CS - code segment, SS - stack segment and ES -
extra segment). Figure 28 on page 114 shows how a segment is addressed in
real mode.

Appendix A. Intel 80386 Architecture 113

Real Address Mode

Segme11t
Base
Address
20-bit

Si:e
16Byll!s
to UK Bytes

Figure 28. Real Mode Addressing

JM·.--------.-...

I-Megabyte
Physical
Address Space

0 ..._ ______ .,._ - . - - . - - -

Each memory reference consists of a 16-bit segment address and a 16-bit offset.
The processor automatically adds four binary zeros to the segment selector
value (equivalent to multiplying by 16) to obtain a segment base address in
memory. Thus, a segment may start on any 16-byte boundary within the 1MB
physical address space.

The required memory location within the segment is determined by adding the
offset to the segment base address. Since the offset is 16 bits in length, the
maximum offset (and therefore the maximum size of a segment) is 64KB.

A.2.2 Protected Mode (Segmented Memory Model)

114 OS/2 V2.0Volume1

When the 80386 is switched to protected mode by a software command, the full
32-bit capabilities of the processor are enabled, and the system's physical
address space is increased to 4GB. Since virtual memory support is enabled in
protected mode, the virtual address space visible to an application increases to
a theoretical maximum of 64 terabytes.

In OS/2 Version 2.0, the process address space is limited to 512MB in order
to reserve memory for operating system use and to retain full compatibility
with applications written for previous versions of OS/2, which used 16-bit
addressing.

Each process occupies a separate logical address space, and the 80386 provides
full memory protection between the address spaces of different processes,
thereby preventing an application from inadvertently accessing and/or corrupting
memory used by another application. Note, however, that under OS/2 Version
2.0, multiple threads may be created within a single process, and dispatched
independently by the operating system. These threads share a common address
space, and it is therefore the responsibility of the application developer to
ensure correct behavior of and synchronization between multiple threads within
a single process.

In protected mode, the 16-bit segment registers are used in conjunction with a
32-bit offset to give a 48-bit selector:offset pointer. The segment registers no

longer contain the segment base address; rather, they contain an index into a
descriptor table. The entries in the descriptor table each point to the start of a
segment in physical memory.

Of the 16 bits which make up the segment selector, two bits are used to specify
the privilege level of the segment, and one bit is used to select between the
global descriptor table (GOT) and a local descriptor table (LDT). The GOT is
used by the operating system or privileged software to maintain control over all
segments within the system. A unique LDT is maintained for each process and
used to control only the memory segments used by that process. In this way,
each process is prevented from accessing the memory used by another process.
The remaining 13 bits are used as the index into the appropriate descriptor
table. A logical address which consists of a selector and offset is converted into
a 32-bit linear address by extracting the segment base address from the
descriptor table by using the selector as the index, then adding the offset to the
base address. With paging disabled, the linear address equates the physical
memory address. This address translation operation is shown in Figure 29. The
virtual address space, which can consist of up to 16,383 segments of 4GB each,
is thus mapped to the physical 4GB address space. The descriptor also contains
access information for the segment along with the segment size. The access
information and segment size is used by the processor to implement memory
protection.

15 tJ

Selector

Descriptor
Table Entry

0

Offset

Figure 29. Protected Mode Addressing - without Paging

The maximum allowable value for the offset, and thus the maximum size of a
segment, is defined by two things. Each entry in a descriptor table contains a
20-bit limit field. These 20 bits allow a maximum segment size of 1MB, using the
byte as the unit of size.

However, the descriptor table entry also contains a granularity bit, which speci­
fies that either the byte or the page may be used as the unit of size in the limit
field. When using page granularity, the 20 bits in the limit field represent a mul­
tiple of 4KB. allowing a segment size of 4KB to 4GB.

Appendix A. Intel 80386 Architecture 115

A.2.3 Protected Mode (Flat Memory Model)

A.3 Paging

116 05/2 V2.0 Volume 1

The 80386 is able to address up to 4GB in a single segment. This is a large
address space. It may, therefore, be desirable not to use the segmented
memory model, but simply to map the entire system memory as a single linear
address range. While the 80386 does not have a mode bit for disabling segmen­
tation, the same effect can be achieved by mapping the stack, code, and data
spaces to the same range of linear addresses. When this is done, the 32-bit
offsets used by 80386 memory references can cover the entire linear address
space.

OS/2 Version 2.0 uses this technique to implement a flat addressing model. The
operating system internally creates a single code segment and a single data
segment, with the base address of each segment selector set to zero, and a
segment size of 4GB. This segment selector is loaded into the CS, OS, ES, FS,
GS, and SS registers; hence these registers all point to the same memory range.
The selectors are allocated within the GOT. Offsets within the segment are actu­
ally offsets within the 4GB global address space, and are therefore equivalent to
linear memory addresses.

The advantage of using such a technique is that it greatly simplifies memory
management within an application, since the application developer no longer
need be concerned with the internal implementation of data structures as seg­
ments with a defined maximum size. The use of a flat memory model also facili­
tates migration of the operating system and application code to other hardware
platforms, since the code is not explicitly designed around the segmented
memory model. Application performance is also improved since there is no
longer the need for continually changing the contents of segment registers. All
address references are near references as with a 32-bit offset, you can access
the entire address space.

In addition to the segmented memory management offered on the earlier 80286
processors, the 80386 provides a paged memory model. This is an optional func­
tion of the 80386, and there are no direct performance implications of an oper­
ating system choosing not to use paged memory. However, the paged memory
model provides significant performance benefits when running large applications
which make extensive use of virtual memory.

Under previous versions of OS/2, the smallest unit of memory (for memory man­
agement purposes) was the segment, since the operating system was designed
to execute on the 80286 processor and use the segmented memory model. With
the 80286, segments may vary in size between 16 bytes and 64KB; there is there­
fore a danger of having a large amount of free memory which is fragmented into
small, discontiguous units.

Previous versions of OS/2 managed this by moving segments within real storage
to create a larger free space, and by swapping unused segments to disk until
they are required. This entailed a high degree of overhead for the operating
system. With an 80386 processor, however, segments may be up to 4GB in size,
and the overhead could potentially result in an unacceptable performance
impact, particularly for applications with very large segments. Also there is the
problem of having sufficient physical memory to load a complete segment, when
the segment is very large.

In order to avoid this situation, the 80386 processor provides a paged memory
model, implemented in hardware through a dedicated paging unit included on
the processor chip. A page is a 4KB unit of contiguous memory, and replaces
the segment as the unit of granularity for memory management, including swap­
ping to and from disk. Note that paging is available in protected mode, in con­
junction with both the segmented and flat memory models.

Using the paged memory model, an application makes a memory reference in
the normal way, using either the segmented memory model or the flat memory
model. The segmentation unit in the processor automatically resolves the refer­
ence into a 32-bit linear address. However, this linear address does not repre­
sent a physical address, but is made up as follows:

• The high-order 10 bits of the field are used as an index into a page directory
table. The entry in this table in turn refers to the base address of a page
table.

• The next 10 bits of the field are used as an index into the page table referred
to by the page directory entry. The entry in the page table provides the
physical base address of a 4KB page.

• The lower-order 12 bits of the field are used as an offset within the page
referred to by the page table entry.

OS/2 Version 2.0 maintains a single page directory for the entire system, but a
separate set of page directory entries for each process present in the system.
The physical address of the page directory is held in the CR3 control register.
This is known as the page directory base register (PDBR) in OS/2 Version 2.0.
When a task switch takes place, the page directory entries, for the process being
scheduled, are copied into the page directory.

31 zz 12 0

Linear Address DIR PAGE OFFSET

Control

Page
Directory

Register Dir

Eh;
0

..._.E_n_try __

Page
Table

' Pb Tf)I" .

·.Entry• o---.....
Figure 30. Protected Mode Addressing - with Paging

Page
FNme

Both the page directory and page tables contain 32-bit page specifiers. The
page directory and page tables are themselves contained within single pages,
and may therefore contain a maximum of 1024 entries. Each page directory can
hence access up to 4GB of storage, which is the maximum physical address
space of the 80386.

Pages may be shared between processes by defining them in the page tables of
more than one process. Note that this is done at the page table level rather
than the page directory level, in order to share only tl"e individual pages
required.

Appendix A. Intel 80386 Architecture 117

In order to further reduce the overhead involved in looking up page references,
the 80386 also provides a hardware-based address caching mechanism for
paging information. This is known as the translation lookaside buffer (TLB). The
TLB contains the physical addresses for the 32 most recently used pages, and
therefore allows very fast access to these pages since it is no longer necessary
to read entries from the page directory and a page table, which are held in
system memory. Use of the TLB is handled entirely within the paging unit, and
is not visible to software. The operating system must, however, ensure that the
buffer is flushed whenever the PDBR is updated or an entry in either the page
directory or a page table is changed. This ensures that the TLB contents are
kept in step with the operating system maintained tables.

A.4 Task Switching

118 05/2 V2.0 Volume 1

A significant function of the 80386 processor is its ability to support a multi­
tasking environment. While much of the multitasking support in the 80386 is
similar to that provided in the previous 80286 family, multitasking will be dis­
cussed here for those who may not be familiar with its implementation.

In a multitasking system, when one task is suspended and control is passed to
another, the processor. state must be stored so that when the suspended task
regains control, it may resume normal operation where it left off.

The 80386 processor architecture defines a special type of memory structure
known as a Task State Segment (TSS). The processor uses a specific fixed
format to store task-related control information in the TSS, in order to provide
high-performance task-switching operations with complete isolation between
tasks. A separate TSS is maintained for each task in the system. Each TSS
contains:

• General registers (EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI)

• Segment registers (ES, CS, SS, OS, FS, and GS)

• Flags register (EFLAGS)

• Instruction pointer (EIP)

• Selector for the TSS of the previous task

• Selector for the task's LDT (static)

• Logical addresses of the stacks for privilege levels 0, 1, and 2

• The T-bit (debug trap bit)

• Base address for the 110 permission bit map.

A special segment descriptor is used for each TSS, and appears only in the sys­
tem's Global Descriptor Table (GOT), since TSSs are not available to applica­
tions. The Task Register always contains a pointer to the TSS for the current
task.

Task switching may occur as the result of either an interrupt or of executing an
instruction that explicitly transfers control. A task switch may be achieved in one
of four ways:

• The current task executes a JMP or CALL to a TSS descriptor

• The current task executes a JMP or CALL to a task gate (a special type of
segment descriptor)

A.5 Protection

• An interrupt or exception indexes a task gate in the IDT (Interrupt Descriptor
Table)

• The current task executes an IRET instruction with the NT (next task) flag set.
The selector for the previous task is always stored in the current TSS, thus
providing the means to return control to the previous task.

During the task switch operation, the processor saves the contents of the current
registers in the TSS of the current task. The selector of the next TSS is then
loaded into the Task Register. This selector references an entry in the GOT,
which contains the physical address of the TSS. The values in the TSS are then
loaded into the processor's registers, and control information is loaded into the
segment registers from the GOT and the process's LDT. The processor is then
ready to continue execution of the new task.

To create a new task, the operating system initializes a TSS to the appropriate
initial values. The operating system then determines when to start the task, and
accomplishes this by simply switching from the current task to the new one.

OS/2 V2.0 only makes minimal use of the TSS mechanism. The use of the flat
memory model and the way in which OS/2 V2.0 implements paging makes a
large part of the data stored in the TSS redundant. Consequently OS/2 V2.0
implements its own task switching model which optimizes switches between
threads in the same or different processes. Also allocating a TSS for each
thread in the system would use a large amount of storage. OS/2 V2.0 uses a
single TSS for effecting transitions between the different privilege levels, at
which tasks present in the system run. Privilege levels are described in the
A.5.3, "Privilege Levels" on page 120.

The 80386 processor implements five different types of protection for tasks exe­
cuting within the system. These are:

• Type checking

• Limit checking

• Privilege levels

• Restriction of procedure entry points

• Restriction of instruction set.

Each instruction and memory reference is checked by the hardware to ensure
compliance with the protection rules prior to execution. For memory references,
checking is performed during the address translation process, and is applied to
both segmented and paged memory models. Protection parameters are stored
in the segment descriptors or in the Page Directory and Page Table entries.

A.5.1 Type Checking
With each descriptor, there is a type field which is used to distinguish between
the different descriptor formats. This field also specifies the intended use of a
segment. For example, the allowable types for data segments are:

• Read-Only
• Read/Write

and for code segments:

Appendix A. Intel 80386 Architecture 119

• Execute-Only
• Execute/Read.

The type field, therefore, ensures that segments are only used in ways for which
they are intended. For example:

• The code segment (CS) register may only be loaded with the selector of an
executable segment.

• Selectors of executable segments that are not defined as readable cannot be
loaded into a data segment (OS, ES, FS, and GS) registers.

• No instruction may write into an executable segment.

• No instruction may write into a data segment unless that segment is defined
as Read/Write.

• No instruction may read an executable segment unless that segment is
defined as Execute/Read.

So far this discussion applies to segment level checking. When paging is
enabled, there is also checking done at the page level. Pages may be of two
types:

1. Read-only access

2. Read/write access.

Segment protection is evaluated first, then page protection is checked. It is pos­
sible to have a large segment which is both readable and writable and to have
pages within it which are only readable. At the page level, the execute-only
attribute does not exist.

A.5.2 Limit Checking
The limit field in each segment descriptor is used by the processor to prevent a
program addressing memory outside the segment through the use of an overly
large offset value. During address translation, the offset value specified in the
memory reference is compared with the limit field, and an exception is gener­
ated if the offset is larger than the limit for that segment. The limit field in
general prevents errors in one program from corrupting other programs' code or
data areas.

A.5.3 Privilege Levels

120 05/2 V2.0 Volume 1

The 80386 implements a four-level protection mechanism. Level 0 is the most
privileged, and level 3 is the least privileged. The privilege level is assigned on
a segment basis, and therefore applies to both code and data. The four levels
may be visualized as concentric "rings," with the most privileged segments in
the center.

OS/2 Kernel

Figure 31. 80386 Ring-Oriented Privilege Scheme

All code and data segments in the system are assigned a privilege, which is
stored in the segment descriptor. At any one moment, a task executes only on
one of the four rings:

Ring 0 This is the most privileged type of segment, and code executing in
this ring may use all protected mode processor instructions. This
ring is used by those routines in an operating system which are
essential for resource allocation and control. This part of the system
is often referred to as the kernel or nucleus.

Ring 1

Ring 2

Ring 3

This is the second most privileged ring and is normally used for the
remainder of the operating system routines and for the input/output
support routines. Note that ring 1 is not used by OS/2 Version 2.0.

This ring is typically used as the application services level. It should
be used for routines that do not belong to the operating system, but
should still be protected from user code. Communications support
and database management programs are good examples.

This is the least privileged ring and is typically assigned to user appli­
cation code and data.

A task executing in one ring cannot access data in a more privileged ring (for
example, ring 3 cannot access data at ring 1), nor can it invoke a procedure in a
less privileyed ring (for example, ring 1 cannot invoke ring 3). Thus, both access
to data and transfer of control are restricted in appropriate ways. The processor

Appendix A. Intel 80386 Architecture 121

interprets the protection parameters and automatically performs all the checking
necessary to implement this protection.

Although at the segment level there are these four levels of privilege, at the
page level there are only two privilege levels:

1. Supervisor level, for the operating system, privileged programs, such as
device drivers, and system data including page tables

2. User level for application code and data.

The privilege levels used for segmentation are mapped into the page level privi­
lege levels. Tasks running in ring 0, 1 or 2 are all assumed to at supervisor
privilege level.

A.5.4 Restriction of Procedure Entry Points
To achieve transfer of control between procedures on different privilege levels, a
special descriptor type called a gate is provided. Programs wishing to transfer
control call the gate by specifying the segment base address of the gate, rather
than transferring control directly to the required procedure. Under OS/2 Version
2.0, where a single segment is used to implement the flat memory model, the
gate is called by specifying its offset within the process address space.

The four types of gates are CALL gates, TASK gates, INTR (Interrupt) gates, and
TRAP gates. The routine invoked when the gate is called simply redirects
control to a new address which contains the privileged routine to be executed.

From the program's point of view, this is no different from transferring control to
another code segment, since the calling instruction simply regards the gate as
another procedure. However, it effectively isolates the calling procedure from
the called procedure, and since only the entry point address of the gate is sup­
plied in the calling instruction, the calling procedure has no access to any point
other than the defined entry point of the called procedure.

Calls are verified to ensure that they satisfy two conditions:

1. The call must enter the called procedure at the beginning of that procedure;
this is normally ensured by the gate descriptor itself, which supplies the nec­
essary offset to the entry point.

2. The privilege level of the called procedure must be the same as that of the
gate descriptor.

A.5.5 Reserved Instructions

122 OS/2 V2.0 Volume 1

Certain processor instructions are reserved for execution only by the operating
system, and may therefore execute only at privilege level zero. Such
instructions include HL T (Halt Processor), LGDT (Load GOT), and LTR (Load Task
Register).

In addition, some 1/0 instructions are restricted:

1. The IOPL field in the EFLAGS register defines whether or not the current task
has the right to use 1/0-related instructions

2. The 1/0 Permission Bit Map in the TSS determines whether the current task
may use ports in the 1/0 address space.

A.6 Interrupts
When the processor is running in protected mode, interrupts are not vectored
from the base of memory. Instead, each interrupt has a code which is used as
an index into an Interrupt Descriptor Table (IDT), the base address of which is
contained in the Interrupt Descriptor Table Register. There may be up to 256
interrupt and exception codes, generated by devices or by software.

At system initialization, the IDT is loaded into memory by the operating system,
and its location is stored in the IDT register. Each descriptor in the IDT specifies
the address of the interrupt handler routine, which will service interrupts with
that code.

There are three types of gate descriptors in the IDT:

• Interrupt gate descriptors

• Trap gate descriptors

• Task gate descriptors.

For interrupt and trap gates, the descriptor in the IDT contains the selector of the
gate, and therefore points indirectly to a procedure that will execute within the
current task, since the selector within the gate procedure points directly to an
executable segment descriptor in the GOT or the current LDT. This takes place
exactly as if the 80386 were calling a procedure within the current application.

For the task gate, however, the selector within the gate points to a TSS
descriptor in the GOT. Invoking the task gate, therefore, causes a task switch to
occur. There are certain advantages to the use of a task gate, since it allows a
program to pass control to a higher privilege level, and the application may
therefore invoke operating system routines to process interrupts and exceptions.
In addition, the new task may be given its own LDT to prevent it from accessing
memory used by the current task, and the TSS of the current task is automat­
ically saved.

However, there are also performance implications in using task switching. Inter­
rupt handling through task switching requires approximately 15 microseconds on
a 20 MHz 80386, while switching to a procedure within the current task takes
about 3.6 microseconds. But, the advantages of having the operating system
manage exceptions (smaller application code, greater portability, standard
exception handling) usually outweigh the slight performance penalty.

A. 7 Input/Output Processing
1/0 addressing on the 80386 may be performed either by issuing specific 1/0
instructions to the 1/0 address space, or issuing general-purpose memory
manipulation instructions to memory-mapped 110.

The 1/0 address space is separate from the linear physical memory and the 1/0
instructions do not go through the segmentation or paging hardware. The 1/0
address space is 64KB in size. It may be mapped in various ways, for instance:
64KB of individually addressable 8-bit ports, 32KB of 16-bit ports, 16KB of 32-bit
ports, or any combination of the above up to the maximum allowed 64KB. The
processor can transfer 32 bits of data at a time to a device located in the 110
address space, using the IN, OUT, INS, and OUTS commands.

Appendix A. Intel 80386 Architecture 123

The 1/0 address space has two protection mechanisms:

1. The 1/0 privilege Level {IOPL) field in the EFLAGS register controls access to
the 1/0 instructions.

The IN, INS, OUT, OUTS, CLI, and STI instructions are only allowed to
execute if the CPL (Current Privilege Level in the CS descriptor for the active
task) is less than or equal to the value of the IOPL field.

Only system code (privilege level 0) can change the IOPL value.

2. The 1/0 permission bit map in the active TSS controls access to individual
ports in the 1/0 address space.

There is one bit for each 8-bit port in the 1/0 address space, which means
that the 1/0 permission bit map could be up to 64 kilobits {8KB). If a task
references an 1/0 port and the corresponding bit is on, the processor signals
a general protection exception. The exception can then be handled by the
system software to initiate an exception handling procedure within the
current task, or to initiate a new task, which will redirect the 1/0.

By changing bits in the 1/0 permission bit map of different tasks' TSSs, an
operating system can allocate ports to tasks and avoid having two tasks use
the same port concurrently.

A.8 Virtual 8086 Mode

124 OS/2 V2.0 Volume 1

The 80386 processor supports concurrent execution of one or more 8086 pro­
grams within the protected mode environment. There is no longer a need for the
processor to switch back to real mode in order to simulate an 8086 machine.

