Foreword by

JOHN SOYRING

Q Steven J. Mastrianni
132)

Accredited

WRITING 05/2 2.1
DEVICE DRIVERS» C

SECOND EDITION

Aueuaqr) uaandwon HNA

Writing 0S/2 2.1
Device Drivers inC

Second Edition

VNR's 0S/2 Series

0/S 2 Presentation Manager GPI Graphics
by Graham C.E. Winn

Writing 0OS/2 2.0 Device Drivers In C
by Steven Mastrianni

Now That I Have 0S/2 2.0 On My Computer — What Do I Do Next?
by Steven Levenson

The 0S/2 2.0 Handbook
by William H. Zack

The Cobol Presentation Manager Programming Guide
by David M. Dill

Learning To Program OS/2 2.0 Presentation Manager By Example:
Putting the Pieces Together
by Stephen A. Knight

Comprehensive Database Performance For 0S/2 2.0’s Extended Services
by Bruce Tate, Tim Malkemus, and Terry Gray

Client/Server Programming With 0S/2 2.0
by Robert Orfali and Daniel Harkey

0S/2 2.X Notebook: Best of IBM 0S/2 Developer
edited by Dick Conklin, Editor

The Shell Collection: 0S/2 2.X Utilities
by Steven Levenson

Using Workplace 0S/2: The Power User’s Guide to IBM’s 0OS/2 Version 2.1
by Lori Brown and Jeff Howard

Writing 0OS/2 2.1 Device Drivers in C, 2nd Edition
by Steven Mastrianni

The 0S/2 2.1 Corporate Programmer’s Handbook
by Nora Scholin, Mark Sullivan, and Robin Scragg

0S/2 2.1 REXX HANDBOOK: Basics, Applications and Tips
by Hallett German

Writing 0S/2 2.1
Device Driversin C

Second Edition

Steven J. Mastrianni

VAN NOSTRAND REINHOLD
New York

DISCLAIMER

This book and software are provided “as is.” The implied warranties of merchantability and fitness for a particular purpose are expressly
disclaimed. This book and software may contain programs that are furnished as examples. These examples have not been thoroughly
tested under all conditions. Therefore, the reliability, serviceability, or function of any program or program code herein is not guaran-
teed.

The information presented in this book was valid at the time it was written and was conveyed as accurately as possible by the author.
However, some information may be incorrect or may have changed prior to publication. The author makes no claims that the material
contained in this book is entirely correct, and assumes no liability for use of the material contained herein.

TRADEMARKS AND COPYRIGHTS

IBM, AT, 0S/2, Personal System/2, PS/2, and Micro Channel are registered trademarks of the International Business Machines
Corporation.

C/2, XT, and Presentation Manager are trademarks of International Business Machines Corporation.

Intel is a registered trademark of the Intel Corporation.

Lotus 1-2-3 is a registered trademark of Lotus Development Corporation.

MS-DOS, CodeView and Microsoft are registered trademarks of Microsoft Corporation.

Microsoft and Microsoft Windows are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1993 by Van Nostrand Reinhold

Library of Congress Catalog Card Number 93-2264
ISBN 0-442-01729-4

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means—
graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without
written permission of the publisher.

Van Nostrand Reinhold is an International Thomson Publishing company. ITP logo is a trademark under license.

Printed in the United States of America

Van Nostrand Reinhold International Thomson Publishing GmbH
115 Fifth Avenue Konigswinteror Str. 518
New York, NY 10003 5300 Bonn 3

Germany

International Thomson Publishing
Berkshire House, 168-=173

High Holborn, London WC1V 7AA
England

Thomas Nelson Australia '
102 Dodds Street

South Melbourne 3205
Victoria, Australia

Nelson Canada

1120 Birchmount Road
Scarborough, Ontario
MI1K 5G4, Canada

16151413121110987654321

International Thomson Publishing Asia
38 Kim Tian Road, #0105

Kim Tian Plaza

Singapore 0316

International Thomson Publishing Japan
Kyowa Building, 3F

2-2-1 Hirakawacho

Chiyada-Ku, Tokyo 102

Japan

Library of Congress Cataloging-in-Publication Data

Mastrianni, Steven J., 1951-

Writing OS/2 2.1 Device Drivers in C / Steven J. Mastrianni.—

2nd ed.

p. cm.- (VNR's OS/2 series)

Includes index.
ISBN 0-442-01729-4

1. 0S/2 device drivers (Computer programs) 2. 0S/2 (Computer
file) 3. C (Computer program language) I. Title. II. Series.

QA76.76.D49M37 1993
005.4'3—dc20

93-2264
CIP

Project Management: Ray Campbell ¢ Art Director: Jo-Ann Radin-Campbell ¢ Production: mle design, Milford, CT 06460

DEDICATION

This book is dedicated to my sons Steve and Jeffrey, my daughter Laura, and my wife Debra,
who put up with my absence while this book was being prepared.

ACKNOWLEDGMENTS

I'would like to thank Dennis Rowe, Stacey Barnes, Mark Fiechtner, Frank Schroeder, Dick
Conklin, Carol Bray, and John Soyring of the IBM Corporation for helping to make this book
possible. I'd also like to thank Allan Wynn of IBM for supplying the information on the IBM
OEMHLP device driver.

I would like to thank Marcello Lopez, Michael Kupka, Michael Gheneke and Rhonda Morrison
for their contributions to this book.

A special thanks to Dwight Vandenberghe of PentaSoft, Inc., Seattle, Washington, for providing
me with the training and inspiration to write my first 0S/2 dev1ce driver.

FOREWORD

Building upon the success of 0S/2 Version 2.0 with well over 2 million copies shipped, IBM
has now released an exciting new upgrade of this increasingly popular PC operating system.
0S/2 Version 2.1 includes many new functional enhancements such as 32-bit graphics process-
ing, integrated multimedia support, the ability to run applications originally designed for
Windows 3.1 and much more.

0S/2 2.1 not only has superior abilities for running DOS applications, Windows applications
and new 32-bit 0S/2 applications, but it allows users to exploit the untapped power of their 32-
bit PC’s and advanced 1/0 devices. However, the PC hardware industry is not standing still. In
addition to the introduction of the Pentium processor, the PC industry has seen an explosive
growth in faster, more intelligent peripheral devices, including Fax/Modems, CD-ROM’s, high
resolution printers and display devices, mass storage, and new technology such as PCMCIA.
Support for these new devices requires device drivers. In the case of high resolution video
devices, several drivers may be required. Keeping up with the demand of users for state-of-the-
art support of these devices can be a daunting task.

Writing OS/2 2.1 Device Drivers in C is the second edition of the very popular Writing OS/2
2.0 Device Drivers in C, which has sold more than 15,000 copies in over 30 countries. I think
you will find this second edition even more helpful and informative than the first. More sample
source code has been added, and all of the source code for the examples in the book is includ-
ed on a disk attached to the back cover. Several more chapters were added with even more
information covering device driver development — including a question-and-answer section
covering commonly asked driver development questions.

Steve’s writing style is clear and concise. He tells you what you need to know — without extra-
neous information, excessive use of buzz words, and acronyms. Developers of device drivers
who read Steve’s first edition have consistently told me they found his book to be a valuable
addition to their libraries. I think you will find this second edition even more worthwhile.

0S/2 2.1 is going to make a difference in the way PC’s are used. It will both preserve user’s
current 16-bit investments, and enable them to exploit 32-bit hardware and I/O devices.
Authors like Steve help provide the technical support you will need to join this new PC revolu-
tion and move into the 21st century of computing.

John Soyring
Director of Software Development Programs
IBM Corporation

CONTENTS

CHAPTER 1. THE EVOLUTION OF PC DEVICE DRIVERS.ccceeeecrnnneenacl
SEOIAZE DEVICES ouvverereeereemnieriasisseisessisssssissssesseistise st 3
Interface Adapter CArdsc.eecereemerereisessesissssssssssessessesssisssasssssssssssasssssssseassaseoss 4
The First Operating System For Personal COMPULETScveurrmniseiseiscnsensinsinens 4
THE FIISE BUS...oeeeeeeeeeeeeereetireresesssssssassesesesestessassssensasssstsssssssssessssasisnssssssssssens .6
CHAPTER 2. UNDERSTANDING DEVICE DRIVERSccoveeererecessecseceenesd
DeVice DIAVELS TOUAYcuerervererecereersieriasiisessisssssssstssstsssiasisssins st sssisssssssasssiasiss 10
Device DIVErS - A SUIIMALY ..c.evverereeerercrcseeieeressisismssssssscassssssnissssssmasssasssssssssssssss 11
CHAPTER 3. THE PC HARDWARE ARCHITECTURE.......c...ccccct cereeeeseeeasl3
- The SYSEIM BUS ..cvurveeenceeeeesescisianssssssssssssssessesssesssssss s ssssssss s sssssssssnsssassssses 13
The IBM PC - BEGINNINGS...covveeeerecriniiereineinisssssisesseesssssssisinsiassssssssssissssssasasses 14
TBIM PC X T eooeeeeeeeeeeeteeeeseeeeesessssssassssssssassssssssasassssasssssasassssasassssssensacssssssssssssssnssasasss 15
The INtErTUPE SYSLEIN «..cvuveereceeeceirerireiniresssssssssssssesstsisiasas sttt sssss s anes 15
IBM PC AT oeeeeeeeeeeeereseseeeseseseesssssesnsnsasassssssassseasassssssstosssasssssasssssastasasassstsnssssnnsnsass 16
THE AT BUS.eiveveeeeveeereeeeseseesessssssesessossssasessasestosensassssstssessssssassasessessesscstssssssssnsanssasesnes 17
The IBM PS/2 and Micro Channel..........cccoceeimimirinimnmnnnmsescscscscssisisisnsssnsasnssssssssssses 18
Enhanced Industry Standard Architecture (EISA) ...cvcviemirinmminninnisssecisencinsnns 20
BUS WALS coveeeeveeeveeeeeeeeseeeeseeteestosessesessesassssssensesentosesessesessessssasassssesssstsssrnssssnsssssasasssasans 20
REAI MO aneeeeeeeeeeeeeeeteseeeeeessstesessesansessssasesasssntesesestssessenssasasassessssssssusssesnesssnasanssnsas 21

X Contents

Protect Mode.. ettt a et s be e b e e b ese st esentseeneesenesnesensens 22
Using Addresses and POINLETSueuveeeeeereeeeesseeesssesessesseeoesseesoeeeoeeeeses oo 24
The Ring ArChItECtUIE.....vu..vvevveeeeeeeeeeeseeeeeeee oo w25
CHAPTER 4. AN OVERVIEW OF THE 0S/2 OPERATING SYSTEM........27
ROOES oottt eeeseseses s eeeeseees e 28
Processes and TRIeadseeveuceeeeeeeeeeeeeeessseesseeseees oo 30
OS/2 1.0 - OS/2 AITIVES ...coomrrrrrrrreesseeoeeeeeeseeseeseeseessss s eseeseeeeeseeeeeeeesese 32
0S/2 1.1 - Presentation Manager AITiVESeevveeeevvveeooooeeoooeeooeooeoeoeoooeesooeoo 32
0S/21.2- ABetter File SYSEmu.uveeemeeeeeeeeeeeeeeeeeeeseeeee oo 33
0S/2 1.3 - IBM’S First S010 EffOrt.........oeuueveemreeeeseeseeseeseeoe oo 34
0S/2 2.0 - What OS/2 Was Really Meant t0 Beowvvveeevvveoooeoeoeooeooooeoooooooo 35
'The OS/2 Application Programming INterfacevvvoooveeoooooooooooeoooooosooooo 37
CHAPTER 5. THE ANATOMY OF AN 0S/2 DEVICE DRIVER.................39
Application-to-DriVer INEEITACEu.vveeuueveeemeeeeseeeseeesessessesseeees oo eeoeeeseoseo 39
DOS Device Drivers and OS/2 Device DIVErS.......vvveevveooeoeoeoeeooeoooooeoooooooeeosoo 40
Designing an OS/2 DevViCe DIVETu.veeeeeeeeeeeeeeeeeeeeeeeeeeeeoeeeeeoeooeeoeeeeeoeoeseseoeen 41
Tools Necessary For Driver Developmentoooeooveevoooo.. 41
The Basics of DIVEr DESIZN..........uvvveerueeeemeereeeeeessesseeeeeeoeeeeoseoeeeoeoeoeeeoeeesseoeeooen 42
REQUESE PACKELSeuorveeeeteeeeeeceeeeceseese e 43
0S/2 Device Driver ArCHIteCtUreeueeeeeeeeeeeseeesseesoeeeeoeoeeoeoeoeoeoeoeoeooeeo 43
DeVICE DIVET MOUES «..ouvvvenrrennrrenresesceeneeeeseeeseesossssseessess s eseeeseeeeeseeseseoee 45
The DeviCe HEAUETveeurrrreneeeeeeeeeeeeeeeeeeeeeesesseesesseese s oeeeeeeeseeeseseoenn 46
Capabilities Bit SEADvceuervvvenerreeeeeeeeeeeseeeeeesseseesesseeeee e eeeesesesee s 48
Providing a LOW-LeVel INTEITACEoveeemeeeeereeeeeeeseeeeeeeoeeeeoeeeeoeoeooeoeoeeoesese s 48
The Strate@y SECHONcuuvveerrveereseeeeeeeseeeeeeseeeese e sees s seeseeseee oo 55
INItAHZAtONcoocrvev it 57
A COMMON SLIALEZY ..vvvvvverrrverrraesreeesceeeeeeeseeeeessssesessseeesees s eee e esee e .59
INEEITUPE SECHOMoovvvevrrirestee et eeeeeeeeeeeeeesee e 60
The Timer Handlervuueeeeeereeeeeeeeeeeeeeeseee oo 65
CHAPTER 6. DEVICE DRIVER STRATEGY COMMANDS TR © i 4
Summary of Device Driver COMMANAS...vvvvrovvevvevoeoooooooeooooooooooooooooooooooeooooe 70
OH / TOE wovvrrrterieeeceeeneceeenssssssess s sesessesseseeseesseeeeeesee e e eee oo oo eeeeeee e 72
TH / Media CRECKoouuecuummrrrerseeeenceessseeeeeseeseoesseeeesssssesees s eoeeeeeeeeseeeese 75

Contents Xi

OH / BUILA BPBi.....ouieteiereesiesiesessseresssssssssssssssssssssssssssssssssssssssansissssnss s ssssssessssssns 77
4H, 8H, 9H / Read OF WIILE ...ouvuvrierunertnsissrisesisessesisesnsissssssssisssssesssessssssssnsssnsnasss 79
5H / Nondestructive Read NO Wait.......cccouervmmmrenenccisiniiniiniestsesesinnns 80
6H, AH / Input o OULPUL SEALUScoveverrerrisrissensesscnssinsissinessssissssssssssssesscnssissssssnssnseses 81
7H, BH / Input Flush or Output FIUSh ..o 82
DH,EH / OPEN OF ClOSE...uccuemnimiiniinsiirssississsssessessssssssssinssssssssssssssssssssssissassissinssassnns 83
FH / Removable MEdia......ccccveeeererrersiremsinsnsresssssssssssessussssssssssssssmsmsssssssessasusssssassnss 84
10H / Generic IOCTLouoiirvereereeneerersassssiesssssssssssssssessesssssssasssssssssssssssssssessssssins 84
11H / RESEt MEdia......voveereriereeeencesneniieiessssssssssessecssessssinssensssssssssssssases 86
12H, 13H / Get/Set Logical DIIVEovvvurriessmrmsenisermesissimssssssssssssssssssensssssssnsssees 87
TAH / DEINSEALL....veererreerreeiereseesessiesssessseiess s sssssssssssssssssassssae st ss s sasssensussassssases 88
16H / Partitionable Fixed DISKSccccoeueiriniinmrnniisississiscsensessissisinssssssssssssessessenses 89
17H / Get Fixed Disk/Logical Unit Mapcccenmuersemscuscusinsissinimsinisssnscsscnsensines 90
1CH / SHULAOWIL cevvevrcverecrerreseesessssesessessessassasssesiesasssssssssssssssssssssssssinsssssssssssssssassascuseas 91
1DH / Get Driver Capabilities.........ceuveiviunimnerssissississsseesessissiniisisisesssssssessessessissines 91
1FH / TNItCOMPIELE ..cvocvreeeeecrecisceeaearsesiesassssssissessnssssssssas st sascssssssasensnns 92
CHAPTER 7. A SIMPLE 0S/2 PHYSICAL DEVICE DRIVER......ccccc0000...93
Device Driver SPeCIfiCAtIONS.ocveueurmsrsersemnssstssisisssssisssiestssssissssssesstcssssssisanas 93
Application Program DeSIgIouuuueeuseeuseeeseissesmnsinssisssssssssesissesissssssinssisssssess 94
Device DIVET OPEIationccueeeeceireiiiersinsisssssssssssessssessisssesstsassssssssstssasussssassasasnes 95
CHAPTER 8. THE MICRO CHANNEL BUS.....ccccccecitcencancieancannces veeneeses 107
Micro Channel Adapter Cards.........cimrinmsnmssssesiscssiessisnsismisssssesssscssssssescass 107
Micro Channel Adapter ID ...t ssssssssessassscass 108
Accessing the POS Register During Debugc.ocuiumiiiiieininnsiseiscnsiniininnees 115
Micro Channel INTEITUPLES ...ucverereeureremscrnieremseresissssssssssesstssstssssmsssisssissssssisessassssissass 116
CHAPTER 9. 0S/2 2.1 VIRTUAL DEVICE DRIVERS eesesessressensensesnssansse 119
The Virtual DOS MACKHINEo.vovevererearrreeeseerccserisssesesessasssssssssssasssssisssssssssssssassssssaese 120
VDD ALCHILECHUTE c.nveeeveeeerereetsrereresrenesesessseseseesesessesersesassasassssasssssnsssssssssssssnenssssassss 122
VDD INIHAIZATION cevveeeeeereeeeeeeeverissereseesesesessssssestosesissesssnssassasasssssscsssssssssessessasasasassanses 123
DIOS SEHNES «..ovvverrerrresereeeresenssssiasssssrssssssssssstssessstssesss s st st n b0 124
DOS Settings REISIIAtION c....uceeveuriuriinisiriiesnrssssssessesssnsissiassssssssssssis s ssssnssnsnsnees 125
VDD to PDD Communications rereerestereraeetetetesssnssetsrsterees 125
The Virtual COM DevViCe DIIVETcccevieereeriririnininneresnsesisssssscsesiasiissesssssasssasacacss 126

The Virtual TImer Device DIAVETveeerrerereeeeeseinsisssisesssnssssssssessssessssissnssssaness 128

Xii Contents

The Virtual Disk Device Driver....... ettt ettt eenaen 130
The Virtual Keyboard Device DIIVEToveeeeeeresreeeeeeeeoeeoeooeooeooeoeoeoeeooseoessoseoenn 132
The Virtual Mouse DeViCe DIIVETceeueeerereereereeeeeese oo oo 133
The Virtual Line Printer Device DIIVETc.uoveeeeemvveeeeeeeeeoeeoeoeoeoeoeoeoeeoooeoesosooon 133
The Virtual Video Device DIIVETooveueeeeeeeereeessseeeeeeeeeeoeeeoeeoeoeooeeoeeeooeeeoeosooe 134
Virtual DevHIp Services BY Category............ueeeeeeeeeereeesesreeeeeeeoeoeoeooeoeeoeeeoeeeeoo 136
DOS Session Interrupts ettt e b e bt bene e neneseatenns 147
Sample Virtual DEVICE DIIVETv.eeuveeeneeeeseeseeesesssiesesssesosseeseeeoeesseeeeseesseens 152
Establishing a VDD-PDD LilK...........oooceeeeeeeeeeseseeesseeesseees oo 161
CHAPTER 10. MEMORY-MAPPED ADAPTERS AND IoprL....................163
High and Low MemOry Maps.............ccvveeeeeeeemmeeeressesseseessessseeoesoeoeoeoeeoeseesesses e 164
Application Program Access to Adapter Memoryeovvvveoooeoeeoeoooeooooeoooeo 164
Access to Adapter Memory in the Interrupt Handlervveooeeooooooooooooo 166
Input/Output Privilege Level (IOPL)oceueveeeereeereeeeeeeeeoeeeoeeeeoeoeoeooeeoeooeoeso o 167
The IOPL Segment.... veereresaeaenes ettt aeee 168
IOPL From 32-bit Applications.. reteseesesreenaneaes 171
CHAPTER 11. DIRECT MEMORY ACCESS (DMA) c.cveeeennerrnreencernenennss. 173
The DMA Controller rertererees e renererenenes ettt ae e sensnnen 173
USING DMA.......oooioeeenectesties st sesns e seeseesesssssessssesesseeses s eeeeeeseeees oo 177
DMA and Micro Channel resrete et et ae b bebetese e anes 181
CHAPTER 12. EXTENDED DEVICE DRIVER INTERFACE cecensersrsecencecese 183
Device DIiver Capabilitiesvuuuuvvueeeveeeeeseeeeesssseesssess oo s 184
Request Lists and Request Control................. e .. 187
Request FOrmat.............uceuceiveceeeeeeeeeeeeesceesee oo, ettt re e saebenrene 190
Read/Write/Write VErify REQUESE..........uevveeeeeeeeeeeeeeeee oo 194
Read PrefetCh REGUESLvvvvueevvvenceeeesceeeeeeeseeeseeseesees e oeeeoeeseeeeeseeeoee oo 196
Request Control FUNCHONSvveeeceeeeeeeeeeeeseseeeseee oo oeeeoeeeeoeeeees oo 196
SetFSDInfo ettt st s e neteebe b erseae e bt saeteneenesnennenns 197
CREPIIOTIEY .oovvcvveeeceereete sttt seeesesseessess s e eeeesesese s 198
SELRESLPOSovovvcveennerinmssssssssssssesssaesessseesessssssessessseeessesess s e eeeeneseseseee s 198
GEBOUNAAIYcooooevermrerensssenes oo eeeeseeeesssssseese s eeeeeeeeeeeses oo 198

Contents Xxiii

CHAPTER 13. DEBUGGING 0S/2 2.1 DEVICE DRIVERS......... veerecnceeees 199
KDB KEYWOIAS ...vovvonererererescisissssissassssssssssssssssssessssssiasssssssssssssssssssssssssssssssssssnssnseses 201
KDB OPETALOLS ..vuvevreseeceernseriasissesssssssssssssssssssssssssssssssssssssssessssssssssssssssssasessesssssssss 202
KDB COmMMANA REFEIEIICE ...u.eeererrererererrersrereseasssassssisisissssssssssssssssnsssssensassssssens 205
BIreaKPOiNEScveeveeeesemesersiissisismrranssesssssssssssssssscsessssssssssansssiessssssssssssssses 208
INternal COMMEANAS .voveueeeeiererierirerrereeererestssessenssestossssssosersssssasssassssssessossssssssnssssasnsanas 208
EXternal COMMEANASccooveeeererierireereneessseesessesesessesessssessssessessssasasssssssssssssessssssssassassans 226

CHAPTER 14. AN INTRODUCTION TO PRESENTATION DRIVERS239

DEVICE CONTEXL...cuveveeeereeeerereersiererssseressesesassssesessesestssesessorssansssassssassasssssessssones 242
DAta TYPES ...vverereseesesesesesssssssesssisssesssssssssssssssssssssss a0 244
IISEATICE DALAerneeeieereereerencreiesereresesesesesesssssessssessssssssessssanssssssssasssnesasssstassusassssnsssssnass 244
Program StACK.........eeeeerememiseisirsississsssssssssssssssssssn s 245
Presentation Driver Design CONSIACTALIONS «.vevevevrercvervecrarsesssssssssssesessessesssssesssssseses 246
Presentation DIAVET EITOIS c..o.cviieverereemeesssesesessesistssssmssesessesmessssssssscsssssstosssnsssssanaasas 246
Presentation Dver ErTor COAESnrecncncninnisirirenemsmsmsnsssssssestsssssnsisssssnsasnss 247
Additional Presentation Driver FUNCHONS......cccccoiviniiiiienininnssersscscsisisnnsnensanans 248
CHAPTER 15. WORKING WITH POINTERS eesesssesscsssesssenssesnsesssssnssresee2Dl
C SOL/2eeeeeeeeesisess s ssesssses s sssasa st s ssasass bbb st R bR RS Ssbsn e 251
VAL AQATESSES. ...veveereeeeenereisiseirereessesssssssesssssesestsestsssssssssssssssasasssassasssscstassssssasssnasan 254
PoInterS IN A VDM ...eeeeeeeeeeceeeiessessessssessesseseesessesssssesssssssensassessasessssssssssssssnasses 255

The PCMCIA Software Trilogycoouseeeseecrscusinnses cosussrernsnrneseresssrestasaesnasaseas 258
05/2 2.1 PCMCIA InitialiZationceceeveeecremseressssisereneresssnsssssssssssssssessssasissssssssssassss 259
Client Device Driver ArchiteCtureccoeeeeerverincinennsssiesesesnsess 260
0S/2 2.1 Restrictions eeeerereeteseseasesessasetssssseseresaesaatane st s sRs et stsae e b e r R e a e R s nbans 262
Card ServiCes FUNCHOMSoueeveveeieririererrerereesssesesesssssssesessssessesessesensassssnssssasassssssssssasnsas 262
Calling Card SEIVICEScuuuerrerermessiesemnsssrssssssssssssssessesssassssisssnssassssisisssassssesssssssss 266
CaAllDACKS . caeieieieveereeeseesesseseesesassssesessesessossesessessensssesssstentossssassersssssssarsssestsssssessessessssanans 267
CHAPTER 17. TIPS AND TECHNIQUESccevveererennnesssssssssesseessassesnseas2 @ 1
APPENDIX A - DEVICE HELPER REFERENCE........ teeseesersencsssessenssnssanas 275
Device Helper FUNCHONSccucucrerisnismsnssessssssssssessessssessesssasissssssssssssssssssssssssssinss 275
DevHIp Services and Device CONEXEScvurvureueruscuscrsersissimeinitnsmssissssisssicssississinens 280

Contents

Device Helper Cat€QOriesouuuereeereeseereeseereesee oo e 286
DEVHID ROULINES «.....cevveeerceeitreceecece e esesesseessses s eee e 290
APPENDIX B - REFERENCE PUBLICATIONS.....uuuuueeeeeeeeensesnnn. e (1) |
APPENDIX C - LISTINGS......ctvvvreernnneerennecerenns TR | | X 1
Device Header, One DEVICEvueueeeeeeeeeeeeeeseeeeseesseeseees oo 403
Device Header, TWO DEVICESuuvuevveriemreeeneeeeeeeesssesssessseesseeseeseesss s eeo 404
C Startup Routine, One DEVICE............euueeeeeeeeeeeeereesseeseeeseees oo 405
C Startup Routine, FOUr DEVICES.........u.curveeeeeeeseeseereeseesessee oo 407
Standard OS/2 Device Driver INCIUde Fileu..........covveveeeemeeseeeeeeeeeemeeenenssssen 409
Skeleton Strategy SECtionceeeeeeeeeererersrnnns 424
Sample IOCH Call, 16-Bil.........ucvereereeeeeeeeeeeeeeeeeessesessess e 425
Sample IOCH] Call, 32-Bit..........cvuveeeeeeeeeeeeeeeeseeseereeseesee oo ...425
Sample Interrupt Handlerceeeeeeeereeeeeoeseeeeeeeeee oo ..426
Sample Timer Handler reetesreste et a e e neabeatsateneeneseenneseenensens 428
Simple OS/2 Parallel Physical Device DIiVETveveoeeeeeoeeeeooeooooeoooa ..429
C Startup Routine for Parallel Device DIVETvuvveeeeveeeeeeeeeeoeeeoeooeeoeeeeooeosoeoenn 438
Parallel Device Driver INCIUde File...............uveeeeeeveeeeeeeeseeeeseeeeeeeeeeeeeeoeeoeoeoeoeeoo 439
Parallel Device Driver MaKe File..............oeeeeeeeeeeeeeeeeceeseeeeseeeeeeoeeoeseoeoeoeeoeeee oo 440
Parallel Device Driver DEF File............coveeneeeeeeereeseeeseeseeseeeeeeseeseooon. 440
Sample OS/2 Serial DEVICE DIIVETvvuveeeeeeeeeeeeeeeeeees oo 440
Serial Device Driver Make File...........oooovvevvoereeeeeereesceoeooeoso . 458
Serial Device Driver DEF File..............oveuoveeeereeeeeeeeeseesseeess oo 458
Sample C Callable DEVHID INtEIFACE.vverveereereeeeeeeseeeeeee oo 459
C Callable Debugger BreaKpointc.eeeeeeveseeseessesseeseeseeseeoeseeeoeeoeeeeeseesenonn. 460
Data Transfer ROULINEoouucvveiueeeieceeeee e eeesees oo 461
SamPle DMA ROUNES «...oucvueveieeeenceenceceeeeeeeeeeesesesssesssessees e eeeeese 463
Obtaining POS Register CONENtS..........ovvvurvvenrveereesneenncseseeeeseeesseseessssessssseesssss 473
ABIOS Specific INCIUAE FIleu.veveeeereeeeeeeeeeeeeeescees oo 475
IOPL Routine For 16-Bit and 32-Bit APPHCAtiONSveeveeeeeeeoeeeeeeeoeoeooeoooeosooo 477
IOPL Routine Make File reererenrerenenens ..478
IOPL ROUINE DEF FIE ..uceurrerreereeeeeceeeeeeeeeeesesessessseess e 478
IOPL Test Program, 16-Bitoooveveeeeereereereerererern. reeeereerenaeneneens 478
IOPL Test Program Make File, 16-Bit..........ooovveveeeevoeereeeeeeoeeeeoeeeoeeoeeoeoeeoeoeosoes 479
IOPL Test Program DEF File, 16-Bit...........oveeeeerereeeeeeeseeeeeeeeeeeoeeeeoeeoeoeoeeoeoeeoo 479

Contents xv

TOPL Test Program, 32-Bitcoccvueimrnisesereininimniissnnsn s ssasesese 480
IOPL Test Program Make File, 32-Bitccccovvvnecmnecmnimniiinninissiseiscisinsisiinsnines 480
IOPL Test Program DEF File, 32-Bit.....c.ccomueenenniiiniinsssisssnssisssisssnsese 481
Device Driver For Memory-Mapped Adapters.........occeceeureucuniunns . . 481
Memory-Mapped Device Driver DEF File.......ooiriicciisiisiiisssissinieees 493
Memory-Mapped Device Driver Make File eereveueuessasateteseressaetenaresssasnsrertnerares 494
Memory-Mapped Device Driver Header Fileccoowviuisseeinnce. reererereereraenenes 494
Memory-Mapped Device Driver Test Program - 16-Bituoeeieceeeereecenniacneensansenens 496
Memory-Mapped Test Program Header File - TO-BIE oeeereirereerrreeeeseeseressesnesenenes 498
Memory-Mapped Test Program Def File - 16-Bit.......... reverenenenens 498
Memory-Mapped Test Program Make File - 16-Bit . reeverereaseneaenenes 498
Memory-Mapped Test Program - 32-Bit, 16-Bit POINLETS .cvevrrerereerreesscsnisissesnenens 499
Memory-Mapped Test Program DEF File - 32-Bit c....oovvoieeiicemiisinninsiisssniiseees 501
Memory-Mapped Test Program Make File - 32-Bitcoovvvvimseeenivsssiiississiinsssees 501
Memory-Mapped Test Program - 32-Bit, 32-Bit Pointers e nnenes 501
Memory-Mapped Test Program DEF File - 32-Bit c...ooveviiiuiissienissiinnsssssnisssssenns 503
Memory-Mapped Test Program Make File - 32-Bitcoovvuinnecimnccinnnniiisiniisssens 503
IVEECTOS woveeseeeeeesesesesseeeescscssasssassssesssssesssssssssssosenssnsassasssssssssstssssnsnsnstassssassssssstsnsnsnsmasasasas 504
APPENDIX D - OEMHLP AND TESTCFG .evvvveveeeeeeeeeeseeseesssssssssssssssssessss 0D
OFEMHLP ..ot eestsae s sesassssssesessssssss s st s s st bs s eSS s s eSS0 505
TESTCEG cooeeveveveeeeeeeeeesssssesssssssssssasssesesesssssssserssasasasssssiatassssssnsmssastssssssasssssissssasses 533

TABLES

Table 4-1. 0S/2 PLIOIILY SHUCKUIE ...cvevevecrerercrereeeenissesessescsseseessasiessssasessssssssissassssssssssasssnsseses 31

Table 5-1. Device Attribute Word....... eeetereberer st a bbbt s et Re s seensessessnasareess 47

Table 5-2. Capabilities Bit StrD.......cceceeerererrererererenrrenseesesssesneees 48

Table 5-3. Device Driver Strategy Calls............... .57

Table 6-1 Device Driver Strategy Commands...........cceceeeveerreninrrrenescnssssrsnssesecscsssesesssesenes 71

Table 6-2. API Routines Available During Initcccccceeveeneee .74

Table 6-3. Media Descriptor Bytes.........cccocerurveneeences reerererererere ettt ettt et teneseassenaraensnns 76

Table 6-4. BoOt SECLOr FOIMALcevevereeeerererereresserisesesssencecsenesesesssssssssssssssesenss 78

Table 9-1. DOS SEHNES.cucivererererrrrerrrerssssssesssssssssssssssssssssssssssesessasesssasssssissssssssssssssssssssssssasasases 124
Table 9-2. DOS Settings Information ‘ 125
Table 9-3. Virtualized 8250/16450 Registers..........cecvurrererenes 127
Table 9-4. Virtualized Timer Registersccccoceeeuvurunne 129
Table 9-5. Supported Virtualized Timer ReISters.......cccovreevercrcrcnnirininnnnnsisiescsneeessenenns 129
Table 9-6. Virtualized INT 13 FUNCHOMNS «....oveeerererereerieeniereesnesetesecessessssesesasasiesssssssssessessassseans 130
Table 9-7. Virtualized Floppy Disk POItSccccccenirreiererenrceneetrnriscsisisnninisciessesesens 131
Table 9-8. Virtualized DOS Interrupts 148
Table 9-9. Virtualized BIOS INTEITUDLScvvveerrererrrieeeieeeteeessesesessssesesassesesssssessssesessesssssssssssseses 149
Table 9-10. Virtualized DOS Soffware INTEITUDLScccererererrerererererererersanssssesesessesssasssssessescacnseses 151
Table 11-1. DMA Channel Assignments............. eereeeeerereaeres et eba e e tetesenas 174
Table 11-2. DMA Controller Port ASSIGNIMENLScceeveruierererrerernseeessesssesisesisesessssssessesssseses 175
Table 11-3. DMA Channel AAAreSSINgooueeevereereiereeeeisessssesssesesesessossessssssssssssssesssssncsssssnssss 177
Table 11-4. DMA MaSK REGISIEToveveieeereiereeereirtnseseeenesesetsasesssessssesssessssssisssasssssssnssssessass 178
Table 11-5 DMA MOde REGISLETcovivereeereeetireenrereceseessassesssesesessesessesesessessssssesesasssssssssssnsonsans 179
Table 11-6. DMA Command Register reeeetshetereaeretebeteb e s b e st e b et et et ene st ab et esastenareenasers 180
Table 12-1. Capabilities BiS.......ceceeeveerererereereersnserersisssssssesesenecsssesessssuesssssssessnsssassssenes ...185
Table 12-2. Volume DeSCrptor WOIdcceieveverinenerneseneescstsssniseesesisssmsssiissessssssssesesssssssseses 186
Table 12-3. LstRequestControl Word BitS..........cceveeieeneneneeeissniciniiisiniiescessesssessssessanses 188
Table 12-4. LstStatus Byte, Lower NIDDIE........cccoeveirneeeeserininniiininiciininneiesesesessssssesssessssns 189
Table 12-5. LstStatus Byte, Upper NIDDIE........cccveeverurireerieeenesecssisiesissiessseisssessssssssssnssssenes 189
Table 12-6. RequestCtl Byte eeetereaesesteretereaeastateteb e e sesereeeet et sseserereatens 191

xviii Tables

Table 12-7. REQUESE PLIOTILYcvcvevereeeerereecrcreenci st ssessssssesesessssesssssscscssnnesssmsesssssees 191
Table 12-8. Request Status, Lower Nibble (Completion Status) «.....cc.eeeeeeeeeveeeeeeeeeseersssssesssserens 192
Table 12-9. Request Status, Upper Nibble (Error Status)... rrererreretetenrereatereatsteseatenenes 192
Table 12-10. Request Unrecoverable Error COUESvummiimeeeeeeeeeeeeeseeeeseseeseseesessessassns 193
Table 12-11. Request Recoverable EXror COUESuovmneeeeeeereseseesesssesessssssssssssssesessesens 194
Table 12-12. Request COntrol FUNCHONS..........cvvcveveieireiirersisessesecsesesecseseesesssesseeseesssssssssssssssssseses 197
Table 13-1. KDB KEYWOTUS........ccccveererecreeierreerereeseessssessesssesssssssssssssssssssssssssssssnssssassssssmsnsenne 201
Table 13-2. KDB BinNary OPEIatOrsScceeuveveveereeriveseiesessssssessssssssssssssssssssssssssssssssssssssessnsenn 202
Table 13-3. KDB UNAry OPEIAtOrScevueuererereererenseresessessssesssssssssssssssssssassssssssensssssssessseesnsenne 203
Table 13-4. KDB Parameter Defiitionsccevueueueimernuernsmenneseesesessssesesesscsessensmssnssssesesessnn 206
Table 13-5. Page Bit Definitions (bit set/clear) ... erererrereet oot rebe b be b be b benbesebentesenes 212
Table 13-6. KDB Register Definitions...................... eeereretetereteee s ebetebe st reberea st reterersaane 219
Table 13-7. KDB Flag Register Definitionsocucuveuviueeevereereesieeeeceeeseesnessseseesessesesssesseesseae 220
Table 13-8. KDB Machine Status Word...........ccceeevveeeeereremeeeeeeneene eeeterereeensaetnanas 221
Table 13-9. KDB RecOZNIZed SIIUCIUIEScuvveeviireiisesiseseeseeeeeseeeeesessesssesseseesesssesasssssssssassees 227
Table 14-1. Presentation driver flag DItS...........ccoeueveiueeeererncieseeisesceenseesisceseesseesessesseeeseesessesenn 241
Table 14-2. DeVICE CONLEXE TYPES....cucuerererrererercteerercaeisesssssssssssssssssssssssssssssssssassssassssassssesessmsenne 243
Table 14-3. Data Types for QUEUEd Date...........coecveeueererreeeererereriereereese s sssssesssssssssssssssssenne 244
Table 14-4. Graphics Engine Exports eetereteteebe st st t et et et s s s b ebe s e s s bebeasasn et bt eberenne 245
Table 14-5. Presentation Driver Errors.................... ceeeerereterenenerenees 247
Table 14-6. Presentation Driver Error Codes........ . erereetereeresnerenernenen 248
Table 14-7. JOD EITOT RELUINSucvevveieivrienceeiietsiieressesesstscsesseseesesesensssessasssesesssssssssesasesssseses 249
Table 16-1. OS/2 PCMCIA Card SEIVICESuovviueuieicrerererseeeeesesensseseeessesessssseseessssssssssssssesssssens 263
Table 16-2. Card Services Register INterface (INPUL)c.cveveeeeeeceeeeeeneeeeeeeeeeeeeeeeeesesesssssnsesssenens 266
Table 16-3. Card Services Register Interface (OULPUL)vvveeeveeeeeeneereeeereseeeeeesesesessseeseessseens 266
Table 16-4. OS/2 2.1 CallDACKS.......ccoveererrerererrinireriicteiseseisisessssssesssssscscsssseasssesessssnseseesasssessssssees 267
Table 16-5. Callback Register INterface (INPUL)oveevevveeveeeereeeeeeeeeeeeeeeeesesseeseseessessssssas 269
Table 16-6. Callback Register INterface (OULPUL)ovveveveceevieeeeiceeereeeeeeeeeeeeseseeresesesessesssssseees 269
Table A-1. Device Helper FUNCHONSccovvevereeeeeeeeinncnincieeisseseinessaessesesesessesssssesnsmosssnsesssseses 275
Table A-2. Device HEIPEr CONLEXLSceveverrereirenirineeecaesesessesssssesssscssssssssesssssssessssesnsssessesenne 281
Table A-4. Read Only System Variables...........oueeeeveeeeeeeeeereeeseseeeseeseeeeenn . 319
Table A-5. DeVICE DIIVET EVENLSccvieereireenceinceeeeeceesn s sssssesesssesessssesstesssessesensesensessessene 372
Table D-1. OEMHLP Supported IOCHL CallS...........c.ooueeeereeceieceriereeeeseneeseseeeesesesseesesesesssseesesen 507
Table D-2. Video Chip Set INfOrTation...........cvveiecueriereiseeivieeeeeeeeeeeereeseeseessessesssssesesssesseseses 518

Table D-3. TESTCFG IOCtls, Category OX80.......cvvviverierireeeseeeveereereesseseeseesseseseessssesssssesssssses 533

FIGURES

Figure 1-1. The AItair 8B00.........ccoueeeeeeereeerererererererereresiesssesesesesessesssssesessssessssessnsesesesssssesesssenes 1

Figure 1-2. FIOPPY ISK.cueroreeererererieiietceereeeeeeetererereseesssesesesesessesssssssesessssssssssssssasssesessnsasesesenes 3

Figure 1-3. Role 0f the BIOS. ...ttt b sess s sssssssssssesesessssasenssenes 5

Figure 2-1. Polled Printer OULPUL.c.c.cveieveeererieeieieetetcteseeeesesesereesssesesesessssssesesensssesesssensanens 8

Figure 2-2. Interrupt printer output............. rertetereree ettt ettt ese et st esesasaanens 9

