
Steven J. Mastrianni · %/,,,.
~8 Foreword by 'e~ "'/1~ 0}'8-t

80~ ~lo. JOHN SOYRING ~Ceco!8e
~/ Accredited

WRITING OS/2 2.1
DEVICE DRIVERS1NC

SECOND EDITION

Writing OS/2 2.1
Device Drivers in C

Second Edition

VNR's OS/2 Series

• O/S 2 Presentation Manager GPI Graphics
by Graham C.E. Winn

• Writing OS/2 2.0 Device Drivers In C
by Steven Mastrianni

• Now That I Have OS/2 2.0 On My Computer- What Do I Do Next?
by Steven Levenson

• The OS/2 2.0 Handbook
by William H. Zack

• The Cobol Presentation Manager Programming Guide
by David M. Dill

• Learning To Program OS/2 2.0 Presentation Manager By Example:
Putting the Pieces Together
by Stephen A. Knight

• Comprehensive Database Performance For OS/2 2.0's Extended Services
by Bruce Tate, Tim Malkemus, and Terry Gray

• Client/Server Programming With OS/2 2.0
by Robert Orfali and Daniel Harkey

• OS/2 2.X Notebook: Best of IBM OS/2 Developer
edited by Dick Conklin, Editor

• The Shell Collection: OS/2 2.X Utilities
by Steven Levenson

• Using Workplace OS/2: The Power User's Guide to IBM's OS/2 Version 2.1
by Lori Brown and Jeff Howard

• Writing OS/2 2.1 Device Drivers in C, 2nd Edition
by Steven Mastrianni

• The OS/2 2.1 Corporate Programmer's Handbook
by Nora Scholin, Mark Sullivan, and Robin Scragg

• OS/2 2.1 REXX HANDBOOK: Basics, Applications and Tips
by Hallett German

Writing OS/2 2.1
Device Drivers in C

Second Edition

Steven J. Mastrianni

1nim51 VAN NOSTRAND REINHOLD
~ ______ New York

DISCLAIMER
This book and software are provided "as is." The implied warranties of merchantability and fitness for a particular purpose are expressly
disclaimed. This book and software may contain programs that are furnished as examples. These examples have not been thoroughly
tested under all conditions. Therefore, the reliability, serviceability, or function of any program or program code herein is not guaran­
teed.

The information presented in this book was valid at the time it was written and was conveyed as accurately as possible by the author.
However, some information may be incorrect or may have changed prior to publication. The author makes no claims that the material
contained in this book is entirely correct, and assumes no liability for use of the material contained herein.

TRADEMARKSANDCOPYRIGHTS

IBM, AT, OS/2, Personal System/2, PS/2, and Micro Channel are registered trademarks of the International Business Machines
Corporation.
C/2, XT, and Presentation Manager are trademarks of International Business Machines Corporation.
Intel is a registered trademark of the Intel Corporation.
Lotus 1-2-3 is a registered trademark of Lotus Development Corporation.
MS-DOS, Code View and Microsoft are registered trademarks of Microsoft Corporation.
Microsoft and Microsoft Windows are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright© 1993 by Van Nostrand Reinhold

Llbrary of Congress Catalog Card Number 93-2264
ISBN 0.442-01729-4

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means­
graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems-without
written permission of the publisher.

Van Nostrand Reinhold is an International Thomson Publishing company. ITP logo is a trademark under license.

Printed in the United States of America

Van Nostrand Reinhold
115 Fifth Avenue
New York, NY 10003

International Thomson Publishing
Berkshire House, 168-=173
High Holborn, London WCl V 7 AA
England

Thomas Nelson Australia ·
102 Dodds Street
South Melbourne 3205
Victoria, Australia

Nelson Canada
1120 Birchmount Road
Scarborough, Ontario
MlK 5G4, Canada

161514 13 121110 9 8 7 6 5 4 3 2 1

International Thomson Publishing GmbH
Konigswinteror Str. 518
5300 Bonn3
Germany

International Thomson Publishing Asia
38 Kim Tian Road, #0105
Kim Tian Plaza
Singapore 0316

International Thomson Publishing Japan
Kyowa Building, 3F
2-2-1 Hirakawacho
Chiyada-Ku, Tokyo 102
Japan

library of Congress Cataloging-in-Publication Data
Mastrianni, Steven J, 1951-

Writing OS/2 2.1 Device Drivers in CI Steven J. Mastrianni.-
2nd ed.

p. cm.- (VNR's OS/2 series)
Includes index.
ISBN 0-442-01729-4
1. OS/2 device drivers (Computer programs) 2. OS/2 (Computer

file) 3. C (Computer program language) I. Title. II. Series.
QA76.76.D49M37 1993
005.4'3-dc20 93-2264

CIP

Project Management: Ray Campbell • Art Director: Jo-Ann Radin-Campbell • Production: mle design, Milford, CT 06460

DEDICATION

This book is dedicated to my sons Steve and Jeffrey, my daughter Laura, and my wife Debra,

who put up with my absence while this book was being prepared.

ACKNOWLEDGMENTS

I would like to thank Dennis Rowe, Stacey Barnes, Mark Fiechtner, Frank Schroeder, Dick
Conklin, Carol Bray, and John Soyring of the IBM Corporation for helping to make this book
possible. I'd also like to thank Allan Wynn of IBM for supplying the information on the IBM
OEMHLP device driver.

I would like to thank Marcello Lopez, Michael Kupka, Michael Glieneke, and Rhonda Morrison
for their contributions to this book.

A special thanks to Dwight Vandenberghe of PentaSoft, Inc., Seattle, Washington, for providing
me with the training and inspiration to write my first OS/2 device driver.

FOREWORD

Building upon the success of OS/2 Version 2.0 with well over 2 million copies shipped, IBM

has now released an exciting new upgrade of this increasingly popular PC operating system.

OS/2 Version 2.1 includes many new functional enhancements such as 32-bit graphics process­

ing, integrated multimedia support, the ability to run applications originally designed for

Windows 3.1 and much more.

OS/2 2.1 not only has superior abilities for running DOS applications, Windows applications

and new 32-bit OS/2 applications, but it allows users to exploit the untapped power of their 32-

bit PC's and advanced I/0 devices. However, the PC hardware industry is not standing still. In

addition to the introduction of the Pentium processor, the PC industry has seen an explosive

growth in faster, more intelligent peripheral devices, including Fax/Modems, CD-ROM's, high

resolution printers and display devices, mass storage, and new technology such as PCMCIA

Support for these new devices requires device drivers. In the case of high resolution video

devices, several drivers may be required. Keeping up with the demand of users for state-of-the­

art support of these devices can be a daunting task.

Writing OS/2 2.1 Device Drivers in C is the second edition of the very popular Writing OS/2

2.0 Device Drivers in C, which has sold more than 15,000 copies in over 30 countries. I think

you will find this second edition even more helpful and informative than the first. More sample

source code has been added, and all of the source code for the examples in the book is includ­

ed on a disk attached to the back cover. Several more chapters were added with even more

information covering device driver development - including a question-and-answer section

covering commonly asked driver development questions.

Steve's writing style is clear and concise. He tells you what you need to know - without extra­

neous information, excessive use of buzz words, and acronyms. Developers of device drivers

who read Steve's first edition have consistently told me they found his book to be a valuable

addition to their libraries. I think you will find this second edition even more worthwhile.

OS/2 2.1 is going to make a difference in the way PC's are used. It will both preserve user's

current 16-bit investments, and enable them to exploit 32-bit hardware and 1/0 devices.

Authors like Steve help provide the technical support you will need to join this new PC revolu­

tion and move into the 21st century of computing.

John Soyring
Director of Software Development Programs
IBM Corporation

CONTENTS

INrn.ODUCTION .. xxi

CHAPTER 1. IBE EVOLUTION OF PC DEVICE DRIVERS 1

Storage Devices .. 3

Interface Adapter Cards .. .4

The First Operating System For Personal Computers .. .4

The First Bus ... 6

CHAPTER 2. UNDERSTANDING DEVICE DRIVERS 7

Device Drivers Today ... 10

Device Drivers - A Summary ... 11

CHAPTER 3. IBE PC HARDWARE ARCHITECTURE 13

The System Bus .. 13

The IBM PC - Beginnings .. 14

IBM PCXT .. 15

The Interrupt System ... 15

IBM PCAT .. 16

TheATBus .. 17

The IBM PS/2 and Micro Channel.. ... 18

Enhanced Industry Standard Architecture (EISA) ... 20

Bus Wars ... 20

Real Mode .. 21

ix

x Contents

Protect Mode ... 22
Using Addresses and Pointers .. 24
The Ring Architecture .. 25

CHAPTER 4. AN OVERVIEW OF IBE OS/2 OPERATING SYSTEM 27
Roots ... 28
Processes and Threads .. 30
OS/2 1.0 - OS/2 Arrives ... 32
OS/2 1.1 - Presentation Manager Arrives .. 32
OS/2 1.2 -A Better File System .. 33
OS/21.3- IBM's First Solo Effort ... 34
OS/2 2.0 -What OS/2 Was Really Meant to Be .. 35
The OS/2 Application Programming Interlace ... 37

CHAPTER 5. mE ANATOMY OF AN OS/2 DEVICE DRIVER 39
Application-to-Driver Interlace .. 39
DOS Device Drivers and OS/2 Device Drivers .. .40
Designing an OS/2 Device Driver41
Tools Necessary For Driver Development41
The Basics of Driver Design42
Request Packets43
OS/2 Device Driver Architecture .. .43
Device Driver Modes .. .45
The Device Header .. .46
Capabilities Bit Strip .. .48
Providing a Low-Level Interlace48
The Strategy Section .. 55
Initialization ... 57
A Common Strategy ... 59
Interrupt Section ... 60
The Timer Handler ... 65

CHAPfER 6. DEVICE DRIVER STRATEGY COMMANDS 67
Summary of Device Driver Commands .. 70
OH I Init ... 72
lH I Media Check .. 75

Contents xi

2H I Build BPB ... 77

4H, SH, 9H I Read or Write ... 79

5H I Nondestructive Read No Wait .. 80

6H, AH I Input or Output Status ... 81

7H, BH I Input Flush or Output Flush ... 82

DH,EH I Open or Close ... 83

FH I Removable Media .. 84

lOH I Generic IOCTL .. 84

llH I Reset Media .. 86

12H, 13H I Get/Set Logical Drive .. 87

14H I Deinstall .. 88

16H I Partitionable Fixed Disks ... 89

17H I Get Fixed Disk/Logical Unit Map ... 90

lCH I Shutdown ... 91

lDH I Get Driver Capabilities ... 91

lFH I InitComplete .. 92

CHAPTER 7. A SIMPLE OS/2 PHYSICAL DEVICE DRIVER 93

Device Driver Specifications .. 93

Application Program Design ... 94

Device Driver Operation .. 95

CHAPTER 8. TllE MICRO CHAN'NEL BUS .. 107

Micro Channel Adapter Cards ... 107

Micro Channel Adapter ID .. 108

Accessing the POS Register During Debug .. 115

Micro Channel Interrupts .. 116

CHAPTER 9. OS/2 2.1 VIRTUAL DEVICE DRIVERS 119

The Virtual DOS Machine ... 120

VDD Architecture ... 122

VDD Initialization ... 123

DOS Settings ... 124

DOS Settings Registration ... 125

VDD to PDD Communications ... 125

The Virtual COM Device Driver ... 126

The Virtual Timer Device Driver .. 128

xii Contents

The Virtual Disk Device Driver ... 130
The Virtual Keyboard Device Driver .. 132
The Virtual Mouse Device Driver ... 133
The Virtual Llne Printer Device Driver .. 133
The Virtual Video Device Driver ... 134
Virtual DevHlp Services By Category ... 136
DOS Session Interrupts ... 147
Sample Virtual Device Driver .. 152
Establishing a VDD-PDD Llnk .. 161

CHAPTER 10. MEMORY-MAPPED ADAPTERS AND IOPL 163
High and Low Memory Maps .. 164
Application Program Access to Adapter Memory ... 164
Access to Adapter Memory in the Interrupt Handler ... 166
Input/Output Privilege Level (IOPL) ... 167
The IOPLSegment ... 168
IOPL From 32-bit Applications .. 171

CHAPTER 11. DIRECT MEMORY ACCESS (DMA) 1 73
The DMA Controller .. 173
Using DMA .. 177
DMA and Micro Channel. .. 181

CHAPTER 12. EXI'ENDED DEVICE DRIVER INTERFACE 183
Device Driver Capabilities ... 184
Request Lists and Request Control ... 187
Request Format. .. 190
Read/Write/Write Verify Request. ... 194
Read Prefetch Request ... 196
Request Control Functions .. 196
SetFSDinfo .. 197
ChgPriority .. 198
SetRestPos ... 198
GetBoundary ... 198

Contents xiii

CHAPTER 13. DEBUGGING OS/2 2.1 DEVICE DRIVERS 199

KDB Keywords ... 201

KDB Operators ... 202

KDB Command Reference .. 205

Breakpoints ... 208

Internal Commands .. 208

External Commands ... 226

CHAPTER 14. AN INTRODUCTION TO PRESENTATION DRIVERS 239

Device Context. ... 242

Data Types ... 244

Instance Data ... 244

Program Stack ... 245

Presentation Driver Design Considerations .. 246

Presentation Driver Errors .. 246

Presentation Driver Error Codes .. 247

Additional Presentation Driver Functions .. 248

CHAPTER 15. WORKJ:NG wmI POINIBRS ... 251

C Set/2 ... 251

Virtual Addresses .. 254

Pointers In A VDM ... 255

CHAPTER 16. PCMCIA. DEVICE DRIVERS ... 257

The PCM CIA Software Trilogy ... 258

OS/2 2.1 PCM CIA Initialization .. 259

Client Device Driver Architecture .. 260

OS/2 2.1 Restrictions ... 262

Card Services Functions .. 262

Calling Card Services ... 266

Callbacks .. 267

CHAPTER 17. TIPS AND 1ECHNIQUES ... 271

APPENDIX A - DEVICE HELPER REFERENCE 275

Device Helper Functions ... 275

DevHlp Services and Device Contexts ... 280

xiv Contents

Device Helper Categories .. 286
DevHlp Routines ... 290

APPENDIX B - REFERENCE PUBLICATIONS 401

APPENDIX C - US'fINGS .. 403
Device Header, One Device403
Device Header, Two Devices404
C Startup Routine, One Device405
C Startup Routine, Four Devices .. .407
Standard OS/2 Device Driver Include File409
Skeleton Strategy Section424
Sample IOCtl Call, 16-Bit. .. .425
Sample IOCtl Call, 32-Bit. .. .425
Sample Interrupt Handler426
Sample Timer Handler .. .428
Simple OS/2 Parallel Physical Device Driver .. ,.429
C Startup Routine for Parallel Device Driver .. .438
Parallel Device Driver Include File .. .439
Parallel Device Driver Make File440
Parallel Device Driver DEF File440
Sample OS/2 Serial Device Driver .. .440
Serial Device Driver Make File .. .458
Serial Device Driver DEF File .. .458
Sample C Callable DevHlp Interface .. .459
C Callable Debugger Breakpoint460
Data Transfer Routine461
Sample D MA Routines .. .463
Obtaining POS Register Contents .. .473
ABIOS Specific Include File .. 475
IOPL Routine For 16-Bit and 32-BitApplications477
IOPL Routine Make File478
IOPL Routine DEF File478
IOPL Test Program, 16-Bit478
IOPL Test Program Make File, 16-Bit..479
IOPL Test Program DEF File, 16-Bit479

Contents xv

IOPL Test Program, 32-Bit .. 480

IOPL Test Program Make File, 32-Bit480

IOPL Test Program DEF File, 32-Bit481

Device Driver For Memory-Mapped Adapters481

Memory-Mapped Device Driver DEF File .. .493

Memory-Mapped Device Driver Make File .. .494

Memory-Mapped Device Driver Header File494

Memory-Mapped Device Driver Test Program - 16-Bit... ... 496

Memory-Mapped Test Program Header File - 16-Bit .. .498

Memory-Mapped Test Program Def File - 16-Bit498

Memory-Mapped Test Program Make File - 16-Bit498

Memory-Mapped Test Program - 32-Bit, 16-Bit Pointers .. .499

Memory-Mapped Test Program DEF File - 32-Bit .. 501

Memory-Mapped Test Program Make File - 32-Bit .. 501

Memory-Mapped Test Program - 32-Bit, 32-Bit Pointers ... 501

Memory-Mapped Test Program DEF File - 32-Bit.. .. 503

Memory-Mapped Test Program Make File - 32-Bit .. 503

Macros ... 504

APPENDIX. D - OEMHI.J> AND TESTCFG ... 505

OEMHLP ... 505

TESTCFG .. 533

INDEX. .. 541

UBRAR.Y ORDER FORM .. 549

TABLES

Table 4-1. OS/2 Priority Structure ... 31
Table 5-1. Device Attribute Word ... 47
Table 5-2. Capabilities Bit Strip ... 48
Table 5-3. Device Driver Strategy Calls ... 57
Table 6-1 Device Driver Strategy Commands ... 71
Table 6-2. API Routines Available During Init .. 7 4
Table 6-3. Media Descriptor Bytes ... 76
Table 6-4. Boot Sector Format .. 78
Table 9-1. DOS Settings ... 124
Table 9-2. DOS Settings Information ... 125
Table 9-3. Virtualized 8250/16450 Registers ... 127
Table 9-4. Virtualized Timer Registers .. 129
Table 9-5. Supported Virtualized Timer Registers .. 129
Table 9-6. Virtualized INT 13 Functions .. 130
Table 9-7. Virtualized Floppy Disk Ports ... 131
Table 9-8. Virtualized DOS Interrupts .. 148
Table 9-9. Virtualized BIOS Interrupts .. 149
Table 9-10. Virtualized DOS Software Interrupts ... 151
Table 11-1. DMA ChannelAssignments .. 174
Table 11-2. D MA Controller Port Assignments .. 175
Table 11-3. DMAChannelAddressing .. 177
Table 11-4. DMA Mask Register .. 178
Table 11-5 DMAMode Register ... 179
Table 11-6. DMA Command Register .. 180
Table 12-1. Capabilities Bits .. 185
Table 12-2. Volume Descriptor Word .. 186
Table 12-3. LstRequestControl Word Bits ... 188
Table 12-4. LstStatus Byte, Lower Nibble .. 189
Table 12-5. LstStatus Byte, Upper Nibble .. 189
Table 12-6. RequestCtl Byte .. 191

xvii

xviii Tables

Table 12-7. Request Priority .. 191
Table 12-8. Request Status, Lower Nibble (Completion Status) ... 192
Table 12-9. Request Status, Upper Nibble (Error Status) .. 192
Table 12-10. Request Unrecoverable Error Codes ... 193
Table 12-11. Request Recoverable Error Codes ... 194
Table 12-12. Request Control Functions .. 197
Table 13-1. KDB Keywords ... 201
Table 13-2. KDB Binary Operators .. 202
Table 13-3. KDB Unary Operators ... 203
Table 13-4. KDB Parameter Definitions .. 206
Table 13-5. Page Bit Definitions (bit set/ clear) .. 212
Table 13-6. KDB Register Definitions .. 219
Table 13-7. KDB Flag Register Definitions ... 220
Table 13-8. KDB Machine Status Word ... 221
Table 13-9. KDB Recognized Structures ... 227
Table 14-1. Presentation driver flag bits .. 241
Table 14-2. Device Context Types .. 243
Table 14-3. Data Types for Queued Date ... 244
Table 14-4. Graphics Engine Exports .. 245
Table 14-5. Presentation Driver Errors .. 247
Table 14-6. Presentation Driver Error Codes .. 248
Table 14-7. Job Error Returns ... 249
Table 16-1. OS/2 PCMCIA Card Services ... 263
Table 16-2. Card Services Register Interface (input) ... 266
Table 16-3. Card Services Register Interface (output) ... 266
Table 16-4. OS/2 2.1 Callbacks ... 267
Table 16-5. Callback Register Interface (input) .. 269
Table 16-6. Callback Register Interface (output) .. 269
Table A-1. Device Helper Functions .. 275
Table A-2. Device Helper Contexts .. 281
Table A-4. Read Only System Variables ... 319
Table A-5. Device Driver Events .. 372
Table D-1. OEMHLP Supported IOCtl Calls ... 507
Table D-2. Video Chip Set Information .. 518
Table D-3. TESTCFG IOCtls, Category Ox80 .. 533

FIGURES

Figure 1-1. The Altair 8800 .. 1
Figure 1-2. Floppy disk .. 3
Figure 1-3. Role of the BIOS ... 5
Figure 2-1. Polled printer output. ... 8
Figure 2-2. Interrupt printer output. ... 9
Figure 2-3. The role of the device driver ... 10
Figure 3-1. The IBM PC .. 14
Figure 3-2. The IBM PC AT .. 15
Figure 3-3. Micro Channel adapter .. 18
Figure 3-4. IBM PS/2 Model 80 ... 19
Figure 3-5. Real mode address calculation .. 21
Figure 3-6. 80286 protect mode addressing ... 22
Figure 3-7. 80386-486 flat mode addressing .. 23
Figure 3-8. The 80X86 ring architecture .. 25
Figure 4-1. Process and threads ... 31
Figure 4-2. OS/2 1.3 EE .. 34
Figure 4-3. OS/2 2.1 Tutorial .. 36
Figure 5-1. Application-to-device driver interface .. .42
Figure 5-2. Request Packet. .. 43
Figure 5-3. OS/2 device driver header44
Figure 5-4. Device driver header, multiple devices46
Figure 5-5. Start-up routine, one device ... 49
Figure 5-6. Start-up routine, four devices .. 51
Figure 5-7. Start-up routine with timer and interrupt handler ... 53
Figure 5-8. Skeleton strategy section ... 55
Figure 5-9. Interrupt handler .. 60
Figure 5-10. Timer handler ... 66
Figure 5-11. TickCount timer handler ; ... 66
Figure 6-1. Request Packet definition .. 68
Figure 6-2. Standard OS/2 device driver errors ... 68
Figure 7-1. Application call to open the driver .. 94

xix

xx Figures

Figure 7-2. INIT section .. 95
Figure 7-3. OPEN section .. 97
Figure 7-4. CLOSE section .. 98
Figure 7-5. IOCtl OxOl, write port ... 100
Figure 7-6. IOCtl Ox02 .. 101
Figure 7-7. IOCtl Ox03 .. 102
Figure 7-8. READ and WRITE section ... 104
Figure 7-9. Timer handler ... 105
Figure 8-1. ISA and Micro Channel INIT section ... 110
Figure 8-2. Micro Channel vs. ISA bus interrupt handler .. 116
Figure 9-1. OS/2 2.1 VDMs .. 119
Figure 9-2. VDD initialization section .. 153
Figure 9-3. VDD data segment. .. 154
Figure 9-4. VDD input handler ... 155
Figure 9-5. VDD data port output handler ... 156
Figure 9-6. VDD user routines .. 157
Figure 9-7. VDD include file ... 158
Figure 9-8. VDD Make And DEF Files .. 160
Figure 9-9. Registering PDD for VDD-PDD communications .. 161
Figure 9-10. VDD-PDD communications structure .. 162
Figure 10-1. PhysToVirt call .. 165
Figure 10-2. Mapping a GDT selector during INIT .. 167
Figure 10-3. IOPL Segment. .. 169
Figure 10-4. IOPL DEF file .. 170
Figure 11-1. DMA setup routine ... 181
Figure 12-1. Driver Capabilities structure ... 184
Figure 12-2. Volume Characteristics Structure ... 185
Figure 12-3. Request List Header structure .. 187
Figure 12-4. Request Header structure .. 190
Figure 12-5. Scatter Gather Descriptor structure ... 194
Figure 12-6. Read/Write Request structure .. 195
Figure 12-7. Read Prefetch Request structure .. 196
Figure 12-8. SetFSDinfo structure ... 197
Figure 14-1. OS/2 2.1 Workplace Shell ... 239
Figure 15-1. VMGlobalToProcess and VMProcessToGlobal .. 253
Figure 15-2. Using VMAlloc .. 254
Figure 15-3. Calling VMLock .. 255
Figure 16-1. PCM CIA software architecture ... 259
Figure 16-2. ClientData structure ... 270
Figure A-1. ADD Device Class Table ... 357
Figure A-2. Retrieving an ADD's entry point using GetDOSVar .. 358
Figure D-1. Locating An EISA Bus Adapter Using 0 EMHLP ... 506

INTRODUCTION

This is the second edition to Writing OS/2 2.1 Device Drivers in C. The first edition of this book
has already sold 15,000 copies in over 30 countries. This is not a testament of the book's populari­
ty; rather, it is a statement of the tremendous popularity of OS/2. The book began as a collection
of my notes taken while developing device drivers for OS/2 1.0. The collection of notes kept get­
ting larger and larger, so I decided to put them together into a more organized form. I :finished
the first edition of the book in January of 1992 and it was first published in April of that year.

Since that time, OS/2 has undergone enormous changes. The latest release, 2.1, is rock solid,
and contains some of the things we've been waiting for, such as support for CD-ROM drives,
super VGA video, and multimedia devices such as the Sound Blaster. The addition of the
Wmdows 3.1 support has enhanced OS/2's popularity, allowing the latest Windows 3.1 applica­
tions to run seamlessly on the OS/2 desktop. This is the OS/2 we've all envisioned, and IBM has
made our vision real.

However, OS/2 device drivers continue to be a limiting factor in the acceptance and use of OS/2.
This is somewhat discouraging, since OS/2 device drivers are not difficult to write. Using the
examples I give you in this book, you should be able to have a simple OS/2 physical device driver
up and running in less than one hour. Of course, some types of device drivers are more difficult
If you follow the guidelines I give you, however, you'll find that writing an OS/2 device driver can
be an easy and rewarding experience.

As an independent software developer and consultant, I don't have time to read volumes of refer­
ence materials to get up to speed quickly at a new assignment Reference materials have never
been good about telling you how to do something anyway, since they're only references.
Sometimes, a few source code examples are all that I really need to get started, and I've kept that
in mind when writing this book. To help you get going quickly, I've included enough code so that

xxi

xxii Introduction

you can begin writing OS/2 2.1 device drivers immediately. By the time you finish this book, you
will have enough background and sample source code to easily develop your own OS/2 device
drivers. You are free to use the code described in the listings section or on the companion disk
for your device drivers.

The code in this book relies upon a library of C-callable functions for the Device Helper, or
DevHlp routines. The DevHlp routines are the driver writer's API, and perform such functions as
hooking interrupts, timers and converting addresses. At the back of the book, you11 find an order
form for the C-callable library, or you can write your own providing you have a good knowledge
of assembler programming and the parameter passing mechanisms via the stack. The cost of the
library is $79 without the library source, and $149 with the library source. This is not inexpensive,
but its cheaper than writing more than 100 assembly language routines from scratch. If your time
is worth more, or you need to get going immediately, I recommend you buy the library. I provide
free support via Compuserve, and offer free updates to the library for one year.

This text does not contain a complete discussion or reference for OS/2 2.1, nor is it a complete
reference for device driver function calls or prototypes; readers should have a general under­
standing of OS/2 2.1 and the OS/2 religion, along with some OS/2 2.1 programming experience.
See the Reference Section for a list of recommended reading. A complete reference for OS/2 1.3
device drivers can be found in I/0 Subsystems and Device Support, Volume 1 and Volume 2 from
IBM, which is part of the OS/2 1.3 Programming Tools and Information package. Complete doc­
umentation for OS/2 2.1 Physical Device Drivers and Virtual Device Drivers can be found in the
IBM Operating System/2 Version 2.1 Physical Device Driver Reference, the IBM Operating
System/2 Version 2.1 Virtual Device Driver Reference and the IBM Operating System/2 Version 2.1
Presentation Driver Reference which are part of the IBM OS/2 2.1 Technical Library.

In this book, I will discuss the issues, both hardware and software, that will directly affect your
OS/2 device driver development. Some type of hardware background is helpful, but not necessary.

Generally, you can write all of your OS/2 device drivers, including interrupt handlers, in C. A
device driver written in C can be completed in approximately half the time it would take to write
the same device driver in assembly language. Most device drivers will work fine when written in
C. Programmers who have written device drivers for other multitasking operating systems, such
as UNIX or VMS, should find OS/2 device driver design concepts similar. Programmers not
familiar with multitasking device driver design will find OS/2 device driver development some­
what more difficult. Your first OS/2 device driver could take about two months to complete, and
subsequent device drivers should take slightly less time. Block and Presentation Manager device
drivers are significantly more complex, and may take upwards of six to nine months or more to
complete. I have included a short chapter on Presentation Device Drivers, but the topic of PM

Introduction xxiii

drivers could easily span an entire book in itself. I didn't feel that I could do the topic justice in
the limited space of this book. Please refer to the IBM OS/2 2.1 Presentation Driver Reference for
more complete information on writing presentation drivers.

To use the examples in the text or on the companion disk, you will need a compiler, assembler,
and compatible linker. For OS/2 character mode and block device drivers, the Microsoft C 5.1 or
6.0 compiler, the Microsoft 5.1or6.0 Assembler, and the Microsoft 5.13 or later linker will be suf­
ficient. For OS/2 Virtual Device Drivers, you will need a 32-bit C compiler, such as the IBM C
Set/2 compiler version 1.1 or greater, along with the corresponding 32-bit linker and symbol file
generator.

Debugging OS/2 device drivers requires the use of a kernel-level debugger. I recommend the
kernel debugger supplied with the IBM OS/2 2.1 Toolkit. Other third-party debuggers are avail­
able, but the IBM kernel debugger is the only debugger which has knowledge of the internal
kernel symbols. You may also wish to look at ASDT32, a 32-bit kernel debugger supplied with the
IBM DDK ASDT32 provides debugging output on the main display, eliminating the need for a
debugging terminal. ASDT32 is also available to members of the IBM Developer Assistance
Program via DAPTOOLS on IBMLINK

If you are developing or plan to develop an OS/2 product, I recommend that you join the IBM
Developer Assistance Program. This program, offered to qualified software developers, provides
up-to-date information on OS/2 2.1, updates to the operating system and tools, and substantial
discounts on IBM hardware and software. Call the IBM Developer Assistance Program at area
code (407) 982-6408 and ask how to become a member. You may also join the IBM Worldwide
DAP program by entering GO OS2DAP from your Compuserve account.

Unfortunately, two chapters planned for this book did not make it in time for this publishing. The
two chapters are titled "IFS Drivers" and "SCSI/ ADD Device Drivers". These two chapters will
appear in the next printing. I apologize for this omission, since both are important topics.

In Chapter 1, I describe how device drivers for personal computers evolved from simple polling
loops to the complex interrupt-driven device drivers found in today's real-time PC operating sys­
tems. In Chapter 2, I describe what device drivers are and how they fit into the total system pic­
ture. In Chapter 3, I describe the relevant parts of the PC hardware architecture necessary for
device driver writers to be aware of. If you are already an experienced device driver writer, you
may wish to skip these three chapters and proceed directly to Chapter 4. Chapter 4 begins with a
historical look at OS/2 and provides a brief outline of the OS/2 operating system. Programmers
already familiar with OS/2 will probably wish to skip this chapter and proceed directly to Chapter
5. In Chapter 5, I discuss the anatomy of the OS/2 device driver by presenting sample code :frag­
ments, listings, and various tables. Topics include the strategy section, interrupt handlers, timer
handlers, request packets and device headers. Chapter 6 continues the architecture topic by
describing, in detail, the strategy commands that the device driver receives from OS/2 and how

xxiv Introduction

the device driver should respond to them. In Chapter 7, I use actual code to show you how to
build an OS/2 8-bit parallel port device driver. I also describe, in detail, the operation of the
device driver for each request it receives from the OS/2 kernel. Chapter 8 describes the special
considerations necessary for writing OS/2 device drivers for Micro Channel bus machines, such
as the IBM PS/2. Chapter 9 describes Virtual Device Drivers, or VDDs, and contains code for an
actual VDD. In Chapter 10, I show you how to handle memory-mapped adapters, and how to per­
form direct port 1/0 without a device driver. Chapter 11 explains how to use Direct Memory
Access, or DMA, and includes several code listings to illustrate how DMA is handled under
OS/2. In Chapter 12, I describe the Extended Disk Driver Interface, also known as the Strategy 2
or scatter/gather entry point Chapter 13 provides a handy reference for the OS/2 2.1 Kernel
Debugger commands. Chapter 14 contains an introduction to Presentation device drivers. In
Chapter 15, I describe various types of pointers and addressing modes you will need to under­
stand when writing your device drivers. Chapter 16 introduces the PCMCIA architecture and
how OS/2 2.1 supports PCMCIA device drivers. Finally, Chapter 17 contains some helpful hints
and suggestions, as well as a compendium of tips and techniques I've used when writing my
OS/2 device drivers.

In Appendix A, you'll find a detailed description of the OS/2 Device Helper routines with their C
calling sequence as provided by the C Callable DevHlp library described in the diskette order
form in this book. Appendix B includes a recommended list of further reading. Appendix C con­
tains source code listings for the device drivers and support routines discussed in the book. All of
this code, without the library, is included on the free companion disk attached to the back cover
of this book. You are free to use the code for your own use but you may not sell it or distribute it
for profit without written permission of the publisher. Finally, Appendix D contains documenta­
tion for the IBM OEMHLP device driver which can be used by your driver to obtain such infor­
mation as adapter IDs for EISA bus machines.

CHAPTER 1

The Evolution of PC Device Drivers

I n 1976, a small company in Albuquerque, New Mexico, called MITS, founded by
Ed Roberts, introduced a computer in kit form that could be assembled by a
novice electronic tinkerer. The computer, called the Altair 8800, delivered tech­

nology into the home which had previously been confined to laboratories of large
companies and universities. Based on the Intel 8080 microprocessor, the Altair provid­
ed much of the functionality of larger machines, but at a much lower price. The user
could enter a program through the front panel switches and execute it. Later, a high­
level language program called Beginner's All-purpose Symbolic Instruction Code, or
BASIC as it's more widely known, was introduced for the Altair to make writing pro­
grams easier. BASIC was written for MITS by Bill Gates and Paul Allen.

Figure 1-1. The Altair 8800.

2 Writing OS/2 2. 1 Device Drivers in C

The first personal computers were quite expensive by today's standards. A kit contain­
ing the computer, case and power supply, less any memory or storage, sold for
$2000.00, not a trivial sum in 1976. Four thousand characters of memory was priced at
over $1000.00. In addition, many circuits were based on an electronic technology that
was prone to interference from certain types of radio :frequencies and small variations
in the AC input voltage. The collection of electronic circuits and other equipment that
comprise a computer system are referred to as the computer hardware. The programs
that run on the computer are referred to as software.

A short time after the Altair was introduced, MITS introduced an audio cassette inter­
face, which allowed the use of a standard audio cassette player/recorder for the stor­
age of information. Using the audio cassette proved cumbersome. Since the computer
had no direct control over the cassette player, it could not determine, for example,
that the play and record buttons were pressed while recording, or if the player was
even attached to the computer. Recording information on audio tape was also unreli­
able. In order to store a program or data onto the tape, the data had to be converted
into audio signals before writing it to the tape. In order to read the data from the tape,
the audio signals from the tape had to be converted back into machine code. Since the
computer had to be programmed to read and write using the cassette tape unit, the
user had to manually enter a program to perform those operations using the front
panel switches.

A special integrated circuit, called an Erasable Programmable Read Only Memory, or
EPROM, was added to solve the problem of having to manually enter the initial boot
program. The EPROM was programmed to contain the cassette loader, and retained
its contents even if power was lost. The EPROM contained only 256 characters or
bytes of storage, so the loader program could not be very complex. The user could
select this EPROM using the computer's front panel switches and start the tape pro­
gram by executing the code located in the EPROM.

Chapter 1. The Evolution of PC Device Drivers 3

Storage Devices

Shortly thereafter, a floppy disk drive storage system was introduced, which provided
for the storage of 250,000 bytes on an 8 inch floppy disk, using the same format that
had been used by IBM on their larger computer systems (see Figure 1-2). Again, the
boot program, this time for floppy disk, was programmed into an EPROM, so the user
did not have to enter it manually. The disk boot program turned out to be much more
complicated, and would not fit into the 256-character storage of the EPROM. This
problem was solved by placing a more complex loader onto the floppy disk. The small
boot program in the EPROM loaded the more complex disk loader, which in tum
loaded the selected program or data from the disk.

Figure 1-2. Floppy disk. (Courtesy of International
Business Machines Corporation.)

Software for this new computer was poor to nonexistent. Programs had to be written
by hand on paper and entered manually. The person writing the program had to be
somewhat of a computer expert since the programs had to be entered in a language of
numbers called machine code. Machine code is the only type of instruction that a
Central Processing Unit, or CPU, can understand. Machine code is a representation in
the computer's memory of an instruction or piece of data, and is expressed in a pat­
tern of ones and zeroes, called binary notation. The CPU is capable of recognizing cer­
tain patterns of these ones and zeroes, which are called bits, as instructions.
Programming in machine code proved to be time consuming and prone to error, and
the slightest programming error could be disastrous.

4 Writing OS/2 2. 1 Device Drivers in C

Interface Adapter Cards

Each device was connected to the CPU through an electronic circuit board called an
electrical interface card, commonly known today as an adapter. The interface card
plugged into the computer bus, which was connected to the CPU. A program that had
to access a device would instruct the CPU to read from or write to the interface card,
which would in turn issue the correct electrical signals to the device to perform the
requested operation. The interface acted as a converter of sorts, converting CPU
instructions into electrical signals to control the particular device. A motor, for
instance, could be turned on and off using a program that commanded an interface to
turn the motor on and off. The motor was not aware of the computer's presence or
programming, but merely acted upon the electrical signals generated by the interface
card.

Because a very limited number of these adapters were available, programs would con­
trol them by directing the CPU to directly access the adapter hardware. Programs
that used particular adapters were written specifically to access those adapters. If the
adapter was changed, the program would have to be rewritten to accommodate the
new adapter's requirements. This was unacceptable, since a software supplier could
not afford to support multiple versions of a program for each different type of adapter
configuration.

The First Operating System For Personal Computers

With the introduction of the floppy disk for microcomputers, the first disk-based per­
sonal computer operating system was born. Called the Control Program for
Microcomputers, or CP /M, it resided on a floppy disk. When directed to, it would
load itself into the computer's memory to manage the attached devices, including
storage devices, keyboards, and terminals. Once loaded into the computer's memory,
CP /M took responsibility for reading and writing to floppy disks, tape drives, printers,
terminals, and any other devices attached to the computer. The CP /M operating sys­
tem was a generic piece of software, i.e., it could be used on any configuration of com­
puter with the same type of microprocessor. To allow this generic operating system to
manage different configurations of devices, CP /M accessed all devices through a
hardware-specific set of programs called the Basic Input/Output System, or BIOS. By
changing a small section of the BIOS program, users could add different types of
devices while the operating system program remained unchanged (see Figure 1-3).

BIOS

OPERATING
SYSTEM

Chapter 1. The Evolution of PC Device Drivers 5

Figure 1-3. Role of the BIOS.

The CP /M BIOS code was an example of an early personal computer device driver.
The BIOS code isolated the CP /M operating system from the device electronics and
provided a consistent interface to the devices. Programs that wished to read from or
write to a particular device did so by calling CP /M routines, which in tum called the
BIOS. When reading a file from the disk, the programmer did not have to keep track
of where the file resided on the disk, or command the disk unit to position itself
where the file was located on the disk. The disk geometry parameters, which defined
the size of the disk, number of tracks, number of heads, and the number of sectors
per track, were handled by the BIOS code. The developers of the CP /M operating
system were free to change the operating system without worrying about the many
types of hardware configurations that existed. Today, the BIOS code is still responsi­
ble for defining the disk geometry.