An 8086 program runs in protected mode as part of a virtual 8086 task. Virtual
8086 tasks are able to take advantage of the 80386 hardware support for multi­
tasking, offered in protected mode. Virtual 8086 tasks may execute concurrently
with one another and with other protected mode tasks in the system.

The purpose of the virtual 8086 task is to form a virtual machine for running pro­
grams written for the 8086 processor. A complete virtual machine consists of
the 80386 processor support, plus additional support from operating system soft­
ware:

• The hardware provides a set of virtual registers (implemented through the
TSS), a virtual memory space (the first 1MB of the 32-bit linear address
space) and directly executes all instructions that deal with these registers
and with this address space.

While running in virtual-8086 mode the processor does not treat the contents
of the segment as an index into a descriptor table, but the linear address is
formed in exactly in the same way as it is done by the 8086 processor. With
paging, enabled the address is then mapped to a physical address by the
address translation hardware. When paging is not being used, the linear
address is the physical address. This means that when there is a require­
ment for multiple virtual-8086 tasks, paging must enabled. Figure 32 on
page 125 shows the way in which the memory used by virtual 8086 machines
is mapped into the system's physical address space.

• The operating system software controls the external interfaces of the virtual
machine (1/0, interrupts, and exceptions). In the case of 1/0, the operating
system can choose either to emulate 1/0 instructions or to let the hardware
execute them directly.

V8086Task1

Pagen

Pagel

DOS

Physical Memory

V8086Task2

Pagen

---. Pagel

DOS

Figure 32. Virtual 8086 Environment- Memory Management

Virtual 8086 tasks execute at privilege level 3 (lowest) and are subject to all of
the protection checks defined in protected mode, thereby preventing an ill­
behaved application from accessing and potentially corrupting memory used by
other tasks in the system.

All 1/0 is normally handled through the 1/0 permission map in the 80386 TSS for
both virtual 8086 applications and other protected mode applications. This
means that any call to 1/0 services generates an exception which is trapped by
the 80386 and may then be handled by the operating system. Any unauthorized
calls may be trapped within the operating system, thus preventing an ill-behaved
application from "hanging" the system.

In addition, the 80386 paging hardware allows virtual 8086 tasks to share seg­
ments.

A.9 Numeric Coprocessor Utilization
The 80386 processor may operate in conjunction with, and utilize the features of
either the Intel 80287 or 80387 numeric coprocessors. When the system is initial­
ized, the presence of a numeric coprocessor, and its type if present, is checked
by the 80386. If an 80287 coprocessor is detected, the 80386 automatically con­
verts all memory transfers to 16-bit format. If an 80387 is detected, it is used in
32-bit mode, thereby utilizing the full potential of both the 80386 and 80387.

IBM does not support or recommend the use of 80287 numeric coprocessors
in 80386-based systems. For a list of supported numeric coprocessors for
each system unit, readers should refer to the appropriate IBM Product
Announcement for that system unit.

Appendix A. Intel 80386 Architecture 125

A.10 Multi-Processing
The 80386 supports the Intel 80287 and 80387 numeric coprocessors. Support is
also provided within the instruction set for multiple 80386 processors within the
same system, sharing memory and other resources. This support is provided
through the LOCK prefix instruction. When specified in conjunction with another
instruction, the LOCK prefix instruction ensures that the locking processor has
exclusive use of the requested resource.

Only a few 80386 instructions can be used with the LOCK prefix instruction. It is
typically used to prefix instructions like BTC (Bit Test and Complement) where it
locks the area of memory defined by the destination operand for as many cycles
as necessary to update the entire operand.

In several instances, the processor itself automatically locks activities on the
data bus. For example, when acknowledging interrupts. switching tasks. loading
descriptors from the LDT to the segment selector, and updating the page table
ACCESS and DIRTY bits, the required memory pages are locked since these are
highly critical operations.

The 80386 includes on-chip memory caching to improve performance. The
processor must therefore allow for the case where data in shared memory is
modified and where that data is currently recorded in a cache on another
processor. In such situations. the 80386 employs an interprocessor interrupt to
let other processors know when such a change has been made.

This is normally done by using one of the physical address pins on the chip, and
having the receiving processor implement a task switch when it receives this
signal. The task switch clears the system registers, reloads the new descriptors
and invalidates the memory cache in the processor.

Note that by changing the function of one of the addressing pins, however, the
physical addressing capability of the processor is reduced to 2GB.

A.11 The Intel 80486 Processor

126 05/2 V2.0 Volume 1

Some of the most recent PS/2 machines use the latest Intel microprocessor, the
80486. The 80486 offers more processing power and also some functional exten­
sions over the 80386. The 80486 microprocessor subsystem has the following
characteristics:

• 32-bit addressing

• 32-bit data interface

• Extensive instruction set, including string 1/0

• Hardware fixed-point multiply and divide

• Three operating modes:

Real address mode
- Protected virtual address mode
- Virtual 8086 mode

• 4GB physical address space

• Eight general-purpose 32-bit registers

• 64TB virtual address space

• Internal 8KB, set-associative instruction cache with controller

• Internal 80387 numeric coprocessor.

Note: The 80486SX is an exception, since it does not provide a built-in 80387
numeric coprocessor

The 80486 microprocessor is compatible with the 80386 in the following areas:

• Real address mode

• Protected virtual address mode

• Virtual 8086 mode

• 80386 paging mechanism

• All published 80386 instructions

• All published 80387 instructions.

The major differences between the 80386 and 80486 processors are in the exe­
cution speed of instructions, and the fact that the 80486 has six new processor
instructions to control the operation of the internal 8KB instruction cache.

In addition, the 80486 processor performs certain operations in a different
manner. For example, flushing the transaction lookaside buffer in an 80386
processor may only be done for the entire TLB in a single operation. The 80486
provides a facility for selectively flushing the TLB.

Appendix A. Intel 80386 Architecture 127

128 OS/2 V2.0 Volume 1

Appendix B. Micro Channel Architecture and SCSI

This section of the document explains the basic principles of the IBM Micro
Channel architecture and its usage. The principles of the Small Computer
Systems Interface (SCSI) protocol for 1/0 device communication are also covered
in this section of the document. This information is presented in order to provide
the reader with a better understanding of the way that this technology is utilized
by OS/2 Version 2.0.

B.1 Micro Channel Architecture
In "conventional" personal computer architectures such as the original IBM PC
and PC AT, the system bus formed the data path, by which hardware compo­
nents exchanged information with one another. The bus operated under the
direct control of the system's main processor, and could handle only a single
task at any time.

The Micro Channel architecture defines a set of specifications for a high-speed
data "highway" connecting the system processor or processors, memory, 1/0
devices, and hardware adapters. The main feature that distinguishes the Micro
Channel from the older PC bus is that the system processor does not have
exclusive control of it but other processors and intelligent adapter cards, which
are connected to the channel, can take charge of it and initiate data transfers
across it. The mechanism, by which control of the Micro Channel is shared
amongst the competing subsystems, is known as arbitration. The Micro Channel
consists of a number of buses, controlled by the bus arbitration unit, which
operate independently of the system's main processor. The main components of
the Micro Channel are:

©Copyright IBM Corp. 1992

• Arbitration Bus

The arbitration bus and its associated signals are used by the bus arbitration
unit to prioritize and resolve up to 16 concurrent requests by intelligent
devices (known as masters) for control of the channel. The system
processor has the lowest priority level, leaving 15 levels available for other
processors and intelligent devices in the system. Although the system
processor is defined to have the lowest priority level, it always "owns" the
channel whenever the channel is not being used by another device. The
arbitration unit resolves contending requests, and selects one device as the
temporary owner of the channel; this device is then known as the controlling
master. The controlling master may then perform a single data transfer or if
the channel had been requested in "burst mode", multiple data transfers. For
"burst transfers", the controlling master owns the channel until the transfer
is complete or another arbitration participant requests ownership of the
channel. In such cases the controlling master must relinquish ownership of
the channel within 7.8 microseconds.

The arbitration controller has a fairness algorithm built into it to ensure that
subsystems with high priority do not monopolize the channel at the expense
of lower priority subsystems. There is also a feature known as pre-emption,
which allows a subsystem with an urgent requirement to request and be
given control of the channel even though another subsystem is currently
using it.

129

• Address Bus

The address bus and its associated signals are used by the controlling
master to select a slave to be the source or target for a data transfer. The
Micro Channel addressing consists of two separate address spaces:

The 1/0 address space consists of 64KB (65535) 1/0 addresses. 16 lines
of the address bus plus the state of certain associated control signals
signifies the 1/0 port to be read or written.

The memory address space may be as large as 4GB (4,294.967.296 bytes)
for a machine capable of 32-bit addressing. Only PS/2 Models 90 and 95
are currently capable of 32-bit addressing. All other system units in the
PS/2 range use 24-bit addressing, which allows addresses up to 16MB
(16,777,216 bytes).

• Data Bus

The data bus is used to transfer 8, 16, 24, or 32 bits of data between two
masters or between a master and a slave. The associated control signals
indicate the width and direction (read or write) of the transfer.

The Micro Channel architecture defines the physical properties of the circuits
and all the timings and signal sequences of signals on these circuits.

The Micro Channel architecture is extensible in that it has been possible to
include new features in the architecture while maintaining compatibility with
existing devices. All Micro Channel devices are expected to support certain
basic functions. Mechanisms are provided which allow a device that supports an
optional feature to communicate its capability to a partner device, with which it
is exchanging data. If both devices support the feature then it is enabled for the
data transfer operation, if appropriate. If one device supports a feature and the
other device does not, they may still communicate with one another. Obviously
that feature cannot be used during the data transfer operation.

B.2 Micro Channel Participants

130 0512 V2.0Volume1

There are two basic types of devices, which may exist on and communicate via
the Micro Channel:

• A master is an intelligent device, which may contend for control of the
channel.

• A slave is a unintelligent device, which merely acts as the source or target of
a data transfer, in conjunction with a master.

Figure 33 on page 131 shows the interaction between masters and slaves over·
the Micro Channel. The master devices are of three kinds:

• The system master is the processor provided with the system hardware, and
is thus also known as the system processor. The system master assumes
ownership of the channel when no other master has arbitrated for and won
control of it. The system master is, therefore, also known as the default
master.

• The DMA controller is typically provided on the system board. It supports
multiple independent OMA channels, each allowing the attachment of a OMA
slave. Each OMA slave is allocated its own dedicated channel. The OMA
controller manages the transfer of data between a OMA slave and a memory
slave, and supports burst mode data transfer if the OMA slave requests it.
The OMA controller does not arbitrate for the channel, but requires the OMA

slave to do the arbitration. Once this is done, the data transfer is completed
independently of the system processor.

• The bus master is an intelligent device or adapter on the Micro Channel and
is typically an advanced adapter, which functions as a subsystem within the
system. It arbitrates for the channel and manages the data transfer to or
from an 1/0 slave or a memory slave. The bus master is described further in
8.2.1, "Bus Master Adapters."

MASTERS

SLAVES

Figure 33. Micro Channel Participants and Data Transfer Paths

Slave devices on the Micro Channel may be of three kinds:

• The 1/0 slave is selected via its address in the 1/0 address space. The
system processor or a bus master is required to actually perform the data
transfer.

• The memory slave is selected via its address in the memory address space.
Any master may perform the data transfer. The memory may reside on the
system board or on an adapter on the Micro Channel. It can also be non­
system memory (such as memory-mapped 110) on an adapter, used for com­
munication of information between the system and the adapter.

• The DMA 1/0 slave contends for control of the Micro Channel on behalf of the
OMA controller, and is thus an exception to the normal rule that slaves do
not contend for control of the Micro Channel. It relies on the OMA controller
to be the controlling master and manage the data transfer between the OMA
slave and memory slave.

B.2.1 Bus Master Adapters
The use of bus master adapters avoids the need for the system processor to
become involved in data transfers between adapters in the system. For
example, a bus master LAN adapter may interact with the disk subsystem to
service 1/0 requests on a LAN server, while the system processor continues to
process other work.

Appendix B. Micro Channel Architecture and SCSI 131

Bus master adapters provide advantages over other "intelligent" adapters such
as OMA adapters, since a bus master is typically directly involved in the data
transfer (as either source or destination) and thus requires only a single opera­
tion to transfer the data, while a OMA adapter requires two (one read and one
write). In addition, the OMA controller used in current IBM PS/2 system units is
only capable of 24-bit addressing, while bus master adapters, such as the SCSI
adapters, utilize the full 32-bits available on the address bus on the PS/2 models
90 and 95.

A bus master may randomly address memory and memory-mapped 1/0 devices.
This makes it ideal for paged environments and enables the bus master to
execute chains of work, addressing different memory areas and devices without
support from the system processor. The bus master adapter is regarded as a
subsystem and can work completely asynchronously to the system processor
and other bus masters. Where necessary a bus master may communicate
directly with another bus master.

B.2.2 DMA Adapters
The OMA adapter frees the processor from having to move data between an
adapter and system memory. The OMA slave adapter arbitrates for control of
the MCA. Once control is given, the OMA controller uses the OMA channel allo­
cated to the OMA slave adapter to transfer the data.

The Micro Channel supports up to 15 OMA units, which may use the burst mode
data transfer capability of the Micro Channel. The OMA controller implemented
in current PS/2 machines supports transfers of up to 64KB segments of contig­
uous data and is able to address 16MB of memory. In the case of systems that
have more than 16MB of memory, OMA transfers can only take place to memory
locations below the 16MB line.

The major limitation is that the data must be contiguous. For a system using
paged memory (with 4KB pages) this introduces an overhead through the need
to reserve contiguous blocks of memory. This makes the system OMA controller
best suited for records shorter than or equal to the page size.

B.2.3 Simple Adapters

132 05/2 V2.0 Volume 1

Simple adapters are totally dependent on support from the main processor or
another master. This approach to adapter design was common in single task
systems, when the processor was dedicated to one adapter function at a time.
In such cases, the most economic approach is to use the minimum of logic on
the adapter card, and depend on software support. Adapters, which use these
techniques, are:

• Polled adapters

With polled adapters, the processor must periodically request information, or
poll, the adapter registers for status of the attached device. This can
consume much of the processor's power.

• Interrupt per character adapters

With these adapters, the processor is free to perform other duties until an
interrupt is received from the adapter. The overhead of servicing the inter­
rupt is several hundred instructions to save and restore the environment.

Devices with high data transfer rates (for example, fast communication
adapters) cause high interrupt rates and the overhead could then use up

much of the available processor power. This is even more of an issue in a
multitasking environment where the situation is more complex and the over­
head for interrupt processing is typically higher.

• Memory mapped adapters

This type of adapter shares a segment of memory (on the adapter) and if
combined with the use of interrupts, can be much more efficient than the
interrupt per character type. However, the adapter is still dependent on the
processor to move data between the adapter's storage and a dynamically
allocated buffer in system memory. With the arbitration overhead and large
amounts of data (for example, bitmaps for a graphics adapter), this may be a
burden on the processor.

The biggest disadvantage with this type of adapter is that there is a limited
number of fixed assignments for shared 1/0 memory. This limits the number
of possible configurations and designs.

B.3 Data Transfer Modes
The attainable speed of data transfer between two participants on the IBM Micro
Channel is affected by a number of factors:

• Time required to gain control over the channel (arbitration)
• Time required for each data transfer
• Capability to perform burst mode transfers
• The width of the data path (8, 16, 32, or more bits)
• Type of transfer cycle used (basic or matched-memory cycle).

The arbitration cycle required to gain control over the Micro Channel takes a
minimum of 300 ns. After that time, the device can use the channel until the
transfer is completed or a pre-empt signal is raised by another device. During
the time a device controls the channel, it can move data on the channel by
placing an address on the address bus and data on the data bus. The capacities
of different devices on the Micro Channel, in their current PS/2 implementation,
are shown in Table 5.

Table 5. Data and Address Bus Widths for Micro Channel Participants

Participant Address Bus Width Data Bus Width

System Processor 24-bit or 32-bit 16-bit or 32-bit

OMA Controller 24-bit 16-bit

Bus Master 24-bit or 32-bit 16-bit, 32-bit or 64-bit

OMA Slave 16-bit 8-bit or 16-bit

1/0 Slave 16-bit 8-bit, 16-bit or 32-bit

Memory Slave 24-bit or 32-bit 8-bit, 16-bit or 32-bit

B.3.1 Basic Data Transfer Mode
The basic transfer cycle on the Micro Channel is a minimum of 200 ns (100 ns for
the address and 100 ns for the data which results in five million basic transfer
cycles per second for a device running in burst mode. As shown in Figure 34 on
page 134, a data transfer operation is done in two steps. First the address for
the transfer (either 1/0 adapter or memory location) is selected, then up to four
bytes of data is moved across ~he data buffer.

Appendix B. Micro Channel Architecture and SCSI 133

Depending of the width of the data path (8, 16, or 32 bits) the instantaneous data
transfer rate on the channel would be 5, 10, or 20MB per second.

The matched-memory extension is a modification to the basic data transfer
mode, which can improve the data transfer capabilities between the system
master and channel-attached memory. When supported, it allows the basic
transfer cycle of 200 ns to be reduced.

4 bytes 4 bytes 4 bytes 4 bytes 4 bytes
Address
Bus

Data
Bus

ADDRESS

DATA

200 nanoseconds

Figure 34. Basic Data Transfer Mode

ADDRESS ADDRESS

DATA

The OMA controller on the system board requires two basic transfer cycles to
move either 8 bits or 16 bits of data. It moves the data from the originator to a
buffer in the OMA controller and then to the target device or memory location.
Because· two cycles are used per 8 or 16 bits of data, the data transfer rate for
OMA controllers is 2.SMB or 5MB per second.

B.3.2 Streaming Data Mode

134 OS/2 V2.0 Volume 1

For blocks of sequential data transferred over the Micro Channel, it should not
be necessary to specify the address information more than once. Both the
source and destination devices should update the address for each cycle by the
size of the transferred data. This technique is supported by the Micro Channel
and is known as streaming data mode (or streaming data procedure). Using
streaming data mode with 32-bit transfer, the effective transfer rate is 40MB per
second. The usage of the address and data buses during a data transfer using
streaming data procedure is shown in Figure 35.

4 bytes 4 bytes 4 bytes 4 bytes 4 bytes
Address

I I I I I I Bus ADDRESS

Data
Bus l DATA DATA J DATA l DATA J

100 nanoseconds

Figure 35. Streaming nata Mode

B.3.3 Multiplexed Streaming Data Mode
When the Micro Channel is running in streaming data mode, the 32 address lines
are only used during the first cycle of the transfer. These address lines are
therefore available for transfer of an additional four bytes during each following
cycle. This mode is called multiplexed streaming data mode and gives an effec­
tive width of 64 bits (B bytes) for each cycle. The resulting effective data rate is
BOMB per second. This is shown in Figure 36.

4 bytes 4 bytes 4 bytes 4 bytes 4 bytes
Address
Bus

Data
Bus

ADDRESS DATA

DATA

100 nanoseconds

Figure 36. Multiplexed Streaming Data Mode

DATA DATA DATA

DATA DATA DATA

IBM has also disclosed that upcoming generations of Micro Channel systems
may implement a faster basic transfer cycle of 100 ns rather than the current 200
ns. With the current cycle the Micro Channel is able to transfer sequential
blocks of data with transfer rates of 20, 40, and BOMB per second. Systems
implementing the faster transfer cycle would be able to reach transfer speeds of
up to 160MB per second. These rates are essential for advanced function bus
masters, which must move large blocks of sequential data.

B.4 Data Integrity and Exception Handling
There are two things that can go wrong while transferring data across the
channel:

1. Data can be corrupted
2. Execution of an instruction can fail.

We therefore need mechanisms to report the occurrence of an error.

B.4.1 Parity Checking
When data is stored in memory or on any external device, the integrity of the
data is typically ensured by having some sort of checking information stored with
the data. Using this information, lost or incorrect bits may be detected and in
certain cases corrected (on advanced memory systems and 1/0 adapters). The
buses that comprise the Micro Channel are normally regarded as extremely safe
conduits of information and are therefore not usually checked. While the chance
of an error on the buses is very small, a missing or extra bit could still be
induced by:

• Electromagnetic interference
• Power distribution disturbances (poor decoupling of logic spikes)
• Adapter cards not following timing rules properly.

Appendix B. Micro Channel Architecture and SCSI 135

To improve the integrity of the buses, the Micro Channel architecture supports
address parity and data parity as an option for devices that are able to handle
this function.

Odd parity is used and is implemented by using formerly reserved lines as new
address and data parity lines. To indicate that parity is used/checked two new
control lines are defined: APAREN (Address Parity Enabled) and DPAREN (Data
Parity Enabled).

If a master addresses a slave with APAREN enabled, the slave will answer only
if the parity is correct. If not, the bus master suspends the operation and sets an
internal error nag.