Figure 2-3. The role of the devViCe AIIVET.covervreeeeerererererereeeieeeeeeseese e sesesesesesesesesesesesesesene 10
Figure 3-1. THE IBM PCi. ...ttt esesesesensnssssssassssesssesesessesesesesesesesesesesesens 14
Figure 3-2. The IBM PC ATcuoeierererstereeressssesesstssesesssssessssssssssssssesessssssesesssasesssasesssssesens 15
Figure 3-3. Micro Channel adapter.ccccooevereererennnee. ereeerereeereseresetereserans ..18
Figure 3-4. IBM PS/2 MOAEL 80cuoueuererereireerreeeserereresesesssssssessssesesesssesessssesesesesesesesesesesesens 19
Figure 3-5. Real mode address CalCULAtiON.cvuveeererereverereresreneesssssssessserssssssssasssssssassesens 21
Figure 3-6. 80286 protect mode addreSSing.ovveeevevereeeeeeeiereesieeeeseresesresesesesessesesessesens 22
Figure 3-7. 80386-486 flat mode addreSSing.couvveveeeeiverereieeeeriereeieserereresssereesessesesssessesens 23
Figure 3-8. The 80X86 ring architeCtUIE.coecevereiererererereeeenererereesresesesesesesesesesesesssesessasssness 25
Figure 4-1. Process and threads.ccceeeveeeereeiieireeeteteeeeseseseseses e e sesesesesesesessesesesesessssens 31
FIGUIE 4-2. OS/2 13 EE .ottt ssssssssssssssessss st sssssssssasssesenssssesasensnsans 34
Figure 4-3. OS/2 2.1 TULOIAL......cucuiiiiercriieie sttt ss s s sessssssssesesasssesensssssesesessnsans 36
Figure 5-1. Application-to-device driver interface.c.coceveeereveeeerererererreeseerereeesesesesesesesesesesanes 42
Figure 5-2. REQUESE PACKEL.c.cueuiieerererieieeeectcteeeee et sesesesssssesesesssesesessansnesesensasens 43
Figure 5-3. 0S/2 device driver NEAAET.ououvueeeeiieeeeeercrceeeeee v sese s s ssesesesesesesnene 44
Figure 5-4. Device driver header, multiple deVICES.ovveeevereriereeeererereeeeeeeeereeresesenesesens 46
Figure 5-5. Start-up routing, 0Ne AEVICE.ccervereereereireeeeereeerereesereseseeesesssessessssesessesssesennes 49
Figure 5-6. Start-up routine, four deVICES. ...ttt e e s sesssenenes 51
Figure 5-7. Start-up routine with timer and interrupt handler............ccocoeeeevreerecenrrrerereeennn. 53
Figure 5-8. SKeleton Strategy SECHOM.cevveveeeerererererereeeretesesereessesesesesesssssesessssssesessssssssens 55
Figure 59. Interrupt RandIEr.couovieeeeieeeeeeeeetete ettt es et st s e sesstese e ssssesens 60
Figure 5-10. TIMer RANAIEL.ccveverirerererereiereteereeeeeeeereseseresenesesessssssassssesesessessassesssssssssssssesens 66
Figure 5-11. TickCount timer handler.ooveveeviveierereirierererereeresesesessesessssesssessesesesessesessesens 66
Figure 6-1. Request Packet definition.ccceueveveeieeeeereeeeereireiseescsesseseneseresessesesessssesesssessnens 68
Figure 6-2. Standard OS/2 device driVEr €ITOrS.oeveeeveereererieeerererieeeeeveseseeseresessesens .68
Figure 7-1. Application call to OPEN the AIIVET.ccciieerercreeeeeeeeerereseeeessesnere e enesesesenees 94

Xix

xx Figures

Figure 7-2. INIT SECHION. .vcueereeeeieeeietieceeestsee e et et et saeeseseesesessesesssasssssesesassessessssosssassssenenes 95

Figure 7-3. OPEN SECHOM.c.cveeeereeereeeieetee e ceneenesseeeseesssssssesssassesssssssasessesssssssessesonsassssasssseseses 97

Figure 7-4. CLOSE SECHOM.uccceueieietecirtececteeste et seseeessssesessssesensesessesesssassesssassasssssssssessossssessons 98

Figure 7-5. IOCtl 0x01, write port........ccceeveve. retereretereteet st bt ebeb et st eteseas st eseserarantetetes 100
FIGUIe 7-6. IOCHL OX02.......ccererirerererererereeessseseresssesesesesesssssssssssssessssssssssssesssassssssnensensasssesssssnsons 101
Figure 7-7. IOCHL OX03......cceererreererieereesereseresssessssissssssssssasssasessssssssssasssantsssstassssssssssssssesencasses 102
Figure 7-8. READ and WRITE SECHOM.ccccoieininietneiieenessessenseesessssssssesssssssenssesssssassesess 104
Figure 7-9. TIMEr RANAIET. ..ottt eseeseesesessssssssssssssssassessssssssensassssssseseseses 105
Figure 8-1. ISA and Micro Channel INIT SECHON.ccceevrueveerreirenerenereerreresnseeseesseeesseseesesenes 110
Figure 8-2. Micro Channel vs. ISA bus interrupt handler...........ccoveveevrnenreennenreeseresereeceenens 116
FIgUure 9-1. OS/2 2.1 VDS ...uoueieerereteeeereeteresesessetssssessssssasssssssssssssssssssssssssssessssensassssssassessnsons 119
Figure 9-2. VDD initialization SECHON.cceveeieereererirreesrnreentnsesenersesessesseseeesenesenessessesesesessesssns 153
Figure 9-3. VDD data SEZMENL.eevecerererrereennreresenieeetsssisasiesassssssessssssesessssesssenesisessssssosesessses 154
Figure 9-4. VDD input handler.ccoevevvvverereenens ceeteretert s e e et seteaesen e senas e et eaeaesees 155
Figure 9-5. VDD data port output handler...........cccoueeeeeeeeeeceireceeeeeeeeeeeeeee e sese e se e enes 156
Figure 9-6. VDD USET FOULIMES.coueveeereenreneneeiensesressesteessessesessessesssnsestessssessssssenssssassnsessssessss 157
Figure 9-7. VDD include file.cccevereereeereerrerecrereannns everertrretereesenesese et e s st e st e s et e seatebase s ennanens 158
Figure 9-8. VDD Make And DEF FIIES......cooeeieeieeeeetecetee et esseesessessssesessessssessssssssesseseses 160
Figure 9-9. Registering PDD for VDD-PDD communications. . verereeererteaeaerens 161
Figure 9-10. VDD-PDD communications Structure............c.ceceveevceceuecuencne 162
Figure 10-1. PRYSTOVIrt Call........c.ccevvireereeirireereeresesssesssesssesssesssssssssssssssssssessssssssssssssssssssesssssssees 165
Figure 10-2. Mapping a GDT selector during INIT........ccccoevmvniinnncicietecnsicnnnenns 167
Figure 10-3. JOPL SEQMENL.cooueeeerecrerrieteeetereceeeestesessseesssseseseseesessssssesessassssssssesassesesssnesnsssses 169
Figure 10-4. JOPL DEF fIl€......ucuoveiierereiieeteeesesiesse e ssnsssssssssssassssssssssesessssssesssasssssssssssnsseses 170
Figure 11-1. DMA SETUP FOULINE.cevvrrereereeerereerereesesesessesssssssesassessssessssssessesessesessesesssssseseesesenes 181
Figure 12-1. Driver Capabilities StIUCLUIE.coeoieieieereeceeieetrteectreseereeeeestesesesseessesesssaesesnesenes 184
Figure 12-2. Volume CharacteriStiCs StIUCLUTE.coveueetieieerieeerrestereeereesresessesessenessessssssesesenne 185
Figure 12-3. Request List Header StIUCLULE.ovieereieeieeieieeeerceeeeestsesesssessesessesessssenesseseassenes 187
Figure 12-4. Request Header StIUCUTE.c.coviieeteeteeett et et ee et ens 190
Figure 12-5. Scatter Gather DeScriptor SLIUCIULE.ccccieeieeieiereeesereseeresessssseneeseesssassssesenes 194
Figure 12-6. Read/Write Request structure. eeeterebeter s bbbt et s e n et sttt sn et e e easeenes 195
Figure 12-7. Read Prefetch Request SEUCLUIE.c.c.cueevurerurieeecneneneeencrcreneereereseeeeeseseseesesessacsesens 196
Figure 12-8. SetFSDINTO SIIUCLUTE.cooveeieeeereectrreertcentneetsreseseesessse e sesesseseseeesesesassesessessons 197
Figure 14-1. 0S/2 2.1 Workplace SRElLoovoueiereieerceteeeerrteceireetereeseeseesesessesesssessssesnssenessene 239
Figure 15-1. VMGlobalToProcess and VMProcessToGlobal............ccccoeveeernneccneenneenevereesnens 253
Figure 15-2. USING VIMALIGC........vvuevereieeererenerteeesereseesesstesssstesessssesssssssssesessesssssssssessssssesssnssessssens 254
Figure 15-3. Calling VIMLOCKcccvreeveererreeneeereereseerereesessesesssssesesesssesestesesssssseesessssessssesesssens 255
Figure 16-1. PCMCIA sSoftware architeCture.oeeeeveeerreeereriseeessenessseseseesesesseessesesessesesessses 259
Figure 16-2. ClientData SLIUCLUIE.c.cceeveereierieeeeeiestesesssssesessseesesesesssesssssessssessassssssassenssenss 270
Figure A-1. ADD Device Class Table. reeresteresseresetentatesersbes et te st teaar et et eaa st e b et esestebere et e e sesen 357
Figure A-2. Retrieving an ADD’s entry point using GetDOSVar.coceceereveeerererennreresenreenenes 358

Figure D-1. Locating An EISA Bus Adapter Using OEMHLP..........ccccccoueeveveninnenercerenerensenenenes 506

INTRODUCTION

This is the second edition to Writing OS/2 2.1 Device Drivers in C. The first edition of this book
has already sold 15,000 copies in over 30 countries. This is not a testament of the book’s populari-
ty; rather, it is a statement of the tremendous popularity of OS/2. The book began as a collection
of my notes taken while developing device drivers for OS/2 1.0. The collection of notes kept get-
ting larger and larger, so I decided to put them together into a more organized form. I finished
the first edition of the book in January of 1992 and it was first published in April of that year.

Since that time, OS/2 has undergone enormous changes. The latest release, 2.1, is rock solid,
and contains some of the things we've been waiting for, such as support for CD-ROM drives,
super VGA video, and multimedia devices such as the Sound Blaster. The addition of the
Windows 3.1 support has enhanced OS/2’s popularity, allowing the latest Windows 3.1 applica-
tions to run seamlessly on the OS/2 desktop. This is the OS/2 we’ve all envisioned, and IBM has
made our vision real.

However, OS/2 device drivers continue to be a limiting factor in the acceptance and use of OS/2.
This is somewhat discouraging, since 0OS/2 device drivers are not difficult to write. Using the
examples I give you in this book, you should be able to have a simple OS/2 physical device driver
up and running in less than one hour. Of course, some types of device drivers are more difficult.
If you follow the guidelines I give you, however, you'll find that writing an OS/2 device driver can
be an easy and rewarding experience.

As an independent software developer and consultant, I don’t have time to read volumes of refer-
ence materials to get up to speed quickly at a new assignment. Reference materials have never
been good about telling you how to do something anyway, since they’re only references.
Sometimes, a few source code examples are all that I really need to get started, and I've kept that
in mind when writing this book. To help you get going quickly, I've included enough code so that

XXi

xxii Introduction

you can begin writing OS/2 2.1 device drivers immediately. By the time you finish this book, you
will have enough background and sample source code to easily develop your own 0S/2 device
drivers. You are free to use the code described in the listings section or on the companion disk
for your device drivers.

The code in this book relies upon a library of C-callable functions for the Device Helper, or
DevHIp routines. The DevHIp routines are the driver writer’s API, and perform such functions as
hooking interrupts, timers and converting addresses. At the back of the book, you'll find an order
form for the C-callable library, or you can write your own providing you have a good knowledge
of assembler programming and the parameter passing mechanisms via the stack. The cost of the
library is $79 without the library source, and $149 with the library source. This is not inexpensive,
but its cheaper than writing more than 100 assembly language routines from scratch. If your time
is worth more, or you need to get going immediately, I recommend you buy the library. I provide
free support via Compuserve, and offer free updates to the library for one year.

This text does not contain a complete discussion or reference for 0S/2 2.1, nor is it a complete
reference for device driver function calls or prototypes; readers should have a general under-
standing of 0S/2 2.1 and the 0S/2 religion, along with some 0S/2 2.1 programming experience.
See the Reference Section for a list of recommended reading. A complete reference for 0S/2 1.3
device drivers can be found in I/O Subsystems and Device Support, Volume 1 and Volume 2 from
IBM, which is part of the-OS/2 1.3 Programming Tools and Information package. Complete doc-
umentation for OS/2 2.1 Physical Device Drivers and Virtual Device Drivers can be found in the
IBM Operating System/2 Version 2.1 Physical Device Driver Reference, the IBM Operating
System/2 Version 2.1 Virtual Device Driver Reference and the IBM Operating System/2 Version 2.1
Presentation Driver Reference which are part of the IBM OS/2 2.1 Technical Library.

In this book, I will discuss the issues, both hardware and software, that will directly affect your
0S/2 device driver development. Some type of hardware background is helpful, but not necessary.

Generally, you can write all of your OS/2 device drivers, including interrupt handlers, in C. A
device driver written in C can be completed in approximately half the time it would take to write
the same device driver in assembly language. Most device drivers will work fine when written in
C. Programmers who have written device drivers for other multitasking operating systems, such
as UNIX or VMS, should find OS/2 device driver design concepts similar. Programmers not
familiar with multitasking device driver design will find OS/2 device driver development some-
what more difficult. Your first 0S/2 device driver could take about two months to complete, and
subsequent device drivers should take slightly less time. Block and Presentation Manager device
drivers are significantly more complex, and may take upwards of six to nine months or more to
complete. I have included a short chapter on Presentation Device Drivers, but the topic of PM

Introduction xxiii

drivers could easily span an entire book in itself. I didn’t feel that I could do the topic justice in
the limited space of this book. Please refer to the IBM OS/2 2.1 Presentation Driver Reference for
more complete information on writing presentation drivers.

To use the examples in the text or on the companion disk, you will need a compiler, assembler,
and compatible linker. For OS/2 character mode and block device drivers, the Microsoft C 5.1 or
6.0 compiler, the Microsoft 5.1 or 6.0 Assembler, and the Microsoft 5.13 or later linker will be suf-
ficient. For OS/2 Virtual Device Drivers, you will need a 32-bit C compiler, such as the IBM C
Set/2 compiler version 1.1 or greater, along with the corresponding 32-bit linker and symbol file
generator.

Debugging 0S/2 device drivers requires the use of a kernellevel debugger. I recommend the
kernel debugger supplied with the IBM 0S/2 2.1 Toolkit. Other third-party debuggers are avail-
able, but the IBM kernel debugger is the only debugger which has knowledge of the internal
kernel symbols. You may also wish to look at ASDT32, a 32-bit kernel debugger supplied with the
IBM DDK. ASDT32 provides debugging output on the main display, eliminating the need for a
debugging terminal. ASDT32 is also available to members of the IBM Developer Assistance
Program via DAPTOOLS on IBMLINK.

If you are developing or plan to develop an OS/2 product, I recommend that you join the IBM
Developer Assistance Program. This program, offered to qualified software developers, provides
up-to-date information on OS/2 2.1, updates to the operating system and tools, and substantial
discounts on IBM hardware and software. Call the IBM Developer Assistance Program at area
code (407) 982-6408 and ask how to become a member. You may also join the IBM Worldwide
DAP program by entering GO OS2DAP from your Compuserve account.

Unfortunately, two chapters planned for this book did not make it in time for this publishing. The
two chapters are titled “IFS Drivers” and “SCSI/ADD Device Drivers”. These two chapters will
appear in the next printing. I apologize for this omission, since both are important topics.

In Chapter 1, I describe how device drivers for personal computers evolved from simple polling
loops to the complex interrupt-driven device drivers found in today’s real-time PC operating sys-
tems. In Chapter 2, I describe what device drivers are and how they fit into the total system pic-
ture. In Chapter 3, I describe the relevant parts of the PC hardware architecture necessary for
device driver writers to be aware of. If you are already an experienced device driver writer, you
may wish to skip these three chapters and proceed directly to Chapter 4. Chapter 4 begins with a
historical look at OS/2 and provides a brief outline of the 0S/2 operating system. Programmers
already familiar with OS/2 will probably wish to skip this chapter and proceed directly to Chapter
5. In Chapter 5, I discuss the anatomy of the OS/2 device driver by presenting sample code frag-
ments, listings, and various tables. Topics include the strategy section, interrupt handlers, timer
handlers, request packets and device headers. Chapter 6 continues the architecture topic by
describing, in detail, the strategy commands that the device driver receives from 0S/2 and how

xxiv Introduction

the device driver should respond to them. In Chapter 7, I use actual code to show you how to
build an OS/2 8-bit parallel port device driver. I also describe, in detail, the operation of the
device driver for each request it receives from the OS/2 kernel. Chapter 8 describes the special
considerations necessary for writing 0S/2 device drivers for Micro Channel bus machines, such
as the IBM PS/2. Chapter 9 describes Virtual Device Drivers, or VDDs, and contains code for an
actual VDD. In Chapter 10, I show you how to handle memory-mapped adapters, and how to per-
form direct port I/0 without a device driver. Chapter 11 explains how to use Direct Memory
Access, or DMA, and includes several code listings to illustrate how DMA is handled under
0S/2. In Chapter 12, I describe the Extended Disk Driver Interface, also known as the Strategy 2
or scatter/gather entry point. Chapter 13 provides a handy reference for the OS/2 2.1 Kernel
Debugger commands. Chapter 14 contains an introduction to Presentation device drivers. In
Chapter 15, I describe various types of pointers and addressing modes you will need to under-
stand when writing your device drivers. Chapter 16 introduces the PCMCIA architecture and
how 0S/2 2.1 supports PCMCIA device drivers. Finally, Chapter 17 contains some helpful hints
and suggestions, as well as a compendium of tips and techniques I've used when writing my
0S/2 device drivers.

In Appendix A, you'll find a detailed description of the OS/2 Device Helper routines with their C
calling sequence as provided by the C Callable DevHIp library described in the diskette order
form in this book. Appendix B includes a recommended list of further reading. Appendix C con-
tains source code listings for the device drivers and support routines discussed in the book. All of
this code, without the library, is included on the free companion disk attached to the back cover
of this book. You are free to use the code for your own use but you may not sell it or distribute it
for profit without written permission of the publisher. Finally, Appendix D contains documenta-
tion for the IBM OEMHLP device driver which can be used by your driver to obtain such infor-
mation as adapter IDs for EISA bus machines.

CHAPTER 1

The Evolution of PC Device Drivers

n 1976, a small company in Albuquerque, New Mexico, called MITS, founded by

Ed Roberts, introduced a computer in kit form that could be assembled by a

novice electronic tinkerer. The computer, called the Altair 8800, delivered tech-
nology into the home which had previously been confined to laboratories of large
companies and universities. Based on the Intel 8080 microprocessor, the Altair provid-
ed much of the functionality of larger machines, but at a much lower price. The user
could enter a program through the front panel switches and execute it. Later, a high-
level language program called Beginner’s All-purpose Symbolic Instruction Code, or
BASIC as it's more widely known, was introduced for the Altair to make writing pro-
grams easier. BASIC was written for MITS by Bill Gates and Paul Allen.

Figure 1-1. The Altair 8800.

Writing OS/2 2.1 Device Drivers in C

The first personal computers were quite expensive by today’s standards. A kit contain-
ing the computer, case and power supply, less any memory or storage, sold for
$2000.00, not a trivial sum in 1976. Four thousand characters of memory was priced at
over $1000.00. In addition, many circuits were based on an electronic technology that
was prone to interference from certain types of radio frequencies and small variations
in the AC input voltage. The collection of electronic circuits and other equipment that
comprise a computer system are referred to as the computer hardware. The programs
that run on the computer are referred to as software.

A short time after the Altair was introduced, MITS introduced an audio cassette inter-
face, which allowed the use of a standard audio cassette player/recorder for the stor-
age of information. Using the audio cassette proved cumbersome. Since the computer
had no direct control over the cassette player, it could not determine, for example,
that the play and record buttons were pressed while recording, or if the player was
even attached to the computer. Recording information on audio tape was also unreli-
able. In order to store a program or data onto the tape, the data had to be converted
into audio signals before writing it to the tape. In order to read the data from the tape,
the audio signals from the tape had to be converted back into machine code. Since the
computer had to be programmed to read and write using the cassette tape unit, the
user had to manually enter a program to perform those operations using the front
panel switches.

A special integrated circuit, called an Erasable Programmable Read Only Memory, or
EPROM, was added to solve the problem of having to manually enter the initial boot
program. The EPROM was programmed to contain the cassette loader, and retained
its contents even if power was lost. The EPROM contained only 256 characters or
bytes of storage, so the loader program could not be very complex. The user could
select this EPROM using the computer’s front panel switches and start the tape pro-
gram by executing the code located in the EPROM.

Chapter 1. The Evolution of PC Device Drivers 3

Storage Devices

Shortly thereafter, a floppy disk drive storage system was introduced, which provided
for the storage of 250,000 bytes on an 8 inch floppy disk, using the same format that
had been used by IBM on their larger computer systems (see Figure 1-2). Again, the
boot program, this time for floppy disk, was programmed into an EPROM, so the user
did not have to enter it manually. The disk boot program turned out to be much more
complicated, and would not fit into the 256-character storage of the EPROM. This
problem was solved by placing a more complex loader onto the floppy disk. The small
boot program in the EPROM loaded the more complex disk loader, which in turn
loaded the selected program or data from the disk.

Figure 1-2. Floppy disk. (Courtesy of International
Business Machines Corporation.)

Software for this new computer was poor to nonexistent. Programs had to be written
by hand on paper and entered manually. The person writing the program had to be
somewhat of a computer expert since the programs had to be entered in a language of
numbers called machine code. Machine code is the only type of instruction that a
Central Processing Unit, or CPU, can understand. Machine code is a representation in
the computer’s memory of an instruction or piece of data, and is expressed in a pat-
tern of ones and zeroes, called binary notation. The CPU is capable of recognizing cer-
tain patterns of these ones and zeroes, which are called bits, as instructions.
Programming in machine code proved to be time consuming and prone to error, and
the slightest programming error could be disastrous.

4

Writing 0S/2 2.1 Device Drivers in C

Interface Adapter Cards

Each device was connected to the CPU through an electronic circuit board called an
electrical interface card, commonly known today as an adapter. The interface card
plugged into the computer bus, which was connected to the CPU. A program that had
to access a device would instruct the CPU to read from or write to the interface card,
which would in turn issue the correct electrical signals to the device to perform the
requested operation. The interface acted as a converter of sorts, converting CPU
instructions into electrical signals to control the particular device. A motor, for
instance, could be turned on and off using a program that commanded an interface to
turn the motor on and off. The motor was not aware of the computer’s presence or
programming, but merely acted upon the electrical signals generated by the interface
card. :

Because a very limited number of these adapters were available, programs would con-
trol them by directing the CPU to directly access the adapter hardware. Programs
that used particular adapters were written specifically to access those adapters. If the
adapter was changed, the program would have to be rewritten to accommodate the
new adapter’s requirements. This was unacceptable, since a software supplier could
not afford to support multiple versions of a program for each different type of adapter
configuration.

The First Operating System For Personal Computers

With the introduction of the floppy disk for microcomputers, the first disk-based per-
sonal computer operating system was born. Called the Control Program for
Microcomputers, or CP/M, it resided on a floppy disk. When directed to, it would
load itself into the computer’s memory to manage the attached devices, including
storage devices, keyboards, and terminals. Once loaded into the computer’s memory,
CP/M took responsibility for reading and writing to floppy disks, tape drives, printers,
terminals, and any other devices attached to the computer. The CP/M operating sys-
tem was a generic piece of software, i.e., it could be used on any configuration of com-
puter with the same type of microprocessor. To allow this generic operating system to
manage different configurations of devices, CP/M accessed all devices through a
hardware-specific set of programs called the Basic Input/Output System, or BIOS. By
changing a small section of the BIOS program, users could add different types of
devices while the operating system program remained unchanged (see Figure 1-3).

Chapter 1. The Evolution of PC Device Drivers 5

BIOS @ TO DEVICES

OPERATING
SYSTEM

Figure 1-3. Role of the BIOS.

The CP/M BIOS code was an example of an early personal computer device driver.
The BIOS code isolated the CP/M operating system from the device electronics and
provided a consistent interface to the devices. Programs that wished to read from or
write to a particular device did so by calling CP/M routines, which in turn called the
BIOS. When reading a file from the disk, the programmer did not have to keep track
of where the file resided on the disk, or command the disk unit to position itself
where the file was located on the disk. The disk geometry parameters, which defined
the size of the disk, number of tracks, number of heads, and the number of sectors
per track, were handled by the BIOS code. The developers of the CP/M operating
system were free to change the operating system without worrying about the many
types of hardware configurations that existed. Today, the BIOS code is still responsi-
ble for defining the disk geometry.

Since that time, computer speed and storage have increased exponentially. The
amount of computer processing power previously requiring the space of a normal liv-
ing room can now fit on a small notebook-size computer. This increased performance
has allowed the computer to perform more and more tasks for the user. In addition,
the user’s needs have become more sophisticated, and with them the software needed
to provide a comparable level of functionality has become increasingly complex.

The functionality of the operating system and its environment have changed dramati-
cally, yet the necessity for the device driver has only increased. The basic job of the
device driver remains the same. That is, the device driver isolates an application pro-
gram from having to deal with the specific hardware constraints of a particular device,
and removes such responsibility from the programmer. Device drivers allow for the
expansion and addition of hardware adapters, while allowing the operating system to
remain intact. Thus device drivers remain the vital link between the computer sys-
tem’s electronics and the programs that execute on it.

6 Writing OS/2 2.1 Device Drivers in C

For CP/M, the BIOS software solved the device independence issues, but did not
solve all of the problems. The BIOS code resided on a floppy disk and was loaded
along with the operating system at boot time. Users could change the BIOS code to
reflect a new device configuration, but the BIOS code was in assembly language
which was difficult for novice programmers to learn. If the BIOS code contained an
error, the operating system might not load, or if it did load, it would sometimes not
work or work erratically. The BIOS was difficult to debug, because the debugger used
the BIOS code to perform its input and output! A few years later, the BIOS code was
relocated into Read Only Memory, or ROM, and subsequently to Electrically Erasable
Programmable Read Only Memory, or EEPROM.

Using a special technique, the contents of EEPROM can be modified by a special
setup program. The contents of memory in EEPROM is retained even if power is lost,
so the device-specific contents of the BIOS is always retained.

The First Bus

The Altair introduced the idea of a common set of circuits that allowed all of the
devices in the system to communicate with the CPU. This common set of circuits was
called the bus, and the Altair computer introduced the first open-architecture bus,
called the S-100 bus. It was called the S-100 bus because it contained 100 different
electronic paths. Connectors were attached to the bus, which allowed adapter cards to
be plugged into them and connect to the bus. The S-100 bus was the forerunner of
today’s bus architectures.

Although prone to radio-frequency interference, the S-100 bus established itself as the
standard bus configuration for 8080 and Z-80-based personal computers, and was the
first attempt at standardizing personal computer hardware. The IEEE actually drafted
and published a standard for the S-100 bus, called IEEE-696. Some S-100-bus comput-
ers are still in operation today.

CHAPTER 2

Understanding Device Drivers

he use of the BIOS code in CP/M to isolate the operating system from

the specifics of devices was not a new idea. Large computer systems and

mid-range computers, called minicomputers, had been using this tech-
nique for some time. But, this was the first time they were applied to personal
computers.

The first operating systems were single tasking, i.e., they were capable of executing
only one program at a time. Even though these early computers were comparatively
slow in their operation, they were faster than the devices they needed to access. Most
output information was printed on a line printer or written to a magnetic tape, and
most input information was read from a punched card reader or keyboard. This meant
that if a program was waiting for input data, the computer system would be idle while
waiting for the data to be entered. This operation, called polling, was very inefficient.
The computer was capable of executing thousands of instructions in between each
keystroke. Even the fastest typist could not keep up with the computer’s input ability
to process each key.

If a program needed to print something on a printer, it would do so one character at a
time, waiting for the device to acknowledge that the character was printed before
sending the next character (see Figure 2-1). Since the computer processed the data
faster than it could be printed, it would sit idle for much of the time waiting for the
electromechanical printing device to do its job. As technology progressed, faster input
and output devices became available, all well as faster computers. Still, the computer
was at the mercy of the input and output devices it needed. The configuration of these

7

8 Writing 0S/2 2.1 Device Drivers in C

PROGRAM
————>

GET
NEXT
CHARACTER

OUTPUT
CHARACTER
TO PRINTER

DONE
PRINTING

CHARACTER? POLLING LOOP

ANYMORE
CHARACTERS
TO PRINT

Figure 2-1. Polled printer output.

input and output (I/O) devices was also different. Some line printers printed on 8 1/2
by 11-inch paper and some on 8 1/2 by 14-inch paper. Magnetic tape storage devices
used different size tapes and formats, and disk storage devices differed in the amount
and method of storage.

The device driver solved the problems associated with the different types of devices
and with the computer remaining idle while performing input and output operations.
The device driver program was inserted between the program doing the I/0 and the
actual hardware device, such as a printer or magnetic tape drive. The device driver
was programmed with the physical characteristics of the device. In the case of a line
printer, the device driver was programmed with the number of characters per line it
accepted or the size of the paper that the device could handle. For a magnetic tape
device driver, the device driver was programmed with the physical characteristics of
the tape mechanism, such as the format used to read from and write to the drive, and
its storage capacity. The program performing the I/0O did not require detailed knowl-
edge of the hardware device. The device driver also allowed the programmer to direct
a print operation with no knowledge of the type of printer that was attached. Thus, a
new printer could be added, with its corresponding device driver, and the application
program could run unmodified with the new printer.

Chapter 2. Understanding Device Drivers 9

The polling issue was also addressed. Since the device driver had intimate knowledge
of how to talk to the I/0 device, there was no reason why the application program had
to wait around for each character to be printed (see Figure 2-2). It could send the
device driver a block of, say, 256 characters and return to processing the application
program. The device driver would take the characters one at a time and send them
out to the printer. When the device driver had exhausted all of its work, it would noti-
fy the application program of that fact. The application program would then send the
device driver more data to print, if necessary. The application program was now free
to utilize the CPU to perform tasks that demanded more processing, thus reducing
the idle time of the computer.

The device driver became even more important when operating systems appeared
that could run more than one program at a time. It was now possible for more than
one program to use the same I/0 device, and often at the same time. The device dri-
ver was used to serialize access to the device, and protect the device from errant pro-
grams that might try to perform an incorrect operation or even cause a device failure.

PRINTER DRIVER

PROGRAM ENTERED WHEN PR:'NTER IS NOT BUSY
R WHEN CHARAGTER IS DONE PRINTING)
GET
FIRST
CHARACTER ANYMORE
CHARACTERS

TO PRINT?

OUTPUT
CHARACTER
TO PRINTER

OUTPUT

NEXT
CHARACTER
DO OTHER TO PRINTER
THINGS
- []
[]
° DO OTHER

THINGS

Figure 2-2. Interrupt printer output.

10

Writing 0S/2 2.1 Device Drivers in C

Device Drivers Today

Today, device drivers remain an irreplaceable and critical link between the operating
system and the I/0 device (see Figure 2-3). Many new I/0 devices have appeared,
including color graphics printers, cameras, plotters, scanners, music interfaces, and
CD-ROM drives. The device driver remains a necessary component to complete the
interface from the operating system to the physical device. Today’s computers can
run dozens and even hundreds of programs at one time. It is more important than
ever for the device driver to free up the CPU to do more important work, while han-
dling the relatively mundane tasks of reading and writing to the device.

Today, device drivers are more complex, as are the operating systems and devices
they interface with. Device drivers can interact more with the CPU and operating sys-
tem, and in some cases they can allow or block the execution of programs. They can
usually turn the interrupt system on and off, which is an integral part of the perfor-
mance of the system. Device drivers usually operate at the most trusted level of sys-
tem integrity, so the device driver writer must test them thoroughly to assure bug-
free operation. Failures at a device driver level can be fatal, and cause the system to
crash or experience a complete loss of data.

PROGRAM

v ¥

OPERATING SYSTEM

v Y v Y

DEVICE| |DEVICE| |DEVICE| |DEVICE
DRIVER| |DRIVER| |DRIVER| |DRIVER

v Y v v

DISPLAY PRINTER CD ROM KEYBOARD

Figure 2-3. The role of the device driver.

Chapter 2. Understanding Device Drivers 11

The use of computers for graphics processing has become widespread. It would be
impossible to support the many types of graphics devices without device drivers.
Today’s hardware offers dozens of different resolutions and sizes. For instance, color
graphics terminals can be had in CGA, EGA, VGA, MCGA, SVGA, and XGA formats,
each offering a different resolution and number of supported simultaneous dis-
playable colors. Printers vary in dots per inch (DPI), Font selection, and interface
type. Since all of these formats and configurations are still in use, the supplier of a
graphics design package needs to support all of them to offer a marketable software
package. The solution is for the graphical design program to read and write to these
graphics devices using a standard set of programs, called APIs (Application
Programming Interfaces), which in turn call the device driver specific to the hardware
installed.

The device driver has an in-depth knowledge of the device, such as the physical size
of the output area, the resolution (number of dots or pixels per screen), and the spe-
cial control characters necessary for formatting. For instance, a graphics application
program might direct the output device to print a line of text in Helvetica bold italic
beginning at column 3, line 2. Each graphics output device, however, might use a dif-
ferent command to print the line at column 3, line 2. The device driver resolves these
types of differences.

A user might wish to print a 256-color picture on a black and white printer in a lower
or higher resolution. The device driver would resolve the differences and perform the
proper translation, clipping and color-to-gray-scale mapping as required. While this
method allows the graphics program to remain generic for any hardware configura-
tion, it does require the software vendor to supply device drivers for the many types of
input and output devices. Some word processors, for example, come with over 200
printer device drivers to support all makes and models of printers, from daisy wheel
to high-speed laser and color printers.

Device Drivers - A Summary

In summary, the device driver:

e Contains the specific device characteristics and removes any responsibility of the
application program for having knowledge of the particular device.

In the case of a disk device driver, the device driver might contain the specific disk
geometry, which is transparent to the program that calls the device driver. The
device driver maps logical disk sectors to their physical equivalents. The application
program need not be aware of the size of the disk, the number of cylinders, the num-
ber of heads, or the number of sectors per track. The device driver also controls the

12

Writing 0S/2 2.1 Device Drivers in C

disk seek, which is the motion necessary to position the read/write head over the
proper area of the disk. This simplifies the application code, by allowing it to issue
only reads and writes, and leaving the details of how it is done to the device driver.

In the case of a video device driver, the driver might contain the size of the screen,
the number of pixels per screen, and the number of simultaneous colors that can be
displayed. Programs that need access to the display call the display device driver,
which performs several functions. First, it maps the number of colors in the picture
to those supported by the video adapter. This is especially true if a color picture is
displayed on a black and white (monochrome) display. Second, if the resolution of
the target display is smaller than the original, the device driver must adjust the size
proportionally. Third, it might adjust the aspect ratio, the ratio of vertical pixels to
horizontal pixels. A circle, for example, would appear egg-shaped without the correct
aspect ratio.

In the case of a serial device, such as a modem, the device driver handles the
specifics of the electronics that perform the actual sending and receiving of data,
such as the transfer speed and data type.

¢ Allows for device independence by providing for a common program interface, allow-

ing the application program to read from or write to generic devices. It also handles
the necessary translation or conversion which may be required by the specific
device.

Serializes access to the device, preventing other programs from corrupting input or
output data by attempting to access the device at the same time.

Protects the operating system and the devices owned by the operating system from

errant programs which may try to write to them, causing the system to crash.

CHAPTER 3
The PC Hardware Architecture

riting device drivers requires you to have at least a limited understanding

of the personal computer hardware architecture. Device drivers are spe-

cial pieces of software because they “talk” directly to electronic circuits.
Application programs, or those programs that use device drivers to access devices,
can be written without a knowledge of the electronics. While you don’t have to be an
electrical engineer, you will need at least a basic knowledge of the hardware you will
be interacting with.

The System Bus

The CPU is connected to the rest of the computer through electrical circuits called
the bus. The bus contains the electrical paths common to different devices, allowing
them to access each other using a very specialized protocol. The CPU is allowed read
and write access to the computer’s memory (and some devices) by means of the
address bus. Data is moved to and from devices (and memory) via the data bus. The
computer bus is the center of communications in the computer. To allow hardware
interfaces or adapters to gain access to the CPU, the computer system is fitted with
connectors to allow adapters to be plugged into the bus. The adapters must adhere to
the electrical standards of the bus. Certain restrictions, such as bus timing and switch-
ing must be adhered to by the adapter manufacturers, or the entire system may expe-
rience erratic behavior or possibly not function at all.

13

14

Writing OS/2 2.1 Device Drivers in C

The width of the bus, or the number of bits that can be transferred to or from memory
or devices in parallel, directly affects system performance. Systems with “wider”
busses will, in general, offer greater performance because of their ability to move
more data in less time.

Today there are three primary bus architectures in the IBM-compatible marketplace.
They are called Industry Standard Architecture (ISA), Enhanced Industry Standard
Architecture (EISA) and Micro Channel Architecture (MCA). Of course, there are
other types of busses used for non-IBM compatible computers, but they will not be cov-
ered in this book.

Figure 3-1. The IBM PC. (Courtesy of International
Business Machines Corporation.)

The IBM PC - Beginnings

In 1981, IBM released the IBM PC (see Figure 3-1), a personal computer based on the
Intel 8088 microprocessor. The 8088 was a 16-bit microprocessor, and was IBM’s first
entry into the personal computer market. IBM was known worldwide as a supplier of
large data processing systems, but this was their first product for personal use. The
IBM PC contained a new bus design called the PC bus. The PC bus was fitted with
adapter card slots for expansion, and to make the bus popular, IBM released the specifi-
cations of the PC bus. This encouraged third-party suppliers to release many different
types of adapters to be used in the IBM PC. This was a strategic move by IBM which
led to the standardization of the PC bus architecture for all personal computers.

Storage was limited to a single floppy disk, capable of storing approximately 180,000
bytes of information.

Chapter 3. The PC Hardware Architecture 15

The IBM PC was not a relatively fast machine, but users could, for the first time, have
an IBM computer on their desks. Original sales projections for the IBM PC were a
few hundred thousand units, but demand quickly exceeded availability. The personal
computer revolution had begun.

Figure 3-2. The IBM PC AT. (Courtesy of
International Business Machines Corporation.)

IBM PC XT

In 1982, IBM introduced the IBM XT computer. The IBM XT contained a built-in ten
million byte (10MB) hard disk storage device, and the floppy disk storage was dou-
bled to 360,000 bytes (360KB). The IBM XT was based on the IBM PC and retained
the same basic design, except that users could now store ten million characters of
data on the hard disk.

Computer hardware can process instructions relatively fast. The execution of a simple
instruction may take less than one microsecond (.000001 seconds). The computer input
and output devices, however, are relatively slow. For example, if the computer was
receiving bytes of data from another computer over a phone line, the time to receive just
one byte of data would be approximately 4 milliseconds (.004 seconds). If the computer
was just waiting for more bytes to appear, it would be spending most of its time doing
nothing but waiting. This would be extremely inefficient, as the computer could have
executed thousands of instructions while waiting for another byte. This problem is
solved by a hardware mechanism called the interrupt system. The interrupt system

16

Writing OS/2 2.1 Device Drivers in C

allows an external event, such as the reception of a character, to interrupt the program
currently being executed. A special program, called an interrupt handler, interrupts the
currently executing program, receives the character, processes it, and returns to the
program that was executing when the interrupt was received. The program that was
executing at the time of the interrupt resumes processing at the exact point at which it
was interrupted.

The IBM PC and PC XT had an eight-level Programmable Interrupt Controller (PIC),
which permitted up to eight interrupts on the PC bus. This represented somewhat of
a problem, as several interrupt levels were already dedicated to the system. The sys-
tem timer reserved an interrupt, as well as the hard disk, floppy drive, printer port and
serial port. This left only two unused interrupts, which were reserved for a second
printer and second serial communications port. If you happened to have these devices
installed, you could not install any other adapter cards that utilized interrupts.

IBM PC AT

In 1984, IBM introduced the IBM PC AT personal computer. The IBM PC AT com-
puter utilized the Intel 80286, a more powerful 16-bit microprocessor. The IBM PC AT
utilized a newly designed bus, called the AT bus. The AT bus added eight additional
address and data lines, to enable the CPU to transfer twice as much data in the same
amount of time as the IBM PC. In another brilliant engineering innovation, IBM made
the AT bus downward compatible with existing IBM PC adapter cards. The user did
not have to give up a large investment in adapter hardware to upgrade to the IBM PC
AT. The AT could use newly introduced 16-bit adapters as well as the existing eight
bit adapters. The newer bus could still accommodate the older PC and XT bus adapter
cards. Today, the AT bus remains the most popular IBM PC-compatible bus in exis-
tence, with over 100 million installed, and is commonly called the ISA bus.

The processor speed of the PC AT was increased 25 percent, and the combination of
processor speed and greater bus width led to dramatic performance increases over
PC XT. The PC AT was equipped with a 20MB hard disk, a 1.2MB floppy disk, and
was fitted with a larger power supply to handle the increased speed and capacity. The
color display was becoming more popular, but was limited in colors and resolution.
IBM quickly introduced an upgraded model of the IBM PC AT, called the model 339.
The newer version came with a 30MB hard disk and a 1.2MB floppy disk. To retain
compatibility, the AT’s floppy disk could also read and write to the smaller capacity
360K byte floppies for the IBM PC XT. Processor speed was again bumped up 33 per-
cent.

Chapter 3. The PC Hardware Architecture 17

The AT bus, however, had limitations. The electrical design of the bus was limited by
the speed that data could be transferred on the bus. This was not a problem for the
IBM PC AT, but as processors became faster and users demanded more power, the
performance of the AT bus became a limiting factor.

The AT Bus

When the IBM PC AT was introduced in 1984, the bus requirements changed signifi-
cantly. The IBM PC AT used the Intel 80286, which was also a 16-bit processor. The
processor speed was increased by thirty percent. Since the memory address could be
16 bits wide, the processor could now issue only one address command to the memo-
ry circuits, cutting the time necessary to address memory in half. The data bus width
was also increased to 16 bits, and 8 more interrupts were added.

The AT bus has 24 address lines, which limits the amount of directly addressable
memory to 16MB, but recent IBM-compatibles have provided a separate CPU-to-
memory bus, which is 32 bits wide. The peripheral address bus that the adapter cards
plug into remains a 24 bit address bus.

The IBM PC AT was upgraded to run another thirty percent faster by raising the
processor clock speed to 8 megahertz (Mhz). Performance increased dramatically,
but a problem for future expansion now became apparent. The electrical design char-
acteristics of the AT bus prohibited it from reliably running at speeds faster than 8
Mhz, with a maximum bus throughput of about 8MB per second. Users were
demanding more power, and CPU makers such as Intel were producing faster and
more powerful processors.

Adapter cards for the AT bus required the manual installation and/or removal of
small electrical jumpers to define the characteristics of the card. There were jumper
settings for the card address, interrupt level, adapter card port address, timing, and a
host of other options. This sometimes made installation troublesome. An incorrectly
placed jumper could cause the adapter not to work or the system to hang. Novice
computer users had a tough time understanding all of the options and how to set
them for various configurations. Boards were often returned to manufacturers for
repair when all that was wrong was an incorrectly installed jumper.

The AT bus design allows for 15 interrupts, but adapters cannot share the same inter-
rupt, or IRQ level. Once a device driver claims an interrupt level, the interrupt level
cannot be used for another adapter.