Since that time, computer speed and storage have increased exponentially. The
amount of computer processing power previously requiring the space of a normal liv­
ing room can now fit on a small notebook-size computer. This increased performance
has allowed the computer to perform more and more tasks for the user. In addition,
the user's needs have become more sophisticated, and with them the software needed
to provide a comparable level of functionality has become increasingly complex.

The functionality of the operating system and its environment have changed dramati­
cally, yet the necessity for the device driver has only increased. The basic job of the
device driver remains the same. That is, the device driver isolates an application pro­
gram from having to deal with the specific hardware constraints of a particular device,
and removes such responsibility from the programmer. Device drivers allow for the
expansion and addition of hardware adapters, while allowing the operating system to
remain intact. Thus device drivers remain the vital link between the computer sys­
tem's electronics and the programs that execute on it

6 Writing OS/2 2. 1 Device Drivers in C

For CP /M, the BIOS software solved the device independence issues, but did not
solve all of the problems. The BIOS code resided on a floppy disk and was loaded
along with the operating system at boot time. Users could change the BIOS code to
reflect a new device configuration, but the BIOS code was in assembly language
which was difficult for novice programmers to learn. If the BIOS code contained an
error, the operating system might not load, or if it did load, it would sometimes not
work or work erratically. The BIOS was difficult to debug, because the debugger used
the BIOS code to perform its input and output! A few years later, the BIOS code was
relocated into Read Only Memory, or ROM, and subsequently to Electrically Erasable
Programmable Read Only Memory, or EEPROM.

Using a special technique, the contents of EEPROM can be modified by a special
setup program. The contents of memory in EEPROM is retained even if power is lost,
so the device-specific contents of the BIOS is always retained.

The First Bus

The Altair introduced the idea of a common set of circuits that allowed all of the
devices in the system to communicate with the CPU. This common set of circuits was
called the bus, and the Altair computer introduced the first open-architecture bus,
called the S-100 bus. It was called the S-100 bus because it contained 100 different
electronic paths. Connectors were attached to the bus, which allowed adapter cards to
be plugged into them and connect to the bus. The S-100 bus was the forerunner of
today's bus architectures.

Although prone to radio-frequency interference, the S-100 bus established itself as the
standard bus configuration for 8080 and Z-80-based personal computers, and was the
first attempt at standardizing personal computer hardware. The IEEE actually drafted
and published a standard for the S-100 bus, called IEEE-696. Some S-100-bus comput­
ers are still in operation today.

CHAPTER2

Understanding Device Drivers

The use of the BIOS code in CP /M to isolate the operating system from
the specifics of devices was not a new idea. Large computer systems and
mid-range computers, called minicomputers, had been using this tech­

nique for some time. But, this was the first time they were applied to personal
computers.

The first operating systems were single tasking, i.e., they were capable of executing
only one program at a time. Even though these early computers were comparatively
slow in their operation, they were faster than the devices they needed to access. Most
output information was printed on a line printer or written to a magnetic tape, and
most input information was read from a punched card reader or keyboard. This meant
that if a program was waiting for input data, the computer system would be idle while
waiting for the data to be entered. This operation, called polling, was very inefficient.
The computer was capable of executing thousands of instructions in between each
keystroke. Even the fastest typist could not keep up with the computer's input ability
to process each key.

If a program needed to print something on a printer, it would do so one character at a
time, waiting for the device to acknowledge that the character was printed before
sending the next character (see Figure 2-1). Since the computer processed the data
faster than it could be printed, it would sit idle for much of the time waiting for the
electromechanical printing device to do its job. As technology progressed, faster input
and output devices became available, all well as faster computers. Still, the computer
was at the mercy of the input and output devices it needed. The configuration of these

7

8 Writing 05/2 2. 1 Device Drivers in C

PROGRAM

GET
NEXT

CHARACTER

POLLING LOOP

Figure 2-1. Polled printer output.

input and output (I/0) devices was also different. Some line printers printed on 8 1/2
by 11-inch paper and some on 8 1/2 by 14-inch paper. Magnetic tape storage devices
used different size tapes and formats, and disk storage devices differed in the amount
and method of storage.

The device driver solved the problems associated with the different types of devices
and with the computer remaining idle while performing input and output operations.
The device driver program was inserted between the program doing the 1/0 and the
actual hardware device, such as a printer or magnetic tape drive. The device driver
was programmed with the physical characteristics of the device. In the case of a line
printer, the device driver was programmed with the number of characters per line it
accepted or the size of the paper that the device could handle. For a magnetic tape
device driver, the device driver was programmed with the physical characteristics of
the tape mechanism, such as the format used to read from and write to the drive, and
its storage capacity. The program performing the 1/0 did not require detailed knowl­
edge of the hardware device. The device driver also allowed the programmer to direct
a print operation with no knowledge of the type of printer that was attached. Thus, a
new printer could be added, with its corresponding device driver, and the application
program could run unmodified with the new printer.

Chapter 2. Understanding Device Drivers 9

The polling issue was also addressed. Since the device driver had intimate knowledge
of how to talk to the I/ 0 device, there was no reason why the application program had
to wait around for each character to be printed (see Figure 2-2). It could send the
device driver a block of, say, 256 characters and return to processing the application
program. The device driver would take the characters one at a time and send them
out to the printer. When the device driver had exhausted all of its work, it would noti­
fy the application program of that fact. The application program would then send the
device driver more data to print, if necessary. The application program was now free
to utilize the CPU to perform tasks that demanded more processing, thus reducing
the idle time of the computer.

The device driver became even more important when operating systems appeared
that could run more than one program at a time. It was now possible for more than
one program to use the same 1/0 device, and often at the same time. The device dri­
ver was used to serialize access to the device, and protect the device from errant pro­
grams that might try to perform an incorrect operation or even cause a device failure.

PROGRAM

GET
FIRST

CHARACTER

OUTPUT
CHARACTER
TO PRINTER

i
DO OTHER

THINGS
•
•
•

EXIT

PRINTER DRIVER
I

(ENTERED WHEN PRINTER IS NOT BUSY
OR WHEN CHARACTER IS DONE PRINTING)

OUTPUT
NEXT

CHARACTER
TO PRINTER

DO OTHER
THINGS

•
•
•

Figure 2-2. Interrupt printer output.

10 Writing OS/2 2. 1 Device Drivers in C

Device Drivers Today

Today, device drivers remain an irreplaceable and critical link between the operating
system and the 1/0 device (see Figure 2-3). Many new I/0 devices have appeared,
including color graphics printers, cameras, plotters, scanners, music interfaces, and
CD-ROM drives. The device driver remains a necessary component to complete the
interface from the operating system to the physical device. Today's computers can
run dozens and even hundreds of programs at one time. It is more important than
ever for the device driver to free up the CPU to do more important work, while han­
dling the relatively mundane tasks of reading and writing to the device.

Today, device drivers are more complex, as are the operating systems and devices
they interface with. Device drivers can interact more with the CPU and operating sys­
tem, and in some cases they can allow or block the execution of programs. They can
usually turn the interrupt system on and off, which is an integral part of the perfor­
mance of the system. Device drivers usually operate at the most trusted level of sys­
tem integrity, so the device driver writer must test them thoroughly to assure bug­
free operation. Failures at a device driver level can be fatal, and cause the system to
crash or experience a complete loss of data.

DEVICE
DRIVER

DISPLAY

PROGRAM

OPERATING SYSTEM

DEVICE
DRIVER

PRINTER

DEVICE
DRIVER

CD ROM

DEVICE
DRIVER

KEYBOARD

Figure 2-3. The role of the device driver.

Chapter 2. Understanding Device Drivers 11

The use of computers for graphics processing has become widespread. It would be
impossible to support the many types of graphics devices without device drivers.
Today's hardware offers dozens of different resolutions and sizes. For instance, color
graphics terminals can be had in CGA, EGA, VGA, MCGA, SVGA, and XGA formats,
each offering a different resolution and number of supported simultaneous dis­
playable colors. Printers vary in dots per inch (DPI), Font selection, and interface
type. Since all of these formats and configurations are still in use, the supplier of a
graphics design package needs to support all of them to offer a marketable software
package. The solution is for the graphical design program to read and write to these
graphics devices using a standard set of programs, called APis (Application
Programming Interfaces), which in tum call the device driver specific to the hardware
installed.

The device driver has an in-depth knowledge of the device, such as the physical size
of the output area, the resolution (number of dots or pixels per screen), and the spe­
cial control characters necessary for formatting. For instance, a graphics application
program might direct the output device to print a line of text in Helvetica bold italic
beginning at column 3, line 2. Each graphics output device, however, might use a dif­
ferent command to print the line at column 3, line 2. The device driver resolves these
types of differences.

A user might wish to print a 256-color picture on a black and white printer in a lower
or higher resolution. The device driver would resolve the differences and perform the
proper translation, clipping and color-to-gray-scale mapping as required. While this
method allows the graphics program to remain generic for any hardware configura­
tion, it does require the software vendor to supply device drivers for the many types of
input and output devices. Some word processors, for example, come with over 200
printer device drivers to support all makes and models of printers, from daisy wheel
to high-speed laser and color printers.

Device Drivers - A Summary

In summary, the device driver:

·. • Contains the specific device characteristics and removes any responsibility of the
application program for having knowledge of the particular device.

In the case of a disk device driver, the device driver might contain the specific disk
geometry, which is transparent to the program that calls the device driver. The
device driver maps logical disk sectors to their physical equivalents. The application
program need not be aware of the size of the disk, the number of cylinders, the num­
ber of heads, or the number of sectors per track. The device driver also controls the

12 Writing OS/2 2. 1 Device Drivers in C

disk seek, which is the motion necessary to position the read/write head over the
proper area of the disk. This simplifies the application code, by allowing it to issue
only reads and writes, and leaving the details of how it is done to the device driver.

In the case of a video device driver, the driver might contain the size of the screen,
the number of pixels per screen, and the number of simultaneous colors that can be
displayed. Programs that need access to the display call the display device driver,
which performs several functions. First, it maps the number of colors in the picture
to those supported by the video adapter. This is especially true if a color picture is
displayed on a black and white (monochrome) display. Second, if the resolution of
the target display is smaller than the original, the device driver must adjust the size
proportionally. Third, it might adjust the aspect ratio, the ratio of vertical pixels to
horizontal pixels. A circle, for example, would appear egg-shaped without the correct
aspect ratio.

In the case of a serial device, such as a modem, the device driver handles the
specifics of the electronics that perform the actual sending and receiving of data,
such as the transfer speed and data type.

• Allows for device independence by providing for a common program interface, allow­
ing the application program to read from or write to generic devices. It also handles
the necessary translation or conversion which may be required by the specific
device.

• Serializes access to the device, preventing other programs from corrupting input or
output data by attempting to access the device at the same time.

• Protects the operating system and the devices owned by the operating system from
errant programs which may try to write to them, causing the system to crash.

CHAPTER 3

The PC Hardware Architecture

Writing device drivers requires you to have at least a limited understanding
of the personal computer hardware architecture. Device drivers are spe­
cial pieces of software because they "talk" directly to electronic circuits.

Application programs, or those programs that use device drivers to access devices,
can be written without a knowledge of the electronics. While you don't have to be an
electrical engineer, you will need at least a basic knowledge of the hardware you will
be interacting with.

The System Bus

The CPU is connected to the rest of the computer through electrical circuits called
the bus. The bus contains the electrical paths common to different devices, allowing
them to access each other using a very specialized protocol. The CPU is allowed read
and write access to the computer's memory (and some devices) by means of the
address bus. Data is moved to and from devices (and memory) via the data bus. The
computer bus is the center of communications in the computer. To allow hardware
interfaces or adapters to gain access to the CPU, the computer system is fitted with
connectors to allow adapters to be plugged into the bus. The adapters must adhere to
the electrical standards of the bus. Certain restrictions, such as bus timing and switch­
ing must be adhered to by the adapter manufacturers, or the entire system may expe­
rience erratic behavior or possibly not function at all.

13

14 Writing OS/2 2. 1 Device Drivers in C

The width of the bus, or the number of bits that can be transferred to or from memory
or devices in parallel, directly affects system performance. Systems with "wider"
busses will, in general, offer greater performance because of their ability to move
more data in less time.

Today there are three primary bus architectures in the IBM-compatible marketplace.
They are called Industry Standard Architecture (ISA), Enhanced Industry Standard
Architecture (EISA) and Micro Channel Architecture (MCA). Of course, there are
other types of busses used for non-IBM compatible computers, but they will not be cov­
ered in this book.

Figure 3-1. The IBM PC. (Courtesy of International
Business Machines Corporation.)

The IBM PC - Beginnings

In 1981, IBM released the IBM PC (see Figure 3-1), a personal computer based on the
Intel 8088 microprocessor. The 8088 was a 16-bit microprocessor, and was IBM's first
entry into the personal computer market IBM was known worldwide as a supplier of
large data processing systems, but this was their first product for personal use. The
IBM PC contained a new bus design called the PC bus. The PC bus was fitted with
adapter card slots for expansion, and to make the bus popular, IBM released the specifi­
cations of the PC bus. This encouraged third-party suppliers to release many different
types of adapters to be used in the IBM PC. This was a strategic move by IBM which
led to the standardization of the PC bus architecture for all personal computers.

Storage was limited to a single floppy disk, capable of storing approximately 180,000
bytes of information.

Chapter 3. The PC Hardware Architecture 15

The IBM PC was not a relatively fast machine, but users could, for the first time, have
an IBM computer on their desks. Original sales projections for the IBM PC were a
few hundred thousand units, but demand quickly exceeded availability. The personal
computer revolution had begun.

IBMPCXT

Figure 3-2. The IBM PCAT. (Courtesy of
International Business Machines Corporation.)

In 1982, IBM introduced the IBM XT computer. The IBM XT contained a built-in ten
million byte (lOMB) hard disk storage device, and the floppy disk storage was dou­
bled to 360,000 bytes (360KB). The IBM XT was based on the IBM PC and retained
the same basic design, except that users could now store ten million characters of
data on the hard disk.

Computer hardware can process instructions relatively fast The execution of a simple
instruction may take less than one microsecond (.000001 seconds). The computer input
and output devices, however, are relatively slow. For example, if the computer was
receiving bytes of data from another computer over a phone line, the time to receive just
one byte of data would be approximately 4 milliseconds (.004 seconds). If the computer
was just waiting for more bytes to appear, it would be spending most of its time doing
nothing but waiting. This would be extremely inefficient, as the computer could have
executed thousands of instructions while waiting for another byte. This problem is
solved by a hardware mechanism called the interrupt system. The interrupt system

16 Writing OS/2 2. 1 Device Drivers in C

allows an external event, such as the reception of a character, to interrupt the program
currently being executed. A special program, called an interrupt handler, interrupts the
currently executing program, receives the character, processes it, and returns to the
program that was executing when the interrupt was received. The program that was
executing at the time of the interrupt resumes processing at the exact point at which it
was interrupted.

The IBM PC and PC XT had an eight-level Programmable Interrupt Controller (PIC),
which permitted up to eight interrupts on the PC bus. This represented somewhat of
a problem, as several interrupt levels were already dedicated to the system. The sys­
tem timer reserved an interrupt, as well as the hard disk, floppy drive, printer port and
serial port. This left only two unused interrupts, which were reserved for a second
printer and second serial communications port. If you happened to have these devices
installed, you could not install any other adapter cards that utilized interrupts.

IBM PC AT

In 1984, IBM introduced the IBM PC AT personal computer. The IBM PC AT com­
puter utilized the Intel 80286, a more powerful 16-bit microprocessor. The IBM PC AT
utilized a newly designed bus, called the AT bus. The AT bus added eight additional
address and data lines, to enable the CPU to transfer twice as much data in the same
amount of time as the IBM PC. In another brilliant engineering innovation, IBM made
the AT bus downward compatible with existing IBM PC adapter cards. The user did
not have to give up a large investment in adapter hardware to upgrade to the IBM PC
AT. The AT could use newly introduced 16-bit adapters as well as the existing eight
bit adapters. The newer bus could still accommodate the older PC and XT bus adapter
cards. Today, the AT bus remains the most popular IBM PC-compatible bus in exis­
tence, with over 100 million installed, and is commonly called the ISA bus.

The processor speed of the PC AT was increased 25 percent, and the combination of
processor speed and greater bus width led to dramatic performance increases over
PC XT. The PC AT was equipped with a 20MB hard disk, a 1.2MB floppy disk, and
was fitted with a larger power supply to handle the increased speed and capacity. The
color display was becoming more popular, but was limited in colors and resolution.
IBM quickly introduced an upgraded model of the IBM PC AT, called the model 339.
The newer version came with a 30MB hard disk and a 1.2MB floppy disk. To retain
compatibility, the ATs floppy disk could also read and write to the smaller capacity
360K byte floppies for the IBM PC XT. Processor speed was again bumped up 33 per­
cent.

Chapter 3. The PC Hardware Architecture 17

The AT bus, however, had limitations. The electrical design of the bus was limited by
the speed that data could be transferred on the bus. This was not a problem for the
IBM PC AT, but as processors became faster and users demanded more power, the
performance of the AT bus became a limiting factor.

The AT Bus

When the IBM PC AT was introduced in 1984, the bus requirements changed signifi­
cantly. The IBM PC AT used the Intel 80286, which was also a 16-bit processor. The
processor speed was increased by thirty percent. Since the memory address could be
16 bits wide, the processor could now issue only one address command to the memo­
ry circuits, cutting the time necessary to address memory in half. The data bus width
was also increased to 16 bits, and 8 more interrupts were added.

The AT bus has 24 address lines, which limits the amount of directly addressable
memory to 16MB, but recent IBM-compatibles have provided a separate CPU-to­
memory bus, which is 32 bits wide. The peripheral address bus that the adapter cards
plug into remains a 24 bit address bus.

The IBM PC AT was upgraded to run another thirty percent faster by raising the
processor clock speed to 8 megahertz (Mhz). Performance increased dramatically,
but a problem for future expansion now became apparent. The electrical design char­
acteristics of the AT bus prohibited it from reliably running at speeds faster than 8
Mhz, with a maximum bus throughput of about 8MB per second. Users were
demanding more power, and CPU makers such as Intel were producing faster and
more powerful processors.

Adapter cards for the AT bus required the manual installation and/ or removal of
small electrical jumpers to define the characteristics of the card. There were jumper
settings for the card address, interrupt level, adapter card port address, timing, and a
host of other options. This sometimes made installation troublesome. An incorrectly
placed jumper could cause the adapter not to work or the system to hang. Novice
computer users had a tough time understanding all of the options and how to set
them for various configurations. Boards were often returned to manufacturers for
repair when all that was wrong was an incorrectly installed jumper.

The AT bus design allows for 15 interrupts, but adapters cannot share the same inter­
rupt, or IRQ level. Once a device driver claims an interrupt level, the interrupt level
cannot be used for another adapter.

18 Writing OS/2 2. 1 Device Drivers in C

The IBM PS/2 and Micro Channel
IBM's answer to the limitations of the AT bus was to create, from scratch, an entirely
new bus architecture. This new architecture, called Micro Channel, was (and is) vast­
ly superior to the AT bus architecture. Since IBM decided that the bus did not have to
support existing adapter cards and memory, they were free to design the new bus
without restrictions. The Micro Channel bus was a proprietary bus (which has since
been made public) that was designed to solve all of the existing problems with the AT
bus, and to provide for an architecture that would support multiple processors and
bus-masters on the same bus using a bus arbitration scheme. In addition, the Micro
Channel bus provided greater noise immunity from Radio Frequency Interference
(RF!), 32 address lines, 24 DMA address lines, and 16 data lines with increased speed
(bandwidth). The first Micro Channel bus computer was twice as fast as the IBM PC
AT, and had a maximum bus transfer rate of 20MB per second. Some Micro Channel
adapters can manage as much as 160MB per second.

The Micro Channel bus supports multiple bus masters. Bus mastering allows an
adapter to obtain control of the system bus to perform I/Oat higher rates than if the
CPU was used. The Micro Channel design supports up to 15 bus masters. The Micro
Channel bus also has better grounding and more interrupt capability.

IBM introduced a brand new line of computers, called the Personal System/2, or PS/2
(see Figure 3-4), which utilized the Micro Channel technology. The new computers
offered several new features, such as built-in support for VGA color and larger-capaci­
ty Enhanced Small Disk Interface, or ESDI, hard disk drives. In the area of hardware,
IBM made three major design changes. First, they designed the Micro Channel bus
to be slot dependent. That is, each slot was addressable by the CPU. This differed
from the IBM PC and PC AT bus machines, where adapter boards could be placed in
any slot.

Figure 3-3. Micro Channel adapter. (Courtesy of
International Business Machines Corporation.)

Chapter 3. The PC Hardware Architecture 19

Second, they specified that each adapter (see Figure 3-3) that was plugged into the
Micro Channel bus would need its own unique identifier assigned by IBM. The ID
was stored in EEPROMs located on each adapter card. In addition, the EEPROMs
would hold card configuration data, such as the memory-mapped address, interrupt
level, and port address of the adapter. These special registers were called
Programmable Option Select registers, or POS registers. These registers, addressable
only in a special mode, eliminated the need for configuration jumpers required for AT
bus adapters. The user would load a special configuration program, which would set
the adapter configuration and program the EEPROMs and each adapter.

Third, they included 64 bytes of Non-volatile Random Access Memory, or NVRAM,
which would hold the current configuration information for each slot. The contents of
the NVRAM is retained by a low-voltage battery. When the computer was powered on,
a Read Only Memory, or ROM, resident program would compare, slot by slot, the con­
figuration of each adapter to the current configuration stored in NVRAM. If it found a
difference, it would stop and force the user to run the setup program to reconfigure
the system. This Power On Self Test or POST, also checks the size of memory and
compares it to the amount configured in NVRAM.

Figure 3-4. IBM PS/2 Model 80. (Courtesy of
International Business Machines Corporation.)

20 Writing OS/2 2. 1 Device Drivers in C

Enhanced Industry Standard Architecture (EISA)
The third major innovation in bus technology was the introduction of the Enhanced
Industry Standard Architecture bus, or EISA bus. The EISA bus was introduced in
September of 1988 in response to IBM's introduction of the Micro Channel bus. Some
of the motivation for the EISA bus was the same as for the Micro Channel. EISA was
designed for high throughput and bus mastering, and is capable of 33MB per second
throughput. The developers of the EISA bus maintained compatibility with existing
ISA bus adapters by designing a connector that would accept either type of adapter
card. It should be noted, however, that using an ISA bus adapter in an EISA bus sys­
tem provides no increased performance.

The EISA bus, like the Micro Channel bus, supports multiple bus masters, but only
six compared to Micro Channel's 15. This is still better than the ISA bus, which sup­
ports only one bus master. Throughput of the ISA bus machine is limited by the
processor speed, as more work has to be done by the CPU. In a multiple bus master
architecture like EISA or Micro Channel, the adapter card relieves the CPU of the
responsibility of handling the high-speed data transfers, and thus is more efficient.

Bus Wars

Many benchmarks have been performed pitting the three buses against each other.
With a few exceptions, the casual user will not notice much difference between them.
However, increasing demands for higher transfer rates and increased CPU perfor­
mance will soon make the traditional AT bus obsolete. The AT bus is handicapped by
its 24-bit address bus and 16-bit data bus, which limits performance by permitting the
system to transfer data only half as fast as EISA and Micro Channel bus systems. It is
also limited by its interrupt support and bus-mastering capabilities. Without another
alternative, this leaves EISA and Micro Channel as the natural successors to the ISA
bus. IBM is gearing up for the challenge, and has recently specified a new mode of
Micro Channel operation that will run on all IBM Micro Channel machines. The new
specification, called Micro Channel II, allows for transfer rates of 40, 80, and 160MB
per second, leaving the EISA machines in the dust. IBM is also beginning to price
their Micro Channel systems at equal to or less than their ISA equivalents in an
attempt to make the Micro Channel bus more popular. The EISA bus, however, main­
tains compatibility with the wide variety of inexpensive ISA adapters, and is not likely
to be upstaged in the near future by the Micro Channel bus.

EISA promises to remain popular because of the large investment in ISA bus adapters
and the reluctance of many users to embrace the Micro Channel bus.

Chapter 3. The PC Hardware Architecture 21

Real Mode

The Intel processors are capable of operating in one of two modes. These are called
real mode and protect mode. The most popular computer operating system, DOS,
runs in real mode. In real mode, the processor is capable of addressing up to one
megabyte of physical memory. This is due to the addressing structure, which allows
for a 20-bit address in the form of a segment and offset (see Figure 3-5).

15 0 15 0

~ FJ FJ OJ ol-.0 Fl Fl al ol ol
16-BIT SEGMENT REGISTER SEGMENT REGISTER SHIFTED LEFT 4 BITS

15 0

+ ~ osl Ol 3l Fj
16-BIT OFFSET

20-BIT PHYSICALADDRESS

Figure 3-5. Real mode address calculation. srl :PifJu.

Real mode allows a program to access any location within the one megabyte address
space. There are no protection mechanisms to prevent programs from accidentally
(or purposely) writing into another program's memory area. There is also no protec­
tion from a program writing directly to a device, say the disk, and causing data loss or
corruption. DOS applications that fail generally hang the system and call for a <ctrl-alt­
del> reboot, or in some cases, a power-off and a power-on reboot (POR). The real
mode environment is also ripe for viruses or other types of sabotage programs to run
freely. Since no protection mechanisms are in place, these types of ''Trojan horses"
are free to infect programs and data with ease.

22 Writing OS/2 2. 1 Device Drivers in C

Protect Mode
The protect mode of the Intel 80286 processor permits direct addressing of memory up
to 16MB, while the Intel 80386 and 80486 processors support the direct addressing of
up to four gigabytes (4,000,000,000 bytes). The 80286 processor uses a 16-bit selector
and 16-bit offset to address memory (see Figure 3-6). A selector is an index into a
table that holds the actual address of the memory location. The offset portion is the
same as the offset in real mode addressing. This mode of addressing is commonly
referred to as the 16:16 addressing. Under OS/2 2.1, the 80386 and 80486 processors
address memory using a selector:offset, but the value of the selector is always 0, and
the offset is always 32 bits long (see Figure 3-7). This mode of addressing is referred
to as the 0:32 or flat addressing. The protect mode provides hardware memory protec­
tion, prohibiting a program from accessing memory owned by another program.
While a defective program in real mode can bring down the entire system (a problem
frequently encountered by systems running DOS). A protect mode program that fails
in a multitasking operating system merely reports the error and is terminated. Other
programs running at the time continue to run uninterrupted.

·~ oj ol 6"1 ol
I

16-BIT SELECTOR 16-BIT OFFSET

23 t 0 23 0

0 o'I Fl Fl oJ oJ oM osl FJ FJ al oJ al
DESCRIPTOR TABLE
ENTRY
24-BIT PHYSICAL ADDRESS

23 0

0 osl FJ FJ OJ 3l FI
24-BIT PHYSICALADDRESS

Figure 3-6. 80286 protect mode addressing.

To accomplish this memory protection, the processor keeps a list of memory belong­
ing to a program in the program's Local Descriptor Table, or WT. When a program
attempts to access a memory address, the processor hardware verifies that the
address of the memory is within the memory bounds defined by the program's LDT.
If it is not, the processor generates an exception and the program is terminated.

Chapter 3. The PC Hardware Architecture 23

16-BIT SELECTOR 32-BIT OFFSET

'~ oj oJ oJ o'I oJ ~ oJ o}--;Q oJ ol oJ oJ oloj ojo~
DESCRIPTOR TABLE ENTRY
32-BIT BASE ADDRESS
(ALWAYSO)

~ 0

Q osl oj oJ FJ FJ o l 3J Fl
32-BIT FLAT ADDRESS

Figure 3-7. 80386-486 flat mode addressing.

The processor also keeps a second list of memory called the Global Descriptor Table,
or GDT. The GDT usually contains a list of the memory owned by the operating sys­
tem, and is only accessible by the operating system and device drivers. Application
programs have no direct access to the GDT except through a device driver.

OS/2 l.x uses the protect mode of the Intel processor to run native OS/2 programs,
and provides a single DOS "compatibility box" for running DOS applications. If a DOS
session is selected while the system is running an OS/2 application, the processor f l ·X
stops running in protect mode and switches to the real mode to accommodate the
DOS application. A poorly programmed DOS application can bring down the entire
system.

OS/2 2.1 runs DOS programs in the protect mode, using the virtual 8086 mode of the
80386 and 80486 processors. This special mode allows each DOS application to run in "/.. 1 x

its own protected one megabyte of memory space, without being aware of any other ·d'(.•?\

applications running on the system. Each virtual DOS partition, or VDM, thinks that
it's the only application running. Errant DOS programs are free to destroy their own
one megabyte environment, but cannot crash the rest of the system. If a DOS applica-
tion fails in a VDM, a new copy of DOS can be booted into the VDM and restarted.
For a more complete description of the Intel processors and their architecture, please
refer to Appendix B for a list of recommended reading.

24 Writing OS/2 2. 1 Device Drivers in C

Using Addresses and Pointers

Writing an OS/2 2.1 device driver requires a thorough understanding of addresses,
pointers, and the OS/2 2.1 memory management DevHlp routines. Since OS/2 2.1 is
a hybrid operating system composed of 16-bit and 32-bit code, many of your device
driver functions will involve pointer conversion and manipulation. Specifically, point­
ers might have to be converted from 16-bit to 32-bit, and from 32-bit back to 16-bit.
Addresses might be expressed as virtual, physical or linear address. Several DevHlp
functions require flat pointers to items in the driver's data segment, which is normally
a 16:16 pointer. If you don't have a good understanding of 16-bit and 32-bit addresses
or pointers, please go back and reread the previous sections. Refer to Chapter 15 for
more information.

The Ring Architecture

In the protect mode, the processor operates in a Ring architecture. The ring architec­
ture protects the operating system by allowing minimum access to the system and
hardware.

Normal application programs run at Ring 3, which is the least trusted ring (see Figure
3-8). Programs that run in Ring 3 have no direct access to the operating system or
hardware, and must adhere to very strict guidelines for accessing OS/2 or its support­
ed devices.

Ring 2 is reserved for Input/Output Privilege Level (IOPL) programs (see Chapter
10) and 16-bit Dynamic Link Libraries, or DLLs. With OS/2 2.1, 32-bit DLLs run in
Ring 3. Refer to Chapter 4 for a more detailed discussion of DLLs.

Ring 1 is currently reserved.

Ring 0 is the most trusted level of the processor, and is where physical and virtual
device drivers run. Device drivers need, and are granted, full access to the processor
and system hardware as well as the interrupt system and OS/2 internals.

Chapter 3. The PC Hardware Architecture 25

Most application programs will run in Ring 3. Occasionally, for performance reasons,
an application may need to write directly to adapter hardware and will do so through
an IOPL routine at Ring 2, but will quickly return to Ring 3 to continue running. An
example of such a program is the CodeView debugger. As an additional protection
method, OS/2 can refuse input and output by a Ring 2 program if the user modifies
the CONFIG.SYS file to contain the line IOPL=NO. Programs attempting to perform
Ring 2 I/O will generate a General Protection, or GP fault if IOPL=NO appears in the
CONFIG.SYS file. Users may also permit only selected programs to perform IOPL by
entering the program names in CONFIG.SYS. See Chapter 10 for a discussion of
IOPL.

------ LEAST TRUSTED

Figure 3-8. The BOX86 ring architecture.

MOST
TRUSTED

CHAPTER 4

An Overview of the
05/2 Operating System

0 S/2, introduced in late 1987, was billed as the successor to DOS. In fact, it
was going to be called DOS before IBM got into the act. Over 500 program­
mers at IBM and Microsoft worked night and day to get OS/2 out the door

on schedule. Both IBM and Microsoft trumpeted OS/2 as the replacement for DOS,
and Bill Gates himself predicted that OS/2 would replace DOS on the desktop by
1989. This, of course, never happened. The reasons why OS/2 never caught on can be
debated forever, but probably can be summarized in a few key statements.

First, when IBM announced OS/2, there were only a handful of applications ready to
run on it. The few that were ready were just warmed-over DOS versions, which were
recompiled and relinked under OS/2. They also ran considerably slower than their
DOS counterparts.

Second, the graphical user interface for OS/2, called Presentation Manager, was miss­
ing. As a result, most application programs were written with dull, character-based
user interfaces.

Third, the DOS compatibility box, or penalty box as it was sometimes referred to as,
crashed frequently when DOS applications were run under it. It simply wasn't compat­
ible with DOS. Some DOS applications would run, but most wouldn't. This was largely
a result of the small amount of memory available to a DOS application, which was only
approximately 500MB. Users were reluctant to replace DOS with an operating system
that wouldn't run all of their favorite DOS applications.

27

28 Writing OS/2 2. 1 Device Drivers in C

Fourth, IBM made a big mistake by attempting to tie the OS/2 name to their recently
introduced family of PS/2 computers. Users believed that OS/2 would run only on
PS/2 machines. IBM also bungled the marketing of OS/2. IBM authorized dealers
didn't know what OS/2 was, how to sell it or how to order it. No advertisements
appeared for OS/2, and it wasn't actively shown at trade shows or in technical publica­
tions. OS/2 was virtually ignored until sometime in 1990, just following the introduc­
tion and huge success of Microsoft Windows 3.0.

Lastly, the timing was bad. OS/2 needed four megabytes or more of memory, and
memory was selling for approximately $400 per megabyte. The high memory prices
were due in part to high tariffs placed on the Japanese for dumping memory chips and
to increased demand. Most systems had one megabyte of memory or less, so upgrad­
ing was very expensive. OS/2 was not cheap, about $350 for the Standard Edition,
which, combined with the cost of extra memory, represented a substantial upgrade
cost.

Spurred on by the huge success of Windows 3.0, Microsoft decided that it would
abandon OS/2 and concentrate on the Windows platform, which is based on DOS.
IBM, left without a multitasking solution for its PC-to-mainframe connection, had
been counting on OS/2 to replace DOS. IBM finally woke up and realized that without
some major changes in the way OS/2 was designed and marketed, that OS/2 would
die an untimely death. The result of IBM's rude awakening was the introduction of
OS/2 2.1 early in 1992.

Roots

OS/2 was originally called MS-DOS version 4.0. MS-DOS 4.0 was designed for pre­
emptive multitasking, but was still crippled by the 640KB memory space restriction of
real mode operation. A new product, called MS-DOS 5.0 was conceived, and IBM and
Microsoft signed a Joint Development Agreement to develop it. MS-DOS 5.0 was later
renamed OS/2. OS/2 was designed to break the 640KB memory barrier by utilizing
the protect mode of the 80286 processor. The protect mode provided direct address­
ing of up to 16 megabytes of memory and a protected environment where badly writ­
ten programs could not affect the integrity of other programs or the operating system.

When Gordon Letwin, Ed Iaccobuci, and the developers at IBM and Microsoft first
designed OS/2 1.0, they had several goals in mind. First, OS/2 had to provide a
graphical device interface that was hardware independent. The concept was that each
device would be supplied with a device driver containing the specific characteristics of

Chapter 4. An Overview of the OS/2 Operating System 29

the device. Graphics applications could be written without regard to the type of graph­
ics input or output device. This concept is referred to as virtualization. However, vir­
tualization comes at a cost. When an application sends a request to the OS/2 kernel
for access to a device, the kernel has to build a request and send it to the device dri­
ver. The device driver has to break it down, perform the operation, format the data,
and transfer it back to the application.

Second, OS/2 had to allow direct hardware access to some peripherals for perfor­
mance reasons. Peripherals such as video adapters require high-speed access to
devices, and the normal device driver mechanism was just not fast enough. To solve
this problem, OS/2 allows applications or Dynamic Link Libraries (DLLs) to perform
direct 110 to adapter hardware. The video device driver, which resides in a Dynamic
Link Library (DLL), can access the device directly without calling a device driver to'
perform the 1/0. Dynamic Linking also allows programs to be linked with undefined
external references, which are resolved at run time by the OS/2 system loader. The
unresolved entry points exist in DLLs on the OS/2 system disk, and are loaded into
memory and linked with the executable program at run time. The use of DLLs allows
system services that exist in the DLLs to be modified by changing a DLL and not the
entire system. A display adapter, for example, could be added simply by a adding a
new DLL. Additional system functions and processes can be implemented as DLLs.

Third, OS/2 had to provide an efficient, preemptive multitasking kernel. The kernel
had to run several programs at once, yet provide an environment where critical pro­
grams could get access to the CPU when necessary. OS/2 uses a priority-based pre­
emptive scheduler. The preemptive nature of the OS/2 scheduler allows it to "take
away" the CPU from a currently running application and assign it to another applica­
tion. If two programs of equal oriority are competing for the CPU, the scheduler will
run each program in tum for a short period of time, called 1J. time slice. This ensures
that every program will have access to the CPU, and that no one program can monop­
olize the CPU.

Fourth, OS/2 had to provide a robust, protected environment. OS/2 uses the protect
mode of the 80286 and above processors, which has a built-in memory protection
scheme. Applications that attempt to read or to write from memory that is not in their
specific address space are terminated without compromising the operating system
integrity. OS/2 had to run applications that were larger than the physical installed
memory. OS/2 accomplishes this with swapping. If a program asks for more memory
than exists, a special fault is generated, which causes the existing contents of memory
to be swapped out to a disk file, thereby freeing up the required memory. When the
program accesses a function that has been swapped out to disk, a special fault is gen­
erated to cause the required functions to be swapped back into physical memory.
Swapping allows large programs to be run with less memory than the application
requires, but swapping can cause a considerable degradation in speed.

30 Writing OS/2 2. 1 Device Drivers in C

Fifth, OS/2 had to run on the 80286 processor. At the time that OS/2 was designed,
the 80286 was the only CPU that could run a multitasking protect mode operating sys­
tem. The 80386 machines were not available, so IBM and Microsoft committed to a
version of OS/2 which would run on the 80286 platform. This was purely a marketing
decision, based on the number of 80286 machines installed at the time. The imple­
mentation of OS/2 on the 80286 proved to be clumsy and slow. The operating system
had to be designed for the 16-bit architecture of the 80286, but really required a 32-bit
architecture to perform well. The 80286 could operate in the protect mode and real
mode, but could not switch back and forth gracefully. It could switch from the real
mode to the protect mode easily, but not back. The processor was designed to run in
only one mode, not both.-Beeau~'°S/2 had to support OS/2 applications and DOS
applications all at one time, a way had to be found to change the processor mode on
the fly. Gordon Letwin came up with the patented idea of how to do this with what has
been referred to as "turning the car off and on at 60 MPH."

Lastly, OS/2 hi!9 to run existing "well-behaved" DOS application~. Well-behaved DOS
programs were those programs that did not directly access the hardware or use short­
cuts to improve performance. Unfortunately, most DOS programs used some type of
shortcut to improve performance and make up for the relatively slow 8088 processor
they were originally written for.

Processes and Threads

OS/2 introduced the notion of threads. A thread is defined as an instance of execution
or path of execution through a piece of code. OS/2's multitasking is thread-based. A
program always has at least one thread, eaHedthe main thread, and may have many
more threads, each executing at the same time (see Figure 4-1). The additional
threads are created by the main thread, and act as smaller "children" of the main
thread. Threads inherit the environment of their creator, usually a process, and can be
started or suspended by the main thread. A thread can only be destroyed by commit­
ting suicide.

To aid in multitasking, OS/2 offers four classes of priorities (see Table 4-1). They are
Real-Time-Critical, Normal, Fixed-High, and Idle-Time. Real-Time-Critical is the high­
est priority, while Idle-Time is the lowest. Within each priority class, there are 32 sep­
arate and distinct priorities, numbered from 0 to 31. Most applications will run in the
Normal mode, while time critical applications (such as a cardiac monitor) might run
in the Real-Time-Critical class. The Fixed-High mode operates between Real-Time­
Critical and Normal modes, and offers real time response but at priorities that can be
dynamically modified by OS/2. The Idle-Time priority is reserved for slower back­
ground programs such as spoolers.