During write operations from a bus master to a slave device, the slave is respon­
sible for the parity checking if the DPAREN line is active. The slave should then
indicate bad parity by activating the CHCK (Channel Check) signal. If a bus
master detects a parity error during a read operation with the DPAREN line acti­
vated (by the slave), it is expected to suspend the operation and set an internal
error nag.

Address parity and data parity are both optional and can be used independently
of each other. Devices that use the parity checking and devices that do not are
permitted to coexist in the same Micro Channel system.

B.4.2 Synchronous Exception Signaling
The Micro Channel architecture provides for exception signaling using the CHCK
signal. Initial use of the CHCK signal in the PS/2 line of products was asynchro­
nous. With the new advanced uses of the Micro Channel and bus master
adapters, which are able to execute multiple 1/0-operations in burst mode, syn­
chronous exception handling is needed in order to correctly associate an excep­
tion with the command that caused it.

The synchronous exception support within the Micro Channel architecture pro­
vides for activation of the CHCK signal in the same bus cycle that caused the
exception. This simplifies the exception handling and provides increased system
data integrity.

B.5 IBM SCSI Implementation
In this section we give a brief description of the Small Computer Systems Inter­
face (SCSI) and describe the currently available IBM PS/2 SCSI adapters. We
also look at the support in OS/2 V2.0 for the IBM SCSI adapters.

B.5.1 What is SCSI?

136 OS/2 V2.0 Volume 1

SCSI is a standard interface bus, through which computers may communicate
with devices such as fixed disks, CD-ROMs, printers, plotters, scanners, etc. The
standard is fully described in ANSI standard X3.131-1986.

SCSI is a bus level interface, as compared to interfaces such as ESDI and
ST-506, which are device level interfaces. With a bus level interface all the circu­
itry required to control the device is built into the device itself. This is the
reason it is possible to attach different device types to a SCSI bus.

Up to eight SCSI devices can be attached to a single SCSI bus. The first of these
devices is normally the SCSI attachment adapter, which would be installed in the
PS/2 system unit and act as a bridge between the system unit bus (the Micro
Channel) and the SCSI bus. A further seven SCSI devices can then be con­
nected by means of the SCSI bus cable. Each of these physical devices can
support up to eight logical devices. Each device attached to the SCSI bus has a
device ID that is in the range 0 - 7. The attachment feature is usually given the
ID of 7 making it the highest priority device on the bus. Figure 37 shows this
diagrammatically.

SCSI supports features such as arbitration and disconnect/reconnect allowing
several devices to operate concurrently and to share the bus. Data transfer
across the SCSI can either be asynchronous or synchronous. Asynchronous
data transfer requires that each byte sent across the bus be acknowledged
before the next byte is transferred. When using synchronous mode, each byte of
data must still be acknowledged but multiple bytes may be sent before any
acknowledgements have been received.

r·------.
I

'ii SCSI
= : : :· : ~ . :: : : .

. . : . - . . : ~ . ; ; l . ! ~ ; . ; j • :

i Proeesaor:.i :.t
i~~Trr.~t~. ,.:

, u ,r· r:!:::i J

; . ·-------.J
...

To other SCSI
Physical Devices

(Up to 7 total)

Figure 37. SCSI Subsystem Block Diagram

The cable connecting the SCSI devices may be up to 20 feet (6 meters) in length,
and carries 8-bit parallel data with a transfer rate of 5MB per second.

B.5.2 IBM SCSI Adapters
IBM currently has available two SCSI adapters, which can be used in Micro
Channel based PS/2s:

• The IBM 16-bit SCSI adapter

This bus master adapter has a:

- 16-bit data capability
- 32-bit address capability.

• The IBM 32-bit SCSI adapter with cache

Appendix B. Micro Channel Architecture and SCSI 137

This is also a bus master adapter, which features:

32-bit data capability
- 32-bit address capability
- 512KB on-board cache.

Up to four adapters may be installed in a PS/2 system at the same time. The
two IBM adapters support the following common features:

• The attachment of mixed SCSI device types that support the SCSI Common
Command Set (CCS).

• Up to seven physical SCSI devices. Each physical device can support eight
logical devices, giving a total of 56 devices per adapter (SCSI bus).

• Overlapped command processing for up to 15 devices.

• A data transfer rate of up to 5MB per second from the adapter to a device on
the SCSI bus.

• A data transfer rate of up to 16.6MB per second from the adapter to the
system (8.3MB per second for the 16-bit version).

SCSI devices can be attached to the IBM SCSI adapters both internally and
externally. The adapters have two interface connectors. A connector on the top
edge of the card allows the attachment of devices mounted internally in the
system unit. There is a second connector on the end of the card, to which the
external connection cable attaches.

B.5.3 Adapter Components

138 OS/2 V2.0 Volume 1

The different parts of the adapters are illustrated in Figure 38 on page 139, and
are described below:

• Local microprocessor, RAM and ROM

An Intel 80188 microprocessor controls the operation of the adapter. It trans­
lates commands received from the system into a series of operations to
implement the desired results. The processor also manages the intelligent
buffer, controls data transfers to and from the system, controls the SCSI bus,
and handles error detection/recovery.

The program code that controls the processor is stored in a local read-only
memory (ROM) module. There is also a Random Access Memory (RAM)
module available for storage of work information.

• System interface controls

The system interface controls provide command and interrupt registers that
allow the processor to receive commands from the system and to interrupt
the system when a command is complete.

• SCSI bus control

The SCSI bus control chip is an electronic circuit module used by the
processor to control the SCSI bus. It is used to transmit commands, receive
status information and transfer data between the adapter card and attached
SCSI devices. It also provides the following functions:

SCSI bus arbitration
SCSI device selection/reselection
SCSI phase change detection
SCSI bus parity generation/checking
Diagnostics and self-testing capabilities.

• Intelligent buffer

This buffer is a 512KB parity-checked RAM module, and is only available on
the 32-bit high-performance version of the SCSI adapter. This buffer has two
basic functions:

1. It serves as a prefetch cache and keeps frequently used or prefetched
SCSI device data available for immediate transfer to the system without
the normal device-dependent physical access delay.

2. It buffers the SCSI device data until it can be transferred to the system
RAM via OMA. This allows the SCSI bus data transfer to be asynchro­
nous to the Micro Channel data transfer, permitting interleaving of
transfer operations, and providing enhanced performance .