18

Writing OS/2 2.1 Device Drivers in C

The IBM PS/2 and Micro Channel

IBM’s answer to the limitations of the AT bus was to create, from scratch, an entirely
new bus architecture. This new architecture, called Micro Channel, was (and is) vast-
ly superior to the AT bus architecture. Since IBM decided that the bus did not have to
support existing adapter cards and memory, they were free to design the new bus
without restrictions. The Micro Channel bus was a proprietary bus (which has since
been made public) that was designed to solve all of the existing problems with the AT
bus, and to provide for an architecture that would support multiple processors and
bus-masters on the same bus using a bus arbitration scheme. In addition, the Micro
Channel bus provided greater noise immunity from Radio Frequency Interference
(RFI), 32 address lines, 24 DMA address lines, and 16 data lines with increased speed
(bandwidth). The first Micro Channel bus computer was twice as fast as the IBM PC
AT, and had a maximum bus transfer rate of 20MB per second. Some Micro Channel
adapters can manage as much as 160MB per second.

The Micro Channel bus supports multiple bus masters. Bus mastering allows an
adapter to obtain control of the system bus to perform I/0O at higher rates than if the
CPU was used. The Micro Channel design supports up to 15 bus masters. The Micro
Channel bus also has better grounding and more interrupt capability.

IBM introduced a brand new line of computers, called the Personal System/2, or PS/2
(see Figure 3-4), which utilized the Micro Channel technology. The new computers
offered several new features, such as built-in support for VGA color and larger-capaci-
ty Enhanced Small Disk Interface, or ESDI, hard disk drives. In the area of hardware,
IBM made three major design changes. First, they designed the Micro Channel bus
to be slot dependent. That is, each slot was addressable by the CPU. This differed
from the IBM PC and PC AT bus machines, where adapter boards could be placed in
any slot.

N B

Figure 3-3. Micro Channel adapter. (Courtesy of
International Business Machines Corporation.)

Chapter 3. The PC Hardware Architecture 19

Second, they specified that each adapter (see Figure 3-3) that was plugged into the
Micro Channel bus would need its own unique identifier assigned by IBM. The ID
was stored in EEPROMs located on each adapter card. In addition, the EEPROMs
would hold card configuration data, such as the memory-mapped address, interrupt
level, and port address of the adapter. These special registers were called
Programmable Option Select registers, or POS registers. These registers, addressable
only in a special mode, eliminated the need for configuration jumpers required for AT
bus adapters. The user would load a special configuration program, which would set
the adapter configuration and program the EEPROMs and each adapter.

Third, they included 64 bytes of Non-volatile Random Access Memory, or NVRAM,
which would hold the current configuration information for each slot. The contents of
the NVRAM is retained by a low-voltage battery. When the computer was powered on,
a Read Only Memory, or ROM, resident program would compare, slot by slot, the con-
figuration of each adapter to the current configuration stored in NVRAM. If it found a
difference, it would stop and force the user to run the setup program to reconfigure
the system. This Power On Self Test or POST, also checks the size of memory and
compares it to the amount configured in NVRAM.

Figure 3-4. IBM PS/2 Model 80. (Courtesy of
International Business Machines Corporation.)

20

Writing OS/2 2.1 Device Drivers in C

Enhanced Industry Standard Architecture (EISA)

The third major innovation in bus technology was the introduction of the Enhanced
Industry Standard Architecture bus, or EISA bus. The EISA bus was introduced in
September of 1988 in response to IBM’s introduction of the Micro Channel bus. Some
of the motivation for the EISA bus was the same as for the Micro Channel. EISA was
designed for high throughput and bus mastering, and is capable of 33MB per second
throughput. The developers of the EISA bus maintained compatibility with existing
ISA bus adapters by designing a connector that would accept either type of adapter
card. It should be noted, however, that using an ISA bus adapter in an EISA bus sys-
tem provides no increased performance.

The EISA bus, like the Micro Channel bus, supports multiple bus masters, but only
six compared to Micro Channel’s 15. This is still better than the ISA bus, which sup-
ports only one bus master. Throughput of the ISA bus machine is limited by the
processor speed, as more work has to be done by the CPU. In a multiple bus master
architecture like EISA or Micro Channel, the adapter card relieves the CPU of the
responsibility of handling the high-speed data transfers, and thus is more efficient.

Bus Wars

Many benchmarks have been performed pitting the three buses against each other.
With a few exceptions, the casual user will not notice much difference between them.
However, increasing demands for higher transfer rates and increased CPU perfor-
mance will soon make the traditional AT bus obsolete. The AT bus is handicapped by
its 24-bit address bus and 16-bit data bus, which limits performance by permitting the
system to transfer data only half as fast as EISA and Micro Channel bus systems. It is
also limited by its interrupt support and bus-mastering capabilities. Without another
alternative, this leaves EISA and Micro Channel as the natural successors to the ISA
bus. IBM is gearing up for the challenge, and has recently specified a new mode of »
Micro Channel operation that will run on all IBM Micro Channel machines. The new
specification, called Micro Channel II, allows for transfer rates of 40, 80, and 160MB
per second, leaving the EISA machines in the dust. IBM is also beginning to price
their Micro Channel systems at equal to or less than their ISA equivalents in an
attempt to make the Micro Channel bus more popular. The EISA bus, however, main-
tains compatibility with the wide variety of inexpensive ISA adapters, and is not likely
to be upstaged in the near future by the Micro Channel bus.

EISA promises to remain popular because of the large investment in ISA bus adapters
and the reluctance of many users to embrace the Micro Channel bus.

Chapter 3. The PC Hardware Architecture 21

Real Mode

The Intel processors are capable of operating in one of two modes. These are called
real mode and protect mode. The most popular computer operating system, DOS,
runs in real mode. In real mode, the processor is capable of addressing up to one
megabyte of physical memory. This is due to the addressing structure, which allows
for a 20-bit address in the form of a segment and offset (see Figure 3-5).

15 0 15 0

FI[F[o]o F]F{o]o]o
16-BIT SEGMENT REGISTER SEGMENT REGISTER SHIFTED LEFT 4 BITS

15 0

+|[o]o]3]F

16-BIT OFFSET
19 0
FI[F[o]3]F

20-BIT PHYSICAL ADDRESS

Figure 3-5. Real mode address calculation.

S?Mf : olfsef

Real mode allows a program to access any location within the one megabyte address
space. There are no protection mechanisms to prevent programs from accidentally
(or purposely) writing into another program’s memory area. There is also no protec-
tion from a program writing directly to a device, say the disk, and causing data loss or
corruption. DOS applications that fail generally hang the system and call for a <ctrl-alt-
del> reboot, or in some cases, a power-off and a power-on reboot (POR). The real
mode environment is also ripe for viruses or other types of sabotage programs to run
freely. Since no protection mechanisms are in place, these types of “Trojan horses”
are free to infect programs and data with ease.

22

Writing OS/2 2.1 Device Drivers in C

Protect Mode

The protect mode of the Intel 80286 processor permits direct addressing of memory up
to 16MB, while the Intel 80386 and 80486 processors support the direct addressing of
up to four gigabytes (4,000,000,000 bytes). The 80286 processor uses a 16-bit selector
and 16-bit offset to address memory (see Figure 3-6). A selector is an index into a
table that holds the actual address of the memory location. The offset portion is the
same as the offset in real mode addressing. This mode of addressing is commonly
referred to as the 16:16 addressing. Under OS/2 2.1, the 80386 and 80486 processors
address memory using a selector:offset, but the value of the selector is always 0, and
the offset is always 32 bits long (see Figure 3-7). This mode of addressing is referred
to as the 0:32 or flat addressing. The protect mode provides hardware memory protec-
tion, prohibiting a program from accessing memory owned by another program.
While a defective program in real mode can bring down the entire system (a problem
frequently encountered by systems running DOS). A protect mode program that fails
in a multitasking operating system merely reports the error and is terminated. Other
programs running at the time continue to run uninterrupted.

15 0 15 0
0[O0(6]0 O|0|3]|F
16-BIT SELECTOR ‘ 16-BIT OFFSET

23 0 23 0
OlF|F[O]O|O 2JO0|F[F[0]0]|O
DESCRIPTOR TABLE
ENTRY 23 9
24-BIT PHYSICAL ADDRESS

O|F|F|O| 3|F
24-BIT PHYSICAL ADDRESS

Figure 3-6. 80286 protect mode addressing.

To accomplish this memory protection, the processor keeps a list of memory belong-
ing to a program in the program’s Local Descriptor Table, or LDT. When a program
attempts to access a memory address, the processor hardware verifies that the
address of the memory is within the memory bounds defined by the program’s LDT.
Ifit is not, the processor generates an exception and the program is terminated.

Chapter 3. The PC Hardware Architecture 23

15 0 31 0
ol1[7]o0 ololo|F|Flo|3]|F
16-BIT SELIéCT OR 32-BIT OFFSET

0 31 0
olo{o|o|o|o|o|ofs>o0]|0|o|0]|0f0|0]O
DESCRIPTOR TABLE ENTRY 31 o
32-BIT BASE ADDRESS
(HRs o ololo|F|Flo[3]|F
32-BIT FLAT ADDRESS

Figure 3-7. 80386-486 flat mode addressing.

The processor also keeps a second list of memory called the Global Descriptor Table,
or GDT. The GDT usually contains a list of the memory owned by the operating sys-
tem, and is only accessible by the operating system and device drivers. Application
programs have no direct access to the GDT except through a device driver.

0S/2 1x uses the protect mode of the Intel processor to run native OS/2 programs,
and provides a single DOS “compatibility box” for running DOS applications. If a DOS
session is selected while the system is running an OS/2 application, the processor
stops running in protect mode and switches to the real mode to accommodate the
DOS application. A poorly programmed DOS application can bring down the entire
system. :

0S/2 2.1 runs DOS programs in the protect mode, using the virtual 8086 mode of the
80386 and 80486 processors. This special mode allows each DOS application to run in
its own protected one megabyte of memory space, without being aware of any other
applications running on the system. Each virtual DOS partition, or VDM, thinks that
it’s the only application running. Errant DOS programs are free to destroy their own
one megabyte environment, but cannot crash the rest of the system. If a DOS applica-
tion fails in a VDM, a new copy of DOS can be booted into the VDM and restarted.
For a more complete description of the Intel processors and their architecture, please
refer to Appendix B for a list of recommended reading.

ViX

VAX

24

Writing 0S/2 2.1 Device Drivers in C

Using Addresses and Pointers

Writing an OS/2 2.1 device driver requires a thorough understanding of addresses,
pointers, and the OS/2 2.1 memory management DevHIp routines. Since 0S/2 2.1 is
a hybrid operating system composed of 16-bit and 32-bit code, many of your device
driver functions will involve pointer conversion and manipulation. Specifically, point-
ers might have to be converted from 16-bit to 32-bit, and from 32-bit back to 16-bit.
Addresses might be expressed as virtual, physical or linear address. Several DevHlp
functions require flat pointers to items in the driver’s data segment, which is normally
a 16:16 pointer. If you don’t have a good understanding of 16-bit and 32-bit addresses
or pointers, please go back and reread the previous sections. Refer to Chapter 15 for
more information.

The Ring Architecture

In the protect mode, the processor operates in a Ring architecture. The ring architec-
ture protects the operating system by allowing minimum access to the system and
hardware.

Normal application programs run at Ring 3, which is the least trusted ring (see Figure
3-8). Programs that run in Ring 3 have no direct access to the operating system or
hardware, and must adhere to very strict guidelines for accessing 0S/2 or its support-
ed devices.

Ring 2 is reserved for Input/Output Privilege Level (IOPL) programs (see Chapter
10) and 16-bit Dynamic Link Libraries, or DLLs. With 0S/2 2.1, 32-bit DLLs run in
Ring 3. Refer to Chapter 4 for a more detailed discussion of DLLs.

Ring 1 is currently reserved.

Ring 0 is the most trusted level of the processor, and is where physical and virtual
device drivers run. Device drivers need, and are granted, full access to the processor
and system hardware as well as the interrupt system and OS/2 internals.

Chapter 3. The PC Hardware Architecture 25

Most application programs will run in Ring 3. Occasionally, for performance reasons,
an application may need to write directly to adapter hardware and will do so through
an IOPL routine at Ring 2, but will quickly return to Ring 3 to continue running. An
example of such a program is the CodeView debugger. As an additional protection
method, OS/2 can refuse input and output by a Ring 2 program if the user modifies
the CONFIG.SYS file to contain the line IOPL=NO. Programs attempting to perform
Ring 2 I/0 will generate a General Protection, or GP fault if IOPL-NO appears in the
CONFIG.SYS file. Users may also permit only selected programs to perform IOPL by
entering the program names in CONFIG.SYS. See Chapter 10 for a discussion of
IOPL.

LEAST
TRUSTED

MOST
TRUSTED

Figure 3-8. The 80X86 ring architecture.

CHAPTER 4

An Overview of the
0S/2 Operating System

S/2, introduced in late 1987, was billed as the successor to DOS. In fact, it

was going to be called DOS before IBM got into the act. Over 500 program-

mers at IBM and Microsoft worked night and day to get OS/2 out the door
on schedule. Both IBM and Microsoft trumpeted OS/2 as the replacement for DOS,
and Bill Gates himself predicted that OS/2 would replace DOS on the desktop by
1989. This, of course, never happened. The reasons why OS/2 never caught on can be
debated forever, but probably can be summarized in a few key statements.

First, when IBM announced OS/2, there were only a handful of applications ready to
run on it. The few that were ready were just warmed-over DOS versions, which were
recompiled and relinked under OS/2. They also ran considerably slower than their
DOS counterparts.

Second, the graphical user interface for 0S/2, called Presentation Manager, was miss-
ing. As a result, most application programs were written with dull, character-based
user interfaces.

Third, the DOS compatibility box, or penalty box as it was sometimes referred to as,
crashed frequently when DOS applications were run under it. It simply wasn’t compat-
ible with DOS. Some DOS applications would run, but most wouldn’t. This was largely
aresult of the small amount of memory available to a DOS application, which was only
approximately 500MB. Users were reluctant to replace DOS with an operating system
that wouldn’t run all of their favorite DOS applications.

27

28

Writing 0S/2 2.1 Device Drivers in C

Fourth, IBM made a big mistake by attempting to tie the OS/2 name to their recently
introduced family of PS/2 computers. Users believed that OS/2 would run only on
PS/2 machines. IBM also bungled the marketing of 0S/2. IBM authorized dealers
didn’t know what OS/2 was, how to sell it or how to order it. No advertisements
appeared for 0S/2, and it wasn’t actively shown at trade shows or in technical publica-
tions. OS/2 was virtually ignored until sometime in 1990, just following the introduc-
tion and huge success of Microsoft Windows 3.0.

Lastly, the timing was bad. 0S/2 needed four megabytes or more of memory, and
memory was selling for approximately $400 per megabyte. The high memory prices
were due in part to high tariffs placed on the Japanese for dumping memory chips and
to increased demand. Most systems had one megabyte of memory or less, so upgrad-
ing was very expensive. 0S/2 was not cheap, about $350 for the Standard Edition,
which, combined with the cost of extra memory, represented a substantial upgrade
cost.

Spurred on by the huge success of Windows 3.0, Microsoft decided that it would
abandon OS/2 and concentrate on the Windows platform, which is based on DOS.
IBM, left without a multitasking solution for its PC-to-mainframe connection, had
been counting on OS/2 to replace DOS. IBM finally woke up and realized that without
some major changes in the way 0S/2 was designed and marketed, that OS/2 would
die an untimely death. The result of IBM’s rude awakening was the introduction of
0S/2 2.1 early in 1992.

Roots

0S/2 was originally called MS-DOS version 4.0. MS-DOS 4.0 was designed for pre-
emptive multitasking, but was still crippled by the 640KB memory space restriction of
real mode operation. A new product, called MS-DOS 5.0 was conceived, and IBM and
Microsoft signed a Joint Development Agreement to develop it. MS-DOS 5.0 was later
renamed 0S/2. 0S/2 was designed to break the 640KB memory barrier by utilizing
the protect mode of the 80286 processor. The protect mode provided direct address-
ing of up to 16 megabytes of memory and a protected environment where badly writ-
ten programs could not affect the integrity of other programs or the operating system.

When Gordon Letwin, Ed Iaccobuci, and the developers at IBM and Microsoft first
designed 0S/2 1.0, they had several goals in mind. First, 0S/2 had to provide a
graphical device interface that was hardware independent. The concept was that each
device would be supplied with a device driver containing the specific characteristics of

Chapter 4. An Overview of the 0S/2 Operating System 29

the device. Graphics applications could be written without regard to the type of graph-
ics input or output device. This concept is referred to as virtualization. However, vir-
tualization comes at a cost. When an application sends a request to the 0S/2 kernel
for access to a device, the kernel has to build a request and send it to the device dri-
ver. The device driver has to break it down, perform the operation, format the data,
and transfer it back to the application.

Second, OS/2 had to allow direct hardware access to some peripherals for perfor-
mance reasons. Peripherals such as video adapters require high-speed access to
devices, and the normal device driver mechanism was just not fast enough. To solve

this problem, OS/2 allows applications or Dynamic Link Libraries (DLLs) to perform
direct I/0 to adapter hardware. The video device driver, which resides in a Dynamic
Link Library (DLL), can access the device directly without calling a device driver to

perform the I/0Q. Dynamic Linking also allows programs to be linked with undefined
external references, which are resolved at run time by the 0S/2 system loader. The
unresolved entry points exist in DLLs on the OS/2 system disk, and are loaded into
memory and linked with the executable program at run time. The use of DLLs allows
system services that exist in the DLLs to be modified by changing a DLL and not the
entire system. A display adapter, for example, could be added simply by a adding a
new DLL. Additional system functions and processes can be implemented as DLLs.

Third, OS/2 had to provide an efficient, preemptive multitasking kernel. The kernel
had to run several programs at once, yet provide an environment where critical pro-
grams could get access to the CPU when necessary. OS/2 uses a priority-based pre-
emptive scheduler. The preemptive nature of the OS/2 scheduler allows it to “take
away” the CPU from a currently running application and assign it to another applica-
tion. If two programs of equal priority are competing for the CPU, the scheduler will
run each program in turn for a short period of time, called a time slice. This ensures
that every program will have access to the CPU, and that no one program can monop-
olize the CPU. '

Fourth, OS/2 had to provide a robust, protected environment. OS/2 uses the protect
mode of the 80286 and above processors, which has a built-in memory protection
scheme. Applications that attempt to read or to write from memory that is not in their
specific address space are terminated without compromising the operating system
integrity. OS/2 had to run applications that were larger than the physical installed
memory. OS/2 accomplishes this with swapping. If a program asks for more memory
than exists, a special fault is generated, which causes the existing contents of memory
to be swapped out to a disk file, thereby freeing up the required memory. When the
program accesses a function that has been swapped out to disk, a special fault is gen-
erated to cause the required functions to be swapped back into physical memory.
Swapping allows large programs to be run with less memory than the application
requires, but swapping can cause a considerable degradation in speed.

30

Writing 0S/2 2.1 Device Drivers in C

Fifth, 0S/2 had to run on the 80286 processor. At the time that OS/2 was designed,
the 80286 was the only CPU that could run a multitasking protect mode operating sys-
tem. The 80386 machines were not available, so IBM and Microsoft committed to a
version of OS/2 which would run on the 80286 platform. This was purely a marketing
decision, based on the number of 80286 machines installed at the time. The imple-
mentation of 0S/2 on the 80286 proved to be clumsy and slow. The operating system
had to be designed for the 16-bit architecture of the 80286, but really required a 32-bit
architecture to perform well. The 80286 could operate in the protect mode and real
mode, but could not switch back and forth gracefully. It could switch from the real
mode to the protect mode easily, but not back. The processor was designed to run in
only one mode, not both. Because-0S/2 had to support OS/2 applications and DOS
applications all at one time, a way had to be found to change the processor mode on
the fly. Gordon Letwin came up with the patented idea of how to do this with what has
been referred to as “turning the car off and on at 60 MPH.”

Lastly, 0S/2 had to run existing “well-behaved” DOS applications. Well-behaved DOS

programs were those programs that did not directly access the hardware or use short-
cuts to improve performance. Unfortunately, most DOS programs used some type of
shortcut to improve performance and make up for the relatively slow 8088 processor
they were originally written for.

Processes and Threads

0S/2 introduced the notion of threads. A thread is defined as an instance of execution
or path of execution through a piece of code. 0S/2’s multitasking is thread-based. A
program always has at least one thread, ealled-the main thread, and may have many
more threads; each executing at the same time (see Figure 4-1). The additional
threads are created by the main thread, and act as smaller “children” of the main
thread. Threads inherit the environment of their creator, usually a process, and can be
started or suspended by the main thread. A thread can only be destroyed by commit-
ting suicide.

To aid in multitasking, OS/2 offers four classes of priorities (see Table 4-1). They are
Real-Time-Critical, Normal, Fixed-High, and Idle-Time. Real-Time-Critical is the high-
est priority, while Idle-Time is the lowest. Within each priority class, there are 32 sep-
arate and distinct priorities, numbered from 0 to 31. Most applications will run in the
Normal mode, while time critical applications (such as a cardiac monitor) might run
in the Real-Time-Critical class. The Fixed-High mode operates between Real-Time-
Critical and Normal modes, and offers real time response but at priorities that can be
dynamically modified by OS/2. The Idle-Time priority is reserved for slower back-
ground programs such as spoolers.

Chapter 4. An Overview of the OS/2 Operating System 31

PROCESS

(MAIN THREAD) |

I
I
THREAD 1 | | THREAD 2 | | THREAD 3 |
I
I

Figure 4-1. Process and threads.

One of OS/2’s major advantages is its time-sliced, priority-based preemptive sched-
uler. This feature allows a critical or higher priority thread to preempt a currently run-
ning thread. This preemptive feature is what sets 0S/2 apart from other multitasking
systems such as UNIX. OS/2 runs the highest priority thread until it completes or
gives up the CPU by blocking on an I/O request or system service. If a thread is cur-
rently executing and a higher priority thread needs to run, the lower priority thread
will be preempted and the higher priority thread allowed to run. When the higher pri-
ority thread finishes or blocks waiting on a system service, the lower priority thread
will get a chance to run again. If two threads with the same priority are competing for
the CPU, each thread will alternate for one time slice worth of time.

Table 4-1. 0S/2 Priority Structure

Priority Use Modified by 0S/2
Idle Spoolers, batch processors | Yes

Regular Normal applications Yes

Fixed-High Special applications Yes

(Foreground Server)

Real-Time-Critical Real time applications No

32

Writing OS/2 2.1 Device Drivers in C

Most UNIX systems do not use threads, so priorities in a UNIX system are per process-

based, rather than thread-based. Since most UNIX kernels are not preemptive, a UNIX

application will run until it blocks on I/O or system resource, or exhausts its time
slice. Currently running processes cannot be preempted, thus a critical program need-
ing CPU time has to wait until the CPU is free. The UNIX scheduler is a round-robin
scheduler, that is, the system allocates equal time to every process in a round-robin
fashion. If three processes are running, process A gets a time slice, process B gets a
time slice, then process C gets a time slice, and then the whole operation begins again

with process A.

0S/2 1.0 - 0S/2 Arrives

0S/2 1.0 was introduced in the fourth quarter of 1987. The first release did not con-
tain a graphical user interface, but instead contained two side-by-side list boxes with
names of programs to execute. The Application Programming Interface, or API, was
incomplete and unstable. Device support was virtually nonexistent, and 0S/2 1.0 was
only guaranteed to run on the IBM PC AT and IBM PS/2 line of computers. Many
DOS applications did not run in the DOS compatibility box, and only a few thousand
copies of 0S/2 1.0 were sold.

0S/2 1.1 - Presentation Manager Arrives

The next major release of 0S/2 contained the graphical user interface, dubbed
Presentation Manager. OS/2 was beginning to take shape. It contained a better DOS
compatibility box, which caused fewer DOS programs to crash, and had a consistent,
more bug-free set of API routines. Documentation, in the form of manuals and books,
was beginning to appear, and a few more DOS applications were recompiled and
relinked under OS/2. None of these programs used the Presentation Manager, as
they were not redesigned for 0S/2. As a result, the applications were dull, character-
based programs that didn’t take advantage of any of OS/2’s multitasking abilities or
Presentation Manager. The lack of applications, together with the cost of a hardware
upgrade, kept most users away from 0S/2.

Chapter 4. An Overview of the OS/2 Operating System 33

0S/2 1.2 - A Better File System

0S/2 had been using the file system known as FAT, named after the DOS File
Allocation Table. The FAT was where DOS (and 0S/2) kept a running “picture” of the
hard disk, including the utilization and amount of free space. The DOS FAT file sys-
tem was limited by design to filenames with a maximum length of 11 characters, and
was inefficient in storing and retrieving files. The High Performance File System, or
HPFS, was introduced in OS/2 1.2 to provide more efficient handling of large files and
volumes, and to remove the 11-character filename restriction. HPFS can handle file-
names with up to 254 characters, files as large as two gigabytes, and provides a very
fast searching algorithm for storing and locating files. Unlike the FAT file system,
HPFS is an installable file system, and a special device driver must be loaded before
using it.

The DOS compatibility box was improved, but 0S/2 still could not run many DOS
applications. This was due, in part, to the fact that the compatibility box did not offer
the full amount of memory usually available to DOS applications. The size of the DOS
compatibility box memory was reduced when’ device drivers were loaded, and often
would only offer 500K bytes or less for running DOS programs. 0S/2 was used pri-
marily by companies that had real-time multitasking requirements for their systems,
but not for running DOS applications. For DOS applications which would not run in
the 0S/2 1.2 compatibility box, 0S/2 had a built-in dual-boot facility which allowed
the user to selectively boot up DOS or 0S/2. While 0S/2 was running, however, the
compatibility box was virtually useless.

Printers did not work correctly. 0S/2 did not work with the most popular laser print-
ers, such as the Hewlett Packard Laserjets. The future of 0S/2 was bleak.

When Microsoft announced that they would be abandoning 0S/2 in favor of Windows
3.0, 0S/2 faced an uncertain future. Microsoft had been stating that 0S/2 was the PC
operating system platform of the future, and now had reversed that statement. Many
large companies had previously begun conversion of their flagship programs, such as
Lotus 1-2-3, to run under OS/2, and were taken by surprise by Microsoft’s change in
direction. IBM was forced to take over the development of 0S/2, and Microsoft could
free up its programming resources to concentrate on Windows software. Microsoft
and IBM did agree to cross-license each other’s products, and together they agreed
that IBM would assume complete responsibility for 0S/2.

34

Writing OS/2 2.1 Device Drivers in C

0S/2 1.3 - IBM's First Solo Effort

Figure 4-2. 0S/2 1.3EE. (Courtesy of
International Business Machines Corporation.)

Although 0S/2 1.0, 1.1, and 1.2 were developed jointly by IBM and Microsoft, 0S/2
Version 1.3 (dubbed OS/2 Lite) was the first version of OS/2 to be done entirely by
IBM (see Figure 4-2). It took IBM a while to get up to speed with OS/2, but when
0S/2 1.3 was released, many features that had never worked correctly had been
fixed. Version 1.3 had better networking, communications, and graphics support and
could finally print correctly. The OS/2 kernel was slimmed down and ran consider-
ably faster than its predecessors. IBM produced detailed documentation and began to
actively support developers through the IBM Developer’s Assistance Program.
However, 0S/2 was used primarily by IBM installations for their PC-to-mainframe
connection, and by OEMs for specialized applications.

IBM was still not actively marketing OS/2. Information was difficult to come by, and it
was almost impossible to buy 0S/2. Most IBM dealers didn’t even know what 0S/2
was, or how to order it. IBM failed to inform their resellers how to demonstrate and
sell 0S/2. OS/2 was going nowhere fast.

Chapter 4. An Overview of the OS/2 Operating System 35

0S/2 2.0- What 0S/2 Was Really Meant to Be

Before deciding to scrap its OS/2 development, Microsoft had been working on a new
version of 0S/2, called 0S/2 2.0. Microsoft first displayed early running versions of
0S/2 2.0 in the middle of 1990, and had released the infamous System Developer’s Kit,
or SDK, with a whopping $2600 price tag. The 0S/2 2.0 SDK included early releases
of the OS/2 kernel, 32-bit compiler, assembler, and linker. Many developers, howev-
er, balked at the price. The software contained several serious bugs, and for most
developers, proved to be unusable.

IBM realized that, unless it made a radical change in the way 0S/2 was designed and
marketed, OS/2 would eventually become a proprietary internal operating system
used only by IBM. IBM formed a team to assume the development responsibilities of
0S8/2 2.0. They mounted an enormous effort, and the commercial release of 0S/2 2.0
was the culmination of that effort.

0S/2 2.1 represents a new direction for personal computer operating environments.
Instead of having to deal with the 16-bit architecture of the 80286 processors, 0S/2
2.1 was developed around the 32-bit architecture of the 80386 microprocessor. 0S/2
2.1 will not run on an 80286 processor-based machine. This decision comes at a time
when the 16-bit 80286 machines are obsolete, and the standard choice for personal
computers is an 80486 machine with 8MB of RAM as a minimum configuration. With
memory prices at $35 per megabyte of RAM, memory configurations of 8 and 16MB
are becoming commonplace. Hard disk storage has decreased significantly in price,
and most systems are sold with 100MB or more of disk storage as minimum.

0S/2 2.1 allows DOS programs to run in their own one megabyte of memory space
without knowledge of other programs in the system. Even the most ill-behaved DOS
applications, such as games, run flawlessly in their own protected area. In addition,
users can boot any version of DOS they choose into a DOS session. The number of
DOS sessions that can be started is unlimited in 0S/2 2.1. DOS programs have access
to 48MB of extended memory. OS/2 2.1 also supports DOS programs designed to use
the DOS Protect Mode Interface, or DPMI Version 0.9. 0S/2 2.1 runs Windows 3.0 and
3.1 applications in the real or standard mode. 0S/2 2.1 allows Dynamic Data
Exchange, or DDE, between DOS/Windows and OS/2 applications, providing up to
512MB of DPMI memory per DOS session.

36

Writing 0S/2 2.1 Device Drivers in C

0S/2 2.1 uses a desktop metaphor called the Workplace Shell for its user interface.
The Workplace Shell represents an actual desktop using icons representing the actual
items the user might find on his or her desk. It contains such items as a file folder,
printer, network connection, and other icons that reflect the current configuration of
the system. Printing a document, for example, is as simple as opening a folder, click-
ing on the document and dragging it over to the printer icon.

Figure 4-3. 0S/2 2.1 tutorial. (Courtesy of
International Business Machines Corporation.)

0S/2 2.1 represents a common platform for supporting many different types of appli-
cations. It runs DOS applications, Windows 3.0 and 3.1 applications and, of course,
native OS/2 applications, all seamlessly. There is no longer a need to dual-boot DOS
or to load three different operating environments; 0S/2 2.1 runs them all.

The 0S/2 Application Programming Interface

37

0S/2 2.1 offers a rich set of Application Program Interfaces (APIs) to allow programs
to access system services. The OS/2 APIs are classified into eight major categories.
They are:

1.

File System

File Systems (FAT, Super FAT, HPFS)
Network Access (LAN Server, NetBIOS)

Permissions

DASD Media Management

. Graphics Interface
Graphics Programming Interface

Video Input and Output

Inter Process Communications

Shared Memory
Semaphores
Named Pipes
Queues

Dynamic Data Exchange (DDE)

System Services
Device Monitors
Timer Services

Process Management
Threads

Processes

Child Processes
Scheduler/Priorities
Memory Management
Signals

Dynamic Linking

CHAPTER 5

The Anatomy Of An OS/2
Device Driver

S/2 device drivers, like other multitasking device drivers, shield the applica-

tion code that performs I/0 from device-specific hardware requirements.

The application program need not concern itself with the physical con-
straints of a particular I/O device, such as timing or I/0 port addressing, as these are
handled entirely by the device driver. If an I/O card address is moved or a different
interrupt selected, the device driver can be recompiled (notice I did not say reassem-
bled) without modifying or recompiling the application code.

It should be noted that OS/2 device drivers can be configured during boot-up opera-
tion by placing adapter-specific parameters in the DEVICE= entry in CONFIG.SYS.
The driver can retrieve the parameters and configure itself during the INIT section.

Conceptually, OS/2 device drivers are similar to device drivers in other multitasking
systems, but they have the added responsibility of handling processor-specific anom-
alies such as the segmented architecture and operating modes of the Intel Processors.

Application-to-Driver Interface

0S/2 device drivers are called by the kernel on behalf of the application needing I/0
service. The application program makes an I/0 request call to the kernel, specifying
the type of operation needed. The kernel verifies the request, translates the request
into a valid device driver Request Packet and calls the device driver for service. The
device driver handles all of the hardware details, such as register setup, interrupt han-

39

40

Writing 0S/2 2.1 Device Drivers in C

dling, and error checking. When the request is complete, the device driver massages
the data into a format recognizable by the application. It sends the data or status to
the application and notifies the kernel that the request is complete. If the request can-
not be handled immediately, the device driver may either block the requesting thread
or return a ‘request not done’ to the kernel. Either method causes the device driver to
relinquish the CPU, allowing other threads to run. If an error is detected, the device
driver returns this information to the kernel with a ‘request complete’ status. The
0S/2 device driver may also “queue up” requests to be handled later in a work queue.
The 0S/2 Device Helper (DevHIp) library contains several DevHlps for manipulating
the device driver’s work queue.

DOS Device Drivers and 0S/2 Device Drivers

DOS device drivers have no direct 0S/2 counterpart. DOS device drivers are simple,
single-task, polling device drivers. Even interrupt device drivers under DOS poll until
interrupt processing is complete. DOS device drivers support only one request at a
time, and simultaneous multiple requests from DOS will cause the system to crash.

While the DOS device driver is a single-threaded polled routine, the OS/2 device dri-
ver must handle overlapping requests from different processes and threads. Because
of this, the 0S/2 device driver must be reentrant. The OS/2 device driver must also
handle interrupts from the device and optionally from a timer handler. It must handle
these operations in an efficient manner, allowing other threads to gain access to the
CPU. Most importantly, it must do all of these reliably. The OS/2 device driver,
because it operates at Ring 0, is the only program that has direct access to critical sys-
tem functions, such as the interrupt system and system timer. The device driver,
therefore, must be absolutely bug-free, as any error in the device driver will cause a
fatal system crash.

0S/2 2.1 device drivers no longer have to deal with the real-protect mode switching of
0S/2 1x, as all programs run in protect mode. OS/2 device drivers must have the
capability to deinstall when requested, releasing any memory used by the device dri-
ver to the 0S/2 kernel. 0S/2 device drivers may also support device monitors, pro-
grams that wish to monitor data as it is passed to and from the device driver. 0S/2
offers a wide range of device driver services to provide this functionality.

Chapter 5. The Anatomy Of An OS/2 Device Driver ~ 41

Designing an 0S/2 Device Driver

Designing an OS/2 device driver requires a thorough understanding of the role of a
device driver, as well as a solid working knowledge of the 0S/2 operating system and
design philosophy. Debugging 0S/2 device drivers can be difficult, even with the
proper tools. The OS/2 device driver operates at Ring 0 with full access to the system
hardware. However, it has almost no access to 0S/2 support services, except for a
handful of DevHIp routines. Many device driver failures occur in a real time context,
such as in the midst of interrupt handling. It may be difficult or impossible to find a
device driver problem using normal debugging techniques. In such cases, it is neces-
sary to visualize the operation of the device driver and OS/2 at the time of the error to
help locate the problem.

Tools Necessary For Driver Development

One of the most important tools for device driver development is the device driver
debugger. Generally, the best choice is the 0S/2 2.1 kernel debugger or KDB. KDB
uses a standard ASCII terminal attached to one of the serial COM ports via a null-
modem cable. When 0S/2 is started, KDB looks for a COM port to perform its I/0 to
the debugging terminal. For systems with only one COM port, KDB will use COML.
For systems with two COM ports, KDB will use COM2.

The KDB is not simply a debugger, but is a replacement kernel that replaces the
0S/2 standard system kernel called OS2KRNL. KDB has knowledge of internal 0S/2
data structures and provides a powerful command set for debugging 0S/2 device dri-
vers. Installing the debugging kernel is easy. The attributes of the hidden file
OS2KRNL are changed to non-hidden and non-system, and the file is copied to
OS2KRNL.OLD. The debug kernel is then copied to OS2KRNL, and 0S/2 is reboot-
ed. KDB will issue a sign-on message to the debugging terminal indicating that it is
active. KDB can be entered by typing <cntl-c> on the debug terminal, or if KDB
encounters an INT 3 instruction. These procedures are described in more detail in
Chapter 13. The kernel debugger comes with the IBM 0S/2 2.1 Toolkit, and is
installed easily with the installation program supplied with the Toolkit.

42

Writing 0S/2 2.1 Device Drivers in C

APPLICATION REQUEST

DosRead, DosWrite, DosOpen,
DosClose, DosDevIOCtl

A

A
0S/2 KERNEL

VERIFY PARAMETERS
FORMAT REQUEST INTO REQUEST
PACKET-SEND TO DRIVER

Y
[REQUEST PACKET J

DEVICE DRIVER

PERFORM REQUEST
AND RETURN DATA/STATUS

Figure 5-1. Application-to-device driver interface.

The Basics of Driver Design

The device driver receives two basic types of requests: requests that can be complet-
ed immediately and those that cannot (see Figure 5-1). It receives these requests via a
standard data structure called a Request Packet (see Figure 5-2).

Requests that can be completed immediately are handled as they come in, and sent
back to the requestor. Requests that cannot be handled immediately (such as disk
seeks) are queued up for later dispatch by the device driver. The device driver manip-
ulates Request Packets using the DevHIp routines. To minimize head movement, disk
device drivers usually sort pending requests for disk seeks in sector order.

The 0S/2 device driver plays an additional role in system performance and operation.
When a device driver is called to perform a request that cannot be completed immedi-
ately, the device driver Blocks the requesting thread. This relinquishes the CPU and
allows other threads to run. When the request is complete, usually as the result of an
interrupt or error occurring, the thread is immediately UnBlocked and Run. The device
driver then queries the request queue for any pending requests that may have come in
while the thread was blocked. It is important to note that when an application calls a
device driver, the application program’s LDT is directly accessible by the device driver.

Chapter 5. The Anatomy Of An OS/2 Device Driver ~ 43

Request Packets

The first entry in the Request Packet Header (see Figure 5-2) is the Request Packet
length, filled in by the kernel. The second parameter is the unit code. Applicable for
block devices only, this field should be set by the device driver writer to zero for the
first unit, one for the second, etc. The third field is the command code. The command
code is filled in by the kernel. This is the code used by the switch routine in the
Strategy section to decode the type of request from the kernel. The next field is the
status word returned to the kernel. This field will contain the result of the device dri-
ver operation, along with the ‘DONE’ bit to notify the kernel that the request is com-
plete (this is not always the case; the device driver may return without the ‘done’ bit
set). To make things easier, a C language union should be used to access specific
types of requests. The Request Packet structures are placed in an include file, which
is included by the device driver mainline. Refer to the Standard OS/2 Device Driver
Include File in Appendix C.

typedef struct ReqPacket {

UCHAR RPlength; // Request Packet Tength

UCHAR RPunit; // unit code for block DD only
UCHAR RPcommand; // command code

USHORT RPstatus; // status word

UCHAR RPreserved[4]; // reserved bytes

ULONG RPqlink; // queue linkage

UCHAR avail[19]1; // command specific data

} REQPACKET;

Figure 5-2. Request Packet Header.

0S/2 Device Driver Architecture

0S/2 device drivers come in two flavors, block and character. k devi i are
used for mass storage devices such as disk and tape. Character device drivers are used
for devices that handle data one character at a time, such as a modem. OS/2 device dri-
vers are capable of supporting multiple devices, such as a serial communications
adapter with four channels or a disk device driver which supports multiple drives.

0S/2 device drivers receive requests from the OS/2 kernel on behalf of an application
program thread. When the device driver is originally opened with a DosOpen API
call, the kernel returns a handle to the thread that requested access to the device dri-
ver. This handle is used for subsequent access to the device driver.

44

Writing OS/2 2.1 Device Drivers in C

When an application makes a call to a device driver, the kernel intercepts the call and
formats the device driver request into a standard Request Packet. The Request Packet
contains data and pointers for use by the device driver to complete the request. In the
case of a DosRead or DosWrite, for example, the Request Packet contains the verified
and locked physical address of the caller’s buffer. In the case of an IOCt], the Request
Packet contains the virtual address of a Data and Parameter Buffer. Depending on the
type of request, the data in the Request Packet will change, but the Request Packet
header length and format remain fixed. The kernel sends the Request Packet to the
driver by passing it a 16:16 pointer to the Request Packet.

Device drivers are loaded by the OS/2 loader at boot time, and the kernel keeps a
linked list of the installed device drivers by name, using the link pointer in the Device
Header. Before a device driver is used, it must be “DosOpen”ed from the application.
The DosOpen specifies an ASCII-Z string with the device name as a parameter, which
is the eight character ASCII name located in the Device Header (see Figure 5-3). The
kernel compares this name with its list of installed device drivers, and if it finds a
match, it calls the OPEN section of the device driver Strategy routine to open the
device. If the open was successful, the kernel returns to the application a handle to
use for future device driver access. The device handles are usually assigned sequen-
tially, starting with 3 (0, 1, and 2 are claimed by 0S/2). However, the handle value
should never be assumed.

typedef struct DeviceHdr {

DEVICEHDR devhdr = {

struct DeviceHdr far *DHnext;
// ptr to next header, or FFFF

USHORT DHattribute; // device attribute word

OFF DHstrategy; // offset of strategy routine

OFF DHidc; // offset of IDC routine

UCHAR DHname[8]; // dev name (char) or ffunits (blk)

char reserved[8];
} DEVICEHDR;

~ (void far *) OxFFFFFFFF, // link
(DAW_CHR | DAW_OPN | DAW_LEVEL1), // attribute
(OFF) STRAT, // &strategy
(OFF) 0, // &IDCroutine

“DEVICEL *, // device name
}s

Figure 5-3. 0S/2 device driver header.

Chapter 5. The Anatomy Of An OS/2 Device Driver ~ 45

Device Driver Modes

0S/2 2.1 device drivers operate in three different modes. The first, INIT mode, is a
special mode entered at system boot time and executed at Ring 3. When the 0S/2
system loader encounters a “DEVICE=" statement in the CONFIG.SYS file on boot-
up, it loads the device driver .SYS file and calls the INIT function of the device driver.
What makes this mode special is that the boot procedure is running in Ring 3 which
normally has no I/0 privileges, yet 0S/2 allows Ring O-type operations. The device
driver is free to do port I/0 and even turn interrupts off, but must ensure they are
back on before exiting the INIT routine. The INIT routine can be used to initialize a
Universal Asynchronous Receiver Transmitter (UART) or anything else necessary to
ready a device.