THREAD 1
(MAIN THREAD)

Chapter 4. An Overview of the OS/2 Operating System 31

PROCESS r-----, r-----,
I I I I
I I I I
I THREAD 2 I I THREAD 3 I
I I I I
I I I I ._ _____ .J ._ _____ .J

Figure 4-1. Process and threads.

One of OS/2's major advantages is its time-sliced, priority-based preemptive sched­
uler. This feature allows a critical or higher priority thread to preempt a currently run­
ning thread. This preemptive feature is what sets OS/2 apart from other multitasking
systems such as UNIX. OS/2 runs the highest priority thread until it completes or
gives up the CPU by blocking on an 1/0 request or system service. If a thread is cur­
rently executing and a higher priority thread needs to run, the lower priority thread
will be preempted and the higher priority thread allowed to run. When the higher pri­
ority thread finishes or blocks waiting on a system service, the lower priority thread
will get a chance to run again. If two threads with the same priority are competing for
the CPU, each thread will alternate for one time slice worth of time.

Table 4-1. OS/2 Priority Structure

Priority Use Modified by OS/2

Idle Spoolers, batch processors Yes

Regular Normal applications Yes

Fixed-High Special applications Yes
(Foreground Server)

Real-Time-Critical Real time applications No

32 Writing OS/2 2. 1 Device Drivers in C

Most UNIX systems do not use threads, so priorities in a UNIX system are per Process­
based, rather than thread-based. Since most UNIX kernels are not preemptive, a UNIX
application will run until it blocks on 1/0 or system resource, or exhausts its time
slice. Currently running processes cannot be preempted, thus a critical program need­
ing CPU time has to wait until the CPU is free. The UNIX scheduler is a round-robin
scheduler, that is, the system allocates equal time to every process in a round-robin
fashion. If three processes are running, process A gets a time slice, process B gets a
time slice, then process C gets a time slice, and then the whole operation begins again
with process A

OS/21.0- OS/2 Arrives

OS/2 1.0 was introduced in the fourth quarter of 1987. The first release did not con­
tain a graphical user interface, but instead contained two side-by-side list boxes with
names of programs to execute. The Application Programming Interface, or AP!, was
incomplete and unstable. Device support was virtually nonexistent, and OS/2 1.0 was
only guaranteed to run on the IBM PC AT and IBM PS/2 line of computers. Many
DOS applications did not run in the DOS compatibility box, and only a few thousand
copies of OS/2 1.0 were sold.

OS/2 1.1 - Presentation Manager Arrives

The next major release of OS/2 contained the graphical user interface, dubbed
Presentation Manager. OS/2 was beginning to take shape. It contained a better DOS
compatibility box, which caused fewer DOS programs to crash, and had a consistent,
more bug-free set of API routines. Documentation, in the form of manuals and books,
was beginning to appear, and a few more DOS applications were recompiled and
relinked under OS/2. None of these programs used the Presentation Manager, as
they were not redesigned for OS/2. As a result, the applications were dull, character­
based programs that didn't take advantage of any of OS/2's multitasking abilities or
Presentation Manager. The lack of applications, together with the cost of a hardware
upgrade, kept most users away from OS/2.

Chapter 4. An Overview of the OS/2 Operating System 33

OS/2 1.2 - A Better File System
OS/2 had been using the file system known as FAT, named after the DOS File
Allocation Table. The FAT was where DOS (and OS/2) kept a running "picture" of the
hard disk, including the utilization and amount of free space. The DOS FAT file sys­
tem was limited by design to filenames with a maximum length of 11 characters, and
was inefficient in storing and retrieving files. The High Peiformance File System, or
HPFS, was introduced in OS/2 1.2 to provide more efficient handling of large files and
volumes, and to remove the 11-character filename restriction. HPFS can handle file­
names with up to 254 characters, files as large as two gigabytes, and provides a very
fast searching algorithm for storing and locating files. Unlike the FAT file system,
HPFS is an installable file system, and a special device driver must be loaded before
using it.

The DOS compatibility box was improved, but OS/2 still could not run many DOS
applications. This was due, in part, to the fact that the compatibility box did not offer
the full amount of memory usually available to DOS applications. The size of the DOS
compatibility box memory was reduced when· device drivers were loaded, and often
would only offer SOOK bytes or less for running DOS programs. OS/2 was used pri­
marily by companies that had real-time multitasking requirements for their systems,
but not for running DOS applications. For DOS applications which would not run in
the OS/2 1.2 compatibility box, OS/2 had a built-in dual-boot facility which allowed
the user to selectively boot up DOS or OS/2. While OS/2 was running, however, the
compatibility box was virtually useless.

Printers did not work correctly. OS/2 did not work with the most popular laser print­
ers, such as the Hewlett Packard Laserjets. The future of OS/2 was bleak.

When Microsoft announced that they would be abandoning OS/2 in favor of Windows
3.0, OS/2 faced an uncertain future. Microsoft had been stating that OS/2 was the PC
operating system platform of the future, and now had reversed that statement. Many
large companies had previously begun conversion of their flagship programs, such as
Lotus 1-2-3, to run under OS/2, and were taken by surprise by Microsoft's change in
direction. IBM was forced to take over the development of OS/2, and Microsoft could
free up its programming resources to concentrate on Windows software. Microsoft
and IBM did agree to cross-license each other's products, and together they agreed
that IBM would assume complete responsibility for OS/2.

34 Writing OS/2 2. 1 Device Drivers in C

OS/21.3 - IBM's First Solo Effort

Figure 4-2. OS/2 l.3EE. (Courtesy of
International Business Machines Corporation.)

Although OS/2 1.0, 1.1, and 1.2 were developed jointly by IBM and Microsoft, OS/2

Version 1.3 (dubbed OS/2 Lite) was the first version of OS/2 to be done entirely by

IBM (see Figure 4-2). It took IBM a while to get up to speed with OS/2, but when

OS/2 1.3 was released, many features that had never worked correctly had been

fixed. Version 1.3 had better networking, communications, and graphics support and

could finally print correctly. The OS/2 kernel was slimmed down and ran consider­

ably faster than its predecessors. IBM produced detailed documentation and began to
actively support developers through the IBM Developer's Assistance Program.

However, OS/2 was used primarily by IBM installations for their PC-to-mainframe

connection, and by OEMs for specialized applications.

IBM was still not actively marketing OS/2. Information was difficult to come by, and it
was almost impossible to buy OS/2. Most IBM dealers didn't even know what OS/2

was, or how to order it. IBM failed to inform their resellers how to demonstrate and

sell OS/2. OS/2 was going nowhere fast.

Chapter 4. An Overview of the OS/2 Operating System 35

OS/2 2.0- What OS/2 Was Really Meant to Be
Before deciding to scrap its OS/2 development, Microsoft had been working on a new
version of OS/2, called OS/2 2.0. Microsoft first displayed early running versions of
OS/2 2.0 in the middle of 1990, and had released the infamous System Developer's Kit,
or SDK, with a whopping $2600 price tag. The OS/2 2.0 SDK included early releases
of the OS/2 kernel, 32-bit compiler, assembler, and linker. Many developers, howev­
er, balked at the price. The software contained several serious bugs, and for most
developers, proved to be unusable.

IBM realized that, unless it made a radical change in the way OS/2 was designed and
marketed, OS/2 would eventually become a proprietary internal operating system
used only by IBM. IBM formed a team to assume the development responsibilities of
OS/2 2.0. They mounted an enormous effort, and the commercial release of OS/2 2.0
was the culmination of that effort.

OS/2 2.1 represents a new direction for personal computer operating environments.
Instead of having to deal with the 16-bit architecture of the 80286 processors, OS/2
2.1 was developed around the 32-bit architecture of the 80386 microprocessor. OS/2
2.1 will not run on an 80286 processor-based machine. This decision comes at a time
when the 16-bit 80286 machines are obsolete, and the standard choice for personal
computers is an 80486 machine with 8MB of RAM as a minimum configuration. With
memory prices at $35 per megabyte of RAM, memory configurations of 8 and 16MB
are becoming commonplace. Hard disk storage has decreased significantly in price,
and most systems are sold with lOOMB or more of disk storage as minimum.

OS/2 2.1 allows DOS programs to run in their own one megabyte of memory space
without knowledge of other programs in the system. Even the most ill-behaved DOS
applications, such as games, run flawlessly in their own protected area. In addition,
users can boot any version of DOS they choose into a DOS session. The number of
DOS sessions that can be started is unlimited in OS/2 2.1. DOS programs have access
to 48MB of extended memory. OS/2 2.1 also supports DOS programs designed to use
the DOS Protect Mode Inteiface, or DPM/Version 0.9. OS/2 2.1 runs Windows 3.0 and
3.1 applications in the real or standard mode. OS/2 2.1 allows Dynamic Data
Exchange, or DDE, between DOS/Windows and OS/2 applications, providing up to
512MB of DPMI memory per DOS session.

36 Writing OS/2 2. 1 Device Drivers in C

OS/2 2.1 uses a desktop metaphor called the Workplace Shell for its user interface.

The Workplace Shell represents an actual desktop using icons representing the actual
items the user might find on his or her desk. It contains such items as a file folder,

printer, network connection, and other icons that reflect the current configuration of

the system. Printing a document, for example, is as simple as opening a folder, click­

ing on the document and dragging it over to the printer icon.

Figure 4-3. OS/2 2.1 tutorial. (Courtesy of
International Business Machines Corporation.)

OS/2 2.1 represents a common platform for supporting many different types of appli­

cations. It runs DOS applications, Windows 3.0 and 3.1 applications and, of course,

native OS/2 applications, all seamlessly. There is no longer a need to dual-boot DOS

or to load three different operating environments; OS/2 2.1 runs them all.

37

The OS/2 Application Programming Interlace
OS/2 2.1 offers a rich set of Application Program Inteifaces (AP!s) to allow programs
to access system services. The OS/2 APis are classified into eight major categories.
They are:

1. File System
File Systems (FAT, Super FAT, HPFS)
Network Access (LAN Server, NetBIOS)
Permissions
DASD Media Management

2. Graphics Interface
Graphics Programming Interface
Video Input and Output

3. Inter Process Communications
Shared Memory
Semaphores
Named Pipes
Queues
Dynamic Data Exchange (DDE)

4. System Services
Device Monitors
Timer Services

5. Process Management
Threads
Processes
Child Processes
Scheduler /Priorities

6. Memory Management

7. Signals

8. Dynamic Linking

CHAPTER 5

The Anatomy Of An 05/2
Device Driver

0 S/2 device drivers, like other multitasking device drivers, shield the applica­
tion code that petiorms 1/0 from device-specific hardware requirements.
The application program need not concern itself with the physical con­

straints of a particular 1/0 device, such as timing or 1/0 port addressing, as these are
handled entirely by the device driver. If an 1/0 card address is moved or a different
interrupt selected, the device driver can be recompiled (notice I did not say reassem­
bled) without modifying or recompiling the application code.

It should be noted that OS/2 device drivers can be configured during boot-up opera­
tion by placing adapter-specific parameters in the DEVICE= entry in CONFIG.SYS.
The driver can retrieve the parameters and configure itself during the INIT section.

Conceptually, OS/2 device drivers are similar to device drivers in other multitasking
systems, but they have the added responsibility of handling processor-specific anom­
alies such as the segmented architecture and operating modes of the Intel processors.

Application-to-Driver Interface
OS/2 device drivers are called by the kernel on behalf of the application needing 1/0
service. The application program makes an 1/0 request call to the kernel, specifying
the type of operation needed. The kernel verifies the request, translates the request
into a valid device driver Request Packet and calls the device driver for service. The
device driver handles all of the hardware details, such as register setup, interrupt han-

39

40 Writing OS/2 2. 1 Device Drivers in C

dling, and error checking. When the request is complete, the device driver massages

the data into a format recognizable by the application. It sends the data or status to

the application and notifies the kernel that the request is complete. If the request can­

not be handled immediately, the device driver may either block the requesting thread

or return a 'request not done' to the kernel. Either method causes the device driver to

relinquish the CPU, allowing other threads to run. If an error is detected, the device

driver returns this information to the kernel with a 'request complete' status. The

OS/2 device driver may also "queue up" requests to be handled later in a work queue.

The OS/2 Device Helper (DevHlp) library contains several DevHlps for manipulating

the device driver's work queue.

DOS Device Drivers and OS/2 Device Drivers

DOS device drivers have no direct OS/2 counterpart. DOS device drivers are simple,

single-task, polling device drivers. Even interrupt device drivers under DOS poll until

interrupt processing is complete. DOS device drivers support only one request at a

time, and simultaneous multiple requests from DOS will cause the system to crash.

While the DOS device driver is a single-threaded polled routine, the OS/2 device dri­

ver must handle overlapping requests from different processes and threads. Because

of this, the OS/2 device driver must be reentrant. The OS/2 device driver must also

handle interrupts from the device and optionally from a timer handler. It must handle

these operations in an efficient manner, allowing other threads to gain access to the

CPU. Most importantly, it must do all of these reliably. The OS/2 device driver,

because it operates at Ring 0, is the only program that has direct access to critical sys­

tem functions, such as the interrupt system and system timer. The device driver,

therefore, must be absolutely bug-free, as any error in the device driver will cause a

fatal system crash.

OS/2 2.1 device drivers no longer have to deal with the real-protect mode switching of

OS/2 1.x, as all programs run in protect mode. OS/2 device drivers must have the

capability to deinstall when requested, releasing any memory used by the device dri­

ver to the OS/2 kernel. OS/2 device drivers may also support device monitors, pro­

grams that wish to monitor data as it is passed to and from the device driver. OS/2

offers a wide range of device driver services to provide this functionality.

Chapter 5. The Anatomy Of An OS/2 Device Driver 41

Designing an OS/2 Device Driver
Designing an OS/2 device driver requires a thorough understanding of the role of a
device driver, as well as a solid working knowledge of the OS/2 operating system and
design philosophy. Debugging OS/2 device drivers can be difficult, even with the
proper tools. The OS/2 device driver operates at Ring 0 with full access to the system
hardware. However, it has almost no access to OS/2 support services, except for a
handful of DevHlp routines. Many device driver failures occur in a real time context,
such as in the midst of interrupt handling. It may be difficult or impossible to find a
device driver problem using normal debugging techniques. In such cases, it is neces­
sary to visualize the operation of the device driver and OS/2 at the time of the error to
help locate the problem.

Tools Necessary For Driver Development
One of the most important tools for device driver development is the device driver
debugger. Generally, the best choice is the OS/2 2.1 kernel debugger or KDE. KDB
uses a standard ASCII terminal attached to one of the serial COM ports via a null­
modem cable. When OS/2 is started, KDB looks for a COM port to perform its 1/0 to
the debugging terminal. For systems with only one COM port, KDB will use COMl.
For systems with two COM ports, KDB will use COM2.

The KDB is not simply a debugger, but is a replacement kernel that replaces the
OS/2 standard system kernel called OS2KRNL. KDB has knowledge of internal OS/2
data structures and provides a powerful command set for debugging OS/2 device dri­
vers. Installing the debugging kernel is easy. The attributes of the hidden file
OS2KRNL are changed to non-hidden and non-system, and the file is copied to
OS2KRNL.OLD. The debug kernel is then copied to OS2KRNL, and OS/2 is reboot­
ed. KDB will issue a sign-on message to the debugging terminal indicating that it is
active. KDB can be entered by typing <cntl-c> on the debug terminal, or if KDB
encounters an INT 3 instruction. These procedures are described in more detail in
Chapter 13. The kernel debugger comes with the IBM OS/2 2.1 Toolkit, and is
installed easily with the installation program supplied with the Toolkit.

42 Writing 05/2 2. 1 Device Drivers in C

APPLICATION REQUEST

DosRead, DosWrite, DosOpen,
DosClose, DosDevlOCtl

I
OS/2 KERNEL

VERIFY PARAMETERS
FORMAT REQUEST INTO REQUEST

PACKET-SEND TO DRIVER

1
REQUEST PACKET

l
DEVICE DRIVER

PERFORM REQUEST
AND RETURN DATA/STATUS

Figure 5-1. Application-to-device driver inteiface.

The Basics of Driver Design

The device driver receives two basic types of requests: requests that can be complet­

ed immediately and those that cannot (see Figure 5-1). It receives these requests via a

standard data structure called a Request Packet (see Figure 5-2).

Requests that can be completed immediately are handled as they come in, and sent

back to the requestor. Requests that cannot be handled immediately (such as disk

seeks) are queued up for later dispatch by the device driver. The device driver manip­

ulates Request Packets using the DevHlp routines. To minimize head movement, disk

device drivers usually sort pending requests for disk seeks in sector order.

The OS/2 device driver plays an additional role in system performance and operation.

When a device driver is called to perform a request that cannot be completed immedi­

ately, the device driver Blocks the requesting thread. This relinquishes the CPU and

allows other threads to run. When the request is complete, usually as the result of an

interrupt or error occurring, the thread is immediately UnBlocked and Run. The device

driver then queries the request queue for any pending requests that may have come in

while the thread was blocked. It is important to note that when an application calls a

device driver, the application program's LDT is directly accessible by the device driver.

Chapter 5. The Anatomy Of An OS/2 Device Driver 43

Request Packets

The first entry in the Request Packet Header (see Figure 5-2) is the Request Packet
length, filled in by the kernel. The second parameter is the unit code. Applicable for
block devices only, this field should be set by the device driver writer to zero for the
first unit, one for the second, etc. The third field is the command code. The command
code is filled in by the kernel. This is the code used by the switch routine in the
Strategy section to decode the type of request from the kernel. The next field is the
status word returned to the kernel. This field will contain the result of the device dri­
ver operation, along with the 'DONE' bit to notify the kernel that the request is com­
plete (this is not always the case; the device driver may return without the 'done' bit
set). To make things easier, a C language union should be used to access specific
types of requests. The Request Packet structures are placed in an include file, which
is included by the device driver mainline. Refer to the Standard OS/2 Device Driver
Include File in Appendix C.

typedef struct ReqPacket
UCHAR RPlength;
UCHAR RPunit;
UCHAR RPcommand;
USHORT RPstatus;
UCHAR RPreserved[4J;
ULONG RPqlink;
UCHAR avail[19J;
} REQPACKET;

II Request Packet length
II unit code for block DD only
II command code
II status word
II reserved bytes
II queue linkage
II command specific data

Figure 5-2. Request Packet Header.

OS/2 Device Driver Architecture

OS/2 device drivers come in two flavors, block and character. Block devi~riyers.are
used for mass storage devices such as disk and tape. Character device drivers are used
for devices that handle data one character at a time, such as a modem. OS/2 device dri­
vers are capable of supporting multiple devices, such as a serial communications
adapter with four channels or a disk device driver which supports multiple drives.

OS/2 device drivers receive requests from the OS/2 kernel on behalf of an application
program thread. When the device driver is originally opened with a DosOpen API
call, the kernel returns a handle to the thread that requested access to the device dri­
ver. This handle is used for subsequent access to the device driver.

44 Writing 05/2 2. 1 Device Drivers in C

When an application makes a call to a device driver, the kernel intercepts the call and
formats the device driver request into a standard Request Packet. The Request Packet
contains data and pointers for use by the device driver to complete the request. In the
case of a DosRead or Dos Write, for example, the Request Packet contains the verified
and locked physical address of the caller's buffer. In the case of an IOCtl, the Request
Packet contains the virtual address of a Data and Parameter Buffer. Depending on the
type of request, the data in the Request Packet will change, but the Request Packet
header length and format remain fixed. The kernel sends the Request Packet to the
driver by passing it a 16:16 pointer to the Request Packet.

Device drivers are loaded by the OS/2 loader at boot time, and the kernel keeps a
linked list of the installed device drivers by name, using the link pointer in the Device
Header. Before a device driver is used, it must be "DosOpen"ed from the application.
The DosOpen specifies an ASCII-Z string with the device name as a parameter, which
is the eight character ASCII name located in the Device Header (see Figure 5-3). The
kernel compares this name with its list of installed device drivers, and if it finds a
match, it calls the OPEN section of the device driver Strategy routine to open the
device. If the open was successful, the kernel returns to the application a handle to
use for future device driver access. The device handles are usually assigned sequen­
tially, starting with 3 (0, 1, and 2 are claimed by OS/2). However, the handle value
should never be assumed.

typedef struct DeviceHdr
struct DeviceHdr far *DHnext;

USHORT DHattribute;
OFF DHstrategy;
OFF DHidc;
UCHAR DHname[8J;
char reserved[8];
} DEVICEHDR;

DEVICEHDR devhdr = {

(void far*) OxFFFFFFFF,

II
II
II
II
II

ptr to next header, or FFFF
device attribute word
offset of strategy routine
offset of IDC routine
dev name (char) or #units (blk)

II link
(DAW_CHR I DAW_OPN I DAW_LEVELl),
(OFF) STRAT,

II attribute
II &strategy
11 &IDCrouti ne
II device name

(OFF) 0,
"DEVICEl "
} ;

Figure 5-3. OS/2 device driver header.

Chapter 5. The Anatomy Of An 0512 Device Driver 45

Device Driver Modes
OS/2 2.1 device drivers operate in three different modes. The first, /NIT mode, is a
special mode entered at system boot time and executed at Ring 3. When the OS/2
system loader encounters a "DEVICE=" statement in the CONFIG.SYS file on boot­
up, it loads the device driver .SYS file and calls the INIT function of the device driver.
What makes this mode special is that the boot procedure is running in Ring 3 which
normally has no 1/0 privileges, yet OS/2 allows Ring 0-type operations. The device
driver is free to do port 1/0 and even turn interrupts off, but must ensure they are
back on before exiting the INIT routine. The INIT routine can be used to initialize a
Universal Asynchronous Receiver Transmitter (UAR1) or anything else necessary to
ready a device.

Ring 3 operation during INIT is necessary to protect the integrity of code that has
already been loaded up to that point, and to make sure that the device driver itself does
not corrupt the operating system during initialization. Ring 3 operation also allows the
device driver initialization routine to call a limited number of system API routines to aid
in the initialization process. For example, a device driver might use the API routines to
read a disk file that contains data to initialize an adapter. The device driver also uses the
API routines to display driver error and sign-on messages. The INIT code is only called
once, during system boot. For this reason, the INIT code is usually located at the end of
the code segment so it can be discarded after initialization.

The second mode, called Kernel mode, is in effect when the device driver is called by
the kernel as a result of an 1/0 request.

The third mode, called Interrupt mode, is in effect when the device driver's interrupt
handler is executing in response to an external interrupt, such as a character being
received from a serial port.

In general, the OS/2 device driver consists of a Strategy section, an /NIT section, and
optional interrupt and timer sections. The Strategy section receives requests from the
kernel, in the form of Request Packet. The Strategy section verifies the request, and if
it can be completed immediately, completes the request and sends the result back to
the kernel. If the request cannot be completed immediately, the device driver option­
ally queues up the request to be completed at a later time and starts the 1/0 opera­
tion, if necessary. The kernel calls the Strategy routine directly by finding its offset
address in the Device Header.

46 Writing OS/2 2. 1 Device Drivers in C

The Device Header

A simple OS/2 device driver consists of at least one code segment and one data seg­
ment, although more memory can be allocated if necessary. The first item of data that
appears in the data segment must be the device driver header. The device driver
header is a fixed length, linked list structure that contains information for use by the
kernel during INIT and normal operation.

The first entry in the header is a link pointer to the next device that the device driver
supports. If no other devices are supported, the pointer is set to - lL. A -lL terminates
the list of devices supported by this device driver. If the device driver supports multi­
ple devices, such as a four-port serial board or multiple disk controller, the link is a far
pointer to the next device header. When OS/2 loads device drivers at INIT time, it
forms a linked list of all device driver device headers. The last device driver header
will have a link address of-lL. When a DEVICE= statement is found in CONFIG.SYS,
the last loaded device driver's link pointer is set to point to the new device driver's
device header, and the new device driver's link pointer now terminates the list.

The next entry in the device header is the Device Attribute Word (see Table 5-1). The
Device Attribute Word is used to define the operational characteristics of the device
driver.

The next entry is a one word offset to the device driver Strategy routine. Only the offset
is necessary, because the device driver is written in the small model with a 64K code

DEVICEHDR devhdr[2J = {

} ;

{ (void far*) &devhdr[l],
(DAW_CHR I DAW_OPN I DAW_LEVELl),
(OFF) STRATl,
(OFF) 0,
"DEVICEl "
} '

{(void far*) OxFFFFFFFF,
(DAW_CHR I DAW_OPN I DAW_LEVELl),
(OFF) STRAT2,
(OFF) 0,
"DEVICE2 "
}

II link to next dev
II attribute
II &strategy
II &IDCroutine

II link(no more devs)
II attribute
II &strategy
I I &IDCrouti ne

Figure 5-4. Device driver header, multiple devices.

Chapter 5. The Anatomy Of An OS/2 Device Driver 4 7

segment and a 64K data segment (this is not always true-in special cases, the device
driver can allocate more code and data space if needed, and can even be written in the
large model).

The next entry is an offset address to an IDC routine, if the device driver supports
inter-device driver communications. (1he DAW _IDC bit in the device attribute word
must also be set, otherwise the AttachDD call from the other device driver will fail.)
The last field is the device name, which must be eight characters in length. Names
with less than eight characters must be space-padded. Remember, any mistake in cod­
ing the device driver header will cause an immediate crash and bum when booting.

Table 5-1. Device Attribute Word

Bit(s) Description

15 set if character driver, 0 if block driver

14 set if driver supports inter-device communications (IDC)

13 for block drivers, set if non-IBM format, for character drivers, set if
driver supports output-until-busy.

12 if set, device supports sharing

11 set, if block device, supports removable media, if character device,
supports device open/ close

10 reserved, must be 0

9-7 driver function level

001 = OS/2 device driver

010 = supports DosDevIOCtl2 and Shutdown

011 = capabilities bit strip in device header

6 reserved, must be 0
·-----···~----·

5 reserved, must be 0

4 reserved, must be 0

3 set if this is the CLOCK device

2 set if this is a null device (character driver only)

1 set if this is the new stdout device

0 set if this is the new stdin device

48 Writing OS/2 2. 1 Device Drivers in C

Capabilities Bit Strip

The Capabilities Bit Strip word defines additional features supported on level 3 dri­
vers only (see Table 5-2).

Note that if the device driver is an ADD device driver, and sets bit 7 and 8 in the
device attribute word as well as bit 3 in the capabilities bit strip, the Init request pack­
et sent by the kernel will be formatted differently than the standard PDD Init request
packet. Refer to the appropriate ADD documentation for a description of the ADD lnit
request packet format.

Table 5-2. Capabilities Bit Strip

Bit(s) Description

0 set if driver supports DosDevlOCtl2 packets and has Shutdown support.

1 for character drivers, set if driver supports 32-bit memory addressing, for
block drivers, this bit must be 0

2 if set, the device driver supports parallel ports

3 if set, the device driver is an ADD device driver*

4 if set, the kernel will issue the InitComplete strategy command

5-31 reserved, must be 0

Providing a Low-Level Interface

The data segment, which contains the Device Header, must appear as the very first
data item. No data items or code can be placed before the Device Header. An OS/2
device driver which does not adhere to this rule will not load. Since our OS/2 device
drivers are written in C, a mechanism must be provided for putting the code and data
segments in the proper order, as well as providing a low-level interface to handle
device and timer interrupts. Since the Device Header must be the first item that
appears in the data segment, the C compiler must be prevented from inserting the
normal C start-up code before the Device Header. Additionally, a method of detecting
which device is being requested needs to be provided for device drivers that support
multiple devices.

Chapter 5. The Anatomy Of An 0512 Device Driver 49

These requirements are handled with a small assembly language stub that is linked in
with the device driver (refer to Figure 5-5). The _acrtused entry point prevents the C
start-up code from being inserted before the device driver data segment. The seg­
ment-ordering directives ensure that the data segment precedes the code segment.

C start-up routine, one device

DATA
DATA

CONST
CONST

BSS
BSS

DGROUP

_TEXT

_STRAT
_acrtused:

EXTRN main: near
PUBLIC _STRAT
PUBLIC acrtused

segment word public 'DATA'
ends

segment word public 'CONST'
ends

segment word public 'BSS'
ends

group CONST,_BSS,_DATA

segment word public 'CODE'
assume cs:_TEXT,ds:DGROUP,es:NOTHING,ss:NOTHING
.286P

proc far
;no start-up code

push 0
jmp start ;signal device 0

start:

Figure 5-5. Start-up routine, one device. (Continued)

50 Writing 05/2 2. 1 Device Drivers in C

_STRAT

_TEXT

push
push
ca 11
pop
pop
add
mov
ret

es
bx
_main
bx
es

;send Request Packet address

;call driver mainline
;restore es:bx

sp,2 ;clean up stack
word ptr es:[bx+3J,ax ;send completion status

endp

ends
end

Figure 5-5. Start-up routine, one device.

Note the _STRAT entry point. Remember that this is the address placed in the device
driver's Device Header. The kernel, when making a request to the device driver,
looks up this address in the Device Header and makes a far call to it. The assembly
language routine then, in turn, calls the C mainline. Thus, the linkage from the kernel
to the device driver is established.

Note the "push O" in the beginning of the _STRAT routine. This is to notify the device
driver which device is being requested. Each device supported by the device driver
requires its own separate Device Header. Note also that each Device Header contains
an offset address to its own Strategy routine. Using the assembly language interface,
the device number is pushed on the stack and passed to the device driver Strategy
section for service. The device driver retrieves the parameter and determines which
device was requested. One of the parameters to main is the int dev (see Figure 5-8),
the device number that was passed from the assembly language start-up routine. The
assembly language start-up routine is modified to support multiple devices by adding
entry points for each device's Strategy section. The modified source for this routine is
shown in Figure 5-6.

The assembly language routine in Figure 5-7 provides the interrupt handler and timer
handler entry points. The interrupt handler entry point provides a convenient place to
put a breakpoint before entering the C code of the main interrupt handler. The timer
handler entry point provides a place to save and restore the CPU registers. Note that
the interrupt handler does not need to save the register contents, as this is done by the
OS/2 kernel. The timer handler, however, must save and restore register contents.

Chapter 5. The Anatomy Of An OS/2 Device Driver 51

C start-up routine, 4 devices

_DATA
DATA

CONST
CONST

_BSS
_BSS

DGROUP

_TEXT

assume

_STRATl
_acrtused:

push
jmp

_STRATl

_STRATZ

push
jmp

EXTRN _main:near
PUBLIC _STRATl
PUBLIC _STRATZ
PUBLIC _STRAT3
PUBLIC _STRAT4
PUBLIC _acrtused

segment word public 'DATA'
ends

segment word public 'CONST'
ends

segment word public 'BSS'
ends

group CONST, _BSS, _DATA

segment word public 'CODE'

cs:_TEXT,ds:DGROUP,es:NOTHING,ss:NOTHING
.Z86P

proc far

0
start

endp

proc far

1
start

satisfy EXTRN modules

;signal device 0

;signal second device

Figure 5-6. Start-up routine, four devices. (Continued)

52 Writing OS/2 2. 1 Device Drivers in C

_STRATZ

_STRAT3

push
jmp

_STRAT3

_STRAT4

push
jmp

start:
push
push
call
pop
pop
add
mov
ret

_STRAT4

_TEXT

endp

proc far

2
start

endp

proc far

3
start

es
bx
_main
bx
es

;signal third device

;signal fourth device

;send address

;call driver mainline
;restore es:bx

sp,2 ;clean up stack
word ptr es:[bx+3J,ax ;send completion status

endp

ends
end

Figure 5-6. Start-up routine,four devices.

Chapter 5. The Anatomy Of An 0512 Device Driver 53

C start-up routine, one device, w/interrupt and timer

_DATA
_DATA

CONST
CONST

_BSS
_BSS

DGROUP

_TEXT

PUBLIC
PUBLIC
PUBLIC
PUBLIC

EXT RN
EXT RN
EXT RN

_ST RAT
_acrtused

INT_HNDLR
_TIM_HNDLR

_interrupt_handler:near
_timer_handler:near
_main:near

segment word public 'DATA'
ends

segment word public 'CONST'
ends

segment word public 'BSS'
ends

group CONST, _BSS, _DATA

segment word public 'CODE'

assume cs:_TEXT,ds:DGROUP,es:NOTHING, ss:NOTHING
.286P

_STRAT
_acrtused:

proc far
; no start-up code

start:

push 0
jmp start

push es
push bx
call _main
pop bx

signal device 0

;send Request Packet address

;call driver mainline
;restore es:bx

Figure 5-7. Start-up routine with timer and interrupt handler. (Continued)

54 Writing OS/2 2. 1 Device Drivers in C

_STRAT

pop
add
mov
ret

INT_HNDLR

es
sp,2 ;clean up stack
word ptr es:[bx+3J,ax ;send completion status

endp

proc far

call _interrupt_handler ;handle interrupts
ret ;bail out

INT_HNDLR endp

_TIM_HNDLR proc far

pus ha
push es
push ds
call _timer_handler
pop ds
pop es
pop a
ret

_TIM_HNDLR endp

_TEXT ends
end

Figure 5-7. Start-up routine with timer and interrupt handler.

Chapter 5. The Anatomy Of An 05/2 Device Driver 55

The Strategy Section

The Strategy section is nothing more than a big switch statement (see Figure 5-8).
Common device driver requests, such as DosWrite and DosRead, have predefined
function codes assigned to them. The device driver may elect to ignore any or all of
these requests by returning a DONE status to the kernel. This tells the kernel that
the request has been completed. The status returned to the kernel may optionally
include error information that the kernel returns to the calling program.

int main(PREQPACKET rp, int dev)
{

switch(rp->RPcommand)
{

case RPINIT: II OxOO

II init called by kernel in protected mode

return I nit(rp);

case RPREAD: II Ox04

return (RP DONE) ;

case RPWRITE: II Ox08

return (RP DONE) ;

case RPINPUT_FLUSH: II Ox07

return (RPDONE);

case RPOUTPUT_FLUSH: II OxOb

return (RPDONE);

case RPOPEN: II OxOd

return (RPDONE);

Figure 5-8. Skeleton strategy section. (Continued)

56 Writing OS/2 2. 1 Device Drivers in C

case RPCLOSE: II OxOe

return (RP DONE) ;
case RPIOCTL: II OxlO

switch (rp- >s. IOCt l . function)
{

case OxOO: II our function def #1

return (RPDONE);

case OxOl: II our function def #2

return (RPDONE);

II deinstall request

case RPDEINSTALL: II Oxl4

return(RPDONE RPERR I ERROR_BAD_COMMAND);

II all other commands are flagged

default:
return(RPDONE I RPERR I ERROR_BAD_COMMAND);

Figure 5-8. Skeleton strategy section.

Note, however, that in the case of one of the standard device driver functions, the ker­
nel will re-map the error value returned from the device driver to one of the standard
device driver return codes.

If the device driver must return special error codes, it should use an IOCtl request.
IOCtls are used for special types of operations, device driver-specific, which do not fit
into the architecture of the standard device driver functions. An example might be
such as port I/0 or initialization of a UART. The IOCtl section of the device driver is

Chapter 5. The Anatomy Of An 05/2 Device Driver 57

called when the application issues a DosDevIOCtl call with the device driver's handle.
Using IOCtls, the device driver can return specialized codes that might contain, for
example, the contents of an I/ 0 port or the status of the device. This flexibility allows
the device driver writer to customize the device driver to fit any device.

Examine the skeleton Strategy section in Figure 5-8. Note the switch on the Request
Packet command. A number of standard device driver functions have command codes
predefined in OS/2 (see Table 5-3). It is up to the device driver writer to act upon or
ignore any of the requests to the device driver.

The Strategy section is entered when the kernel calls the device driver to perform a
particular operation. Refer to Table 5-3.

Table 5-3. Device Driver Strategy Calls

Event Strategy section called

DosOpen call RPO PEN

DosClose RPCLOSE

boot RPINIT

IOCtl RPIOCTL

<cntl-c> RPCLOSE

<cntl-break> RPCLOSE

DosRead RP READ

Dos Write RPWRITE

Initialization

The first thing that must be done in the initialization section is to save the DevHlp
entry point address, passed in the Request Packet. This is the only time that the
address is made available to the device driver, and it must be saved in the device dri­
ver's data segment. The INIT code generally performs two other functions. First, it
issues the sign-on message to the screen that the device driver is attempting to load.
Second, it finds the address of the last data and last code item, and sends them back
to OS/2. OS/2 uses the code and data offset values to size memory. Only the first

58 Writing OS/2 2. 1 Device Drivers in C

code and data segment of the device driver is re-sized by OS/2, so it may be desirable
to place the INIT code and data into another segment which is discarded after the
device driver is loaded. If a device driver fails installation, it must send back zero off­
sets for its code and data segments so OS/2 can use the memory space that the
device driver had occupied during installation. Depending on the type of driver, you
may wish to use this section to initialize your device, hook and interrupt or start a
timer.

It should be noted that for Micro Channel and EISA bus systems which share inter­
rupts, it is desirable to hook the interrupt in the OPEN section and release it in the
CLOSE section. This allows other adapters which use the same interrupt to register
for the interrupt without being refused. ISA bus interrupts should be hooked during
INIT, since the driver should fail initialization if the interrupt cannot be given to the
device driver.

If the device driver supports multiple devices, it will contain a Device Beader with an
entry for each device, with the previous Device Header pointing to the next Device
Header. The last Device Header will contain a -11, which terminates the list. For each
device, the OS/2 kernel will call the Strategy entry point to initialize the device. If the
driver supports, for example, four serial ports that use a single interrupt level, only the
last valid initialized device should hook the interrupt. This will prevent previously
installed devices from generating interrupts before the initialization has been complet­
ed. The code and data segment values returned to OS/2 to size memory should be
exactly the same each time the INIT section is called.

During INIT, a limited number of API functions may be called by the device driver.
This is possible because INIT runs as a single Ring 3 thread. Some of the APis, espe­
cially those that perform file 1/0, are especially helpful for initializing adapters using
data that is resident in disk files. Refer to the INIT Strategy Command in Chapter 6
for a more detailed description of device driver initialization.

The driver should allocate necessary resources during initialization, such as memory
and GDT selectors. If the driver supports a memory mapped adapter, the physical
adapter address may be mapped to a GDT selector. However, because INIT is per­
formed as a Ring 3 thread, the GDT selector cannot be accessed during initialization.
Any function which creates or uses a GDT selector during INIT, such as AttachDD,
will not allow you to use it during INIT. This is because INIT is run at Ring 3, and
does not have access to the GDT.

With IBM PS/2s, the device driver should search the system for an adapter card with
the correct ID and verify that it is configured correctly. The device driver may call
special PS/2 Advance BIOS (ABIOS) routines (see Chapter 8) to verify the correct
configuration of the adapter.

Chapter 5. The Anatomy Of An OS/2 Device Driver 59

A Common Strategy

One of the most common techniques in OS/2 device driver design is for the Strategy
section to request service from the device and wait for a device or timer interrupt to
signal completion of the request. In this case, the Strategy section starts the 1/0 and
issues a Block DevHlp call, which blocks the calling thread. When the device interrupt
signals that the operation is done, the interrupt section Runs the blocked thread, com­
pleting the request. To protect against the request never being completed, such as
with a down device, the Block call can contain a time-out parameter. If the timeout
expires before the completion interrupt occurs, the Blocked thread is Run, allowing
the Strategy section to send the proper error message back to the kernel.

Another method of timing-out a device is the use of the SetTimer DevHlp routine. A
timer handler can be hooked into the OS/2 system clock, and ticks counted down
until a time-out occurs. The Blocked thread can then be Run by the timer handler.

The number and type of commands supported by the Strategy section are up to the
device driver writer. The device driver can process only the commands it needs to,
and let the others simply pass through by sending a DONE status back to the kernel.
Illegal function calls may optionally be trapped, and ERROR_BAD_COMMAND
returned to the kernel.

Note that the OS/2 kernel periodically issues special requests to the device driver
which are not generated by the application which opened the driver. An example of
this would be the 5-48 Code Page IOCtl which the kernel sends to every OS/2 device
driver immediately following the OPEN.