. . . : ; : ; :
.• : : ! '. : ••

~~~~11111r11111111~11111111111111~1111111111111111111111r~1111111~i ~ _i __ ~ ........................... 

1111111111111111111111 
Micro Channel Bus Connector 

Figure 38. Adapter Component Block Diagram 

• Buffer and data flow controls 

This circuit module manages the flow of parallel data between the SCSI bus, 
the intelligent buffer, and the Micro Channel. The circuit is controlled by the 
processor and can perform all transfers simultaneously. It supports 32-bit to 
16-bit conversion, burst mode OMA. odd byte/word transfers and parity 
generation/checking of the buffer data. 

• SCSI BIOS 

The SCSI BIOS consists of a set of ROM modules, which contain the basic 
input/output support code for the adapter. It provides both the compatibility 
(CBIOS) and advanced (ABIOS) support for any attached SCSI fixed disk. 
The BIOS ROM is completely independent from the processor's ROM on the 
adapter. BIOS is discussed further in B.5.4, 11 SCSI BIOS" on page 140. 

Appendix B. Micro Channel Archl~~cture and SCSI 139 



B.5.4 SCSI BIOS 

140 OS/2 V2.0Volume1 

As mentioned above, the SCSI adapters contain ROM modules with the compat­
ibility BIOS (CBIOS), the advanced BIOS (ABIOS), and the power-on self test 
(POST) routines for the SCSI subsystem. Each of these BIOS functions is 
explained in the following sections. 

B.5.4.1 Compatibility BIOS (CBIOS) 
The CBIOS interface supports SCSI device and adapter functions for the single 
tasking environment, as implemented by PC DOS. The SCSI CBIOS intercepts 
and replaces parts of the Interrupt 13h (fixed disk) and Interrupt 15h (system ser· 
vices) functions. See Figure 39 for a functional overview of the BIOS interface. 
It also adds the new Interrupt 4Bh (advanced services) support to provide a 
generic interface to SCSI devices other than disk drives. This new interface uses 
the carry flag and the AH register to report status information. 

The CBIOS interface makes it possible for programs in a DOS environment to 
use both SCSI and other types of disks via INT 13h, with the help of new device 
drivers and INT 4Bh services. The CBIOS interface also supports other types of 
SCSI devices. 

Prom 
System 

To Bzisting 
BIOS .,_ ____ ___. 

From Physical Disk 
Device Driver 

Figure 39. SCSI BIOS Interface Block Diagram 

B.5.4.2 Advanced BIOS (ABIOS) 
The ABIOS interface shown in Figure 39 provides new and enhanced device ID 
02h (fixed disk) support. ABIOS used by operating systems such as OS/2 V2.0, 
which use the protected mode of the Intel microprocessors. The enhanced func­
tions enable support of both SCSI and other types of disk without an upgrade of 
operating system software. The new functions enable a more effective use of 
SCSI disk devices by operating systems through new and enhanced device 
drivers. The new ABIOS functions are: 

• ODh ·Enable Intelligent Buffer 

• OEh ·Disable Intelligent Buffer 



These two functions enable or disable the intelligent buffer capability for all 
subsequent commands to this device. If the function is not supported, an 
error code is returned. 

• OFh - Return Intelligent Buffer Status 

Returns the status of the intelligent buffer. Status may be enabled, disabled 
or not supported. 

• 10h ·Set DMA Pacing Factor 

This function programs the adapter with the supplied pacing value. The 
value specifies what percentage (25% to 100%) of the OMA transfer band­
width the adapter is allowed to use. All devices on the adapter are affected. 

• 11h ·Return OMA Pacing Factor 

This function returns the current pacing factor for the adapter. 

• 12h ·Transfer SCB. 

This function programs the adapter to process a Subsystem Control Block 
(SCB). SCBs are described further in B.6, 11 Subsystem Control Block 
Architecture" on page 142. 

B.5.4.3 Power-On Self Test (POST) 
The POST routines will automatically configure the SCSI subsystem at power-on 
and system reset. The SCSI subsystem supports the coexistence of other types 
of fixed-disk adapters, and if more than one SCSI adapter is installed in a 
system, the BIOS ROM modules on the extra adapters will be disabled by the 
POST routines. 

POST will also issue the Inquiry command to all 56 possible combinations of 
physical unit number/logical unit number (PUN/LUN), until 15 logical devices 
(logical device IDs 0 to 14) are assigned. The SCSI adapter is logical device 15. 

B.5.5 Support for Generic SCSI Functions 
The SCSI ABIOS provides support for two new device types: 

• Device ID 17h - SCSI Adapter support 

Functions for this device ID control the SCSI adapter, and some of them also 
affect all devices attached to the adapter. 

• Device ID 18h - SCSI Peripheral Type support. 

Functions for this device ID control the devices attached to the SCSI adapter. 
Some functions affect all devices attached to the adapter, and others are 
used to control a specific device via its logical ID. 

These device types are intended for access to SCSI devices other than disk 
drives. Examples of these generic types are CD-ROMs, tape devices and com­
munication devices, all of which may theoretically use the SCSI bus, provided 
the device is designed to do so. 

The logical IDs for a particular peripheral type are allocated/deallocated to spe­
cific SCSI devices on demand via the allocate and deallocate function. Through 
the allocate function the device driver specifies a SCSI peripheral type, a remov­
able media indicator and a relative unit number. If the device exists and is unal­
located, ABIOS assigns that device to the logical ID. The controlling program 
can then use the logical ID to make requests through the SCSI adapter. 

Appendix B. Micro Channel Architecture and SCSI 141 



B.6 Subsystem Control Block Architecture 

142 OS/2 V2.0 Volume 1 

The bus master in Micro Channel-based systems is capable of transferring data 
on the system channel without intervention from the system controller. Typically 
the system processor issues a request to the bus master. The bus master then 
takes charge and controls all further operations required to complete the 
request. The operations might be: 

• Issuing control commands to physical devices attached to the bus master 
• Data transfers to or from the physical device 
• Data transfer across the Micro Channel to or from system memory 
• Handling exception conditions 
• Notifying the system processor of completion of the operation. 

To utilize the power of the bus master we need an effective method of communi­
cating control instructions to it. 

The Subsystem Control Block (SCB) architecture defines logical protocols and 
services needed to transfer commands, data, and status information between the 
system processor and a bus master adapter and between two bus master 
adapters. The term subsystem is used since the advanced function adapters are 
much more than simple interfaces to peripheral devices. These adapters typi­
cally have some intelligence built into them in the form of local processing power 
and can be regarded as "systems within a system". 

The SCB architecture provides a powerful means of communication between 
device drivers running in the system processor and 1/0 processors that are 
capable of operation independently from the system processor. The architecture 
defines a control block structure for use between functional entities in a base 
system processor and funct~onal entities in advanced function adapters. Entities 
are defined as either client or server. Client entities make requests of server 
entities. The architecture also defines the way that control blocks are passed 
between entities in the system processor and entities in the feature adapters, or 
between entities in two adapters (peer-to-peer communication). 

The SCB architecture sees the system unit and each adapter logically structured 
into three levels: 

• The physical level handles the transfer of the control information and data 
across the Micro Channel. It accesses either the MCA-defined 110 address 
space or memory address space. 

• The delivery level is an interface between the physical level and the proc­
essing level. It uses the services provided by the physical level to transfer 
requests and replies between processing level entities. 

• At the processing level we have the client and server entities. The client 
builds and sends requests to the server and the client receives replies in 
response. 

We will now discuss the SCB architecture and the manner, in which it is imple­
mented in the IBM SCSI adapters. 



B.6.1 1/0 Port Definitions 
To control an advanced function bus master adapter, the SCB architecture 
defines a set of 1/0 ports. These ports are assigned as a sequence of register 
addresses in the 1/0 address space. Since multiple adapters of the same or dif­
ferent types may be used in the system, the base address for the 1/0 space of 
each adapter must be defined during system setup. The IBM SCSI adapters 
support eight address ranges. However, ABIOS supports only four. The ports 
used by the IBM SCSI adapters are shown indexed from the base address in 
Figure 40. The IBM SCSI adapter implements a subset of the ports defined in 
the SCB architecture. 

31 39 29 28 27 26 6 5 4 3 2 1 9 

:~~~e::se I c+an1 lnferffce ~or<+:bitJ : : : : : I 
7 6 5 4 3 2 1 9 

+4 :Attfnt+ +t : : : I 
7 6 5 4 3 2 1 9 

+S : Subfystym cyntry1 +t : 

1 6 s 4 3 2 1 e 

+6 ;.ntyrruyt Sfatuf Poft : 

1 6 s 4 3 2 1 e 

+7 ;comTand:susr/Stftus:Porf 

Figure 40. IBM SCSI Adapter 110 Ports 

The following are general descriptions of the 110 space control ports: 

• Request Ports 

There are four types of request ports associated with sending requests to a 
device. The first of these is the Command Interface Port (CIP), which con­
sists of four 8-bit read/write registers used to transfer either a 32-bit imme­
diate command or a Subsystem Control Block address from the system to 
the adapter. The immediate commands are typically device-directed and 
control-oriented. 

The second is the Attention Port (AP). This is an 8-bit read/write register 
used by the system to request an adapter operation. The register contains 
two pieces of information. The high-order four bits define the operation 
request code and the low-order four bits define the logical device that should 
be selected for the operation. 

The third, the Interrupt Status Port (ISP), is an 8-bit read-only register used 
by the subsystem adapter to return command completion information, if 
allowed by the interrupt-enable bit in the Subsystem Control Port. The 
adapter stores the logical device ID in the four low-order bits and an inter­
rupt ID in the high-order bits. A hardware interrupt is then generated. 

The fourth port is the Command Busy/Status Port (CB/SP). It is an 8-bit 
read-only register that is used by the adapter to serialize access to the 
shared logic of the control block delivery service. It contains the following 
indicators: 

Appendix B. Micro Channel Architecture and SCSI 143 



Busy - indicates that the adapter is busy (using the shared logic). Com­
mands submitted while the busy indicator is on are ignored by the 
feature adapter. 
Interrupt Valid - indicates that the content of the ISP (Interrupt Status 
Port) is valid, and that the feature adapter has requested an interrupt on 
behalf of one of its entities. This indicator will be set even if interrupts 
are not allowed by the system and will be reset by the EOI (End Of Inter­
rupt) request. This allows an adapter to operate without presenting 
hardware interrupts to the system. 
Reject - indicates that the feature adapter has rejected a request. A 
Reset Reject request is needed to clear the reject signal and allow the 
adapter to resume accepting requests. 
Status - three bit indicator giving the reason for rejection. 

• Subsystem Control Port 

The Subsystem Control Port (SCP) is an 8-bit read/write register used for 
direct hardware control of the subsystem adapter. This type of control 
cannot typically be handled by requests to the adapter management via 
immediate commands through the Command Interface Port (CIP). The SCP 
contains the following control indicators: 

Enable interrupt - indicates that interrupts to the system unit should be 
enabled or disabled for all devices attached to the adapter. 
Enable DMA - indicates that OMA operations should be enabled or disa­
bled for the subsystem. 
Reset reject - indicates that a reset of the reject state for the subsystem 
should be performed (see Reject under the description of Command 
Busy/Status Port above). 
Hardware reset - indicates that a controlled reset of the adapter and 
attached devices should be performed. 

B.6.2 Delivery Service Structure 

144 OS/2 V2.0Volume1 

The SCB architecture defines a structure that supports the physical delivery of 
control information between multiple entities (requesting or serving functions) 
executing in a base system processor and one or more peer entities executing 
in an advanced function adapters. Some entities may act as clients (requesters) 
while others act as servers. The entities build the control block structure, and 
the control block delivery service is used by one entity in either a system unit or 
feature adapter to communicate control block information to another entity. 

Based upon the information within a control block, data may also be communi­
cated between the two entities. The communication of data is referred to as 
data delivery. The delivery of data is separate from the delivery of command 
and control information and the individual entities are responsible for requesting 
the transfer of the data. 

In the simplest case, the control block delivery service may be viewed as sup­
porting communication between client entities located in the system unit and 
server entities located in an adapter. 



B.6.3 Delivery Service Facilities 
The SCB architecture defines two forms of control block delivery, known as 
locate mode and move mode. As the IBM SCSI adapters use locate mode 
delivery only this mode will be described. The following section provide an over­
view of the services, functions and protocols defined for locate mode and a brief 
description of their underlying control structures. 

B.6.3.1 Locate Mode 
Locate mode is generally used for traditional 110 protocols where there is a 
single system unit that requests a feature adapter to perform work on its behalf. 
The format of the control structure in locate mode is relatively fixed. The struc­
ture allows various command, status, and indirect list control blocks, connected 
with pointers, to represent a request from a client to a server. Figure 41 shows 
an overview of the control block and data delivery support. 

SYSTEM 
UNIT 
ENTITIES 

Data 

FEATURE 
ADAPTER 
ENTITIES 

Data 

Figure 41. Overview of Delivery Support 

Appendix B. Micro Channel Architecture and SCSI 145 



146 OS/2 V2.0 Volume 1 

The delivery support delivers one request at a time. A control block request is 
initiated by the client, which passes the physical address of the control block to 
the server through a command register (port) in 1/0. The 1/0 space ports are 
described in 8.6.1, "1/0 Port Definitions" on page 143. 

Locate mode provides: 

• Requests to Devices 

To use a device, a client sends requests in the form of control blocks to the 
device ID that represents the device and receives replies from it for each 
such request. 

• Support for Multiple Devices per Adapter 

Adapters may provide support for multiple devices. For example, multiple 
1/0 devices may be connected to a single SCSI adapter. The delivery 
support enables the delivery of requests to specific devices through the use 
of unique device identification numbers. 

• Adapter Management 

To be able to manage the adapter and deliver device/resource control infor­
mation to it, the adapter's unit manager is assigned device ID 0. It receives 
all adapter unit management information. 

• Command and Data Chaining and Detailed Status 

The control structure defined for locate mode provides for: 

Immediate command type requests 
- Requests that contain one command control and status block 
- Requests made up of multiple chained command control blocks. 

Command blocks may point to data directly or via an indirect address list. 
Figure 42 on page 147 shows a sample request control structure consisting 
of two command control blocks (command chaining). The first control block 
uses an indirect list control block to reference multiple buffers (data 
chaining). The second control block has a direct pointer to a single buffer. 
The pointer to the first control block is communicated via the shared 1/0 
address space. 



11 
• 
Shared 
1/0.Addreu 
Space 

Data 

Data Buffer 
In Shared 
Memory 

• ••••• .---,Data Buffer 
I@ in Shared 

Data 

Memory 

Data Buffer 
In Shared 

Figure 42. Locate Mode Control Block Delivery Structure 

• Use of DMA 

In locate mode, both the control block structure for a request and the data 
associated with the request are transferred between the system unit and the 
adapter using DMA. This OMA operation is managed by the adapter's 
deliyery support. The IBM SCSI adapters have a DMA with a 32-bit 
addressing capability, hence they are not limited by the fact that the DMA in 
the IBM PS/2 system units currently only supports 24-bit addressing. 

• Interrupts 

The delivery service allows the client to define when and under what condi­
tions interrupts should be generated. Generally, a single interrupt is gener­
ated for each completed request. When a request contains a chain of control 
blocks, additional interrupts may be requested for synchronization at inter­
mediate points within the request. 

There are three different control block structures used by locate mode requests: 

• Command Control Blocks 

The base command control block is a variable length structure created and 
maintained in shared memory by the client in the system unit. It is used to 
convey requests to a subsystem or device in an adapter. These requests 
are used to direct the operation of the subsystem or device. In Figure 43 on 
page 148 we show the structure of the command control block as used by 
the IBM SCSI adapters. 

Appendix B. Micro Channel Architecture and SCSI 147 



148 OS/2 V2.0 Volume 1 

31 24 16 8 0 

Enable Word 1 Corrmand Word 

Logical Block Address 

System Buffer Address 

System Buff er Byte Count 

Tennination Status Block Address 

Optional SCB Chain Address 

Block Count 1 Block Length 

Figure 43. SCB Structure Used by the IBM SCSI Adapter 

The command word specifies the operation to be executed, for example read 
or write. The enable word controls optional features to be used during the 
operation, for example whether the system buffer address points to actual 
data or is an indirect reference. 

The OS/2 V2.0 disk device driver builds the SCB and other control blocks 
required. It then calls the ABIOS transfer SCB function to initiate the opera­
tion. ABIOS uses the adapter's 1/0 ports to pass the SCB address. The 
adapter then uses its OMA controller to read the SCB into private memory 
on the adapter where it decodes it and initiates the required operation. Data 
is read from or written to system memory using the adapters OMA controller. 

The IBM SCSI adapters support chaining of SCBs. The adapter then uses 
the chain address to find the next SCB in a chain. All SCBs in a chain must 
be for the same device. SCBs are executed in the order that they are 
chained in. The device driver will try to sort the SCBs into an order that will 
minimize head movement unless requested not to. Where the order of exe­
cution is critical (for example, paging might require that certain writes be 
done before reads) this optimization will be disabled. 

A single IBM SCSI adapter can overlap processing of one command for up to 
15 attached devices. 

• Indirect Address Lists 

An indirect address list is a variable length list containing address-count 
pairs, and is used to support data chaining. The location of the indirect list 
control block and its length are specified by the System Buffer Address and 
System Buffer Byte Count fields in the command control block. 

Each entry in the list is 8 bytes (4 byte address and 4 byte length). 

The IBM SCSI adapters use the indirect address list structure for specifying 
scatter/gather lists. The layout of a scatter/gather list is shown in Figure 44 
on page 149. When passing a memory address to an adapter, the actual 
physical address at which the data is located must be used. Because of the 
mapping of virtual memory to pages in the physical address space, a data 
buffer could be split across multiple discontiguous pages. This means that a 
single logical disk 1/0 operation could require several physical operations. 
The scatter/gather list allows one 110 operations to access data in more than 
one physical memory location. Each entry in the list specifies a physical 
memory address and a data length. 



31 24 16 e 9 

Buffer 1 Physical Address 

Buff er 1 Byte Count 

Buffer 2 Physical Address 

Buff er 2 Byte Count 

Buffer n Physical Address 

Buff er n Byte Count 

(n <• 16} 

Figure 44. IBM SCSI Adapter Scatter/Gather List 

During a write to ~isk, data is then gathered from different memory locations 
and written to a contiguous block on disk. During a read from disk, data can 
be scattered to different locations in system memory. The IBM SCSI 
adapters support scatter/gather lists with up to 16 entries. 

When coupled with the ability to chain SCBs together, scatter/gather lists 
form an efficient mechanism for communicating paging 1/0 operations. By 
being able to chain SCBs together, both reads and writes can be specified in 
a single call from the paging subsystem to the file system. Scatter/gather 
lists allow multiple page reads or writes for a single SCB. 

• Termination Status Control Blocks 

In addition to the status indication in the ISP (Interrupt Status Port), the SCB 
architecture allows status information to be reported for each command. 
This information can be reported in a termination status block, which is con­
nected to each command control block. The adapter writes request com­
pletion status or termination status into this control block. The layout of the 
termination status block used by the IBM SCSI adapters is shown in 
Figure 45. 

31 24 16 e 9 

Retry Counts End Status 

Residual Buffer Count 

Residual Buffer Address 

Conmand Status 990Ch Add. Area Size 

Comnand Error Code Device Error Code 

Attactunent Diagnostic Error Modifier 

Cache Infonnation Word 

Last SCB Physical Address 

Figure 45. IBM SCSI Adapter Termination Status Block 

Appendix B. Micro Channel Architecture and SCSI 149 



B.6.4 Additional Information 

150 OS/2 V2.0Volume1 

More detailed information about the SCSI adapters can be found in the 
Personal System/2 Micro Channel SCSI Adapter Technical Reference 
(S68X-2397-00) or the Personal System/2 Micro Channel SCSI Adapter with Cache 
Technical Reference (S68X-2365-00). 