Ring 3 operation during INIT is necessary to protect the integrity of code that has
already been loaded up to that point, and to make sure that the device driver itself does
not corrupt the operating system during initialization. Ring 3 operation also allows the
device driver initialization routine to call a limited number of system API routines to aid
in the initialization process. For example, a device driver might use the API routines to
read a disk file that contains data to initialize an adapter. The device driver also uses the
API routines to display driver error and sign-on messages. The INIT code is only called
once, during system boot. For this reason, the INIT code is usually located at the end of
the code segment so it can be discarded after initialization.

The second mode, called Kernel mode, is in effect when the dewce driver is called by
the kernel as a result of an I/0 request.

The third mode, called Intermpt mode, is in effect when the device driver’s interrupt
handler is executing in response to an external interrupt, such as a character being
received from a serial port.

In general, the OS/2 device driver consists of a Strategy section, an INIT section, and
optional interrupt and timer sections. The Strategy section receives requests from the
kernel, in the form of Request Packet. The Strategy section verifies the request, and if
it can be completed immediately, completes the request and sends the result back to
the kernel. If the request cannot be completed immediately, the device driver option-
ally queues up the request to be completed at a later time and starts the I/O opera-
tion, if necessary. The kernel calls the Strategy routine directly by finding its offset
address in the Device Header.

46

Writing 0S/2 2.1 Device Drivers in C

The Device Header

A simple 0S/2 device driver consists of at least one code segment and one data seg-
ment, although more memory can be allocated if necessary. The first item of data that
appears in the data segment must be the device driver header. The device driver
header is a fixed length, linked list structure that contains information for use by the
kernel during INIT and normal operation.

The first entry in the header is a link pointer to the next device that the device driver
supports. If no other devices are supported, the pointer is set to - 1L. A -1L terminates
the list of devices supported by this device driver. If the device driver supports multi-
ple devices, such as a four-port serial board or multiple disk controller, the link is a far
pointer to the next device header. When OS/2 loads device drivers at INIT time, it
forms a linked list of all device driver device headers. The last device driver header
will have a link address of -1L. When a DEVICE-= statement is found in CONFIG.SYS,
the last loaded device driver’s link pointer is set to point to the new device driver’s
device header, and the new device driver’s link pointer now terminates the list.

The next entry in the device header is the Device Attribute Word (see Table 5-1). The
Device Attribute Word is used to define the operational characteristics of the device
driver.

The next entry is a one word offset to the device driver Strategy routine. Only the offset
is necessary, because the device driver is written in the small model with a 64K code

DEVICEHDR devhdr[2] = {

{ (void far *) &devhdr[1], // 1ink to next dev
(DAW_CHR | DAW_OPN | DAW_LEVEL1), // attribute

(OFF) STRATL, // &strategy
(OFF) 0, // &IDCroutine
“DEVICE1 *,

1,

{(void far *) OxFFFFFFFF, // link(no more devs)
(DAW_CHR | DAW_OPN | DAW_LEVEL1), // attribute

(OFF) STRATZ, // &strategy

(OFF) 0, // &IDCroutine
“DEVICEZ “,

}

Figure 5-4. Device driver header, multiple devices.

Chapter 5. The Anatomy Of An OS/2 Device Driver 47

segment and a 64K data segment (this is not always true—in special cases, the device
driver can allocate more code and data space if needed, and can even be written in the
large model).

The next entry is an offset address to an IDC routine, if the device driver supports
inter-device driver communications. (The DAW_IDC bit in the device attribute word
must also be set, otherwise the AttachDD call from the other device driver will fail.)
The last field is the device name, which must be eight characters in length. Names
with less than eight characters must be space-padded. Remember, any mistake in cod-
ing the device driver header will cause an immediate crash and burn when booting.

Table 5-1. Device Attribute Word

Bit(s) Description

15 set if character driver, 0 if block driver

14 set if driver supports inter-device communications (IDC)

13 for block drivers, set if non-IBM format, for character drivers, set if
driver supports output-until-busy.

12 if set, device supports sharing

11 set, if block device, supports removable media, if character device,
supports device open/close

10 reserved, must be 0

97 driver function level
001 = OS/2 device driver
010 = supports DosDevIOCtl2 and Shutdown
011 = capabilities bit strip in device header

6 reserved, must be 0

5 reserved, must be 0

4 reserved, must be 0

3 set if this is the CLOCK device

2 set if this is a null device (character driver only)

1 set if this is the new stdout device

0 set if this is the new stdin device

48

Writing OS/2 2.1 Device Drivers in C

Capabilities Bit Strip

The Capabilities Bit Strip word defines additional features supported on level 3 dri-
vers only (see Table 5-2).

Note that if the device driver is an ADD device driver, and sets bit 7 and 8 in the
device attribute word as well as bit 3 in the capabilities bit strip, the Init request pack-
et sent by the kernel will be formatted differently than the standard PDD Init request
packet. Refer to the appropriate ADD documentation for a description of the ADD Init
request packet format.

Table 5-2. Capabilities Bit Strip

Bit(s) Description

0 set if driver supports DosDevIOCt]2 packets and has Shutdown support.

1 for character drivers, set if driver supports 32-bit memory addressing, for
block drivers, this bit must be 0

2 if set, the device driver supports parallel ports

3 if set, the device driver is an ADD device driver*

4 if set, the kernel will issue the InitComplete strategy command

531 reserved, must be 0

Providing a Low-Level Interface

The data segment, which contains the Device Header, must appear as the very first
data item. No data items or code can be placed before the Device Header. An 0S/2
device driver which does not adhere to this rule will not load. Since our OS/2 device
drivers are written in C, a mechanism must be provided for putting the code and data
segments in the proper order, as well as providing a low-level interface to handle
device and timer interrupts. Since the Device Header must be the first item that
appears in the data segment, the C compiler must be prevented from inserting the
normal C start-up code before the Device Header. Additionally, a method of detecting
which device is being requested needs to be provided for device drivers that support
multiple devices.

Chapter 5. The Anatomy Of An OS/2 Device Driver 49

These requirements are handled with a small assembly language stub that is linked in
with the device driver (refer to Figure 5-5). The __acrtused entry point prevents the C
start-up code from being inserted before the device driver data segment. The seg-
ment-ordering directives ensure that the data segment precedes the code segment.

; C start-up routine, one device
EXTRN _main:near
PUBLIC _STRAT
PUBLIC__acrtused

_DATA segment word public ‘DATA’
_DATA ends
CONST segment word public “CONST’
CONST ends
_BSS segment word public ‘BSS’
_BSS ends
DGROUP group CONST,_BSS,_DATA
_TEXT segment word public ‘CODE’
assume c¢s:_TEXT,ds:DGROUP,es:NOTHING,ss:NOTHING
.286P
_STRAT proc far
acrtused: ;no start-up code
push 0
jmp start :signal device 0
start:

Figure 5-5. Start-up routine, one device. (Continued)

50 Writing OS/2 2.1 Device Drivers in C

push es ;send Request Packet address
push bx
call _main ;call driver mainline
pop bx ;restore es:bx
pop es
add sp,2 ;clean up stack
mov word ptr es:[bx+3],ax ;send completion status
ret
_STRAT endp
_TEXT ends
end

Figure 5-5. Start-up routine, one device.

Note the _STRAT entry point. Remember that this is the address placed in the device
driver’s Device Header. The kernel, when making a request to the device driver,
looks up this address in the Device Header and makes a far call to it. The assembly
language routine then, in turn, calls the C mainline. Thus, the linkage from the kernel
to the device driver is established.

Note the “push 0” in the beginning of the _STRAT routine. This is to notify the device
driver which device is being requested. Each device supported by the device driver
requires its own separate Device Header. Note also that each Device Header contains
an offset address to its own Strategy routine. Using the assembly language interface,
the device number is pushed on the stack and passed to the device driver Strategy
section for service. The device driver retrieves the parameter and determines which
device was requested. One of the parameters to main is the int dev (see Figure 5-8),
the device number that was passed from the assembly language start-up routine. The
assembly language start-up routine is modified to support multiple devices by adding
entry points for each device’s Strategy section. The modified source for this routine is
shown in Figure 5-6.

The assembly language routine in Figure 5-7 provides the interrupt handler and timer
handler entry points. The interrupt handler entry point provides a convenient place to
put a breakpoint before entering the C code of the main interrupt handler. The timer
handler entry point provides a place to save and restore the CPU registers. Note that
the interrupt handler does not need to save the register contents, as this is done by the
0S/2 kernel. The timer handler, however, must save and restore register contents.

Chapter 5. The Anatomy Of An OS/2 Device Driver

51

; C start-up routine, 4 devices

_DATA
_DATA

CONST
CONST

_BSS
_BSS

DGROUP
_TEXT

assume

;STRATl

__acrtused:

’ push
mp

;STRATl

_STRATZ
push
Jmp

EXTRN _main:near
PUBLIC _STRAT1
PUBLIC _STRAT?
PUBLIC _STRAT3
PUBLIC _STRAT4
PUBLIC __acrtused

segment word public ‘DATA’
ends

segment word public ‘CONST’
ends

segment word public ‘BSS’
ends

group CONST, _BSS, _DATA
segment word public ‘CODE’

cs: TEXT,ds:DGROUP,es:NOTHING, ss:NOTHING
.286P

proc far
; satisfy EXTRN modules

0
start

;signal device 0
endp
proc far

1 :signal second device
start

Figure 5-6. Start-up routine, four devices. (Continued)

52 Writing OS/2 2.1 Device Drivers in C

_STRAT?2 endp
_STRAT3 proc far
push 2 ;signal third device
Jmp start
_STRAT3 endp
_STRAT4 proc far
push 3 ;signal fourth device
Jmp start
start:
push es ;send address
push bx |
call _main ;call driver mainline
pop bx ;restore es:bx
pop es
add sp,2 ;clean up stack
mov word ptr es:[bx+3],ax ;send completion status
ret
_STRAT4 endp
;TEXT ends
end

Figure 5-6. Start-up routine, four devices.

Chapter 5. The Anatomy Of An OS/2 Device Driver

53

_DATA
_DATA

CONST
CONST

_BSS
_BSS

DGROUP

_TEXT

;STRAT

__acrtused:

.
’

.
’

start:

push
jmp

push
push
call

pop

C start-up routine, one device, w/interrupt and timer

PUBLIC _STRAT

PUBLIC __acrtused
PUBLIC _INT_HNDLR
PUBLIC _TIM_HNDLR

EXTRN _interrupt_handler:near
EXTRN _timer_handler:near
EXTRN _main:near

segment word public ‘DATA’
ends

segment word public ‘CONST’
ends

segment word public ‘BSS’
ends

group CONST, _BSS, _DATA

EJ—

segment word public ‘CODE’

assume c¢s:_TEXT,ds:DGROUP,es:NOTHING, ss:NOTHING
.286P

proc far
; no start-up code

0

start ; signal device 0

es ;send Request Packet address
bx

_main ;call driver mainline

bx ;restore es:bx

Figure 5-7. Start-up routine with timer and interrupt handler. (Continued)

54 Writing OS/2 2.1 Device Drivers in C

pop es
add sp,2 ;clean up stack

mov word ptr es:[bx+3],ax ;send completion status
ret

STRAT endp

_INT_HNDLR proc far

call interrupt_handler ;handle interrupts

ret ;bail out
_INT_HNDLR endp

_TIM_HNDLR proc far

pusha

push es

push ds

call _timer_handler
pop ds

pop es

popa

ret

_TIM_HNDLR endp

;TEXT ends
end

Figure 5-7. Start-up routine with timer and interrupt handler.

Chapter 5. The Anatomy Of An OS/2 Device Driver ~ 55

The Strategy Section

The Strategy section is nothing more than a big switch statement (see Figure 58).
Common device driver requests, such as DosWrite and DosRead, have predefined
function codes assigned to them. The device driver may elect to ignore any or all of
these requests by returning a DONE status to the kernel. This tells the kernel that
the request has been completed. The status returned to the kernel may optionally
include error information that the kernel returns to the calling program.

int main(PREQPACKET rp, int dev)

{

switch(rp->RPcommand)

éase RPINIT: // 0x00
// init called by kernel in protected mode
return Init(rp);

case RPREAD: // 0x04
return (RPDONE);

case RPHRITE: /1 0x08
return (RPDONE);

case RPINPUT_FLUSH: // 0x07
return (RPDONE);

case RPOUTPUT_FLUSH: // 0x0b
return (RPDONE):

case RPOPEN: // 0x0d

return (RPDONE);

Figure 5-8. Skeleton strategy section. (Continued)

56

Writing 0S/2 2.1 Device Drivers in C

case RPCLOSE: /7 0x0e
return (RPDONE);
case RPIOCTL: // 0x10
switch (rp->s.I10Ct1.function)
éase 0x00: // our function def #1
return (RPDONE);
case 0x01: // our function def #2

return (RPDONE);
}

// deinstall request
case RPDEINSTALL: // 0x14

return(RPDONE | RPERR | ERROR_BAD_COMMAND);
// all other commands are flagged

default:
return(RPDONE | RPERR | ERROR_BAD_COMMAND) ;

Figure 5-8. Skeleton strategy section.

Note, however, that in the case of one of the standard device driver functions, the ker-
nel will re-map the error value returned from the device driver to one of the standard
device driver return codes.

If the device driver must return special error codes, it should use an IOCt] request.
IOCltls are used for special types of operations, device driver-specific, which do not fit
into the architecture of the standard device driver functions. An example might be
such as port I/O or initialization of a UART. The IOCtl section of the device driver is

Chapter 5. The Anatomy Of An OS/2 Device Driver 57

called when the application issues a DosDevIOCtl call with the device driver’s handle.
Using IOCtls, the device driver can return specialized codes that might contain, for
example, the contents of an I/O port or the status of the device. This flexibility allows
the device driver writer to customize the device driver to fit any device.

Examine the skeleton Strategy section in Figure 5-8. Note the switch on the Request
Packet command. A number of standard device driver functions have command codes
predefined in 0OS/2 (see Table 5-3). It is up to the device driver writer to act upon or
ignore any of the requests to the device driver.

The Strategy section is entered when the kernel calls the device driver to perform a
particular operation. Refer to Table 5-3.

Table 5-3. Device Driver Strategy Calls
Event Strategy section called
DosOpen call RPOPEN
DosClose RPCLOSE
boot RPINIT
I0Ctl RPIOCTL
<cntl-c> RPCLOSE
<cntl-break> RPCLOSE
DosRead RPREAD
DosWrite | RPWRITE

Initialization

The first thing that must be done in the initialization section is to save the DevHIp
entry point address, passed in the Request Packet. This is the only time that the
address is made available to the device driver, and it must be saved in the device dri-
ver’s data segment. The INIT code generally performs two other functions. First, it
issues the sign-on message to the screen that the device driver is attempting to load.
Second, it finds the address of the last data and last code item, and sends them back
to 0S/2. 0S/2 uses the code and data offset values to size memory. Only the first

58

Writing OS/2 2.1 Device Drivers in C

code and data segment of the device driver is re-sized by 0S/2, so it may be desirable
to place the INIT code and data into another segment which is discarded after the
device driver is loaded. If a device driver fails installation, it must send back zero off-
sets for its code and data segments so OS/2 can use the memory space that the
device driver had occupied during installation. Depending on the type of driver, you
may wish to use this section to initialize your device, hook and interrupt or start a
timer.

It should be noted that for Micro Channel and EISA bus systems which share inter-
rupts, it is desirable to hook the interrupt in the OPEN section and release it in the
CLOSE section. This allows other adapters which use the same interrupt to register
for the interrupt without being refused. ISA bus interrupts should be hooked during
INIT, since the driver should fail initialization if the interrupt cannot be given to the
device driver.

If the device driver supports multiple devices, it will contain a Device Header with an
entry for each device, with the previous Device Header pointing to the next Device
Header. The last Device Header will contain a -1L, which terminates the list. For each
device, the OS/2 kernel will call the Strategy entry point to initialize the device. If the
driver supports, for example, four serial ports that use a single interrupt level, only the
last valid initialized device should hook the interrupt. This will prevent previously
installed devices from generating interrupts before the initialization has been complet-
ed. The code and data segment values returned to OS/2 to size memory should be
exactly the same each time the INIT section is called.

During INIT, a limited number of API functions may be called by the device driver.
This is possible because INIT runs as a single Ring 3 thread. Some of the APIs, espe-
cially those that perform file I/0, are especially helpful for initializing adapters using
data that is resident in disk files. Refer to the INIT Strategy Command in Chapter 6
for a more detailed description of device driver initialization.

The driver should allocate necessary resources during initialization, such as memory
and GDT selectors. If the driver supports a memory mapped adapter, the physical
adapter address may be mapped to a GDT selector. However, because INIT is per-
formed as a Ring 3 thread, the GDT selector cannot be accessed during initialization.
Any function which creates or uses a GDT selector during INIT, such as AttachDD,
will not allow you to use it during INIT. This is because INlT is run at Ring 3, and
does not have access to the GDT.

With IBM PS/2s, the device driver should search the system for an adapter card with
the correct ID and verify that it is configured correctly. The device driver may call
special PS/2 Advance BIOS (ABIOS) routines (see Chapter 8) to verify the correct
configuration of the adapter.

Chapter 5. The Anatomy Of An 0S/2 Device Driver 59

A Common Strategy

One of the most common techniques in OS/2 device driver design is for the Strategy
section to request service from the device and wait for a device or timer interrupt to
signal completion of the request. In this case, the Strategy section starts the I/0 and
issues a Block DevHlp call, which blocks the calling thread. When the device interrupt
signals that the operation is done, the interrupt section Runs the blocked thread, com-
pleting the request. To protect against the request never being completed, such as
with a down device, the Block call can contain a time-out parameter. If the timeout
expires before the completion interrupt occurs, the Blocked thread is Run, allowing
the Strategy section to send the proper error message back to the kernel.

Another method of timing-out a device is the use of the SetTimer DevHIp routine. A
timer handler can be hooked into the OS/2 system clock, and ticks counted down
until a time-out occurs. The Blocked thread can then be Run by the timer handler.

The number and type of commands supported by the Strategy section are up to the
device driver writer. The device driver can process only the commands it needs to,
and let the others simply pass through by sending a DONE status back to the kernel.
Illegal function calls may optionally be trapped, and ERROR_BAD_COMMAND
returned to the kernel.

Note that the 0S/2 kernel periodically issues special requests to the device driver
which are not generated by the application which opened the driver. An example of
this would be the 548 Code Page I0Ctl which the kernel sends to every OS/2 device
driver immediately following the OPEN.

If the application that opened the device driver fails or is aborted with a <cntl-c> or
<cntl-break>, the device driver is UnBlocked by the kernel with an unusual wake-up
return code. The driver must return ERROR_CHAR_CALL_INTERRUPTED to the
kernel, which will in turn call the CLOSE section of the driver.

In general, it’s a good practice to trap all unsupported requests by returning the
DONE and ERROR_BAD_COMMAND status to the kernel, but be aware you may
have to make some exceptions for the unsolicited calls.

In the simplest of device drivers, the Strategy section may only contain an OPEN,
CLOSE, and READ or WRITE section. In a complicated device driver, such as a disk
device driver, the Strategy section may contain over two dozen standard device driver
functions and dozens of additional IOCtl calls. IOCtl calls are actually Strategy func-
tions, but are broken down one step further to provide more detailed or device-specif-
ic operations (see Chapter 6). For instance, a device driver might send a list of para-
meters to be used in initializing an I/O port, and return the status of that initialization

60 Writing OS/2 2.1 Device Drivers in C
operation. This type of function would not be able to be done with one of the standard
set of device driver function calls because it is so device-specific. The IOCtl, however,
is well suited to this type of functionality.

Interrupt Section

The interrupt section handles interrupts from the device. Interrupts may be caused by
a character having been received, a character finished transmitting, or any number of
external events. Interrupt processing should be quick and straightforward. The rou-
tine that handles the interrupt is appropriately called the interrupt handler. The inter-
rupt handler is a subroutine that is entered upon the receipt of an interrupt for the
IRQ level registered with the SetIRQ DevHIp call. All interrupts in OS/2 are handled
by the kernel. With DOS, all a program had to do was to hook the interrupt vector
that it wanted. OS/2, however, does not allow interrupt vectors to be changed, and if
an attempt is made to change one, the application will immediately be kicked off the
system.

To register for an OS/2 interrupt, the device driver must send the address of its inter-
rupt handler and the requested interrupt (IRQ) level to OS/2 via a SetIRQ DevHIp
call. If the SetIRQ is successful, 0S/2 will call the interrupt handler upon receipt of an
interrupt on that IRQ.

0S/2 will call the interrupt handler that registered for a particular IRQ until the inter-
rupt handler claims the interrupt by clearing the carry flag (CLC).

The interrupt handler must be located in the first code segment of the device driver.
A sample interrupt handler is shown in Figure 5-9.

{

void interrupt_handler ()

int rupt_dev;
int source;
int cmd_b;
int st b;

int port;

int temp;

int rxlevel;

port=UART_PORT_ADDRESS;
outp((port+2),0x20); // switch to bank 1

Figure 5-9. Interrupt handler. (Continued)

Chapter 5. The Anatomy Of An 0OS/2 Device Driver

61

source = getsrc (); ‘ // get vector
switch (source)
{

// optional timer service routine

case timer :
st_b=inp (port+3); // dec transmit cnt
if (ThisReadRP = 0) // nobody waiting
break;

ThisReadRP->RPstatus=(RPDONE | RPERR | ERROR_NOT_READY);
Run ((ULONG) ThisWriteRP); // run thread
ThisWriteRP=0;

break;

case txm
case txf

// spurious write interrupt

if (ThisWriteRP = 0)
{
temp=inp(port+2);
break;
}

// keep transmitting until no data left

if (!(QueueRead(&tx_queue,&outchar)))
{ ,
outp((port), outchar);
tickcount=MIN_TIMEOUT;
break;

}

// done writing, run blocked thread

tickcount=MIN_TIMEQOUT;
disable_write();

Figure 5-9. Interrupt handler. (Continued)

62 Writing 0S/2 2.1 Device Drivers in C

ThisWriteRP->RPstatus = (RPDONE);
Run ((ULONG) ThisWriteRP);
ThisWriteRP=0;
break;
case ccr
// control character, treat as normal
inchar=inp(port+5);
case rxf
// rx fifo service routine
if (ThisReadRP = 0)
inchar=inp (port); // get character
else
{
temp=inp(port+4);
rxlevel=(temp & 0x70) / 0x10;
// empty out chip FIFO

while (rxlevel !=0)
{

inchar=inp (port); // get character
rxlevel—;

tickcount=MIN_TIMEOUT;

// write input data to queue
if(QueuelWrite(&rx_queue,inchar))

// error, queue must be full

{
ThisReadRP->RPstatus = (RPDONE|RPERR|ERROR_GEN_FAILURE);

Figure 5-9. Interrupt handler. (Continued)

Chapter 5. The Anatomy Of An OS/2 Device Driver 63

Run ((ULONG) ThisReadRP);
ThisReadRP=0;
break;
}
com_error_word |= inp(port+5);

} // while rxlevel
} // else
} // switch (source)
EOI (IRQnum); // send EOI
}

Figure 5-9. Interrupt handler.

If the device driver is running on an ISA bus machine, OS/2 calls the device driver’s
interrupt handler with interrupts disabled, since interrupts cannot be shared. On an
EISA or Micro Channel machine, interrupts remain enabled when the interrupt han-
dler is entered. Shared interrupts are one of the features of the IBM Micro Channel
and EISA bus architectures, which allow more than one device to share a single inter-
rupt level.

Device drivers which share interrupts must claim interrupts that belong to them by
clearing the carry flag. Interrupt handlers on EISA and Micro Channel machines can
refuse the interrupt by setting the carry flag before exiting the interrupt handler. The
0S/2 kernel will continue to call all of the interrupt handlers registered for the partic-
ular IRQ until one of the handlers claims the interrupt. Only the interrupt handler that
claims the interrupt should issue an EOI, which resets the interrupt so the interrupt
handler can be entered again. If you don’t issue the EOI, you’ll never get another
interrupt. Only the interrupt handler that owns the interrupt should issue the EOL

Any extended time spent in the interrupt handler can cause performance problems.
The interrupt handler must quickly perform its functions and exit. In the case of char-
acter devices, the 0S/2 DevHIp library supports fast reads and writes to circular char-
acter queues.

For block devices, interrupt handling is fast because the interrupt is usually caused by
a DMA completion or disk-seek complete. Data is usually transferred to the user
buffer using DMA, eliminating the need to transfer data during interrupt processing.
On a DMA transfer, the DMA controller is set-up, started, and the device driver exited
to allow other threads to run. When the DMA completes, it will generate a DMA com-

64

Writing OS/2 2.1 Device Drivers in C

pletion interrupt, causing the device driver’s interrupt handler to be entered. The
interrupt handler can then take the appropriate action, such as starting a new DMA
transfer. Note that the interrupt handler is written in C. It could have written using
assembly language, but it’s much easier to write and debug when written in C.

Most UARTSs and adapters contain some type of buffering, which allows a device dri-

‘ver a little slack when servicing higher data rates. The example in Figure 5-9 shows

an interrupt handler for a serial I/O port utilizing the Intel 82050 UART. The UART
has an internal 4-byte buffer and two internal timers. When an interrupt occurs, the
UART is examined to determine the type of interrupt: transmit, receive, or clock.

The interrupt handler is not entered directly from 0S/2, but is called from our small
assembly language start-up routine (see Figure 5-7). When the SetIRQ call is made to
register the interrupt handler, the address passed in the call is the address of the
interrupt handler entry point in the device driver start-up code The start-up code in
turn calls the C language interrupt handler.

The interrupt handler routine is not difficult to write or understand. It can, however,
be difficult to debug. Errors that occur in the interrupt handler frequently appear only
in a real time context; that is, while the interrupt handler is being entered as a result
of a hardware interrupt. The C library function printf, for example, cannot be called
from within an interrupt handler. Application debuggers, such as CodeView, cannot
be used in an interrupt handler. A debugger such as the OS/2 kernel debugger or
similar must be used. A breakpoint placed in the interrupt routine will cause the pro-
gram to stop, and further interrupts may pass undetected while the program is
stopped. A problem may not appear when breakpoints are inserted, but will reappear
when the program executes normally. It then becomes necessary for the device driver
writer to “visualize” the operation of the interrupt handler and begin applying solu-
tions until the problem is fixed.

The interrupt handler may receive unsolicited or spurious interrupts from the hard-
ware, and they should be handled accordingly by the OS/2 device driver. In the sam-
ple interrupt handler, a check is made to see whether a valid read or write request is
pending. If not, the device is reset and the interrupt handler is exited, effectively
ignoring the interrupt. This is not a recommended practice.

Examine the case 7xf section of the interrupt handler in Figure 5-9. This is where a
received character is detected. When the UART receives a complete character, it sets
the RX FIFO register bit which generates an interrupt. The interrupt handler examines
the interrupt source register to determine if the interrupt was caused by a received
character. If so, it checks to see whether a valid request is pending. If not, the character
is thrown away and the interrupt handler exited. If a valid read request is pending, the
UART is queried to see how many characters are in its four-character FIFO. (At high

Chapter 5. The Anatomy Of An OS/2 Device Driver ~ 65

data rates, it is possible that a character had come in while we were handling an inter-
rupt.) Each character is taken out of the FIFO one by one and written to a circular char-
acter queue. The 0S/2 DevHIp library supports fast reads and writes to these circular
queues. To prevent collision, queue reads and writes are protected by disabling inter-
rupts around the queue accesses. The interrupt handler continues to receive charac-
ters and place them into the receive queue until the queue becomes full, the queue is
emptied, or a specified time period has elapsed.

In the sample interrupt handler, data is passed back to the Strategy section of the
device driver when the queue becomes full or when a specified time has passed with-
out the reception of a new character. If the sample device driver was intended for use
as a terminal device driver, the interrupt handler could have sent the data back to the
Strategy section upon receipt of an end character, such as a carriage return.
Optionally, the interrupt handler can return each character to the Strategy section as
it is received. This method is more CPU intensive, however, and is generally not rec-
ommended. Data rates of 9600 baud and below can generally use the single-character
method, but speeds in excess of 9600 baud may require external buffering, DMA, or a
microprocessor-based adapter card. Overall system configuration should play a part in
the design of your interrupt handler. A heavily loaded system may not be able to
respond fast enough to multiple, high-speed interrupts on a character-by-character
basis, especially if the driver is servicing several devices on the same interrupt level.

The Timer Handler

At 9600 baud, the time required to receive a character via a serial port is approximate-
ly one millisecond. If we received several characters, and no more characters were
received within two or three hundred milliseconds, we could assume that there was
an interruption of data. This could be caused by the lack of data, or because a terminal
operator simply stopped typing. In any case, this would be a perfect opportunity to
send the received data back to the application.

In 0S/2, a device driver can “hook” the system timer interrupt with a call to the
DevHlp library SetTimer function. The device driver passes OS/2 a pointer to a timer
handler, and OS/2 calls the timer handler (see Figure 5-10) each time it receives a
system clock interrupt. 0S/2 also calls any other timer handlers that had been previ-
ously registered.

66

Writing OS/2 2.1 Device Drivers in C

void timer_handler()

{

if (ThisReadRP = 0) // make sure we’re waiting
return; .
tickcount—; // decrement counter

if(tickcount = 0) {

ThisReadRP->RPstatus=(RPDONE); // run blocked thread
Run ((ULONG) ThisReadRP);

ThisReadRP=0L; // keep us out of here
tickcount=MIN_TIMEOUT; // reset tick-based cntr
}

Figure 5-10. Timer handler.

The operation is simple. If no data appears within eight or ten 32-millisecond system
time ticks, the assumption can be made that the flow of input data has stopped, or at
least paused. The timer handler checks for a valid pending read request. This is nec-
essary because the timer handler will continue to be called every 32 milliseconds,
even if the device driver is idle. If a valid request is pending, the DevHIp Run function
is called to Run the Blocked thread and send the data back to the requesting applica-
tion. When the Strategy section becomes unblocked, it retrieves the data from the
receiver queue and sends it to the application’s data buffer.

The TickCount DevHIp could also be used to set up a timer handler that gets called
every eight or ten ticks and checks if data has been read (see Figure 5-11). The
TickCount method is more efficient, as the timer handler is not called until the count
specified in the TickCount call is reached. The TickCount DevHIp routine can be also
used to reset the tick count for a previously registered time handler.

void timer_handler()

{

}

if (ThisReadRP = 0) // make sure we’re waiting

ThisReadRP->RPstatus=(RPDONE) // exceeded tick cnt,run thread
Run ((ULONG) ThisReadRP);
ThisReadRP=0L; // ensure no more entry here

return;

Figure 5-11. TickCount timer handler.

CHAPTER 6

Device Driver Strategy Commands

trategy commands are the commands that the driver receives from the 0OS/2

kernel, usually in response to a driver request from an application thread. The

kernel uses the device driver Request Packet (see Figure 6-1) to communicate
with the device driver. The kernel sends a request to the device driver by filling in the
proper fields in the Request Packet, and sending the driver a pointer to the Request
Packet.

0S/2 does not guarantee the order that the Request Packets arrive at the device dri-
ver are preserved in the same order that the API requests were issued from the appli-
cation threads. It is possible that Request Packets may arrive out of order, and the
0S/2 device driver is responsible for providing the synchronization mechanism
between itself and application thread requests.

A Request Packet consists of two main parts: the Request Header and the command-
specific data field.

RPlength contains the total length in bytes of the Request Packet (the length of the
Request Header plus the length of the command-specific data).

67

68 Writing OS/2 2.1 Device Drivers in C

typedef struct ReqPacket {
UCHAR RPlength;
UCHAR RPunit;
UCHAR RPcommand;
USHORT RPstatus;
UCHAR RPreserved[4];
ULONG RPqlink;
UCHAR availl[19];
} REQPACKET;

Request Packet Tength

unit code for block DD only
command code

status word

reserved bytes

queue linkage

command specific data

Figure 6-1. Request Packet definition.

RPunit identifies the unit for which the request is intended. This field has no meaning

for character devices.

RPcommand indicates the requested device driver function.

RPStatus is defined only for OPEN and CLOSE Request Packets on entry to the
Strategy routine. For all other Request Packets, the status field is undefined on entry.

For an OPEN Request Packet, bit 3 (MON_OPEN_STATUS,08H) of the status field is
set if the packet was generated from a DosMonOpen; otherwise it was a DosOpen.

ftdefine RPERR
ffdefine RPDEV

ffdefine RPBUSY
ffdefine RPDONE

ffdefine ERROR_WRITE_PROTECT
ffdefine ERROR_BAD_UNIT
ftdefine ERROR_NOT_READY
ffdefine ERROR_BAD_COMMAND
ffdefine ERROR_CRC

ffdefine ERROR_BAD_LENGTH
ffdefine ERROR_SEEK

ffdefine ERROR_NOT_DOS_DISK

ftdefine ERROR_SECTOR_NOT_FOUND

ffdefine ERROR_OUT_OF_PAPER

0x8000 // error occurred
0x4000 // error code

0x0200 // device is busy
0x0100 // driver done bit

0x0000 // Write Prot

0x0001 // Unknown Unit
0x0002 // Device Not Ready
0x0003 // Unknown Command
0x0004 // CRC Error

0x0005 // Bad Driver Req Len
0x0006 // Seek Error

0x0007 // Unknown Media
0x0008 // Sector Not Found
0x0009 // Qut of Paper

Figure 6-2. Standard OS/2 device driver errors. (Continued)

Chapter 6. Device Driver Strategy Commands

Jidefine ERROR_WRITE_FAULT O0x000A // Write Fault
Jidefine ERROR_READ_FAULT 0x000B // Read Fault

fidefine ERROR_GEN_FAILURE 0x000C // General Failure
fidefine ERROR_DISK_CHANGE 0x000D // Change Disk

fidefine ERROR_UNCERTAIN_MEDIA 0x0010 // Uncertain Media
ffdefine ERROR_CHAR_CALL_INTERRUPTED 0x0011 // Char Call Interrupt
ffdefine ERROR_NO_MONITOR_SUPPORT 0x0012 // Mons Not supported
ffdefine ERROR_INVALID_PARAMETER 0x0013 // Invalid Parameters
fidefine ERROR_DEVICE_IN_USE 0x0014 // Dev Already In Use

Figure 6-2. Standard OS/2 device driver errors.

For a CLOSE Request Packet, bit 3 (MON_CLOSE_STATUS,08H) of the status field
is set if the packet was generated by a DosMonClose or a DosClose of a handle that
was generated by a DosMonOpen. Otherwise, it was a DosClose on a non-monitor
handle.

Upon exit from the Strategy routine, the status field describes the resulting state of
the request (see Figure 6-2).

Bit 15 (RPERR) is the Error bit. If this bit is set, the low 8 bits of the status word (7-0)
indicate the error code. The error code is processed by OS/2 in one of the following
ways:

¢ If the IOCtl category is ‘User Defined’ (greater than 127), FF00 is INCLUSIVE
OR’d with the byte-wide error code.

¢ If not ‘User Defined’ and Bit 14 (RPDEV - device driver defined error code) is set,
FE00 is INCLUSIVE OR’d with the byte-wide error code.

¢ Otherwise, the error code must be one of those shown and is mapped by the ker-
nel into one of the standard OS/2 API return codes before being returned to the
application. *

Bit 14 (RPDEYV) is a device-driver defined error if set in conjunction with bit 15.
Bits 13 - 10 are reserved.
Bit 9 (RPBUSY) is the Busy bit.

Bit 8 (RPDONE) is the Done bit. If it is set, it means that the operation is complete.
The driver normally sets the done when it exits.

70

Writing 0S/2 2.1 Device Drivers in C

Bits 7-0 are the low 8 bits of the status word. If bit 15 is set, bits 7-0 contain the error
code.

ERROR_UNCERTAIN_MEDIA (10H) should be returned when the state of the media
in the drive is uncertain. This response should NOT be returned to the INIT com-
mand. For fixed disks, the device driver must begin in a media uncertain state in
order to have the media correctly labelled.

ERROR_CHAR_CALL _INTERRUPTED (11H) should be returned when the thread
performing the I/0 was interrupted out of a DevHIp Block before completing the
requested operation.

ERROR_NO_MON_SUPPORT (12H) should be returned for monitor requests
(DosMonOpen, DosMonClose, DosMonRegister), if device monitors are not support-
ed by the device driver.

ERROR_INVALID_PARAMETER (13H) should be returned when one or more fields
of the Request Packet contain invalid values.

RPqlink is provided to maintain a linked list of Request Packets. It is a pointer to the
next packet in the chain, or -1L if this is the end of the chain. The device driver may
use the Request Packet management DevHlp services PullReqPacket,
PushReqPacket, FreeReqPacket, SortReqPacket, PullParticular, and AllocReqPacket
to manipulate the linked list of Request Packets.

Summary of Device Driver Commands

Table 6-1 contains a summary of device driver Strategy commands. The commands
are described in detail in the following subsections of this chapter.

Chapter 6. Device Driver Strategy Commands

71

Table 6-1. Device Driver Strategy Commands

Code Meaning Devices

0x00 Init Character, Block
0x01 Media Check Block Only

0x02 Build BIOS Parameter Block Block Only

0x03 Reserved N/A

0x04 Read Character, Block
0x05 Nondest. Read, no wait Character Only
0x06 Input Status Character Only
0x07 Flush Input Buffer Character Only
0x08 Write Character, Block
0x09 Write w/Verify Character, Block
0x0a Output Status Character Only
0x0b Flush Output Buffer Character Only
0x0c Reserved N/A

0ox0d Open Device Character, Block
0x0e Close Device Character, Block
0x0f Removable Media Block Only

0x10 Generic IOCtl Character, Block
0x11 Reset Media Block Only

0x12 Get Logical Drive Map Block Only

0x13 Set Logical Drive Map Block Only

0x14 Deinstall Character Only
0x15 Reserved N/A

0x16 Partitionable Disk Block Only

0x17 Get Fixed Disk Map Block Only

0x18 Reserved N/A

0x19 Reserved N/A

Oxla Reserved N/A

0x1b Reserved N/A

Oxlc Shutdown Character, Block
0x1d Get Driver Capabilities Block

Oxle Reserved

Ox1f CMDInitComplete Character, Block

72 Writing OS/2 2.1 Device Drivers in C

Oh / Init

Initialize the device.

Format Of Request Packet

union
{
struct { // init packet(one entry,exit)
UCHAR units; // number of units
FPFUNCTION DevHlp; // &DevH1p
char far *args; // &args
UCHAR drive; // drive #
}Init;
struct {
UCHAR units; // same as input
OFF finalCS; // final code offset
OFF finalDS; // final data offset
FARPOINTER BPBarray; // &BPB
} InitExit;
}
Comments

The INIT function is called by the kernel during driver installation at boot time. The
INIT section should initialize the adapter and device. For example, if the device was a
serial port, the initialization section might set the baud rate, parity, stop bits, etc. on a
serial port or check to see if the device is installed correctly. INIT is called in a special
mode at Ring 3 with some Ring 0 capabilities. For example, the driver may turn off
interrupts during INIT, but they must be turned back on before returning to the ker-
nel. The INIT code may also perform direct port I/0 without generating protection
violations. Usually, the driver will allocate buffers and data storage during INIT, to
ensure that the driver will work when installed. Because the memory allocations are
done at Ring 3, the system can check to make sure the allocations are valid. If not, the
driver can remove itself from memory, freeing up any previously allocated space for
other system components. Since the INIT code is executed only once, and during sys-
tem boot, its not necessary to optimize the INIT code. Do all of the work you can up
front in the INIT section, as it may be time-prohibitive or even impossible to do some
initialization during normal kernel-mode driver operation.

Chapter 6. Device Driver Strategy Commands 73

On entry, the INIT Request Packet contains the following fields as inputs to the
device driver:

¢ A pointer to the DevHIp entry point. (in OS/2 1.x, this is a bimodal pointer)
¢ A pointer to the initialization arguments from the DEVICE= line in CONFIG.SYS.
¢ The drive number for the first block device unit.

The pointer to the initialization parameters allows a device driver to be configured at
boot time, based on arguments placed on the DEVICE= line in CONFIG.SYS. See
Chapter 8 for a discussion of how to do this, and a listing of the INIT section of an
actual driver that performs this function.

Upon the completion of initialization, the device driver must set certain fields in the
Request Packet as follows:

¢ The number of logical block devices or units the driver supports (block devices
only).

e The WORD offset to the end of the code segment.
¢ The WORD offset to the end of the data segment.
¢ A pointer to the BIOS Parameter Block or BPB (block devices only).

A block device driver must also return the number of logical devices or units that are
available. The kernel’s file system layer will assign sequential drive letters to these
units. A character device driver should set the number of devices to 0.

As a final step in initialization, both block and character device drivers must return
the offsets to the end of the code and data segments. This allows the device driver to
release code and data needed only by the device driver’s initialization routine. To facil-
itate this, the initialization code and data should be located at the end of the appropri-
ate segments. A device driver which fails initialization should return 0 for both offset
values.

A block device driver must return an array of BPBs for each of the logical units that it
supports. A character device driver should set the BPB pointer to 0.

If initialization is successful, the status field in the Request Header must be set to indi-
cate no errors and the done status (RPDONE).

If the device driver determines that it cannot initialize the device, it should return with
the error bit (RPERR) in the Request Header status field set. The device driver should
return RPERR | RPDONE | ERROR_GEN_FAILURE. Whatever the reason for the fail-
ure, the status must always indicate that the request is done (RPDONE).

74 Writing OS/2 2.1 Device Drivers in C

The system loader records the last non-zero code and data segment offsets returned
for the devices which successfully completed initialization. These offset values are
used to re-size the device driver’s code and data segments.

If the device driver supports multiple devices or units, the kernel will call the initializa-
tion section for each of the devices or units. If your device driver has a single initializa-
tion section, the offset values returned to the kernel should be the same for each
device initialization that is successful.

A limited number of OS/2 system API routines are available to the device driver dur-
ing initialization. Those API routines are listed in Table 6-2.

Table 6-2. API Routines Available During Init (Continued)

Routine Name Description

DosBeep Generate a beep from the speaker
DosCaseMap Perform case mapping
DosChgFilePtr Move a read/write file pointer
DosClose Close a file handle

DosDelete Delete a file

DdsDevConﬁg Get a device’s configuration
DosDevIOCtl Do an IOCtl request
DosFindClose Close a search directory handle
DosFindFirst Find the first matching file
DosFindNext Find next file

DosGetEnv Get address of process environment

Chapter 6. Device Driver Strategy Commands

75

Table 6-2. API Routines Available During Init

Routine Name Description
DosGetMessage Get a system message
DosOpen Open a file
DosPutMessage Display message to handle
DosQCurDir Query current directory
DosQCurDisk Query current disk
DosQFilelnfo Query file information
DosQFileMode Query file mode

DosRead Read from file
DosSMRegisterDD Register driver for SM events
DosWrite Write to file

For more information about these functions, refer to the IBM 0OS/2 2.1 Control

Program Reference.