If the application that opened the device driver fails or is aborted with a <cntl-c> or
<cntl-break>, the device driver is UnBlocked by the kernel with an unusual wake-up
return code. The driver must return ERROR_CHAR_CALL_INTERRUPTED to the
kernel, which will in turn call the CLOSE section of the driver.

In general, it's a good practice to trap all unsupported requests by returning the
DONE and ERROR_BAD_COMMAND status to the kernel, but be aware you may
have to make some exceptions for the unsolicited calls.

In the simplest of device drivers, the Strategy section may only contain an OPEN,
CLOSE, and READ or WRITE section. In a complicated device driver, such as a disk
device driver, the Strategy section may contain over two dozen standard device driver
functions and dozens of additional IOCtl calls. IOCtl calls are actually Strategy func­
tions, but are broken down one step further to provide more detailed or device-specif­
ic operations (see Chapter 6). For instance, a device driver might send a list of para­
meters to be used in initializing an 1/0 port, and return the status of that initialization

60 Writing OS/2 2. 1 Device Drivers in C

operation. This type of function would not be able to be done with one of the standard
set of device driver function calls because it is so device-specific. The IOCtl, however,
is well suited to this type of functionality.

Interrupt Section

The interrupt section handles interrupts from the device. Interrupts may be caused by
a character having been received, a character finished transmitting, or any number of
external events. Interrupt processing should be quick and straightforward. The rou­
tine that handles the interrupt is appropriately called the interrupt handler. The inter­
rupt handler is a subroutine that is entered upon the receipt of an interrupt for the
IRQ level registered with the SetIRQ DevHlp call. All interrupts in OS/2 are handled
by the kernel. With DOS, all a program had to do was to hook the interrupt vector
that it wanted. OS/2, however, does not allow interrupt vectors to be changed, and if
an attempt is made to change one, the application will immediately be kicked off the
system.

To register for an OS/2 interrupt, the device driver must send the address of its inter­
rupt handler and the requested interrupt (IRQ) level to OS/2 via a SetIRQ DevHlp
call. If the SetIRQ is successful, OS/2 will call the interrupt handler upon receipt of an
interrupt on that IRQ.

OS/2 will call the interrupt handler that registered for a particular IRQ until the inter­
rupt handler claims the interrupt by clearing the carry flag (CLC).

The interrupt handler must be located in the first code segment of the device driver.
A sample interrupt handler is shown in Figure 5-9.

void interrupt_handler ()
{

int rupt_dev;
int source;
int cmd_b;
int st_b;
int port;
int temp;
int rxlevel;

port=UART_PORT_ADDRESS;
outp((port+2),0x20); // switch to bank 1

Figure 5-9. Interrupt handler. (Continued)

Chapter 5. The Anatomy Of An 05/2 Device Driver 61

source= getsrc ();
switch (source)
{

II optional timer service routine

case timer :

st_b=inp Cport+3);
if (ThisReadRP ~ 0)

break;
ThisReadRP->RPstatus=(RPDONE
Run ((ULONG) ThisWriteRP);
ThisWriteRP=O;
break;

case txm
case txf

II spurious write interrupt

if (ThisWriteRP ~ 0)
{

temp=inp(port+2);
break;

II get vector

II dee transmit cnt
II nobody waiting

I RPERR I ERROR_NOT_READY);
II run thread

II keep transmitting until no data left

if (!(QueueReadC&tx_queue,&outchar)))
{

outp((port), outchar);
tickcount=MIN_TIMEOUT;
break;

II done writing, run blocked thread

tickcount=MIN_TIMEOUT;
disable_write();

Figure 5-9. Interrupt handler. (Continued)

62 Writing 05/2 2. 1 Device Drivers in C

ThisWriteRP->RPstatus = (RPDONE);
Run ((ULONG) ThisWriteRP);
ThisWriteRP=O;
break;

case ccr

II control character, treat as normal

inchar=inp(port+5);

case rxf

II rx fifo service routine

if (ThisReadRP ~ 0)
inchar=inp (port); II get character

else
{
temp=inp(port+4);
rxlevel=(temp & Ox70) I OxlO;

II empty out chip FIFO

while (rxlevel !=0)
{

inchar=inp (port); II get character
rxlevel-;
tickcount=MIN_TIMEOUT;

II write input data to queue

if(QueueWrite(&rx_queue,inchar))

II error, queue must be full

{

ThisReadRP->RPstatus = (RPDONEIRPERRIERROR_GEN_FAILURE);

Figure ~9. Interrupt handler. (Continued)

Chapter 5. The Anatomy Of An OS/2 Device Driver 63

Run ((ULONG) ThisReadRP);
Thi sReadRP=O;
break;
}

com_error_word I= inp(port+5);

} //while rxlevel
l //else

} //switch (source)
EOI (IRQnum); //send EOI

}

Figure 5-9. Interrupt handler.

If the device driver is running on an ISA bus machine, OS/2 calls the device driver's
interrupt handler with interrupts disabled, since interrupts cannot be shared. On an
EISA or Micro Channel machine, interrupts remain enabled when the interrupt han­
dler is entered. Shared interrupts are one of the features of the IBM Micro Channel
and EISA bus architectures, which allow more than one device to share a single inter­
rupt level.

Device drivers which share interrupts must claim interrupts that belong to them by
clearing the carry flag. Interrupt handlers on EISA and Micro Channel machines can
refuse the interrupt by setting the carry flag before exiting the interrupt handler. The
OS/2 kernel will continue to call all of the interrupt handlers registered for the partic­
ular IRQ until one of the handlers claims the interrupt. Only the interrupt handler that
claims the interrupt should issue an EOI, which resets the interrupt so the interrupt
handler can be entered again. If you don't issue the EOI, you'll never get another
interrupt. Only the interrupt handler that owns the interrupt should issue the EOI.

Any extended time spent in the interrupt handler can cause performance problems.
The interrupt handler must quickly perform its functions and exit. In the case of char­
acter devices, the OS/2 DevHlp library supports fast reads and writes to circular char­
acter queues.

For block devices, interrupt handling is fast because the interrupt is usually caused by
a DMA completion or disk-seek complete. Data is usually transferred to the user
buffer using DMA, eliminating the need to transfer data during interrupt processing.
On a DMA transfer, the DMA controller is set-up, started, and the device driver exited
to allow other threads to run. When the DMA completes, it will generate a DMA com-

64 Writing OS/2 2. 1 Device Drivers in C

pletion interrupt, causing the device driver's interrupt handler to be entered. The
interrupt handler can then take the appropriate action, such as starting a new DMA
transfer. Note that the interrupt handler is written in C. It could have written using
assembly language, but it's much easier to write and debug when written in C.

Most UARTs and adapters contain some type of buffering, which allows a device dri­
ver a little slack when servicing higher data rates. The example in Figure 5-9 shows
an interrupt handler for a serial 1/0 port utilizing the Intel 82050 UART. The UART
has an internal 4-byte buffer and two internal timers. When an interrupt occurs, the
UART is examined to determine the type of interrupt: transmit, receive, or clock.

The interrupt handler is not entered directly from OS/2, but is called from our small
assembly language start-up routine (see Figure 5-7). When the SetlRQ call is made to
register the interrupt handler, the address passed in the call is the address of the
interrupt handler entry point in the device driver start-up code. The start-up code in
tum calls the C language interrupt handler.

The interrupt handler routine is not difficult to write or understand. It can, however,
be difficult to debug. Errors that occur in the interrupt handler frequently appear only
in a real time context; that is, while the interrupt handler is being entered as a result
of a hardware interrupt. The C library function printf, for example, cannot be called
from within an interrupt handler. Application debuggers, such as CodeView, cannot
be used in an interrupt handler. A debugger such as the OS/2 kernel debugger or
similar must be used. A breakpoint placed in the interrupt routine will cause the pro­
gram to stop, and further interrupts may pass undetected while the program is
stopped. A problem may not appear when breakpoints are inserted, but will reappear
when the program executes normally. It then becomes necessary for the device driver
writer to ''visualize" the operation of the interrupt handler and begin applying solu­
tions until the problem is fixed.

The interrupt handler may receive unsolicited or spurious interrupts from the hard­
ware, and they should be handled accordingly by the OS/2 device driver. In the sam­
ple interrupt handler, a check is made to see whether a valid read or write request is
pending. If not, the device is reset and the interrupt handler is exited, effectively
ignoring the interrupt. This is not a recommended practice.

Examine the case r:xf section of the interrupt handler in Figure 5-9. This is where a
received character is detected. When the UART receives a complete character, it sets
the RX FIFO register bit which generates an interrupt. The interrupt handler examines
the interrupt source register to determine if the interrupt was caused by a received
character. If so, it checks to see whether a valid request is pending. If not, the character
is thrown away and the interrupt handler exited. If a valid read request is pending, the
UART is queried to see how many characters are in its four-character FIFO. (At high

Chapter 5. The Anatomy Of An 0512 Device Driver 65

data rates, it is possible that a character had come in while we were handling an inter­
rupt.) Each character is taken out of the FIFO one by one and written to a circular char­
acter queue. The OS/2 DevHlp library supports fast reads and writes to these circular
queues. To prevent collision, queue reads and writes are protected by disabling inter­
rupts around the queue accesses. The interrupt handler continues to receive charac­
ters and place them into the receive queue until the queue becomes full, the queue is
emptied, or a specified time period has elapsed.

In the sample interrupt handler, data is passed back to the Strategy section of the
device driver when the queue becomes full or when a specified time has passed with­
out the reception of a new character. If the sample device driver was intended for use
as a terminal device driver, the interrupt handler could have sent the data back to the
Strategy section upon receipt of an· end character, such as a carriage return.
Optionally, the interrupt handler can return each character to the Strategy section as
it is received. This method is more CPU intensive, however, and is generally not rec­
ommended. Data rates of 9600 baud and below can generally use the single-character
method, but speeds in excess of 9600 baud may require external buffering, DMA, or a
microprocessor-based adapter card. Overall system configuration should play a part in
the design of your interrupt handler. A heavily loaded system may not be able to
respond fast enough to multiple, high-speed interrupts on a character-by-character
basis, especially if the driver is servicing several devices on the same interrupt level.

The Timer Handler

At 9600 baud, the time required to receive a character via a serial port is approximate­
ly one millisecond. If we received several characters, and no more characters were
received within two or three hundred milliseconds, we could assume that there was
an interruption of data. This could be caused by the lack of data, or because a terminal
operator simply stopped typing. In any case, this would be a perfect opportunity to
send the received data back to the application.

In OS/2, a device driver can "hook" the system timer interrupt with a call to the
DevHlp library SetTimer function. The device driver passes OS/2 a pointer to a timer
handler, and OS/2 calls the timer handler (see Figure 5-10) each time it receives a
system clock interrupt. OS/2 also calls any other timer handlers that had been previ­
ously registered.

66 Writing 05/2 2. 1 Device Drivers in C

void timer_handler()
{

if CThisReadRP ~ 0)
return;

tickcount-;
if(tickcount ~ 0) {

ThisReadRP->RPstatus=(RPDONE);
Run ((ULONG) ThisReadRP);
Thi sReadRP=OL;
tickcount=MIN_TIMEOUT;
}

II make sure we're waiting

II decrement counter

II run blocked thread

II keep us out of here
II reset tick-based cntr

Figure 5-10. Timer handler.

The operation is simple. If no data appears within eight or ten 32-millisecond system
time ticks, the assumption can be made that the flow of input data has stopped, or at
least paused. The timer handler checks for a valid pending read request. This is nec­
essary because the timer handler will continue to be called every 32 milliseconds,
even if the device driver is idle. If a valid request is pending, the DevHlp Run function
is called to Run the Blocked thread and send the data back to the requesting applica­
tion. When the Strategy section becomes unblocked, it retrieves the data from the
receiver queue and sends it to the application's data buffer.

The TickCount DevHlp could also be used to set up a timer handler that gets called
every eight or ten ticks and checks if data has been read (see Figure 5-11). The
TickCount method is more efficient, as the timer handler is not called until the count
specified in the TickCount call is reached. The TickCount DevHlp routine can be also
used to reset the tick count for a previously registered time handler.

void timer_handler()
{

if (ThisReadRP ~ 0)
return;

II make sure we're waiting

ThisReadRP->RPstatus=CRPDONE) II exceeded tick cnt,run thread
Run CCULONG) ThisReadRP);
ThisReadRP=OL; II ensure no more entry here

Figure 5-11. TickCount timer handler.

CHAPTER&

Device Driver Strategy Commands

Strategy commands are the commands that the driver receives from the OS/2
kernel, usually in response to a driver request from an application thread. The
kernel uses the device driver Request Packet (see Figure 6-1) to communicate

with the device driver. The kernel sends a request to the device driver by filling in the
proper fields in the Request Packet, and sending the driver a pointer to the Request
Packet.

OS/2 does not guarantee the order that the Request Packets arrive at the device dri­
ver are preserved in the same order that the API requests were issued from the appli­
cation threads. It is possible that Request Packets may arrive out of order, and the
OS/2 device driver is responsible for providing the synchronization mechanism
between itself and application thread requests.

A Request Packet consists of two main parts: the Request Header and the command­
specific data field.

RPlength contains the total length in bytes of the Request Packet (the length of the
Request Header plus the length of the command-specific data).

67

68 Writing 05/2 2. 1 Device Drivers in C

typedef struct ReqPacket
UCHAR RPlength;
UCHAR RPuni t;
UCHAR RPcommand;
USHORT RPstatus;
UCHAR RPreserved[4J;
ULONG RPqlink;
UCHAR avail[19];
} REQPACKET;

II Request Packet length
II unit code for block DD only
II command code
II status word
II reserved bytes
II queue linkage
II command specific data

Figure 6-1. Request Packet definition.

RPunit identifies the unit for which the request is intended. This field has no meaning
for character devices.

RPcommand indicates the requested device driver function.

RPStatus is defined only for OPEN and CLOSE Request Packets on entry to the
Strategy routine. For all other Request Packets, the status field is undefined on entry.

For an OPEN Request Packet, bit 3 (MON_OPEN_STATUS,08H) of the status field is
set if the packet was generated from a DosMc;mOpen; otherwise it was a DosOpen.

#define RPERR
#define RPDEV
#define RPBUSY
#define RPDONE

#define ERROR_WRITE_PROTECT
#define ERROR_BAD_UNIT
#define ERROR_NOT_READY
#define ERROR_BAD_COMMAND
#define ERROR_CRC
#define ERROR_BAD_LENGTH
#define ERROR_SEEK
#define ERROR_NOT_DOS_DISK
#define ERROR_SECTOR_NOT_FOUND
#define ERROR_OUT_OF_PAPER

Ox8000 II error occurred
Ox4000 II error code
Ox0200 II device is busy
OxOlOO II driver done bit

OxOOOO II Write Prat
OxOOOl II Unknown Unit
Ox0002 II Device Not Ready
Ox0003 II Unknown Command
Ox0004 II CRC Error
Ox0005 II Bad Driver Req Len
Ox0006 II Seek Error
Ox0007 II Unknown Media
Ox0008 II Sector Not Found
Ox0009 II Out of Paper

Figure 6-2. Standard OS/2 device driver errors. (Continued)

Chapter 6. Device Driver Strategy Commands 69

#define ERROR_WRITE_FAULT OxOOOA II Write Fault
#define ERROR_READ_FAULT OxOOOB II Read Fault
#define ERROR_GEN_FAILURE OxOOOC II General Failure
#define ERROR_DISK_CHANGE OxOOOD II Change Disk
#define ERROR_UNCERTAIN_MEDIA OxOOlO 11 Uncertain Medi a
#define ERROR_CHAR_CALL_INTERRUPTED OxOOll 11 Char Call Interrupt
#define ERROR_NO_MONITOR_SUPPORT Ox0012 II Mons Not supported
#define ERROR_INVALID_PARAMETER Ox0013 II Invalid Parameters
#define ERROR_DEVICE_IN_USE Ox0014 II Dev Already In Use

Figure 6-2. Standard OS/2 device driver errors.

For a CWSE Request Packet, bit 3 (MON_CWSE_SfATUS,08H) of the status field
is set if the packet was generated by a DosMonClose or a DosClose of a handle that
was generated by a DosMonOpen. Otherwise, it was a DosClose on a non-monitor
handle.

Upon exit from.the Strategy routine, the status field describes the resulting state of
the request (see Figure 6-2).

Bit 15 (RPERR) is the Error bit. If this bit is set, the low 8 bits of the status word (7-0)
indicate the error code. The error code is processed by OS/2 in one of the following
ways:

• If the IOCtl category is 'User Defined' (greater than 127), FFOO is INCLUSIVE
OR'd with the byte-wide error code.

• If not 'User Defined' and Bit 14 (RPDEV - device driver defined error code) is set,
FEOO is INCLUSIVE OR'd with the byte-wide error code.

• Otherwise, the error code must be one of those shown and is mapped by the ker­
nel into one of the standard OS/2 API return codes before being returned to the
application.

Bit 14 (RPDEV) is a device-driver defined error if set in conjunction with bit 15.

Bits 13 - 10 are reserved.

Bit 9 (RPBUSY) is the Busy bit.

Bit 8 (RPDONE) is the Done bit. If it is set, it means that the operation is complete.
The driver normally sets the done when it exits.

70 Writing OS/2 2. 1 Device Drivers in C

Bits 7-0 are the low 8 bits of the status word. If bit 15 is set, bits 7-0 contain the error
code.

ERROR_UNCERTAIN_MEDIA (lOH) should be returned when the state of the media
in the drive is uncertain. This response should NOT be returned to the INIT com­
mand. For fixed disks, the device driver must begin in a media uncertain state in
order to have the media correctly labelled.

ERROR_CHAR_CALL_INTERRUPTED (llH) should be returned when the thread
performing the 1/0 was interrupted out of a DevHlp Block before completing the
requested operation.

ERROR_NO_MON_SUPPORT (12H) should be returned for monitor requests
(DosMonOpen, DosMonClose, DosMonRegister), if device monitors are not support­
ed by the device driver.

ERROR_INVALID_PARAMETER (13H) should be returned when one or more fields
of the Request Packet contain invalid values.

RPqlink is provided to maintain a linked list of Request Packets. It is a pointer to the
next packet in the chain, or -lL if this is the end of the chain. The device driver may
use the Request Packet management DevHlp services PullReqPacket,
PushReqPacket, FreeReqPacket, SortReqPacket, PullParticular, and AllocReqPacket
to manipulate the linked list of Request Packets.

Summary of Device Driver Commands

Table 6-1 contains a summary of device driver Strategy commands. The commands
are described in detail in the following subsections of this chapter.

Chapter 6. Device Driver Strategy Commands 71

Table 6-1. Device Driver Strategy Commands

Code Meaning Devices
OxOO lnit Character, Block

OxOl Media Check Block Only

Ox02 Build BIOS Parameter Block Block Only

Ox03 Reserved NIA
Ox04 Read Character, Block

Ox05 N ondest. Read, no wait Character Only

Ox06 Input Status Character Only

Ox07 Flush Input Buffer Character Only

Ox08 Write Character, Block

Ox09 Write w/Verify Character, Block

OxOa Output Status Character Only

Ox Ob Flush Output Buffer Character Only

OxOc Reserved NIA
OxOd Open Device Character, Block

OxOe Close Device Character, Block

Ox Of Removable Media Block Only

OxlO Generic IOCtl Character, Block

Oxll Reset Media Block Only

Ox12 Get Logical Drive Map Block Only

Ox13 Set Logical Drive Map Block Only

Ox14 De install Character Only

Ox15 Reserved NIA
Ox16 Partitionable Disk Block Only

Ox17 Get Fixed Disk Map Block Only

Ox18 Reserved NIA
Oxl9 Reserved NIA
Oxla Reserved NIA
Oxlb Reserved NIA
Oxlc Shutdown Character, Block

Oxld Get Driver Capabilities Block

Oxle Reserved

Oxlf CMD lnitComplete ' Character, Block

72 Writing 05/2 2. 1 Device Drivers in C

Ohl/nit
Initialize the device.

Format Of Request Packet

union
{

struct {
UCHAR units;
FPFUNCTION DevHlp;
char far *args;
UCHAR drive;
}Init;

struct {
UCHAR units;
OFF final CS;
OFF final OS;
FARPOINTER BPBarray;
} InitExit;

Comments

II init packet(one ~ntry,exit)
II number of units

.11 &DevHl p
II &args
II drive H

II same as input
II final code offset
II final data offset
II &BPB

The INIT function is called by the kernel during driver installation at boot time. The
INIT section should initialize the adapter and device. For example, if the device was a
serial port, the initialization section might set the baud rate, parity, stop bits, etc. on a
serial port or check to see if the device is installed correctly. INIT is called in a special
mode at Ring 3 with some Ring 0 capabilities. For example, the driver may tum off
interrupts during INIT, but they must be turned back on before returning to the ker­
nel. The INIT code may also perform direct port 1/0 without generating protection
violations. Usually, the driver will allocate buffers and data storage during INIT, to
ensure that the driver will work when installed. Because the memory allocations are
done at Ring 3, the system can check to make sure the allocations are valid. If not, the
driver can remove itself from memory, freeing up any previously allocated space for
other system components. Since the INIT code is executed only once, and during sys­
tem boot, its not necessary to optimize the INIT code. Do all of the work you can up
front in the INIT section, as it may be time-prohibitive or even impossible to do some
initialization during normal kernel-mode driver operation.

Chapter 6. Device Driver Strategy Commands 73

On entry, the INIT Request Packet contains the following fields as inputs to the
device driver:

• A pointer to the DevHlp entry point (in OS/2 l.x, this is a bimodal pointer)

• A pointer to the initialization arguments from the DEVICE= line in CONFIG.SYS.

• The drive number for the first block device unit.

The pointer to the initialization parameters allows a device driver to be configured at
boot time, based on arguments placed on the DEVICE= line in CONFIG.SYS. See
Chapter 8 for a discussion of how to do this, and a listing of the INIT section of an
actual driver that performs this function.

Upon the completion of initialization, the device driver must set certain fields in the
Request Packet as follows:

• The number of logical block devices or units the driver supports (block devices
only).

• The WORD offset to the end of the code segment

• The WORD offset to the end of the data segment.

• A pointer to the BIOS Parameter Block or BPB (block devices only).

A block device driver must also return the number of logical devices or units that are
available. The kernel's file system layer will assign sequential drive letters to these
units. A character device driver should set the number of devices to 0.

As a final step in initialization, both block and character device drivers must return
the offsets to the end of the code and data segments. This allows the device driver to
release code and data needed only by the device driver's initialization routine. To facil­
itate this, the initialization code and data should be located at the end of the appropri­
ate segments. A device driver which fails initialization should return 0 for both offset
values.

A block device driver must return an array of BPBs for each of the logical units that it
supports. A character device driver should set the BPB pointer to 0.

If initialization is successful, the status field in the Request Header must be set to indi­
cate no errors and the done status (RPDONE).

If the device driver determines that it cannot initialize the device, it should return with
the error bit (RPERR) in the Request Header status field set. The device driver should
return RPERR I RPDONE I ERROR_GEN_FAILURE. Whatever the reason for the fail­
ure, the status must always indicate that the request is done (RPDONE).

7 4 Writing 05/2 2. 1 Device Drivers in C

The system loader records the last non-zero code and data segment offsets returned
for the devices which successfully completed initialization. These offset values are
used to re-size the device driver's code and data segments.

If the device driver supports multiple devices or units, the kernel will call the initializa­
tion section for each of the devices or units. If your device driver has a single initializa­
tion section, the offset values returned to the kernel should be the same for each
device initialization that is successful.-

A limited number of OS/2 system API routines are available to the device driver dur­
ing initialization. Those API routines are listed in Table 6-2.

Table 6-2. AP/ Routines Available During /nit (Continued)

Routine Name Description

DosBeep Generate a beep from the speaker

Dos Case Map Perform case mapping

DosChgFilePtr Move a read/write file pointer

DosClose Close a file handle

DosDelete Delete a file

DosDevConfig Get a device's configuration

DosDevIOCtl Do an IOCtl request

DosFindClose Close a search directory handle

DosFindFirst Find the first matching file

DosFindNext Find next file

DosGetEnv Get address of process environment

Chapter 6. Device Driver Strategy Commands 75

Table 6-2. AP/ Routines Available During /nit

Routine Name Description

DosGetMessage Get a system message

Dos Open Open a file

DosPutMessage Display message to handle

DosQCurDir Query current directory

DosQCurDisk Query current disk

DosQFilelnfo Query file information

DosQFileMode Query file mode

DosRead Read from file

DosSMRegisterDD Register driver for SM events

Dos Write Write to file

For more information about these functions, refer to the IBM OS/2 2.1 Control
Program Reference.

1H/Media Check

Determine the state of the media.

Format Of Request Packet

struct {
UCHAR media;
UCHAR return_code;
FARPOINTER prev_volume;
} MediaCheck;

I I MEDIA_CHECK
II media descriptor
II see below
II &previous volume ID

76 Writing 05/2 2. 1 Device Drivers in C

Comments
On entry, the Request Packet will have the media descriptor field set for the drive
identified in the Request Header (see Table 6-3).

The device driver must perform the following actions for the MEDIA CHECK
request:

• Set the status word in the Request Header.

• Set the return code where:

-1 = Media has been changed

0 = Unsure if media has been changed

1 = Media unchanged

To determine whether you are using a single-sided or a double-sided 8-inch diskette
(FEh), attempt to read the second side. If an error occurs, you can assume the
diskette is single-sided.

Table 6-3. Media Descriptor Bytes

Disk Type #Sides #Sectors/Track Media Descriptor

Fixed Disk OxF8

3.5 Inch 2 09 OxF9

3.5 Inch 2 18 OxFO

5.25 Inch 2 15 OxF9

5.25 Inch 1 09 OxFC

5.25 Inch 2 09 OxFD

5.25 Inch 1 08 OxFE

5.25 Inch 2 08 OxFF

8 Inch 1 26 OxFE

8 Inch 2 26 OxFD

8 Inch 2 08 OxFE

Chapter 6. Device Driver Strategy Commands 77

The Media Check function is called by the kernel prior to disk access, and is there­
fore valid only for block devices. The kernel sends to the driver the media ID byte for
the type of disk that it expects to find in the selected drive.

2H I Build BPB

Build the BIOS Parameter Block (BPB). The driver receives this request when the
media has changed or when the media type is uncertain.

Format Of Request Packet

struct {
UCHAR media;
FARPOINTER buffer;
FARPOINTER BPBarray;
UCHAR drive;
} BuildBPB;

Comments

II BUILD_BPB
II media descriptor
II 1-sector buffer FAT
II &BPB array
II drive#

On entry, the Request Packet will have the media descriptor set for the drive identi­
fied in the Request Header. The transfer address is a virtual address to a buffer con­
taining the boot sector media, if the block device driver attribute field has bit 13
(DAW _IBM) set; otherwise, the buffer contains the first sector of the File Allocation
Table (FAT).

The device driver must perform the following actions:

• Set the pointer to the BPB table.

• Update the media descriptor.

• Set the status word in the Request Header.

The device driver must determine the media type in the drive, in order to return the
pointer to the BPB table. Previously, the FAT ID byte determined the structure and
layout of the media. Because the FAT ID byte has only eight possible values (F8
through FF), it is clear that, as new media types are invented, the available values will
soon be exhausted. With the varying media layouts, OS/2 needs to be aware of the
location of the FATs and directories before it reads them.

78 Writing 05/2 2. 1 Device Drivers in C

The device driver should read the boot sector from the specified buffer. If the boot
sector is for DOS 2.10, 2.10, 3.00, 3.10, 3.20, or OS/2, the device driver returns the
BPB from the boot sector. If the boot sector is for DOS 1.00 or 1.10, the device driver
reads the first sector of the FAT into the specified buffer. The FAT ID is examined
and the corresponding BPB is returned.

The information relating to the BPB for a particular media is kept in the boot sector
for the media (see Table 64).

Table 6-4. Boot Sector Format

Field Length

Short Jump (OxEB) followed by NOP 2 bytes

OEM Name and Version 8 bytes

Bytes Per Sector word

Sectors/ Allocation Unit (base 2) byte

Reserved Sectors (starting at O) word

Number of FATs byte

Number of Root Dir Entries (max) word

Number of Sectors Total word

Media Descriptor byte

Number of Sectors in a single FAT word

Sectors Per Track word

Number of Heads word

Number of Hidden Sectors word

Chapter 6. Device Driver Strategy Commands 79

The last three WORDs in Table 6-4 help the device driver understand the media. The
number of heads is useful for supporting different multiple head drives that have the
same storage capacity but a different number of surfaces. The number of hidden sec­
tors is useful for supporting drive partitioning schemes.

For drivers that support volume identification and disk change, this call should cause
a new volume identification to be read off the disk. This call indicates that the disk
was properly changed.

4H, BH, 9H I Read or Write

Read from or write to a device. Read (4H) I Write (SH) I Write with Verify (9H)

Format Of Request Packet

struct {
UCHAR media;
PHYSADDR buffer;
USHORT count;
ULONG startsector;
USHORT reserved;
} ReadWri te;

Comments

II READ, WRITE, WRITE_VERIFY
II media descriptor
II transfer address
II bytes/sectors
II starting sector#

On entry, the Request Packet will have the media descriptor set for the drive identi­
fied in the Request Header. The transfer address is a 32-bit physical address of the
buffer for the data. The byte/ sector count is set to the number of bytes to transfer (for
character device drivers) or the number of sectors to transfer (for block device dri­
vers). The starting sector number is set for block device drivers. The System File
Number is a unique number associated with an open request.

The device driver must perform the following actions:

• Perform the requested function.

• Set the actual number of sectors or bytes transferred.

• Set the status word in the Request Packet

80 Writing OS/2 2. 1 Device Drivers in C

The DWORD transfer address in the Request Packet is a locked 32-bit physical
address. The device driver can use it to call the DevHlp function PhysTo Virt and
obtain a segment swapping address for the current mode. The device driver does not
need to unlock the address when the request is completed.

READ is a standard driver request. The application calls the READ Strategy entry
point by issuing a DosRead with the handle obtained during the DosOpen. The READ
routine may return one character at a time, but more often returns a buffer full of data.
How the READ function works is up to the driver writer. The driver returns the count
of characters read and stores the received data in the data segment of the application.
READ returns one of the standard driver return codes.

Note: The functions IOCtl Read and IOCtl Write are not supported by the standard
base OS/2 device drivers.

WRITE is a standard driver request, called by the application as a result of a Dos Write
call. The application passes the address of data to write (usually in the applications
data segment) to the driver and the count of the characters to write. The driver writes
the data and returns the status to the application, along with the number of characters
that were actually written. WRITE returns a standard driver return code.

5H I Nondestructive Read No Wait

Read a character from an input buffer without removing it.

Format Of Request Packet

struct {
UCHAR char_returned;
} ReadNoWait;

II NON_DESTRUCT READ/NO WAIT
II returned character

Chapter 6. Device Driver Strategy Commands 81

Comments
The device driver must perform the following actions:

• Return a byte from the device.

• Set the status word in the Request Header.

For input on character devices with a buffer, the device driver should return from this
function with the busy bit (RPBUSY) clear, along with a copy of the first character in
the buffer. The busy bit is set to indicate that there are no characters in the buffer.
This function allows the operating system to look ahead one input character without
blocking in the device driver.

6H, AH I Input or Output Status

Determine the input or output status of a character device.

Format Of Request Packet

I No Parameters

Comments
The device driver must perform the following actions:

• Perform the requested function.

• Set the busy bit.

• Set the status word in the Request Header.

For output status on character devices, if the busy bit (RPBUSY) is returned set, an
output request is currently pending. If the busy bit is returned set to 0, there is no cur­
rent request pending.

For input status on character devices with a buffer, if the busy bit is returned set,
there are no characters currently buffered in the device driver. If the busy bit is
returned clear, there is at least one character in the device driver buffer. The effect of
busy bit = 0 is that a read of one character will not need blocking. Devices that do not
have an input buffer in the device driver should always return with the busy bit clear.
This is a "peek" function, to determine the presence of data.

82 Writing OS/2 2. 1 Device Drivers in C

lH, BH I Input Flush or Output Flush
Flush or terminate all pending requests.

Format Of Request Packet

I No Parameters

Comments
The device driver must perform the following actions:

• Perform the requested function.

• Set the status word in the Request Header.

This call tells the device driver to flush (terminate) all known pending requests. Its
primary use is to flush the input or output queue on character devices. The Input
Buffer Flush should flush any receiver queues or buffers, and return DONE to the
kernel. The Output Buffer Flush should flush any transmitter queues or buffers.

OH,EH I Open or Close
Open or Close a Device.

Format Of Request Packet

struct {
USHORT sys_file_num
} OpenClose;

II OPEN/CLOSE
II system file number

Chapter 6. Device Driver Strategy Commands 83

Comments
The System File Number is a unique number associated with an open request.

The device driver must perform the following actions:

• Perform the requested function.

• Set the status word in the Request Header.

Character device drivers may use OPEN/CLOSE requests to correlate using their

devices with application activity. For instance, the device driver may increase a refer­

ence count for every OPEN, and decrease the reference count for every CLOSE.

When the count goes to 0, the device driver can flush its buffers. This can be thought

of as a "last close causes flush."

The OPEN function is called as a result of the application issuing a DosOpen call. The

kernel makes note of the DosOpen request, and if it is successful, the kernel sends back

a handle to the application to use for subsequent driver service. The driver writer can

use this section to initialize a device, flush any buffers, reset any buffer pointers, initial­

ize character queues, or anything necessary for a clean starting operation.

The CLOSE is usually called as a result of the application doing a DosClose with the

correct driver handle, but it is also called when the application that opened the driver

terminates or is aborted with a <cntl-c> or <cntl-break>.

In most cases, its a good idea to make sure that the application closing the driver is

the same one that opened it. To ensure this, the device driver should save the PID of

the application that opened the driver, and make sure that the closing PID is the

same. If not, the device driver should reject it as a bogus request. The driver can get

the PID of the calling program using the GetDOSVar DevHlp routine.

All devices associated with the device driver should be made quiescent at CLOSE

time.

84 Writing OS/2 2. 1 Device Drivers in C

FH I Removable Media
Check for removable media.

Format Of Request Packet

J No Parameters

Comments
The device driver must perform the following actions:

• Set the busy bit to 1 if the media is non-removable.

• Set the busy bit to 0 if the media is removable.

• Set the status word in the Request Header.

The driver receives this request as a result of an application generating an IOCtl call
to Category 8, Function Ox20. Instead of calling the IOCtl section of the device driver,
the kernel issues this request. The driver must set the busy bit (RPBUSY) of the
Request Packet status if the media is non-removable, and must clear it if the media is
removable.

1 OH I Generic IOCTL
Send I/0 control commands to a device.

Format Of Request Packet (DosDevlOCtl)

struct
UCHAR category;
UCHAR function;
FARPOINTER parameters;
FARPOINTER buffer;
USHORT sys_file_num;
} IOCtl;

II IOCtl
II category code
II function code
II ¶meters
II &buffer
II system file number

Chapter 6. Device Driver Strategy Commands 85

Format Of Request Packet (DosDev/OCt/2)

struct // IOCtl
UCHAR category; // category code
UCHAR function; //function code
FARPOINTER parameters; // ¶meters
FARPOINTER buffer; //&buffer
USHORT sys_file_num; //system file number
USHORT parm_buf_length;// length of parameter buffer
USHORT data_buf_length //length of data buffer
} IOCtl;

Comments
On entry, the request packet will have the IOCtl category code and function code set.

The parameter buffer and the data buffer addresses are passed as virtual addresses.

Note that some IOCtl functions do not require data and/or parameters to be passed.

For these IOCtls, the parameter and data buffer addresses may contain NULL point­

ers. The System File Number is a unique number associated with an OPEN request.

If the device driver indicates (in the function level of the device attribute field of its

Device Header) that it supports DosDevIOCtl2, the Generic IOCtl request packets

passed to the device driver will have two additional words, containing the lengths of

the Parameter Buffer and Data Buffer, respectively. If the device driver indicates

through the function level that it supports DosDevlOCtl2, but the application issues

DosDevIOCtl, the Parameter Buffer and Data Buffer length fields will be set to zero.

The device driver must perform the following actions:

• Perform the requested function.

• Set the status word in the Request Header.

The device driver is responsible for locking the parameter and data buffer segments,

and converting the pointers to 32-bit physical addresses, if necessary.

Refer to the OS/2 Version 2.1 Programming Reference and the OS/2 Version 2.1

Application Programming Guide for more detailed information on the generic IOCtl

interface for applications.

86 Writing OS/2 2. 1 Device Drivers in C

The third and fourth command-specific parameters of an IOCtl are the address of the
application program's data buffer and parameter buffer, respectively. The format of
the two buffers is entirely up to the driver writer. The parameter buffer might contain
a list of USHORI's, UCHARs, or pointers. However, pointers are not recommended
because, depending on the type of application sending them (16:16 or 0:32), the point­
ers might require further translation, affecting portability.

The data buffer parameter might be the address of a data buffer in the application pro­
gram where the driver would store data from the device. It should also be noted that
the IOCtl need not pass or receive any data.

Another feature of an IOCtl is its ability to send back device-specific information to the
application. A standard driver request, such as DosRead or Dos Write, returns a value
to the application which is used to determine whether or not the operation was suc­
cessful. For something like a terminal driver, a simple pass/fail indication might be
sufficient. Suppose, however, that the driver needed to tell the application that the
data was in ASCII or binary format, or that a parity error was detected while receiving
it. Here an IOCtl would be a better choice because the kernel 'massages' return codes
from standard function calls to fit within the standard error definitions. The IOCtl,
however, will pass back special error codes to the application exactly as they were set
in the driver.

11 HI Reset Media

Reset the Uncertain Media error condition and allow OS/2 to identify the media.

For111atOf RequestPacket

J No Parameters

Co111111ents
On entry, the unit code identifies the drive number to be reset.

The device driver must perform the following actions:

• Set the status word in the Request Header.

• Reset the error condition for the drive.

Chapter 6. Device Driver Strategy Commands 87

Before this command, the driver had returned ERROR_UNCERTAIN_MEDIA for the

drive. This action informs the device driver that it no longer needs to return the error

for the drive.

12H, 13H I Get/Set Logical Drive

Get/Set Logical Drive Mapping

Format Of Request Packet

j No Parameters

Comments
On entry, the unit code contains the unit number of the drive on which this operation

is to be performed.

The device driver must perform the following actions:

• For GET, it must return the logical drive that is mapped onto the physical drive indi­

cated by the unit number in the Request Header.

• For SET, it must map the logical drive represented by the unit number onto the phys­

ical drive that has the mapping of logical drives.

• The logical drive is returned in the unit code field. This field is set to 0 if there is only

one logical drive mapped onto the physical drive.

• Set the status word in the Request Header.

88 Writing OS/2 2. 1 Device Drivers in C

14H I Deinstall
Request deinstall of driver.

Format Of Request Packet

j No Parameters

Comments
When a device driver is loaded, the attribute field and name in its header are used to
determine if the new device driver is attempting to replace a driver (device) already
installed. If so, the previously installed device driver is requested by the operating sys­
tem to DEINSTALL. If the installed device driver refuses the DEINSTALL command,
the new device driver is not allowed to be loaded. If the installed device driver per­
forms the DEINSTALL, the new device driver is loaded.

If a character device driver honors the DEINSTALL request, it must perform the fol­
lowing actions:

• Release any allocated physical memory.

• UnSet any hardware interrupt vectors that it had claimed.

• Remove any timers.

• Clear the error bit in the status word to indicate a successful DEINSTALL.

If the character device driver determines that it cannot or will not deinstall, it should
set the error bit (RPERR) in the status field and set the error code to
ERROR_BAD_COMMAND (03H).