The SCSI BIOS information can be found in the Supplement for the Personal 
System/2 and Personal Computer BIOS Interface Technical Reference, December 
1989 (S15F-2161-00). 



Appendix C. Lab Session - 32-Bit Memory Model 

C.1 Objectives 

This lab session provides practical experience with the 32-bit flat memory model 
implemented under OS/2 Version 2.0, and demonstrates some of the new 
memory management facilities that were introduced in OS/2 Version 2.0. The 
exercise shows the way in which OS/2 Version 2.0 memory management differs 
from the memory management in previous releases. A look is also taken at 
enhancements made in the area of thread processing. 

Subjects which will be covered in this lab session are: 

1. Memory allocation using the DosAllocMem() function 

2. Page granularity in memory allocation 

3. The general protection exception error message 

4. The guard page fault exception error message 

5. The new SWAPPER.DAT functionality 

6. Starting multiple DOS sessions 

7. Starting multiple threads. 

Software required to do these exercises: 

• OS/2 Version 2.0 

• C Set/2 

• IBM Developer's Toolkit for OS/2 2.0 

C.2 Exercise 1 - Memory Allocation 
This exercise focuses on the DosAllocMem() function and its usage. The sample 
program used in the exercise allocates and uses memory in order to illustrate 
the new memory allocation mechanism, particularly with regard to paged 
memory. 

In this exercise, the student is required to run the program: 

MEMLAB1.EXE 

This program does the following: 

C> copyright I BM Corp. 1992 

1. Asks for an amount of memory to be allocated, in integer-sized (4 byte) units. 
2. Allocates and commits the requested amount of memory. 
3. Asks for the amount of memory to be used for read/write operations. The 

amount of memory to be used is specified as the number of integers to be 
written then read. 

4. Performs writes to fill the requested amount of memory. 
5. Checks whether the written values are correct. 
6. Frees the allocated memory. 
7. At initiation the program registers two termination routines: 

151 



a. An abnormal termination routine, to which general protection exceptions 
will be routed. 

b. A termination routine, which is called when the program exits normally. 

These routines are used to print out the program status at termination and to 
pinpoint where a general protection exception occurred. Note that C Set/2 
routines are used to register the exception handler. 
DosSetExceptionHandler() could also have been used. 

The program will be executed three times during the course of the exercise. The 
program listing is shown in C.3.4, "Source Code MEMLAB1.C" on page 153. 

C.2.1 Step 1 - Normal Memory Allocation 
Execute the program MEMLAB1.EXE, and instruct the program to perform the fol­
lowing: 

• Allocate one integer. 

• Specify 200 integers for read/write. 

The program should execute without error. Given that more memory has been 
accessed during the write operation than was originally allocated, explain how 
this is possible. 

C.2.2 Step 2 - Memory Protection Violation 
Execute the program MEMLAB1.EXE, and instruct the program to perform the fol­
lowing: 

• Allocate one integer. 

• Specify 1200 integers for read/write. 

In this step, the program should terminate with an error. Note the system error 
message, and the memory location where the error occurred. Given that each 
integer is a double word (4 bytes), explain why the error occurred. 

C.2.3 Step 3 - Large Memory Allocation 

152 OS/2 V2.0 Volume 1 

Execute the program MEM LAB1 .EXE, and instruct the program to perform the fol­
lowing: 

• Allocate 1048576 integers (4MB). 

• Use 67584 integers (254KB) for read/write. 

Note: This will take some time to complete. Please be patient. 

Check the program code to see how the memory allocation is done. Explain why 
this method works for all sizes of memory allocation. Compare this to the OS/2 
V 1.x memory allocation scheme. 

If you are able to do the exercise ----------------

Please do so now. If not, refer to the following explanation. 

If the program does not work, check for the free disk size on the logical drive 
where the SWAPPER.DAT file is located. Erase excess files and rerun the 
program. Contact your instructor for further assistance. 



C.3 Expected Results from Exercise 1 

C.3.1 Step 1 

C.3.2 Step 2 

C.3.3 Step 3 

After successfully completing the exercise, you will have tried a number of 
memory allocation options available using the DosAllocMem() function. The 
results from each step are explained below. 

You will notice that the operating system always allocates at least 4KB (1 page) 
of memory, even although only 1 byte may be specified in the allocation request. 
This is because all memory management in OS/2 Version 2.0 is handled on a 
per-page basis, using the flat memory model. The page is the lowest level of 
granularity in OS/2 Version 2.0; this differs from previous versions of OS/2, which 
had a byte-level granularity. 

This principle applies to all memory protection and memory access types (read, 
write, etc.). This allows a programmer to use more memory for read/write than 
is actually requested in an allocation request as shown in step 1, provided that 
memory is within the physical page boundary. 

In step 2, a general protection exception occurs when attempting to access 1200 
integers for read/write. Since each addressable memory location is a double 
word (4 bytes), there are a maximum of 1024 addressable locations in a single 
page. Attempting to access 1200 integers resulted in a general protection excep­
tion when the 1025th location was accessed. 

Should the program have done a second DosAllocMem, the page following the 
page containing the memory object used in the exercise would have also been 
valid in the process address space. The protection exception would then not 
have been generated. 32-bit programs see the process address as a single 
segment. 

The flat memory model allows a programmer to address any location within a 
memory object on a contiguous basis. The DosAllocMem() function returns a 
32-bit memory address, and not a segment selector as in previous versions of 
OS/2; hence, the programmer does not have to consider the 64KB segment 
boundary limitation. This allows the programmer to allocate a memory object of 
an arbitrary size up to 512MB (the process space address limit). 

C.3.4 Source Code MEMLAB1.C , ........................................................... , , ........................................................... , , ... 
1-• ProgrllD nace: 1£MLM1 .EXE , ... 

... , ... , . .. , ... , ... , ... , ... , 
/••• Crt11ted : 7. Moy 1998 , .. . 
, ... Author : Bo F11l11tnberg , ... 
1••• Revised : Ftbru11ry, 1992 by OaM",YI Frost •••/ , ... 
/••• Puriiase 

/• .. COllPlle , ... 
1••• Execute 

. .. , 
: Ta decanstr11te the use of the ntw ... , 

OasAllacMeD APl, and the handling •••/ 
of G1ner11l Protection Except I cins. • .. , 

: I cc /W'l aeal abl .c: 

... , ... , . .. , 
: aal obi (llo cciaond 11 ne p11ru:1ters)•••/ 

/••• Input p11r11D : 1. Mtcory ta 11lle1c11te ... , 
1••• 2. Memory to use far re11d/wrlte •••/ 

1·······················-···-····················-·········1 , ........................... ,. .............................. , 

, .............................•............................ , 
,... DEFINES ... , 
1··································••111t•111t••••··············· / 
•define INCL_DDSMEMMGR 

1···································••111t111t••·················1 
,... INCLUDE ... , 
1·····-······························-····················· J llnchide <os2.h> 
lirtclude <stdio.II> 
II nclude <std Ii b.h> 
llnclude <signol .h> 

/""* GLOBAL VARIABLES 
ULDNG ul lciop: /• I DOP v11ri able 

Appendix C. Lab Session - 32-Bit Memory Model 153 



FUNCT I llN PROTOTYPES 
void 1111in(int argc, char •argv[], char •envp[J); 
void t raphandl er( Int s I g)j 
vol d non:ial exit (voi dh 

... , 

/*"" HAIN PROGRAM ***/ 
void i:tain(int argc, chcr •crgv[], char •envp[]) 
{ , ...........................•.•............. , 

PU LONG pulBlock; /• pointer ta the starting ceccry location*/ 
UL ONG ulErr; /• error vari ab I e */ 
UL ONG ulAcount; 1• alilQunt of i:iell:Ory to be al 1 acated ., ,. (1 ong integers) */ 
UL ONG ul Bytes: /• al:'IOunt of 1111cory ta be allocated (bytes)•/ 
UL ONG ulUse: /* a1:1D11nt of 11:111:Dry to be used ., ,. (I an9 i nte9ers) ., 
BOOL OK • TRUE: /• r.iecory check i ndi catar ., , .................................... " ....... , 
setbuf(stdout, NULL): 

/* Regl st er an exception hand! er for melllOry except I on */ 
If (slgnal(SIGSEGV, traphandler) I• SIG_ERR) 

pr\ nt f ( "\nSI ynal Handler registered for 1:1eir.ory except i ons\n"); 
/* Re9lster en exit routine for nor111al exits•/ 

If (atexl t (no ma lex It) •• 8) 
print f("\nExl t hnndl er for nonnl temi n11ti on registered\n"); 

/* Read p11r11meters: l. Mccory to 1111 ocate •/ 
/* 2. Mei:iory to use * / 
/* Both p11r111:111ters as nur.:ber of long Integers•/ 

prlntfC"\nFcr how cany long integers should i::ei;:ary be allocated : "); 
scanf("\u", &ulM:Quntl: 

/* Deten:iine nucbtr of bytes to allocate •/ 
ulBytes • ulAclount • slzeof(ULONG); 
printf("\nHow long integers shoulc be written intc this aer:t0ry : •); 
scanf("\u". &ulUse); 

/" Allocate the l:tCOl")I */ 
ulErr • DosAl locMca ( (PPVOID)&pulBlack, ulBytes, 

PAG_COl+llT i PAG_READ I PAG_WRITE); 
if (lulErr) 
{ 

/* Insert vnlues Into uluse 1:11;:ory •/ 
prlntf("\nlnsertlng Integers Into 11:1cary\n•): 

C.4 Exercise 2 - Memory Protection 

for (ul laap • B: ullaop < ul Use: ulloop++) 
{ 

•(pulBlock + ul Loop) • '\xAB': 
} /• endfor * / 

1• Reali the i:ecory to check that It is OK * / 
for (ulloop • 8; ulloop < ul Use; ullaap++) 
{ 

If (•(pulBlack + ullcop) !: '\xAB') 
( 

prlntf(•\nError in byte \u\n•, ullaop); 
llK • FALSE: 

} /• endif •/ 
} /• endfar •/ 

If (OK) 
( 

prl nt f ( "\nAI 1 tzer.:ory checlted out OK\n"); 
} /* endlf •/ 

/• Free the r.iemory * / 
ul Err • DosFreeMem (pul Bl oclt}; 
If (ulErr I• S) 
{ 

prlntf("\nError In freeing : code tcu\n", ulErr); 
} /* endif •/ 

} else 
( 

prlntf("\nErrar In 111loc11tion : code tcu\n". ulErr); 
} /* end\ f */ 

/" ABNQRMAL TERMINATION llAHDLER 
void traphandler (int sig) 

*/ 

( 

} 

printf("\nA General Protection Exception was detecting writing to• 
• 11osltlon tcu\n", ulloap+l); 

/" NORMAL TERM! NAT l ON ROUTINE 
void ncl"!llDlexl t (void) 

*/ 

( 
printf(•\n\u integers successfully inserted into i:ecary\n", ullccp); 

This exercise demonstrates the different memory attributes used for different 
types of memory access, and the resulting impact on the allowed usage of 
memory (read or write). The access types used in this lab exercise are READ, 
WRITE, and EXECUTE. The effect of not committing pages and accessing a 
guarded page is also shown. 

154 OS/2 V2.0 Volume 1 

In this exercise, the student is required to run the program: 

MEMLAB2.EXE 

This program does the following: 

1. Asks for the amount of memory to be allocated 

2. Asks for the type of allocation: 

• PAG_COMMIT and PAG_READ 

• PAG_COMMIT and PAG_WRITE 

• PAG_ COMMIT and PAG_EXECUTE 

• PAG_COMMIT and PAG_GUARD and PAG_WRITE 

• PAG_WRITE 

3. Asks whether to READ or WRITE to this memory 

4. Allocates the memory with the requested attributes and either reads from or 
writes to this memory. 

The program listing is shown in C.5.1, "Source Code MEMLAB2.C" on page 155. 



This program should be run a number of times during the course of the exercise, 
trying the different attributes and reading from/writing to the memory allocated. 

If you are able to do the exercise ----------------~ 

Please do so now. If not, refer to the following explanation. 

C.5 Expected Results from Exercise 2 
After successfully completing the exercise, you will see the following results: 

1. Allocation type PAG_COMMIT and PAG_READ: 

• Read request is OK. 
• Write request fails with a general protection exception. 

2. Allocation type PAG_COMMIT and PAG_WRITE: 

• Read request is OK. 
• Write request is OK. 

3. Allocation type PAG_COMMIT and PAG_EXECUTE: 

• Read request is OK. 
• Write request fails with a general protection exception. 

4. Allocation type PAG_COMMIT and PAG_GUARD and PAG_WRITE: 

• Both read and write requests fail with a guard page exception. 

5. Allocation type PAG_WRITE: 

• Both read and write requests fail with a general protection exception. 

The behavior seen in cases 1, 2 and 3 occurs because the 80386 processor does 
not distinguish between READ and EXECUTE access. Furthermore, READ or 
EXECUTE access is allowed even for memory objects specified with WRITE 
access. This is because WRITE access implies both READ and EXECUTE access. 
However, WRITE access must be specified in order for the application to write 
into a memory object. 

In case 4, because the guard page bit is set, a guard page fault will always occur 
when accessing the page. You also should have seen a second message, 
"Exception occurred handling a prior exception". This occurs when the default 
guard page exception handler is invoked and tries to treat the area as a stack. 

In case 5, because the memory allocated was not committed, no physical space 
was reserved. Whenever accessing any of this memory a general protection 
exception is always raised. 

C.5.1 Source Code MEMLAB2.C 
/*******"*******•*•••••-••••••••*•*"••**"'***•••••••w••*"***/ 
/*•********•*••••••••••*************•••••••••••""*.,..•""•,..••***I 
/'"'* ***/ 
/*"* ProgrDQ nar.e: MEMLAB2. EXE ***I 
/*** "**/ 
/*** Creoted : 7. Mey 1998 **"/ , ... ... , , ..... Author : Bo Falkenberg **"/ , .... ... , 
/*"* Revised : Febru11ry, 1992 by Darryl Frost ... , 
/*"" ***/ , .... Ptirpose : To demonstrate the different types "**/ , ... of mer.ory allocation. ... , , .... **"/ 

/*-* COJ:!llile 
/*"* 
/*"* Execute 

: i cc /W2 meml ab2.c 
*fll*/ 

: me ml ab2 (no cor.11111nd 1i ne parameters)***/ 
,.... *"*/ 
/"** Jnp11t p11r11111 : 1. A:lount of memory in KB ***/ 
/**" 2. Type of memory 11lloc11tlon. "*"/ 
/"** 3. Type of memory usn!Je **" / , .... **"! 
j•*11'111ift'lt•'lll'R11r•1t*11t1'rfl'ftftir:ftf11Wflllillft*'ltllil11rlll'lt*'llr****"*"**'ll•lfll••-fl-!it'llr*1t*•**/ 

, ••••••••••••..•••.••••••••• .,. •• 11t•fl'•••111"••···················1 
,.,.. .. ,, ............................... ,.. . .,.. ..... _ .......... _ ....... , 
/""* DEFINES "**/ 

Appendix C. Lab Session - 32-Blt Memory Model 155 



1·································••*****••••••••••****"*"*/ #defl ne INCL_DOSME""6R 

/****•••••••••• ••••••• •••••• •••• • • **** • • •• •• ... •• •••• * ••••••I 
/

0 * INCLUDE •••/ , .............. ···-·········-·········· .................... , 
Ii ncl ude <os2.h> 
Ii ncl ude <stdi o.h> 
Ii nc I ude <s tdll b .h> 

, .............. ,. ................................................... , 
/•° FUNCTION PROTOTYPES ... , 
, ............... ············-·--···-· ····-·····-·-···-···-···· / 
void cain(int argc, char •argv[], char •envp[JJ; 

, .......................................................... , 
/••• MAIN PRGGRAM ... , 
1··········-··············-································1 
void cain(int argc, char •argv[J, char •envp[)) 
( , ........................................... , 

PU LONG pul Bl ocK; 
ULONG ul Err; 
ULONG ul Loop; 
UL ONG ul Al:ount; 
UL ONG ul Selection; 
char cletter; 
BOOL OK • TRUE; 

setbuf(stdout, NULL); 

/* pointer to the starting r:eaol")I location •/ 
/• error variable • / 
/• I ocp variable •/ 
/* c=ount of ce=ory to be al located •/ 
/* input selecticn •/ 
/• Input char • / 
/• ceccry check I ndl cat or • / , ..........................................• , 

1• Read the paraaters •1 
/* 1. Ai:ount of r:ei:t0ry in K9ytes to be al located •/ 
/• z. Cct.lbinatlcn of cllocntlon flags •/ 
/• 3. Whether data Shaul cl read froa or written •/ 
/* the CEIZOl")I. */ 

printf("f!ow c:uch r:eaory (in KB) do you w11nt to allocate : •); 
scnnf(•tsu•, &ulAr.ount); 
ulAccunt • ulAll:ount • 1924: 

printf("\nwhat type of 111111:10ry allocctlon do you want: \n"); 
printf(" 1. PAG CClf1IT and PAG READ\n"); 
printf(" z. PAG-COlf1IT end PAG-WRITf\n"); 
printf(• J. PAG-COlf1IT 11nd PAG-EXECUTE\n"); 
print f ( • 4. PAG-COfof!IT and PAG-GUARD and PAG WRITE\n"); 
printf(• s. PAG-WRIT£\n"); - -
printf("Enter yo~r selection (1, Z, J, 4 or S) : "); 
sccnf("'su''. &ul Selection); 

print f( "\nOo you want to Read or Write In the c:ei:ory (R/W) : •); 
ffl ush (stdl n) ; 
scanf("'sc", &clatter); 

/• All ocnte the nemory •/ 
switch (ul S11hction) 
{ 

case 1: 

C.6 Exercise 3 - Multiple DOS Sessions 

ul Err • DosAll ocK1r.i ((PPYOID)&pul Block, ul All.lOunt, 
PAG_C01f1IT I PAG_RfAO); 

brellK; 
case 2: 

ulErr • DosAllocMer.i ((PPYOID)&pulBlocK, ulAl:ount, 
PAG_COlfolIT I PAG_WRITE); 

br111k; 
case 3: 

ul Err • DosAll ocMei:i ( (PPYOID)&pul Bl ocK, ulAl:ount, 
PAG_COlf1IT I PAG_EXECUTE); 

break; 
case 4: 

ulErr • OosAll ocMe11 ( (PPVOID)&llul Block, ulAl::ount, 
PAG_COlf1IT I PAG_GUARD I PAG_WRITE); 

brellK; 
case 5: 

ulErr • DosA11oc:Mea ((PPVOID)&pulBlock, ulAl::ount, 
PAG_WRITE); 

brellK; 
def cult: 

printf("\nYou acde a WRONG selection l!l\n"); 
exit (9); 

} /• endswi tch • / 

if (ulErr !• 9) { 
printf("Error in allocation : cede fsu\n", ulErr); 
exit(ll; 

} /* endlf */ 

if (cletter •• ·w· 11 cletter u •w') 
{ 

/• insert data Into all oc11ted r:eaory */ 
print f("\nWri ting ••• \n•); 
for (ul Loop • 8; ulloop < ulA;;ount/4; ul Loop++) 
{ 

•(pulBlock + ulloop) • 7; 
} /• end for "I 

} else 
{ 

/• recd date from 11 II oc11ted cer:iory *I 
pri ntf("\nReading ••• \n"); 
for (ulloop • 8; ulloop < ulAlttount/4; ulloop++) 
{ 

If (•(pulBlDCk + ul Loop) !• 7) 
{ 

OK • FALSE; 
} /• endi f */ 

} /" endfor "/ 
} /* endi f •/ 

ul Err • DosFreeMem (pul Block); 
if (ulErr I• 8) 
{ 

print f("\nError in freeing : code 'su\n", ul Err); 
} /" endi f "/ 

This exercise demonstrates how an OS/2 protected mode program may start a 
DOS program in a virtual DOS machine. Furthermore, the growth of the swap 
file is shown, as well as the decrease in the size of the swap file after termi­
nation of the OS/2 program. 

156 OS/2 V2.0 Volume 1 

The program used in this exercise makes use of the DosStartSession() function. 

In this exercise, the student is required to run the memory lab program: 

MEMLAB3.EXE 

Syntax: MEMLAB3 <no. of DOS sessions> 

The steps in the program are as follows: 

1. If a parameter is passed to the program, it will use this as the number of 
DOS sessions to start. If no parameter is provided, four DOS sessions are 
started. 

2. The program reads a file named: MEMLAB3.PRO. 



A sample MEMLAB3.PRO is shown in C.7.2, "Sample Input File for 
MEMLAB3.EXE" on page 160. 

The file must be created using an ASCII editor such as the OS/2 V2.0 System 
Editor and consists of three lines as follows: 

a. The full path and file name of the swap file. 
b. The name of the DOS program to be executed in each of the started ses­

sions. 

In the example this is EDLIN.COM. 
c. The parameter string which is to be pass~d to the DOS program. 

If no parameters are to be passed, an empty line must still appear in the 
file. In the example this is AUTOEXEC.BAT 

3. The program starts the specified number of DOS sessions, if possible, with 
the current system resources. Before starting any sessions, the program 
displays the size of the swap file. After each session is started the new size 
of the swap file is displayed. 

4. When the requested number of DOS sessions is started or the system 
resources are exhausted, the program will wait for a keystroke in order to 
terminate. 

5. When the keystroke is received by the program all the DOS sessions are ter­
minated. After terminating each session the swap file size is displayed. The 
program continues to monitor and display the swap file every 10 seconds 
until it remains unchanged for a period of 100 seconds. 

The program listing is shown in C.7.1, "Source Code MEMLAB3.C" on page 158. 

You should perform the following steps: 

1. Although MEMLAB3 does give information about the swap file size, you may 
also want to use the SWAPSIZE program which is described in C.10, 
"Program to Display Swap File Size" on page 162 to monitor the changes in 
the size of SWAPPER.DAT. If so start this program now. 

2. Run the MEMLAB3 program and notice how the swap file size increases as 
the sessions are started. 

3. Terminate the program and watch the decrease in size of the swap file over 
time. 

Note the 512KB steps in which the swap file size increases and decreases. 

If you are able to do the exercise -------------------. 

Please do so now. If not, refer to the following explanation. 

C. 7 Expected Results from Exercise 3 
After successfully completing the exercise, you should see the following results: 

• The increase or decrease in the size of the swap file will always be in multi­
ples of 512KB. 

• If a large number of DOS sessions is specified, and a CPU-bound DOS 
program is started in each session, a heavy system load can be observed. 
This is because the DOS programs continue to execute even when in back-

Appendix C. Lab Session - 32-Bit Memory Model 157 



ground. The system usage can be monitored using the PULSE application 
which can be found in the Productivity folder of the OS/2 System Folder 
which appears on the OS/2 Desktop. 

If the time is available, you may wish to experiment by starting sessions with a 
type other than DOS full screen. MEMLAB3 will accept a second parameter 
which is then used as the SessionType parameter when calling the 
DosStartSession function. 

Syntax: MEMLAB3 <no of sessions> <SessionType> 

Session type may be any one of the values accepted by DosStartSesslon. 

SessionType Type of Session 

1 OS/2 Full Screen 

2 OS/2 Windowed 

3 Presentation Manager 

4 DOS Full Screen 

7 DOS Windowed 

Edit the MEMLAB3.PRO file to change the name of the program to be started and 
the parameters with which it must be started. Issue the command to start 
MEMLAB3 specifying both the number of sessions to start and the session type 
to be started. 

C.7.1 Source Code MEMLAB3.C 
/*•*******••11 ****""'"'""'"'•* ... .,. •• * ••• * • ••• •• •••••• •• *** ..... *"'• "'"' • / 