1H/ Media Check

Determine the state of the me

Format Of Request Packet

dia.

struct {
UCHAR media;
UCHAR return_code;

FARPOINTER prev_volume;

} MediaCheck;

// MEDIA_CHECK

// media descriptor

// see below

// &previous volume ID

76 Writing 0S/2 2.1 Device Drivers in C

Comments

On entry, the Request Packet will have the media descrlptor field set for the drive
identified in the Request Header (see Table 6-3).

The device driver must perform the following actions for the MEDIA CHECK
request:

¢ Set the status word in the Request Header.
¢ Set the return code where:
-1 = Media has been changed

0 = Unsure if media has been changed
1 = Media unchanged

To determine whether you are using a single-sided or a double-sided 8-inch diskette
(FEh), attempt to read the second side. If an error occurs, you can assume the

diskette is single-sided.
Table 6-3. Media Descriptor Bytes
Disk Type | #Sides #Sectors/Track Media Descriptor
Fixed Disk 0xF8
3.5Inch 2 09 : 0xF9
3.5Inch 2 18 0xF0
5.25 Inch 2 15 0xF9
5.25 Inch 1 09 0xFC
525Inch | 2 09 0XFD
5.25 Inch 1 08 0xFE
5.25Inch | 2 08 0xFF
8 Inch 1 26 O0xFE
8 Inch 2 26 0xFD
8 Inch 2 08 0xFE

Chapter 6. Device Driver Strategy Commands 77

The Media Check function is called by the kernel prior to disk access, and is there-
fore valid only for block devices. The kernel sends to the driver the media ID byte for
the type of disk that it expects to find in the selected drive.

2H / Build BPB

Build the BIOS Parameter Block (BPB). The driver receives this request when the
media has changed or when the media type is uncertain.

Format Of Request Packet
struct { // BUILD_BPB

UCHAR media; // media descriptor
FARPOINTER buffer; // 1-sector buffer FAT
FARPOINTER BPBarray; // &BPB array
UCHAR drive; // drive #
} BuildBPB;

Comments

On entry, the Request Packet will have the media descriptor set for the drive identi-
fied in the Request Header. The transfer address is a virtual address to a buffer con-
taining the boot sector media, if the block device driver attribute field has bit 13
(DAW_IBM) set; otherwise, the buffer contains the first sector of the File Allocation
Table (FAT).

The device driver must perform the following actions:

o Set the pointer to the BPB table.
¢ Update the media descriptor.
o Set the status word in the Request Header.

The device driver must determine the media type in the drive, in order to return the
pointer to the BPB table. Previously, the FAT ID byte determined the structure and
layout of the media. Because the FAT ID byte has only eight possible values (F8
through FF), it is clear that, as new media types are invented, the available values will
soon be exhausted. With the varying media layouts, OS/2 needs to be aware of the
location of the FATs and directories before it reads them.

78 Writing OS/2 2.1 Device Drivers in C

The device driver should read the boot sector from the specified buffer. If the boot
sector is for DOS 2.10, 2.10, 3.00, 3.10, 3.20, or OS/2, the device driver returns the
BPB from the boot sector. If the boot sector is for DOS 1.00 or 1.10, the device driver
reads the first sector of the FAT into the specified buffer. The FAT ID is examined
and the corresponding BPB is returned.

The information relating to the BPB for a particular media is kept in the boot sector
for the media (see Table 6-4).

Table 6-4. Boot Sector Format

Field (Length
Short Jump (0xEB) followed by NOP 2 bytes
OEM Name and Version 8 bytes
Bytes Per Sector word
Sectors/Allocation Unit (base 2) byte
Reserved Sectors (starting at 0) word
Number of FATs byte
Number of Root Dir Entries (max) word
Number of Sectors Total word
Media Descriptor byte
Number of Sectors in a single FAT word
Sectors Per Track word
Number of Heads word
Number of Hidden Sectors word

Chapter 6. Device Driver Strategy Commands 79

The last three WORDs in Table 6-4 help the device driver understand the media. The
number of heads is useful for supporting different multiple head drives that have the
same storage capacity but a different number of surfaces. The number of hidden sec-
tors is useful for supporting drive partitioning schemes.

For drivers that support volume identification and disk change, this call should cause
a new volume identification to be read off the disk. This call indicates that the disk
was properly changed.

4H, 8H, 9H / Read or Write

Read from or write to a device. Read (4H) / Write (8H) / Write with Verify (9H)

Format Of Request Packet

struct { // READ, WRITE, WRITE_VERIFY
UCHAR media; // media descriptor
PHYSADDR buffer; // transfer address
USHORT count; // bytes/sectors
ULONG startsector; // starting sector #

USHORT reserved;
} ReadWrite;

Comments

On entry, the Request Packet will have the media descriptor set for the drive identi-
fied in the Request Header. The transfer address is a 32-bit physical address of the
buffer for the data. The byte/sector count is set to the number of bytes to transfer (for
character device drivers) or the number of sectors to transfer (for block device dri-
vers). The starting sector number is set for block device drivers. The System File
Number is a unique number associated with an open request.

The device driver must perform the following actions:

¢ Perform the requested function.
o Set the actual number of sectors or bytes transferred.
e Set the status word in the Request Packet.

80 Writing OS/2 2.1 Device Drivers in C

The DWORD transfer address in the Request Packet is a locked 32-bit physical
address. The device driver can use it to call the DevHIp function PhysToVirt and
obtain a segment swapping address for the current mode. The device driver does not
need to unlock the address when the request is completed.

READ is a standard driver request. The application calls the READ Strategy entry
point by issuing a DosRead with the handle obtained during the DosOpen. The READ
routine may return one character at a time, but more often returns a buffer full of data.
How the READ function works is up to the driver writer. The driver returns the count
of characters read and stores the received data in the data segment of the application.
READ returns one of the standard driver return codes.

Note: The functions IOCtl Read and IOCtl Write are not supported by the standard
base 0S/2 device drivers.

WRITE is a standard driver request, called by the application as a result of a DosWrite
call. The application passes the address of data to write (usually in the applications
data segment) to the driver and the count of the characters to write. The driver writes
the data and returns the status to the application, along with the number of characters
that were actually written. WRITE returns a standard driver return code.

5H / Nondestructive Read No Wait

Read a character from an input buffer without removing it.

Format Of Request Packet

struct { // NON_DESTRUCT READ/NO WAIT
UCHAR char_returned; // returned character
} ReadNoWait;

Chapter 6. Device Driver Strategy Commands 81

Comments

The device driver must perform the following actions:

e Return a byte from the device.
e Set the status word in the Request Header.

For input on character devices with a buffer, the device driver should return from this
function with the busy bit (RPBUSY) clear, along with a copy of the first character in
the buffer. The busy bit is set to indicate that there are no characters in the buffer.
This function allows the operating system to look ahead one input character without
blocking in the device driver.

6H, AH / Input or Output Status

Determine the input or output status of a character device.

Format Of Request Packet

No Parameters

Comments
The device driver must perform the following actions:

o Perform the requested function.
o Set the busy bit.
e Set the status word in the Request Header.

For output status on character devices, if the busy bit (RPBUSY) is returned set, an
output request is currently pending. If the busy bit is returned set to 0, there is no cur-
rent request pending.

For input status on character devices with a buffer, if the busy bit is returned set,
there are no characters currently buffered in the device driver. If the busy bit is
returned clear, there is at least one character in the device driver buffer. The effect of
busy bit = 0 is that a read of one character will not need blocking. Devices that do not
have an input buffer in the device driver should always return with the busy bit clear.
This is a “peek” function, to determine the presence of data.

82 Writing OS/2 2.1 Device Drivers in C

7H, BH / Input Flush or Output Flush

Flush or terminate all pending requests.

Format Of Request Packet

No Parameters

Comments

The device driver must perform the following actions:

¢ Perform the requested function.
¢ Set the status word in the Request Header.

This call tells the device driver to flush (terminate) all known pending requests. Its
primary use is to flush the input or output queue on character devices. The Input
Buffer Flush should flush any receiver queues or buffers, and return DONE to the
kernel. The Output Buffer Flush should flush any transmitter queues or buffers.

DH,EH / Open or Close

Open or Close a Device.

Format Of Request Packet

struct { // OPEN/CLOSE
USHORT sys_file_num ; // system file number
} OpenClose;

Chapter 6. Device Driver Strategy Commands 83

Comments

The System File Number is a unique number associated with an open request.
The device driver must perform the following actions:

o Perform the requested function.
e Set the status word in the Request Header.

Character device drivers may use OPEN/CLOSE requests to correlate using their
devices with application activity. For instance, the device driver may increase a refer-
ence count for every OPEN, and decrease the reference count for every CLOSE.
When the count goes to 0, the device driver can flush its buffers. This can be thought
of as a “last close causes flush.”

The OPEN function is called as a result of the application issuing a DosOpen call. The
kernel makes note of the DosOpen request, and if it is successful, the kernel sends back
a handle to the application to use for subsequent driver service. The driver writer can
use this section to initialize a device, flush any buffers, reset any buffer pointers, initial-
ize character queues, or anything necessary for a clean starting operation.

The CLOSE is usually called as a result of the application doing a DosClose with the
correct driver handle, but it is also called when the application that opened the driver
terminates or is aborted with a <cntl-c> or <cntl-break>.

In most cases, its a good idea to make sure that the application closing the driver is
the same one that opened it. To ensure this, the device driver should save the PID of
the application that opened the driver, and make sure that the closing PID is the
same. If not, the device driver should reject it as a bogus request. The driver can get
the PID of the calling program using the GetDOSVar DevHIp routine.

All devices associated with the device driver should be made quiescent at CLOSE
time.

84 Writing OS/2 2.1 Device Drivers in C

FH /Removable Media

Check for removable media.

Format Of Request Packet

No Parameters

Comments

 The device driver must perform the following actions:

¢ Set the busy bit to 1 if the media is non-removable.

¢ Set the busy bit to 0 if the media is removable.
¢ Set the status word in the Request Header.

The driver receives this request as a result of an application generating an IOCt] call
to Category 8, Function 0x20. Instead of calling the IOCtl section of the device driver,
the kernel issues this request. The driver must set the busy bit (RPBUSY) of the
Request Packet status if the media is non-removable, and must clear it if the media is

removable.

10H / Generic 10CTL

Send I/0 control commands to a device.

Format Of Request Packet (DosDevIOCtl)

struct {
UCHAR category;
UCHAR function;

FARPOINTER parameters;
FARPOINTER buffer;
USHORT sys_file_num;
} I0Ct1; '

// 10Ct1

// category code

// function code

// ¶meters

// &buffer

// system file number

Chapter 6. Device Driver Strategy Commands 85

Format Of Request Packet (DosDevIOCti2)

struct { // T0Ct1

UCHAR category; // category code
UCHAR function; // function code
FARPOINTER parameters; // ¶meters
FARPOINTER buffer; // &buffer

USHORT sys_file_num; // system file number

USHORT parm_buf_length;// Tength of parameter buffer
USHORT data_buf_length // length of data buffer

} 10Ct1;

Comments

On entry, the request packet will have the IOCtl category code and function code set.
The parameter buffer and the data buffer addresses are passed as virtual addresses.
Note that some IOCtl functions do not require data and/or parameters to be passed.
For these IOCtls, the parameter and data buffer addresses may contain NULL point-
ers. The System File Number is a unique number associated with an OPEN request.

If the device driver indicates (in the function level of the device attribute field of its
Device Header) that it supports DosDevIOCtl2, the Generic IOCtl request packets
passed to the device driver will have two additional words, containing the lengths of
the Parameter Buffer and Data Buffer, respectively. If the device driver indicates
through the function level that it supports DosDevIOCtI2, but the application issues
DosDevIOCtl, the Parameter Buffer and Data Buffer length fields will be set to zero.

The device driver must perform the following actions:

e Perform the requested function.
o Set the status word in the Request Header.

The device driver is responsible for locking the parameter and data buffer segments,
and converting the pointers to 32-bit physical addresses, if necessary.

Refer to the 0S/2 Version 2.1 Programming Reference and the 0S/2 Version 2.1
Application Programming Guide for more detailed information on the generic I0Ctl
interface for applications.

86

Writing OS/2 2.1 Device Drivers in C

The third and fourth command-specific parameters of an IOCt] are the address of the
application program’s data buffer and parameter buffer, respectively. The format of
the two buffers is entirely up to the driver writer. The parameter buffer might contain
a list of USHORTS, UCHARS, or pointers. However, pointers are not recommended
because, depending on the type of application sending them (16:16 or 0:32), the point-
ers might require further translation, affecting portability.

The data buffer parameter might be the address of a data buffer in the application pro-
gram where the driver would store data from the device. It should also be noted that
the IOCtl need not pass or receive any data.

Another feature of an IOCtl is its ability to send back device-specific information to the
application. A standard driver request, such as DosRead or DosWrite, returns a value
to the application which is used to determine whether or not the operation was suc-
cessful. For something like a terminal driver, a simple pass/fail indication might be
sufficient. Suppose, however, that the driver needed to tell the application that the
data was in ASCII or binary format, or that a parity error was detected while receiving
it. Here an IOCtl would be a better choice because the kernel ‘massages’ return codes
from standard function calls to fit within the standard error definitions. The IOCH],
however, will pass back special error codes to the application exactly as they were set
in the driver.

11H / Reset Media

Reset the Uncertain Media error condition and allow 0S/2 to identify the media.

Format Of Request Packet

No Parameters

Comments

On entry, the unit code identifies the drive number to be reset.
The device driver must perform the following actions:

* Set the status word in the Request Header.

¢ Reset the error condition for the drive.

Chapter 6. Device Driver Strategy Commands 87

Before this command, the driver had returned ERROR_UNCERTAIN_MEDIA for the
drive. This action informs the device driver that it no longer needs to return the error
for the drive.

12H, 13H / Get/Set Logical Drive

Get/Set Logical Drive Mapping

Format Of Request Packet

No Parameters

Comments

On entry, the unit code contains the unit number of the drive on which this operation
is to be performed.

The device driver must perform the following actions:

e For GET, it must return the logical drive that is mapped onto the physical drive indi-
cated by the unit number in the Request Header.

e For SET, it must map the logical drive represented by the unit number onto the phys-
ical drive that has the mapping of logical drives.

e The logical drive is returned in the unit code field. This field is set to 0 if there is only
one logical drive mapped onto the physical drive.

e Set the status word in the Request Header.

88 Writing OS/2 2.1 Device Drivers in C

14H / Deinstall

Request deinstall of driver.

Format Of Request Packet

No Parameters

Comments

When a device driver is loaded, the attribute field and name in its header are used to
determine if the new device driver is attempting to replace a driver (device) already
installed. If so, the previously installed device driver is requested by the operating sys-
tem to DEINSTALL. If the installed device driver refuses the DEINSTALL command,
the new device driver is not allowed to be loaded. If the installed device driver per-
forms the DEINSTALL, the new device driver is loaded.

If a character device driver honors the DEINSTALL request, it must perform the fol-
lowing actions:

¢ Release any allocated physical memory.

® UnSet any hardware interrupt vectors that it had claimed.

¢ Remove any timers.

* Clear the error bit in the status word to indicate a successful DEINSTALL.

If the character device driver determines that it cannot or will not deinstall, it should
set the error bit (RPERR) in the status field and set the error code to
ERROR_BAD_COMMAND (03H).

Deinstall Considerations

An ABIOS device driver maps its device name to a unit within a Logical ID (LID). It
receives a DEINSTALL request for its device name, which implies a single unit of a
LID. To honor the DEINSTALL request, it must relinquish the LID by calling DevHIp
FreeLIDEntry at DEINSTALL time.

Chapter 6. Device Driver Strategy Commands 89

In honoring a DEINSTALL command, a device driver must remove its claim on the
interrupt level by issuing an UnSetIRQ DevHIp call.

If the device driver’s device is ill-behaved (that is, it cannot be told to stop generating

interrupts), the device driver must not remove its interrupt handler, and must refuse
the DEINSTALL request.

16H / Partitionable Fixed Disks

This call is used by the system to ask the device driver how many physical partition-
able fixed disks the device driver supports.

Format Of Request Packet

struct { // PARTITIONABLE fixed disks
UCHAR count; // number of disks supported
ULONG reserved;

} Partitionable;

Comments

This is done to allow the Category 9 Generic IOCtls to be routed appropriately to the
correct device driver. This call is not tied to a particular unit that the device driver
owns, but is directed to the device driver as a general query of its device support.

The device driver must perform the following actions:

o Set the count (1- based).
e Set the status word in the Request Header.

90

Writing OS/2 2.1 Device Drivers in C

17H / Get Fixed Disk/Logical Unit Map

Get Fixed Disk/LU Map.

Format Of Request Packet

struct { // Get Fixed Disk/Log Unit Map
ULONG units; // units supported
ULONG reserved;

} GetFixedMap;

Comments

This call is used by the system to determine which logical units supported by the
device driver exist on the physical partitionable fixed disk.

On entry, the request packet header unit field identifies a physical disk number (0-
based) instead of a logical unit number. The device driver returns a bitmap of which
logical units exist on the physical drive. The physical drive relates to the partitionable
fixed disks reported to the system by way of the PARTITIONABLE FIXED DISKS
command. It is possible that no logical units exist on a given physical disk because it
has not yet been initialized.

The device driver must perform the following actions:

¢ Set the 4-byte bit mask to indicate which logical units it owns. The logical units must
exist on the physical partitionable fixed disk for which the information is being
requested.

¢ Set the status word in the Request Packet header.

The bit mask is set up as follows: A 0 means that the logical unit does not exist, and a
1 means it does. The first logical unit that the device driver supports is the low-order
bit of the first byte. The bits are used from right to left, starting at the low-order bit of
each following byte. It is possible that all of the bits will be 0.

Chapter 6. Device Driver Strategy Commands 91

1CH / Shutdown

Begin shutdown procedure.

Format Of Request Packet

struct { // Shutdown
UCHAR func; // shutdown function code
ULONG reserved;

} Shutdown;

Comments

This call is used by the system to notify a device driver to flush any data to the device
and prepare to shutdown.

The driver is called twice, once for a Start Shutdown and then again for an End
Shutdown. The function code is 0 for the Start Shutdown call and 1 for the End
Shutdown call.

Level 2 device drivers are called with the Shutdown request. Level 3 drivers are only
called if the shutdown flag of the Capabilities field is set in the Device Header.

1DH/ Get Driver Capabilities

Get a disk device driver’s capabilities.

Format Of Request Packet

struct { // Get Driver Capabilities
UCHAR res(3]; // reserved, must be 0
FARPOINTER CapStruct; // 16:16 pointer to DCS

FARPOINTER VolCharStruct; // 16:16 pointer to VCS
} GetDriverCaps;

92 Writing OS/2 2.1 Device Drivers in C

Comments

This command returns the functional capabilities of the driver for device drivers sup-
porting the Extended Device Driver Interface.

This command is issued by the system to see whether the driver supports the scat-
ter/gather protocol. The driver must initialize this structure. The first pointer is a
16:16 pointer to the Driver Capabilities Structure, and the second pointer is 1 16:16
pointer to the Volume Characteristics Structure. Refer to Chapter 12 for more detailed
information on this command and its associated data structures.

1FH / CMDInitComplete

Notify device driver that all PDDs and IFS drivers have been loaded.

Format of Request Packet

No Parameters

Comments

This command notifies the device driver that all drivers have been loaded, allowing
the device driver to initiate any driver-to-driver communications or initialization. This
command removes any problems associated with the order in which device drivers
appear in the CONFIG.SYS file.

This command is issued by the system only if the device driver is a level 3 driver and
has set bit 4 in the Capabilities Bit Strip word in the device header.

CHAPTER 7
A Simple OS/2 Physical Device Driver

is chapter outlines the operation of an actual OS/2 Physical Device Driver

(PDD). PDDs are the only type of drivers that can interface directly with

adapter or system hardware. Chapter 5 discussed the various parts and

design of an OS/2 PDD. This chapter will bring the parts together to form a PDD that
can be loaded and tested under 0S/2.

Device Driver Specifications

The requirement for this device driver is to perform I/O to an 8-bit parallel port, a
common requirement. Although this device driver is designed for the 8255 parallel
chip, it can easily be modified for any other type of 8bit parallel adapter. This driver
performs the I/0 using the standard DosRead and DosWrite, and also shows how to
perform the I/0 using IOCtls. It is a good example of handling the differences
between standard device driver request and IOCtls.

Parallel adapters are frequently used for reading switches or other pieces of hardware
which cause single bits to be set or clear. I've added an additional function to this
device driver to show how an 0S/2 device driver can be written to wait for a single bit
to be set or clear without using interrupts or compromising system performance.
Writing a similar device driver under DOS would be simple. Since DOS runs only one
program at a time, the program could wait around forever for the particular bit to be
set. 0S/2, however, runs many programs at the same time, and cannot afford to wait

93

94 Writing 0S/2 2.1 Device Drivers in C

around for a bit to be set while keeping all other programs dormant. To accomplish
this without polling, the OS/2 device driver hooks a timer interrupt, and polls the port
at every tick of the OS/2 system clock (31.25 milliseconds). Between each clock tick,
the driver is either idle or blocked by an application request, so other threads contin-
ue to run.

It is important to note that the amount of memory available for the stack in a device
driver is extremely small, approximately 4K bytes, so it is important to keep the
amount of local variables at a minimum.

The complete listing of this device driver can be found in the Appendix C.

Application Program Design

When the application is first started, it opens the device driver with a DosOpen API
call described in Figure 7-1.

if ((RetCode=DosOpen(“DIGIO$”,

&digio_handle,

&ActionTaken,

FileSize,

FileAttribute,

FILE_OPEN,

OPEN_SHARE_DENYNONE | OPEN_FLAGS_FAIL_ON_ERROR

| OPEN_ACCESS_READWRITE,Reserved)) !=0)
printf(*“\nopen error = %d”,RetCode);

Figure 7-1. Application call to open the driver.

If successful, the DosOpen call returns a handle to the application which it can use for
subsequent access to the device driver. A handle is nothing more than a special cook-
ie that OS/2 uses to allow access to a particular driver.

Chapter 7. A Simple OS/2 Physical Device Driver 95

Device Driver Operation

Refer to the device driver source code in Appendix C. Note the Device Header and
the name assigned to the driver. For this example, the driver name has been assigned
DIGIOS. The name must be eight characters in length, and must be space-padded for
up to eight character positions. The ‘S’ character was used in case a file or directory
had the same name as the driver, for instance \drivers\digio.

INIT

In the INIT section in Figure 7-2, the DevHIp routine SetTimer is called to register the
timer handler we will use to periodically check a bit from the parallel port. If the
SetTimer call fails, the driver returns a failure to the kernel and gives up the memory
it had occupied during initialization. If the call was successful, the driver displays a
sign-on message and returns the DONE status to the kernel. The INIT section also
initializes the 8255 parallel chip to setup port address base+0 as the read-port address,
and base+1 as the write-port address.

As soon as the timer handler is registered, the timer handler begins receiving timer
interrupts every 31.25 milliseconds. The ReadID variable is used to ignore timer inter-
rupts when no driver requests are pending.

int Init(PREQPACKET rp)

{

// store DevHlp entry point

DevHlp = rp->s.Init.DevHlp;

// install timer handler

if(SetTimer((PFUNCTION)TIMER_HANDLER)) {
// if we failed, effectively deinstall driver with cs+ds=0
DosPutMessage(1l, 8, devhdr.DHname);
DosPutMessage(1,strlen(FailMessage),FailMessage);
rp->s.InitExit.finalCS = (OFF) O;

rp->s.InitExit.finalDS = (OFF) 0;
return (RPDONE | RPERR | ERROR_BAD_COMMAND);

Figure 7-2. INIT section. (Continued)

96

Writing OS/2 2.1 Device Drivers in C

}
// configure 8255 parallel chip
outp (DIGIO_CONFIG,0x91);
// output initialization message

DosPutMessage(1, 2, CrLf):

DosPutMessage(1, 8, devhdr.DHname);

DosPutMessage(1, strlen(InitMessagel), InitMessagel);
DosPutMessage(1, strlen(InitMessage2), InitMessage?);

// send back our code and data end values to 0s/2

if (SegLimit(HIUSHORT((void far *) Init),
&rp->s.InitExit.finalCS) || SegLimit(HIUSHORT((void far *) InitMessage?),
&rp->s.InitExit.finalDS))
Abort();
return(RPDONE) ;

Figure 7-2. INIT section.

OPEN

When the application program is started, it issues a DosOpen call to the kernel, which
routes it to the driver via an OPEN Request Packet. If the DosOpen is successful, the
kernel returns a handle to the application for subsequent driver access. When the dri-
ver receives the OPEN Request Packet (see Figure 7-3), it checks to see whether the
driver had been opened prior to this call. This might happen if more than one thread
of an application opened the driver. If the driver had not been opened, it gets the PID
of the opening program and saves it for later use. It then bumps the open counter and
returns DONE to the kernel. The DONE status with no errors is mapped to the stan-
dard “no error” return to the DosOpen call, and returned to the application. If the
open count was greater than zero, the PID of the opening program is compared to the
previously saved PID to see if they are the same. If the new PID is not the same as the
old PID, the request is rejected by sending the BUSY status back to the kernel. The

Chapter 7. A Simple OS/2 Physical Device Driver 97

kernel maps the return to a standard return code and sends that code to the applica-

tion as a failure. In all cases, whether errors occurred or not, the driver must return
with the DONE status.

case RPOPEN: // 0x0d open driver
// get current processes’ 1id

if (GetDOSVar(2,&ptr))
return (RPDONE | RPERR | ERROR_BAD_COMMAND);

// get process info
1iptr = *((PLINFOSEG far *) ptr);

// if this device never opened, can be opened by anyone

if (opencount = 0) // first time this dev opened
{
opencount=1; // bump open counter
savepid = Tiptr->pidCurrent; // save current PID
}
else

{
if (savepid != Tiptr->pidCurrent) // another proc
return (RPDONE | RPERR | ERROR_NOT_READY);//err
++opencount ; // bump counter, same pid
}
return (RPDONE);

Figure 7-3. OPEN section.

98

Writing 0S/2 2.1 Device Drivers in C

CLOSE

The driver will receive a close Request Packet as a result of a DosClose API call from
the application, or from the kernel in the event that the application was terminated by
a <cntl-c>, <cntl-break> or other fault. In the CLOSE section (see Figure 7-4), the dri-
ver checks the PID of the closing application to make sure that it has the same PID as
the program that opened it. If not, the request is rejected by returning an error to the
kernel. If it is the same, it was a valid close request, so the driver decrements the
open counter and returns the DONE status to the kernel.

case RPCLOSE: // 0x0e DosClose,ctl-C, kill

// get process info of caller

if (GetDOSVar(2,&ptr))
return (RPDONE | RPERR | ERROR_BAD_COMMAND) ;

// get process info from os/2
Tiptr= *((PLINFOSEG far *) ptr); // ptr to linfoseg
// make sure that the process attempting to close this device

// is the one that originally opened it and the device was
// open in the first place.

if (savepid != liptr->pidCurrent || opencount = 0)
return (RPDONE | RPERR | ERROR_BAD_COMMAND);

—opencount ; // close counts down open cntr
return (RPDONE); // return ‘done’ status

Figure 7-4. CLOSE section.

Chapter 7. A Simple OS/2 Physical Device Driver 99

10Ctis

The IOCtl Request Packets are received as a result of a DosDevIOCtl API call from
the application. In this example, the driver supports three IOCtls. They are read a
byte from a port, write a byte to a port, and read a port with wait.

The IOCtl section first checks to make sure that the category is correct for this driver.
Each device driver should have its own category, assigned by the driver writer.
Categories from 0 to 127 are reserved for OS/2, and categories 128255 are available
for use by special drivers. You should avoid using category 128, however, as this cate-
gory is sometimes used by OS/2 for drivers such as VDISK.SYS or OEMHLP. There
are some cases where the category of a device driver might be the same as the cate-
gory for an existing OS/2 device driver. An example would be a driver that replaced
the COMO01.SYS or COMO2.SYS serial driver, or one that augmented an existing
device driver. An example of this might be a device driver that adds support for
COM5-COM12. Since certain IOCtls of a particular category are used to perform oper-
ations such as setting parity, changing the baud rate or the character length, the
replacement driver should support the same number and type of IOCt] requests.

If the category is not valid, the driver returns the DONE status to the kernel without
performing any operations. It is generally acceptable to ignore unrecognized I0Ctl
requests, because the kernel will, from time to time, issue IOCtls to your driver which
your driver does not support.

If the category is valid, the driver checks the IOCtl function code.

CASE 0x01

If the IOCtl request is a 1, the write-port function has been requested (see Figure 7-5).
The driver calls the DevHIp routine VerifyAccess with the virtual address of the IOCtl
parameter buffer to verify that the caller owns the memory that it points to. It also
checks to see that the application has the correct read and write privileges. If the
address is valid, the driver copies the byte to be output from the application, using a
simple virtual-to-virtual copy. Using the standard run-time library routine outp, the dri-
ver writes the byte to the particular port. The driver then sends the DONE status
back to the kernel and exits.

100 Writing OS/2 2.1 Device Drivers in C

case 0x01: // write byte to digio port
// verify caller owns this buffer area

if(VerifyAccess(
SELECTOROF(rp->s.10Ct1.parameters), // selector
OFFSETOF(rp->s.I0Ct1.parameters), // offset

1, // 1 byte

0)) , // read only
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

if(MoveBytes(rp->s.I10Ct1.parameters, (FARPOINTER)&output_char,1))
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

outp(DIGIO_QUTPUT,output_char); //send to digio

return (RPDONE);

Figure 7-5. IOCtl 0x01, write port.

CASE 0x02

If the IOCtl code was 2, read with wait, the driver performs the identical operations to
the previous IOCtl (see Figure 7-6). In this IOCtl, the application sends the driver a bit
to wait for, and the driver will not return until that particular bit becomes set.

First, the driver verifies the IOCtl virtual buffer pointer to make sure that the applica-
tion owns the memory. Note that in this particular IOCtl, the data buffer pointer was
used and not the parameter buffer pointer. The data buffer contains not only the port
address to read from, but the space for the data read by the driver. Either buffer area
can be used for reading or writing data. In this case, the data buffer was used for read
IOCtls and the parameter buffer was used for write IOCtls. Which buffers are used
and how they are interpreted is entirely up to the driver writer.

Since the driver will Block until completion, it must lock down the applications buffer
to ensure it is still there when the driver is UnBlocked. Otherwise, the buffer address-
es previously UnBlocked might not be valid due to swapping. Once the memory has
been verified and locked, the data is transferred from the application to the driver. In
this driver, the data is only one byte in size, which contains the bit to wait for. Next,

Chapter 7. A Simple OS/2 Physical Device Driver 101

the variable ReadID is cast to a ULONG of the Request Packet pointer to be used as
an ID for the DevHIp Block call. The driver then Blocks with a -1L for a time-out,
which indicates that the driver will wait forever (no timeout). When the Block returns,
it was either the result of a signal, such as <cntl-c>, or a call to the DevHlp Run routine
with the same 32-bit ID used for the Block. The driver checks the return code form
the Block. If the error code is a 2, which means a <cntl-c> caused the return from the
Block, the driver returns ERROR_CHAR_CALL_INTERRUPTED to the kernel. If the
error code was not a 2, the driver assumes that it was a valid Run call that caused the
driver to become UnBlocked. The driver copies the result of the port read to the appli-
cation, UnBlocked the caller’s memory and returns the DONE status to the kernel.
How the data is actually read from the I/0 port is detailed in the Timer Handler sec-
tion in Figure 7-9. The driver copies the result of the port read to the application.

Note that, in this IOCtl, the device driver locked the application’s buffer to prevent it
from being swapped out. This is necessary when the device driver issues a DevHIp
Block request, but is not necessary in the other two IOCtls, where no Blocking
occurs.

case 0x02: // read w/wait from port

// verify caller owns this buffer area

if(VerifyAccess(

SELECTOROF(rp->s.10Ct1.buffer), // selector

OFFSETOF(rp->s.I0Ct1.buffer), // offset

1, // 1 bytes)

0)) // read only
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

// Tock the segment down temp

if(LockSeg(

SELECTOROF(rp->s.I0Ct1.buffer), // selector

1, // Tock forever

0, // wait for seg loc
(PLHANDLE) &lock_seg_han)) // handle returned

return (RPDONE | RPERR | ERROR_GEN_FAILURE);

if(MoveBytes(rp->s.10Ct1.parameters, (FARPOINTER)&input_mask,1))
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

Figure 7-6. IOCtl 0x02. (Continued)

102 Writing OS/2 2.1 Device Drivers in C

// wait for bit to be set
ReadID = (ULONG)rp;
if (Block(ReadID,-1L,0,&err))
if (err = 2)
return(RPDONE [RPERR | ERROR_CHAR_CALL_INTERRUPTED);
// move result to users buffer

if(MoveBytes((FARPOINTER)&input_char,rp->s.I10Ct1.buffer,1))
return(RPDONE | RPERR | ERROR_GEN_FAILURE);

// unlock segment

if(UnLockSeg(Tock_seg_han))
return(RPDONE | RPERR | ERROR_GEN_FAILURE);

return (RPDONE);

Figure 7-6. IOCt 0x02.

CASE 0x03

The purpose of this case is to provide a read without wait (see Figure 7-7). Instead of
waiting for a bit to be set as in IOCtl 0x02, this IOCtl returns immediately with the
value of a port. Instead of Blocking, the driver calls the run-time library routine inp to
get the contents of the port and sends the data back to the application.

case 0x03: // read byte immed digio port
// verify caller owns this buffer area

if(VerifyAccess(
SELECTOROF(rp->s.I0Ct1.buffer), // selector
OFFSETOF(rp->s.10Ct1.buffer), // offset
1, // 1 byte

Figure 7-7. IOCtl 0x03. (Continued)

Chapter 7. A Simple OS/2 Physical Device Driver 103

0)) // read only
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

input_char = inp(DIGIO_INPUT); // get data

if(MoveBytes ((FARPOINTER)&input_char,rp->s.10Ct1.buffer,1))
return(RPDONE | RPERR | ERROR_GEN_FAILURE);

return (RPDONE);

Figure 7-7. IOCtl 0x03.

READ And WRITE

The READ and WRITE sections are entered as the result of a DosRead or DosWrite
standard driver request from the application. The use of the standard read and write
requests in Figure 7-8 is shown as an example to contrast the differences of the stan-
dard READ and WRITE functions with the IOCtl read and write functions. The READ
section performs the exact same operation as the IOCtl function 0x03, read without
wait, and the WRITE section does the same for IOCtl function 0x01, write a byte.
Either call will perform the same operation. Instead of issuing an IOCtl request to
write a byte to a port, the application can issue a DosWrite with the byte to be written.
Instead of issuing an IOCt] function 0x03, the application can issue a DosRead.

The standard READ and WRITE sections are slightly different than their IOCtl coun-
terparts. First, the application’s buffer address in the Request Packet is the physical
address, not the virtual address, and second, OS/2 verifies and locks the buffer seg-
ment prior to calling the device driver. Since our data transfer routine requires virtual
pointers, the device driver calls the PhysToVirt DevHIp to convert the physical
address to a virtual address and the data is transferred.

104 Writing OS/2 2.1 Device Drivers in C

case RPREAD: // 0x04
rp->s.ReadWrite.count = 0; // in case we fail
input_char = inp(DIGIO_INPUT); // get data
if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,
1,0,&appl_ptr))
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

if (MoveBytes((FARPOINTER)&input_char,appl_ptr,1))
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

rp->s.ReadWrite.count = 1; // one byte read
return (RPDONE);

case RPWRITE: // 0x08
rp->s.ReadWrite.count = 0;

if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,
1,0,%appl_ptr)) ’
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

if (MoveBytes(appl_ptr, (FARPOINTER)&output_char,1))
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

outp (DIGIO_OUTPUT,output_char); // send byte

rp->s.ReadWrite.count = 1; // one byte written
return (RPDONE);

Figure 7-8. READ and WRITE section.

Chapter 7. A Simple OS/2 Physical Device Driver 105

Timer Handler

In CASE 0x02, the driver blocks waiting for a particular bit to be set before returning
to the caller. Other threads in the system will run only when the driver completes its
job and returns DONE to the kernel, or when the driver becomes Blocked. Recall ear-
lier that SetTimer was called to hook the OS/2 timer interrupt, and that access to the
timer handler was controlled by the variable ReadID. In CASE 0x02, the ReadID was
set to a ULONG cast of the Request Packet pointer. Since the ReadID is no longer
zero, each time that the timer handler (see Figure 7-9) is entered, the driver can do an
inp of the parallel port, “and” it to the bit mask, and if non-zero, run the Blocked driver
thread. The input port value is checked every tick of the OS/2 system clock, or every
31.25 milliseconds. If the bit is not set, the driver will block forever until a <cntl-c> or
<cntl-break> is detected, or the bit finally becomes set. If set, the driver clears the
timer handler entry flag, ReadlID. It then calls the Run DevHIp to UnBlock the driver
Strategy thread, which set the DONE status in the Request Packet and returns to the
0S/2 kernel.

timr_handler()
{

if (ReadID !=0) {
// read data from port
inbut_char‘ = inp(DIGIO_INPUT);// get data
if ((input_char && input_mask) !=0) {
Run (ReadID); '

ReadID=0L;
}

Figure 7-9. Timer handler.

CHAPTER 8
The Micro Channel Bus

he Micro Channel bus is found on most IBM PS/2 machines and on Micro

Channel machines supplied by other manufacturers such as Reply and NCR.

The Micro Channel bus provides increased speeds, interrupt sharing, full 32-
bit data path and increased noise immunity. Current specifications for Micro Channel
II provide for transfers at speeds of 160MB per second.

Micro Channel Adapter Cards

Micro Channel adapters have no interrupt or address jumpers. Information about the
adapter, such as interrupt level and memory-mapped address, is stored on the board
in a set of nonvolatile registers called the Programmable Option Select, or POS, regis-
ters. The information stored in the POS registers is either factory-set or configured by
a setup disk supplied by the manufacturer. On an IBM PS/2, this is usually done with
the IBM PS/2 Reference Diskette.

The POS registers are not directly accessible to a program, so the driver can’t get at
them by doing simple “IN” and “OUT” instructions. A special programmable switch
must be set to allow direct register access to the configuration program. The driver
must, however, get the contents of the POS registers in order to configure itself prop-
erly. Once the POS registers are “visible”, they can be accessed starting at I/0 port
address 0x100.

107

108 Writing 0OS/2 2.1 Device Drivers in C

Normally, the driver accesses the POS registers using the PS/2 Advanced BIOS, or
ABIOS, routines. ABIOS is a set of BIOS routines that are executable in the protect
mode. ABIOS routines provide a device-independent access to supported devices
through a logical ID, or LID. The driver obtains a LID from the ABIOS by a call to the
GetLIDEntry DevHlp routine. Once the driver has the LID, it can use the LID to
access the board registers.

The Micro Channel bus is unique in that the position of each adapter in the mother-
board or planar is important. Unlike the ISA bus where boards can be placed in any
slot, each slot in the Micro Channel machine is addressable. For this reason, calls to
the ABIOS routines to read the POS registers of a particular adapter must contain an
argument specifying the slot number of that adapter. Slot 0 is the planar, and the
remaining slots are numbered starting at 1. Some of the largest PS/2 models, such as
the IBM PS/2 Model 80, contain 8 slots.

Micro Channel Adapter ID

Each I/0 card has a unique ID number, assigned by the manufacturer. IBM reserves
IDs 8000-FFFF for its own use. These device ID numbers can be found in the first two
POS registers, 0 and 1. The low byte is in POS register 0, the high byte in POS regis-
ter 1. The rest of the POS register data is in POS registers 2-5. Thus POS register 0
can be read with an input from port address 0x100, and POS register 1 can be rea
from address 0x101. ‘

Beware of conflicting definitions. Since the card ID can’t be changed, the first avéil—
able POS register, which is actually POS register 2, is sometimes referred to as POS
register 0.

During driver INIT, it is a good idea to search the planar for a card with the correct ID
for the device driver before trying to initialize the driver. Once an adapter is found,
the POS registers of the adapter can be accessed. ABIOS requests must be formatted
into a special structure called an ABIOS Request Block. Refer to the IBM Personal
System/2 BIOS Interface Technical Reference for more detailed information on ABIOS
Request Blocks and the various types of ABIOS requests.

Since device drivers for the Micro Channel bus differ slightly from their ISA bus
counterparts, it is sometimes advantageous to write one device driver that will handle
both a Micro Channel and ISA version of a particular adapter. The driver can check to
see if the machine has a Micro Channel bus, and if so, read the required driver config-
uration information from the POS registers. If the machine has an ISA bus, the driver
can set hard-coded values for the driver configuration parameters, or can read them

Chapter 8. The Micro Channel Bus 109

from the DEVICE= statement in the CONFIG.SYS entry for the driver. Recall from
Chapter 6 that one of pointers sent in the INIT request packet is the address of the
parameters from the DEVICE= line in CONFIG.SYS. This allows the user with an ISA
bus system to enter a line such as “DEVICE=DRIVER.SYS 3E8 D8000” in the CON-
FIG.SYS file, where 3ES is the base port address and D8000 is the memory-mapped
adapter address. The driver can parse the parameters, convert them to numeric val-
ues, and use them in the driver as actual configuration parameters.

The code shown in Figure 81 shows how to determine whether the system has a
Micro Channel or ISA bus, and if Micro Channel, how to search the bus for a particu-
lar device ID and read its POS registers. If the system has an ISA bus, the parameters
are read from the DEVICE= line in CONFIG.SYS.

Note that the ABIOS command used to read the POS registers from the card is
READ_POS_REGS_CARD. This command specifies that the POS register contents be
read directly from the adapter. PS/2 computers keep a copy of the current adapter
configuration in NVRAM. When the system is powered up, the Power On Self Test
routine, or POST, checks the installed adapter IDs against the current NVRAM con-
figuration. If a difference is found, the POST issues an error message on the screen
directing the user to run the setup program.

Occasionally, a device driver may reprogram a Micro Channel adapter “on the fly”.
For example, assume the device driver had to perform Binary Synchronous (BiSync)
communications using a modem that could only dial using the High level Data Link
Control (HDLC) protocol. The IBM Multiprotocol Adapter, or MPA is an example of
an adapter that supports several modes of operation. It supports asynchronous,
BiSync and HDLC protocols, but its POS registers can only be configured for one type
of protocol at one time. The MPA adapter’s mode of operation is determined by the
POS register settings, which are normally be changed only with the PS/2 Reference
Diskette.

The device driver for this application rewrites the POS registers on the fly. The device
driver configures the adapter for normal BiSync operation and waits for a command to
dial a number. When a dial command is received, the driver saves the contents of the
MPA’s POS registers and writes the HDLC configuration data to the POS registers. It
initializes the HDLC controller, sends the dial information to the modem using the
HDLC protocol and waits for a connection. When the modem is connected, the device
driver rewrites the POS registers with the previously saved POS register data, initial-
izing it back to BiSync operation. The result? Two adapters for the price of one.