Deinstall Considerations
An ABIOS device driver maps its device name to a unit within a Logical ID (LID). It
receives a DEINSTALL request for its device name, which implies a single unit of a
LID. To honor the DEINSTALL request, it must relinquish the LID by calling DevHlp
FreeLIDEntry at DEINSTALL time.

Chapter 6. Device Driver Strategy Commands 89

In honoring a DEINSTALL command, a device driver must remove its claim on the
interrupt level by issuing an UnSetIRQ DevHlp call.

If the device driver's device is ill-behaved (that is, it cannot be told to stop generating
interrupts), the device driver must not remove its interrupt handler, and must refuse
the DEINSTALL request.

16H I Partitionable Fixed Disks

This call is used by the system to ask the device driver how many physical partition­
able fixed disks the device driver supports.

Format Of Request Packet

struct {
UCHAR count;
ULONG reserved;
} Partitionable;

Comments

II PARTITIONABLE fixed disks
II number of disks supported

This is done to allow the Category 9 Generic IOCtls to be routed appropriately to the
correct device driver. This call is not tied to a particular unit that the device driver
owns, but is directed to the device driver as a general query of its device support.

The device driver must perform the following actions:

• Set the count (1- based).

• Set the status word in the Request Header.

90 Writing OS/2 2. 1 Device Drivers in C

17H I Get Fixed Disk/Logical Unit Map
Get Fixed Disk/LU Map.

Format Of Request Packet

struct {
ULONG units;
ULONG reserved;
} GetFixedMap;

Comments

II Get Fixed Disk/Log Unit Map
II units supported

This call is used by the system to determine which logical units supported by the
device driver exist on the physical partitionable fixed disk.

On entry, the request packet header unit field identifies a physical disk number (0-
based) instead of a logical unit number. The device driver returns a bitmap of which
logical units exist on the physical drive. The physical drive relates to the partitionable
fixed disks reported to the system by way of the PARflTIONABLE FIXED DISKS
command. It is possible that no logical units exist on a given physical disk because it
has not yet been initialized.

The device driver must perform the following actions:

• Set the 4-byte bit mask to indicate which logical units it owns. The logical units must
exist on the physical partitionable fixed disk for which the information is being
requested.

• Set the status word in the Request Packet header.

The bit mask is set up as follows: A 0 means that the logical unit does not exist, and a
1 means it does. The first logical unit that the device driver supports is the low-order
bit of the first byte. The bits are used from right to left, starting at the low-order bit of
each following byte. It is possible that all of the bits will be 0.

1CH/Shutdown

Begin shutdown procedure.

Format Of Request Packet

struct {
UC HAR
ULONG

l Shutdown;

Comments

tune;
reserved;

Chapter 6. Device Driver Strategy Commands 91

II Shutdown
II shutdown function code

This call is used by the system to notify a device driver to flush any data to the device
and prepare to shutdown.

The driver is called twice, once for a Start Shutdown and then again for an End
Shutdown. The function code is 0 for the Start Shutdown call and 1 for the End
Shutdown call.

Level 2 device drivers are called with the Shutdown request. Level 3 drivers are only
called if the shutdown flag of the Capabilities field is set in the Device Header.

1 OH/ Get Driver Capabilities

Get a disk device driver's capabilities.

Format Of Request Packet

struct {
UCHAR res[3];
FARPOINTER CapStruct;
FARPOINTER VolCharStruct;
l GetDriverCaps;

II Get Driver Capabilities
II reserved, must be 0
II 16:16 pointer to DCS
II 16:16 pointer to VCS

92 Writing OS/2 2. 1 Device Drivers in C

Comments
This command returns the functional capabilities of the driver for device drivers sup­
porting the Extended Device Driver Interface.

This command is issued by the system to see whether the driver supports the scat­
ter I gather protocol. The driver must initialize this structure. The first pointer is a
16:16 pointer to the Driver Capabilities Structure, and the second pointer is 1 16:16
pointer to the Volume Characteristics Structure. Refer to Chapter 12 for more detailed
information on this command and its associated data structures.

1 FH I CMD/nitComplete

Notify device driver that all PDDs and IFS drivers have been loaded.

Format of Request Packet

I No Parameters

Comments
This command notifies the device driver that all drivers have been loaded, allowing
the device driver to initiate any driver-to-driver communications or initialization. This
command removes any problems associated with the order in which device drivers
appear in the CONFIG.SYS file.

This command is issued by the system only if the device driver is a level 3 driver and
has set bit 4 in the Capabilities Bit Strip word in the device header.

CHAPTER 7

A Simple 05/2 Physical Device Driver

is chapter outlines the operation of an actual OS/2 Physical Device Driver
PDD). PDDs are the only type of drivers that can interface directly with
dapter or system hardware. Chapter 5 discussed the various parts and

design of an OS/2 PDD. This chapter will bring the parts together to form a PDD that
can be loaded and tested under OS/2.

Device Driver Specifications

The requirement for this device driver is to perform 1/0 to an 8-bit parallel port, a
common requirement. Although this device driver is designed for the 8255 parallel
chip, it can easily be modified for any other type of 8-bit parallel adapter. This driver
performs the 1/0 using the standard DosRead and Dos Write, and also shows how to
perform the 1/0 using IOCtls. It is a good example of handling the differences
between standard device driver request and IOCtls.

Parallel adapters are frequently used for reading switches or other pieces of hardware
which cause single bits to be set or clear. I've added an additional function to this
device driver to show how an· OS/2 device driver can be written to wait for a single bit
to be set or clear without using interrupts or compromising system performance.
Writing a similar device driver under DOS would be simple. Since DOS runs only one
program at a time, the program could wait around forever for the particular bit to be
set. OS/2, however, runs many programs at the same time, and cannot afford to wait

93

94 Writing OS/2 2. 1 Device Drivers in C

around for a bit to be set while keeping all other programs dormant. To accomplish
this without polling, the OS/2 device driver hooks a timer interrupt, and polls the port
at every tick of the OS/2 system clock (31.25 milliseconds). Between each clock tick,
the driver is either idle or blocked by an application request, so other threads contin­
ue to run.

It is important to note that the amount of memory available for the stack in a device
driver is extremely small, approximately 4K bytes, so it is important to keep the
amount of local variables at a minimum.

The complete listing of this device driver can be found in the Appendix C.

Application Program Design

When the application is first started, it opens the device driver with a DosOpen API
call described in Figure 7-1.

if ((RetCode=DosOpen("DIGIO$",
&digio_handle,
&ActionTaken,
Fil eSi ze,
FileAttribute,
FILE_OPEN,
OPEN_SHARE_DENYNONE I OPEN_FLAGS_FAIL_ON_ERROR
I OPEN_ACCESS_READWRITE,Reserved)) !=0)

printf("\nopen error= %d",RetCode);

Figure 7-1. Application call to open the driver.

If successful, the DosOpen call returns a handle to the application which it can use for
subsequent access to the device driver. A handle is nothing more than a special cook­
ie that OS/2 uses to allow access to a particular driver.

Chapter 7. A Simple OS/2 Physical Device Driver 95

Device Driver Operation

Refer to the device driver source code in Appendix C. Note the Device Header and
the name assigned to the driver. For this example, the driver name has been assigned
DIGIO$. The name must be eight characters in length, and must be space-padded for
up to eight character positions. The '$' character was used in case a file or directory
had the same name as the driver, for instance \drivers\digio.

/NIT

In the INIT section in Figure 7-2, the DevHlp routine SetTimer is called to register the
timer handler we will use to periodically check a bit from the parallel port. If the
SetTimer call fails, the driver returns a failure to the kernel and gives up the memory
it had occupied during initialization. If the call was successful, the driver displays a
sign-on message and returns the DONE status to the kernel. The INIT section also
initializes the 8255 parallel chip to setup port address base+O as the read-port address,
and base+ 1 as the write-port address.

As soon as the timer handler is registered, the timer handler begins receiving timer
interrupts every 31.25 milliseconds. The ReadID variable is used to ignore timer inter­
rupts when no driver requests are pending.

int Init(PREQPACKET rp)
{

II store DevHlp entry point

DevHlp = rp->s.Init.DevHlp;

II install timer handler

if(SetTimer((PfUNCTION)TIMER_HANDLER))

II if we failed, effectively deinstall driver with cs+ds=O

DosPutMessage(l, 8, devhdr.DHname);
DosPutMessage(l,strlen(FailMessage),FailMessage);
rp->s.InitExit.finalCS =(OFF) 0;
rp->s.InitExit.finalDS = (OFF) O;
return (RPDONE I RPERR I ERROR_BAD_COMMAND);

Figure 7-2. !NIT section. (Continued)

96 Writing OS/2 2. 1 Device Drivers in C

II configure 8255 parallel chip

outp (DIGIO_CONFIG,Ox91);

II output initialization message

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, 8, devhdr.DHname);
DosPutMessage(l, strlen(InitMessagel), InitMessagel):
DosPutMessage(l, strlen(InitMessage2), InitMessage2):

II send back our code and data end values to osl2

if (Seglimit(HIUSHORTC(void far*) Init),
&rp->s.InitExit.finalCS) I I Seglimit(HIUSHORT((void far*) InitMessage2),
&rp->s.InitExit.finalDS))

Abort():
return (RP DONE) :

Figure 7-2. !NIT section.

OPEN
When the application program is started, it issues a DosOpen call to the kernel, which
routes it to the driver via an OPEN Request Packet. If the DosOpen is successful, the
kernel returns a handle to the application for subsequent driver access. When the dri­
ver receives the OPEN Request Packet (see Figure 7-3), it checks to see whether the
driver had been opened prior to this call. This might happen if more than one thread
of an application opened the driver. If the driver had not been opened, it gets the PID
of the opening program and saves it for later use. It then bumps the open counter and
returns DONE to the kernel. The DONE status with no errors is mapped to the stan­
dard "no error" return to the DosOpen call, and returned to the application. If the
open count was greater than zero, the PID of the opening program is compared to the
previously saved PID to see if they are the same. If the new PID is not the same as the
old PID, the request is rejected by sending the BUSY status back to the kernel. The

Chapter 7. A Simple 05'2 Physical Device Driver 97

kernel maps the return to a standard return code and sends that code to the applica­
tion as a failure. In all cases, whether errors occurred or not, the driver must return
with the DONE status.

case RPOPEN: II OxOd open driver

II get current processes' id

if (GetDOSVar(2,&ptr))
return (RPDONE I RPERR I ERROR_BAD_COMMAND);

II get process info

liptr = *((PLINFOSEG far*) ptr);

II if this device never opened, can be opened by anyone

if (opencount ~ 0)
{

II first time this dev opened

else
{

}

opencount=l;
savepid = liptr->pidCurrent;

II bump open counter
II save current PID

if (savepid != liptr->pidCurrent) II another proc
return (RPDONE I RPERR I ERROR_NOT_READY);llerr

++opencount; II bump counter, same pid

return CRPDONE);

Figure 7-3. OPEN section.

98 Writing OS/2 2. 1 Device Drivers in C

CLOSE

The driver will receive a close Request Packet as a result of a DosClose API call from
the application, or from the kernel in the event that the application was terminated by
a <cntl-c>, <cntl-break> or other fault. In the CLOSE section (see Figure 7-4), the dri­
ver checks the PID of the closing application to make sure that it has the same PID as
the program that opened it. If not, the request is rejected by returning an error to the
kernel. If it is the same, it was a valid close request, so the driver decrements the
open counter and returns the DONE status to the kernel.

case RPCLOSE: II OxOe DosClose,ctl-C, kill

II get process info of caller

if (GetDOSVar(2,&ptr))
return CRPDONE I RPERR I ERROR_BAD_COMMAND);

II get process info from osl2

liptr= *((PLINFOSEG far*) ptr); II ptr to linfoseg

II make sure that the process attempting to close this device
II is the one that originally opened it and the device was
II open in the first place.

if (savepid != liptr->pidCurrent 11 opencount = 0)
return CRPDONE I RPERR I ERROR_BAD_COMMAND);

-opencount;
return (RPDONE);

II close counts down open cntr
II return 'done' status

Figure 7-4. CLOSE section.

Chapter 7. A Simple OS/2 Physical Device Driver 99

IOCtls

The IOCtl Request Packets are received as a result of a DosDevlOCtl API call from
the application. In this example, the driver supports three IOCtls. They are read a
byte from a port, write a byte to a port, and read a port with wait.

The IOCtl section first checks to make sure that the category is correct for this driver.
Each device driver should have its own category, assigned by the driver writer.
Categories from 0 to 127 are reserved for OS/2, and categories 128-255 are available
for use by special drivers. You should avoid using category 128, however, as this cate­
gory is sometimes used by OS/2 for drivers such as VDISKSYS or OEMHLP. There
are some cases where the category of a device driver might be the same as the cate­
gory for an existing OS/2 device driver. An example would be a driver that replaced
the COMOl.SYS or COM02.SYS serial driver, or one that augmented an existing
device driver. An example of this might be a device driver that adds support for
COM5-COM12. Since certain IOCtls of a particular category are used to perform oper­
ations such as setting parity, changing the baud rate or the character length, the
replacement driver should support the same number and type of IOCtl requests.

If the category is not valid, the driver returns the DONE status to the kernel without
performing any operations. It is generally acceptable to ignore unrecognized IOCtl
requests, because the kernel will, from time to time, issue IOCtls to your driver which
your driver does not support.

If the category is valid, the driver checks the IOCtl function code.

CASEOx01

If the IOCtl request is a 1, the write-port function has been requested (see Figure 7-5).
The driver calls the Dev Hip routine Verify Access with the virtual address of the IOCtl
parameter buffer to verify that the caller owns the memory that it points to. It also
checks to see that the application has the correct read and write privileges. If the
address is valid, the driver copies the byte to be output from the application, using a
simple virtual-to-virtual copy. Using the standard run-time library routine outp, the dri­
ver writes the byte to the particular port. The driver then sends the DONE status
back to the kernel and exits.

100 Writing OS/2 2. 1 Device Drivers in C

case OxOl: II write byte to digio port

II verify caller owns this buffer area

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl .parameters),
OFFSETOF(rp->s.IOCtl .parameters),
1,

II selector
II offset
II 1 byte

0)
return (RPDONE I RPERR I

II read only
ERROR_GEN_FAILURE);

if(MoveBytes(rp->s.IOCtl .parameters,(FARPOINTER)&output_char,l))
return (RPDONE I RPERR J ERROR_GEN_FAILURE);

outp(DIGIO_OUTPUT,output_char); //send to digio

return (RPDONE);

Figure 7-5. IOCtl OxOl, write port.

CASEOx02

If the IOCtl code was 2, read with wait, the driver performs the identical operations to
the previous IOCtl (see Figure 7-6). In this IOCtl, the application sends the driver a bit
to wait for, and the driver will not return until that particular bit becomes set.

First, the driver verifies the IOCtl virtual buffer pointer to make sure that the applica­
tion owns the memory. Note that in this particular IOCtl, the data buffer pointer was
used and not the parameter buffer pointer. The data buffer contains not only the port
address to read from, but the space for the data read by the driver. Either buffer area
can be used for reading or writing data. In this case, the data buffer was used for read
IOCtls and the parameter buffer was used for write IOCtls. Which buffers are used
and how they are interpreted is entirely up to the driver writer.

Since the driver will Block until completion, it must lock down the applications buffer
to ensure it is still there when the driver is UnBlocked. Otherwise, the buffer address­
es previously UnBlocked might not be valid due to swapping. Once the memory has
been verified and locked, the data is transferred from the application to the driver. In
this driver, the data is only one byte in size, which contains the bit to wait for. Next,

Chapter 7. A Simple 0512 Physical Device Driver 101

the variable ReadID is cast to a ULONG of the Request Packet pointer to be used as
an ID for the DevHlp Block call. The driver then Blocks with a -11 for a time-out,
which indicates that the driver will wait forever (no timeout). When the Block returns,
it was either the result of a signal, such as <cntl-c>, or a call to the DevHlp Run routine
with the same 32-bit ID used for the Block. The driver checks the return code form
the Block. If the error code is a 2, which means a <cntl-c> caused the return from the
Block, the driver returns ERROR_CHAR_CALL_INTERRUPTED to the kernel. If the
error code was not a 2, the driver assumes that it was a valid Run call that caused the
driver to become UnBlocked. The driver copies the result of the port read to the appli­
cation, UnBlocked the caller's memory and returns the DONE status to the kernel.
How the data is actually read from the 1/0 port is detailed in the Timer Handler sec­
tion in Figure 7-9. The driver copies the result of the port read to the application.

Note that, in this IOCtl, the device driver locked the application's buffer to prevent it
from being swapped out. This is necessary when the device driver issues a DevHlp
Block request, but is not necessary in the other two IOCtls, where no Blocking
occurs.

case Ox02: II read wlwait from port

II verify caller owns this buffer area

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl .buffer),
OFFSETOF(rp->s.IOCtl .buffer),
1,

II selector
II offset
II 1 bytes)

0))

return (RPDONE I RPERR I
II read only

ERROR_GEN_FAILURE);

II lock the segment down temp

if(LockSeg(
SELECTOROF (rp- >s. IOCt l . buffer) ,
1,
o.

II selector
I I lock forever
II wait for seg loc
II handle returned (PLHANDLE) &lock_seg_han))

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

if(MoveBytes(rp->s.IOCtl .parameters,(FARPOINTER)&input_mask,1))
return (RPDONE I RPERR I ERROR_GEN_:_FAILURE);

Figure 7-6. IOCtl Ox02. (Continued)

102 Writing OS/2 2.1 Device Drivers in C

II wait for bit to be set

ReadID = (ULONG)rp;
if (Block(ReadID,-lL,O,&err))
if (err = 2)

return(RPDONE I RPERR I ERROR_CHAR_CALL_INTERRUPTED);

II move result to users buffer

if (MoveBytes ((FARPOINTER)&i nput_cha r, rp- >s. IOCtl . buffer, 1))
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

II unlock segment

if(UnlockSeg(lock_seg_han))
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

return (RPDONE);

Figure 7-6. IOCtl Ox02.

CASEOx03
The purpose of this case is to provide a read without wait (see Figure 7-7). Instead of
waiting for a bit to be set as in IOCtl Ox02, this IOCtl returns immediately with the
value of a port. Instead of Blocking, the driver calls the run-time library routine inp to
get the contents of the port and sends the data back to the application.

case Ox03: II read byte immed digio port

II verify caller owns this buffer area

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl .buffer),
OFFSETOF(rp- >s. IOCtl . buffer),
1,

II selector
II offset
II 1 byte

Figure 7-7. IOCtl Ox03. (Continued)

Chapter 7. A Simple OS/2 Physical Device Driver 103

0)) II read only
return (RPDONE I RPERR I ERROR_GEN_FAILURE);

input_char = inp(DIGIO_INPUT); II get data

if(MoveBytes((FARPOINTER)&input_char,rp->s.IOCtl .buffer,l))
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

return (RP DONE) ;

Figure 7-7. IOCtl Ox03.

READ And WRITE

The READ and WRITE sections are entered as the result of a DosRead or DosWrite
standard driver request from the application. The use of the standard read and write
requests in Figure 7-8 is shown as an example to contrast the differences of the stan­
dard READ and WRITE functions with the IOCtl read and write functions. The READ
section performs the exact same operation as the IOCtl function Ox03, read without
wait, and the WRITE section does the same for IOCtl function OxOl, write a byte.
Either call will perform the same operation. Instead of issuing an IOCtl request to
write a byte to a port, the application can issue a Dos Write with the byte to be written.
Instead of issuing an IOCtl function Ox03, the application can issue a DosRead.

The standard READ and WRITE sections are slightly different than their IOCtl coun­
terparts. First, the application's buffer address in the Request Packet is the physical
address, not the virtual address, and second, OS/2 verifies and locks the buffer seg­
ment prior to calling the device driver. Since our data transfer routine requires virtual
pointers, the device driver calls the PhysTo Virt DevHlp to convert the physical
address to a virtual address and the data is transferred.

104 Writing OS/2 2.1 Device Drivers in C

case RPREAD: II Ox04

rp->s.ReadWrite.count = O; II in case we fail

input_char = inp(DIGIO_INPUT); II get data

if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,
1,0 ,&appl_ptr))

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

if (MoveBytes((FARPOINTER)&input_char,appl_ptr,l))
return (RPDONE I RPERR I ERROR_GEN_FAILURE);

rp->s.ReadWrite.count = l;
return (RPDONE);

case RPWRITE:

rp->s.ReadWrite.count = O;

II one byte read

II Ox08

if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,
1,0,&appl_ptr))

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

if (MoveBytes(appl_ptr,(FARPOINTER)&output_char,1))
return (RPDONE I RPERR I ERROR_GEN_FAILURE);

outp (DIGIO_OUTPUT,output_char); II send byte

rp~>s.ReadWrite.count = l;
return (RP DONE) ;

II one byte written

Figure 7-8. READ and WRITE section.

Chapter 7. A Simple 05/2 Physical Device Driver 105

Timer Handler

In CASE Ox02, the driver blocks waiting for a particular bit to be set before returning
to the caller. Other threads in the system will run only when the driver completes its
job and returns DONE to the kernel, or when the driver becomes Blocked. Recall ear­
lier that SetTimer was called to hook the OS/2 timer interrupt, and that access to the
timer handler was controlled by the variable ReadID. In CASE Ox02, the ReadID was
set to a ULONG cast of the Request Packet pointer. Since the ReadID is no longer
zero, each time that the timer handler (see Figure 7-9) is entered, the driver can do an
inp of the parallel port, "and" it to the bit mask, and if non-zero, run the Blocked driver
thread. The input port value is checked every tick of the OS/2 system clock, or every
31.25 milliseconds. If the bit is not set, the driver will block forever until a <cntl-c> or
<cntl-break> is detected, or the bit finally becomes set If set, the driver clears the
timer handler entry flag, ReadlD. It then calls the Run DevHlp to UnBlock the driver
Strategy thread, which set the DONE status in the Request Packet and returns to the
OS/2kernel.

timr _handler()
{

if (ReadID != 0) {

II read data from port

input_char = inp(DIGIO_INPUT);II get data

if ((input_char && input_mask) !=0) {
Run (ReadID);
ReadID=OL;
}

Figure 7-9. Timer handler.

CHAPTER 8

The Micro Channel Bus

The Micro Channel bus is found on most IBM PS/2 machines and on Micro
Channel machines supplied by other manufacturers such as Reply and NCR.
The Micro Channel bus provides increased speeds, interrupt sharing, full 32-

bit data path and increased noise immunity. Current specifications for Micro Channel

II provide for transfers at speeds of 160MB per second.

Micro Channel Adapter Cards

Micro Channel adapters have no interrupt or address jumpers. Information about the

adapter, such as interrupt level and memory-mapped address, is stored on the board

in a set of nonvolatile registers called the Programmable Option Select, or POS, regis­

ters. The information stored in the POS registers is either factory-set or configured by

a setup disk supplied by the manufacturer. On an IBM PS/2, this is usually done with

the IBM PS/2 Reference Diskette.

The POS registers are not directly accessible to a program, so the driver can't get at

them by doing simple "IN" and "OUT" instructions. A special programmable switch

must be set to allow direct register access to the configuration program. The driver

must, however, get the contents of the POS registers in order to configure itself prop­

erly. Once the POS registers are "visible", they can be accessed starting at 1/0 port

address OxlOO.

107

108 Writing OS/2 2. 1 Device Drivers in C

Normally, the driver accesses the POS registers using the PS/2 Advanced BIOS, or
AB/OS, routines. ABIOS is a set of BIOS routines that are executable in the protect
mode. ABIOS routines provide a device-independent access to supported devices
through a logical ID, or UD. The driver obtains a LID from the ABIOS by a call to the
GetLIDEntry DevHlp routine. Once the driver has the LID, it can use the LID to
access the board registers.

The Micro Channel bus is unique in that the position of each adapter in the mother­
board or planar is important. Unlike the ISA bus where boards can be placed in any
slot, each slot in the Micro Channel machine is addressable. For this reason, calls to
the ABIOS routines to read the POS registers of a particular adapter must contain an
argument specifying the slot number of that adapter. Slot 0 is the planar, and the
remaining slots are numbered starting at 1. Some of the largest PS/2 models, such as
the IBM PS/2 Model 80, contain 8 slots.

Micro Channel Adapter ID
Each 1/0 card has a unique ID number, assigned by the manufacturer. IBM reserves
IDs 8000-FFFF for its own use. These device ID numbers can be found in the first two
POS registers, 0 and 1. The low byte is in POS register 0, the high byte in POS regis­
ter 1. The rest of the POS register data is in POS registers 2-5. Thus POS register 0
can be read with an input from port address OxlOO, and POS register 1 can be read
from address OxlOl.

Beware of conflicting definitions. Since the card ID can't be changed, the first avail­
able POS register, which is actually POS register 2, is sometimes referred to as POS
register 0.

During driver INIT, it is a good idea to search the planar for a card with the correct ID
for the device driver before trying to initialize the driver. Once an adapter is found,
the POS registers of the adapter can be accessed. ABIOS requests must be formatted
into a special structure called an ABIOS Request Block. Refer to the IBM Personal
System/2 BIOS Inteiface Technical Reference for more detailed information on ABIOS
Request Blocks and the various types of ABIOS requests.

Since device drivers for the Micro Channel bus differ slightly from their ISA bus
counterparts, it is sometimes advantageous to write one device driver that will handle
both a Micro Channel and ISA version of a particular adapter. The driver can check to
see if the machine has a Micro Channel bus, and if so, read the required driver config­
uration information from the POS registers. If the machine has an ISA bus, the driver
can set hard-coded values for the driver configuration parameters, or can read them

Chapter 8. The Micro Channel Bus 109

from the DEVICE= statement in the CONFIG.SYS entry for the driver. Recall from
Chapter 6 that one of pointers sent in the INIT request packet is the address of the
parameters from the DEVICE= line in CONFIG.SYS. This allows the user with an ISA
bus system to enter a line such as "DEVICE=DRIVERSYS 3E8 D8000" in the CON­
FIG.SYS file, where 3E8 is the base port address and D8000 is the memory-mapped
adapter address. The driver can parse the parameters, convert them to numeric val­
ues, and use them in the driver as actual configuration parameters.

The code shown in Figure 8-1 shows how to determine whether the system has a
Micro Channel or ISA bus, and if Micro Channel, how to search the bus for a particu­
lar device ID and read its POS registers. If the system has an ISA bus, the parameters
are read from the DEVICE= line in CONFIG.SYS.

Note that the ABIOS command used to read the POS registers from the card is
READ_POS_REGS_CARD. This command specifies that the POS register contents be
read directly from the adapter. PS/2 computers keep a copy of the current adapter
configuration in NVRAM. When the system is powered up, the Power On Self Test
routine, or POST, checks the installed adapter IDs against the current NVRAM con­
figuration. If a difference is found, the POST issues an error message on the screen
directing the user to run the setup program.

Occasionally, a device driver may reprogram a Micro Channel adapter "on the fly".
For example, assume the device driver had to perform Binary Synchronous (BiSync)
communications using a modem that could only dial using the High level Data Link
Control (HDLC) protocol. The IBM Multiprotocol Adapter, or MPA is an example of
an adapter that supports several modes of operation. It supports asynchronous,
BiSync and HDLC protocols, but its POS registers can only be configured for one type
of protocol at one time. The MPA adapter's mode of operation is determined by the
POS register settings, which are normally be changed only with the PS/2 Reference
Diskette.

The device driver for this application rewrites the POS registers on the fly. The device
driver configures the adapter for normal BiSync operation and waits for a command to
dial a number. When a dial command is received, the driver saves the contents of the
MPA's POS registers and writes the HDLC configuration data to the POS registers. It
initializes the HDLC controller, sends the dial information to the modem using the
HDLC protocol and waits for a connection. When the modem is connected, the device
driver rewrites the POS registers with the previously saved POS register data, initial­
izing it back to BiSync operation. The result? Two adapters for the price of one.

110 Writing OS/2 2. 1 Device Drivers in C

II Ex.INIT section, combination ISA and MicroChannel bus driver

II This driver is loaded in the config.sys file with the DEVICE=
II statement. For ISA configuration. the first parameter to the
II "DEVICE=" is the base port address. The next parameter is the
II board base address. All numbers are in hex. For Micro Channel
II configuration, the board address and port address are read
II from the board POS regs.
II

PHYSADDR
US HORT
US HORT
REQBLK
LIDBLK
USHORT
CARD
CARD
US HORT
USHORT

board_address; II base board address
port_address; II base port address
bus= O; II default ISA bus
ABIOS_r_blk; II ABIOS request block
ABIOS_l_blk; II ABIOS LID block
lid_blk_size; II size of LID block
card[MAX_NUM_SLOTS+l];ll array for IDs and POS reg
*pea rd; 11 pointer to ca rd array
matches= O; II match flag for card ID
portl,port2; II temp variables for addr calc

char
char
Driver
char

NoMatchMsg[J = " no match for DESIRED card ID found.\r\n";
MainMsgMCA[J = "\r\nOSl2 Micro Channel (tm) Device

installed.\r\n";
MainMsg[J = "\r\nOSl2 ISA Device Driver installed.\r\n";

II prototypes

int
USHORT
UC HAR

hex2bin(char);
get_POS();
get_pos_data();

* Device Driver Strategy Section Here *

int hex2bin(char c)
{

if(c < Ox3a)

Figure 8-1. ISA and Micro Channel !NIT section. (Continued)

Chapter 8. The Micro Channel Bus 111

return (c - 48);
else

return ((c & Oxdf) - 55);

USHORT get_POS(USHORT slot_num,USHORT far *card_ID,
UCHAR far *pos_regs)

USHORT re, i , l id;

II get a POS LID

if (GetLIDEntry(OxlO, 0, 1, &lid))
return (1);

II Get the size of the LID request block

ABIOS_l_blk.f_parms.req_blk_len = sizeof(struct lid_block_def);
ABIOS_l_blk.f_parms.LID =lid;
ABIOS_l_blk.f_parms.unit = O;;
ABIOS_l_blk.f_parms.function = GET_LID_BLOCK_SIZE;
ABIOS_l_blk.f_parms.ret_code = Ox5a5a;
ABIOS_l_blk.f_parms.time_out = O;

II make the actual AB10S call

if (ABIOSCall(lid,0,(void far *)&ABIOS_l_blk))
return (1);

lid_blk_size = ABIOS_l_blk.s_parms.blk_size;

II Fill POS regs with 0 and card ID with FF

*card_ID = OxFFFF;
for (i=O; i<NUM_POS_BYTES; i++) { pos_regs[i] = OxOO; };

II Get the POS registers and card ID for the commanded slot

ABIOS_r_blk.f_parms.req_blk_len = lid_blk_size;
ABIOS_r_blk.f_parms.LID =lid;

Figure 8-1. ISA and Micro Channel !NIT section. (Continued)

112 Writing OS/2 2. 1 Device Drivers in C

ABIOS_r_blk.f_parms.unit = O;;
ABIOS_r_blk.f_parms.function = READ_POS_REGS_CARD;
ABIOS_r_blk.f_parms.ret_code = Ox5a5a;
ABIOS_r_blk.f_parms.time_out = 0;

ABIOS_r_blk.s_parms.slot_num = (UCHAR)slot_num & OxOF;
ABIOS_r_blk.s_parms.pos_buf = (void far *)pos_regs;
ABIOS_r_blk.s_parms.card_ID = OxFFFF;

if (ABIOSCall(lid,0,(void far *)&ABIOS_r_blk))
re = 1;

else {

}

*card_ID = ABIOS_r_blk.s_parms.card_ID;ll fill in ID
re = O;

II give back the LID

FreeLIDEntry(lid);
return(re);

UCHAR get_pos_data (int slot, int reg)
{

UCHAR pos;
CARD *cptr;

cptr = &card[slot-1]; II set ptr to beg of array
if (reg== 0) II card ID

pos = LOUSHORT(cptr->card_ID);
else

if (reg == 1)
pos = HIUSHORT(cptr->card_ID);

else
pos = cptr->pos_regs[reg-2]; II POS data register

return (pos);

Figure 8-1. ISA and Micro Channel !NIT section. (Continued)

Chapter 8. The Micro Channel Bus 113

II Device Initialization Routine

int Init(PREQPACKET rp)
{

USHORT lid;

register char far *p;

II store DevHlp entry point

DevHlp = rp->s.Init.DevHlp; II save DevHlp entry point

if (!(GetLIDEntry(OxlO, 0, 1, &lid))){ II get LID for POS
FreeLIDEntry(lid);

11 Micro Channel (tm) setup section

bus= l; II Micro Channel bus

II Get the POS data and card ID for each of 8 slots

for (i=O;i <= MAX_NUM_SLOTS; i-t+)
get_POS(i+l,(FARPOINTER)&card[i].card_ID,

(FARPOINTER)card[i].pos_regs);

matches = O;
for (i=O, pcard =card; i <= MAX_NUM_SLOTS; i-t+, pcard-t+){

if (pcard->card_ID = DESIRED_ID) {
matches = l;
break;
}

if (matches = 0) { 11 no matches found
DosPutMessage(l, 8, devhdr.DHname);
DosPutMessage(l,strlen(NoMatchMsg),NoMatchMsg);
rp->s.InitExit.finalCS =(OFF) O;
rp->s.InitExit.finalDS =(OFF) O;
return CRPDONE I RPERR I ERROR_BAD_COMMAND);

Figure 8-1. ISA and Micro Channel IN!Tsection. (Continued)

114 Writing OS/2 2.1 Device Drivers in C

II calculate the board address from the POS regs

board_address = ((unsigned long) get_pos_data(i+l, 4)
<< 16) I ((unsigned long)(get_pos_data(i+l, 3) & 1) << 15);

II calculate the port address from the POS regs data

portl = (get_pos_data(i+l, 3) << 8) & Oxf800;
port2 = (get_pos_data(i+l, 2) << 3) & Ox07e0;
port_address = Cportl I port2);

else
{

II ISA bus setup
bus = O; II ISA bus

II get parameters, port addr and base mem addr

for Cp = rp->s.Init.args;
for(; *p =' '; ++p);
if (*p)

{
port_address = 0;

*p && *p != .• ;++p);
II skip blanks after name

board_address=O; II ilo port address
for(; *p !=' '; ++p) II get port address
port_address = Cport_address << 4) + Chex2bin(*p));
for (; *p = ' ·; ++p); 11 skip blanks after address
for (; *p != '\O'; ++p) II get board address
board_address = Cboard_address « 4) + Chex2bin(*p));
}

if (bus)
DosPutMessage(l,strlen(MainMsgMCA),MainMsgMCA);

else
DosPutMessage(l,strlen(MainMsg),MainMsg);

Figure 8-1. ISA and Micro Channel /NIT section. (Continued)

Chapter 8. The Micro Channel Bus 115

II send back our end values to osl2

if (Seglimit(HIUSHORT((void far*) Init),
&rp->s.InitExit.finalCS) I I
Seglimit(HIUSHORT((void far*) MainMsg),
&rp->s.InitExit.finalDS))

Abort();

return (RPDONE);

Figure 8-1. ISA and Micro Channel !NIT section.

Accessing the POS Register During Debug

While debugging an OS/2 Micro Channel device driver, it is sometimes necessary to

access the POS registers directly without using the ABIOS routines. Under OS/2, the

driver should always use the ABIOS routines to access the POS registers, as they seri­

alize access to the adapter. During debug, however, the POS register contents can be

checked by using simple IN and OUT instruction from the kernel debugger.

The -CD SETUP line, which enables the POS registers, is controlled by a register at

1/0 port address 96h. The POS registers for a particular card are enabled by perform­

ing an "OUT 96h,slot+7", where the slot is 0 for the motherboard and 1-8 for one of up

to eight slots. Once a particular slot is enabled, the POS registers are visible with sim­

ple IN instructions. The POS registers are at the base address of lOOh. POS register 0,
which is the least significant bit of the adapter ID, can be read by an IN 100 command

issued by the kernel debugger (see Chapter 13). POS register 1, the most significant

byte of the adapter ID, can be found at address lOlh. Other POS register data, which

might contain such things as the adapter interrupt level, DMA arbitration level, or

memory map, begins at address 102h. Only one slot can be enabled at a time. The

-CD SETUP line is disabled by performing an OUT 96h,O.

116 Writing OS/2 2. 1 Device Drivers in C

Micro Channel Interrupts

Interrupts on ISA bus machines are edge-triggered and cannot be shared. Once an
ISA bus adapter registers for a particular interrupt level, another driver cannot gain
access to the same interrupt level. Device drivers that run on ISA bus machines must
own their interrupt or interrupts exclusively, which severely limits the extendibility of
ISA bus systems. With over half of the interrupts already assigned to system compo­
nents such as the timer, hard disk, and floppy disk, not many interrupts are left over
for other adapters.

Under OS/2, the Micro Channel bus supports interrupt sharing of up to four adapters
on the same interrupt level. Micro Channel device drivers can register for an interrupt
level even if another device driver had previously signed up for it. This requires some
minor changes in device driver design for the two different bus architectures. In a
Micro Channel device driver, when registering the interrupt level with the SetIRQ
call, the nonexclusive option is used so the interrupt may be shared. In an ISA bus
device driver, the exclusive option is used because interrupts cannot be shared. In
addition, the interrupt handler needs to be modified slightly to claim or "pass on" the
interrupt to the next interrupt handler. A flowchart showing the differences between
an ISA bus interrupt handler and a Micro Channel interrupt handler is shown in
Figure 8-2.

INTERRUPT

CLEAR
CARRY
FLAG

SET
CARRY
FLAG

INTERRUPT

CLEAR
CARRY
FLAG

Figure 8-2. Micro Channel vs. ISA bus interrupt handler.

Chapter 8. The Micro Channel Bus 117

Since any one the four adapters on a single interrupt level can cause an interrupt, the

device driver's interrupt handler must have a way to tell the kernel that it accepts or

denies responsibility for the interrupt. If the interrupt does not belong to this particu­

lar interrupt handler's device, the interrupt handler must set the carry flag (STC), and

return to the kernel. If the interrupt belongs to the particular device, the interrupt

handler must claim the interrupt by clearing the carry flag before returning to the ker­

nel. If the kernel finds the carry flag set, it will call each of the interrupt handlers that

have registered for that particular interrupt until one of the handlers claims the inter­

rupt by clearing the carry flag. If the interrupt is not claimed, OS/2 will continue to

call the registered interrupt handlers until one of them claims the interrupt by clear­

ing the carry flag.

CHAPTER 9

05/2 2. 1 Virtual Device Drivers

0 ne of the shortcomings of OS/2 l.x was its inability to run DOS applications.

Many of these DOS applications were written for the IBM PC and IBM XT

computers, which were, by today's standards, fairly slow machines. To pro­

vide acceptable performance, these programs frequently accessed the system hard­

ware and peripherals directly without using the BIOS or DOS system services. For

example, instead of writing to the display with a DOS int system call, most programs

wrote directly to video memory. Game programs frequently used processor-speed­

dependent timing loops for making sounds or pausing between messages and

screens. Other DOS programs reprogrammed the system timer circuit to generate

voice-like sounds from the computer's speaker.

Figure 9-1. OS/2 2.1 VDMs. (Courtesy of
International Business Machines Corporation.)

119

120 Writing OS/2 2.1 Device Drivers in C

DOS programs can write to any memory location without checking to see if that loca­
tion is valid or being used by another program. A programming error under DOS will,
at the worst, cause the system to crash and have to be rebooted. This is not generally
a problem, as only one program can be running at one time. With OS/2, however, a
system crash could represent a major problem, as many programs could be running
at the time of the crash. The result could be a loss of data, corrupt files, and a host of
other problems.

To accommodate DOS applications, OS/2 l.x used a real mode session, referred to as
the compatibility box, to run well-behaved DOS applications. Well-behaved DOS appli­
cations are those that do not directly manipulate the system hardware or devices, but
use DOS system calls to perform their required operations. OS/2 l.x allowed only one
real mode session to be active at one time. When the DOS program was running, the
processor was in real mode, so a defective DOS application could still bring down the
entire system. When the DOS session was switched to the background, it was frozen
in its current state to prevent it from bringing down the system while an OS/2 applica­
tion was running.