, •••••••••••••••••• .,..,. • .,. .... ,, ................... * ••• .,.. •••••••• , , ... ... , , ... Pragraa nue: MEHLAB3.EXE ... , , ... *"'*/ , ... Created : 7 Hay, 1998 . .. , , ... ... , , ... Author : Bo Falkenberg ... , , .. ,..,, ... , , ... Revised : FebrL1ary, 1992 by D11rryl Frost ... , , ... . .. , , ... PUT'1!05e : To der.ionstrate aultlple sessions ... , , ... started fron o OS/2 program, and ... , , ... to show how the size of the swap . .. , , ... file varl es 11s the sessl ens 11re . .. , , ... started and what happens to the swap•••/ , ... file 11fter the sessions are stoppen.•••/ , ... ... , , ... Co;:pi le : i cc /0+ /'112 aeal e.b3.c ... , , ... ... , , ... Exec"tt : aeal e.b3 n x ... , , ... where n • the nlll:ber of sessl ens ... , , ... to be stllrted. If nothl ng Is . .. , , ... entered 4 sessl ons wl 11 be started .... , , ... x Is the t31pe of sessions to start. •••/ , ... By def cult x Is ea"11l to 4, which . .. , , ... ce11ns ful 1 screen DOS sessions wll 1 •••/ , ... be started. x c&n be 11ny of the ... , , ... Session Type val 11ts recognized by ... , , ... DosSlllrtSessi on. ... , , ... . .. , , ... File Input : Reads file HEMLAB3.PRO which aust be•••/ , ... set"P using 1111 editor s"ch as the . .. , , ... OS/2 S31stea Editor. The file . .. , , ... contel ns three 11 nes. The fl rst . .. , , ... line contains the naa of the swap . .. , , ... file Including its full poth. The . .. , , ... next Ii ne contoi ns the n=e of the . .. , , ... progrca which Is to be exec"ttd In . .. , , ... the sessl ens. Tile poth used to . .. , , ... fl nd the progr!UI r::&1st be Inc 1 uded. ... , , ... The last line contains the ... , , ... par1111eter string which Is to be . .. , , ... passed to the progr111:1 at start-up. .,, .. , , ... . .. , 
/••••••••••••••••••••••••••••••-•-••••-••••••••••••••••••••I , ................................................•......... , 

158 OS/2 V2.0 Volume 1 

1••••••••••***"'********•••••············•••*1lffll**••········· / 

1••••••••••••••••••••••••11r••••••••••••••••••••••••••••••••* I 
#define INCL DOS 
#def I ne LENGTH si zeof(buffer) 

t• Do sf i ndF i rst ret"med buffer 
size •/ 

#define TIHEINTERVAL 18 /• Seconds to woi t when checki nr 
swap file size•/ 

#define MAXLOOP 18 /• No of intervals with s111:e 
sw11p fl 1 e size 11fter whit'h 
prograr.i in terai noted • / 

ldeflne NOSESS /• No of Sessions to st11rt •/ 
ldeflne DOS_FISLL_SCREEN 4 /• Defcult Session Type •/ 

, ...........•......................•......•................ , 
/••• INCLUDE , ........................................................... , 
Ii nclude 
II nclude 
llnclude 
llnclude 

<os2.h> 
<stdlo.h> 
<string.h> 
<stdl ib.h> 

/""******•••••••••••••••••••••••••••••••••**"*"****••••••a•/ 
/••• GLOBAL VARIABLES ***/ 
/•••••••••••••••••••••••••••••••••••tt••••••••••••,,••••••••" I 

ULONG SessID; 
PIO DOSpid: 
USHORT re • e: 
USHDRT frc • a: 
struct STARTDATA StllrtData: 
struct - FILEFINDBUF b"ffer; 
char szFna=e[64]; 
char szProgna=e[64); 
char szProglnp[54); 
FILE •fptr; 
PULONG pSt11rtedSessID; 
ULONG •p; 

/* Session ID (ret"rned) •/ 
1• Process ID (returned) */ 
/• ret11m code */ 
1• fi 1 e ret"rn code • / 
/• start progrlll:I struct"re • / 
/• file lnfoniatlon struct •/ 

, ...................•.....••..•.....••...•................. , 
t••• FUN CTI ON PROTOTYPES , ..•..............•...............................•........ , 
void uin(int argc, char •orgv[], char •envp[)h 
vol d pri nttro~l e(voi d); 
UL ONG GetSwapperSi ze(): 



, .......................................................... , 
/**" MAIN PROGRAM , .......................................................... , 
void aain(int orge, ehor •orgv[), chor •envp[)) 
{ 

Int rodix • 19: 
Int 1 oop: 
Int no of SESS: 
Int sesstype: 
c!tor Reloted: 
wisigned chor •Tltlel: 
unsigned chor *TitleZ: 
char chi oopl(3B]: 
char chlcopZ[39]: 
ehar *duc;yl: 
char *dim:i,y2: 
char *pchrc: 
ULONG sLen: 
ULONG fsi ze: 
UlllNG ulrc:: 
UL ONG ulTargetOpt I on; 
UL ONG ul Sessl d; 
ULONG ulTiMlnterval • TIMEINTERVAL • 1998; 
ULONG elapsed: 
ULONG 1 copfl ag; 
ULONG tiaco11nt: 
ULONG Hl:leCount; 
ULONG soveslze: 

1• Default no of sessions to start 
no of SESS • NOSESS; 
sesstype • DOS_FULL_SCREEN; 

/* Get 11rg111:1ent s frai:i the co1m11nd 11 ne, If present 
If (argc >• 2) 
{ 

/* Nullber of sess i ans to stort 
no_af_SESS • atai (argv(l]): 

I f Corse >- l) 
{ 

/* Sess i an type 
sesstype • 11toi (11rgv[Z)): 

/* Rend p11r1111eters froa MEHLAll3.PRO fl I e 
fptr • fopen("=tal Dbl.pro•, •r•): 
if (fptr •• (FILE *)NULL) 
{ 

printf("\nFi le MEMLA!IJ.PRO cannot be fcund\n"); 
return; 

/• 11 ne 1 : swapper file poth 11nd fl I 1noi::e 
ochre • fgets(szFnai:e, sizeof(szFnu:e)-1, fptr): 
If (pchrc •• (char •)NULL) 
( 

printtrouble(); 
return; 

} 
szFn111:1e[strlen(szFn1111:e)·I] • '\9': 

/• line Z : nar.:e of program ta start In the sessions •/ 
pchrc • fgets(szPrognai:e, sizeof(szPrognace)-1, fptrl: 
If (pchrc •• (char *)NULL) 
{ 

print trouble(): 
return; 

uPro!Jl1air.e[strlen(szPragnaae)-1] • '\8': 

*/ 

*/ 

., 

*/ 

*I 

*/ 

/* line J : porar.ieters to be passed ta the program */ 
pchrc • fgets(szProglnp, slzeof(szProglnp)-1, fptrl: 
If (pchrc: •• (chor •)NULL) 
{ 

pri nttraubl e(): 
return; 

slen • strl en(szProginp): 
szProglnp(slen-1] • '\8': 

/* Set up parD11eter block for DosStllrtStsslon */ 
StortData.Pgi::Noi:e • szProgno:e; 
StartData.Pgalnputs • szProgl np: 
StartData.Length • 32; 
St11rtD11t11.FgBg • 1; 

Start Data.Rel oted • 1: /* related ta p11rtnt •/ 

StortDota. Te~ • ICULL: 
StortData.lnherltOpt • 8: 
StartData.Envl roni::ent • 8; 
StortOata.Pgi:Cantrol • SSF_CONTROL_HINIHIZE; /" Start Hlnlalzed •/ 
loop • II; 
re • 9• 

/* All oc11te i:ei;:ary to save IDs of started sessl ans 
slen • no of SESS • sl zaaf(ULONG): 
frc • DosA11ocHea ((PPVOID)&pStart1dSess10. sLen. 

PAG_ll!IITE I PAG_R£All I PAG_COlt4IT ); 
if (frc I• 9) 
{ 

print f("Me1:0ry Allocation Foll ure, return code 'u\n•, frc:): 
exit (1): 

p • pStartedSesslD: 

/* Keep starting sess i ans, unt ii an error occurs * / 
/* or the reauested nu:btr a f sass I ans Is reached. • / 
/* Save the IDs of the started sessi ans. */ 
/* Displ111 the size of the swap file before starting */ 
/* any sessions ond ofter eoch session is storted. */ 

printf("Progr1m MEHLABJ ls executlng\n"): 
printf("'i:u sessions will be started\n", no of SESS): 
fslze • GetSwapperSlze(): - -
pri ntf("Size of SWAPPER.DAT is now 'u KB\n•, fslze): 
while (Ire: && loop < no of SESS) 
{ - -

loop++: 
StartDalll.Sessi on Type • sesstype: /* session type */ 

/* aaKe the progra11 t It 1 e */ 
Title! • •, SESS\n\8": /* with a session nur::ber •/ 
cluql • _ltoa(1oop, chloopl, rllcllx): 
strc11t (dum:llYI, Tl t 1 el); 
StartD11t11.Pgi:1TI t 1 e • du1"111)11: 

re • DosStartSessl an(&StortDoto, &SesslD, &DOSpl d); 
If (re •• G) 
{ 

prlntf("Sesslan no 'i:u Is st11rtad; Session ID: \11\n" 0 

1 oap, SesslD): 
fslze • GetSwapperSlze(); 
prl nt f("Slze of SWAPPER.DAT Is now \u KB\n", fsl zel: 
*p++ • SesslD; 

] else 
{ 

prlntf("An error occurred starting Session no 'u\n", loop): 
prlntf("Retum code froa DosStartStsslan • 'u\n•, rel: 
l DDP • no of SESS: 

} /• en di f ; I -
} /* endwhl 1 e */ 

/• Woi t for a key on the 1t1yba11rd ta be deprrsStd, then * / 
/• terainate the sessions. DisplllY tl'le swap file size */ 
/* ofter each session Is tll'Dlnated. •/ 

printf("Press <Enter> to teraln11te tht Sessions ••• •): 
ff1 ush(stdautl: 
1 oop • getehar(); /•wolt for Input •/ 
p • pStartedSesslD; 
far (1 DOP • 1: 1 DOP <• no of SESS; 1 aop++) 
{ - -

ulSessid • *pH; 
ulTargetOpt ion • 8: 
ulrc • DosStopSesslon (u1Torgat0ptlon, ulSessld); 
if (ulrc: •• B) 
{ 

printf(•Session with ID \u has b11n stopped\n", ulSessld); 

fsi ze • GetswapperSi ze(): 
prlntf(•Size of SWAPPER.DAT Is now 'i:u KB\n•, fsize): 

/* Monitor the swop fi 1 e size and di spl llY it 11t I nterv11ls •/ 
/* of TIHEI NTERVAL seconds. When the s lze has re11111I ned * / 
/* canstllnt for TIMEINTERVAL • HAXLOOP seconds, temlnate */ 
/* the progror.1. • / 

1 a op flog • TRUE: 
soves lze • fs lze: 
t il:iecount • 1: 
whl le (1 copfl og) 
{ 

} 

ulrc • Dos5leep(u1Th:elnterva1); 
elapSEd • th:ecaunt • TI HE INTERVAL: 
printf("ElapSEd th111 since closing llOS stsslons Is lllu stconds\n•, 

elopsed): 
fs lze • GetSwapperSlzt () : 
prlntf("Slze of S\IAPPER.OAT Is now \u KB\n", fslze); 
ticecor.int++: 
Slll:llCOunt++; 
If ( fslze t• Hveslze) 
{ 

} 

saves ize • fs ize: 
saecawit • 8: 

If (s111:1count •• IWCLCIOP • 1) 
{ 

elapsed • IWCLOOP • TIHEillTERVAL; 
prl nt f("llo chonge In SWAPPER.OAT sl ze for '"' secoruls\n" 

"Progr1m In tll'Din11tlng\n",1l1111sed): 
laopf111g • FALSE: 

exit (8): 

Appendix c. Lab Session - 32-Blt Memory Model 159 



t• Function to report errors with MEMLAB3.PRO */ count • 1: 
vol d prl nttroWlle(voi d) fhcndl e • exFFFF: 
{ 

printf("\nSorry, trolllll e reeding MEMLA93.PRO\n"); 
fcl ose(fptr): 

fn: • DosFlndFI rst (szFn11111e, &fhnndl e, 8, &buffer, LENGTH, 
&count• ll) : 

If (frc I• 8) 
{ ret11m: 

fflush(stdout); 

t• Function which returns swap fl le size in KB 
ULONG GetSwe.pperSi ze () 

*/ 
prlntf("Fi le error :'iu\n", frc); 
exlt(Bh 

}/*endlf*/ 
( 

HDIR fhcndl e; 
unsigned LONG count; 
int fsi ze; 

fsl ze • buffer.cbFlleAlloc / 1824; /* In KBytes */ 
DosFi ndCl ose (fhnndle): 
retum(fshel: 

C.7.2 Sample Input File for MEMLAB3.EXE 
The file, MEMLAB3.PRO, must appear in a directory accessible to MEMLAB3.EXE 
when it is executed. 

C:\OSZ\SYSTEM\SW1lPPtr.d11t 
C:\os2\ados\edl in.co11 
C :\11utoexec .b11t 

C.8 Exercise 4 - Multiple Threads 

160 OS/2 V2.0 Volume 1 

This exercise demonstrates that an OS/2 program can start a very large number 
of threads (up to a maximum of 4096, minus those threads the system has 
already started). The program makes use of C Set/2 _beginthread function. 

In this exercise, the student is required to run the memory lab program: 

MEMLAB4.exe 

Syntax: MEMLAB4 <number of threads> 

If number of threads is not entered, ten (10) is assumed. 

This program does the following: 

1. Starts the specified number of threads. 

Each thread is very simple; it merely issues a DosSleep() function call and 
an occasional write to screen. This is in order that all threads may start 
within a reasonable time frame. 

For practical reasons, do not try to start more than 200 threads. 

2. When all the threads are started, the program waits for keyboard input. 

At this time we suggest you issue the PSTAT command from an OS/2 
Command Prompt. Use the "\C" option. This displays a list of all processes 
and threads open in the system. You can also see the number of threads in 
use for system functions. 

3. When the program receives a keystroke, it sets a flag to request the threads 
to terminate. When all started threads have terminated, the program exits. 

The program listing is shown in C.9.1, "Source Code MEMLAB4.C" on page 161. 

If you are able to do the exercise ----------------. 

Please do so now. If not, refer to the following explanation. 

The following error message may be generated: 



DosCreateThread error= 164. 

This typically occurs when the maximum allowed number of threads specified in 
CON FIG.SYS is less than the number of threads requested. 

Note: Remember that the specified number of threads in the CONFIG.SYS file 
includes threads used by the operating system. This amounts to approximately 
22 threads. · 

If the required number of threads cannot be started, check the CONFIG.SYS file. 
This file contains a specification for the maximum number of threads allowed in 
the system. Increase the threads command to: THREADS = 4095, and re-IPL the 
system. 

C.9 Expected Results From Exercise 4 
After successfully completing the exercise, you will observe the following results: 

• The number of threads per process is not limited to 53 as in previous ver­
sions of OS/2. 

• The maximum number of threads system wide is increased to 4096 threads. 

C.9.1 Source Code MEMLAB4.C 
,.,, •• frllliftllllfl'***•***"*fr***•*•••···············••1111•••••11tfl'llll-••fr.,,., 
/••••••••••••••••••****"'*****"*"*"*****"*"******•••••••••••I 
r** "~ , ... Pragraa na11e: MEMLA84,EXE ***/ 
/*** ***/ 
/*** CrtAted : 7 Mey. 19!18 ... , , ... . .. , , ... Author : Bo F11lkenherg ***/ , ... ... , , ... Rtvlsed : February. 1992 by D11!'1'yl Frost ... , 
/*** ***/ , ... P11rpose : To demnst r11te tl'le nrw sysu11 ... , , ... licit for the n111:ber of threods ... , , ... per procen in OS/2 2.8 1md the ... , 
/*** effect of thread creation on the ... , 
/*** growth of SWAPPER. llAT. ***/ 
/*** ... , , ... Campi le : I cc /W2 /GJt+ i::eml ab4.c **"/ 
/*** ... , 
/*"* Execute : mealab4 n f ***/ , ... where n is the nui:tber of second11ry ... , , ... threads tl'le progr111:1 c:ust creotll. . .. , , ... 1111d f if present 1111d 8 (uro) c1111ses***/ , ... the cre11ted threllds to tercl n11te ... , , ... 11fter 48 seconds e 1 se the thr111ds ... , , ... 11fter 48 seconds enter 11 wal t 1111d ... , , ... print loap. The wait th:e Is ***/ 
/*** rnndoaly deterained. If n Is not .... , , ... speci fi ed 1 a Is llSSlllill!d. 
/**• ***/ , ...•.•..............•..........•••.•...................... , , .........•.............•........•..••....•...•.•...•...... , 

1·········································••••111

••·········· / 
/*** DEFINES ... , 
/'**••••••••••••••••••••••••••••••••••••••••••••••••••••••••I 
Ide fl ne I NC L DOS 
ldefl nt lliCL=DDSPROCESS 

1·································-························1 ,... INCLUDE ***/ 1··························································1 
llnclude <os2.h> 
I\ nc l 11de <stdl o. h> 
llnclude <stdllb,h> 

void _Optllnk NewThre11d( PVOID pThrecidArg): /* proc1dur1 d1cl11ratlan */ 

BOOl l oopfl ag • TRUE; 
Int thr111dca11nt • 8; 

, ............................................................. , 
/"** MAIN PROGRAM ***I , ........................••....•.••••..................•... , 

1:1111 n ( Int 11rgc. ch11r *Drgv []. ch11r *envp [] ) 
{ ,.,. .. ,. ........... .,, ........... , 

TIO ThreadID: /*thread Identification*/ 
UlONG ulThreadArg: /* thread 11rguants */ 
ULONG ulThreadFlags: /* thread fl11gs */ 
ULONG ul Stack size: /* thre11d stack size */ 
int no of threads; /* nullber of threllds *I 
Int I;- - /*loop variable •/ , .......•........•......•• , 
111Threadfl cgs • 8; /* start thread lcedl11tely */ 
ul Stec~ size • 1824: 
ul ThreadArg • 1: 

/* give stack size In bytes •/ 

If (11rgc < 2) 
{ 

no of threa.ds • 18: 
} else -
{ 

no_or_threcds • atol (11rgv[l]); 
} 

If (argc > 2) 
{ 

If (*argv[2)ss'8') 
loopna9 • FALSE: 

for (I • 1: i < no_of_threods+l: I++) 
{ 

If ( ( ThrelldlD • _b11glnthre11d( llewThread, llULL, ulStllCk_size. (PVlllD)I ) ) •• •1 ) 
{ 

} 

prlntf("_beginthread error\n"); 
exit (1): 

print f( "Thr111d nulilber \d crected\n •,I): 

prlntf("To end the progr1111 press <CR> \n"): 
9etchar(); 
loopfl11g • FALSE; 
prl nt f( "MEMLA84 terai nat i ng\n•): 

/* lie\! for 1111 the threads to stop * / 
whl 11 (TRUE) 
{ 

} 
} 

DosSl eep(1888): 
DosEnterCrl tSec (); 
I f(thre11dcount •• 8){ 

DosExl tCrl tSec(): 

) 

prl ntf("All threads stopped. progr1111 Is tenal nated\n"): 
txlt (1): 

DosExl tCrl tSec(): 

1············-·········-··-·-·-···-···-···················· / 
/"** THREAD **"I 

Appendix c. Lab Session - 32-Bit Memory Model 161 



/••••••••••••••••••••••••••••••••••••-••••••••••••••••••••"I 
void NewThrecd( PVOID pThreadArg ) 

{ 
UlONG ulThreadArg • ( UlONG )pThreadArg; 

DasEnterCrl tSec(); 
threadcaunt++; 
OosExl tCrl tSec (); 

prl nt f( "Thread \11 has started\n", 111ThreadArg ) ; 
srand( (lnt)111Thre11dArg): t• seed rando1:1 generator */ 
OosSleep ( 48888 ) ; t• 48 SEC. sleep interval */ 

C.10 Program to Display Swap File Size 

will 1 e (1copfl11g) 
{ 
prlntf("Thread \d just woke up\n•, ulThre11.dArg); 
OosSletp ( rand() ): /* r'l111doa sleep interval */ 
) 

OosEnurCrl tSec (): 
threadcount ··; 
OosE11I tCrl tSec(); 
} 

Listed below is a small program1 SWAPSIZE1 which may be used to monitor the 
size of SWAPPER.DAT. The size is displayed in a PM window. The size of 
SWAPPER.DAT is queried every 10 seconds and the display updated when the 
size changes. The sampling interval can be changed to either 30 seconds or 60 
seconds by selecting the Interval action bar. By default the program assumes the 
swap file to be C:\OS2\SYSTEM\SWAPPER.DAT. If this is not the case then when 
executing SWAPSIZE a command line parameter must be included which gives 
the full path and file name of the swap file. 

C.10.1 Source Code SWAPSIZE.C 
/*•••••••••••••••••••••••••••••••••••••••••••••••••••••••••I , ......................................•................... , , ... . .. , 
/*** PrograD n&i:::e: SllAPSJZE.EXE ... , 
/*** ***/ , ... Created : February. 1992 ... , 
/*** **"/ , ... Ravised . .. , , ... ***/ , ... Author : Darryl Frost .... , , ... ... , 
/*** Purpose : To be used wl tfl the lab Session ... , , ... Exar.IP 1 es given In Append I 11 C of the *** / , ... OS/2 Version 2.0 Volur.e 1: Control ..., , ... Prograr.i Oocur.ent no GG24· 37 39, . .. , , ... This program interrogates ond . .. , , ..... di spl llYS the size of the *"*/ , .... SWAPPER.DAT at regul or intervals *"*/ , ... In 11 PM window. The Interval Is ***/ , .. .,, Initially set to 18 seconds. This ... , , ... zay be changed to 39 seconds or .... , , ... 59 seconds by se I ect Ing the .... , , ... Interval action bar. . .. , , ... ***/ , ... Par1111eter : 1 f the path of SWAPPER.OAT is other •••/ , .... than C:\052\SYSTEM, the full path ... , , ... and fl 1 e na:e of the swaiiper fi 1 e . .. , , ... aust be the fl rst parueter passed .... , , ... to the progai:i when It Is started. ..... , , ... ... , 
1•····················-···································· / , .......................................................... , 
ldeflne INCL WIN 
ldeflne INCL=GPI 

/* PM he11der fi 1 e ., #Include <os2.h> 
linclude <strlng.h> 
llnclude <stdlib.h> 
llnclude •sw1111slze.h" /* Resoun:e syllbolic identifiers•/ 

•define STRINGLENGTH 20 /" length of st ri n11 ., 
1•······························•***'ft•·--································1 /* Funct I on Prototypes */ , ........................ .,. .. ,. ...........................•...•......••.••. , 
INT aain(lnt argc, char *11rgv[], char •envp(] ): 
VOID AbortSS(HllNO hwndFra:111,HllNO hwndClient); 
HRESUlT EXPENTRY SSWlndowProc( Kl/ND hwnd, UlONG m9, MPARAM r.pl, HPARAM cp2 ); 
UUING GetSwapperSize (vol d); 

/* Define parar:ieters by type • / 
llA8 hab; /* PM anchor block hondle •/ 
HllND hwndCllent•Bl: /"Client 11re11 window hondle •/ 
HllHO hwndFrai:e•8l; /* Fra=e window hondle •/ 
CHAR •szStrl ng; t• procedure. •/ 
PSZ pszErrt4sg: 
char szFna:e [6') • ·c:\\OS2\\SYSTEM\ \S\IAPPER. DAT": 
UlOllG swaiisi ze; 
UlONG oldswapsl ze; 
ULONG th:iarinterval • 19 * 1898; 
UlOllG I dTI cer • l: 

162 OS/2 V2.0 Volume 1 

, .............................•.•.••........................................... , ,. 
/* MAIN Initializes the process for 05/2 PM services, and processes the 
t• application aessage Queue until 11 WH_OUJT cessage is received. It 
/" then destroys all OS/2 PM reso11rces and ten:iin11tes. ,. 
1······························-·••1"••········································· / 
INT 11111 n (Int argc, char •argv[] • char *envp[)) 
{ 

KHO hi:iq; 
OMSG 11111sg; 
ULONG fl Create; 

If ( argc >• 2 ) { 
strcpy( szFnm:e, argv[l) ); 

/" Message queue h11ndl e • / 
/* Message froi:i 11essage 1111e11e • / 
/* Window creation control flogs• I 

If ((hab • Wlninltlalhe(9)) ••Bl)/" Initi111ize PM */ 
AbortSS(hwndFran:e, hwndClient); /* Ten:iinate the 11pp1\c11tlon •/ 

; f ( (hlllq • Ill nCreateMsgQueue ( hab. 8 ) ) •• 9 L) /• Creete 11 1!15!1 q11e11e • / 
AbortSS(hwndFra;:e, hwndCll ent): I* Ten:iinate the appli cat I on */ 

If (IWlnReglsterClass( 
hab, 
(PSZ) ·sswindow". 
(PFIM') SSlli ndowProc. 
CS_SIZEREORAll, 
8 
)) 

/" Register window class •/ 
/* Anchor b 1 ock handle • / 
/" Window cl oss na:e * / 
/* Address of window proced11re * / 
/* Class style •/ 
t• rco extra window words • / 

Abort SS (hwndFr1111e. hwndCll ent); t• Ten:ii note the app 1i cat I on • t 

flCreote • FCF_STANOARD & /* Set fr11i:e central flags to "/ 
FCF S!!EllPOSJTJON & 
FCF)CCELTABLE; 

/" standard except for shell •/ 
/" positioning. •/ 

If ((hwndFrp;e • llinCreateStclllindow( 
IMO_OESKTDP, 
8, 
&flCreate, 
·sswlndow·. 

e. 
(HHODULE)Bl, 
ID WINDOW, 
&~dCllent 
)) •• 8l) 

I* Des~top wi ndaw is parent 
/" STD. window sty 1 es 
/* Fra• control fl 11g 
/" Cl I ent wl ndow c I ass nal:ll! 
/* Window text 
/* No special cl 11ss styh 
/* Resource is In .EXE fl 1 e 
/* Fran:e window i dent I fi er 
I* Client window hand! e 

AbortSS(hwndFrar:ie. hwndCl lent); /• Termi n11te the application 

lllnSetllindowText (hwndFrar:e, •swapper Size•); 

., 

.. , ., ., 
"/ ., 
*I 
*I ., 

., 

If (IWlnSetWindowPos( hwndFra::e. /*Shows and octiv11tes frace •/ 
HllNO HIP, /* window at position 188. 188, •/ 
188,-188, tee. 189. /" and size 189, 1ee. •/ 
SllP SIZE I SllP l«IVE I SllP ACTIVATE I SllP SHOW 

)) - - - -
AbortSS(hwndFrasze, hwndClient); /" Ten:ilnate the 1111111ic11tlon "/ 

, ........................................................................ , 
/" Get ond dispatch cessages frDD the appllcatlan aessage queue */ 



/• until WlnGetMsg retums FALSE. indicating 11 "'4_0UIT 111essoge. •/ 
/••••••••••••••*********"'****••••******•••••••••••••••,..••••••••••••******I 

while( WlnGetMsg( hab. lqT1Sg. GL. 8, 8 ) ) 
WI nDi spotchMsg ( hell, &ciasg ): 

WinDestroyWindow(hwndFr11111e); /• Tley up... •/ 
WinDestroyMsgOueue( hl:IQ ): /• Tiey up... •/ 
WinTe1'111inote( hab ): 1• Tercilnate tha application •/ 

) /• End of i.oln •/ 

1•••••,..,..,.""***"*••"'***•*"'""•**""*""****111*111•••••••••••••••"** 1111
•••••••••••••-••••••• I 

r ~ 
1• SSllI NDOWPROC Is the wl ndcw procedure whl ch cant I nuaus l y monl tors the s ht • / 
/• of the swap fi I e and di spl llYS the size In the cl I ent area. •/ 
r ~ , .............................................................................. , 
HRESUL T EXPENTRY SSWlndD'olflroc( HWND hwnd, ULONG asg, MPARAH s:pl, MPAAAM s:p2 ) 
( 

switch( llS!l ) 
( 

case "'4 CREATE: 
swaps i ze • GetSwopperSi ze () ; 

oldsw1111size • swapslze; 
WinStartTiaer(hell. hwnd, idTi1111r. thierinterval); 
break; 

case WM COl'MAHD: 
( -
USKORT co=and; /* lf4 COMWIO comand value •/ 
c111:and • SHQRTlFRCfffl(s:pl); 
switch (coiaand) 

/* Extract the cccaand value */ 

( 
case ID_USECS: 

th1eri nterval • 18 • 1889; 
Wi nCheclCMenuitea(Wi nWindcwfro•ID(hwndFract.FID MENU)• 

ID 18SECS0 TRUE); -
Wi nCheclCMenuitea(Wl~I ndcwfroalO(hwndfrmt.FID MENU)• 

ID lBSECS, FALSE); -
WlnCheclCMenuitea(WI ~I ndcwfroulD(hwndFru110 FID MENU)• 

ID_69SECS. FALSE); -
WinStartTir:er(hell. hwnd, ldTicer. tiarlnterval); 
breox; 

case ID_l8SECS: 
tiaerintervol • 38 • 1888; 
WinCheclCMenultea(Wi nWI ndcwf rolllD(hwndFrai:t,FlD IENU), 

ID lllSECS. FALSE); -
WlnCheckMenulteu(Wi~lndowFro1:1ID(tnmdFra:e 0FIO_foEllU). 

ID 385ECS. TRUE); 
Wi nCheckMlnultea(WI ~Wi ndowF roal D (hwndFraae. FID MENU)• 

ID 68SECS, FALSE); -
WinSt11rtTh:er(hab 0 hwnd. idTiaer. tiaerint1rv11l); 
breet; 

case ID_69SECS: 
tlaerinterval • li8 * 1888; 
WinCheckMenultea(WinWI ndcwf rolllD (hwndFrazie.FID MEllU). 

ID lBSECS. FALSE); -
Wi nCheckHenuitea(Wi ~i ndawf ralllD (llwndFra:e ,Fl D IEICU), 

ID_l8SECS. FALSE); -
WI nCheckHenul tei:i(wi nwl ndowFrGllI o (trwndFrai::e .FID MENU). 

ID 68SECS. TRUE); -
WinStartTil:er(hab. hwnd. ldTl-.er. tl-.erlnterval); 
break; 

default: 
ret1.1m WinDef\llndowProc( hwnd. asg. icpl. qi2 ); 

breax; 
} 

case '°" TIMER: 
swopiize • GetSwapperSlze(): 
If (sw1111size .. 8) { 

WI nHess11geBox (HWND DESKTOP. 1• Parent wl ndow Is dtsk top • / 
hwndfra:e. - /* Owner window Is our fr11111 */ 
•cannot I ocate the Sw1111per Fl I e. Check your parueter. •. 