110 Writing OS/2 2.1 Device Drivers in C

// Ex.INIT section, combination ISA and MicroChannel bus driver

// This driver is loaded in the config.sys file with the DEVICE=
/] statement. For ISA configuration, the first parameter to the

/! “DEVICE=" is the base port address. The next parameter is the
// board base address. A1l numbers are in hex. For Micro Channel
// configuration, the board address and port address are read

// from the board POS regs.

//

PHYSADDR board_address; // base board address

USHORT port_address; // base port address

USHORT bus = 0; // default ISA bus

REQBLK ABIOS_r_blk; // ABIOS request block
LIDBLK ABIOS_1_blk; // ABIOS LID block

USHORT 1id_blk_size; // size of LID block

CARD card[MAX_NUM_SLOTS+11;// array for IDs and POS reg
CARD *pcard; // pointer to card array
USHORT matches = 0; // match flag for card ID
USHORT portl,port2; // temp variables for addr calc

char NoMatchMsg[]l = “ no match for DESIRED card ID found.\r\n”;
char MainMsgMCAL] = *“\r\n0S/2 Micro Channel (tm) Device

Driver installed.\r\n”;

char MainMsgl[] = “\r\n0S/2 ISA Device Driver installed.\r\n”:

// prototypes
int hex2bin(char);

USHORT get_POS();
UCHAR get_pos_data();

* Device Driver Strategy Section Here *

%nt hex2bin(char c)
{
if(c < 0x3a)

Figure 8-1. ISA and Micro Channel INIT section. (Continued)

Chapter 8. The Micro Channel Bus

return (c - 48);
else
return ((¢ & Oxdf) - 55);
}

USHORT get_POS(USHORT sTot_num,USHORT far *card_ID,
UCHAR far *pos_regs)

{

USHORT rc, i, 1id;

// get a POS LID

if (GetLIDEntry(0x10, 0, 1, &lid))
return (1);

// Get the size of the LID request block

ABIOS_1_blk.f_parms.req blk_len = sizeof(struct 1id_block_def);
ABIOS_1_blk.f_parms.LID = 1id;

ABIOS_1_blk.f_parms.unit = 0;;

ABIOS_1_blk.f_parms.function = GET_LID_BLOCK_SIZE;
ABIOS_1_blk.f_parms.ret_code = 0x5ab5a;
ABIOS_1_blk.f_parms.time_out = 0;

// make the actual ABIOS call

if (ABIOSCal1(1id,0,(void far *)&ABIOS_1_blk))
return (1);

19d_blk_size = ABIOS_1_blk.s_parms.blk_size;
// Fill POS regs with 0 and card ID with FF

*card_ID = OxFFFF;
for (i=0; i<NUM_POS_BYTES; i++) { pos_regs[i] = 0x00; };

// Get the POS registers and card ID for the commanded slot

ABIOS_r_blk.f_parms.req_blk_len = 1id_blk size;
ABIOS_r_blk.f_parms.LID = 1id;

Figure 8-1. ISA and Micro Channel INIT section. (Continued)

112 Writing OS/2 2.1 Device Drivers in C

ABIOS_r_bTk.f_parms.unit = 0;;
ABIOS_r_blk.f_parms.function
ABIOS_r_blk.f_parms.ret_code
ABIOS_r_blk.f_parms.time_out

READ_POS_REGS_CARD;
Oxbaba;
0;

I

ABIOS_r_blk.s_parms.slot_num = (UCHAR)s1ot_num & OxOF;
ABIOS_r_blk.s_parms.pos_buf = (void far *)pos_regs;
ABIOS_r_blk.s_parms.card_ID = OxFFFF;

I

if (ABIOSCall(11d,0,(void far *)&ABIOS_r blk))
rc =1;
else { :
*card_ID = ABIOS_r_blk.s_parms.card_ID;:// fill in ID
rc=20;
}

// give back the LID

FreeLIDEntry(1id);
return(rc);

}

UCHAR get_pos_data (int slot, int reg)
{

UCHAR pos;
CARD *cptr;
cptr = &card[slot-11; // set ptr to beg of array
if (reg = 0) // card ID
pos = LOUSHORT(cptr->card_ID);
else
if (reg =1)
pos = HIUSHORT(cptr->card_ID);
else

pos = cptr->pos_regslreg-2]; // POS data register
return (pos);

Figure 8-1. ISA and Micro Channel INIT section. (Continued)

Chapter 8. The Micro Channel Bus 113

// Device Initialization Routine

int Init(PREQPACKET rp)
{
USHORT 1id;

register char far *p;
// store DevHlp entry point
DevHlp = rp->s.Init.DevHIp; // save DevHlp entry point

if (1(GetLIDEntry(0x10, 0, 1, &1id))){ // get LID for POS
FreelLIDEntry(1id); '

// Micro Channel (tm) setup section
bus = 1; // Micro Channel bus
// Get the POS data and card ID for each of 8 slots

for (i=0;1 <= MAX_NUM_SLOTS; i++)
get_POS(i+1, (FARPOINTER)&card[i].card_ID,
(FARPOINTER)card[i].pos_regs);

matches = 0;
for (i=0, pcard = card; i <= MAX_NUM_SLOTS; i++, pcard++){
if (pcard->card_ID = DESIRED_ID) {
matches = 1;
break;
},
}

if (matches = 0) { // no matches found
DosPutMessage(1, 8, devhdr.DHname);
DosPutMessage(1,strlen(NoMatchMsg),NoMatchMsg) ;
rp->s.Initkxit.finalCS = (OFF) O;
rp->s.IniteExit.finalDS = (OFF) O;
return (RPDONE | RPERR | ERROR_BAD_COMMAND);

Figure 8-1. ISA and Micro Channel INIT section. (Continued)

114 Writing OS/2 2.1 Device Drivers in C

}
// calculate the board address from the POS regs

board_address = ((unsigned long) get_pos_data(i+1, 4)
<<'16) | ((unsigned long)(get_pos_data(i+l, 3) & 1) << 15):

// calculate the port address from the POS regs data

portl = (get_pos_data(i+l, 3) << 8) & 0xf800;
port2 = (get_pos_data(i+l, 2) << 3) & 0x07e0;
port_address = (portl | port2);

}
else

{
// ISA bus setup
bus = 0; // ISA bus
// get parameters, port addr and base mem addr

for (p = rp->s.Init.args; *p && *p I= * +Hp);

for (; *p =" *; +p); // skip blanks after name
if (*p)
{
port_address = 0;
board_address=0; // i/o0 port address
for (; *p I=* *; +p) // get port address
port_address = (port_address << 4) + (hex2bin(*p));
for (; *p =" *; +p); // skip blanks after address
for (; *p !="\0’; +p) // get board address
board_address = (board_address << 4) + (hex2bin(*p));
}
}
if (bus)
DosPutMessage(1,strien(MainMsgMCA) ,MainMsgMCA) ;
else

DosPutMessage(1,strlen(MainMsg),MainMsg);

Figure 8-1. ISA and Micro Channel INIT section. (Continued)

Chapter 8. The Micro Channel Bus 115

// send back our end values to o0s/2

if (SegLimit(HIUSHORT((void far *) Init),
&rp->s.InitExit.finalCs) ||
SegLimit(HIUSHORT((void far *) MainMsg),
&rp->s.InitExit.finalDS))
Abort();

return (RPDONE);

Figure 8-1. ISA and Micro Channel INIT section.

Accessing the POS Register During Debug

While debugging an 0S/2 Micro Channel device driver, it is sometimes necessary to
access the POS registers directly without using the ABIOS routines. Under 0S/2, the
driver should always use the ABIOS routines to access the POS registers, as they seri-
alize access to the adapter. During debug, however, the POS register contents can be
checked by using simple IN and OUT instruction from the kernel debugger.

The -CD SETUP line, which enables the POS registers, is controlled by a register at
1/0 port address 96h. The POS registers for a particular card are enabled by perform-
ing an “OUT 96h,slot+7”, where the slot is 0 for the motherboard and 1-8 for one of up
to eight slots. Once a particular slot is enabled, the POS registers are visible with sim-
ple IN instructions. The POS registers are at the base address of 100h. POS register 0,
which is the least significant bit of the adapter ID, can be read by an IN 100 command
issued by the kernel debugger (see Chapter 13). POS register 1, the most significant
byte of the adapter ID, can be found at address 101h. Other POS register data, which
might contain such things as the adapter interrupt level, DMA arbitration level, or
memory map, begins at address 102h. Only one slot can be enabled at a time. The
-CD SETUP line is disabled by performing an OUT 96h,0.

116 Writing OS/2 2.1 Device Drivers in C

Micro Channel Interrupts

Interrupts on ISA bus machines are edge-triggered and cannot be shared. Once an
ISA bus adapter registers for a particular interrupt level, another driver cannot gain
access to the same interrupt level. Device drivers that run on ISA bus machines must
own their interrupt or interrupts exclusively, which severely limits the extendibility of
ISA bus systems. With over half of the interrupts already assigned to system compo-
nents such as the timer, hard disk, and floppy disk, not many interrupts are left over
for other adapters.

Under 0S/2, the Micro Channel bus supports interrupt sharing of up to four adapters
on the same interrupt level. Micro Channel device drivers can register for an interrupt
level even if another device driver had previously signed up for it. This requires some
minor changes in device driver design for the two different bus architectures. In a
Micro Channel device driver, when registering the interrupt level with the SetIRQ
call, the nonexclusive option is used so the interrupt may be shared. In an ISA bus
device driver, the exclusive option is used because interrupts cannot be shared. In
addition, the interrupt handler needs to be modified slightly to claim or “pass on” the
interrupt to the next interrupt handler. A flowchart showing the differences between
an ISA bus interrupt handler and a Micro Channel interrupt handler is shown in

Figure 8-2.
INTERRUPT INTERRUPT
PROCESS
OUR SET INTERRUPT
CARRY —+<:::::)
INTERRUPT? A
CLEAR
CARRY
FLAG
PROCESS
INTERRUPT
ISSUE
EOI
CLEAR
CARRY
FLAG
ISSUE
EOI

GO

Figure 8-2. Micro Channel vs. ISA bus interrupt handler.

Chapter 8. The Micro Channel Bus 117

Since any one the four adapters on a single interrupt level can cause an interrupt, the
device driver’s interrupt handler must have a way to tell the kernel that it accepts or
denies responsibility for the interrupt. If the interrupt does not belong to this particu-
lar interrupt handler’s device, the interrupt handler must set the carry flag (STC), and
return to the kernel. If the interrupt belongs to the particular device, the interrupt
handler must claim the interrupt by clearing the carry flag before returning to the ker-
nel. If the kernel finds the carry flag set, it will call each of the interrupt handlers that
have registered for that particular interrupt until one of the handlers claims the inter-
rupt by clearing the carry flag. If the interrupt is not claimed, 0S/2 will continue to
call the registered interrupt handlers until one of them claims the interrupt by clear-
ing the carry flag.

CHAPTER 9
0S/2 2.1 Virtual Device Drivers

ne of the shortcomings of 0S/2 1.x was its inability to run DOS applications.

Many of these DOS applications were written for the IBM PC and IBM XT

computers, which were, by today’s standards, fairly slow machines. To pro-
vide acceptable performance, these programs frequently accessed the system hard-
ware and peripherals directly without using the BIOS or DOS system services. For
example, instead of writing to the display with a DOS int system call, most programs
wrote directly to video memory. Game programs frequently used processor-speed-
dependent timing loops for making sounds or pausing between messages and
screens. Other DOS programs reprogrammed the system timer circuit to generate
voice-like sounds from the computer’s speaker.

Figure 9-1. 0S/2 2.1 VDMs. (Courtesy of
International Business Machines Corporation.)
119

120 Writing OS/2 2.1 Device Drivers in C

DOS programs can write to any memory location without checking to see if that loca-
tion is valid or being used by another program. A programming error under DOS will,
at the worst, cause the system to crash and have to be rebooted. This is not generally
a problem, as only one program can be running at one time. With 0S/2, however, a
system crash could represent a major problem, as many programs could be running
at the time of the crash. The result could be a loss of data, corrupt files, and a host of
other problems.

To accommodate DOS applications, 0S/2 1.x used a real mode session, referred to as
the compatibility box, to run well-behaved DOS applications. Well-behaved DOS appli-
cations are those that do not directly manipulate the system hardware or devices, but
use DOS system calls to perform their required operations. 0S/2 1.x allowed only one
real mode session to be active at one time. When the DOS program was running, the
processor was in real mode, so a defective DOS application could still bring down the
entire system. When the DOS session was switched to the background, it was frozen
in its current state to prevent it from bringing down the system while an OS/2 applica-
tion was running.

The Virtual DOS Machine

The Intel 80386 and 80486 processors have a built-in feature that allows real mode
programs to run in their own one megabyte address space, isolated from the rest of
the programs running on the system. This special mode is called the Virtual 8086 or
V86 mode, and is used by 0S/2 2.1 to run DOS applications in their own DOS Session.
In OS/2 jargon, a DOS session in the V86 mode of the processor is called a Virtual
DOS Machine, or VDM. OS/2 can support a large number of DOS VDMs, and the
capability to do that is referred to as Multiple Virtual DOS Machines, or MVDMs.

DOS programs run in their own VDM without knowledge of other programs running
in the system. The V86 mode is a protected mode of operation, and it will terminate
the DOS session if it attempts a memory reference outside of its own one megabyte
space. In the V86 mode, an errant DOS application can trash its own DOS session, but
cannot bring down the rest of the system.

DOS programs that write directly to system hardware or devices are permitted to run
in a DOS session. The DOS application does not have to be modified, but can run “out
of the box.” When the DOS program attempts to write directly to the system hard-
ware or a system device, the operation is trapped by the kernel and routed to a Virtual
Device Driver, or VDD. The VDD is a special driver that emulates the functions of a
particular hardware device, such as the system timer, interrupt controller or commu-
nications port. The DOS application sees the VDD as the actual device, but direct
access to the device is actually performed through a Physical Device Driver (PDD).

Chapter 9. 0S/2 2.1 Virtual Device Drivers 121

The PDD performs the actual I/0 and passes the results to the VDD, which in turn
sends the results back to the DOS application. 0S/2 2.1 is supplied with a set of
VDDs that virtualize the standard system device services such a DMA, timer, COM
ports, video, and PIC.

When VDDs are loaded at boot time, the VDD claims ownership of the system
resources it is responsible for while running in a VDM. The VDD can hook all I/O
associated with a particular port or the interrupts associated with a particular IRQ. For
example, the virtual COM driver, VCOM.SYS, claims ownership of I/O address 0x3{8,
which is the address of COM1. A DOS program that attempts to perform direct I/O to
0x3f8 will be trapped by the COM VDD. The VDD must emulate the actual hardware
device, and make the DOS application believe its talking directly to the device.

If a DOS program attempts to access an I/O port which has not been claimed by a
VDD, it is allowed to perform that I/O directly without going through a VDD. The
DOS application can turn interrupts off, although OS/2 will turn the interrupts back
on if the DOS program leaves them off too long.

If an adapter can be shared by a protect mode application and a DOS application, a
VDD should always be used to perform DOS 1/0. Before performing I/0 to the
adapter, the VDD should first ask the PDD for permission to do so. The PDD and
VDD should serialize access to the common adapter.

Although VDMs can run DOS applications that access hardware directly, there are
some limitations. Existing DOS block device drivers for disk and tape cannot be used
in the standard VDM. For character drivers, only those that perform I/0 by polling
can be used. Standard DOS drivers for the clock and mouse are not permitted to be
used. DOS INT 21 requests are formatted into a standard OS/2 Request Packets and
sent to the PDD for disposition.

VDM, in which a specific version of DOS has been booted, can utilize existing DOS
block device drivers. The block device should not be accessible to protect mode appli-
cations, so it must be dedicated to DOS operation.

Since versions of DOS differ in functionality, a DOS Setting is provided to specify
which version of DOS should be booted instead of the built-in DOS emulator.

VDDs are loaded at system boot time, after any PDDs have been loaded and before
the PM shell is started. The system first loads the base VDDs which are shared by
multiple DOS sessions, such as the video virtual device driver, and then loads the
installable VDDs from the DEVICE= line in CONFIG.SYS. Global code and data

122 Writing OS/2 2.1 Device Drivers in C

objects are loaded into low system memory to allow the PDD to call the VDD at inter-
rupt time, regardless of the current process context. After the VDD is loaded, the
VDD entry point is called to see if the load was performed without error. If so, the
VDD returns TRUE, and if not, FALSE.

Virtual Device Drivers use a set of C callable helper routines, called the Virtual Device
Helper (VDH) to perform their operations. Unlike the PDD DevHIps, which are regis-
ter-based, the VDH routines are C callable, and exist in a DLL. They use the 32-bit C
calling convention.

VDD Architecture

The VDD is nothing more than a 32-bit DLL, which may contain the following:
* initialization code

* initialization data

¢ swappable global code

The VDD must have at least one object of the following types:

® swappable global data

¢ swappable instance data

resident global code
¢ resident global data
¢ resident instance data

A VDD that does not communicate with a PDD does not need a resident object sec-
tion. Run-time memory can be private or shared. The typical VDD has a global code
object, global data object, and a private instance data object.

VDDs are loaded by the DOS emulation component after all of the PDDs have been
loaded. When the VDD is loaded, the VDD entry point is called by 0S/2 to initialize
the VDD. The entry point of the DLL is defined by writing a small assembly language
program, which calls the DLL initialization entry point. The last statement in the
assembly language program should be an END statement, with the parameter to the
END statement being the name of the entry point. If the name of the VDD initializa-
tion entry point is, for example, VDDInit, the last statement in the assembly language
routine should be END VDDInit. The IBM C Set/2 Compiler now supports the prag-
ma entry keyword which is used to specify the initialization entry point for VDDs writ-
tenin C.

Chapter 9. 0S/2 2.1 Virtual Device Drivers 123

After the VDD is loaded, the VDD entry point is called to see if the load was per-
formed without error. If it was, the VDD returns TRUE, if not, the VDD returns
FALSE.

VDD Initialization

The VDD performs initialization in a manner similar to the PDD. It verifies the pres-
ence of the hardware device, establishes contact with the corresponding PDD,
reserves regions of linear memory containing device ROM and/or RAM, saves the
current state of the device, and finally, sets hooks for DOS session events, such as
session create, session destroy, and foreground/background switch requests. VDDs
cannot make Ring 3 calls during initialization, and must use the Virtual Device Helper
routines.

When a DOS session is started, the DOS Session Manager calls the VDD, allowing it
to perform a per-DOS session initialization. The VDD allocates memory regions and
passes control to the DOS emulation kernel, which loads the DOS shell, usually
COMMAND.COM. The DOS emulation kernel then calls the VDD session creation
entry points, allowing the VDD to set up aliases to physical memory, and optionally to
allocate a block of memory between 256K and RMSIZE for a LIM 4.0 alias window.

When a DOS session is started, the DOS Session Manager calls each VDD that has
registered a DOS session create hook. This allows VDDs to perform a per-DOS-ses-
sion initialization. Control is then passed to the DOS emulation kernel, which loads
the DOS shell, usually COMMAND.COM. At DOS session creation, the VDD may
also:

e initialize the virtual device state.

e initialize the ROM BIOS state.

* map memory.

¢ hook I/O ports.

¢ enable/disable I/O port trapping.
¢ hook the software interrupts.

¢ allocate per-DOS session memory.

The 0S/2 Session Manager notifies the DOS Session Manager if the session is being
switched. The DOS Session Manager notifies any VDD that has registered to get this
event via the VDHInstallUserHook VDH call. Depending on the VDD type, different

124 Writing OS/2 2.1 Device Drivers in C

actions will be taken. In the case of the virtual video device driver, VVIDEO, the dri-
ver will appropriately disable or enable I/O port trapping for the video board and re-
map the physical video memory to logical memory. The video will continue to be
updated, but in logical video memory. When the session is switched back to the fore-
ground, the logical memory is written to the physical video memory to update the dis-
play.

When the DOS session is exited, the VDD must perform any clean-up that is neces-
sary. This usually includes releasing any allocated memory and restoring the state of
the device. The VDD termination entry points are called by the DOS Session
Manager at DOS program termination time.

0S/2 2.1 Virtual Device Drivers may only call 0S/2 2.1 Physical Device Drivers that
contain the “new level” bits. Older PDDs will return an error if called by a VDD. When a
new level PDD receives an IOCt], it must check the InfoSeg to determine whether it
was called by a DOS session. If it was, it assumes that any pointers passed in IOCtl
packets are in segment:offset format, computes the linear address directly (segment <<
4 + offset) and then uses the LinToGDTSelector to make a virtual address.

DOS Settings

0S/2 2.1 allows users to customize the configuration of a DOS session. Using the DOS
Settings, the user can adjust certain DOS session parameters via the Desktop
Manager’s Settings menu for the DOS session. Device drivers must call the
VDHRegisterProperty routine to register their settings. A VDD can call
VDHQueryProperty at DOS session creation to get the value of the current DOS set-
tings. The user can also change some of the settings while the DOS session is running,
via a settings dialog box. The standard DOS settings are shown in Table 9-1.

Table 9-1. DOS Settings

Property Type Operation

BREAK BOOLEAN | Controls <cntl-c> checking in the INT 21 path
FCBS INTEGER Controls use of FCBs by errant DOS applications
DEVICE STRING Specifies a DOS character driver

SHELL STRING Specifies the command interpreter

RMSIZE INTEGER Specifies size of DOS memory arena

Chapter 9. 0S/2 2.1 Virtual Device Drivers 125

DOS Settings Registration

At initialization time, the Virtual Device Driver must register any settings that it will
need. This information is stored in the kernel, and used to support all property-related
operations (see Table 9-2).

Table 9-2. DOS Settings Information

Name The property name presented to the user. The settings
should have common prefixes so that they appear sorted
together.

Ordinal The ordinal of the function independent of the name
string.

Type The property type. Boolean, integer, enumeration, and
single and multiple line strings are supported.

Flags Flags control aspects of the property, i.e., whether or not
they can be changed while the DOS session is running.

Default Value The value used if the user does not supply one.

Validation Information

This information allows the user interface to validate prop-
erty values before sending them to the device driver.

Function

'| This function is used for validating string settings, and for

notifying the VDD when the user has changed a property
for a running DOS session.

VDD to PDD Communications

Since many VDDs virtualize or “mimic” hardware that generates interrupts, these dri-
vers will generally have to interact with a PDD. The VDD uses the VDHOpenPDD
VDH call to establish communication between the Virtual Device Driver and the
Physical Device Driver. The two drivers exchange entry points, and are subsequently
free to call each other using any type of protocol, including register-based entry
points. Both drivers should also be aware of the shutdown protocol, in case the VDD

has to shut down.

126 Writing OS/2 2.1 Device Drivers in C

VDDs can call PDDs via the 0S/2 file system by using the VDHOpen, VDHWrite,
VDHIOCH], and VDHClose function calls. Using this method, a VDD can communi-
cate with an existing PDD without requiring modification of the PDD.

VDDs support Dynamic Linking, and thus can pass data back and forth to other VDDs
via dynamic links. VDDs can also communicate with each other via the VDHOpenVDD,
VDHRequestVDD, and VDHCloseVDD Virtual Device Helper routines.

The Virtual COM Device Driver

The Virtual COM Device Driver for 0S/2 2.1, VCOM.SYS, allows for the emulation and
virtualization of the 8250/16450 UART. It provides support for two virtual serial ports on
ISA bus machines, and four ports on PS/2 and PS/2-compatible systems. VCOM.SYS
does not support the 16550 UART. Due to the added overhead of context switching and
system operation, the Virtual COM Device Driver only guarantees error-free operation
at 240 characters per second, or about 2400 bits per second. DOS applications that
access the I/0 hardware directly or through BIOS calls are supported.

The Virtual COM Device Driver “looks” like the 8250 UART, including registers,
modem lines, and interrupts. The DOS application sees the Virtual COM Device
Driver as the actual device. The Virtual COM Device Driver contains the standard set
of 8250/16450 port registers for access by the DOS application. They are:

* Receive/Transmit Buffer and Divisor Latch

e Interrupt Enable and Divisor Latch

¢ Interrupt Identification

¢ Line Control

® Modem Control

e Line Status

¢ Modem Status

® Scratch

Interrupts supported by the Virtual COM Device Driver are:

Line Status Interrupt
Receive Data Available Interrupt

¢ Transmitter Empty Interrupt
Modem Status Interrupt

Chapter 9. 0S/2 2.1 Virtual Device Drivers 127

Refer to Table 9-3 for a list of 8250/16450 registers supported by the Virtual COM
Device Driver.

Table 9-3. Virtualized 8250/16450 Registers

Name R/W Address Purpose

RBR R 03F8h Receive Buffer Register

THR w 03F8h Transmitter Holding Register
DLL R/W 03F8h Low Divisor Latch

DLM R/W 03F%h High Divisor Latch

IER R/W 03F%h Interrupt Enable Register

IIR R 03FAh Interrupt Identification Register
LCR R/W 03FBh Line Control Register

MCR R/W 03FCh Modem Control Register
LSR R 03FDh Line Status Register

MSR R 03FEh Modem Status Register

SCR R/W 03FFh Scratchpad Register

Adapters with serial ports must conform to this register configuration. For UARTs
with additional registers, I/0 to those registers will be ignored by the Virtual COM
Device Driver. All register bits are compatible with the standard bit assignments of
the 8250/16450 UART.

Since interrupts are simulated, there is no physical PIC addressed by the Virtual

COM Device Driver. Rather, a simulated PIC, VPIC, is installed to arbitrate interrupt

priorities and to provide an End-Of-Interrupt port for those applications that may issue
~an EOI directly to the PIC.

128 Writing OS/2 2.1 Device Drivers in C

The Virtual COM Device Driver also supports access to the serial device via INT 14h
calls. The Virtual COM Device driver emulates the BIOS call, returning the same
information as though the BIOS routine was actually called.

When a character is received at the actual hardware, an interrupt is generated and the
PDD gets the character from the UART receive register. The PDD then sends the
character to the VDD for the waiting DOS application. When the DOS application
sends a character to a port, the Virtual 8086 Emulator traps the operation and calls the
VDD. The VDD, in turn, calls the PDD to output the character to the actual device.
Simulated interrupts, like their physical counterparts, are not recognized if the inter-
rupt system is disabled, and are only emulated if the interrupt system is on. To maxi-
mize performance, the PDD does not call the VDD at the receipt of every interrupt.
Rather, it receives the information that PDD device driver events have taken place,
and determines whether to continue simulating interrupts or take other action. For
more information on the Virtual COM Device Driver, please refer to the 0S/2 2.1
Virtual Device Driver Reference.

The Virtual Timer Device Driver

The Virtual Timer Device driver provides support for DOS applications by providing
the following services:

¢ Virtualization of timer ports to allow reprogramming of the interrupt rate and speaker
tone.

¢ Distribution of timer ticks to all DOS sessions.
¢ Maintenance of the timer tick count in the ROM BIOS data area.
¢ Serialization of timer 0 and timer 2 across multiple DOS sessions.

¢ Arbitration of the ownership of timer 0 and timer 2 between the VDD and the Clock
PDD.

In DOS, timer 0 is used as the system timer, and set to interrupt every 18.2 millisec-
onds. This timer is used to update the time of day clock and time-out the floppy disk
drive motor on-off functions. DOS programs that need a higher tick resolution fre-
quently program timer 0 to a higher frequency. The DOS tick handler intercepts the
timer ticks and, at specified intervals, calls the system clock routine so that the time-
of-day clock value is not affected. Timer 1 is the memory refresh timer and cannot be
modified. Timer 2 is the speaker tone generator, and can be programmed to generate
different sounds and tones. Timer 2 has two control bits, one to enable/ disable the
timer, and one to route the output to the speaker.

Chapter 9. 0S/2 2.1 Virtual Device Drivers 129

Timer 0 ticks can be lost due to system loading, so the Virtual Timer Device Driver
continually compares the actual elapsed time with the per-session DOS timer and
updates it if necessary to make up for lost ticks. Every second, all of the currently run-
ning DOS sessions have their times re-synchronized.

The hardware of timer 2 is virtualized, allowing it to be reprogrammed. The registers
appear to the DOS applications exactly the same as the 8254 CTC (see Table 9-4).

Table 9-4. Virtualized Timer Registers

Description Port

Count word 0 40h

Count word 1 41h
Count word 2 42h
Count word 3 43h

See Table 9-5 for a list of timer registers supported by the Virtual Timer Device
Driver.

Table 9-5. Supported Virtualized Timer Registers
Count word 0 read virtualized
Countword 0 | write virtualized
Countword 1 | read virtualized
Count word 1 write ignored
Count word 2 | read virtualized
Count word 2 write virtualized
Control word read virtualized
Control word write virtualized

130 Writing 0S/2 2.1 Device Drivers in C

The Virtual Disk Device Driver

The VDM supplies DOS applications with a DOS-compatible disk interface via, the
INT 13h DOS interrupt. The Virtual Disk Device Driver, VDSK, simulates ROM BIOS
for disk access. A list of supported INT 13h functions can be found in Table 9-6.

Table 9-6. Virtualized INT 13 Functions

AH Function

00h Reset Diskette System

01h Status of Disk System

02h Read Sectors Into Memory (floppy and fixed disk)
03h Write Sectors From Memory (floppy disk)

04h Verify Sectors (floppy and fixed disk)

05h Format Track (floppy)

08h Get Current Drive Parameters (floppy and fixed disk)
15h Get Disk Type (floppy and fixed disk)

16h Change of Disk Status (floppy)

17h Set Disk Type (floppy)

18h Set Media Type for Format (floppy)

When a DOS application issues an INT 13h request, the request is trapped by the
Virtual Disk Device Driver, transformed into a Request Packet, and sent to the disk
PDD for processing. If the disk is currently busy, the PDD queues up the request
until it can process it. When the request can be completed, the PDD notifies the
Virtual Disk Device Driver, which unblocks the DOS session.

Chapter 9. 0S/2 2.1 Virtual Device Drivers 131

The disk VDD does not support direct register access to and from the disk controller.
Any attempts to perform direct I/0 are trapped and ignored. Some types of copy pro-
tection algorithms that are dependent on disk timing may fail.

Floppy disk access is allowed directly to the floppy disk controller hardware, but only
after the application gains exclusive access to the floppy disk drive. When a DOS
application gains access to the floppy disk, it disables all port trapping and allows
direct port access to the floppy controller (see Table 9-7).

Table 9-7. Virtualized Floppy Disk Ports
Port Function

3fOh Status Register A (PS/2 only)

3flh , Status Register B (PS/2 only)

3f2h Digital Output Register

3f7h Digital Input Register

3f7h Configuration Register

3f4h Controller Status Register

3f5h Controller Data Register

‘While the DOS session has access to the floppy disk, all interrupts from the floppy disk
controller are reflected to the owning DOS application. Even when the DOS application
has finished with the floppy disk, the ownership of the floppy disk will remain with the
original DOS application until another application requests ownership.

132 Writing OS/2 2.1 Device Drivers in C

The Virtual Keyboard Device Driver

The Virtual Keyboard Device Driver allows DOS applications that access to keyboard
to run without a change in the VDM. The Virtual Keyboard Device Driver allows
access to the keyboard, using the following methods:

e INT 21h. DOS applications can access the keyboard using the CON device name, or
get input from the stdin device. '

¢ BIOS access via the INT 16h function.
¢ 1/0 port access, by reading and writing I/0 ports 60h and 64h.

The Virtual Keyboard Device Driver must also handle the aspects of translation and
code page tables, performance, and idle detection for those applications that poll the
keyboard. When the physical keyboard driver receives an interrupt, it sends that
interrupt to the Virtual Keyboard Device Driver, which in turn notifies the Virtual
Programmable Interrupt Controller, or VPIC. The Virtual Keyboard Device Driver
must supply the key scan codes for those applications that decipher the scan codes
themselves. Setting the repeat rate is not supported.

DOS applications frequently wait for a keyboard key to be pressed in a polling loop.
The Virtual Keyboard Device Driver detects an idle loop, and adjusts the actual
polling time as necessary. The driver increases the sleep between each poll, allowing
other programs in the system to run. When a key is hit, the time between polls is
reset to a short period, then increased as the inactivity increases. The Virtual
Keyboard Device Driver uses the VDHWaitVRR VDH function to sleep in-between
polls, and the DOS session is immediately woken up if a key is pressed.

Normally, IRQ1 interrupts are channeled to the INT 09h interrupt service routine,
which is usually a BIOS routine that performs key translation. The Virtual Keyboard
Device Driver emulates the INT 09h BIOS routine, calling the INT 15h handler for
scan code monitoring, handling <cntl-break> (INT 18h), and Print Screen (INT 05h)
processing.

Chapter 9. 0S/2 2.1 Virtual Device Drivers 133

The Virtual Mouse Device Driver

DOS applications that require a mouse are supported via the INT 33h interface, which
performs the following functions:

¢ position and button tracking

¢ position and button event notification
¢ selectable pixel and mickey mappings
¢ video mode tracking

¢ pointer location and shape

¢ emulation of a light pen

Operation of the virtual mouse driver is similar to other virtual drivers. The mouse
physical device driver is always aware of which session owns the mouse. When a full-
screen DOS session owns the mouse, the mouse PDD notifies the virtual device dri-
ver of mouse events. If the DOS session is a windowed DOS session, the mouse PDD
routes the mouse events to the Presentation Manager, which routes them to the virtu-
al mouse device driver. The user may optionally set the exclusive mouse access on in
the DOS Settings for the DOS windowed session. If so, events from the mouse PDD
are sent directly to the mouse VDD, bypassing the Presentation Manager. This prop-
erty is used for applications that track and draw their own mouse pointer.

The Virtual Line Printer Device Driver

The Virtual Line Printer Device Driver, VLPT, allows DOS applications access to the
parallel printer port via INT 17h BIOS calls. It also supports the BIOS INT 05h print
screen call. The VLPT supports up to three parallel controllers, and virtualizes the
data, status, control, and reserved ports of the printer controller. The VLPT also pro-
vides a direct access mode for DOS programs that control the parallel port hardware
directly. When the VLPT recognizes that a DOS application wishes to perform direct
1/0 to the parallel port, it requests exclusive rights to the port from the parallel port
PDD.

If another application tries to use the printer after the DOS application has gained
exclusive access to it, the access will fail. Print jobs from the spooler will continue to
be queued up until the requested parallel port becomes free.

134 Writing OS/2 2.1 Device Drivers in C

The VLPT continues to handle the traps from the DOS application. The VLPT also
traps the IRQ enable bit from a DOS application attempting to enable the parallel port
IRQ. Interrupt transfers are not supported for the parallel port, so the VLPT contains
no interrupt simulation routines, The VLPT also detects when a DOS application tries
to change the direction bit, which is illegal on non-PS/2 systems.

The Virtual Video Device Driver

The Virtual Video Device Driver, or VVIDEO, provides display adapter support for

DOS sessions. The VVIDEO driver communicates with the DOS Session Window

Manager, ensuring that the DOS window stays relatively synchronized with the DOS

application. Some parts of the DOS session environment have been designed especial-
" ly for the VVIDEO driver. They are:

¢ foreground/background notification hooks.
¢ freeze/thaw services.
¢ code page and title change notification hooks.

The VVIDEO driver is a base driver, loaded at boot time from CONFIG.SYS. If the
VVIDEO driver cannot be loaded at boot time, no DOS sessions will be able to be
started. The standard VVIDEO drivers support CGA, EGA, VGA, XGA, and 8514/A
adapters, and monochrome adapters as secondary display adapters. All adapter mem-
ory sizes are supported up to 256KB, and more than one VVIDEO driver can be
loaded for the same adapter.

The DOS Window Manager starts a thread for communication to the VVIDEO driver,
which calls the VVIDEO driver and waits for a video event. The VVIDEO driver sup-
ports both full screen and windowed operation, and can switch back and forth
between full screen and windowed, and back. The VVIDEO drivers install hooks to
trap all port accesses, maps physical screen memory to logical screen memory, and
reports video events to the DOS Session Window Manager. Changes that are trapped
by the DOS Session Window Manager, whether the DOS application is in focus or
not, are:

¢ mode changes.
¢ palette changes.

¢ achange in the cursor position.

Chapter 9. 0S/2 2.1 Virtual Device Drivers 135

¢ changing the session title.
¢ screen switch video memory allocation errors.
¢ scrolling and other positioning events.

The DOS Session Window Manager can query the state of its DOS session video for
the following:

¢ the current display mode.

¢ the current palette.

¢ the cursor position.

¢ the contents of video memory.

The DOS Session Window Manager can also issue the following directives:

¢ wait for video events.
e cancel wait for video events.

The VVIDEO driver opens the Virtual Mouse Device Driver, and provides it with the
following entry points:

¢ show mouse pointer.

¢ hide mouse pointer.

¢ define text mouse pointer.

¢ define graphics mouse pointer.
e setvideo page.

¢ set for light pen emulation.

The VVIDEO driver calls the Virtual Mouse Device Driver whenever the DOS session
changes video modes.

VVIDEO drivers can share the same video adapter by accepting to be temporarily
shut down while another VVIDEO driver uses the adapter, and restarted when control
of the adapter is released back to the original owner.

The VVIDEO driver supports the DOS INT 10h to support drawing operations and
the simultaneous use of the mouse pointer. The VVIDEO also supports INT 2Fh ser-
vices, which notify an application that it is about to be switched. The 8514/A and XGA
adapters can run only in the full screen mode of the DOS session, and will immediate-
ly be frozen if it attempts to write directly to the 8514/A or XGA adapter.

136 Writing OS/2 2.1 Device Drivers in C

Virtual DevHIp Services By Category

Virtual DevHIp functions provide virtual device drivers with access to various services
provided by the operating system and by other virtual device drivers. The Virtual
DevHIp services are listed alphabetically, with a short explanation of their purpose. A
complete reference to the Virtual Device Helper routines, including details on para-
meter use, can be found in the IBM 0S/2 2.1 Virtual Device Driver Reference. Virtual
DevHIp services can be divided into categories based on the type of service that the
virtual DevHIp provides. These categories are:

DOS Settings
VDHRegisterProperty Register virtual device driver property
VDHQueryProperty Query virtual device driver property value
VDHDecodeProperty Decode property string

File (or device) >I/0 Services

VDHOpen Open a file or device

VDHClose Close a file handle

VDHRead Read bytes from a file or device
VDHWrite Write bytes to a file or device

VDHIOCt1 | Perform IOCtl to a device
VDHPhysicalDisk Get information about partitionable disks
VDHSeek Move read/write file pointer for a handle

Chapter 9. 0S/2 2.1 Virtual Device Drivers 137

DMA Services
VDHRegisterDMAChannel | Register a DMA channel with the virtual DMA
device driver
VDHCallOutDMA Let DMA do its work
VDHAllocDMABuffer Allocate DMA buffer
VDHFreeDMABuffer Free DMA buffer previously allocated

DOS Session Control Services

Terminate a DOS session

VDHKIlIVDM

VDHHaltSystem Halt the system

VDHFreezeVDM Freeze a DOS session; prevent the DOS session
from executing any V86 code

VDHThawVDM Allow a frozen DOS session to resume executing
V86 code

VDHIsVDMFrozen Determine if a DOS session is frozen

VDHSetPriority Adjust a DOS session’s scheduler priority

VDHYield | Yield the processor

138 Writing OS/2 2.1 Device Drivers in C

DPMI Services

VDHGetSelBase Get a flat base address for an LDT selector

VDHGetVPMExcept Get the current DOS session’s protect mode excep-
tion vector

VDHSetVPMExcept Set the current DOS session’s protect mode excep-
tion vector to a specified value

VDHChangeVMPIF Change the virtual interrupt flag (IF), enabling or dis-
abling protect mode interrupts

VDHRaiseException Raise an exception to a DOS session, as if the excep-
tion had been caused by the hardware

VDHReadUBuf Read from protect mode address space

VDHWriteUBuf Write to a protect mode address space

VDHCheckPagePerm Check Ring 3 page permissions

VDHéWitchToVPM Switch a DOS session to protect mode

VDHSwitchToV86 Switch a DOS session to V86 mode

VDHCheckVPMIntVector Determine if a DOS session protect mode handler
exists

VDHGetVPMIntVector Return the DOS session’s protect mode interrupt
vector

VDHSetVPMIntVector Set the DOS session’s protect mode interrupt vector

VDHArmVPMBPHook Obtain the address of a DOS session’s protect mode
breakpoint

VDHBeginUseVPMStack Begin using the DOS session’s protect mode stack

VDHEndUseVPMStack End the use of the DOS session’s protect mode stack

Chapter 9. 0S/2 2.1 Virtual Device Drivers 139

(The “VPM” in many of the function names in this section stands for “Virtual Protect

Mode”).
GDT Selector Services
VDHCreateSel Create a GDT selector to map a linear range
VDHDestroySel Destroy a GDT selector previously created by
VDHCreateSel
VDHQuerySel Get the selector for an address in the virtual

device driver’s data or on its stack

Hook Management Services

VDHAIlocHook Allocate the hooks needed for interrupt simulation

VDHArmBPHook Obtain the address of a V86 breakpoint

VDHArmContextHook Set a local or a global context hook

VDHArmReturnHook Set a handler to receive control when an IRET or
RETF is executed in V86 mode

VDHArmSTIHook Sets a handler to receive control when interrupts
are enabled in the current DOS session

VDHArmTimerHook Set a timer handler

VDHFreeHook Disarm and free a hook

VDHInstalllntHook Set a handler for a V86 interrupt

VDHInstalllOHook Install PIC I/0 port hooks

VDHInstallUserHook Install a handler for a DOS session event

VDHQueryHookData Returns a pointer to a hook’s reference data (creat-

ed during the VDHAIllocHook call)

140 Writing OS/2 2.1 Device Drivers in C

VDHRemovelOHook Remove hooks for PIC 1/0 ports
VDHSellOHookState Enable/Disable I/0 port trapping
VDHRegisterAPI Set V86 or protect mode API handler

DOS Application Management

VDHReportPeek Report DOS session polling activity for the pur-
» *+ | pose of idle detection
VDHWakeldle - Wake up a DOS session that is doing
VDHSellOHookState sleep

These services allow virtual device drivers to tell OS/2 when a DOS application
appears to be idle, and when there is some activity that could make the DOS applica-
tion busy.

Inter-Device Communication Services

VDHRegisterVDD Register a virtual device driver’s entry points

VDHOpenVDD Open a virtual device driver previously regis-
tered with VDHRegisterVDD

VDHOpenPDD Open a physical device driver for VDD - PDD
communications

VDHRequestVDD Issue a request for an operation of a virtual
device driver

VDHCloseVDD Close a virtual device driver opened with
VDHOpenVDD

Keyboard Services

Chapter 9. 0S/2 2.1 Virtual Device Drivers 141

VDHQueryKeyShift

Query the keyboard shift state

Memory Management Services

There are three subcategories of memory management virtual DevHIp services. The
first two are based on the granularity of the memory allocation unit, the third category
is for memory locking services.