The Virtual DOS Machine
The Intel 80386 and 80486 processors have a built-in feature that allows real mode
programs to run in their own one megabyte address space, isolated from the rest of
the programs running on the system. This special mode is called the Virtual 8086 or
V86 mode, and is used by OS/2 2.1 to run DOS applications in their own DOS Session.
In OS/2 jargon, a DOS session in the V86 mode of the processor is called a Virtual
DOS Machine, or VDM. OS/2 can support a large number of DOS VDMs, and the
capability to do that is referred to as Multiple Virtual DOS Machines, or MVDMs.

DOS programs run in their own VDM without knowledge of other programs running
in the system. The V86 mode is a protected mode of operation, and it will terminate
the DOS session if it attempts a memory reference outside of its own one megabyte
space. In the V86 mode, an errant DOS application can trash its own DOS session, but
cannot bring down the rest of the system.

DOS programs that write directly to system hardware or devices are permitted to run
in a DOS session. The DOS application does not have to be modified, but can run "out
of the box." When the DOS program attempts to write directly to the system hard­
ware or a system device, the operation is trapped by the kernel and routed to a Virtual
Device Driver, or VDD. The VDD is a special driver that emulates the functions of a
particular hardware device, such as the system timer, interrupt controller or commu­
nications port. The DOS application sees the VDD as the actual device, but direct
access to the device is actually performed through a Physical Device Driver (PDD).

Chapter 9. OS/2 2.1 Virtual Device Drivers 121

The PDD performs the actual 1/0 and passes the results to the VDD, which in turn
sends the results back to the DOS application. OS/2 2.1 is supplied with a set of
VDDs that virtualize the standard system device services such a DMA, timer, COM
ports, video, and PIC.

When VDDs are loaded at boot time, the VDD claims ownership of the system
resources it is responsible for while running in a VDM. The VDD can hook all 1/0
associated with a particular port or the interrupts associated with a particular IRQ. For
example, the virtual COM driver, VCOM.SYS, claims ownership of 1/0 address Ox3f8,
which is the address of COMl. A DOS program that attempts to perform direct 1/0 to
Ox3f8 will be trapped by the COM VDD. The VDD must emulate the actual hardware
device, and make the DOS application believe its talking directly to the device.

If a DOS program attempts to access an 1/0 port which has not been claimed by a
VDD, it is allowed to perform that 1/0 directly without going through a VDD. The
DOS application can turn interrupts off, although OS/2 will turn the interrupts back
on if the DOS program leaves them off too long.

If an adapter can be shared by a protect mode application and a DOS application, a
VDD should always be used to perform DOS 1/0. Before performing 1/0 to the
adapter, the VDD should first ask the PDD for permission to do so. The PDD and
VDD should serialize access to the common adapter.

Although VDMs can run DOS applications that access hardware directly, there are
some limitations. Existing DOS block device drivers for disk and tape cannot be used
in the standard VDM. For character drivers, only those that perform 1/0 by polling
can be used. Standard DOS drivers for the clock and mouse are not permitted to be
used. DOS INT 21 requests are formatted into a standard OS/2 Request Packets and
sent to the PDD for disposition.

VD Ms, in which a specific version of DOS has been booted, can utilize existing DOS
block device drivers. The block device should not be accessible to protect mode appli­
cations, so it must be dedicated to DOS operation.

Since versions of DOS differ in functionality, a DOS Setting is provided to specify
which version of DOS should be booted instead of the built-in DOS emulator.

VDDs are loaded at system boot time, after any PDDs have been loaded and before
the PM shell is started. The system first loads the base VDDs which are shared by
multiple DOS sessions, such as the video virtual device driver, and then loads the
installable VDDs :from the DEVICE= line in CONFIG.SYS. Global code and data

122 Writing OS/2 2.1 Device Drivers in C

objects are loaded into low system memory to allow the PDD to call the VDD at inter­
rupt time, regardless of the current process context. After the VDD is loaded, the
VDD entry point is called to see if the load was performed without error. If so, the
VDD returns TRUE, and if not, FALSE.

Virtual Device Drivers use a set of C callable helper routines, called the Virtual Device
Helper (VD/{) to perform their operations. Unlike the PDD DevHlps, which are regis­
ter-based, the VDH routines are C callable, and exist in a DLL. They use the 32-bit C
calling convention.

VDD Architecture

The VDD is nothing more than a 32-bit DLL, which may contain the following:

• initialization code

• initialization data

• swappable global code

The VDD must have at least one object of the following types:

• swappable global data

• swappable instance data

• resident global code

• resident global data

• resident instance data

A VDD that does not communicate with a PDD does not need a resident object sec­
tion. Run-time memory can be private or shared. The typical VDD has a global code
object, global data object, and a private instance data object.

VDDs are loaded by the DOS emulation component after all of the PDDs have been
loaded. When the VDD is loaded, the VDD entry point is called by OS/2 to initialize
the VDD. The entry point of the DLL is defined by writing a small assembly language
program, which calls the DLL initialization entry point. The last statement in the
assembly language program should be an END statement, with the parameter to the
END statement being the name of the entry point. If the name of the VDD initializa­
tion entry point is, for example, VDDinit, the last statement in the assembly language
routine should be END VDDinit. The IBM C Set/2 Compiler now supports the prag­
ma entry keyword which is used to specify the initialization entry point for VDDs writ­
ten in C.

Chapter 9. OS/2 2.1 Virtual Device Drivers 123

After the VDD is loaded, the VDD entry point is called to see if the load was per­
formed without error. If it was, the VDD returns TRUE, if not, the VDD returns
FALSE.

VDD Initialization

The VDD performs initialization in a manner similar to the PDD. It verifies the pres­
ence of the hardware device, establishes contact with the corresponding PDD,
reserves regions of linear memory containing device ROM and/or RAM, saves the
current state of the device, and finally, sets hooks for DOS session events, such as
session create, session destroy, and foreground/background switch requests. VDDs
cannot make Ring 3 calls during initialization, and must use the Virtual Device Helper
routines.

When a DOS session is started, the DOS Session Manager calls the VDD, allowing it
to perform a per-DOS session initialization. The VDD allocates memory regions and
passes control to the DOS emulation kernel, which loads the DOS shell, usually
COMMAND.COM. The DOS emulation kernel then calls the VDD session creation
entry points, allowing the VDD to set up aliases to physical memory, and optionally to
allocate a block of memory between 256K and RMSIZE for a LIM 4.0 alias window.

When a DOS session is started, the DOS Session Manager calls each VDD that has
registered a DOS session create hook. This allows VDDs to perform a per-DOS-ses­
sion initialization. Control is then passed to the DOS emulation kernel, which loads
the DOS shell, usually COMMAND.COM. At DOS session creation, the VDD may
also:

• initialize the virtual device state.

• initialize the ROM BIOS state.

• map memory.

• hook I/O ports.

• enable/disable I/O port trapping.

• hook the software interrupts.

• allocate per-DOS session memory.

The OS/2 Session Manager notifies the DOS Session Manager if the session is being
switched. The DOS Session Manager notifies any VDD that has registered to get this
event via the VDHinstallUserHook VDH call. Depending on the VDD type, different

124 Writing OS/2 2.1 Device Drivers in C

actions will be taken. In the case of the virtual video device driver, VVIDEO, the dri­
ver will appropriately disable or enable 1/0 port trapping for the video board and re­
map the physical video memory to logical memory. The video will continue to be
updated, but in logical video memory. When the session is switched back to the fore­
ground, the logical memory is written to the physical video memory to update the dis­
play.

When the DOS session is exited, the VDD must perform any clean-up that is neces­
sary. This usually includes releasing any allocated memory and restoring the state of
the device. The VDD termination entry points are called by the DOS Session
Manager at DOS program termination time.

OS/2 2.1 Virtual Device Drivers may only call OS/2 2.1 Physical Device Drivers that
contain the "new level" bits. Older PDDs will return an error if called by a VDD. When a
new level PDD receives an IOCtl, it must check the InfoSeg to determine whether it
was called by a DOS session. If it was, it assumes that any pointers passed in IOCtl
packets are in segment:offset format, computes the linear address directly (segment«
4 + offset) and then uses the LlnToGDTSelector to make a virtual address.

DOS Settings

OS/2 2.1 allows users to customize the configuration of a DOS session. Using the DOS
Settings, the user can adjust certain DOS session parameters via the Desktop
Manager's Settings menu for the DOS session. Device drivers must call the
VDHRegisterProperty routine to register their settings. A VDD can call
VDHQueryProperty at DOS session creation to get the value of the current DOS set­
tings. The user can also change some of the settings while the DOS session is running,
via a settings dialog box. The standard DOS settings are shown in Table 9-1.

Table 9-1. DOS Settings

Property Type Operation

BREAK BOOLEAN Controls <cntl-c> checking in the INT 21 path

FCBS INTEGER Controls use of FCBs by errant DOS applications

DEVICE STRING Specifies a DOS character driver

SHELL STRING Specifies the command interpreter

RM SIZE INTEGER Specifies size of DOS memory arena

Chapter 9. OS/2 2. 1 Virtual Device Drivers 125

DOS Settings Registration

At initialization time, the Virtual Device Driver must register any settings that it will
need. This information is stored in the kernel, and used to support all property-related
operations (see Table 9-2).

Table 9-2. DOS Settings Information

Name The property name presented to the user. The settings
should have common prefixes so that they appear sorted
together.

Ordinal The ordinal of the function independent of the name
string.

Type The property type. Boolean, integer, enumeration, and
single and multiple line strings are supported.

Flags Flags control aspects of the property, i.e., whether or not
they can be changed while the DOS session is running.

Default Value The value used if the user does not supply one.

Validation Information This information allows the user interface to validate prop-
erty values before sending them to the device driver.

Function This function is used for validating string settings, and for
notifying the VDD when the user has changed a property
for a running DOS session.

VDD to POD Communications

Since many VDDs virtualize or "mimic" hardware that generates interrupts, these dri­
vers will generally have to interact with a PDD. The VDD uses the VDHOpenPDD
VDH call to establish communication between the Virtual Device Driver and the
Physical Device Driver. The two drivers exchange entry points, and are subsequently
free to call each other using any type of protocol, including register-based entry
points. Both drivers should also be aware of the shutdown protocol, in case the VDD
has to shut down.

126 Writing OS/2 2. 1 Device Drivers in C

VDDs can call PDDs via the OS/2 file system by using the VDHOpen, VDHWrite,
VDHIOCtl, and VDHClose function calls. Using this method, a VDD can communi­
cate with an existing PD D without requiring modification of the PD D.

VDDs support Dynamic Linking, and thus can pass data back and forth to other VDDs
via dynamic links. VDDs can also communicate with each other via the VDHOpen VDD,
VDHRequestVDD, and VDHCloseVDD Virtual Device Helper routines. ·

The Virtual COM Device Driver
The Virtual COM Device Driver for OS/2 2.1, VCOM.SYS, allows for the emulation and
virtualization of the 8250/16450 UARr. It provides support for two virtual serial ports on
ISA bus machines, and four ports on PS/2 and PS/2-compatible systems. VCOM.SYS
does not support the 16550 UARr. Due to the added overhead of context switching and
system operation, the Virtual COM Device Driver only guarantees error-free operation
at 240 characters per second, or about 2400 bits per second. DOS applications that
access the I/O hardware directly or through BIOS calls are supported.

The Virtual COM Device Driver "looks" like the 8250 UARr, including registers,
modem lines, and interrupts. The DOS application sees the Virtual COM Device
Driver as the actual device. The Virtual COM Device Driver contains the standard set
of 8250/16450 port registers for access by the DOS application. They are:

• Receive/Transmit Buffer and Divisor Latch

• Interrupt Enable and Divisor Latch

• Interruptidentification

• Line Control

• Modem Control

• Line Status

• Modem Status

• Scratch

Interrupts supported by the Virtual COM Device Driver are:

• Line Status Interrupt

• Receive Data Available Interrupt

• Transmitter Empty Interrupt

• Modem Status Interrupt

Chapter 9. OS/2 2.1 Virtual Device Drivers 127

Refer to Table 9-3 for a list of 8250/16450 registers supported by the Virtual COM
Device Driver.

Table 9-3. Virtualized 8250/16450 Registers

Name R/W Address Purpose

RBR R 03F8h Receive Buffer Register

THR w 03F8h Transmitter Holding Register

DLL R/W 03F8h Low Divisor Latch

DLM R/W 03F9h High Divisor Latch

IER R/W 03F9h Interrupt Enable Register

IIR R 03FAh Interrupt Identification Register

LCR R/W 03FBh Line Control Register

MCR R/W 03FCh Modem Control Register

I.SR R 03FDh Line Status Register

MSR R 03FEh Modem Status Register

SCR R/W 03FFh Scratchpad Register

Adapters with serial ports must conform to this register configuration. For UARfs
with additional registers, 1/0 to those registers will be ignored by the Virtual COM
Device Driver. All register bits are compatible with the standard bit assignments of
the 8250/16450 UARf.

Since interrupts are simulated, there is no physical PIC addressed by the Virtual
COM Device Driver. Rather, a simulated PIC, VPIC, is installed to arbitrate interrupt
priorities and to provide an End-Of-Interrupt port for those applications that may issue
an EOI directly to the PIC.

128 Writing OS/2 2.1 Device Drivers in C

The Virtual COM Device Driver also supports access to the serial device via INT 14h
calls. The Virtual COM Device driver emulates the BIOS call, returning the same
information as though the BIOS routine was actually called.

When a character is received at the actual hardware, an interrupt is generated and the
PDD gets the character from the UART receive register. The PDD then sends the
character to the VDD for the waiting DOS application. When the DOS application
sends a character to a port, the Virtual 8086 Emulator traps the operation and calls the
VDD. The VDD, in turn, calls the PDD to output the character to the actual device.
Simulated interrupts, like their physical counterparts, are not recognized if the inter­
rupt system is disabled, and are only emulated if the interrupt system is on. To maxi­
mize performance, the PDD does not call the VDD at the receipt of every interrupt.
Rather, it receives the information that PDD device driver events have taken place,
and determines whether to continue simulating interrupts or take other action. For
more information on the Virtual COM Device Driver, please refer to the OS/2 2.1
Virtual Device Driver Reference.

The Virtual Timer Device Driver
The Virtual Timer Device driver provides support for DOS applications by providing
the following services:

• Vrrtualization of timer ports to allow reprogramming of the interrupt rate and speaker
tone.

• Distribution of timer ticks to all DOS sessions.

• Maintenance of the timer tick count in the ROM BIOS data area.

• Serialization of timer 0 and timer 2 across multiple DOS sessions.

• Arbitration of the ownership of timer 0 and timer 2 between the VDD and the Clock
PDD.

In DOS, timer 0 is used as the system timer, and set to interrupt every 18.2 millisec­
onds. This timer is used to update the time of day clock and time-out the floppy disk
drive motor on-off functions. DOS programs that need a higher tick resolution fre­
quently program timer 0 to a higher frequency. The DOS tick handler intercepts the
timer ticks and, at specified intervals, calls the system clock routine so that the time­
of-day clock value is not affected. Timer 1 is the memory refresh timer and cannot be
modified. Timer 2 is the speaker tone generator, and can be programmed to generate
different sounds and tones. Timer 2 has two control bits, one to enable/ disable the
timer, and one to route the output to the speaker.

Chapter 9. OS/2 2. 1 Virtual Device Drivers 129

Timer 0 ticks can be lost due to system loading, so the Virtual Timer Device Driver
continually compares the actual elapsed time with the per-session DOS timer and
updates it if necessary to make up for lost ticks. Every second, all of the currently run­
ning DOS sessions have their times re-synchronized.

The hardware of timer 2 is virtualized, allowing it to be reprogrammed. The registers
appear to the DOS applications exactly the same as the 8254 CTC (see Table 9-4).

Table 9-4. Virtualized Timer Registers

Description Port

CountwordO 40h

Count word 1 41h

Countword2 42h

Countword3 43h

See Table 9-5 for a list of timer registers supported by the Virtual Timer Device
Driver.

Table 9-5. Supported Virtualized Timer Registers

Count word 0 read virtualized

Count word 0 write virtualized

Count word 1 read virtualized

Count word 1 write ignored

Count word 2 read virtualized

Count word 2 write virtualized

Control word read virtualized

Control word write virtualized

130 Writing 05/2 2.1 Device Drivers in C

The Virtual Disk Device Driver

The VDM supplies DOS applications with a DOS-compatible disk interface via, the
INT 13h DOS interrupt The Virtual Disk Device Driver, VDSK, simulates ROM BIOS
for disk access. A list of supported INT 13h functions can be found in Table 9-6.

Table 9-6. Virtualized INT 13 Functions

AH Function

OOh Reset Diskette System

Olh Status of Disk System

02h Read Sectors Into Memory (floppy and fixed disk)

03h Write Sectors From Memory (floppy disk)

04h Verify Sectors (floppy and fixed disk)

05h Format Track (floppy)

08h Get Current Drive Parameters (floppy and fixed disk)

15h Get Disk Type (floppy and fixed disk)

16h Change of Disk Status (floppy)

17h Set Disk Type (floppy)

18h Set Media Type for Format (floppy)

When a DOS application issues an INT 13h request, the request is trapped by the
Virtual Disk Device Driver, transformed into a Request Packet, and sent to the disk
PDD for processing. If the disk is currently busy, the PDD queues up the request
until it can process it. When the request can be completed, the PDD notifies the
Virtual Disk Device Driver, which unblocks the DOS session.

Chapter 9. 05/2 2.1 Virtual Device Drivers 131

The disk VDD does not support direct register access to and from the disk controller.
Any attempts to perform direct 1/0 are trapped and ignored. Some types of copy pro­
tection algorithms that are dependent on disk timing may fail.

Floppy disk access is allowed directly to the floppy disk controller hardware, but only
after the application gains exclusive access to the floppy disk drive. When a DOS
application gains access to the floppy disk, it disables all port trapping and allows
direct port access to the floppy controller (see Table 9-7).

Table 9-l Virtualized Floppy Disk Ports

Port Function

3f0h Status Register A (PS/2 only)

3flh Status Register B (PS/2 only)

3f2h Digital Output Register

3f7h Digital Input Register

3f7h Configuration Register

3f4h Controller Status Register

3f5h Controller Data Register

While the DOS session has access to the floppy disk, all interrupts from the floppy disk
controller are reflected to the owning DOS application. Even when the DOS application
has finished with the floppy disk, the ownership of the floppy disk will remain with the
original DOS application until another application requests ownership.

132 Writing 05/2 2.1 Device Drivers in C

The Virtual Keyboard Device Driver

The Vrrtual Keyboard Device Driver allows DOS applications that access to keyboard
to run without a change in the VDM. The Virtual Keyboard Device Driver allows
access to the keyboard, using the following methods:

• INT 21h. DOS applications can access the keyboard using the CON device name, or
get input from the stdin device.

• BIOS access via the INT 16h function.

• 1/0 port access, by reading and writing I/O ports 60h and 64h.

The Vrrtual Keyboard Device Driver must also handle the aspects of translation and
code page tables, performance, and idle detection for those applications that poll the
keyboard. When the physical keyboard driver receives an interrupt, it sends that
interrupt to the Virtual Keyboard Device Driver, which in tum notifies the Virtual
Programmable Interrupt Controller, or VPIC. The Virtual Keyboard Device Driver
must supply the key scan codes for those applications that decipher the scan codes
themselves. Setting the repeat rate is not supported.

DOS applications frequently wait for a keyboard key to be pressed in a polling loop.
The Virtual Keyboard Device Driver detects an idle loop, and adjusts the actual
polling time as necessary. The driver increases the sleep between each poll, allowing
other programs in the system to run. When a key is hit, the time between polls is
reset to a short period, then increased as the inactivity increases. The Virtual
Keyboard Device Driver uses the VDHWaitVRR VDH function to sleep in-between
polls, and the DOS session is immediately woken up if a key is pressed.

Normally, IRQl interrupts are channeled to the INT 09h interrupt service routine,
which is usually a BIOS routine that performs key translation. The Vrrtual Keyboard
Device Driver emulates the INT 09h BIOS routine, calling the INT 15h handler for
scan code monitoring, handling <cntl-break> (INT 18h), and Print Screen (INT 05h)
processing.

Chapter 9. OS/2 2.1 Virtual Device Drivers 133

The Virtual Mouse Device Driver

DOS applications that require a mouse are supported via the INT 33h interface, which
performs the following functions:

• position and button tracking

• position and button event notification

• selectable pixel and mickey mappings

• video mode tracking

• pointer location and shape

• emulation of a light pen

Operation of the virtual mouse driver is similar to other virtual drivers. The mouse
physical device driver is always aware of which session owns the mouse. When a full­
screen DOS session owns the mouse, the mouse PDD notifies the virtual device dri­
ver of mouse events. If the DOS session is a windowed DOS session, the mouse PDD
routes the mouse events to the Presentation Manager, which routes them to the virtu­
al mouse device driver. The user may optionally set the exclusive mouse access on in
the DOS Settings for the DOS windowed session. If so, events from the mouse PDD
are sent directly to the mouse VDD, bypassing the Presentation Manager. This prop­
erty is used for applications that track and draw their own mouse pointer.

The Virtual Line Printer Device Driver

The Virtual Line Printer Device Driver, VLPT, allows DOS applications access to the
parallel printer port via INT 17h BIOS calls. It also supports the BIOS INT 05h print
screen call. The VLPT supports up to three parallel controllers, and virtualizes the
data, status, control, and reserved ports of the printer controller. The VLPT also pro­
vides a direct access mode for DOS programs that control the parallel port hardware
directly. When the VLPT recognizes that a DOS application wishes to perform direct
I/0 to the parallel port, it requests exclusive rights to the port from the parallel port
PDD.

If another application tries to use the printer after the DOS application has gained
exclusive access to it, the access will fail. Print jobs from the spooler will continue to
be queued up until the requested parallel port becomes free.

134 Writing OS/2 2.1 Device Drivers in C

The VLPf continues to handle the traps from the DOS application. The VLPI' also
traps the IRQ enable bit from a DOS application attempting to enable the parallel port
IRQ. Interrupt transfers are not supported for the parallel port, so the VLPf contains
no interrupt simulation routines/ The VLPT also detects when a DOS application tries
to change the direction bit, which is illegal on non-PS/2 systems.

The Virtual Video Device Driver

The Virtual Video Device Driver, or VVIDEO, provides display adapter support for
DOS sessions. The VVIDEO driver communicates with the DOS Session Window
Manager, ensuring that the DOS window stays relatively synchronized with the DOS
application. Some parts of the DOS session environment have been designed especial­
ly for the VVIDEO driver. They are:

• foreground/background notification hooks.

• freeze/thaw services.

• code page and title change notification hooks.

The VVIDEO driver is a base driver, loaded at boot time from CONFIG.SYS. If the
VVIDEO driver cannot be loaded at boot time, no DOS sessions will be able to be
started. The standard VVIDEO drivers support CGA, EGA, VGA, XGA, and 8514/ A
adapters, and monochrome adapters as secondary display adapters. All adapter mem­
ory sizes are supported up to 256KB, and more than one VVIDEO driver can be
loaded for the same adapter.

The DOS Wmdow Manager starts a thread for communication to the VVIDEO driver,
which calls the VVIDEO driver and waits for a video event. The VVIDEO driver sup­
ports both full screen and windowed operation, and can switch back and forth
between full screen and windowed, and back. The VVIDEO drivers install hooks to
trap all port accesses, maps physical screen memory to logical screen memory, and
reports video events to the DOS Session Window Manager. Changes that are trapped
by the DOS Session Window Manager, whether the DOS application is in focus or
not, are:

• mode changes.

• palette changes.

• a change in the cursor position.

Chapter 9. OS/2 2.1 Virtual Device Drivers 135

• changing the session title.

• screen switch video memory allocation errors.

• scrolling and other positioning events.

The DOS Session Window Manager can query the state of its DOS session video for
the following:

• the current display mode.

• the current palette.

• the cursor position.

• the contents of video memory.

The DOS Session Wmdow Manager can also issue the following directives:

• wait for video events.

• cancel wait for video events.

The VVIDEO driver opens the Virtual Mouse Device Driver, and provides it with the
following entry points:

• show mouse pointer.

• hide mouse pointer.

• define text mouse pointer.

• define graphics mouse pointer.

• set video page.

• set for light pen emulation.

The VVIDEO driver calls the Virtual Mouse Device Driver whenever the DOS session
changes video modes.

VVIDEO drivers can share the same video adapter by accepting to be temporarily
shut down while another VVIDEO driver uses the adapter, and restarted when control
of the adapter is released back to the original owner.

The VVIDEO driver supports the DOS INT lOh to support drawing operations and
the simultaneous use of the mouse pointer. The VVIDEO also supports INT 2Fh ser­
vices, which notify an application that it is about to be switched. The 8514/ A and XGA
adapters can run only in the full screen mode of the DOS session, and will immediate­
ly be frozen if it attempts to write directly to the 8514/ A or XGA adapter.

136 Writing OS/2 2. 1 Device Drivers in C

Virtual DevHlp Services By Category

Virtual DevHlp functions provide virtual device drivers with access to various services
provided by the operating system and by other virtual device drivers. The Virtual
DevHlp services are listed alphabetically, with a short explanation of their purpose. A
complete reference to the Virtual Device Helper routines, including details on para­
meter use, can be found in the IBM OS/2 2.1 Virtual Device Driver Reference. Virtual
DevHlp services can be divided into categories based on the type of service that the
virtual DevHlp provides. These categories are:

DOS Settings

VDHRegisterProperty Register virtual device driver property

VDHQueryProperty Query virtual device driver property value

VDHDecodeProperty Decode property string

File (or device) 1/0 Services

VDHOpen Open a file or device

VDHClose Close a file handle

VDHRead Read bytes from a file or device

VDHWrite Write bytes to a file or device

VDHIOCtl Perform IOCtl to a device

VDHPhysicalDisk Get information about partitionable disks

VDHSeek Move read/write file pointer for a handle

Chapter 9. OS/2 2.1 Virtual Device Drivers 137

OMA Services

VDHRegisterDMAChannel Register a DMA channel with the virtual DMA
device driver

VDHCallOutDMA Let DMA do its work

VDHAllocDMABuffer Allocate DMA buffer

VDHFreeDMABuffer Free DMA buffer previously allocated

DOS Session Control Services

VDHKillVDM Terminate a DOS session

VDHHaltSystem Halt the system

VDHFreezeVDM Freeze a DOS session; prevent the DOS session
from executing any V86 code

VDHThawVDM Allow a frozen DOS session to resume executing
V86code

VDHisVDMFrozen Determine if a DOS session is frozen

VD HSetPriority Adjust a DOS session's scheduler priority

VDHYield Yield the processor

138 Writing OS/2 2.1 Device Drivers in C

DPMI Services

VDHGetSelBase Get a flat base address for an IDT selector

VDHGetVPMExcept Get the current DOS session's protect mode excep-
tion vector

VDHSetVPMExcept Set the current DOS session's protect mode excep-
tion vector to a specified value

VDHChangeVMPIF Change the virtual interrupt flag (IF), enabling or dis-
abling protect mode interrupts

VDHRaiseException Raise an exception to a DOS session, as if the exceir
tion had been caused by the hardware

VDHReadUBuf Read from protect mode address space

VDHWriteUBuf Write to a protect mode address space

VDHCheckPagePerm Check Ring 3 page permissions

VDHSwitchToVPM Switch a DOS session to protect mode

VDHSwitchTo V86 Switch a DOS session to V86 mode

VDHCheckVPMintVector Determine if a DOS session protect mode handler
exists

VDHGetVPMintVector Return the DOS session's protect mode interrupt
vector

VDHSetVPMintVector Set the DOS session's protect mode interrupt vector

VDHArmVPMBPHook Obtain the address of a DOS session's protect mode
breakpoint

VDHBeginUse VPMStack Begin using the DOS session's protect mode stack

VDHEndUseVPMStack End the use of the DOS session's protect mode stack

Chapter 9. OS/2 2.1 Virtual Device Drivers 139

(The ''VPM" in many of the function names in this section stands for ''Virtual Protect
Mode").

GOT Selector Services

VDHCreateSel Create a GDT selector to map a linear range

VDHDestroySel Destroy a GDT selector previously created by
VDHCreateSel

VDHQuerySel Get the selector for an address in the virtual
device driver's data or on its stack

Hook Management Services

VDHAllocHook Allocate the hooks needed for interrupt simulation

VDHArmBPHook Obtain the address of a V86 breakpoint

VDHArmContextHook Set a local or a global context hook

VDHArmReturnHook Set a handler to receive control when an IRET or
REIF is executed in V86 mode

VDHArmSTIHook Sets a handler to receive control when interrupts
are enabled in the current DOS session

VDHArmTimerHook Set a timer handler

VDHFreeHook Disarm and free a hook

VD HinstallintHook Set a handler for a V86 interrupt

VDHinstalllOHook Install PIC I/0 port hooks

VDHinstallUserHook Install a handler for a DOS session event

VDHQueryHookData Returns a pointer to a hook's reference data (creat-
ed during the VD HAllocHook call)

140 Writing OS/2 2. 1 Device Drivers in C

VDHRemoveIOHook Remove hooks for PIC I/0 ports

VDHSelIOHookState Enable/Disable I/0 port trapping

VDHRegisterAPI Set V86 or protect mode API handler

DOS Application Management

VDHReportPeek Report DOS session polling activity for the pur-

' pose of idle detection

VDHWakeidle Wake up a DOS session that is doing
VDHSelIOHookState sleep

These services allow virtual device drivers to tell OS/2 when a DOS application
appears to be idle, and when there is some activity that could make the DOS applica­
tion busy.

Inter-Device Communication Services

VDHRegisterVDD Register a virtual device driver's entry points

VDHOpenVDD Open a virtual device driver previously regis-
tered with VDHRegisterVDD

VDHOpenPDD Open a physical device driver for VDD - PDD
communications

VDHRequestVDD Issue a request for an operation of a virtual
device driver

VDHCloseVDD Close a virtual device driver opened with
VDHOpenVDD

Chapter 9. OS/2 2. 1 Virtual Device Drivers 141

Keyboard Services

VDHQueryKeyShift Query the keyboard shift state

Memory Management Services

There are three subcategories of memory management virtual DevHlp services. The

first two are based on the granularity of the memory allocation unit, the third category

is for memory locking services.

Byte Granular Memory Management Services

VDHAllocMem Allocate a small amount of memory

VDHFreeMem Free memory allocated with VDHAllocMem

VDHAllocDOSMem Allocate a block of memory from the DOS area

VDHCreateBlockPool Create a memory block pool

VDHAllocBlock Allocate a block from a memory block pool

VDHFreeBlock Free a previously allocated block of memory
(return the block to a memory block pool)

VDHDestroyBlockPool Destroy a memory block pool

VDHCopyMem Copy from one linear memory address to another

VDHExchangeMem Exchange the contents of two linear memory
regions

142 Writing OS/2 2. 1 Device Drivers in C

Page Granular Memory Management Services

VDHAllocPages Allocate a page-aligned memory object

VDHReallocPages Reallocates (re-sizes) a memory object

VDHFreePages Free a memory object

VDHFindFreePages Find the largest available linear memory region

VDHGetDirtyPagelnfo Returns the status of the dirty bits for a range of
memory pages (resets the bits)

VDHQueryFreePages Returns the total amount of free virtual memory
in bytes

VDHReservePages Reserve a range of linear addresses

VDHUnreservePages Unreserve a range of linear addresses

VDHMapPages Map a specified linear address

VDHinstallFaultHook Install your own page fault handler

VDHRemoveFaultHook Remove your page fault handler

Memory Locking Memory Management Services

VDHLockMem Verify access to a region of memory, then lock
that memory

VDHUnlockMem Release a memory lock

These services allow virtual device drivers to allocate, free, reallocate, and lock memo­
ry for global and per-DOS session objects, page or byte granular objects, and with dif­
ferent options, such as fixed or swappable allocations.

Chapter 9. OS/2 2. 1 Virtual Device Drivers 143

Virtual device drivers can also request smaller memory allocations from the kernel

heap, which is global and fixed. Small, fixed-size block services are available to speed

up frequent allocations and the freeing of memory. For a particular block size, a pool

of blocks are maintained, and the requirements are met by taking off a block from the

block pool.

Miscellaneous Virtual DevH/p Services

VDHSetFlags Set the DOS session's FIAGS register to a specified
value

VDHSetA20 Enable or disable the A20 line for the current DOS
session

VDHQueryA20 Query the current state of the A20 line

VDHDevBeep Device beep Virtual DevHlp service

VDHGetError Get the error code from the last Virtual DevHlp ser-
vice called

VDHSetError Set the error code for VDHGetError to query

VDHHandleFromSGID Get the DOS session handle from the
screen group ID

VDHHandleFromPID Get the handle for a given process ID

VDHEnumerateVDMs For each DOS session in the system, run a worker
function

VDHQueryLln Get the linear address for a FAR16 (16:16) address

144 Writing OS/2 2. 1 Device Drivers in C

VDHGetCodePageFont Return information about the DOS session's code
page font

VDHReleaseCodePageFont Release code page font returned by
VDHGetCodePageFont

VDHQuerySysValue Query a system value

VDHPutSys Value Set a system value

VDHPopup Display a message

VDHSetDosDevice Register /Install a DOS device driver

NPX (Numeric Coprocessor) Services

VDHReleaseNPX Give up ownership of NPX

VDHNPXReset Reset port Fl

VDHNPXClearBusy Clear busy latch

VDHNPXRegisterVDD Register virtual device driver entry points

Parallel Port and Printer Services

VDHPrintClose Flush and close all open printers for a DOS session

Chapter 9. 05/2 2. 1 Virtual Device Drivers 145

Semaphore Services

VDHCreateSem Create an event or mutex semaphore

VDHDestroySem Destroy a semaphore

VDHResetEventSem Reset an event semaphore

VDHPostEventSem Post an event semaphore

VDHWaitEventSem Wait on an event semaphore

VDHRequestMutexSem Request a mutex semaphore

VDHReleaseMutexSem Release a mutex semaphore

VDHQuerySem Query a semaphore's state

These services are used for synchronizing with an OS/2 process. Virtual device dri­
vers must be careful not to block (VDHRequestSem/VDHWaitSem) in the context of
a DOS session task, or that task will receive no more simulated hardware interrupts
until it becomes unblocked.

Timer Services

VDHArmTimerHook Set a timer service handler

VDHDisarmTimerHook Cancel a timer service before the handler has
been called

146 Writing 05/2 2. 1 Device Drivers in C

Virtual Interrupt Services

VDHOpenVIRQ Register an IRQ handler for a virtual device
driver

VDHCloseVIRQ Deregister an IRQ handler for a virtual device
driver

VDHSetVIRR Set the virtual Interrupt Request Register (IRR),
causing an interrupt to be simulated to the DOS
session

VDHClearVIRR Clear the virtual IRR, stopping the simulation of
interrupts to the DOS session)

VDHQueryVIRQ Query the IRQ status in a DOS session

VDHWaitVIRRs Wait until an interrupt is simulated

VDHWake VIRRs Wake up a DOS session that is waiting with
VDHWaitVIRRs

VDHSendVEOI Send a virtual EOI (End-Of-Interrupt) to the
VPIC

Chapter 9. OS/2 2.1 Virtual Device Drivers 147

V8086 Stack Manipulation

VDHPushRegs Push a client DOS session's registers onto the
client's stack

VDHPopRegs Pop a client DOS session's registers from the

client's stack

VDHPushFarCall Simulate a far call to V86 code

VDHPopStack Pop data off client stack

VDHPushStack Push data onto a client's stack

VDHPushlnt Transfer control to a V86 interrupt handler when
an interrupt is simulated

VDHPoplnt Remove IREf frame from a client DOS session's

stack

Many of the virtual DevHlp functions that are called with invalid parameters or other

error conditions often cause a system halt. This is because virtual device drivers run

at Ring O; they have free access to everything in the system. If an invalid parameter is

detected, it has probably done enough damage that the system has become unstable.

The only thing to do at that point is to halt the system.

DOS Session Interrupts

Table 9-8 describes the DOS hardware interrupts virtualization supplied by the Virtual

Device Drivers and the DOS emulation component of the VDM.

148 Writing 05/2 2. 1 Device Drivers in C

Table 9-8. Virtualized DOS Interrupts

Interrupt Description Notes

IRQO Timer (INT 08h) DOS programs can hook this
interrupt with the INT 08h call.
The INT 08h handler is called for
each tick of the channel 0 system
clock.

IRQl Keyboard (INT 09h) The INT 09h handler is invoked
for every press and release of a
keystroke.

IRQ2 Cascade Interrupt Controller Use for the support of interrupts
8-15 to emulate the second PIC

IRQ3 Serial Port (COM2, COM3) Supported when VCOM.SYS and
COM.SYS are loaded.

IRQ4 Serial Port (COMl) Supported when VCOM.SYS and
COM.SYS are loaded.

IRQ5 Parallel Port (LPT2) Not supported

IRQ6 Diskette Not supported

IRQ7 Parallel Port (LPTl) Not supported

IRQ8 Real Time Clock Not supported

IRQ9 Redirect cascade Not supported

IRQ 10 Not supported

IRQ 11 Not supported

IRQ 12 Aux. device Not supported

IRQ 13 Math Coprocessor Supported

IRQ 14 Fixed disk Not supported

IRQ 15 Not supported

Chapter 9. OS/2 2. 1 Virtual Device Drivers 149

Table 9-9 describes the DOS BIOS software interrupts supported in a VDM.

Table 9-9. Virtualized BIOS Interrupts (Continued)

Interrupt Description Notes

02h NMI Not supported

05h Print screen Supported by the Virtual Line Printer

driver

08h System timer Supported by the Virtual Timer device

driver. Due to system overhead, inter-

rupts may come in short bursts

Oeh Diskette Not supported

lOh Video Fully supported

13h Disk/ diskette Supported by a subset of the DOS INT

13h functions. The supported functions

are:

• OOh - Reset diskette

• Olh- Read status

• 02h - Read sectors

• 03h- Write sectors (diskette only)

• 04h -Verify sectors

• 05h- Format track (diskette only)

• 08h - Get driver parameters

• Oah- Read long (fixed disk only)

• 15h - Read DASD type

• 16h- Change status (diskette only)

• 17h - Set disk type (diskette only)
'

• 18h - Set media type (diskette only)

150 Writing OS/2 2. 1 Device Drivers in C

Table 9-9. Virtualized BIOS Interrupts (continued)

Table 9-9. Virtualized BIOS Interrupts
Interrupt Description Notes

14h Serial Port (Async) Supported by the Virtual COM driver

15h System services Supports the following system services:

• OOh - Cassette motor on
• Olh - Cassette motor off
• 02h - Cassette read
• 03h - Cassette write
• Ofh - Format periodic int
• 4fh - Keyboard intercept
• 80h - Open device
• 81h - Close device
• 82h - program terminate
• 83h - Event wait
• 84h -Joystick
• 85h - SysReq key
• 86h- Wait
• 87h - Move block
• 88h - Get extended memory size
• 89h - Switch to protect mode
• 90h - Device wait
• 91h - Device post
• cOh - Get system config parameters
• clh - Get ABIOS data area
• c2h - PS/2 mouse functions
• c3h- Watchdog timer
• c4h - Programmable Option Select

16h Keyboard Fully supported

17h Printer Fully supported by the VLPT

19h Reboot if DOS_STARTUP _DRIVE is set, the
session is rebooted; if not, the session is
terminated.

lah Time of Day Read only access to Real Time Clock is
supported.

leh Diskette parameters Fully supported

70h Real Time Clock Not supported

Chapter 9. OS/2 2.1 Virtual Device Drivers 151

Table 9-10 describes the DOS software interrupts which are supported by the DOS

emulation component.