"Error Msg". /* Title b11r assage */ 
MSGBOXI D. /* Mess11ge I dent I fl er * / 
Mll_MOVEABLE I MB_CUACRITICAL I MB_CANCEL ); /* Fl11gs */ 

WinPostMsg( hwnd. lfol_CLOSE. (MPARA14)8.(MPAIW1)8 ); 
} 
if (sw1111sl11 1• oldsW111Jsiie) 
{ 

oldswcpslze • swopsl ze: 
Winlnvall d11teRect ( hwnd. (PRECTL)ICULL. FALSE): 

break; 
case WM_ERASEBACKGROUND: 

1··························*······································· / 
/* Ret11m TRUE to request PM to paint the wlndcw background •/ 
I* in SYSCLR_WINDOW. */ 
/•••••••••••••••••******"*•••••••••••••••••••••••••••••••••••••••••I 
retum (MRESULT)( TRUE ) : 

c11se "'4_PAINT: , ................................................•...•.•........... , 
/* Window contents are drawn here in ld'1_PAINT processing. */ 

/•••fl-••••tt•••······ "'***********-·····························-··· / 

) 

HPS hps; t• PreHntat I on Space hand! 11 *I 
RECH re: 1• R1ct11ngl e coordl nates * / 
POINTL pt; /• St rl ng screen coordl notes • / 

/• Cr111te 11 presentat I on SDace * / 
char buffar(STRINGLEtlOTH); 
char ta1:111(STRINGLENGTH); 
Int hn; 

hps • WI nBegl nPol nt ( hwnd. 8L. Ire ) ; 
pt.x • 58; pt.y • 211; /• Set the text coordinates. */ 
GplSetColor( hps. CLR.NEUTRAL ); /*colour of the ttJtt, •/ 
GplS1tBackColor( hps. CLR_BACKGRDUNO ); /• Its background and 0 / 

GplSeteactMlx( hps. BM_OVERPAINT ): ,. hew It mixes, 0 / 

I* 1111d draw the string ••• */ 
WlnFlllR1ct( hps. &re, CLR BACKGROUND ) ; 
uString • ltoa (swapslze: buffer. lB); 
If ((11n•strhn(buff1r)) > l) ( 

11ea:py(t1s:p. buffer. 11n+l); 
11t11Cpy(buff1r0 t1ap. len-3); 
buffer(hn•l) • ' '; 
strcpy(&buff1r(l 1n•2) • &tecp(len·l)); 
} 

strcat( szStrlng. • KB"): 
GplCharStrlngAt( hps. &pt. (LOICG)strl1n( szStrlng ). szStrlng ); 
WI nEndPal nt ( hps ) ; t• Drawl ng Is cocp hte • / 
breu; 
) 

case "'4_CLDSE: , .................................................................. , 
I* Tiiis Is the place to put your t1ralnatlon routines */ , ....•......••.•.•.•.....•......•.................................. , 
WlnStopTh:er( hab, hwnd. ldTh:er); 
WlnPostMsg( hwnd. "4_0UIT. (MPAAAH)B.(MPARAM)8 );/* Cause tarcilnatlon*/ 
brallk; 

default: , •...•...•••.....................•...•........................•.... , 
/* Evtrythl ng e 1st co111s here. This co 11 MUST exist 
J• In your wl ndcw proctd11re. 

*/ 
*I , ................•...............•................................• , 

ret11m WlnOtNlndowProc( hwnd. asg. cpl. 11112 ): 

retum (MlESULT)FALSE; 
} /• End of Hylli ndawPrac * / 

, .......................................................................... , 
/* AllartSS •• report en error retumed from an API servl ct. */ 
r ~ 
/* Tht error aessage Is di sp I 11Y•d us Ing a 111ssoge box end tht 11rogr1111 *I 
/* exit will be afftcted with the error status of l. */ , .•...•..•...•............................................................. , 
VOID AbortSS(lllltlD hwndfraae,HWND hwndCI ltnt) 
{ 
PERRIICFO pErrlnfo81 k; 
PSZ pszOffSet; 
void stdprlnt(vold): 

DosB11p(l8B.lG); 
If ((pErrinfo8lk • WlnGetErrorinfo(hell)) I• (PERRlllFD)NULL) 
{ 
ps.zOffSet • ( (PSZ)DErrlnfo81k) + pErrlnfoBlk·>offaoffszMs.g: 
pszEl'TMs!I • ((PSZ)pErrlnfoBlk) + •((PSHDRT)pszDffSet): 
I f((INT)hwndFra:e I& (INT)hwndCll ent) 

WlnMess11;e8ox(HWND_DESKTOP. t• Pnrent wlndcw Is desk top */ 
hwndFrai:a. t• Owner window Is. 011r frl!Ell •/ 
(PSZ)pszErr+1s11. /* PMIIN Error •ssage */ 
"Error Msg•. /• Title bar •sS11ge •/ 
MSGBOXID. /* Message identifier */ 
Mll_M:>VEABLE I Mll_CUACRITICAL I Mii_ CANCEL ) ; /* Flags */ 

Wi nF retE rrorlnfo (pErrl nf oBI k); 
) 
WlnPostMsg(hwndCI lint, "4_0UIT. (MPARAM)a. (MPAIW1)8); 

} /* End of AbnrtSS *I 
/* F1111ctlon which retums SllllP file sin In 1(8 •/ 

ULDllG GetSW111JptrSlz1 () 
{ 

HDI R fhandl t; 
imsl i!l•d LOICG coimt: 
Int fslze; 
USHORT frc; 
FILEFillDBUF buff tr; /* me lnforut I on struct */ 

COllllt • 1; 
fh11ndl e • 8xFFFF; 
frc • DcsFlndFI rst 

(szFnut. &fhandl '• I. &b1.1ff1r. slzeof(bufftr). 
If (frc I• 8)( 

retum(BL); 
} /* tndlf •/ 
fsl ze • buffer.cbFI hAlloc I 1824; /* In KBytes •/ 
DosFlndCI OH (fhandl 1); 
retum( (ULOICG)fsl zt): 

Appendix C. Lab Session - 32-Blt Memory Model 163 



C.10.2 Include File SWAPSIZE.H 

#pragma linkage (main,opt11nk) 
#define MSGBOXID 1881 

#define IDJllNDOW 256 

#def1 ne ID INTERVAL 257 
#de fi ne ID-19SECS 258 
#define ID-38SECS 259 
#define I(69SECS 269 

C.10.3 Resource File Source SWAPSIZE.RC 

#inc 1 ude <os2. h> 
#include •swapsize.h• 

ICON ID_WINDOW swapsize.ico 

MENU ID_WINDOW PRELOAD 
BEGIN 

SUBMENU • Interval•, ID INTERVAL BEGIN 
MENUITEH •19 Seconds•: ID 19SECS, MIS TEXT ,MIA CHECKED 
MENUITEH •39 Seconds•, ID-39SECS, MIS-TEXT -
MENUITEM •59 Seconds•, ID-68SECS, MIS-TEXT 

END - -
END 

C.10.4 MAKE File SWAPSIZE.MAK , .................................................................. . 
S11!i!ple application r.iakefl le.collllllOn definitions for the IBH c 
coi;:pl 1 er envl ronment , .................................................................. . 

FFIXES: 
FFIXES: .re .res .obj .1st .c , .................................................................. . 
I Default compilation ucros for Hcple pro11r11m 

' I Cocpi 1 e swltchs that are tnabl ad 
I Jc coaplh don't link 
I /Gr;;+ use the ;:ultl•threaded libraries 
I /ss 1111 ow • 11· for co=::ent II nts 
I /HS use the systea calling convention &nd not optlllnk &5 
I the def&ult 
I /Gd· DI sable 011t i ai ration 
I /Se &llow cset extensions 

cc 

AF LAGS 
ASM 
LflAGS 
LINK 
LIBS 
STUBS 
MT LIBS 

11ccardlngly. 

• i cc /C /Gd• /St /Re /SS /Ms /Grti+ 

• /t'.x •t •I 

• •1 /c /Zm 
• /NOE /llOD /ALIGN:l6 /EXEPACK /M /DI 

• LINK386 S(LFLAGS) 
• DDEOllS + 052385 
• DDE4SB5 + 052385 
• DDEOllS + DDE4MllM + os23Bll 

llll LIBS • DDE4NBS + os2385 
VLIBS • DDE4S!IS + vdh + as2386 

.c.lst: 

$(CC) ·Fc$._lst ·FoS•.obj S".c 

.c.obj: 
$(CC) ·FoS• .obj s• .c 

.re.res: 
re •r •P •X $".re 

HEADERS • swaps\ ze.h 

•··································································· 
II A list of 1111 of the object fl1 es 

•··································································· 
All_ OBJ I • sw11psi ze.obj 

1111: sw11psi ze.exe 

sw1111slze. I: swapsize.llllk 
echo S (ALL OBJl) 
echo sw1111s i ze .exe 
echo sw11Ps i ze .anp 
echo S{LIBS) 
echo s1111psize.def 

> swnpslze.I 
» swnpsize.1 
» SWllPSi ze.1 
» swaps\ ze.1 
» swapsize.1 

swapsize.res: sw1111slze.re swapsize.ico swaps\ze.h 

swapsi ze.obj i swapsize.c S{KEAOERS) 

swapsize.exe: S(All OBJl) swaps\ ze.def swaps\ ze.1 swapsi ze.res 
$(LINK) l.lswapsi 'ie. I 
re sw11Psize.res swnpsi ze.exe 

C.10.5 Module Definition File SWAPSIZE.DEF 
NAME SWAPSIZE WINDOWAPI 

DES CR I PTI ON I OS /2 2. 9 Contro 1 Pro gram Labs SWAPS I ZE Program I 

STUB I OS2STUB. EXE I 

DATA MULTIPLE 

STACKSIZE 8192 
HEAPSIZE 4996 

PROTHODE 

164 OS/2 V2.0 Volume 1 



C.10.6 Linkage Parameters SWAPSIZE.L 

swapsize.obj 
swapsize.exe 
swapsize.map 
DDE4MBS + 052386 
swapsize.def 

Appendix C. Lab Session - 32-Blt Memory Model 165 



166 OS/2V2.0Volume1 



Glossary 

address conversion. The process of converting a 0:32 
memory reference to the 16:16 addressing scheme, 
and vice versa. 

address translation. (1) The process of resolving a 
0:32 memory reference into a physical memory 
address. When using the paged memory option in the 
80386 processor, a memory pointer passed by an 
application consists of Page Directory and Page Table 
entries, and an offset within a physical page. This is 
resolved by the processor into a 32-bit physical 
memory address. The validity and legality of the 
memory reference is also checked during the trans­
lation process, and a general protection exception is 
generated if necessary. (2) The process of resolving 
a 16:16 memory reference into a physical memory 
address using a process's local descriptor table. The 
validity and legality of the memory reference is also 
checked during the translation process, and a general 
protection exception is generated if necessary. 

alias. Term used in the 80386 segmented memory 
model, to refer to the case where two different 
addresses reference the same physical memory 
location; the location is said to be aliased. This tech­
nique is used when sharing memory between proc­
esses, and when mapping memory references 
between 16: 16 and 0:32 addressing schemes. 

ANSI. American National Standards Institute; 
U.S.-based organization which defines standards for 
computing devices, protocols, programming lan­
guages etc. 

API. Application Programming Interface; term used 
to describe the set of functions by which an applica­
tion may gain access to operating system services. 

arena. Refers to a contiguous subset of the process­
or's virtual address space. In OS/2 V2.0, arenas are 
used to manage regions of the linear address space. 

Bidi. Bidirectional; term used to describe support for 
national languages such as Arabic and Hebrew, which 
use bidirectional character sets. 

BIOS. Basic Input/Output System; code which con­
trols the interface between a system and its attached 
devices, at the hardware level. 

bit. A binary digit, which may be either zero or one. 
Bits are represented within a computing device by the 
presence or absence of an electrical or magnetic 
pulse at a particular point, indicating a one or a zero 
respectively. 

Boot Manager. Feature of OS/2 Version 2.0 which 
allows multiple partitions to exist on fixed disks in the 
same machine, with a separate operating system on 

© Copyright I BM Corp. 1992 

each partition. At boot time, the user may select the 
desired operating system with which to start the 
machine. 

boot name. A name used to refer to a selectable 
logical drive under Boot Manager, from which an 
operating system may be started. 

byte. A logical data unit composed of eight binary 
digits (bits). 

cdecl. Keyword used in C programming, which 
causes the compiler to generate object code for a 
function or subroutine, such that parameters are 
placed on the stack in right-to-left order, and the 
calling routine clears the stack after control returns 
from a called function or subroutine. This is the 
default for C programs. Contrast this with the pascal 
keyword. 

CD-ROM. Compact Disk Read-Only Memory; tech­
nology where data is stored on an optical disk for 
reading by a computer system equipped with an 
appropriate reading device. CD-ROM storage media 
may not be updated by the computer system, 
although certain implementations allow the media to 
be erased and rewritten. 

compatibility region. In the OS/2 Version 2.0 flat 
memory model, the address region below 512MB, 
which may be addressed by a 16-bit application using 
the 16:16 addressing scheme and tiled local 
descriptor tables. Under OS/2 Version 2.0, this region 
is equivalent in size to the process address space. 

compatibility region mapping algorithm. Algorithm 
used in thunks to convert 16:16 memory references to 
the 0:32 addressing scheme and vice versa. 

CRMA. See compatibility region mapping algorithm. 

DDE. Dynamic Data Exchange; interprocess commu­
nication protocol used by applications to define 
dynamic links. Information updated in one application 
is automatically reflected in other applications linked 
to the first application via DOE. 

debugging. The process of removing "'bugs"' or errors 
from application code. 

device driver. Code which handles the translation of 
generic device commands into specific commands for 
the required physical device and vice versa, allowing 
operating system interaction with physical devices 
attached to the system. 

DLL. Dynamic Link Library; application module con­
taining routines and/or resources, which is dynam­
ically linked with its parent application at load time or 

167 



runtime rather than during the linkage editing 
process. The use of DLLs enables decoupling of 
application routines and resources from the parent 
program, enhancing code independence, facilitating 
maintenance and reducing resident memory consump­
tion. 

OMA. Direct Memory Addressing; technique by which 
transfers to and from system memory are made by an 
independent control chip rather than by the system's 
main processor, thereby resulting in improved overall 
performance. 

DOS. Disk Operating System; generally used in refer­
ence to IBM PC DOS, the single-tasking 16-bit real­
mode operating system designed for Intel 8086 
processors, and developed by Microsoft Corporation 
as MS DOS in the early 1980s. IBM subsequently 
licensed MS DOS for use on IBM Personal Computer 
and Personal System/2 machines, and has since 
undertaken joint development of later versions of the 
operating system in conjunction with Microsoft. 

DosDebug(). Function provided within the application 
programming interface under OS/2 Version 2.0, which 
enables access to the debugging functions provided 
by the operating system. 

ESDI. Enhanced Small Device Interface; physical 
access protocol used by many computer storage 
devices,. particularly fixed disk devices. 

extended attributes. Information which may be asso­
ciated with a file under OS/2 Version 1.2 or above 
(including Version 2.0), to indicate various properties 
of that file. Extended attributes are available with 
both the FAT and HPFS file systems. An application 
may define extended attributes for files which it 
creates, and may update the extended attributes of 
files upon which it operates. A number of standard 
extended attributes are defined by the operating 
system for commonly-used information. Extended 
attributes and their uses are described in the IBM 
0512 Version 2.0 Control Program Reference. 

extended partition. In the context of Boot Manager, a 
fixed disk partition which contains one or more logical 
drives, and on which certain operating systems such 
as OS/2 Version 2.0 may be installed. An extended 
partition and its logical drives are visible to the oper­
ating system at all times, regardless of which primary 
partition is currently active. Hence extended parti­
tions are useful for the storage of programs and data 
which must be shared between multiple operating 
systems in an OS/2 Version 2.0 Boot Manager envi­
ronment. 

far. Term used to describe a memory reference in 
the 16: 16 addressing scheme, where the memory 
location to be referenced is outside the current 
memory segment. Contrast with near memory refer­
ences. 

168 OS/2 V2.0 Volume 1 

FAT. File Allocation Table; term used to describe the 
file system implemented by DOS and OS/2. This file 
system uses a file allocation table to contain the 
physical sector addresses of all files on the disk. The 
FAT file system is supported by OS/2 Version 2.0, 
along with the newer HPFS and other installable file 
systems. 

flat memory model. Conceptual view of real memory 
implemented by OS/2 Version 2.0, where the oper­
ating system regards memory as a single linear 
address range of up to 4GB. 

free swap frame linked list. Linked list in memory 
which contains unused page frames from the swap 
frame array. These frames may be used by the oper­
ating system to store references to new pages which 
must be swapped to disk. The linked list improves 
performance by avoiding the need to search the swap 
frame array for a free swap frame. 

FSD. File System Driver; code within the operating 
system which supports the implementation of a partic­
ular file system such as FAT or HPFS. 

gate. Specialized form of segment base address in 
memory, to which control is passed by an application 
when that application requires the execution of code 
which must run at a different privilege level. The 
gate routine then redirects control to the appropriate 
routine to perform the function. The use of gates 
insulates the calling application from the called 
routine, thereby providing greater protection. 

GB. Gigabyte; 1024 megabytes, or 1024 x 1024 x 
1024 bytes. 

GDT. See global descriptor table. 

general protection exception. Operating system error 
which occurs when an application attempts to access 
memory in a page which has not been allocated to 
that process. OS/2 Version 2.0 allows an application 
to trap a general protection exception using an excep­
tion handler registered with the operating system. If 
an exception handler is not registered, the operating 
system will terminate the application as a result of a 
general protection exception. Also known as a Trap 
0000. 

global descriptor table. Table in memory used under 
the segmented memory model, to store the segment 
base addresses of all memory segments in the 
system. This table is used by the operating system 
when allocating and controlling memory, and is not 
available to processes executing in the system. 

guard page. Page within a memory object, for which 
the PAG_GUARD attribute has been specified. Any 
attempt by the application to reference memory 
within the guard page results in a guard page excep­
tion. 



guard page exception. Operating system warning 
condition which occurs when an application accesses 
memory within a page which has been declared as a 
guard page. This exception may be trapped using an 
exception handler registered by the application in 
order to handle such occurrences. The typical proc­
essing performed by the exception handler is to 
commit more memory within the memory object. If 
an exception handler is not registered, the operating 
system's default handler commits the next available 
page within the memory object and sets its attribute 
to PAG_GUARD. 

guard page technique. Technique by which the size 
of a memory object is progressively increased during 
application execution, by using guard pages and trap­
ping the resulting guard page exceptions in order to 
commit additional pages of memory. 

HPFS. High Performance File System; file system 
first implemented under OS/2 Version 1.2, offering 
enhanced performance over the original FAT file 
system implemented in DOS and prior versions of 
OS/2. HPFS is an optional installation item under 
OS/2 Version 2.0; the FAT system may also be used 
to retain compatibility with DOS. 

IDT. See interrupt descriptor table. 

IFS. See Installable File System 

Information Presentation Facility. The Information 
Presentation Facility is a tool that enables you to 
create online information, to specify how it will appear 
on the screen, to connect various parts of the infor­
mation and to provide help information that can be 
requested by the user. 

interrupt. An electrical signal generated by a device 
or adapter within the system, to inform the operating 
system that an event, such as the completion of an 
1/0 operation, has occurred. The operating system 
then processes the interrupt by passing control to a 
particular piece of code which handles the appro­
priate action in response to the event indicated. 

Installable File System. An installable file system is a 
file system that is loaded by the operating system 
during system initialization, because the user has 
included statements in the CONFIG.SYS to request 
installation of the file system. 

Interrupt descriptor table. Table in memory which 
contains the addresses of processing routines for all 
defined interrupt levels in the system. When a device 
signals an interrupt to the operating system, the inter­
rupt contains a code which is used as an index into 
the interrupt descriptor table. 

1/0. Input/output; term used to collectively describe 
the techniques and devices through which a computer 
system interfaces with storage devices, external 
systems and the user. 

IOPL. Input Output Privilege Level; term used in Intel 
80x86 processor terminology to refer to tasks exe­
cuting at privilege level 2, which have the authority to 
directly access physical 1/0 devices. 

IPF. See Information Presentation Facility 

KB. Kilobyte; 1024 bytes. 

LDT. See local descriptor table. 

local descriptor table. Table in memory used under 
the segmented memory model, to store the segment 
base addresses for memory segments used by the 
current process. 

logical drive. In the context of Boot Manager, a sub­
division of a fixed disk partition, which is regarded by 
an operating system as a logical entity. Logical 
drives are typically accessed using logical drive 
letters (for example, "C"). Logical drives are used to 
store operating system code, programs and data files. 
A primary partition may only contain a single logical 
drive, while an extended partition may contain mul­
tiple logical drives. 

MB. Megabyte; 1024 kilobytes, or 1024 x 1024 bytes. 

MBB. Multi-Boot Block; 16KB area at the start of a 
physical disk drive (immediately after the MBR), 
which contains code and data for use by Boot 
Manager. The MBB is located outside any logical 
drive, and is not normally accessible by an operating 
system or application. 

MBR. Master Boot Record; the first sector or sectors 
of a physical disk drive, used to contain partition 
information and code which accesses the operating 
system boot record in the active partition. In a Boot 
Manager environment, the MBR does not access the 
operating system boot record, but instead accesses 
an entry point in the MBB, in order to load Boot 
Manager. 

memory object. Logical unit of memory requested by 
an application, which forms the granular unit of 
memory manipulation from the application viewpoint. 
A memory object may be up to 512MB in size under 
OS/2 Version 2.0. 

Multiple Virtual DOS Machines. Feature of OS/2 
Version 2.0 which enables multiple DOS applications 
to execute concurrently in full-screen or windowed 
mode under OS/2 Version 2.0, in conjunction with 
other 16-bit or 32-bit applications, with full pre­
emptive multitasking and memory protection between 
tasks. See also virtual DOS machine. 

multiplexed streaming data mode. Mode of operation 
for 32-bit Micro Channel machines, whereby the 
streaming data mode is extended by using the 32 
address lines, unused in transfer cycles after the first, 

Glossary 169 



for the transfer of data. This mode effectively pro­
vides a 64-bit data path, resulting in faster memory 
transfers. 

MVDM. See Multiple Virtual DOS Machines. 

near. Term used to describe a memory reference in 
the 16:16 addressing scheme, where the memory 
location to be referenced is within the current 
memory segment. In the 0:32 addressing scheme, all 
memory references are effectively near references. 
Contrast with far memory references. 

NPX. Numeric Processor Extension; term used in ref­
erence to the exception condition generated by the 
80386 processor when an application issues a 
numeric coprocessor instruction in a machine with no 
coprocessor installed. Note that OS/2 Version 2.0 will 
trap the NPX exception and emulate the numeric 
coprocessor function within the operating system, 
returning the result to the application exactly as if a 
physical coprocessor were installed. 

NULL. A binary zero. In C programming terms, 
NULL is typically used to refer to a pointer which is 
set to the binary zero value. 

page. Granular unit for memory management using 