Byte Granular Memory Management Services

VDHAllocMem Allocate a small amount of memory

VDHFreeMem Free memory allocated with VDHAllocMem

VDHAllocDOSMem Allocate a block of memory from the DOS area

VDHCreateBlockPool Create a memory block pool

VDHAIllocBlock Allocate a block from a memory block pool

VDHFreeBlock Free a previously allocated block of memory
(return the block to a memory block pool)

VDHDestroyBlockPool Destroy a memory block pool

VDHCopyMem Copy from one linear memory address to another

VDHExchangeMem Exchange the contents of two linear memory

regions

142 Writing 0OS/2 2.1 Device Drivers in C

Page Granular Memory Management Services

VDHAIllocPages Allocate a page-aligned memory object
VDHReallocPages Reallocates (re-sizes) a memory object
VDHFreePages Free a memory object
VDHFindFreePages Find the largest available linear memory region
VDHGetDirtyPagelnfo Returns the status of the dirty bits for a range of
memory pages (resets the bits)
VDHQueryFreePages Returns the total amount of free virtual memory
in bytes
VDHReservePages Reserve a range of linear addresses
VDHUnreservePages Unreserve a range of linear addresses
VDHMapPages Map a specified linear address
VDHInstallFaultHook Install your own page fault handler
VDHRemoveFaultHook Remove your page fault handler

Memory Locking Memory Management Services

VDHLockMem Verify access to a region of memory, then lock
that memory
VDHUnlockMem Release a memory lock

These services allow virtual device drivers to allocate, free, reallocate, and lock memo-
ry for global and per-DOS session objects, page or byte granular objects, and with dif-
ferent options, such as fixed or swappable allocations.

Chapter 9. 05/2 2.1 Virtual Device Drivers 143

Virtual device drivers can also request smaller memory allocations from the kernel
heap, which is global and fixed. Small, fixed-size block services are available to speed
up frequent allocations and the freeing of memory. For a particular block size, a pool
of blocks are maintained, and the requirements are met by taking off a block from the
block pool.

Miscellaneous Virtual DevHIp Services

VDHSetFlags Set the DOS session’s FLAGS register to a specified
value

VDHSetA20 Enable or disable the A20 line for the current DOS
session

VDHQueryA20 Query the current state of the A20 line

VDHDevBeep Device beep Virtual DevHIp service

VDHGetError Get the error code from the last Virtual DevHIp ser-
vice called

VDHSetError Set the error code for VDHGetError to query

VDHHandleFromSGID Get the DOS session handle from the
screen group ID

VDHHandleFromPID Get the handle for a given process ID

VDHEnumerateVDMs For each DOS session in the system, run a worker
function

VDHQueryLin Get the linear address for a FAR16 (16:16) address

144 Writing 0OS/2 2.1 Device Drivers in C

VDHGetCodePageFont Return information about the DOS session’s code
page font

VDHReleaseCodePageFont | Release code pagé font returned by
VDHGetCodePageFont

VDHQuerySysValue Query a system value

VDHPutSysValue Set a system value

VDHPopup Display a message

VDHSetDosDevice Register/Install a DOS device driver

NPX (Numeric Coprocessor) Services

VDHReleaseNPX Give up ownership of NPX
VDHNPXReset | Reset port F1

VDHNPXClearBusy Clear busy latch

VDHNPXRegisterVDD Register virtual device driver entry points

Parallel Port and Printer Services

VDHPrintClose

Flush and close all open printers for a DOS session

Chapter 9. 0S/2 2.1 Virtual Device Drivers 145

Semaphore Services
VDHCreateSem Create an event or mutex semaphore
VDHDestroySem Destroy a semaphore
VDHResetEventSem Reset an event semaphore
VDHPostEventSem Post an event semaphore
VDHWaitEventSem ‘Wait on an event semaphore
VDHRequestMutexSem Request a mutex semaphore
VDHReleaseMutexSem Release a mutex semaphore
VDHQuerySem Query a semaphore’s state

These services are used for synchronizing with an OS/2 process. Virtual device dri-
vers must be careful not to block (VDHRequestSem/VDHWaitSem) in the context of
a DOS session task, or that task will receive no more simulated hardware interrupts
until it becomes unblocked.

Timer Services
VDHArmTimerHook Set a timer service handler
VDHDisarmTimerHook Cancel a timer service before the handler has
been called

146 Writing OS/2 2.1 Device Drivers in C

Virtual Interrupt Services

VDHOpenVIRQ Register an IRQ handler for a virtual device
driver

VDHCloseVIRQ Deregister an IRQ handler for a virtual device
driver

VDHSetVIRR Set the virtual Interrupt Request Register (IRR),
causing an interrupt to be simulated to the DOS
session

VDHClearVIRR Clear the virtual IRR, stopping the simulation of
interrupts to the DOS session)

VDHQueryVIRQ Query the IRQ status in a DOS session

VDHWaitVIRRs Wait until an interrupt is simulated

VDHWakeVIRRs Wake up a DOS session that is waiting with
VDHWaitVIRRs
Send a virtual EOI (End-Of-Interrupt) to the

VDHSendVEOI

VPIC

Chapter 9. 0S/2 2.1 Virtual Device Drivers 147

V8086 Stack Manipulation

VDHPushRegs Push a client DOS session’s registers onto the
client’s stack

VDHPopRegs Pop a client DOS session’s registers from the
client’s stack

VDHPushFarCall Simulate a far call to V86 code

VDHPopStack Pop data off client stack

VDHPushStack Push data onto a client’s stack

VDHPushiInt Transfer control to a V86 interrupt handler when
an interrupt is simulated

VDHPoplnt Remove IRET frame from a client DOS session’s
stack ‘

Many of the virtual DevHIp functions that are called with invalid parameters or other
error conditions often cause a system halt. This is because virtual device drivers run
at Ring 0; they have free access to everything in the system. If an invalid parameter is
detected, it has probably done enough damage that the system has become unstable.
The only thing to do at that point is to halt the system.

DOS Session Interrupts

Table 9-8 describes the DOS hardware interrupts virtualization supplied by the Virtual
Device Drivers and the DOS emulation component of the VDM.

148 Writing OS/2 2.1 Device Drivers in C

Table 9-8. Virtualized DOS Interrupts

Interrupt Description Notes

IRQ O Timer (INT 08h) DOS programs can hook this
interrupt with the INT 08h call.
The INT 08h handler is called for
each tick of the channel 0 system
clock.

IRQ1 Keyboard (INT 09h) The INT 09h handler is invoked
for every press and release of a
keystroke.

IRQ 2 Cascade Interrupt Controller| Use for the support of interrupts
8-15 to emulate the second PIC

IRQ 3 Serial Port (COM2, COM3) | Supported when VCOM.SYS and
COM.SYS are loaded.

IRQ 4 Serial Port (COM1) Supported when VCOM.SYS and
COM.SYS are loaded.

IRQ 5 Parallel Port (LPT2) ‘Not supported

IRQ 6 Diskette Not supported

IRQ7 Parallel Port (LPT1) Not supported

IRQ 8 Real Time Clock Not supported

IRQ9 Redirect cascade Not supported

IRQ 10 Not supported

IRQ 11 Not supported

IRQ 12 Aux. device Not supported

IRQ 13 Math Coprocessor Supported

IRQ 14 Fixed disk Not supported

IRQ 15 Not supported

Chapter 9. 0S/2 2.1 Virtual Device Drivers 149

Table 9-9 describes the DOS BIOS software interrupts supported in a VDM.

Table 9-9. Virtualized BIOS Interrupts (Continued)

Interrupt Description Notes

02h NMI Not supported

05h Print screen Supported by the Virtual Line Printer
driver

08h System timer Supported by the Virtual Timer device
driver. Due to system overhead, inter-
rupts may come in short bursts

Oeh Diskette Not supported

10h Video Fully supported

13h Disk/diskette Supported by a subset of the DOS INT

13h functions. The supported functions
are:

e 00h - Reset diskette

¢ 01h - Read status

¢ 02h - Read sectors

e 03h - Write sectors (diskette only)
© 04h - Verify sectors

e 05h - Format track (diskette only)
¢ 08h - Get driver parameters

e Oah - Read long (fixed disk only)

¢ 15h - Read DASD type

e 16h - Change status (diskette only)
e 17h - Set disk type (diskette only)

« 18h - Set media type (diskette only)

150 Writing OS/2 2.1 Device Drivers in C

Table 9-9. Virtualized BIOS Interrupts (continued)

Table 9-9. Virtualized BIOS Interrupts

Interrupt Description Notes
14h Serial Port (Async) | Supported by the Virtual COM driver
15h System services Supports the following system services:

® 00h - Cassette motor on
¢ 01h - Cassette motor off
® 02h - Cassette read
¢ 03h - Cassette write
¢ Oth - Format periodic int
¢ 4fh - Keyboard intercept
¢ 80h - Open device
e 81h - Close device
¢ 82h - program terminate
¢ 83h - Event wait
e 84h - Joystick
* 85h - SysReq key
¢ 86h - Wait
¢ 87h - Move block
¢ 88h - Get extended memory size
® 89h - Switch to protect mode
¢ 90h - Device wait
¢ 91h - Device post
¢ cOh - Get system config parameters
¢ clh - Get ABIOS data area
e c2h - PS/2 mouse functions
¢ c3h - Watchdog timer
e c4h - Programmable Option Select

16h Keyboard Fully supported

17h Printer Fully supported by the VLPT

19h Reboot if DOS_STARTUP_DRIVE is set, the
session is rebooted; if not, the session is
terminated.

lah Time of Day Read only access to Real Time Clock is
supported.

leh Diskette parameters | Fully supported

70h Real Time Clock Not supported

Chapter 9. 0S/2 2.1 Virtual Device Drivers 151

Table 9-10 describes the DOS software interrupts which are supported by the DOS
emulation component.

Table 9-10. Virtualized DOS Software Interrupts

Interrupt| Description Notes
20h Program terminate Fully supported
21h Function request Fully supported, plus some undocu-

mented functions. The following calls
are supported with restrictions:

e 38h - Return country information
e 44h - Generic IOCtl

e 66h - Get/set code page

¢ 67h - Set handle count

22h Terminate address Fully supported

23h Cntl-break exit address Fully supported

24h Critical error handler Fully supported

25h Absolute disk read Fully supported

26h Absolute disk write Fully supported, but error generated
for attempt on fixed disk

27h Terminate/stay resident | Fully supported

28h Idle loop Fully supported

2fh Multiplex When a DOS application issues an
INT 2fh with AX=1680h, it yields its
time slice.

33h Mouse Fully support, providing
VMOUSE.SYS driver is loaded

67h LIM expanded Suppofted when Expanded Memory

memory manager Manager VDD is installed. Supports

LIM EMS V4.0 functions.

1562 Writing OS/2 2.1 Device Drivers in C

Sample Virtual Device Driver

The following code represents a sample VDD designed to work with the simple paral-
lel PDD outlined in Chapter 7. It is written using the IBM C Set/2 compiler. This

- VDD traps I/0 to the 8bit ports from a DOS application running in a VDM. This VDD
performs simple input and output to the dedicated parallel port adapter described in
Chapter 7.

Note that input and output for OS/2 printer ports is handled much differently than in
the sample driver. For OS/2 printer I/0, the 0S/2 virtual printer driver VLPT calls
the OS/2 kernel, which formats the request into a standard 0S/2 Request Packet.
The kernel then sends the Request Packet to the PDD for disposition.

The VDD can perform input and output in one of two ways. The VDD can ask the
PDD to use the specific ports and, if permission is granted, can do the inputs and out-
puts directly from within the VDD. The VDD can also call the PDD and have the PDD
perform the required 1/0, and pass the results back to the VDD. If the adapter is ded-
icated to the VDM application, and no other programs will access it, the VDD need
not call a PDD to perform the operation. If the adapter can be accessed by protect
mode programs, the VDD must get permission to use the adapter by calling the PDD.
'The PDD will queue up any subsequent requests from other threads until the VDD is
finished with the adapter.

In most cases, writing a VDD will be unnecessary, as most of the required DOS virtu-
alization is handled by the VDDs that come with 0S/2 2.1. Writing a VDD is only nec-
essary if the DOS application needs to support a custom adapter in a VDM which can-
not be serviced by the existing VDD supplied with 0S/2. This should be rare, as most
new applications should be written for protect mode operation.

In this sample VDD, the VDD traps I/0 on a per-DOS-session basis, to ports 0x210,
0x211 and 0x212. When the hook is entered, the VDD checks to see that the current
requester is the also the current owner of the port. If not, the VDM application
attempting the access is terminated. If the requester is valid, port trapping is disabled,
allowing subsequent I/0 to go directly to the hardware for increased performance.
When the DOS session is exited, the I/0 hooks are removed and port trapping is
reenabled. This VDD shows you how to call some basic VDH functions, such as
VDHInstalllOHook, VDHRemovelOHook, and VDHInstallUserHook.

When a VDM is created, the PIOCreate routine is called, and when the VDM is
closed, the PIOTerminate routine is called. PIOCreate is called with a handle to the
VDM, which is actually the base linear address of the VDM. You may verify the opera-
tion of any of these funtions if you have the kernel debugger installed. Simply place a
call to VdhInt3 in the source code, recompile and relink, then reboot. The VdhInt3

Chapter 9. 0S/2 2.1 Virtual Device Drivers 153

call will cause a break at the debugging terminal, and if you used the MAPSYM after
the link, you can examine VDD variables. Do not insert the call to VdhInt3 if you do
not have the kernel debugger installed, or have the debugging terminal connected.

// file pioinit.c
//***

[/ sample parallel port VDD init section

//***

| #include “mvdm.h” // VDH services, etc.
fFinclude “pio.h” // PI0 data defines

fipragma entry (_PIOInit)

fipragma data_seg(CSWAP_DATA)

extern SZ szProplptltimeout;

#pragma alloc_text(CINIT_TEXT,_PIOInit,PIO_PDDProc)
// init entry point called by system at load time

BOOL EXPENTRY _PIOInit(psz) // PIO VDDInit
{

// Register a VDM termination handler entry point

if ((VDHInstallUserHook((ULONG)VDM_TERMINATE,
(PUSERHOOK)PIOTerminate)) == 0)
return 0; // return FALSE if VDH call failed //

// Register a VDM creation handler entry point
if ((VDHInstallUserHook((ULONG)VDM_CREATE,
. (PUSERHOOK)PIOCreate)) = 0)
return 0 ; // return FALSE if VDH call failed

// Get the entry point to the PDD

Figure 9-2. VDD initialization section. (Continued)

154 Writing 0S/2 2.1 Device Drivers in C

PPIOPDDProc = VDHOpenPDD(PDD_NAME, PIO_PDDProc);

return CTRUE;
}

// entry point registered by VDHOpenPDD, called by the PDD

SBOOL VDDENTRY PIO_PDDProc(ulFunc,fl6pl,flép2)
ULONG ulFunc;

F16PVOID fl6pl;

F16PVOID fl6p2;

{

}

return 0;

Figure 9-2. VDD initialization section.

// piodata.c

#include “mvdm.h” // VDH services, etc.
#rinclude “pio.h” // PIO specific

fipragma data_seg(SWAPINSTDATA)

HVDM owner_VDM = 0; // actual VDM handle
HVDM current_VDM;

ULONG Resp = 0;

ffpragma data_seg(CSWAP_DATA)

FPFNPDD PPIOPDDProc = (FPFNPDD)O; // addr of PDD entry pt

Figure 9-3. VDD data segment.

Chapter 9. 0S/2 2.1 Virtual Device Drivers

155

// pioin.c

#include “mvdm.h” // VDH services, etc.
f#finclude “pio.h”
#include “basemid.h”

// PI0 specific

ffpragma alloc_text(CSWAP_TEXT,PIODataln,RequestDirect)

extern IOH Ioh;
// entry from data input trap in VDM

BYTE HOOKENTRY PIODataIn(ULONG portaddr, PCRF pcrf)
{
BYTE dataread; ‘ // set up byte to return

RequestDirect();
// disable 1/0 trap
VDHSetIOHookState(current_VDM,DIGIO_BASE,3,&Ioh,0);

dataread = inp(portaddr); '
return(dataread); // return data read
}

BOOL HOOKENTRY RequestDirect(void)
{ if (owner_VDM != current_VDM)
{ if (owner_VDM !=0)
{ VDHPopup(0,0,MSG_DEVICE_IN_USE,&Resp,ABORT,0);
Zf (Resp != ABORT)

Figure 9-4. VDD input handler. (Continued)

156 Writing OS/2 2.1 Device Drivers in C

VDHKi11VDM(current_VDM);
owner_VDM = current_VDM;
}
}
else
owner_VDM = current_VDM;

Figure 94. VDD input handler.

// pioout.c
f#finclude “mvdm.h” ' // VDH services, etc.
#include “pio.h” // P10 specific

fipragma data_seg(CSWAP_DATA)

extern IOH Ioh;

ffpragma alloc_text(CSWAP_TEXT,PIODataOut)

// this routine is the data out trap entry point

VOID HOOKENTRY PIODataOut(BYTE chartowrite,ULONG portaddr,PCRF

pcrf)

{ RequestDirect();
// disable port trapping
VDHSetIOHookState(current_VDM,DIGIO_BASE,3,&Ioh,0);

outp(portaddr,chartowrite); // write the char
return;

Figure 9-5. VDD data port output handler.

Chapter 9. 0S5/2 2.1 Virtual Device Drivers 157

// file piouser.c

fHinclude “mvdm.h” // VDH services, etc.
#include “pio.h” // PIO specific
ffinclude “basemid.h”

ffpragma data_seg(CSWAP_DATA)

// our routines are for 8-bit ports

IOH Ioh = {PIODataln,PIODatalOut,0,0,0};

fioragma alloc_text(CSWAP_TEXT,PIOCreate,PI0Terminate)

F il
BOOL HOOKENTRY PIOCreate(hvdm)
HVDM hvdm;
{
current_VDM = hvdm; // save our vdm handle

// install 1/0 hooks for our three 8-bit ports

if ((VDHInstallIOHook(hvdm,

DIGIO_BASE,
39
(PIOH)&Ioh,
1VDH_ASM_HOOK)) = 0)
{
PI0Terminate(hvdm);
return 0; // return FALSE

}

return CTRUE;

Figure 9-6. VDD user routines. (Continued)

158 Writing OS/2 2.1 Device Drivers in C

// PI0Terminate, called when the VDM terminates. This code is

// optional, as the User and I0 hooks are removed automatically by
// the system when the VDM terminates. It is shown for example.
e

BOOL HOOKENTRY PIOTerminate(hvdm)
HVDM hvdm;
{

owner_VDM = 0;

VDHRemoveIOHook (hvdm, // remove the I0 hooks
DIGIO_BASE,
3,
(PIOH)&Ioh);
return CTRUE;
}
Figure 9-6. VDD user routines.
//

// digio memory map for o0s/2 virtual device driver
//

ftdefine DIGIO_BASE 0x210 // board address
ffdefine DIGIO_OUTPUT DIGIO_BASE // output port

ffdefine DIGIO_INPUT DIGIO_BASE+1 // input port

ffdefine DIGIO_CONFIG DIGIO_BASE+2 // initialization port
ffdefine ABORT 0x02

// name of the PDD

Figure 9-7. VDD include file. (Continued)

Chapter 9. 0S/2 2.1 Virtual Device Drivers 159

fidefine PDD_NAME “DIGIO$ \0O” // string
// pioinit.c

BOOL EXPENTRY PIOInit(PSZ);
SBOOL VDDENTRY PIO_PDDProc(ULONG,F16PVOID,F16PVOID);

// piouser.c

BOOL HOOKENTRY PIOCreate(HVDM);
BOOL HOOKENTRY PIOTerminate(HVDM);

// pioin.c

BYTE HOOKENTRY PIODatalIn(ULONG, PCRF);
BOOL HOOKENTRY RequestDirect(void);

// pioout.c

VOID HOOKENTRY PIODataOut(BYTE, ULONG, PCRF);
VOID HOOKENTRY PIOConfigOut(BYTE, ULONG, PCRF);

extern ULONG MachineType; // Machine Type

extern FPFNPDD PPIOPDDProc; // addr of PDD entry point
extern HVDM owner_VDM;

extern HVDM current_VDM;

extern ULONG Resp;

// ioseg

USHORT _Far32 _Pascal inp(ULONG);
VOID _Far32 _Pascal outp(ULONG,USHORT);

Figure 9-7. VDD include file.

160 Writing OS/2 2.1 Device Drivers in C

vpio.sys: pioinit.obj piouser.obj pioin.obj pioout.obj piodata.obj \
i0seg.obj ‘

1ink386 /A:16 /M:FULL /NOL pioinit+piouser+pioin+pioout+\
piodatat+ioseg,vpio.sys,vpio.map,vdh,pio.def

mapsym vpio

pioinit.obj: pioinit.c mvdm.h pio.h
icc /Sm /Ss /0 /Q /W2 /Rn /Gr /C pioinit.c

pioin.obj: pioin.c pio.h mvdm.h
icc /Sm /Ss /Q /0 /W2 /Rn /Gr /C pioin.c

pioout.obj: pioout.c pio.h mvdm.h
icc /Sm /Ss /Q /0 /W2 /Rn /Gr /C pioout.c

piouser.obj: piouser.c pio.h mvdm.h
icc /Sm /Ss /Q /0 /W2 /Rn /Gr /C piouser.c

piodata.obj: piodata.c pio.h mvdm.h
icc /Sm /Ss /Q /0 /W2 /Rn /Gr /C piodata.c

ioseg.obj: ioseg.asm
masm /Mx /x ioseg.asm;

VIRTUAL DEVICE VPIO

PROTMODE

STUB ‘0S2STUB.EXE’

SEGMENTS
CODE32 CLASS “CODE”’ SHARED NONDISCARDABLE RESIDENT
_TEXT CLASS “CODE” SHARED NONDISCARDABLE RESIDENT
CINIT_TEXT CLASS ‘CODE’ SHARED DISCARDABLE RESIDENT
CSWAP_TEXT ~ CLASS ‘CODE’ SHARED NONDISCARDABLE

CINIT_DATA CLASS ‘CINITDATA’ SHARED DISCARDABLE RESIDENT
~ CSWAP_DATA CLASS ‘CSWAPDATA® SHARED NONDISCARDABLE

MVDMINSTDATA CLASS ‘MIDATA’ NONSHARED NONDISCARDABLE RESIDENT

SWAPINSTDATA CLASS ‘SIDATA’ NONSHARED NONDISCARDABLE

DATA32 CLASS ‘DATA’ SHARED NONDISCARDABLE RESIDENT

_DATA CLASS ‘DATA’ SHARED NONDISCARDABLE RESIDENT

Figure 9-8. VDD Make And DEF Files

Chapter 9. 0S/2 2.1 Virtual Device Drivers 161

Establishing a VDD-PDD Link

Note that, in this VDD, the actual I/O was performed by the VDD routines PIODataln
and PIODataOut. The VDD could have called the PDD to perform the actual I/0.
This would be necessary if the I/0 involved interrupts, as device interrupts must be
handled by a PDD.

The PDD requires slight modifications to support VDD-PDD communications. The
PDD must register its ability to provide VDD support by issuing a RegisterPDD
DevHlIp call in the Init section of the PDD. The RegisterPDD informs OS/2 of the
name of the PDD and the 16:16 address of the PDD’s communication function. Note
that this is not the same entry point as defined by the IDC entry point in the PDD
Device Header. The VDD can then establish communications with the PDD by calling
the VDHOpenPDD Virtual Device Helper function. This is one of the reasons that
0S/2 loads all of the PDDs before the VDDs during system boot. Note that this
DevHIp function has no error return. A failure when registering the PDD will cause a
system crash during boot.

If the PDD fails initialization for another reason, such as a failed SetIRQ or SetTimer,
the PDD must release the PDD-VDD registration by calling RegisterPDD, with the
function pointer equal to 0:0. The PDD described in Chapter 7 would be modified as
outlined in Figure 9-9.

Init code
éegisterPDD((FPUCHAR)devhdr.DHname,(FARPOINTER)DigioComm);
ﬁore Init code

main Strategy code section

bigioComm(ULONG Func, ULONG Parml, ULONG Parm2)

{

VDD-PDD comm code here

Figure 9-9. Registering PDD for VDD-PDD communications.

162 Writing OS/2 2.1 Device Drivers in C

During initialization, the VDD calls VDHOpenPDD, passing it the ASCII-Z name of
the PDD and the 16:32 entry point of the VDD’s communication routine. Note the call
to VDHOpenPDD in the pioinit.c routine above. If VDHOpenPDD (or any other VDH
call) fails, it will return FALSE and the driver must call VDHGetError to retrieve the
exact error. If the call succeeds, VDHOpenPDD returns a pointer to the PDD’s com-
munication routine, previously registered by the RegisterPDD call in the PDD Init
section.

The two drivers communicate by sending a structure back and forth. This structure is
described in Figure 9-10.The first parameter is a private function code, which the dri-
vers pass back and forth to identify the operation to be performed. The two parame-
ters can be data or 16:16 pointers to input and output packets. The VDD-PDD commu-
nication functions should return nonzero for success, and zero for failure.

If the PDD allocates any resources on behalf of the VDD, the VDD must call the PDD
to release those resources when the VDM is destroyed.

typedef _DRVCOMM {
ULONG FunctionCode;
ULONG Parml;
ULONG Parmz;
} DRVCOMM;

Figure 9-10. VDD-PDD communications structure.

CHAPTER 10
Memory-Mapped Adapters and I0PL

large number of adapters provide on-board memory for communication

between the adapter and the program or drivers. Generally, a program or

driver maps the on-board memory to a physical memory address, and reads
or writes board memory as if it were normal system RAM. These adapters are
referred to as memory-mapped adapters. Memory-mapped adapters, when placed in a
special hardware mode, appear to a device driver or application as normal RAM mem-
ory. An application that is allowed direct access to the adapter memory can transfer
data much faster than if it were to call a device driver to perform the transfer. This
type of operation, called memory-mapped I/0, can result in increased performance
and is the preferred method for transferring large amounts of memory quickly.
Memory-mapped adapters may also utilize interrupts or DMA. An example of a mem-
ory-mapped adapter would be a video adapter, such as a VGA card.

Programs that perform transfers with memory-mapped adapters usually write data in
a special format to an area of memory between the 640K and one megabyte, although
some adapters can be mapped in the region above one megabyte.

The most common example of a memory-mapped adapter is, of course, the standard
VGA graphics adapter found in most IBM clones. Data to be displayed on the screen
is written to the adapter’s RAM memory. The video controller constantly reads this
memory, converts it to electrical signals and presents these voltage levels to the actu-
al display device. If you power down your display terminal and power it back up, the
contents of the display is not lost because the display is actually kept in video memo-
ry, not in the display itself.

163

164 Writing OS/2 2.1 Device Drivers in C

High and Low Memory Maps

Memory-mapped adapters come in two basic flavors. The first has a memory-mapped
address that is selectable in the area between 640K and one megabyte. Some of the
memory space between 640K and one megabyte is reserved for such things as BIOS
shadow RAM and video memory. There is room, however, to map an adapter board in
that space, providing no address conflicts exist. Most memory-mapped adapters were
designed for personal computers running DOS, so there was no need to provide mem-
ory-mapped addresses greater than one megabyte. Recall that DOS runs in the real
mode of the Intel microprocessor, which provides for only a 20-bit address. This limits
the addressing capability of the CPU to one megabyte, so an adapter designed for the
DOS environment that could be mapped to addresses greater than one megabyte
would not be of much use.

The second type has a memory-mapped address of greater than one megabyte. The
32-bit addressing mode of OS/2 2.1 allows adapters to be mapped above the one
megabyte boundary and accessed directly.

ISA bus memory-mapped adapters use small jumpers or switches to set their memory-
mapped address, while Micro Channel adapters usually contain their memory-
mapped address in the POS registers (see Chapter 3). Some recently-introduced
adapters designed to run in 32-bit systems like OS/2 have been designed for memory-
mapped addresses of greater than one megabyte.

Application Program Access To Adapter Memory

One of the most important features of 0S/2 is its ability to protect programs from one
another. With the aid of the protect mode circuitry in the CPU, the operating system
can determine beforehand if a program is about to read from or write to another pro-
gram’s memory space. If the processor detects this kind of error, the system’s error
handler is called to display the error and the offending program is immediately termi-
nated. How then does an application operating at Ring 3 gain access to the memory-
mapped adapter address that is not within its own address space?

Recall the discussion of the processor architecture in Chapter 3. As was outlined, a
program’s access to memory is controlled by selectors, which are indexes into the
program’s Local Descriptor Table. The descriptor contains a physical address and
Requested Privilege Level, or RPL, of the memory object. When a program is executed,
it get’s its own list of selectors, or LDT, which defines its valid addressable memory
areas and their access restrictions. When the program attempts to read or write mem-
ory, the CPU compares the target address and type of operation to a corresponding

Chapter 10. Memory-Mapped Adapters and IOPL 165

entry in the LDT. If the program does not have access to the target memory, a
General Protect, or GP fault is generated, and the program is immediately terminated.
If the address is valid, the CPU verifies that the memory has the correct permissions,
such as read and write, and generates a fault if the permissions do not agree with the
attempted operation.

If the adapter’s memory-mapped address could be placed in the application’s LDT, the
program would be free to access the adapter’s memory. The application’s LDT, how-
ever, is created at load time, and is not modifiable by the application. If that were per-
mitted, applications would be free to select the memory addresses they wished to
read and write, and crash OS/2. The only program that can grant an application
access to memory is a device driver. The device driver, operating at Ring 0, is free to
manipulate the application’s environment, with some limitations.

To allow the application to access the foreign memory, the application program opens
up the device driver and passes it the physical address and size of the memory it wish-
es to access. For most adapter, the memory size is generally 4K, 8K, 16K, or 32K
bytes. The driver should first verify that the memory address is within the valid range
for the adapter. The driver can be hard-coded with the valid physical addresses, it can
be sent the address via an IOCt], or the valid address could be entered at driver load
time in the “DEVICE=XXX.SYS” line in the CONFIG.SYS file (see Chapter 8). The dri-
ver then allocates an LDT selector for the new adapter address. Even though the LDT
belongs to the application, the driver can access it freely. This is due to the fact that
when the driver is called by the application, the driver and application share the same
context.

Next, the driver calls the OS/2 system DevHIp function PhysToUVirt (see Figure 10-
1), which maps the physical address to an LDT selector in the application’s LDT. The
result is referred to as a fabricated address. Using an IOCtl, the driver then passes
back the new LDT selector:offset value to the application. The application makes a
pointer from the selector using the MAKEP macro, and uses this pointer for direct
access to adapter memory. The LDT entry remains valid until the program is termi-
nated.

if (PhysToUVirt(0xd8000, 0x8000, 1, &mem))
return (RPDONE | RPERR | ERROR_GEN_FAILURE);

Figure 10-1. PhysToVirt call.

166 Writing OS/2 2.1 Device Drivers in C

The 0xd8000 is the physical adapter memory address. The 0x8000 is the requested
size, the parameter 1 means get a virtual pointer and make the memory read-write,
and &mem is the address of DS-relative storage for the returned virtual address.

Access to Adapter Memory In the Interrupt Handler

In some cases, such as upon receipt of an interrupt, the device driver may be required
to access memory-mapped adapter inside the interrupt handler. If a driver is required
to perform interrupt-time memory transfers, it should set up the references to the
memory in the INIT section. Since the interrupt handler can be entered in any con-
text, the LDT of the application may not be in the current context. The driver cannot
use an LDT to address memory, but must use a GDT entry for memory access. The
GDT entry will be valid in any context.

If the device driver will be performing memory-mapped transfers inside an interrupt
handler, it must allocate the required selector(s) by issuing the AllocGDTSelector
DevHlp, then map the new selector(s) to the physical address with the
PhysToGDTSelector DevHIp call (see Figure 10-2). The driver now has direct
addressability to the adapter memory regardless of context, and can freely transfer
data to and from the adapter memory at interrupt time. The device driver must allo-
cate and map the GDT selector(s) during INIT. However, remember that the INIT
code is run as a Ring 3 thread of the system, so the driver cannot access the memory
mapped to the GDT selector at INIT time.

A complete memory-mapped device driver and sample 16-bit and 32-bit application
code is shown in the Listings section.

Chapter 10. Memory-Mapped Adapters and IOPL 167

FARPOINTER fabricated_ptr = 0;
// allocate space for a GDT selector during INIT

if (A17ocGDTSelector (1,sel_array))
{ // allocate a GDT sel

DosPutMessage(1l, 8, devhdr.DHname);
DosPutMessage(1,strlen(GDTFailMsg),GDTFailMsg);

break;
}

// now map the board memory address to the GDT selector

if (PhysToGDTSelector (board_address,
(USHORT) MEMSIZE,

sel_array[01],
&err))

{
DosPutMessage(1, 8, devhdr.DHname);

DosPutMessage(1,strlen(SELFailMsg),SELFailMsg);

break;
}

fabricated_ptr = MAKEP(sel_array[0],0);

Figure 10-2. Mapping a GDT selector during INIT.

Input/Output Privilege Level (IOPL)

0S/2 allows programs with I/0 Privilege (IOPL) enabled to do direct register I/O to
a device. If the device your application will be using is a parallel card or digital switch,
an actual device driver may not be necessary. With IOPL, the application program can
perform direct register I/0 using IN and OUT instructions. If the device does not

require interrupt or timer support, IOPL may be the ticket.

168 Writing OS/2 2.1 Device Drivers in C

Note, however, that IOPL is a processor-specific function, and thus is not portable
across hardware platforms such as RISC. For instance, the port mapping of a MIPS
processor is not the same as an Intel processor, so code written for one processor will
not necessarily run on another processor. The current trend is to migrate operating
systems onto other platforms such as RISC and SMP. For these reasons, you can only
perform IOPL from a 16-bit segment, and cannot enable a 32-bit C Set/2 segment to
perform IOPL. 16-bit segments are allowed to perform IOPL since the 16-bit segments
themselves are processor-dependent, and can’t be migrated to other processor plat-
forms anyway.

There are circumstances when it makes sense, for performance reasons, to allow the
application to perform simple I/0. This could mean something as simple as control-
ling an external switch, or testing for a single bit from an 1/0 port. Calling a device
driver to accomplish this is the preferred method, since its more likely to be portable.
Under some circumstances, however, IOPL may be the best solution.

The IOPL Segment

To enable IOPL, the segment descriptors of the segment that contains the I/0 code
must be marked Descriptor Privilege Level, or DPL 2. 0S/2 allows segments with
properly marked descriptors to perform direct register I/0. There are two ways you
can structure your IOPL routines. If you're using Microsoft C 6.0, the inp and outp
functions are located in a separate segment called _IOSEG. You can indicate with
your DEF file to mark _IOSEG as IOPL, and call the standard run-time library rou-
tines inp and outp. You can also write a simple function (See Figure 10-3) to perform
the input and output.

Chapter 10. Memory-Mapped Adapters and IOPL

169

; Sample IOPL segment

DGROUP
_DATA
_DATA

_IOSEG

IN_PORT
push
mov
push
mov
in
pop
pop
ret

IN_PORT

PUBLIC IN_PORT
PUBLIC OQUT_PORT

.model large

.286P

GROUP _DATA

SEGMENT WORD PUBLIC ‘DATA’
ENDS

segment word usel6 public ‘CODE’

assume CS:_IOSEG,DS:DGROUP,SS:DGROUP

.286P

proc far

bp ;set up stack frame
bp.,sp ;save bp

dx ;save dx

dx, [bpt6] ;get port address
ax,dx ;do input

dx ;restore regs

bp ;return in ax

2 ;remove from IOPL stack
endp

OUT_PORT proc far

s

push
mov
push
push
mov
mov

bp ;set up stack frame
bp,sp ;save it

ax ;save ax

dx ;and dx

ax,[bp+6] ;get data

dx, [bp+8] ;get port

Figure 10-3. IOPL Segment. (Continued)

170 Writing OS/2 2.1 Device Drivers in C

out dx,al ;do output

pop dx ;restore regs

pop ax

pop bp

ret 4 ;remove off local stack

OUT_PORT endp

_I0SEG ends
end

Figure 10-3. IOPL Segment.

During the link operation, the linker is told to mark the special segment as IOPL. The
linker must also know the names of the exported routines and the size of the parame-
ters that will be passed to the routines by the Ring 3 application. The number of words
that the parameters will occupy on the stack is extremely important. Since the Ring 3
code (application) and the Ring 2 code (the IOPL code) do not share the same physi-
cal stack area, OS/2 must copy the contents of the Ring 3 stack to the Ring 2 stack.
The linker informs 0S/2 of the number of bytes to copy by the size parameter in the
EXPORTS statement in the linker module definition file (see Figure 10-4).

NAME SAMPLE
STACKSIZE 8192
SEGMENTS
_IOSEG IOPL

EXPORTS

PORTIN 1

PORTOUT 2
PROTMODE

Figure 10-4. IOPL DEF file.

Chapter 10. Memory-Mapped Adapters and IOPL 171

When the application calls either the IN_PORT or OUT_PORT routine, OS/2 will per-
form a ring transition from Ring 3 to Ring 2, copy the caller’s stack to the separate
Ring 2 stack, call the 1/0 routine, and perform another ring transition back to the
Ring 3 application. Because of the extra overhead in ring transitions and copying
stacks, this method will not be as fast as the DOS equivalent, but will be much faster
than calling the device driver for every port input or output.

Remember that devices that generate interrupts, require asynchronous service, or
operate in a time-critical environment must utilize a device driver. You may be able to
get by using memory-mapping and IOPL, and I suggest using it if possible. Just keep
in mind that eventually, OS/2 PDDs will eventually become 32-bit PDDs, and the
handy shortcuts like memory-mapping and IOPL will most likely disappear.

I0PL From 32-hit Applications

IOPL is not permitted from 32-bit segments. To use IOPL from a 32-bit application,
the application must call I/O routines located in a 16-bit segment. The easiest way to
do this is to create a simple 16-bit DLL, then link it to the application with the IMPLIB
utility. The same IOPL code can be used for 16-bit and 32-bit applications. A complete
set of code for performing IOPL from 16-bit and 32-bit applications can be found in the
Listings section.

CHAPTER 11
Direct Memory Access (DMA)

MA is the ability of a device to access the computer system’s memory without

going through the CPU. Since DMA reads and writes bypass the CPU, data

can be transferred very quickly without affecting system performance. This
feature is useful for devices that generate large amounts of data frequently, such as
video frame grabbers or an Analog to Digital (A/D) converter. The measure of a
device’s ability to transfer large amounts of data at a time is called its bandwidth. The
larger the amount of data in a given time period, the higher the bandwidth. Devices that
transfer large amounts of data frequently are therefore called high bandwidth devices.
An example of a high bandwidth device would be a hard disk drive. The hard disk drive
is capable of reading or writing large amounts of data very quickly. So quickly, in fact,
that the CPU and device driver software cannot keep up with the disk drive’s data trans-
fer rate. If a read was requested from the disk driver using the CPU, the data from the
disk would appear faster than the CPU could dispose of it, leading to overruns and data
corruption.

The DMA Controller

Since memory is connected to the computer system’s bus, the DMA controller must
request that the CPU “give up” the bus for a short period of time. The DMA controller
is a special set of circuitry responsible for performing the DMA transactions. Since
memory is connected to the computer system’s bus, the DMA controller must request
that the CPU “give up” the bus for a short period of time. When the DMA controller
needs to transfer data, it asks the CPU for control of the bus by issuing a HOLD
request. When the CPU can release the bus, it grants the DMA controller use of the

173

174 Writing OS/2 2.1 Device Drivers in C

bus by raising a HOLD ACKNOWLEDGE or HLDA signal. When the DMA controller
sees the HLDA signal, it begins transferring data to or from the adapter to the com-
puter’s memory. Memory transfers are very fast, much faster than if the CPU was
involved. When the DMA controller finishes transferring the data, it drops the HOLD
line, allowing the CPU to again use the system bus.

DMA is also a time-saving feature, in that it “steals” machine cycles from the CPU.
The net effect is that of no noticeable loss in system performance, even when transfer-
ring large amounts of data. During DMA operation, the CPU remains free to execute
program threads without knowledge of any DMA activity, other than the occasional
giving up of the system bus.

Most IBM-compatibles and clones use a configuration of two 8237A-5 4-channel DMA
controllers. Like the 8259 PIC, the 8237A-5 controllers are cascaded to provide addi-
tional functionality. One channel of the upper four DMA channels is used for the cas-
cade to the lower DMA controller, so a total of seven DMA channels are available (see
Table 11-1). The first DMA controller, called DMA controller 1, contains channels 0-3.
Channels 0-3 support 8-bit transfers between adapters and memory. The largest block
of memory that can be transferred is 64K bytes. Channels 5-7 support 16-bit transfers
between adapters and memory, and the largest block that can be transferred is 128K
bytes.

Table 11-1. DMA Channel Assignments

Controller 1 | Description Controller 2 | Description

Channel 0 8bit DMA channel | Channel 4 Cascade for controllerl
Channel 1 Reserved for SDLC | Channel 5 16-bit DMA channel
Channel 2 Diskette IBM PC) | Channel 6 16-bit DMA channel
Channel 3 8bit DMA channel | Channel 7 16-bit DMA channel

Since the 8237 is a 24-bit DMA controller, all DMA transfers must occur from an
address between 0 and 16 MB. The DMA controller contains a 24-bit address register,
which limits the memory addressing. The DMA controller also has a count register,
which is 16 bits long, limiting the transfers to 64KB (65536*8) with an 8-bit DMA
channel and 128KB (65536*16) with a 16-bit channel. When using the 16-bit mode,
bytes must be transferred on even-word boundaries.

Chapter 11. Direct Memory Access (DMA) 175

Table 11-2 lists the DMA controller port assignments.

Table 11-2. DMA Controller Port Assignments (Continued)

Port address Description

0000h channel 0 base/current address
0001h channel 0 base/current word count
0002h channel 1 base/current address
0003h channel 1 base/current word count
0004h channel 2 base/current address
0005h channel 2 base/current word count
0006h channel 3 base/current address
0007h channel 3 base/current word count
0008h channel 0-3 status register

000Ah channel 0-3 mask register (set/reset)
000Bh channel 0-3 mode register (write)
000Ch clear byte pointer (write)

000Dh DMA controller reset (write)

000Eh channel 0-3 clear mask register (write)
000Fh channel 0-3 write mask register
0018h extended function register (write)
001Ah extended function execute

0081h channel 2 page table register

0082h channel 3 page table register

0083h channel 1 page table register

176 Writing OS/2 2.1 Device Drivers in C

Table 11-2. DMA Controller Port Assignments

Port address Description

0087h channel 0 page table register

0089h channel 6 page table register

008Ah channel 7 page table register

008Bh channel 5 page table register

008F channel 4 page table register

0COh channel 4 base/current address

0C2h channel 4 base/current word count
0C4h channel 5 base/current address

0Cé6h channel 5 base/current word count
0C8h channel 6 base/current address

0CAh channel 6 base/current count

0CCh channel 7 base/current address

0CEh channel 7 base/current count

0DOh channel 4-7 read status/write command
0D2h channel 4-7 write request register

0D4h channel 4-7 write single mask register bit
0D6h channel 4-7 write mode register

0D8h clear byte pointer flip-flop

O0DAh read temporary register/write Master Clear
0DCh channel 4-7 clear mask register (write)
ODEh channel 4-7 write mask register bits

Chapter 11. Direct Memory Access (DMA) 177

Addressing for the DMA controller is accomplished by loading the address and page
registers defined in Table 11-3.