Table 9-10. Virtualized DOS Sohware Interrupts

Interrupt Description Notes

20h Program terminate Fully supported

21h Function request Fully supported, plus some undocu-

mented functions. The following calls

are supported with restrictions:

• 38h - Return country information
• 44h - Generic IOCtl
• 66h - Get/ set code page
• 67h - Set handle count

22h Terminate address Fully supported

23h Cntl-break exit address Fully supported

24h Critical error handler Fully supported

25h Absolute disk read Fully supported

26h Absolute disk write Fully supported, but error generated

for attempt on fixed disk

27h Terminate/ stay resident Fully supported

28h Idle loop Fully supported

2fh Multiplex When a DOS application issues an

INT 2fh with AX=1680h, it yields its

time slice.

33h Mouse Fully support, providing
VMOUSE.SYS driver is loaded

67h LIM expanded Supported when Expanded Memory

memory manager Manager VDD is installed. Supports

LIM EMS V 4.0 functions.

152 Writing OS/2 2.1 Device Drivers in C

Sample Virtual Device Driver
The following code represents a sample VDD designed to work with the simple paral­
lel PDD outlined in Chapter 7. It is written using the IBM C Set/2 compiler. This
VDD traps I/Oto the 8-bit ports from a DOS application running in a VDM. This VDD
performs simple input and output to the dedicated parallel port adapter described in
Chapter?.

Note that input and output for OS/2 printer ports is handled much differently than in
the sample driver. For OS/2 printer 1/0, the OS/2 virtual printer driver VLPT calls
the OS/2 kernel, which formats the request into a standard OS/2 Request Packet.
The kernel then sends the Request Packet to the PDD for disposition.

The VDD can perform input and output in one of two ways. The VDD can ask the
PDD to use the specific ports and, if permission is granted, can do the inputs and out­
puts directly from within the VDD. The VDD can also call the PDD and have the PDD
perform the required 1/0, and pass the results back to the VDD. If the adapter is ded­
icated to the VDM application, and no other programs will access it, the VDD need
not call a PDD to perform the operation. If the adapter can be accessed by protect
mode programs, the VDD must get permission to use the adapter by calling the PDD.
The PDD will queue up any subsequent requests from other threads until the VDD is
:finished with the adapter.

In most cases, writing a VDD will be unnecessary, as most of the required DOS virtu­
alization is handled by the VDDs that come with OS/2 2.1. Writing a VDD is only nec­
essary if the DOS application needs to support a custom adapter in a VDM which can­
not be serviced by the existing VDD supplied with OS/2. This should be rare, as most
new applications should be written for protect mode operation.

In this sample VDD, the VDD traps 1/0 on a per-DOS-session basis, to ports Ox210,
Ox211 and Ox212. When the hook is entered, the VDD checks to see that the current
requester is the also the current owner of the port. If not, the VDM application
attempting the access is terminated. If the requester is valid, port trapping is disabled,
allowing subsequent 1/0 to go directly to the hardware for increased performance.
When the DOS session is exited, the 1/0 hooks are removed and port trapping is
reenabled. This VDD shows you how to call some basic VDH functions, such as
VDHinstallIOHook, VDHRemovelOHook, and VDHinstallUserHook.

When a VDM is created, the PIOCreate routine is called, and when the VDM is
closed, the PIOTerminate routine is called. PIOCreate is called with a handle to the
VDM, which is actually the base linear address of the VDM. You may verify the opera­
tion of any of these funtions if you have the kernel debugger installed. Simply place a
call to Vdhint3 in the source code, recompile and relink, then reboot. The Vdhlnt3

Chapter 9. OS/2 2. 1 Virtual Device Drivers 153

call will cause a break at the debugging terminal, and if you used the MAPSYM after
the link, you can examine VDD variables. Do not insert the call to Vdhlnt3 if you do
not have the kernel debugger installed, or have the debugging terminal connected.

II file pioinit.c

II***
II sample parallel port VDD init section
II***

#include "mvdm.h"
#include "pio.h"

#pragma entry (_PIOinit)

#pragma data_seg(CSWAP_DATA)

II VDH services, etc.
II PIO data defines

extern SZ szProplptltimeout;

#pragma alloc_text(CINIT_TEXT,_PIOinit,PIO_PDDProc)

II init entry point called by system at load time

BOOL EXPENTRY _PIOinit(psz) II PIO VDDinit
{

II Register a VDM termination handler entry point

if ((VDHinstallUserHook((ULONG)VDM_TERMINATE,
(PUSERHOOK)PIOTerminate)) ~ 0)

return O; II return FALSE if VDH call failed II

II Register a VDM creation handler entry point

if ((VDHinstallUserHook((ULONG)VDM_CREATE,
(PUSERHOOK)PIOCreate)) == 0)

return 0 ; 11 return FALSE if VDH call failed

II Get the entry point to the POD

Figure 9-2. VDD initialization section. (Continued)

154 Writing OS/2 2.1 Device Drivers in C

PPIOPDDProc = VDHOpenPDD(PDD_NAME, PIO_PDDProc);

return CTRUE;

II entry point registered by VDHOpenPDD, called by the POD

SBOOL VDDENTRY PIO_PDDProc(ulFunc,f16pl,f16p2)
ULONG ulFunc;
F16PVOID f16pl;
Fl6PVOID f16p2;
{

return O;

II piodata.c

#include "mvdm.h"
#include "pio.h"

Figure 9-2. VDD initialization section.

II VDH services, etc.
11 PIO specific

#pragma data_seg(SWAPINSTDATA)

HVDM owner_VDM = O;
HVDM current_VDM;
ULONG Resp= O;

#pragma data_seg(CSWAP_DATA)

11 actual VDM handle

FPFNPDD PPIOPDDProc = (FPFNPDD)O; II addr of POD entry pt

Figure 9-3. VDD data segment.

Chapter 9. OS/2 2. 1 Virtual Device Drivers 155

II pioin.c

#include "mvdm.h"
#include "pio.h"
#include "basemid.h"

I I PIO specific

II VDH services, etc.

#pragma alloc_text(CSWAP_TEXT,PIODatain,RequestDirect)

extern IOH Ioh;

II entry from data input trap in VDM

BYTE HOOKENTRY PIODatain(ULONG portaddr, PCRF pert)
{

BYTE dataread; II set up byte to return

RequestDi rect();

II disable IIO trap

VDHSetIOHookState(current_VDM,DIGIO_BASE,3,&Ioh,0);

dataread = inp(portaddr);
return(dataread);

BOOL HOOKENTRY RequestDirect(void)
{

if (owner_VDM != current_VDM)
{

if (owner_VDM !=0)
{

II return data read

VDHPopup(O,O,MSG_DEVICE_IN_USE,&Resp,ABORT,0);
if (Resp != ABORT)
{

Figure 9-4. VDD input handler. (Continued)

156 Writing 05/2 2. 1 Device Drivers in C

else

VDHKillVDM(current_VDM);
owner_VDM = current_VDM;

owner_VDM = current_VDM;

Figure 9-4. VDD input handler.

II pioout.c

#include "mvdm.h"
#include "pio.h"

#pragma data_seg(CSWAP_DATA)

extern IOH Ioh;

II VDH services, etc.
II PIO specific

#pragma alloc_text(CSWAP_TEXT,PIODataOut)

II this routine is the data out trap entry point

VOID HOOKENTRY PIODataOut(BYTE chartowrite,ULONG portaddr,PCRF
pcrf)
{

RequestDirect();

II disable port trapping

VDHSetIOHookState(current_VDM,DIGIO_BASE,3,&Ioh,0);

outp(portaddr,chartowrite);
return;

II write the char

Figure 9-5. VDD data port output handler.

Chapter 9. 0512 2.1 Virtual Device Drivers 157

II file piouser.c

#include "mvdm.h" II VDH services,
#include "pi 0. h" II PIO specific
#include "basemid.h"

#pragma data_seg(CSWAP_DATA)

II our routines are for 8-bit ports

IOH Ioh = {PIODataln,PIODataOut,0,0,0};

#pragma alloc_text(CSWAP_TEXT,PIOCreate,PIOTerminate)

11---

II PIOCreate, entered when the VDM is created

11---

BOOL HOOKENTRY PIOCreate(hvdm)
HVDM hvdm;
{

etc.

current_VDM = hvdm; II save our vdm handle

11 install 110 hooks for our three 8-bit ports

if ((VDHinstallIOHook(hvdm,
DIGIO_BASE,
3,
(PIOH)&loh,
!VDH_ASM_HOOK)) ~ 0)

PIOTerminate(hvdm);
return 0;

return CTRUE;

II return FALSE

Figure 9-6. VDD user routines. (Continued)

158 Writing OS/2 2. 1 Device Drivers in C

11--
11 PIOTerminate, called when the VDM terminates. This code is
II optional, as the User and IO hooks are removed automatically by
II the system when the VDM terminates. It is shown for example.
11--

BOOL HOOKENTRY PIOTerminate(hvdm)
HVDM hvdm;
{

owner_VDM = O;

VDHRemoveIOHook(hvdm,
DIGIO_BASE,
3,
(PIOH)&Ioh);

return CTRUE;

II remove the IO hooks

Figure 9-6. VDD user routines.

II
II digio memory map for osl2 virtual device driver
II

#define DIGIO_BASE Ox210
tldefi ne DIGIO_OUTPUT DIGIO_BASE
#define DIGIO_INPUT DIGIO_BASE+l
tldefine DIGIO_CONFIG DIGIO_BASE+2

#define ABORT Ox02

II name of the POD

II board address
II output port
I I input port
II initialization port

Figure 9-7. VDD include file. (Continued)

Chapter 9. OS/2 2.1 Virtual Device Drivers 159

ifdefi ne PDD_NAME "DIGIO$ \O" II string

II pioinit.c

BOOL EXPENTRY PIOinit(PSZ);
SBOOL VDDENTRY PIO_PDDProc(ULONG,F16PVOID,F16PVOID);

II piouser.c

BOOL HOOKENTRY PIOCreate(HVDM);
BOOL HOOKENTRY PIOTerminate(HVDM);

II pioin.c

BYTE HOOKENTRY PIODatain(ULONG, PCRF);
BOOL HOOKENTRY RequestDirect(void);

II pioout.c

VOID HOOKENTRY PIODataOut(BYTE, ULONG, PCRF);
VOID HOOKENTRY PIOConfigOut(BYTE, ULONG, PCRF);

extern ULONG MachineType;
extern FPFNPDD PPIOPDDProc;
extern HVDM owner_VDM;
extern HVDM current_VDM;
extern ULONG Resp;

I I i oseg

USHORT _Far32 Pascal inp(ULONG);

II Machine Type
II addr of POD entry point

VOID Far32 _Pascal outp(ULONG,USHORT);

Figure 9-7. VDD include file.

160 Writing OS/2 2.1 Device Drivers in C

vpio.sys: pioinit.obj piouser.obj pioin.obj pioout.obj piodata.obj \
i oseg. obj

link386 /A:16 /M:FULL /NOL pioinit+piouser+pioin+pioout+\
piodata+ioseg,vpio.sys,vpio.map,vdh,pio.def

mapsym vpio

pioinit.obj: pioinit.c mvdm.h pio.h
ice /Sm /Ss 10 10 /W2 /Rn /Gr IC pioinit.c

pioin.obj: pioin.c pio.h mvdm.h
ice /Sm /Ss 10 10 /W2 /Rn /Gr IC pioin.c

pioout.obj: pioout.c pio.h mvdm.h
ice /Sm /Ss 10 10 /W2 /Rn /Gr IC pioout.c

piouser.obj: piouser.c pio.h mvdm.h
ice /Sm /Ss 10 10 /W2 /Rn /Gr IC piouser.c

piodata.obj: piodata.c pio.h mvdm.h
ice /Sm /Ss 10 10 /W2 /Rn /Gr IC piodata.c

ioseg.obj: ioseg.asm
masm /Mx /x ioseg.asm;

VIRTUAL DEVICE VPIO
PROTMODE

STUB 'OS2STUB.EXE'
SEGMENTS

CODE32 CLASS 'CODE'
_TEXT CLASS 'CODE'
CINIT_TEXT CLASS 'CODE'
CSWAP_TEXT CLASS 'CODE'
CINIT_DATA CLASS 'CINITDATA'
CSWAP_DATA CLASS 'CSWAPDATA'
MVDMINSTDATA CLASS 'MIDATA'
SWAPINSTDATA CLASS 'SIDATA'
DATA32 CLASS 'DATA'

DATA CLASS 'DATA'

SHARED NONDISCARDABLE
SHARED NONDISCARDABLE
SHARED DISCARDABLE
SHARED NONDISCARDABLE
SHARED DISCARDABLE
SHARED NONDISCARDABLE
NONSHARED NONDISCARDABLE
NONSHARED NONDISCARDABLE
SHARED NONDISCARDABLE
SHARED NONDISCARDABLE

Figure 9-8. VDD Make And DEF Files

RESIDENT
RESIDENT
RESIDENT

RESIDENT

RESIDENT

RESIDENT
RESIDENT

Chapter 9. OS/2 2.1 Virtual Device Drivers 161

Establishing a VOO-POO Link

Note that, in this VDD, the actual 1/0 was perlormed by the VDD routines PIODataln
and PIODataOut. The VDD could have called the PDD to perlorm the actual 1/0.
This would be necessary if the 1/0 involved interrupts, as device interrupts must be
handled by a PDD.

The PDD requires slight modifications to support VDD-PDD communications. The
PDD must register its ability to provide VDD support by issuing a RegisterPDD
DevHlp call in the Init section of the PDD. The RegisterPDD informs OS/2 of the
name of the PDD and the 16:16 address of the PDD's communication function. Note
that this is not the same entry point as defined by the IDC entry point in the PDD
Device Header. The VDD can then establish communications with the PDD by calling
the VDHOpenPDD Virtual Device Helper function. This is one of the reasons that
OS/2 loads all of the PDDs before the VDDs during system boot. Note that this
DevHlp function has no error return. A failure when registering the PDD will cause a
system crash during boot.

If the PDD fails initialization for another reason, such as a failed SetlRQ or SetTimer,
the PDD must release the PDD-VDD registration by calling RegisterPDD, with the
function pointer equal to 0:0. The PDD described in Chapter 7 would be modified as
outlined in Figure 9-9.

Init code

RegisterPDO((FPUCHAR)devhdr.DHname,(FARPOINTER)DigioComm);

more Init code

main Strategy code section

DigioComm(ULONG Fune, ULONG Parml, ULONG Parm2)
{

VDD-PDD comm code here

Figure 9-9. Registering PDD for VDD-PDD communications.

162 Writing OS/2 2.1 Device Drivers in C

During initialization, the VDD calls VDHOpenPDD, passing it the ASCII-Z name of
the PDD and the 16:32 entry point of the VDD's communication routine. Note the call
to VDHOpenPDD in the pioinit.c routine above. IfVDHOpenPDD (or any other VDH
call) fails, it will return FALSE and the driver must call VDHGetError to retrieve the
exact error. If the call succeeds, VDHOpenPDD returns a pointer to the PD D's com­
munication routine, previously registered by the RegisterPDD call in the PDD Init
section.

The two drivers communicate by sending a structure back and forth. This structure is
described in Figure 9-10.The first parameter is a private function code, which the dri­
vers pass back and forth to identify the operation to be performed. The two parame­
ters can be data or 16:16 pointers to input and output packets. The VDD-PDD commu­
nication functions should return nonzero for success, and zero for failure.

If the PDD allocates any resources on behalf of the VDD, the VDD must call the PDD
to release those resources when the VDM is destroyed.

typedef _DRVCOMM {
ULONG FunctionCode;
U LONG Pa rml;
ULONG Parm2;
} DRVCOMM;

Figure 9-10. VDD-PDD communications structure.

CHAPIER 10

Memory-Mapped Adapters and IOPL

A large number of adapters provide on-board memory for communication
between the adapter and the program or drivers. Generally, a program or
driver maps the on-board memory to a physical memory address, and reads

or writes board memory as if it were normal system RAM. These adapters are
referred to as memory-mapped adapters. Memory-mapped adapters, when placed in a
special hardware mode, appear to a device driver or application as normal RAM mem­
ory. An application that is allowed direct access to the adapter memory can transfer
data much faster than if it were to call a device driver to perform the transfer. This
type of operation, called memory-mapped 1/0, can result in increased performance
and is the preferred method for transferring large amounts of memory quickly.
Memory-mapped adapters may also utilize interrupts or DMA. An example of a mem­
ory-mapped adapter would be a video adapter, such as a VGA card.

Programs that perform transfers with memory-mapped adapters usually write data in
a special format to an area of memory between the 640K and one megabyte, although
some adapters can be mapped in the region above one megabyte.

The most common example of a memory-mapped adapter is, of course, the standard
VGA graphics adapter found in most IBM clones. Data to be displayed on the screen
is written to the adapter's RAM memory. The video controller constantly reads this
memory, converts it to electrical signals and presents these voltage levels to the actu­
al display device. If you power down your display terminal and power it back up, the
contents of the display is not lost because the display is actually kept in video memo­
ry, not in the display itself.

163

164 Writing 05/2 2. 1 Device Drivers in C

High and Low Memory Maps

Memory-mapped adapters come in two basic flavors. The first has a memory-mapped
address that is selectable in the area between 640K and one megabyte. Some of the
memory space between 640K and one megabyte is reserved for such things as BIOS
shadow RAM and video memory. There is room, however, to map an adapter board in
that space, providing no address conflicts exist Most memory-mapped adapters were
designed for personal computers running DOS, so there was no need to provide mem­
ory-mapped addresses greater than one megabyte. Recall that DOS runs in the real
mode of the Intel microprocessor, which provides for only a 20-bit address. This limits
the addressing capability of the CPU to one megabyte, so an adapter designed for the
DOS environment that could be mapped to addresses greater than one megabyte
would not be of much use.

The second type has a memory-mapped address of greater than one megabyte. The
32-bit addressing mode of OS/2 2.1 allows adapters to be mapped above the one
megabyte boundary and accessed directly.

ISA bus memory-mapped adapters use small jumpers or switches to set their memory­
mapped address, while Micro Channel adapters usually contain their memory­
mapped address in the POS registers (see Chapter 3). Some recently-introduced
adapters designed to run in 32-bit systems like OS/2 have been designed for memory­
mapped addresses of greater than one megabyte.

Application Program Access To Adapter Memory

One of the most important features of OS/2 is its ability to protect programs from one
another. With the aid of the protect mode circuitry in the CPU, the operating system
can determine beforehand if a program is about to read from or write to another pro­
gram's memory space. If the processor detects this kind of error, the system's error
handler is called to display the error and the offending program is immediately termi­
nated. How then does an application operating at Ring 3 gain access to the memory­
mapped adapter address that is not within its own address space?

Recall the discussion of the processor architecture in Chapter 3. As was outlined, a
program's access to memory is controlled by selectors, which are indexes into the
program's Local Descriptor Table. The descriptor contains a physical address and
Requested Privilege Level, or RPL, of the memory object. When a program is executed,
it get's its own list of selectors, or LDT, which defines its valid addressable memory
areas and their access restrictions. When the program attempts to read or write mem­
ory, the CPU compares the target address and type of operation to a corresponding

Chapter 10. Memory-Mapped Adapters and IOPL 165

entry in the LDT. If the program does not have access to the target memory, a
General Protect, or GP fault is generated, and the program is immediately terminated.
If the address is valid, the CPU verifies that the memory has the correct permissions,
such as read and write, and generates a fault if the permissions do not agree with the
attempted operation.

If the adapter's memory-mapped address could be placed in the application's LDT, the
program would be free to access the adapter's memory. The application's LDT, how­
ever, is created at load time, and is not modifiable by the application. If that were per­
mitted, applications would be free to select the memory addresses they wished to
read and write, and crash OS/2. The only program that can grant an application
access to memory is a device driver. The device driver, operating at Ring 0, is free to
manipulate the application's environment, with some limitations.

To allow the application to access the foreign memory, the application program opens
up the device driver and passes it the physical address and size of the memory it wish­
es to access. For most adapter, the memory size is generally 4K, BK, 16K, or 32K
bytes. The driver should first verify that the memory address is within the valid range
for the adapter. The driver can be hard-coded with the valid physical addresses, it can
be sent the address via an IOCtl, or the valid address could be entered at driver load
time in the "DEVICE=XXX.SYS" line in the CONFIG.SYS file (see Chapter 8). The dri­
ver then allocates an LDT selector for the new adapter address. Even though the LDT
belongs to the application, the driver can access it freely. This is due to the fact that
when the driver is called by the application, the driver and application share the same
context.

Next, the driver calls the OS/2 system DevHlp function PhysToUVirt (see Figure 10-
1), which maps the physical address to an LDT selector in the application's LDT. The
result is referred to as a fabricated address. Using an IOCtl, the driver then passes
back the new LDT selector:offset value to the application. The application makes a
pointer from the selector using the MAKEP macro, and uses this pointer for direct
access to adapter memory. The LDT entry remains valid until the program is termi­
nated.

if C PhysToUVirtCOxd8000, Ox8000, 1, &mem))
return CRPDONE I RPERR I ERROR_GEN_FAILURE);

Figure 10-1. PhysTo Virt call.

166 Writing OS/2 2. 1 Device Drivers in C

The Oxd8000 is the physical adapter memory address. The Ox8000 is the requested
size, the parameter 1 means get a virtual pointer and make the memory read-write,
and &mem is the address of DS-relative storage for the returned virtual address.

Access to Adapter Memory In the Interrupt Handler

In some cases, such as upon receipt of an interrupt, the device driver may be required
to access memory-mapped adapter inside the interrupt handler. If a driver is required
to perform interrupt-time memory transfers, it should set up the references to the
memory in the INIT section. Since the interrupt handler can be entered in any con­
text, the LDT of the application may not be in the current context. The driver cannot
use an LDT to address memory, but must use a GDT entry for memory access. The
GDT entry will be valid in any context.

If the device driver will be performing memory-mapped transfers inside an interrupt
handler, it must allocate the required selector(s) by issuing the AllocGDTSelector
DevHlp, then map the new selector(s) to the physical address with the
PhysToGDTSelector DevHlp call (see Figure 10-2). The driver now has direct
addressability to the adapter memory regardless of context, and can freely transfer
data to and from the adapter memory at interrupt time. The device driver must allo­
cate and map the GDT selector(s) during INIT. However, remember that the INIT
code is run as a Ring 3 thread of the system, so the driver cannot access the memory
mapped to the GDT selector at INIT time.

A complete memory-mapped device driver and sample 16-bit and 32-bit application
code is shown in the Listings section.

Chapter 10. Memory-Mapped Adapters and IOPL 167

FARPOINTER fabricated_ptr = O;

II allocate space for a GOT selector during INIT

if (A 11 ocGOTSe l ector (1, sel_a rray))
{ II allocate a GOT sel
OosPutMessage(l, 8, devhdr.OHname);
OosPutMessage(l,strlen(GOTFailMsg),GOTFailMsg);
break;
}

II now map the board memory address to the GOT selector

if (PhysToGOTSelector (board_address,
(USHORT) MEMSIZE,
sel_array[OJ,
&err))

OosPutMessage(l, 8, devhdr.OHname);
OosPutMessage(l,strlen(SELFailMsg),SELFailMsg);
break;
}

fabricated_ptr = MAKEP(sel_array[OJ,0);

Figure 10-2. Mapping a CDT selector during /NIT.

Input/Output Privilege Level (IOPL)

OS/2 allows programs with 1/0 Privilege (IOPL) enabled to do direct register 1/0 to
a device. If the device your application will be using is a parallel card or digital switch,
an actual device driver may not be necessary. With IOPL, the application program can
perform direct register 1/0 using IN and OUT instructions. If the device does not
require interrupt or timer support, IOPL may be the ticket.

168 Writing OS/2 2.1 Device Drivers in C

Note, however, that IOPL is a processor-specific function, and thus is not portable
across hardware platforms such as RISC. For instance, the port mapping of a MIPS
processor is not the same as an Intel processor, so code written for one processor will
not necessarily run on another processor. The current trend is to migrate operating
systems onto other platforms such as RISC and SMP. For these reasons, you can only
perform IOPL from a 16-bit segment, and cannot enable a 32-bit C Set/2 segment to
perform IOPL. 16-bit segments are allowed to perform IOPL since the 16-bit segments
themselves are processor-dependent, and can't be migrated to other processor plat­
forms anyway.

There are circumstances when it makes sense, for performance reasons, to allow the
application to perform simple I/0. This could mean something as simple as control­
ling an external switch, or testing for a single bit from an 1/0 port. Calling a device
driver to accomplish this is the preferred method, since its more likely to be portable.
Under some circumstances, however, IOPL may be the best solution.

The IOPL Segment
To enable IOPL, the segment descriptors of the segment that contains the 1/0 code
must be marked Descriptor Privilege Level, or DPL 2. OS/2 allows segments with
properly marked descriptors to perform direct register 1/0. There are two ways you
can structure your IOPL routines. If you're using Microsoft C 6.0, the inp and outp
functions are located in a separate segment called _IOSEG. You can indicate with
your DEF file to mark _IOSEG as IOPL, and call the standard run-time library rou­
tines inp and outp. You can also write a simple function (See Figure 10-3) to perform
the input and output.

Chapter 10. Memory-Mapped Adapters and IOPL 169

Sample IOPL segment

PUBLIC IN_PORT
PUBLIC OUT_PORT

.model large

.286P

DGROUP GROUP _DATA
DATA SEGMENT WORD PUBLIC 'DATA'

_DATA ENDS

IOSEG segment word use16 public 'CODE'

assume CS:_IOSEG,DS:DGROUP,SS:DGROUP
.286P

IN - PORT proc far

push bp ;set up stack frame
mov bp, sp ;save bp
push dx ;save dx
mov dx, [bp+6J ;get port address
in ax,dx ;do input
pop dx ;restore regs
pop bp ;return in ax
ret 2 ;remove from IOPL stack

IN_PORT endp

OUT_PORT proc far

push bp ;set up stack frame
mov bp,sp ;save it
push ax ;save ax
push dx ;and dx
mov ax,[bp+6J ;get data
mov dx,[bp+SJ ;get port

Figure 10-3. IOPL Segment. (Continued)

170 Writing OS/2 2.1 Device Drivers in C

out dx,al
pop dx
pop ax
pop bp
ret 4

OUT_PORT endp

IOSEG ends
end

;do output
;restore regs

;remove off local stack

Figure 10-3. IOPL Segment.

During the link operation, the linker is told to mark the special segment as IOPL. The
linker must also know the names of the exported routines and the size of the parame­
ters that will be passed to the routines by the Ring 3 application. The number of words
that the parameters will occupy on the stack is extremely important. Since the Ring 3
code (application) and the Ring 2 code (the IOPL code) do not share the same physi­
cal stack area; OS/2 must copy the contents of the Ri11g 3 stack to the Ring 2 stack.
The linker informs OS/2 of the number of bytes to copy by the size parameter in the
EXPORTS statement in the linker module definition file (see Figure 10-4).

NAME SAMPLE
STACKSIZE 8192
SEGMENTS

_IOSEG IOPL
EXPORTS

PORTIN 1
PORTOUT 2

PROTMODE

Figure 10-4. IOPL DEF file.

Chapter 10. Memory-Mapped Adapters and IOPL 171

When the application calls either the IN_PORT or OUT_PORT routine, OS/2 will per­
form a ring transition from Ring 3 to Ring 2, copy the caller's stack to the separate
Ring 2 stack, call the 1/0 routine, and perform another ring transition back to the
Ring 3 application. Because of the extra overhead in ring transitions and copying
stacks, this method will not be as fast as the DOS equivalent, but will be much faster
than calling the device driver for every port input or output.

Remember that devices that generate interrupts, require asynchronous service, or
operate in a time-critical environment must utilize a device driver. You may be able to
get by using memory-mapping and IOPL, and I suggest using it if possible. Just keep
in mind that eventually, OS/2 PDDs will eventually become 32-bit PDDs, and the
handy shortcuts like memory-mapping and IOPL will most likely disappear.

IOPL From 32-bit Applications
IOPL is not permitted from 32-bit segments. To use IOPL from a 32-bit application,
the application must call 1/0 routines located in a 16-bit segment. The easiest way to
do this is to create a simple 16-bit DLL, then link it to the application with the IMPLlB
utility. The same IOPL code can be used for 16-bit and 32-bit applications. A complete
set of code for performing IOPL from 16-bit and 32-bit applications can be found in the
Listings section.

CHAPIER 11

Direct Memory Access (DMA)

D MA is the ability of a device to access the computer system's memory without
going through the CPU. Since DMA reads and writes bypass the CPU, data
can be transferred very quickly without affecting system performance. This

feature is useful for devices that generate large amounts of data frequently, such as
video frame grabbers or an Analog to Digital (AID) converter. The measure of a
device's ability to transfer large amounts of data at a time is called its bandwidth. The
larger the amount of data in a given time period, the higher the bandwidth. Devices that
transfer large amounts of data frequently are therefore called high bandwidth devices.
An example of a high bandwidth device would be a hard disk drive. The hard disk drive
is capable of reading or writing large amounts of data very quickly. So quickly, in fact,
that the CPU and device driver software cannot keep up with the disk drive's data trans­
fer rate. If a read was requested from the disk driver using the CPU, the data from the
disk would appear faster than the CPU could dispose of it, leading to overruns and data
corruption.

The OMA Controller

Since memory is connected to the computer system's bus, the DMA controller must
request that the CPU "give up" the bus for a short period of time. The DMA controller
is a special set of circuitry responsible for performing the DMA transactions. Since
memory is connected to the computer system's bus, the DMA controller must request
that the CPU "give up" the bus for a short period of time. When the DMA controller
needs to transfer data, it asks the CPU for control of the bus by issuing a HOLD
request. When the CPU can release the bus, it grants the DMA controller use of the

173

174 Writing OS/2 2.1 Device Drivers in C

bus by raising a HOLD ACKNOWLEDGE or HLDA signal. When the DMA controller
sees the HLDA signal, it begins transferring data to or from the adapter to the com­
puter's memory. Memory transfers are very fast, much faster than if the CPU was
involved. When the DMA controller finishes transferring the data, it drops the HOLD
line, allowing the CPU to again use the system bus.

DMA is also a time-saving feature, in that it "steals" machine cycles from the CPU.
The net effect is that of no noticeable loss in system performance, even when transfer­
ring large amounts of data. During DMA operation, the CPU remains free to execute
program threads without knowledge of any DMA activity, other than the occasional
giving up of the system bus.

Most IBM-compatibles and clones use a configuration of two 8237 A-5 4-channel DMA
controllers. Like the 8259 PIC, the 8237 A-5 controllers are cascaded to provide addi­
tional functionality. One channel of the upper four DMA channels is used for the cas­
cade to the lower DMA controller, so a total of seven DMA channels are available (see
Table 11-1). The first DMA controller, called DMA controller 1, contains channels 0-3.
Channels 0-3 support 8-bit transfers between adapters and memory. The largest block
of memory that can be transferred is 64K bytes. Channels 5-7 support 16-bit transfers
between adapters and memory, and the largest block that can be transferred is 128K
bytes.

Table 11-1. OMA Channel Assignments

Controller 1 Description Controller 2 Description

Channel 0 8-bit DMA channel Channel 4 Cascade for controllerl

Channel 1 Reserved for SDLC Channel 5 16-bit DMA channel

Channel2 Diskette (IBM PC) Channel6 16-bit DMA channel

Channel3 8-bit DMA channel Channel 7 16-bit DMA channel

Since the 8237 is a 24-bit DMA controller, all DMA transfers must occur from an
address between 0 and 16 MB. The DMA controller contains a 24-bit address register,
which limits the memory addressing. The DMA controller also has a count register,
which is 16 bits long, limiting the transfers to 64KB (65536*8) with an 8-bit DMA
channel and 128KB (65536*16) with a 16-bit channel. When using the 16-bit mode,
bytes must be transferred on even-word boundaries.

Chapter 11. Direct Memory Access (OMA) 175

Table 11-2 lists the DMA controller port assignments.

Table 11-2. OMA Controller Port Assignments (Continued)

Port address Description

OOOOh channel 0 base/ current address

OOOlh channel 'o base/ current word count

0002h channel 1 base/ current address

0003h channel 1 base/ current word count

0004h channel 2 base/ current address

0005h channel 2 base/ current word count .

0006h channel 3 base/ current address

0007h channel 3 base/ current word count

0008h channel 0-3 status register

OOOAh channel 0-3 mask register (set/reset)

OOOBh channel 0-3 mode register (write)

OOOCh clear byte pointer (write)

OOODh DMA controller reset (write)

OOOEh channel 0-3 clear mask register (write)

OOOFh channel 0-3 write mask register

0018h extended function register (write)

OOlAh extended function execute

0081h channel 2 page table register

0082h channel 3 page table register

0083h channel 1 page table register

176 Writing OS/2 2.1 Device Drivers in C

Table 11-2. OMA Controller Port Assignments
Port address Description

0087h channel 0 page table register

0089h channel 6 page table register

008Ah channel 7 page table register

008Bh channel 5 page table register
·-

OOBF channel 4 page table register

OCOh channel 4 base/ current address

OC2h channel 4 base/ current word count

OC4h channel 5 base/ current address

OC6h channel 5 base/ current word count

OC8h channel 6 base/ current address

OCAh channel 6 base/ current count

OCCh channel 7 base/ current address

OCEh channel 7 base/ current count

ODOh channel 4-7 read status/write command

OD2h channel 4-7 write request register

OD4h channel 4-7 write single mask register bit

OD6h channel 4-7 write mode register

OD8h clear byte pointer flip-flop

ODAh read temporary register/write Master Clear

OD Ch channel 4-7 clear mask register (write)

OD Eh channel 4-7 write mask register bits

Chapter 11. Direct Memory Access (OMA) 177

Addressing for the DMA controller is accomplished by loading the address and page

registers defined in Table 11-3.

Table 11-3. OMA Channel Addressing

For DMA Channels 0-3

Source DMA Page Register Address Register

Address A23 <->A16 A15 <->AO

For DMA Channels 5-7

Source DMA Page Register Address Register

Address A23<->A17 A16<->Al

More detailed information on the 8237A DMA controller and support circuitry can be

found in the Intel iAPX 86/88 User's Manual Hardware Reference.

Using OMA

To utilize DMA, the device adapter must support DMA transfers. When data has to be

written, the appropriate DMA channel registers are loaded with the address of the

data to be written, the length of the data, and the proper mode (read/write) by the

device driver. The adapter circuitry, usually a UART or some type of controller, issues

a write request based on a programmed operation initiated by the device driver. An

on-board arbiter issues a DMA request, which causes the system bus HOLD line to

be raised. When the bus becomes available, the DMA controller raises the hold

acknowledge line, HLDA, to signal the adapter that access to the bus has been grant­

ed. The adapter controller then begins a read operation on the system bus until the

number of requested bytes have been read from memory, and then outputs the data

to the device. The adapter normally generates an interrupt when the transfer is com­

plete, so that the device driver can check the status of the transfer.

178 Writing OS/2 2.1 Device Drivers in C

When data has to be read, the DMA channel registers are loaded with the address of
the receive buffer, and the adapter controller programmed to start a read operation.
The on-board arbiter requests a DMA operation, and the input data is transferred
from the adapter controller directly to the memory buffer without using the CPU.
When the required data has been read, or the adapter controller decides that the
input should be terminated, it generates an interrupt so that the device driver can
examine the received data. The DMA controller will give up the bus by releasing the
HOLD line when the DMA channel transfer count goes to zero or the DMA channel is
reset. In addition to the adapter initiating the DMA operation, the DMA controller can
be programmed to start a DMA transfer using the 8237's request register.

To start the DMA, the particular channel is first masked to prevent it from running.
Normally, device drivers are free to utilize DMA channels 5, 6, and 7. The mask reg­
ister for DMA channels 4-7 is at 1/0 address OxD4. The driver masks the DMA chan­
nel by setting the proper bits in the D MA mask register (see Table 11-4).

Table 11-4. OMA Mask Register

Bit Meaning

0-1 00 = select channel 4 mask bit

01 = select channel 5 mask bit

10 = select channel 6 mask bit

11 = select channel 7 mask bit

2 0 = clear mask bit

1 = set mask bit

3-7 don't care

Chapter 11. Direct Memory Access (OMA) 179

Next, the mode register for the selected channel is configured by setting the channel

bit and the read/write bits (see Table 11-5).

Table 11-5 OMA Mode Register

Bit Meaning

0-1 00 = channel 4 select

01 = channel 5 select

10 = channel 6 select

11 = channel 7 select

2-3 00 = verify transfer

01 =write transfer

10 = read transfer

11 =illegal

xx= don't care if bits 6-7 = 11

4 0 = auto-initialize disable

1 = auto-initialize enable

5 0 = address increment

1 = address decrement

6-7 00 = demand mode select

01 = single mode select

10 = block mode select

11 = cascade mode select

180 Writing OS/2 2.1 Device Drivers in C

The DMA Command Registers are defined in Table 11-6.

Table 11-6. OMA Command Register

Bit Meaning

0 0 = memory to memory disable

1 = memory to memory enable

1 0 = channel 4 address hold disable

1 = channel 4 address hold enable

x = don't care if bit 0 = 0

2 0 = controller enable

1 = controller disable

3 0 = normal timing

1 = compressed timing

x = don't care if bit 0 = 1

4 0 = fixed priority

1 = rotating priority

5 0 = late write selection

1 = extended write selection

x = don't care if bit 3 = 1

6 0 = D REQ sense active high

1 = DREQ sense active low

7 0 = DACK sense active low

1 = DACK sense active high

Chapter 11. Direct Memory Access (OMA) 181

The channel is then programmed to transfer words or bytes by the loading of the

page select, base address and count registers. To start the DMA operation, the chan­

nel is unmasked by writing the proper mask bits to the mask register.

The code to initiate a DMA transfer is shown in Figure 11-1. A complete listing of the

code can be found in Appendix C. The DMACh structure is assumed to be initialized

before the call to SetupDMA The DMA channel might be active at the time that it is

needed, so the device driver should examine the status of the DMA channel to verify

that it is available. This is done by examining the status word of the controller and

checking the DMA channel busy bits.

USHORT SetupDMA(USHORT channel)
{

if(DMAChannelBusy(channel))
return (DMA_CHANNEL_BUSY);

MaskDMA(channel);
SetDMAMode(channel ,DMA_SINGLE I DMA_READ);
InitDMA(channel ,(UCHAR) DMACh.PageSelect,

(USHORT) DMACh.BaseAddress,
(USHORT) DMACh.WordCount);

UnmaskDMA(channel);
return (DMA_COMPLETE);
}

Figure 11-1. DMA setup routine.

OMA and Micro Channel

The Micro Channel bus permits adapters to be masters or slaves. During a memory

or I/0 transfer under DMA, the master owns the bus and transfers data to and from a

slave. Adapters that need the bus compete for it using a centralized arbiter, called the

Central Arbitration Control Point, or CACP. The CACP arbitrates DMA channel uti­

lization based on a 4-bit arbitration bus, known as the ARBUS. The ARBUS and CACP

work together to ensure that the highest priority master gets control of the bus when

it needs it, and that other masters which are competing for the bus get a fair share of

the available time.

182 Writing OS/2 2.1 Device Drivers in C

In a Micro Channel system, the DMA controller is a master, which assists in transfers
between slaves during a DMA operation. The DMA controller cannot arbitrate the
bus. Rather, a slave initiates the arbitration which is monitored by the DMA con­
troller. The DMA controller then transfers the data between the slave and memory. In
this capacity, the DMA controller acts as a "middle man", responsible for helping out
with the transfer. Thus this arrangement is sometimes referred to as "third-party
DMA".

Micro Channel slave adapters capable of DMA operation are fitted with a second
DMA controller, called a DMA arbiter. To perform DMA transfers, the device driver
initializes the adapter with the source, destination, and count of the transfer. The on­
board hardware DMA arbiter arbitrates for the use of the bus using its preassigned
arbitration level, which is usually stored in the adapter's POS registers. Data transfers
can also be performed to and from Micro Channel Bus Masters without using the sys­
tem DMA controller.