the 80386 and 80486 processors. A page is a 4KB 
contiguous unit of memory, which the processor 
manipulates as a single entity for the purpose of 
memory manipulation and swapping. 

page ager. Component of the operating system 
which, when the number of free memory pages drops 
below a threshold level, begins to take pages which 
have not recently been accessed and change them to 
the idle state. Such pages may then be swapped out 
to disk if required. 

page directory. Table used by OS/2 Version 2.0 to 
manage storage of pages in physical memory. One 
page directory exists for each process in the system, 
and contains entries which point to page tables, which 
in turn contain the physical page addresses. 

page directory base address. Memory address of the 
page directory for the current process; stored in the 
page directory base register. 

page directory base register. Control register used 
to store the base address of the page directory for 
the current process. The page directory base register 
is stored in the process's task state segment when a 
task switch occurs. 

page fault exception. Operating system error which 
occurs when an application attempts to access 
memory which has been allocated but not committed. 
This exception may be trapped by an application 
using an exception handler registered with the oper­
ating system. If an exception handler is not regis­
tered, the operating system's default handler will 

170 OS/2 V2.0 Volume 1 

terminate the application as a result of a page fault 
exception. Also known as a Trap OOOE. 

page frame. Data structure maintained by the oper­
ating system to store information concerning a phys­
ical page in memory. Page frames may be free, idle, 
or in-use. 

page offset. 12-bit field used to specify the offset of a 
required memory location, within a physical page in 
real memory. 

page table. Table used by OS/2 Version 2.0 to 
manage storage of pages in physical memory. Mul­
tiple page tables exist for each process in the system, 
and are referenced by the process's page directory. 
Each entry in the page table contains control informa­
tion for a single physical page. 

partition. An area of a fixed disk. A partition is com­
posed of one or more logical drives, and is used to 
store the operating system code, programs and data 
files. A partition may be a primary partition or an 
extended partition. 

pascal. Keyword used in C programming, which 
causes the compiler to generate object code for a 
function or subroutine, such that parameters are 
placed on the stack in left-to-right order, and the 
stack is cleared by the called routine when control is 
passed from one routine to another. Originally intro­
duced by Microsoft with early versions of Microsoft 
Windows, when this convention saved several 
hundred bytes of system memory. Contrast this with 
the cdec/ keyword. 

PDBR. See page directory base register. 

PIB. Process Information Block; data structure used 
to store process-specific control information. This 
structure may be accessed by an application using 
the DosGetlnfoBlocks() function. See also TIB. 

PIC. Programmable Interrupt Controller; component 
of the 80386 processor complex which handles inter­
rupts generated by devices within the system. 

POST. Power-On Self-Test; code typically stored on 
ROM (although the IBM PS/2 Model 90 and 95 allow 
POST code to be stored on fixed disk) which is 
invoked when a machine is powered on, in order to 
test the hardware. 

primary partition. In the context of Boot Manager, a 
fixed disk partition which contains a single logical 
drive, and on which an operating system may be 
installed. Only one primary partition may be active 
(visible) on a fixed disk at any one time; other primary 
partitions are hidden from the operating system. 
Operating systems such as DOS and OS/2 Version 1.x 
require a primary partition for their installation; OS/2 
Version 2.0 may be installed on a primary partition or 
an extended partition. 



privilege level. In the context of the Intel 80386 
processor architecture, the level of authority at which 
a task executes. There are four available privilege 
levels; under OS/2 Version 2.0, Level 0 is used for 
operating system kernel code; Level 1 is not used; 
Level 2 is used for applications which directly address 
1/0 devices (such as communications applications); 
Level 3 is used for general application code. 

process address space. Region of memory address­
able by a single process under OS/2 Version 2.0; each 
process address space may be up to 512MB in size. 

protected mode. Mode of operation for the Intel 
80286 and 80386/80486 processors, whereby the 
address space is expanded to 16MB (80286) or 4GB 
(80386/80486), and memory references are translated 
via segment selector and offset, enabling full memory 
protection between processes executing in the 
system. With the 80386/80486, paging is available in 
protected mode. 

RAM. Random Access Memory; term used to 
describe memory which may be dynamically read and 
written by a processor or other device during system 
operations. RAM is typically used to store program 
instructions and data which not being operated upon 
by the processor at the current moment in time, but 
which are required for the logical unit of work cur­
rently being carried out. 

real mode. Default mode of operation for the Intel 
80286 and 80386 processors, and the only mode of 
operation for the 8086 processor. In real mode, the 
processor acts as a 16-bit device, its physical memory 
address space is limited to 1 MB, and memory refer­
ences translate directly to physical addresses. With 
the 80386, paging is not supported in real mode. 

ROM. Read-Only Memory; term used to describe 
memory which may be read, but not written to, during 
system operations. ROM is typically used to store 
basic hardware initialization instructions, BIOS or self­
testing code, which is required to be available prior to 
accessing the disk subsystem. 

SCB. Subsystem Control Block; data structure used 
at the hardware level to communicate between 
devices in a computer system. The structure of SCBs 
is defined by the Subsystem Control Block Architec­
ture. 

SCSI. Small Computer Systems Interface; interface 
standard defined by ANSI SCSI standard X3.131-1986, 
which defines a bus architecture and communication 
protocols for interaction of up to eight computing 
devices. 

segment. Unit of memory addressable by the Intel 
80x86 processors. With the 8086 and 80286 
processors, a segment may be from 16 bytes to 64KB 
in size. With the 80386 and 80486 processors, a 
segment may be up to 4GB in size. 

segment selector. Field which specifies the base 
address of a memory segment when using the seg­
mented memory model. The selector is 16 bits in 
length on an 80286 processor, and 32 bits in length on 
an 80386 or 80486 processor. 

semaphore. Construct used under OS/2 Version 2.0. 
and previous versions of OS/2 to enable synchroniza­
tion between processes and between threads in the 
same process. OS/2 Version 2.0 provides enhanced 
semaphore facilities over previous versions. 

service layer. Executable code which performs the 
operating system function requested by an application 
using an API. 

signal. An event occurring within the operating 
system which will affect the execution of the current 
process; for example, the user may hit the 
Ctrl +Break key combination, which would result in a 
signal being generated, instructing the operating 
system to terminate the current process. Signals typ­
ically override the dispatching algorithms of the oper­
ating system. 

sparse object. Memory object for which a linear 
address range has been reserved, but for which no 
physical memory has yet been committed. This capa­
bility is used to reserve storage in the process 
address space for use by an application, without 
causing an adverse impact on system performance by 
requesting large amounts of physical memory. 

streaming data mode. Mode of operation for memory 
transfer on a Micro Channel machine, which allows 
the transfer of multiple contiguous blocks of data 
without the necessity to explicitly specify the address 
of each block. This allows faster transfer operations. 
See also multiplexed streaming data mode. 

system region. In the OS/2 Version 2.0 flat memory 
model, the address region above 512MB, which is 
reserved for operating system use. See also process 
address space. 

TCB. Thread control block; data structure used by 
OS/2 to store control information relating to threads 
in the system. 

TIB. Thread information block; data structure used to 
store thread-specific control information. This struc­
ture may be accessed by an application using the 
DosGetlnfoBlocks() function. See also PIB. 

thunk. Term used to describe a routine which per­
forms conversion of 16: 16 memory references to the 
0:32 addressing scheme, and vice versa. 

tiled local descriptor table. Form of local descriptor 
table used by 16-bit applications running in the 
16/32-bit region under OS/2 Version 2.0, in order to 

Glossary 171 



allow access to the 512MB process address space 
using the 16:16 addressing scheme. 

transaction lookaside buffer. Caching buffer used by 
the 80386 processor to store the physical addresses 
of most-recently used pages, in order to improve per­
formance by avoiding the need to reference page 
directories and page tables to determine the physical 
memory address. 

trap OOOD. See general protection exception. 

trap OOOE. See page fault exception. 

task state segment. Structure used to store the 
control information for a system task when a task 
switch occurs. When the task becomes active once 
again, registers and other control information are 
loaded from the TSS. 

TSS. See task state segment. 

virtual device driver. Form of device driver used by 
DOS applications executing in a DOS virtual machine, 
in order to access devices which must be shared with 
other processes in the system, such as the screen or 
mouse. The virtual device driver maps DOS device 
commands to the normal (physical) device driver 
under OS/2 Version 2.0. 

virtual page structure. Data structure maintained for 
each committed page in the system. The virtual page 
structure is referenced by the Page Table Entry for 
the. page, and contains information including the 
location of the physical page frame if the page is in 
memory, or its location within the swap file if the 
page is swapped out. 

virtual DOS machine. A protected mode process 
under OS/2 Version 2.0 which emulates a DOS oper­
ating system environment, such that DOS applications 
executing within the virtual machine operate exactly 
as if they were running under DOS. DOS virtual 
machines support both text and graphics applications. 
Virtual DOS machines make use of the virtual 8086 
mode of the 80386 and 80486 processors. 

172 OS/2 V2.0 Volume 1 

virtual machine. See virtual DOS machine. 

virtual 8086 mode. Mode of operation of the Intel 
80386 and 80486 processors, which allows the 
processor to execute multiple concurrent tasks with 
each regarding the processor as its own distinct 8086 
processor. This mode of operation provides full pre­
emptive multitasking and full memory protection 
between the virtual 8086 tasks. 

0:32. Term used to describe the addressing scheme 
used for the 32-bit flat memory model, where a 
memory address is expressed as a 32-bit offset within 
the linear address range. 

16:16. Term used to describe the addressing scheme 
used for the 16-bit segmented memory model, where 
a memory address is expressed as a 16-bit segment 
selector, and a 16-bit offset within that segment. 

16-bit. Term used to describe an application which 
uses the 16:16 addressing scheme implemented under 
DOS and previous versions of OS/2. In fact, such 
applications use a 24-bit address since the segment 
selector and offset are normally overlapped. Such 
applications typically use the 16-bit instruction set 
implemented under the Intel 80286 processor. 

16/32-bit region. See compatibility region. 

32-bit. Term used to describe an application which 
uses the 0:32 addressing scheme implemented under 
OS/2 Version 2.0. Such applications may make full 
use of the 80386 instruction set. 

80386. Intel 80386 microprocessor; the 32-bit 
processor upon which the OS/2 Version 2.0 operating 
system is based. 

80486. Intel 80486 microprocessor; a 32-bit processor 
which implements a superset of the 80386 processor 
instruction set. 

_far16. Keyword used in C programming language to 
indicate that conversion to 16-bit internal represen­
tation is required during compilation. 



Index 

Numerics 
0:32 addressing scheme 13, 15 
16-bit application compatibility 6, 16, 28, 37 
16:16 addressing scheme 15, 28 
16/32-bit region 15 
8514/A 79 

A 
Adapter device driver 72 
ADD 72 
Adding features 64 
Address conversion 30 
Address translation 23 
AIX 85, 101 
AOX Micromaster*" Card 48 
Application support 5 
Arenas 

per-process 18 
shared 18 
system 18 

AUTOEXEC.BAT 52 

B 
Base device drivers 73 
Base video handler 80 
Bidirectional language support 

implementation 104 
installation 105 

Boot Manager 
AIX 101 
architecture 85 
disk partition sizes 101 
disk partitions 85, 89, 92 
Extended Boot Record 89 
installation 90 
logical drive boot names 86, 89 
logical drives 89, 92 
Master Boot Record 86 
migration from other systems 88 
Multi-Boot Block 86 
operating system selection 98 
performance 89 
restrictions 102 
sharing logical drives 100 

boot names 86, 89 
Bus master adapters 131 

c 
CD-ROM 47 
Code pages 103, 107 

©Copyright IBM Corp. 1992 

Committing memory 20 
Compatibility region 15 
CONFIG.SYS 52 

explanation of 56 
Coprocessor emulation 6, 39 

D 
Debugging 

backward compatibility 45 
DosDebug 45 
DosPTrace 45 
operating system support 43 

DELDIR environment variable 75 
DELETE 

UNDELETE 75 
Desktop, recovering the 64 
DevHlp() functions 69 
Device driver 

adapter device driver 72 
compatibility with OS/2 V1 .3 68 
device manager 72 
layered device driver 72 
virtual device driver 69 

Device helper functions 69 
Device manager 72 
Discardable page 24 
Disk device driver 71 
Disk partitions 

boot names 86, 89 
extended partitions 85, 92 
logical drives 85, 92, 100 
maximum size 74 
primary partitions 85, 92 
sharing logical drives 100 

Disk space requirements 49 
DosDebug 45 
DosForceDelete 75 
DosKillProcess 38 
DosPTrace 45 

E 
EBR 

See Extended Boot Record 
Exception handling 5, 38 
Existing versions of OS/2, installation over 65 
Extended Boot Record 89 
Extended partition 85, 92 

F 
FAT file system 74 
FAT partition 

maximum size 74 

173 



FDISK utility 89, 94 
FDISKPM utility 90 
File systems 

disk device driver 71 
FAT 74 
HPFS 73 

Fixed disk requirements 49 
Fixed page 24 
Flat memory model 4, 14 
Free list 25 

G 
Graphical install procedure 49 
Guard page 17, 21 

H 
Hardware exploitation 

SCSI 1/0 devices 8, 71, 75 
Hardware requirements 8, 48, 49 
HPFS 73 
HPFS partition 

maximum size 74 

I 
1/0 supervisor 67 
IBM SCSI adapters 137 
Idle list 25 
Information Presentation Facility 107 
Installation 

Boot Manager 90 
CONFIG.SYS 56 
default options 50 
fixed disk requirements 49 
graphical install procedure 49 
memory requirements 48 
optional features 52 
reinstallation 64 
system parameters 52 

Installation considerations 47 
Installing over existing versions of OS/2 65 
Intel 80386 processor 3, 76, 111 

memory addressing 113 
stepping levels 78 

Intel 80386SL processor 4, 7 
Intel 80386SLC processor 4, 7 
Intel 80386SX processor 4, 7, 77 
Intel 80486 processor 3, 76, 126 
Interrupt handling 5, 38 
IPF 

See Information Presentation Facility 

L 
LAN 47 
Layered device driver 72 

17 4 OS/2 V2.0 Volume 1 

Linear executable linker 33 
LINK 

See Linear executable linker 
LINK386 

See Segmented executable linker 
Local descriptor tables 28 
Logical drive boot names 86, 89 
Logical drives 85, 92, 100 

M 
Master Boot Record 86 
MBB 

See Multi-Boot Block' 
MBR 

See Master Boot Record 
Memory management 

16-bit application compatibility 16, 28 
16/32-bit region 15 
allocation 16 
committing memory 17, 20 
compatibility region 15 
device driver 69 
flat memory model 4, 14 
guard page 17, 21 
large main memory 77 
memory objects 4, 16 
page attributes 20 
paging 4, 14, 22, 76 
process address space 15, 19 
process region 15, 18 
protection 20, 21 
segmented memory model 13 
shared memory 29, 32 
swapping 4, 14 
system region 15, 18 
thunking 30 
virtual memory 4, 14 

Memory objects 4, 16 
Memory protection 20, 21 
Memory requirements 8, 48 
Message files 107 
Micro Channel architecture 129 
Micromaster-* Card 48 
Microsoft Windows application support 10 
Migration 

16-bit application compatibility 28 
fixed disk partitions 88 

Multi-Boot Block 86 
Multiple Virtual DOS Machines 

definition 8 
EMS support 9 
memory protection 9, 37 
pre-emptive multitasking 37 
virtual device driver 9 
XMS support 9 

MVDM 
See Multiple Virtual DOS Machines 



N 
National language support 

p 

bidirectional languages 104 
double-byte codepages 104 
Information Presentation Facility 107 
message files 107 
querying and setting codepages 107 
single-byte codepages 103 

Page ager 25 
Page attributes 20 
Page fault 24, 26 
Page frame 25 
Paging 4, 14, 22, 76 
Per-process arena 18 
PF 

See Page frame 
Primary partition 85, 92 
Process address space 15, 19 
Process region 15, 18 
Program loading 33 
Programming environment 

16-bit application compatibility 6 
coprocessor emulation ~. 39 
flat memory model 6 
stack allocation/deallocation 6 
thunking 6 

Protection 20, 21, 119 

R 
Recovering the desktop 64 
Reinstallation 64 

s 
see 

See Subsystem Control Block architecture 
SCSI 

See Small Computer Systems Interface 
SCSI adapters, IBM 137 
SCSI 110 devices 8, 71, 75 
Segmented executable linker 33 
Segmented memory model 13 
Semaphores 41 
SETBOOT utility 97 
Shared arena 18 
Shared memory 29, 32 
Sharing logical drives 100 
Signal handling 5, 38 
Small Computer Systems Interface 136 
Stack allocation/deallocation 5, 6, 40 
Stack growth 17 
Starting programs 

at system startup 63 

Subsystem Control Block architecture 142 
Super VGA 79 
SVGA 

See Super VGA 
Swap frame 26 
Swappable page 24 
Swapping 4, 14 
Synchronization 41 
System arena 18 
System parameters 52 
System region 15, 18 

T 
Task management 

16-bit application compatibility 37 
controlling threads 40 
dispatching 37, 41 
DosKill Process 38 
interrupt handling 5, 38 
semaphores 41 
signals and exceptions 5, 38 
stack allocation/deallocation 5, 40 
thread limitation 40 
thread synchronization 41 
thread termination 41 

Thread information block 40 
Thread limitation 5, 40 
Thread synchronization 41 
Thread termination 41 
Thunking 6, 30 
TLB 

See Translation lookaside buffer 
Translation lookaside buffer 24 

u 
UNDELETE 75 
User shell 10 

v 
VGA 79 
Video handler, base 80 
Video support 79 
Virtual device driver 9, 69 
Virtual memory 4, 14 
Virtual page structure 25 
VP 

See Virtual page structure 

w 
WIN-OS/2 feature 10 
Windows application support 10 
Workplace Shell 10 

Index 175 



x 
XGA 79 

I 176 OS/2 V2.0 Volume 1 
I 
I 



Readers' Comments 

OS/2 Version 2.0 
Volume 1: Control Program 

Publication No. GG24-3730-00 

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want 
to express your opinion about it (such as organization, subject matter, appearance) or make sug­
gestions for improvement, this is the form to use. 

To request additional publications, or to ask questions or make comments about the functions of IBM 
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer. 
This form is provided for comments about the information in this manual and the way it is presented. 

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com­
ments in any way it believes appropriate without incurring any obligation to you. 

Be sure to print your name and address below if you would like a reply. 

Name Address 

Company or Organization 

Phone No. 



l 
Readers' Comments ";'~ ~= : Cut c 
GG24-3730-00 ::§:!::::§~§: ® 

Fold and Tape Please do not staple Fold and Tape 

BUSINESS REPLY MAIL 
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM International Technical Support Center 
Department 91J, Building 235-2 
Internal Zip 4423 
901 NORTHWEST 51ST STREET 
BOCA RATON FL 33431-1328 

1 .. 11 ... 11 •• 1 .. 1 .. 11 .... 11 ... 11 .. 11 ... 1.11 .. 1 ... 1.11 

NO POSTAGE 
NECESSARY 
IF MAILED IN THE 
UNITED STATES 

-----------· -------------·------------------------------------------------·. --------------------------------------------------------------------------------------·-----------------------------------
Fold and Tape Please do not staple Fold and Tape 

GG24-3730-00 
cut o 
Alon{ 



Readers' Comments 

OS/2 Version 2.0 
Volume 1: Control Program 

Publication No. GG24-3730.00 

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want 
to express your opinion about it (such as organization, subject matter, appearance) or make sug­
gestions for improvement, this is the form to use. 

To request additional publications, or to ask questions or make comments about the functions of IBM 
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer. 
This form is provided for comments about the information in this manual and the way it is presented. 

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com­
ments in any way it believes appropriate without incurring any obligation to you. 

Be sure to print your name and address below if you would like a reply. 

Name Address 

Company or Organization 

Phone No. 



Readers' Comments 

OS/2 Version 2.0 
Volume 1: Control Program 

Publication No. GG24-3730-00 

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want 
to express your opinion about it (such as organization, subject matter, appearance) or make sug­
gestions for improvement, this is the form to use. 

To request additional publications, or to ask questions or make comments about the functions of IBM 
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer. 
This form is provided for comments about the information in this manual and the way it is presented. 

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com­
ments in any way it believes appropriate without incurring any obligation to you. 

Be sure to print your name and address below if you would like a reply. 

Name Address 

Company or Organization 

Phone No. 



Readers' Comments 
GG24-3730-00 

Fold and Tape 

Fold and Tape 

GG24-3730-00 

Please do not staple 

BUSINESS REPLY MAIL 
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM International Technical Support Center 
Department 91J, Building 235-2 
Internal Zip 4423 
901 NORTHWEST 51ST STREET 
BOCA RATON FL 33431-1328 

1 .. 11 ... 11 •• 1 .. 1 .. 11 .... 11 ... 11 .. 11 ••• 1.11 .. 1 ... 1.11 

Please do not staple 

==-= = Cut 
: ::..= == Alo 
!.~:§~5:® 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED IN THE 
UNITED STATES 

Fold and Tape 

Cut 
Al or 