Table 11-3. DMA Channel Addressing

For DMA Channels 0-3
Source DMA Page Register Address Register
Address A23 <->A16 Al15<->A0

For DMA Channels 5-7

Source DMA Page Register Address Register

Address A23 <->A17 Al6<->Al

More detailed information on the 8237A DMA controller and support circuitry can be
found in the Intel iAPX 86/88 User’s Manual Hardware Reference.

Using DMA

To utilize DMA, the device adapter must support DMA transfers. When data has to be
written, the appropriate DMA channel registers are loaded with the address of the
data to be written, the length of the data, and the proper mode (read/write) by the
device driver. The adapter circuitry, usually a UART or some type of controller, issues
a write request based on a programmed operation initiated by the device driver. An
on-board arbiter issues a DMA request, which causes the system bus HOLD line to
be raised. When the bus becomes available, the DMA controller raises the hold
acknowledge line, HLDA, to signal the adapter that access to the bus has been grant-
ed. The adapter controller then begins a read operation on the system bus until the
number of requested bytes have been read from memory, and then outputs the data
to the device. The adapter normally generates an interrupt when the transfer is com-
plete, so that the device driver can check the status of the transfer.

178 Writing OS/2 2.1 Device Drivers in C

When data has to be read, the DMA channel registers are loaded with the address of
the receive buffer, and the adapter controller programmed to start a read operation.
The on-board arbiter requests a DMA operation, and the input data is transferred
from the adapter controller directly to the memory buffer without using the CPU.
When the required data has been read, or the adapter controller decides that the
input should be terminated, it generates an interrupt so that the device driver can
examine the received data. The DMA controller will give up the bus by releasing the
HOLD line when the DMA channel transfer count goes to zero or the DMA channel is
reset. In addition to the adapter initiating the DMA operation, the DMA controller can
be programmed to start a DMA transfer using the 8237’s request register.

To start the DMA, the particular channel is first masked to prevent it from running.
Normally, device drivers are free to utilize DMA channels 5, 6, and 7. The mask reg-
ister for DMA channels 4-7 is at I/O address 0xD4. The driver masks the DMA chan-
nel by setting the proper bits in the DMA mask register (see Table 11-4).

Table 11-4. DMA Mask Register

Bit | Meaning

01 00 = select channel 4 mask bit

01 = select channel 5 mask bit

10 ='select channel 6 mask bit

11 = select channel 7 mask bit

2 0 = clear mask bit

1 =set mask bit

37 don’t care

Chapter 11. Direct Memory Access (DMA) 179

Next, the mode register for the selected channel is configured by setting the channel
bit and the read/write bits (see Table 11-5).

Table 11-5 DMA Mode Register

Bit

Meaning

01

00 = channel 4 select

01 = channel 5 select

10 = channel 6 select

11 = channel 7 select

2-3

00 = verify transfer

01 = write transfer

10 = read transfer

11 =illegal

xx = don’t care if bits 6-7 = 11

0 = auto-initialize disable

1 = auto-initialize enable

0 = address increment

1 = address decrement

6-7

00 = demand mode select

01 = single mode select

10 = block mode select

11 = cascade mode select

180 Writing 0OS/2 2.1 Device Drivers in C

The DMA Command Registers are defined in Table 11-6.

Table 11-6. DMA Command Register

Bit Meaning

0 0 = memory to memory disable

1 = memory to memory enable

1 0 = channel 4 address hold disable

1 = channel 4 address hold enable

x =don’t care if bit 0 =0

2 | 0 = controller enable

1 = controller disable

3 0 = normal timing

1 = compressed timing

x =don’t care if bit0 = 1

4 0 = fixed priority

1 = rotating priority

5 0 = late write selecﬁon

1 = extended write selection

X =don’t care if bit3 =1

6 0 = DREQ sense active high

1 =DREQ sense active low

7 0 = DACK sense active low

1 = DACK sense active high

Chapter 11. Direct Memory Access (DMA) 181

The channel is then programmed to transfer words or bytes by the loading of the
page select, base address and count registers. To start the DMA operation, the chan-
nel is unmasked by writing the proper mask bits to the mask register.

The code to initiate a DMA transfer is shown in Figure 11-1. A complete listing of the
code can be found in Appendix C. The DMACh structure is assumed to be initialized
before the call to SetupDMA. The DMA channel might be active at the time that it is
needed, so the device driver should examine the status of the DMA channel to verify
that it is available. This is done by examining the status word of the controller and
checking the DMA channel busy bits.

USHORT SetupDMA(USHORT channel)
{
if(DMAChannel1Busy(channel))
return (DMA_CHANNEL_BUSY);
MaskDMA(channel);
SetDMAMode(channel,DMA_SINGLE | DMA_READ);
InitDMA(channel, (UCHAR) DMACh.PageSelect,
(USHORT) DMACh.BaseAddress,
(USHORT) DMACh.WordCount);
UnmaskDMA(channel);
return (DMA_COMPLETE);
}

Figure 11-1. DMA setup routine.

DMA and Micro Channel

The Micro Channel bus permits adapters to be masters or slaves. During a memory
or I/0 transfer under DMA, the master owns the bus and transfers data to and from a
slave. Adapters that need the bus compete for it using a centralized arbiter, called the
Central Arbitration Control Point, or CACP. The CACP arbitrates DMA channel uti-
lization based on a 4-bit arbitration bus, known as the ARBUS. The ARBUS and CACP
work together to ensure that the highest priority master gets control of the bus when
it needs it, and that other masters which are competing for the bus get a fair share of
the available time.

182 Writing 0OS/2 2.1 Device Drivers in C

In a Micro Channel system, the DMA controller is a master, which assists in transfers
between slaves during a DMA operation. The DMA controller cannot arbitrate the
bus. Rather, a slave initiates the arbitration which is monitored by the DMA con-
troller. The DMA controller then transfers the data between the slave and memory. In
this capacity, the DMA controller acts as a “middle man”, responsible for helping out
with the transfer. Thus this arrangement is sometimes referred to as “third-party
DMA?”.

Micro Channel slave adapters capable of DMA operation are fitted with a second
DMA controller, called a DMA arbiter. To perform DMA transfers, the device driver
initializes the adapter with the source, destination, and count of the transfer. The on-
board hardware DMA arbiter arbitrates for the use of the bus using its preassigned
arbitration level, which is usually stored in the adapter’s POS registers. Data transfers
can also be performed to and from Micro Channel Bus Masters without using the sys-
tem DMA controller.

CHAPTER 12

Extended Device Driver Interface

he Extended Device Driver Interface, EDDI, is a new interface developed to take

advantage of a new generation of intelligent disk controllers. These new disk

controllers are capable of handling transfers to and from discontiguous memo-
ry areas. Although EDDI is intended for disk drivers, other types of device drivers can
also utilize EDDIL

EDDI improves performance by allowing multiple, prioritized requests to be submit-
ted to the device driver at the same time. Instead of the standard synchronous
Request Packet, the EDDI driver is sent a Request List of commands, which it can
reorder to provide maximum performance. The Read and Write operations use scat-
ter/gather descriptors (SGDs), which allow for data transfer to and from discontiguous
data buffers. The driver does not need to block waiting for the request to complete,
but returns immediately. The actual transfer is usually completed by the disk adapter
hardware.

The ability to handle transfers to and from discontiguous memory is more efficient in
a system such as 0S/2 2.1, which utilizes the 4KB paging functionality of the 80386
and 80486 processors. Data buffers to be written to or from the device driver are nor-
mally partitioned into 4K pages, and are not necessarily contiguous. EDDI requires
that the device driver contain a second Strategy routine in addition to the normal
Strategy routine in an 0S/2 device driver. The new extended Strategy routine is also
called the Strategy 2 or scatter/gather entry point.

183

184 Writing OS/2 2.1 Device Drivers in C

Device Driver Capabilities

The OS/2 kernel issues a Get Driver Capabilities request to the device driver. If the
device driver supports the scatter/gather interface, it returns to the kernel a structure
containing two 16:16 pointers to special structures that are supported and maintained
by the device driver. Contained in one of the structures is a 16:16 pointer to the sec-
ond Strategy routine to handle synchronous I/0, along with several other parameters.
See the Get Driver Capabilities command in Chapter 6.

The first structure returned is the Driver Capabilities Structure, or DCS (see Figure
12-1). The DCS can be changed only by the device driver.

typedef struct _DRIVCAPSTRUCT {
USHORT reserved;

UCHAR VerMajor; // major version, should be 01
UCHAR VerMinor; // minor version, should be 01
ULONG Capabilities;// capabilities bits

PFUNCTION Strategy2; // 16:16 pointer to STRAT2
PFUNCTION SetFSDInfo; // 16:16 pointer to SetFSDInfo
PFUNCTION ChgPriority; // 16:16 pointer to ChgPriority
PFUNCTION SetRestPos; // 16:16 pointer to RestPos
PFUNCTION GetBoundary; // 16:16 pointer to GetBoundary
} DRIVCAPSTRUCT;

Figure 12-1. Driver Capabilities structure.

The major and minor version number specifies the version of the EDDI interface that
the driver supports. For 0S/2 2.1, these should both be 1.

Chapter 12. Extended Device Driver Interface 185

The capabilities bits are described in Table 12-1.

Table 12-1. Capabilities Bits

Bit(s) | Description

0-2 reserved, must be zero

3 if set, supports disk mirroring

4 if set, supports disk multiplexing

5 if set, driver does not block in STRAT2 requests. LAN Server and
LAN Manager require this.

6-31 reserved, should be 0

If the driver does not provide a particular service such as ChgPriority, it must return
0:0 as the pointer to the nonexistent function.

The second pointer returned from the Get Driver Capabilities function is a pointer to
the Volume Characteristics Structure, or VCS. The VCS structure appears in Figure 12-
2.

typedef struct _VOLCHARSTRUCT {
USHORT VolDescriptor;
USHORT AvgSeekTime;
USHORT Avglatency;
USHORT TrackMinBlocks;
USHORT TrackMaxBlocks;
USHORT HeadsPerCylinder
ULONG VolCylinderCount;
ULONG VolMedianBlock;
USHORT MaxSGList;
} VOLCHARSTRUCT;

Figure 12-2. Volume Characteristics Structure.

186

Writing OS/2 2.1 Device Drivers in C

The VolDescriptor is defined in Table 12-2.

Table 12-2. Volume Descriptor Word

Bit(s) | Description

0 if set, volume resides on removable media -

1 if set, volume is read only

2 if set, average seek time is independent of position, such as a RAM
disk '

3 if set, outboard cache is supported

4 if set, scatter/gather is supported by the adapter

5 if set, Read Prefetch is supported

6-15 reserved, should be zero

The AvgSeekTime is the disk seek time specified in milliseconds. If unknown, the
time should be set to FFFF. If the device is a RAM disk, the time should be 0.

The AvgLatency is the average rotational latency in milliseconds. Like the average
seek time, the latency should be set to FFFF when it is unknown, and 0 when the
device is a RAM disk.

The TrackMinBlocks specifies the number of blocks available on the smallest capaci-
ty track. If this value is not known, it should be set to 1.

The TrackMaxBlocks is the number of blocks available on the largest capacity track.
If this value is not known, it should be set to 0.

The Heads Per Cylinder is the number of heads per disk cylinder. If not known or
applicable, this value should be set to 1.

The VolCylinderCount is the number of cylinders in the volume. If not known, it
should contain the number of sectors in the volume.

The MaxSGList is the maximum number of scatter/gather list entries that can be sub-
mitted with one command. If the adapter does not directly support scatter/gather,
this field should be set to 0.

Chapter 12. Extended Device Driver Interface 187

Request Lists and Request Control

To enable the EDDI driver to be called with multiple requests at one time, a new
request format was defined, and is referred to as a Request List. The Request List
allows an EDDI device driver’s Strategy entry point to be called with a list of requests.
The device driver can reorder the requests to provide maximum performance. Only
four types of requests have been defined. The four requests are Read, Write, Write
Verify, and Read Prefetch. Other commands may be added in the future. The requests
have Request Control flags associated with them which can be used to force sequen-
tial execution.

The Request list consists of a 20-byte Request List Header shown in Figure 12-3.

typedef struct _REQUESTLISTHEADER {
USHORT ReqlListCount;
USHORT Reserved;
FARPOINTER ListNotifyAddress;
USHORT ListRequestControl;

UCHAR B1kDevUnit;
UCHAR ListStatus;
ULONG Reservedl

ULONG Reserved?;

} REQUESTLISTHEADER;

Figure 12-3. Request List Header structure.

The ReqListCount is the number of requests in the Request List.

The LstNotifyAddress is a 16:16 pointer to the notification routine to be called when
all requests in the Request List have been completed, or when an unrecoverable error
has occurred. The LstNotifyAddress is called with ES:BX pointing to the Request List
Header, and the carry flag set (STC) if an error has occurred. The device driver must
save all registers before making the call to the NotifyAddress, and restore them when
the call is complete. This call should not be made if both bit 4 and bit 5 of the
LstRequestControl word are clear (0).

188 Writing OS/2 2.1 Device Drivers in C

The LstRequestControl word is defined in Table 12-3.

Table 12-3. LstRequestControl Word Bits

Bit(s) | Description

0 reserved v

1 if set, only one request is in the list

2 if set, execute the requests sequentially (do not reorder)

3 if set, abort on error, set all status, error code and count
(BlocksXferred) fields

4 if set, notify immediately (by calling the LstNotifyAddress) if an error
is detected

5 if set, call the LstNotifyAddress upon completion regardless of any
errors

6-15 reserved, must be set to 0

The BlockDevUnit is the logical unit number of the volume.

The LstStatus contains the current status of the request list as it is being processed.
The device driver should update the list as requests are being processed. The
LstStatus byte is divided into two 4-byte nibbles. The lower 4 bits indicate the comple-
tion status of the requests in the list and the upper 4 bits indicate the error status of
the requests in the list. The bits are defined in Tables 12-4 and 12-5.

Chapter 12. Extended Device Driver Interface 189

Table 12-4. LstStatus Byte, Lower Nibble

Value | Meaning

00h no requests are queued
01h queueing is in process
02h all requests queued

04h all requests completed

08h reserved

Table 12-5. LstStatus Byte, Upper Nibble

Value | Meaning

00h no error

01h recoverable error occurred
02h unrecoverable error occurred
03h unrecoverable error with retry
04h reserved

08h reserved

190 Writing OS/2 2.1 Device Drivers in C

Request Format

The valid requests are Read (1Eh), Write(1Fh), Write Verify(20h) and Read
Prefetch (21h). Each extended request has a Request Header which is different from
the Request List Header. The Request Header is 32 bytes long and is described in
Figure 124. '

typedef struct _REQUESTHEADER {

USHORT Reglength;
UCHAR CmdPrefix;
UCHAR CmdCode;
ULONG HeaderOffset;
UCHAR RequestCtl;
UCHAR Priority;
UCHAR Status;

UCHAR ErrorCode;

FARPOINTER NotifyAddress;
FARPOINTER HintPointer;

ULONG Reservedl;
ULONG Reserved?;
ULONG Reserved3;

} REQUESTHEADER;

Figure 12-4. Request Header structure.

The ReqLength is the offset to the next request. FFFF terminates the list.

The CmdPrefix is always set to 0x1C to differentiate the request from a standard
Request Packet.

The CmdCode is one of the valid command codes, 1Eh, 1Fh, 20h, or 21h.

The HeaderOffset is the offset from the beginning of the Request List Header to the
header of this request, and is used as a quick access to the Request List Header.

Chapter 12. Extended Device Driver Interface 191

The RequestCtl field is defined in Table 12-6.
The notify routines should not be called if bits 4 and 5 are both clear (0).

Table 12-6. RequestCtl Byte

Bit(s) | Description

0-3 reserved, must be 0

4 if set, notify on error only by calling the NotifyAddress immediately
5 if set, notify on completion by calling the NotifyAddress

6-7 reserved, must be 0

The Request Priority defines the priority of the request, and is defined in Table 12-7.

Table 12-7. Request Priority

Value | Meaning

00h prefetch requests

01h low-priority request

02h read ahead, low-priority pager I/0

04h background synchronous user I/0

08h foreground synchronous user I/0

10h high-priority pager I/0

80h urgent request, should be handled immediately

192 Writing 0OS/2 2.1 Device Drivers in C

The Status field contains the status of the current request and is defined in Tables 12-
8 and 12-9.

Table 12-8. Request Status, Lower Nibble (Completion Status)

Value Meaning

00h not queued yet

01h queued and waiting
02h in process

04h done

08h reserved

Table 12-9. Request Status, Upper Nibble (Error Status)

Value Meaning

00h no error

01h recoverable error occurred
02h unrecoverable error occurred
03h unrecoverable error occurred
04h the request was aborted

08h reserved

Chapter 12. Extended Device Driver Interface 193

ErrorCode contains one of the errors described in Tables 12-10 and 12-11 if the corre-
sponding error bits are set in the Status field.

Table 12-10. Request Unrecoverable Error Codes

Value Meaning

00h write protect violation
01h unknown unit

02h device not ready
03h unknown command
04h CRC error

06h seek error

07h unknown media
08h block not found
0Ah write fault

0Bh read fault

0Ch general failure

10h uncertain media
13h invalid parameter

194 Writing OS/2 2.1 Device Drivers in C

Table 12-11. Request Recoverable Error Codes

Value | Meaning

1Ah verify error on write, recovered after 1 try

2Ah write error, write to duplexed or mirrored driver succeeded

3Ah write error on mirrored or duplexed drive, write to primary drive
succeeded '

1Bh read error, corrected using ECC

2Bh read succeeded after retry

3Bh read error, recovered from mirrored or duplexed driver

The NotifyAddress contains a 16:16 pointer to the driver to call when the request has
been completed or aborted. If bits 4 and 5 of the RequestCtl field are both clear (0),
the Notify Address is not valid and should not be called. The device driver must save
all registers before calling the notify routine, and restore them when the call returns.

The HintPointer is a 16:16 pointer to a Request Packet in the Request List. The device
driver can use this pointer to determine whether the current request can be grouped
with another pending request, providing that the other request has not yet been com-

pleted.

Read/Write/Write Verify Request

The format of these requests is described in Figures 12-5 and 12-6.

typedef struct _SGD {
PHYSADDR BufferPtr;
ULONG BufferSize;
} SGD;

Figure 12-5. Scatter Gather Descriptor structure.

Chapter 12. Extended Device Driver Interface 195

typedef struct _READWRITE {
REQUESTHEADER ReadWriteHeader;

ULONG StartBlock;

ULONG BlockCount;

ULONG BlocksXferred;
USHORT Flags;

USHORT SGDescrCount
ULONG Reserved;

SGD Sgd[SGDescrCount];

} READWRITE;

Figure 12-6. Read/Write Request structure.
The StartBlock is the string disk block for the data transfer. A disk block is defined as
a 512-byte logical disk sector.
The BlockCount is the number of 512-byte blocks to be transferred.

The BlocksXferred is the number of blocks that have been transferred at thé time that
the notification routine was called.

The Flags field currently uses only the two least significant bits. All other bits are set
to 0. If bit 0 is set, it specifies write-through, defeating any lazy write. If bit 1 is set, the
data should be cached on the outboard controller cache.

The SGDescrCount field contains the number of scatter/gather descriptors in the Sgd
field.

The Sgd field contains an array of scatter/gather descriptors.

196 Writing OS/2 2.1 Device Drivers in C

Read Prefetch Request

The format of the Read Prefetch request is described in Figure 12-7.

typedef struct _READPREFETCH {
REQUESTHEADER ReadPreHdr;

ULONG StartBlock;
ULONG BlockCount;
ULONG BlocksXferred;
USHORT Flags;

USHORT Reserved;

} READPREFETCH;

Figure 12-7. Read Prefetch Request structure.

The StartBlock is the string disk block for the data transfer. A disk block is defined as
a 512-byte logical disk sector.

The BlockCount is the number of 512-byte blocks to be transferred.

The BlocksXferred is the number of blocks that have been transferred at the time that
the notification routine was called.

The Flags field currently uses only the least significant bit. All other bits are set to 0.
If bit 0 is set, it specifies that the driver should retain data in the controller prefetch

buffers only until it has been read once. This prevents redundant caching in the con-
troller.

Request Control Functions

The EDDI device driver may optionally provide other services to allow OS/2 to man-
age extended requests. The current implementation is OS/2 2.1 defines four functions
that the device driver may support. The device driver exports these functions by plac-
ing a 16:16 pointer to the functions in the DCS returned from the Get Driver
Capabilities call. If the pointer in the DCS structure is 0:0, the function is not support-
ed by the device driver. Since the request control functions may be called at interrupt

Chapter 12. Extended Device Driver Interface 197

time, they must not block. Request control functions are called by the OS/2 File
System Driver, or FSD. Request control functions must save and restore the segment
registers, as the interrupt context may not be the same as the device driver. The four
request control functions are summarized in Table 12-12.

Table 12-12. Request Control Functions

Request Control Function | Description

SetFSDInfo Send the device driver 16:16 pointers to the
: FSD’s End of Interrupt and Access Validation
routines
ChgPriority Allows the FSD to change the priority of a
pending request
SetRestPos Allows the FSD to inform the device driver

where to send the disk drive heads when
there are no requests pending

GetBoundary The device driver returns a block number
greater than the block number passed to the
device driver

SetFSDinfo

This device driver function is called by the FSD with 16:16 pointers to the FSD’s End
of Interrupt and Access Validation routines. The driver is called with ES:BX pointing
to a FSDInfo structure, described in Figure 12-8.

typedef struct _FSDInfo {

ULONG Reservedl; // reserved, must be 0
FARPOINTER EndOfInit; // pointer to FSD’s EOI
ULONG Reserved?; // reserved, must be 0

FARPOINTER AccValidate; // pointer to FSD’s AccValidate
} FSDInfo;

Figure 12-8. SetFSDInfo structure.

198 Writing OS/2 2.1 Device Drivers in C

The device driver should allow this function to be called only once. If the call is the
first call, the device driver should return with the carry flag set (STC). Subsequent

calls should be ignored, and the device driver should return with the carry flag clear
(CLC).

If the EndOfInit pointer is 0, the FSD does not provide an End Of Interrupt routine.
All registers are preserved during the call to EndOfInit.

The device driver calls the FSD’s AccValidate with the AL register set to 0 for a non-
destructive operation, such as READ or VERIFY, and the AL register set to 1 for a
destructive operation, such as WRITE or FORMAT TRACK. The FSD’s AccValidate
function returns with the carry flag clear if access is allowed, or the carry flag set if
access is denied. The device driver should return a write-protect violation to the caller
if access is denied.

ChgPriority

The device driver’s ChgPriority routine is called with ES:BX pointing to the request,
and the AL register containing the new priority. The pointer in ES:BX is always a valid
pointer. The device driver should return with the carry flag set if the Request Packet
was not found or was no longer in the device driver’s internal queue. If the priority
change was successful, the device driver should return with the carry flag clear.

SetRestPos

The device driver’s SetRestPos routine is called with AX:BX containing the block to
be used for the resting position. A value of FFFF:FFFF means rest at the block where
the heads end up. The device driver should return with the carry flag set if the block
number is out of the range for the volume, otherwise it should return with the carry
flag clear.

GetBoundary

The device driver’s GetBoundary routine is called with AX:BX containing the block
number to be used as a reference to calculate the next block number. Using this infor-
mation, the FSD can store files more optimally. If the next block cannot easily be cal-
culated or is not known, the device driver can return the reference block+1. If the
block number is out of the range, the device driver must return with the carry flag set,
otherwise it should return with the carry flag clear.

CHAPTER 13
Debugging OS/2 2.1 Device Drivers

he Kernel Debugger, or KDB, is generally used to debug device drivers as

well as the system kernel code. The KDB kernel, OS2KRNLD, is actually a

full function replacement OS/2 kernel, which contains the debugger and the
debugger support functions. KDB communicates with a standard ASCII terminal
through one of the COM ports. If the system contains only one COM port, COM1,
KDB uses COML. If the system has two COM ports, COM1 and COM2, KDB uses
the second COM port, COM2. KDB defaults to 9600 baud, no parity, 8 data bits and
one stop bit.

The COM port is attached to an ASCII terminal via an RS-232 interface with data leads
only in a null modem configuration (pin 2 and 3 switched). Before installing the
debugger, the terminal link should first be verified by sending some text out to the
terminal using the DIR > COMn command. If the baud rate of the COM port has not
been previously initialized to 9600 baud, use the command MODE COM1 (or
COM2):96,n,8,1 <enter>. The text of the directory list should be displayed on the
debugging terminal. You do not have to issue the MODE command when KDB is
installed, as KDB will initialize the port on start-up to 9600,n,8,1.

To install the kernel debugger, the system is rebooted using a DOS or 0S/2 installa-
tion diskette, and the attributes of the OS2KRNL file changed to make it visible. This
can be done by using a utility such a chmod or one of the many available OS/2 utili-
ties. The OS2KRNL file is renamed to OS2KRNL.OLD, and the debugging kernel,

199

200 Writing OS/2 2.1 Device Drivers in C

OSZKRNLD, copied to OS2KRNL. The OS2KRNL.OLD file is kept to allow reinstalla-
tion of the non-debug kernel when reinstalling OS/2. When the system is rebooted,
the debugger should sign on at the debug terminal with the message “System
Debugger 03/16/89 [80386]”.

The IBM 0S/2 Toolkit contains an install utility for the kernel debugger which will
perform the above steps automatically.

KDB can be entered normally in several ways. Three special keys entered on the
debugging terminal cause KDB to be entered prior to the complete boot of 0S/2. The
“r” key causes the debugger to be entered at the beginning of DOS initialization in
real mode. The “p” key causes the debugger to be entered after OS/2 goes into the
protect mode for the first time. The “<space-bar>" causes the debugger to be entered
after most of DOS has been initialized. Symbols for DOS have been loaded at this
time.

After initialization is complete, the debugger can be entered at any time by typing
<cntl-c> at the debug terminal. The debugger is entered when and where the next
timer tick is taken after the key was pressed.

When KDB is entered, it will execute the current default command, usually the “r”
(register contents), and then display the debugger prompt, “##”. The system will not
run until the debugger is exited, usually by entering the GO command (g). KDB will
also be entered when the system detects an “INT 3” instruction. A common debug
technique is to insert INT 3 instructions in the driver source code while debugging,
which will cause KDB to be entered. Once KDB has been entered, the KDB com-
mands can be used to display the contents of variables, system information, or memo-
ry contents, and to run from or single-step from the breakpoint.

After any symbols files are loaded, an initialization file, called KDB.INI, is read and
executed. Any debugger command or list of debugger commands can be in the
KDB.INI file. A “g” command should usually be at the end of the command list,
unless the debugger is to remain stopped.

At any time during the display of data on the debug terminal, the display can be
stopped with a <cntl-s>, and restarted with a <cntl-q>. The GO command (g) always
resumes execution at the instruction displayed in the CS:IP register.

KDB displays information in machine code, and requires a thorough understanding of
machine language and processor architecture to fully utilize its capabilities.

A complete list of the valid KDB commands can be displayed by entering the “?” com-
mand at the KDB prompt for internal KDB commands, and “.?” for external com-
mands.

Chapter 13. Debugging OS/2 2.1 Device Drivers 201

KDB obtains its symbolic debug information from a symbol file with the extension of
.SYM. These files can be created with the MAPSYM utility, which creates a symbol
file from the .MAP file created during the link operation. When loading a device dri-
ver during system boot, the debug kernel looks for a .SYM file with the same file
name as the driver .SYS file, and in the same directory as the driver .SYS file. If the
device driver “TEST.SYS” were being loaded, the debug kernel would look in the
same directory as “TEST.SYS” for the file “TEST.SYM”, and load the symbols. The
symbol file is not necessary, and the driver will load without it, but variables will not
be able to be accessed by name. Several drivers may be loaded, each with their own
SYM file.

If the KDB was supplied with the operating system SYM files, these will also be
loaded if they are placed on the root directory with the OS2KRNL file. The system
symbol files will allow access to system variables and structures by name. Symbols
are displayed using a KDB command such as display word (dw), display byte (db), or
display double word (dd). They are referenced by the symbolic name preceded by the
underscore (“_"), if the driver is written in C. For example, to display the 16-bit vari-
able “bytecount”, the command “dw _bytecount” would be entered.

KDB Keywords

KDB supports the keywords in Table 13-1 which return their value when used in
expressions.

Table 13-1. KDB Keywords (Continued)

[E]AX, [EIBX, [EICX, [EIDX, | register values
[EISI, [EIDI, [EIBP, DS, ES,
SS, CS, [EISP, [E]IP

FLG value of flags

GDTB | value of GDT base physical address
GDTL value of GDT limit

IDTB value of IDT base physical address
IDTL value of IDT limit

TR, LDTR, MSW value of TR, LDTR, MSW registers

202 Writing OS/2 2.1 Device Drivers in C

Table 13-1. KDB Keywords
BRO, BR1..BR9 value of breakpoint address
FS, GS : segment registers
EFLG value of extended flags
CRO, CR2, CR3 value of control registers

DRO, DR1, DR2, DR3, DR4, | value of debug registers
DR5, DR6, DR7

TR6, TR7 value of test registers

KDB Operators

KDB supports the binary operators described in Table 13-2.

Table 13-2. KDB Binary Operators (Continued)

Operator Meaning

0 Parentheses

+ Addition

- Subtraction

* Multiplication

/ Division

MOD Modulo

> Greater than

< Less than

>= Greater than or equal to

Chapter 13. Debugging OS/2 2.1 Device Drivers 203

Table 13-2. KDB Binary Operators

Operator Meaning

<= Less than or equal to
I= Not equal to

== Equal to

AND Boolean AND

XOR Boolean exclusive OR
OR Boolean inclusive OR
&& Logical AND

I Logical OR

Address separator

KDB supports the unary operators described in Table 13-3.

Table 13-3. KDB Unary Operators (Continued)

Operator Meaning

| Task number/address operator
&addr Interpret address using segment value
#addr Interpret address using selector
%addr Interpret address as 32-bit linear
%%addr 32-bit physical address

204 Writing OS/2 2.1 Device Drivers in C

Table 13-3. KDB Unary Operators

Operator Meaning

- Two’s complement

! Logical NOT

NOT One’s complement
SEG Segment address
OFF Address offset

BY Low byfe of address
WO Low word of address
DW Doubleword from address
POI Pointer from address
PORT One byte from a port
WPORT Word from a port

Chapter 13. Debugging 0S/2 2.1 Device Drivers 205

The operator precedence is as follows:

0

|:

& #% %% - | NOT SEG OFF BY WO DW POI PORT WPORT (unary operators)
*/MOD

+-

><>=<=

KDB Command Reference

In the following command descriptions, the following rules apply:

¢ brackets ([]) mean the parameter is optional
e the “or” sign (|) means either of the parameters is valid
¢ parameters surrounded by carets (<>) are mandatory

¢ parameters may be separated by a comma (,) or blank

multiple commands on the same line are separated by a semicolon ()

all numeric entry is defaulted to hexidecimal

(...) means repeats

206 Writing OS/2 2.1 Device Drivers in C

Table 13-4 lists the KDB parameter types and their meaning.

Table 13-4. KDB Parameter Definitions

Parameter Definition

<expr> evaluates to an 8, 16, or 32-bit value

<number> a number in decimal, octal, hex or binary

<string> any number of characters between “” or ¢ ’

<range> <addr> [<word>] | [<addr>] [L <word>]

<addr> [& | #][<word>:]<word> | %<dword>

<list> <byte>, <byte>, ... | “string”

<bp commands> a list of debugger commands, separated by ;

<string> “char” | ‘char’

<dword>,<word>,<byte> expressions that evaluate to the size in <>
Expressions

An expression (expr) is a combination of parameters and operators that evaluate to an
8, 16 or 32-bit value.

Numbers

A number (number) parameter can be any number with hex as the default. Numbers
may be evaluated in a different radix by appending a special character to the number.

These special characters are y for binary, o for octal, T for decimal and h for hex
(default).

Chapter 13. Debugging 0OS/2 2.1 Device Drivers 207

Strings
A string (string) parameter is any number of characters within double (“”) or single
(") quotes. Double quotes within the string should be preceded by another double
quote to be correctly evaluated.

Ranges
A range (range) parameter specifies an address followed by either a length or an end
address. An additional parameter may also be used to specify the number of times to
perform the operation.

Addresses
An address (addr) parameter indicates a memory address in one of four modes. The
four modes are: real mode (&segment:offset), protect mode (#selector:offset), linear
address (%dword), and physical address (%%dword). The operators preceding the
address override the current address type.

Lists
A list is a list of two-character bytes separated by a space, or a string surrounded by
double quotes.

Commands
Commands (bp cmds) are one or more debugger commands, separated by semi-
colons (;), to be executed when a condition is met, such as a breakpoint encountered.

Strings

A string is a list of characters bounded by single or double quotes.

208 Writing 0S/2 2.1 Device Drivers in C

Dwords, words, bytes

Expressions that evaluate to the specified size.

Breakpoints

There are two kinds of breakpoints in the kernel debugger. Temporary breakpoints
are set as an option to the go (g) command, and disappear when the go command is
executed again. Sticky breakpoints are set with a KDB set breakpoint command, and
remain until cleared with a KDB command or the system is rebooted. Sticky break-
points are numbered 0-9, inclusive.

On a 386, the debug registers can be used in a sticky breakpoint (see the br com-
mand).

When a breakpoint is encountered, the current default command is executed. This
command is set to r, or the dump registers command. The default command may be
changed by the zs command, and listed with the z command.

Internal Commands

Set Breakpoint
bplbp number] [<addr>] [<passcnt>] [<bp cmds>]

Set a new sticky breakpoint, or change an existing old breakpoint. The number para-
meter is an optional breakpoint number, which selects a new breakpoint by the num-
ber or changes an existing breakpoint with the same number.

The passcnt parameter specifies how many times the breakpoint will be passed by
before it is executed. If passcnt is omitted or 0, the breakpoint will be executed the
first time that it is encountered.

The commands parameter is a list of KDB commands to be executed when the break-
point is encountered.

Chapter 13. Debugging 0S/2 2.1 Device Drivers 209

Set Register Breakpoint
br{<bp number>] e|w|r|1]|2|4 [<addr>] [<passcnt>] [“<bp cmds>”]

Sets a 386 debug register. Debug registers can be used to break on data reads and
writes, and on instruction execution. Up to four debug registers can be set and
enabled at one time. Disabled br breakpoints don’t occupy a debug register.

The e parameter specifies a one-byte length (default)
The w parameter specifies break on write operation.
The r parameter specifies break on read operation
The 1 parameter specifies a one-byte length.

The 2 parameter specifies a word length. Word-length breakpoints must be on a word
boundary.

The 4 parameter specifies a doubleword length.

Set Time Stamping Breakpoint
bt[<bp number>] [<addr>]

Set a time stamping breakpoint.

Show Timestamp Entries
bs

Show the time stamp entries.

List Breakpoint(s)
bl

Lists the currently set breakpoints with current and original passcnt, and breakpoint
commands (bp cmds) associated with them.

An “e” after the breakpoint number means that the breakpoint is enabled; a “d” means
that it is disabled. After either one, there may be an “”, which indicates that the
address was invalid the last time the debugger tried to set or clear the breakpoint.

210 Writing OS/2 2.1 Device Drivers in C

Clear Breakpoint{s)
bclbp number],[bp number],...

Removes (clears) the list of breakpoint numbers from the debugger’s breakpoint
table.

Enable Breakpoint
be [bp numberl,[bp numberld,...

Enables the list of breakpoint numbers.

Clear Breakpoint(s)
bd[bp numberl,[bp numberl,...

Disables the list of breakpoint numbers. The breakpoint is not removed, but disabled
so that it can be re-enabled later.

Compare Bytes
¢ <range> <addr>

Compares the bytes in the memory location specified by <range> with the corre-
sponding bytes in the memory locations beginning at <addr>. If all corresponding
bytes match, the kernel debugger displays its prompt and waits for the next com-
mand. If one or more corresponding bytes do not match, each pair of mismatched
bytes is displayed.

Dump Memory
d [<range>]

Dump memory in the last format selected (byte, word, doubleword).

Dump Bytes
db [<range>]

Dump memory in byte format and ASCII representation.

Chapter 13. Debugging 0S/2 2.1 Device Drivers 211

Dump Words
dw [<range>]

Dump memory in word format.

Dump Doublewords
dd [<range>]

Dump memory in doubleword format.

Dump GDT Entries
dg [a] [<range>]
Dump global descriptor table entries.
The a parameter specifies a dump of all entries, not just valid entries.

Without the a parameter, the dg command will display only the valid GDT entries. If
the range is an LDT selector, KDB will display “LDT” and the associated entry.

Dump IDT Entries
di [a] [Krange>]
Dumps the interrupt descriptor table.
The a parameter specifies a dump of all of the IDT entries.
The default is to display only the valid IDT entries.

212 Writing 0OS/2 2.1 Device Drivers in C

Dump LDT Entries
dl [a|p|s|h] [<range>]
Dump local descriptor table entries.
The a parameter specifies a dump of all of the LDT entries.
The default is to display only the valid LDT entries.
The p parameter specifies the private selectors only.
The s parameter specifies the shared selectors only.

'The h parameter specifies the huge segment selectors only.

Dump Page Directory/Page Table Entries
dp [a|d] [<range>]

Dump the page directory and page tables. Page tables are skipped if the correspond-
ing page directory entry is not present. Page directory entries with an asterisk next to
the page frame should be ignored.

The a parameter specifies a dump of all of the page directory and page table entries.
The default is to skip entries that are zero.

The d parameter specifies a dump of page directory entries only.

Table 13-5. Page Bit Definitions (bit set/clear)

Dc Dirty/clean

Au ~ Accessed/unaccessed
Us - User/supervisor

Wr Writable/read-only
Pn Present/not present

Chapter 13. Debugging OS/2 2.1 Device Drivers 213

The pteframe field contains the contents of the high 20 bits in the pte. If the page is
present, the value is the high 20 bits of the physical address that the page maps to. To
find out information about the physical address, use the .mp command. If the page is
not present, the pteframe field contains an index into the Virtual Page (VP) structure.
The .mv command can dump information from the VP structure. A not-present page
may still be cross-linked to a page of physical memory via the VP, and if so, that phys-
ical address is in the frame column. ’

Note: uvirt pages in the state column represent a direct mapping of physical memory
without any other page manager structures associated with them.

Dump Task State Segment (TSS)
dt [<addr>]

_ Dumps the TSS. If no address is given, the dt command will dump the current TSS
pointed to by the TR register, extracting the type (16- or 32-bit) from the descriptor
access byte. If an address is given, the type is determined by the 386env flag.

Dump Loadall Buffer
dx

Dump the 80286 loadall buffer.

Enter Data
e <addr> [K1ist>]

Enter one or more byte values into memory at the specified addr.

The list parameter specifies a list of bytes to be stored at addr and each subsequent
address, until all of the data in the list has been used.

If the list is omitted, KDB prompts the operator for a byte . If an error occurs, the con-
tents of memory are left unchanged. Each time the space bar is hit, the address is
incremented by one byte. The minus key (-) decrements the address. The return key
with no data terminates the entry and returns to the KDB prompt.

214

Writing OS/2 2.1 Device Drivers in C

Fill Memory With Pattern

f <range> <list>

Block fills the addresses in the range with the values in the list.
The list parameter specifies a pattern or list of bytes to be stored.

If the range specifies more bytes than the number of values in the list, the pattern of
bytes in the list is repeated until all bytes in the range are filled. If the list has more
values than the number of bytes in the range, the extra bytes are ignored.

Go

g [s] [t] [=<start addr>I[<break addr>],[<break addr>...]

Passes execution control to the code at the start addr. Execution continues to the end
of the code, or until the break addr or a breakpoint is encountered.

If no start addr is given, the command passes execution to the address specified by
the current CS:IP.

The equal sign (=) parameter is used only when a start addr is given.

The s parameter causes the number of timer ticks since the system was started to be
displayed.

The t parameter allows trapped exceptions to resume at the original trap handler
address without having to unhook the exception.

Up to 10 addresses may be used. Only the first address encountered during execution
will cause a break. All others are ignored. If more than 10 breakpoints are entered, an
error message will be displayed.

When the breakpoint is encountered, the default command is executed.

Chapter 13. Debugging 0S/2 2.1 Device Drivers 215

Help/Print Expression

?[<expr>1[]|’string’]

If no arguments are entered, KDB displays the command syntax help for the internal
debugger commands.

The expr parameter is an expression to be evaluated. The evaluated expression is dis-
played in hex, decimal, octal, and binary.

The string parameter prints the ASCII string on the debugger terminal.

Hex Arithmetic
h <number 1> <number 2>
Perform hex arithmetic in two values. KDB adds number 1 to number 2, subtracts

number 1 from number 2, multiplies number 1 by number 2, divides number 1 by
number 2, and displays the results.

Input Port
i <port>

Reads and displays one byte from the specified port.

List Near Symbols
In [Kaddr>]

Lists the nearest symbol both forward and back from addr.

List Groups
1g [<mapname>]

Lists the selector or segment and the name for each group in the active maps or the
specified map mapname.

216 Writing 0S/2 2.1 Device Drivers in C

List Maps

Tm

Lists all of the current symbol files loaded, and which ones are active.

List Absolute Symbols
Ta [<mapname>]

Lists all of the absolute symbols in the active maps or the specified map mapname.

List Symbols
1s <addr>

Lists all of the symbols in the group that the address addr is in.

Add/Remove Active Map

wa <mapname> | *
wr <mapname> | *

Adds (wa) or deletes (wr) a map to the active map list. The active maps are listed with
the Im command.

The mapname parameter is the name of a map file to make active or an active map to
be removed.

The * parameter adds or removes all map files.

Conditional Execution
J <expr> [<command 1ist>]

Executes the command list if the expression evaluates to TRUE (nonzero).
Otherwise, it continues to the next command in the command line, but not including
the ones in the command list. The command list is one or more commands surround-
ed by single or double quotes. If more than one command appears in the command
list, the commands must be separated by the semicolon (;) character.

The j command is normally used to set a conditional breakpoint at a particular
address.

Chapter 13. Debugging 0S/2 2.1 Device Drivers 217

Stack Trace
k [s|b] [<ss:bp addr>] [<cs:ip addr>]

Traces the bp chain on the stack and prints the address, 4 words/dwords of parame-
ters, and any symbol found for the address.

The s parameter specifies a 16-bit frame width.
The b parameter specifies a 32-bit frame width.
The ss:bp specifies a stack address ot<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>