CHAPIER 12

Extended Device Driver Interface

The Extended Device Driver Inteeface, EDDI, is a new interlace developed to take

advantage of a new generation of intelligent disk controllers. These new disk

controllers are capable of handling transfers to and from discontiguous memo­

ry areas. Although EDDI is intended for disk drivers, other types of device drivers can

also utilize EDDI.

EDDI improves perlormance by allowing multiple, prioritized requests to be submit­

ted to the device driver at the same time. Instead of the standard synchronous

Request Packet, the EDDI driver is sent a Request List of commands, which it can

reorder to provide maximum perlormance. The Read and Write operations use scat­
ter/gather descriptors (SGDs), which allow for data transfer to and from discontiguous

data buffers. The driver does not need to block waiting for the request to complete,

but returns immediately. The actual transfer is usually completed by the disk adapter

hardware.

The ability to handle transfers to and from discontiguous memory is more efficient in

a system such as OS/2 2.1, which utilizes the 4KB paging functionality of the 80386

and 80486 processors. Data buffers to be written to or from the device driver are nor­

mally partitioned into 4K pages, and are not necessarily contiguous. EDDI requires

that the device driver contain a second Strategy routine in addition to the normal

Strategy routine in an OS/2 device driver. The new extended Strategy routine is also

called the Strategy 2 or scatter I gather entry point.

183

184 Writing OS/2 2.1 Device Drivers in C

Device Driver Capabilities
The OS/2 kernel issues a Get Driver Capabilities request to the device driver. If the
device driver supports the scatter I gather interface, it returns to the kernel a structure
containing two 16:16 pointers to special structures that are supported and maintained
by the device driver. Contained in one of the structures is a 16:16 pointer to the sec­
ond Strategy routine to handle synchronous 1/0, along with several other parameters.
See the Get Driver Capabilities command in Chapter 6.

The first structure returned is the Driver Capabilities Structure, or DCS (see Figure
12-1). The DCS can be changed only by the device driver.

typedef struct _DRIVCAPSTRUCT {
USHORT reserved;
UCHAR VerMajor; //major version, should be 01
UCHAR VerMinor; //minor version, should be 01
ULONG Capabilities;// capabilities bits
PFUNCTION Strategy2; // 16:16 pointer to STRAT2
PFUNCTION SetFSDinfo; // 16:16 pointer to SetFSDinfo
PFUNCTION ChgPriority; // 16:16 pointer to ChgPriority
PFUNCTION SetRestPos; // 16:16 pointer to RestPos
PFUNCTION GetBoundary; // 16:16 pointer to GetBoundary
} DRIVCAPSTRUCT;

Figure 12-1. Driver Capabilities structure.

The major and minor version number specifies the version of the EDDI interface that
the driver supports. For OS/2 2.1, these should both be 1.

Chapter 12. Extended Device Driver Interface 185

The capabilities bits are described in Table 12-1.

Table 12-1. Capabilities Bits

Bit(s) Description

0-2 reserved, must be zero

3 if set, supports disk mirroring

4 if set, supports disk multiplexing

5 if set, driver does not block in STRATI requests. LAN Server and
LAN Manager require this.

6-31 reserved, should be 0

If the driver does not provide a particular service such as ChgPriority, it must return
0:0 as the pointer to the nonexistent function.

The second pointer returned from the Get Driver Capabilities function is a pointer to
the Volume Characteristics Structure, or VCS. The VCS structure appears in Figure 12-
2.

typedef struct _VOLCHARSTRUCT
USHORT VolDescriptor;
USHORT AvgSeekTime;
USHORT Avglatency;
USHORT TrackMinBlocks;
USHORT TrackMaxBlocks;
USHORT HeadsPerCylinder
ULONG VolCylinderCount;
ULONG VolMedianBlock;
USHORT MaxSGList;
} VOLCHARSTRUCT;

Figure 12-2. Volume Characteristics Structure.

186 Writing OS/2 2.1 Device Drivers in C

The VolDescriptor is defined in Table 12-2.

Table 12-2. Volume Descriptor Word

Bit(s) Description

0 if set, volume resides on removable media

1 if set, volume is read only

2 if set, average seek time is independent of position, such as a RAM
disk

3 if set, outboard cache is supported

4 if set, scatter I gather is supported by the adapter

5 if set, Read Prefetch is supported

6-15 reserved, should be zero

The AvgSeekTime is the disk seek time specified in milliseconds. If unknown, the
time should be set to FFFF. If the device is a RAM disk, the time should be 0.

The AvgLatency is the average rotational latency in milliseconds. Like the average
seek time, the latency should be set to FFFF when it is unknown, and 0 when the
device is a RAM disk.

The TrackMinBlocks specifies the number of blocks available on the smallest capaci­
ty track. If this value is not known, it should be set to 1.

The TrackMaxBlocks is the number of blocks available on the largest capacity track.
If this value is not known, it should be set to 0.

The Heads Per Cylinder is the number of heads per disk cylinder. If not known or
applicable, this value should be set to 1.

The VolCylinderCount is the number of cylinders in the volume. If not known, it
should contain the number of sectors in the volume.

The MaxSGList is the maximum number of scatter/gather list entries that can be sub­
mitted with one command. If the adapter does not directly support scatter/gather,
this field should be set to 0.

Chapter 12. Extended Device Driver Interface 187

Request Lists and Request Control

To enable the EDDI driver to be called with multiple requests at one time, a new

request format was defined, and is referred to as a Request List. The Request List

allows an EDDI device driver's Strategy entry point to be called with a list of requests.

The device driver can reorder the requests to provide maximum performance. Only
four types of requests have been defined. The four requests are Read, Write, Write
Verijj, and Read Pre/etch. Other commands may be added in the future. The requests

have Request Control flags associated with them which can be used to force sequen­

tial execution.

The Request list consists of a 20-byte Request List Header shown in Figure 12-3.

typedef struct _REQUESTLISTHEADER
USHORT ReqlistCount;
USHORT Reserved;
FARPOINTER ListNotifyAddress;
USHORT ListRequestControl;
UCHAR BlkDevUnit;
UCHAR ListStatus;
ULONG Reservedl
ULONG Reserved2;
} REOUESTLISTHEADER;

Figure 12-3. Request List Header structure.

The ReqListCount is the number of requests in the Request List.

The LstNotifyAddress is a 16:16 pointer to the notification routine to be called when

all requests in the Request List have been completed, or when an unrecoverable error

has occurred. The LstNotifyAddress is called with ES:BX pointing to the Request List

Header, and the carry flag set (STC) if an error has occurred. The device driver must
save all registers before making the call to the Notify Address, and restore them when

the call is complete. This call should not be made if both bit 4 and bit 5 of the
LstRequestControl word are clear (0).

188 Writing OS/2 2.1 Device Drivers in C

The LstRequestControl word is defined in Table 12-3.

Table 12-3. LstRequestControl Word Bits

Bit(s) Description

0 reserved

1 if set, only one request is in the list

2 if set, execute the requests sequentially (do not reorder)

3 if set, abort on error, set all status, error code and count
(BlocksXferred) fields

4 if set, notify immediately (by calling the LstNotifyAddress) if an error
is detected

5 if set, call the LstNotifyAddress upon completion regardless of any
errors

6-15 reserved, must be set to 0

The BlockDevUnit is the logical unit number of the volume.

The LstStatus contains the current status of the request list as it is being processed.
The device driver should update the list as requests are being processed. The
LstStatus byte is divided into two 4-byte nibbles. The lower 4 bits indicate the comple­
tion status of the requests in the list and the upper 4 bits indicate the error status of
the requests in the list. The bits are defined in Tables 12-4 and 12-5.

Chapter 12. Extended Device Driver Interface 189

Table 12-4. LstStatus Byte, Lower Nibble

Value Meaning

ooh no requests are queued

Olh queueing is in process

02h all requests queued

04h all requests completed

08h reserved

Table 12-5. LstStatus Byte, Upper Nibble

Value Meaning

OOh no error

Olh recoverable error occurred

02h unrecoverable error occurred

03h unrecoverable error with retry

04h reserved

08h reserved

190 Writing OS/2 2.1 Device Drivers in C

Request Format

The valid requests are Read (]Eh), Write(lFh), Write Verify(20h) and Read
Pre/etch (21h). Each extended request has a Request Header which is different from
the Request List Header. The Request Header is 32 bytes long and is described in
Figure 12-4.

typedef struct _REQUESTHEADER
USHORT Reqlength;
UCHAR CmdPrefix;
UCHAR CmdCode;
ULONG HeaderOffset;
UCHAR RequestCtl;
UCHAR Priority;
UCHAR Status;
UCHAR ErrorCode;
FARPOINTER NotifyAddress;
FARPOINTER HintPointer;
ULONG Reservedl;
ULONG Reserved2;
ULONG Reserved3;
} REOUESTHEADER;

Figure 12-4. Request Header structure.

The ReqLength is the offset to the next request. FFFF terminates the list.

The CmdPrefix is always set to OxlC to differentiate the request from a standard
Request Packet.

The CmdCode is one of the valid command codes, lEh, lFh, 20h, or 21h.

The HeaderOffset is the offset from the beginning of the Request List Header to the
header of this request, and is used as a quick access to the Request List Header.

Chapter 12. Extended Device Driver Interface 191

The RequestCtl field is defined in Table 12-6.

The notify routines should not be called if bits 4 and 5 are both clear (O).

Table 12-6. RequestCtl Byte

Bit(s) Description

0-3 reserved, must be 0

4 if set, notify on error only by calling the Notify Address immediately

5 if set, notify on completion by calling the Notify Address

6-7 reserved, must be 0

The Request Priority defines the priority of the request, and is defined in Table 12-7.

Table 12-7. Request Priority

Value Meaning

OOh prefetch requests

Olh low-priority request

02h read ahead, low-priority pager 1/0

04h background synchronous user 1/0

08h foreground synchronous user 1/0

lOh high-priority pager 1/0

80h urgent request, should be handled immediately

192 Writing 05/2 2.1 Device Drivers in C

The Status field contains the status of the current request and is defined in Tables 12-
8 and 12-9.

Table 12-8. Request Status, Lower Nibble (Completion Status)

Value Meaning

OOh not queued yet

Olh queued and waiting

02h in process

04h done

08h reserved

Table 12-9. Request Status, Upper Nibble (Error Status)

Value Meaning

OOh no error

Olh recoverable error occurred

02h unrecoverable error occurred

03h unrecoverable error occurred

04h the request was aborted

08h reserved

Chapter 12. Extended Device Driver Interface 193

ErrorCode contains one of the errors described in Tables 12-10 and 12-11 if the corre­
sponding error bits are set in the Status field.

Table 12-10. Request Unrecoverable Error Codes

Value Meaning

OOh write protect violation

Olh unknown unit

02h device not ready

03h unknown command

04h CRCerror

06h seek error

07h unknown media

08h block not found

OAh write fault

OBh read fault

OCh general failure

lOh uncertain media

13h invalid parameter

194 Writing OS/2 2.1 Device Drivers in C

Table 12-11. Request Recoverable Error Codes

Value Meaning

1Ah verify error on write, recovered after 1 try

2Ah write error, write to duplexed or mirrored driver succeeded

3Ah write error on mirrored or duplexed drive, write to primary drive
succeeded

lBh read error, corrected using ECC

2Bh read succeeded after retry

3Bh read error, recovered from mirrored or duplexed driver

The Notify Address contains a 16:16 pointer to the driver to call when the request has
been completed or aborted. If bits 4 and 5 of the RequestCtl field are both clear (O),
the Notify Address is not valid and should not be called. The device driver must save
all registers before calling the notify routine, and restore them when the call returns.

The HintPointer is a 16:16 pointer to a Request Packet in the Request List. The device
driver can use this pointer to determine whether the current request can be grouped
with another pending request, providing that the other request has not yet been com­
pleted.

Read/Write/Write Verify Request

The format of these requests is described in Figures 12-5 and 12-6.

typedef struct _SGD {
PHYSADDR BufferPtr;
ULONG BufferSize;
} SGD;

Figure 12-5. Scatter Gather Descriptor structure.

Chapter 12. Extended Device Driver Interface 195

typedef struct _READWRITE {
REQUESTHEADER ReadWriteHeader;
ULONG StartBlock;
ULONG BlockCount;
ULONG BlocksXferred;
USHORT Flags;
USHORT SGDescrCount
ULONG Reserved;
SGD Sgd[SGDescrCountJ;
} READWRITE;

Figure 12-6. Read/Write Request structure.

The StartBlock is the string disk block for the data transfer. A disk block is defined as
a 512-byte logical disk sector.

The BlockCount is the number of 512-byte blocks to be transferred.

The BlocksXferred is the number of blocks that have been transferred at the time that
the notification routine was called.

The Flags field currently uses only the two least significant bits. All other bits are set
to 0. If bit 0 is set, it specifies write-through, defeating any lazy write. If bit 1 is set, the
data should be cached on the outboard controller cache.

The SGDescrCount field contains the number of scatter I gather descriptors in the Sgd
field.

The Sgd field contains an array of scatter I gather descriptors.

196 Writing 05/2 2.1 Device Drivers in C

Read Prefetch Request
The format of the Read Pref etch request is described in Figure 12-7.

typedef struct _READPREFETCH
REOUESTHEADER ReadPreHdr;
ULONG StartBlock;
ULONG BlockCount;
ULONG BlocksXferred;
USHORT Flags;
USHORT Reserved;
} READPREFETCH;

Figure 12-7. Read Pre/etch Request structure.

The StartBlock is the string disk block for the data transfer. A disk block is defined as
a 512-byte logical disk sector.

The BlockCount is the number of 512-byte blocks to be transferred.

The BlocksXferred is the number of blocks that have been transferred at the time that
the notification routine was called.

The Flags field currently uses only the least significant bit. All other bits are set to 0.
If bit 0 is set, it specifies that the driver should retain data in the controller prefetch
buffers only until it has been read once. This prevents redundant caching in the con­
troller.

Request Control Functions
The EDDI device driver may optionally provide other services to allow OS/2 to man­
age extended requests. The current implementation is OS/2 2.1 defines four functions
that the device driver may support. The device driver exports these functions by plac­
ing a 16:16 pointer to the functions in the DCS returned from the Get Driver
Capabilities call. If the pointer in the DCS structure is 0:0, the function is not support­
ed by the device driver. Since the request control functions may be called at interrupt

Chapter 12. Extended Device Driver Interface 197

time, they must not block. Request control functions are called by the OS/2 File
System Driver, or FSD. Request control functions must save and restore the segment
registers, as the interrupt context may not be the same as the device driver. The four
request control functions are summarized in Table 12-12.

Table 12-12. Request Control Functions

Request Control Function Description

SetFSDinfo Send the device driver 16:16 pointers to the
FSD's End of Interrupt and Access Validation
routines

Chg Priority Allows the FSD to change the priority of a
pending request

SetRestPos Allows the FSD to inform the device driver
where to send the disk drive heads when
there are no requests pending

GetBoundary The device driver returns a block number
greater than the block number passed to the
device driver

SetFSOlnfo

This device driver function is called by the FSD with 16:16 pointers to the FSD's End
of Interrupt and Access Validation routines. The driver is called with ES:BX pointing
to a FSDinfo structure, described in Figure 12-8.

typedef struct _FSDinfo {
ULONG Reservedl; // reserved, must be 0
FARPOINTER EndOfinit; //pointer to FSO's EOI
ULONG Reserved2; // reserved, must be 0
FARPOINTER AccValidate; // pointer to FSO's AccValidate
} FSDinfo;

Figure 12-8. SetFSDinfo structure.

198 Writing OS/2 2.1 Device Drivers in C

The device driver should allow this function to be called only once. If the call is the
first call, the device driver should return with the carry flag set (SfC). Subsequent
calls should be ignored, and the device driver should return with the carry flag clear
(CLC).

If the EndOflnit pointer is 0, the FSD does not provide an End Of Interrupt routine.
All registers are preserved during the call to EndOflnit.

The device driver calls the FSD's AccValidate with the AL register set to 0 for a non­
destructive operation, such as READ or VERIFY, and the AL register set to 1 for a
destructive operation, such as WRITE or FORMAT TRACK The FSD's AccValidate
function returns with the carry flag clear if access is allowed, or the carry flag set if
access is denied. The device driver should return a write-protect violation to the caller
if access is denied.

Chg Priority

The device driver's ChgPriority routine is called with ES:BX pointing to the request,
and the AL register containing the new priority. The pointer in ES:BX is always a valid
pointer. The device driver should return with the carry flag set if the Request Packet
was not found or was no longer in the device driver's internal queue. If the priority
change was successful, the device driver should return with the carry flag clear.

SetRestPos

The device driver's SetRestPos routine is called with AX:BX containing the block to
be used for the resting position. A value of FFFF:FFFF means rest at the block where
the heads end up. The device driver should return with the carry flag set if the block
number is out of the range for the volume, otherwise it should return with the carry
flag clear.

GetBoundary

The device driver's GetBoundary routine is called with AX:BX containing the block
number to be used as a reference to calculate the next block number. Using this infor­
mation, the FSD can store files more optimally. If the next block cannot easily be cal­
culated or is not known, the device driver can return the reference block+ 1. If the
block number is out of the range, the device driver must return with the carry flag set,
otherwise it should return with the carry flag clear.

CHAPTER 13

Debugging 05/2 2. 1 Device Drivers

T he Kernel Debugger, or KDB, is generally used to debug device drivers as
well as the system kernel code. The KDB kernel, OS2KRNLD, is actually a
full function replacement OS/2 kernel, which contains the debugger and the

debugger support functions. KDB communicates with a standard ASCII terminal
through one of the COM ports. If the system contains only one COM port, COMl,
KDB uses COMl. If the system has two COM ports, CO Ml and COM2, KDB uses
the second COM port, COM2. KDB defaults to 9600 baud, no parity, 8 data bits and
one stop bit.

The COM port is attached to an ASCII terminal via an RS-232 interface with data leads
only in a null modem configuration (pin 2 and 3 switched). Before installing the
debugger, the terminal link should first be verified by sending some text out to the
terminal using the DIR> COMn command. If the baud rate of the COM port has not
been previously initialized to 9600 baud, use the command MODE COMl(or
COM2):96,n,8,1 <enter>. The text of the directory list should be displayed on the
debugging terminal. You do not have to issue the MODE command when KDB is
installed, as KDB will initialize the port on start-up to 9600,n,8,l.

To install the kernel debugger, the system is rebooted using a DOS or OS/2 installa­
tion diskette, and the attributes of the OS2KRNL file changed to make it visible. This
can be done by using a utility such a chmod or one of the many available OS/2 utili­
ties. The OS2KRNL file is renamed to OS2KRNL.OLD, and the debugging kernel,

199

200 Writing OS/2 2. 1 Device Drivers in C

OS2KRNLD, copied to OS2KRNL. The OS2KRNL.OLD file is kept to allow reinstalla­
tion of the non-debug kernel when reinstalling OS/2. When the system is rebooted,
the debugger should sign on at the debug terminal with the message "System
Debugger 03/16/89 [80386]".

The IBM OS/2 Toolkit contains an install utility for the kernel debugger which will
perform the above steps automatically.

KDB can be entered normally in several ways. Three special keys entered on the
debugging terminal cause KDB to be entered prior to the complete boot of OS/2. The
"r" key causes the debugger to be entered at the beginning of DOS initialization in
real mode. The "p" key causes the debugger to be entered after OS/2 goes into the
protect mode for the first time. The ''<space-bar>" causes the debugger to be entered
after most of DOS has been initialized. Symbols for DOS have been loaded at this
time.

After initialization is complete, the debugger can be entered at any time by typing
<cntl-c> at the debug terminal. The debugger is entered when and where the next
timer tick is taken after the key was pressed.

When KDB is entered, it will execute the current default command, usually the "r"
(register contents), and then display the debugger prompt,"##". The system will not
run until the debugger is exited, usually by entering the GO command (g). KDB will
also be entered when the system detects an "INT 3" instruction. A common debug
technique is to insert INT 3 instructions in the driver source code while debugging,
which will cause KDB to be entered. Once KDB has been entered, the KDB com­
mands can be used to display the contents of variables, system information, or memo­
ry contents, and to run from or single-step from the breakpoint.

After any symbols files are loaded, an initialization file, called KDB.INI, is read and
executed. Any debugger command or list of debugger commands can be in the
KDB.INI file. A "g" command should usually be at the end of the command list,
unless the debugger is to remain stopped.

At any time during the display of data on the debug terminal, the display can be
stopped with a <cntl-s>, and restarted with a <cntl-q>. The GO command (g) always
resumes execution at the instruction displayed in the CS:IP register.

KDB displays information in machine code, and requires a thorough understanding of
machine language and processor architecture to fully utilize its capabilities.

A complete list of the valid KD B commands can be displayed by entering the "?" com­
mand at the KDB prompt for internal KDB commands, and".?" for external com­
mands.

Chapter 13. Debugging OS/2 2.1 Device Drivers 201

KDB obtains its symbolic debug information from a symbol file with the extension of
.SYM. These files can be created with the MAPSYM utility, which creates a symbol
file from the .MAP file created during the link operation. When loading a device dri­
ver during system boot, the debug kernel looks for a .SYM file with the same file
name as the driver .SYS file, and in the same directory as the driver .SYS file. If the
device driver ''TEST.SYS" were being loaded, the debug kernel would look in the
same directory as ''TEST.SYS" for the file ''TEST.SYM", and load the symbols. The
symbol file is not necessary, and the driver will load without it, but variables will not
be able to be accessed by name. Several drivers may be loaded, each with their own
.SYM file.

If the KDB was supplied with the operating system SYM files, these will also be
loaded if they are placed on the root directory with the OS2KRNL file. The system
symbol files will allow access to system variables and structures by name. Symbols
are displayed using a KDB command such as display word (dw), display byte (db), or
display double word (dd). They are referenced by the symbolic name preceded by the
underscore ("_"), if the driver is written in C. For example, to display the 16-bit vari­
able "bytecount", the command "dw _bytecount" would be entered.

KDB Keywords

KDB supports the keywords in Table 13-1 which return their value when used in
expressions.

Table 13-1. KDB Keywords (Continued)

[E]AX, [E]BX, [E]CX, [E]DX, register values
[E]SI, [E]DI, [E]BP, DS, ES,
SS, CS, [E]SP, [E]IP

FLG value of flags

GDTB value of GDT base physical address

GDTL value of GDT limit

IDTB value of IDT base physical address

IDTL value of IDT limit

TR, LDTR, MSW value of TR, LDTR, MSW registers

202 Writing OS/2 2. 1 Device Drivers in C

Table 13-1. KOB Keywords

BRO, BR1..BR9 value of breakpoint address

FS,GS segment registers

EFLG value of extended flags

CRO,CR2,CR3 value of control registers

DRO, DRl, DR2, DR3, DR4, value of debug registers
DR5, DR6, DR7

TR.6, TR.7 value of test registers

KOB Operators

KDB supports the binary operators described in Table 13-2.

Table 13-2. KOB Binary Operators (Continued)

Operator Meaning

0 Parentheses

+ Addition

- Subtraction

* Multiplication

I Division

MOD Modulo

> Greater than

< Less than

>= Greater than or equal to

Chapter 13. Debugging 05/2 2.1 Device Drivers 203

Table 13-2. KDB Binary Operators

Operator Meaning

<= Less than or equal to

!= Not equal to

-- Equal to

AND Boolean AND

XOR Boolean exclusive OR

OR Boolean inclusive OR

&& Logical AND

II Logical OR

Address separator

KDB supports the unary operators described in Table 13-3.

Table 13-3. KDB Unary Operators (Continued)

Operator Meaning

I Task number I address operator

&addr Interpret address using segment value

#addr Interpret address using selector

%addr Interpret address as 32-bit linear

%%addr 32-bit physical address

204 Writing OS/2 2. 1 Device Drivers in C

Table 13-3. KDB· Unary Operators

Operator Meaning

- Two's complement

! Logical NOT

NOT One's complement

SEG Segment address

OFF Address offset

BY Low byte of address

WO Low word of address

DW Doubleword from address

POI Pointer from address

PORT One byte from a port

WPORT Word from a port

Chapter 13. Debugging 05/2 2.1 Device Drivers 205

The operator precedence is as follows:

0

I:
& #%%%-!NOT SEG OFF BYWO DW POI PORTWPORT (unary operators)

*/MOD

+-

> < >= <=

!=

AND

XOR

OR

&&

II

KDB Command Reference

In the following command descriptions, the following rules apply:

• brackets ([]) mean the parameter is optional

• the "or" sign (I) means either of the parameters is valid

• parameters surrounded by carets (<>) are mandatory

• parameters may be separated by a comma (,) or blank

• multiple commands on the same line are separated by a semicolon (;)

• all numeric entry is defaulted to hexidecimal

• (...) means repeats

206 Writing OS/2 2. 1 Device Drivers in C

Table 13-4 lists the KDB parameter types and their meaning.

Table 13-4. KDB Parameter Definitions

Parameter Definition

<expr> evaluates to an 8, 16, or 32-bit value

<number> a number in decimal, octal, hex or binary

<string> any number of characters between " " or ' '

<range> <addr> [<word>] I [<addr>] [L <word>]

<addr> [&I#] [<word>:]<Word> I %<dword>

<list> <byte>, <byte>, ... I "string"

<hp commands> a list of debugger commands, separated by ;

<string> "char" I 'char'

<dword>,<word>,<byte> expressions that evaluate to the size in <>

Expressions

An expression (expr) is a combination of parameters and operators that evaluate to an
8, 16 or 32-bit value.

Numbers

A number (number) parameter can be any number with hex as the default. Numbers
may be evaluated in a different radix by appending a special character to the number.
These special characters are y for binary, o for octal, T for decimal and h for hex
(default).

Chapter 13. Debugging 05/2 2.1 Device Drivers 207

Strings

A string (string) parameter is any number of characters within double (" ") or single
(' ') quotes. Double quotes within the string should be preceded by another double
quote to be correctly evaluated.

Ranges

A range (range) parameter specifies an address followed by either a length or an end
address. An additional parameter may also be used to specify the number of times to
perform the operation.

Addresses

An address (addr) parameter indicates a memory address in one of four modes. The
four modes are: real mode (&segment:offset), protect mode (#selector:offset), linear
address (%dword), and physical address (%%dword). The operators preceding the
address override the current address type.

Lists

A list is a list of two-character bytes separated by a space, or a string surrounded by
double quotes.

Commands

Commands (hp cmds) are one or more debugger commands, separated by semi­
colons (;), to be executed when a condition is met, such as a breakpoint encountered.

Strings

A string is a list of characters bounded by single or double quotes.

208 Writing OS/2 2. 1 Device Drivers in C

Dwords, words, bytes

Expressions that evaluate to the specified size.

Breakpoints

There are two kinds of breakpoints in the kernel debugger. Temporary breakpoints
are set as an option to the go (g) command, and disappear when the go command is
executed again. Sticky breakpoints are set with a KDB set breakpoint command, and
remain until cleared with a KDB command or the system is rebooted. Sticky break­
points are numbered 0-9, inclusive.

On a 386, the debug registers can be used in a sticky breakpoint (see the br com­
mand).

When a breakpoint is encountered, the current default command is executed. This
command is set to r, or the dump registers command. The default command may be
changed by the zs command, and listed with the z command.

Internal Commands

Set Breakpoint
bp[bp number] [<addr>J [<passcnt>J [<bp cmds>J

Set a new sticky breakpoint, or change an existing old breakpoint. The number para­
meter is an optional breakpoint number, which selects a new breakpoint by the num­
ber or changes an existing breakpoint with the same number.

The passcnt parameter specifies how many times the breakpoint will be passed by
before it is executed. If passcnt is omitted or 0, the breakpoint will be executed the
first time that it is encountered.

The commands parameter is a list of KDB commands to be executed when the break­
point is encountered.

Chapter 13. Debugging OS/2 2. 1 Device Drivers 209

Set Register Breakpoint
br[<bp number>] elwlrlll214 [<addr>J [<passcnt>J ["<bp cmds>"J

Sets a 386 debug register. Debug registers can be used to break on data reads and

writes, and on instruction execution. Up to four debug registers can be set and

enabled at one time. Disabled br breakpoints don't occupy a debug register.

The e parameter specifies a one-byte length (default)

The w parameter specifies break on write operation.

The r parameter specifies break on read operation

The 1 parameter specifies a one-byte length.

The 2 parameter specifies a word length. Word-length breakpoints must be on a word

boundary.

The 4 parameter specifies a doubleword length.

Set Time Stamping Breakpoint
bt[<bp number>] [<addr>J

Set a time stamping breakpoint.

Show Timestamp Entries
bs

Show the time stamp entries.

List Breakpoint(s)
bl

Lists the currently set breakpoints with current and original passcnt, and breakpoint

commands (bp cmds) associated with them.

An "e" after the breakpoint number means that the breakpoint is enabled; a "d" means

that it is disabled. After either one, there may be an "i", which indicates that the

address was invalid the last time the debugger tried to set or clear the breakpoint.

210 Writing 05/2 2.1 Device Drivers in C

Clear Breakpoint(s)
bc[bp number],[bp number], ...

Removes (clears) the list of breakpoint numbers from the debugger's breakpoint
table.

Enable Breakpoint
be [bp number],[bp number], ...

Enables the list of breakpoint numbers.

Clear Breakpoint(s)
bd[bp numberJ,[bp number], ...

Disables the list of breakpoint numbers. The breakpoint is not removed, but disabled
so that it can be re-enabled later.

Compare Bytes
c <range> <addr>

Compares the bytes in the memory location specified by <range> with the corre­
sponding bytes in the memory locations beginning at <addr>. If all corresponding
bytes match, the kernel debugger displays its prompt and waits for the next com­
mand. If one or more corresponding bytes do not match, each pair of mismatched
bytes is displayed.

Dump Memory
d [<range>]

Dump memory in the last format selected (byte, word, doubleword).

Dump Bytes
db [<range>]

Dump memory in byte format and ASCII representation.

Dump Words
dw [<range>]

Dump memory in word format.

Dump Ooublewords
dd [<range>]

Chapter 13. Debugging OS/2 2.1 Device Drivers 211

Dump memory in doubleword format.

Dump GOT Entries
dg [a] [<range>]

Dump global descriptor table entries.

The a parameter specifies a dump of all entries, not just valid entries.

Without the a parameter, the dg command will display only the valid GDT entries. If

the range is an LDT selector, KDB will display "LDT" and the associated entry.

Dump IDT Entries
di [a] [<range> J

Dumps the interrupt descriptor table.

The a parameter specifies a dump of all of the IDT entries.

The default is to display only the valid IDT entries.

212 Writing 05/2 2.1 Device Drivers in C

Dump LDT Entries
dl [ajpjsjhJ [<range>]

Dump local descriptor table entries.

The a parameter specifies a dump of all of the WT entries.

The default is to display only the valid LDT entries.

The p parameter specifies the private selectors only.

The s parameter specifies the shared selectors only.

The h parameter specifies the huge segment selectors only.

Dump Page Directory/Page Table Entries
dp [ajdJ [<range>]

De

Au

Us

Dump the page directory and page tables. Page tables are skipped if the correspond­
ing page directory entry is not present. Page directory entries with an asterisk next to
the page frame should be ignored.

The a parameter specifies a dump of all of the page directory and page table entries.

The default is to skip entries that are zero.

The d parameter specifies a dump of page directory entries only.

Table 13-5. Page Bit Definitions (bit set/clear)

Dirty I clean

Accessed/unaccessed

User I supervisor

Wr Writable/ read-only

Pn Present/not present

Chapter 13. Debugging OS/2 2.1 Device Drivers 213

The pteframe field contains the contents of the high 20 bits in the pte. If the page is

present, the value is the high 20 bits of the physical address that the page maps to. To

find out information about the physical address, use the .mp command. If the page is

not present, the pteframe field contains an index into the Virtual Page (VP) structure.

The .mv command can dump information from the VP structure. A not-present page

may still be cross-linked to a page of physical memory via the VP, and if so, that phys­

ical address is in the frame column.

Note: uvirt pages in the state column represent a direct mapping of physical memory

without any other page manager structures associated with them.

Dump Task State Segment (TSS)
dt [<addr>J

Dumps the TSS. If no address is given, the dt command will dump the current TSS

pointed to by the TR register, extracting the type (16- or 32-bit) from the descriptor

access byte. If an address is given, the type is determined by the 386env flag.

Dump Loadall Buffer
dx

Dump the 80286 loadall buffer.

Enter Data
e <addr> [<list>]

Enter one or more byte values into memory at the specified addr.

The list parameter specifies a list of bytes to be stored at addr and each subsequent

address, until all of the data in the list has been used.

If the list is omitted, KDB prompts the operator for a byte . If an error occurs, the con­

tents of memory are left unchanged. Each time the space bar is hit, the address is

incremented by one byte. The minus key (-) decrements the address. The return key

with no data terminates the entry and returns to the KDB prompt.

214 Writing OS/2 2.1 Device Drivers in C

Fill Memory With Pattern
f <range> <list>

Go

Block fills the addresses in the range with the values in the list.

The list parameter specifies a pattern or list of bytes to be stored.

If the range specifies more bytes than the number of values in the list, the pattern of
bytes in the list is repeated until all bytes in the range are filled. If the list has more
values than the number of bytes in the range, the extra bytes are ignored.

g [s] [t] [=<start addr>J[<break addr>J.[<break addr> ...]

Passes execution control to the code at the start addr. Execution continues to the end
of the code, or until the break addr or a breakpoint is encountered.

If no start addr is given, the command passes execution to the address specified by
the current CS:IP.

The equal sign (=) parameter is used only when a start addr is given.

The s parameter causes the number of timer ticks since the system was started to be
displayed.

The t parameter allows trapped exceptions to resume at the original trap handler
address without having to unhook the exception.

Up to 10 addresses may be used. Only the first address encountered during execution
will cause a break. All others are ignored. If more than 10 breakpoints are entered, an
error message will be displayed.

When the breakpoint is encountered, the default command is executed.

Help/Print Expression
?[<expr>JCI 'string']

Chapter 13. Debugging OS/2 2.1 Device Drivers 215

If no arguments are entered, KDB displays the command syntax help for the internal

debugger commands.

The expr parameter is an expression to be evaluated. The evaluated expression is dis­

played in hex, decimal, octal, and binary.

The string parameter prints the ASCII string on the debugger terminal.

Hex Arithmetic
h <number 1> <number 2>

Perform hex arithmetic in two values. KDB adds number 1 to number 2, subtracts

number 1 from number 2, multiplies number 1 by number 2, divides number 1 by

number 2, and displays the results.

Input Port
i <port>

Reads and displays one byte from the specified port.

List Near Symbols
ln [<addr>J

Lists the nearest symbol both forward and back from addr.

List Groups
lg [<mapname>J

Lists the selector or segment and the name for each group in the active maps or the

specified map mapname.

216 Writing OS/2 2.1 Device Drivers in C

List Maps
lm

Lists all of the current symbol files loaded, and which ones are active.

List Absolute Symbols
la [<mapname>J

Lists all of the absolute symbols in the active maps or the specified map mapname.

List Symbols
ls <addr>

Lists all of the symbols in the group that the address addr is in.

Add/Remove Active Map
wa <mapname> I *
wr <mapname> I *

Adds (wa) or deletes (wr) a map to the active map list. The active maps are listed with
the Im command.

The mapname parameter is the name of a map file to make active or an active map to
be removed.

The * parameter adds or removes all map files.

CondftionalExecufion
j <expr> [<command list>]

Executes the command list if the expression evaluates to TRUE (nonzero).
Otherwise, it continues to the next command in the command line, but not including
the ones in the command list. The command list is one or more commands surround­
ed by single or double quotes. If more than one command appears in the command
list, the commands must be separated by the semicolon (;) character.

The j command is normally used to set a conditional breakpoint at a particular
address.

Chapter 13. Debugging OS/2 2.1 Device Drivers 217

Stack Trace
k [slbJ [<ss:bp addr>J [<cs:ip addr>J

Traces the hp chain on the stack and prints the address, 4 words/ dwords of parame­

ters, and any symbol found for the address.

The s parameter specifies a 16-bit frame width.

The b parameter specifies a 32-bit frame width.

The ss:bp specifies a stack address other than the current ss:bp.

The cs:ip parameter specifies an execution address other than the current cs:ip values.

Move Memory
m <range> <addr>

Moves the block of memory specified by a range to the location starting at addr.

OuputByte
o <port> <byte>

Sends the byte to the specified output port.

218 Writing OS/2 2.1 Device Drivers in C

Ptrace/Program Step
p [nltJ [=<start-addr>J [<count>]

Executes the instruction at the start address, then executes the current default com­
mand.

The n parameter causes the register to be suppressed if the default command is r.

The t parameter allows the original trap handler address to be traced without having
to unhook the exception.

The start addr parameter is an optional address to start at, otherwise execution begins
at the current cs:ip.

The count parameter specifies the number of instructions to execute before stopping.

The p command is different than the t command, in that the p command will allow a
function call to complete before stopping again. A p command executed at a call
instruction will stop only after the call has been completed. The t command will trace
into the call and stop at every instruction.

Register
r [tJ[<register-name> [<value>]]

Displays the contents of CPU register and allows its contents to be changed.

The t parameter toggles the terse register display flag.

The register name is any one of the valid register names listed in Table 13-6.

Chapter 13. Debugging OS/2 2.1 Device Drivers 219

Table 13-6. KOB Register Definitions

Register name Meaning

AX, BX, ex, DX, SI, DI, BP, SP, IP general registers

DS, ES, SS, CS segment registers

GDTB GDT base as a linear address

GDTL GDTlimit

IDTB IDT base as a linear address

IDTL IDT limit

TR,LDTR TR, LDTR registers

IOPL iopl portion of flag registers

F flag register

MSW Machine status word

EAX, EBX, ECX, EDX, ESI, EDI, extended general registers

EBP, ESP, EIP

FS,GS segment registers

EF extended flag register

CRO, CR2, CR3, CR4 control registers

DRO, DRl, DR2, DR3, DR6, DR7 debug registers

TR6, TR7 test registers

IP, PC the Instruction Pointer

F the Flags register

220 Writing OS/2 2. 1 Device Drivers in C

If no register name parameter is supplied, the r command displays all of the registers,
flags, and the instruction at the current cs:ip.

If a register name parameter is supplied, the current value of the register is displayed,
and KDB prompts for a new value. If both the register name and value are given, the
command changes the register name to the value.

To change one of the flag values, supply the register name f when entering the
Register command. The f register parameter will display the current value of each flag
as a two-letter name. Table 13-7 contains a list of flag values by name.

Table 13-7. KDB Flag Register Definitions

Flag name Set Clear

Overflow ov NV

Direction DN (Decrement) UP (Increment)

Interrupt EI (Enabled) DI (Disabled)

Sign NG (Negative) PL (Plus)

Zero ZR NZ

Aux Carry AC NA

Parity PE (Even) PO (Odd)

Carry CY NC

Nested Task NT (toggles)

Chapter 13. Debugging OS/2 2.1 Device Drivers 221

At the end of the list of values, the command displays a minus sign (-). The new val­
ues for the flags can now be entered in any order. To terminate the flags entry, press
the return key.

To change the MSW (Machine status word), use names outline in Table 13-8.

Table 13-8. KDB Machine Status Word

Flag Set Clear

Protected Mode PM (toggles)

Monitor Processor Extension MP (toggles)

Emulate Processor Extension EM (toggles)

Task Switched TS (toggles)

Toggles means that if the flag is set, using the flag name will clear it. If the flag is
clear, it will be reset.

Search
s <range> <list>

Searches the memory range for a pattern matching the list parameter.

222 Writing OS/2 2. 1 Device Drivers in C

Trace
t [alclnlsltlxJ[=<start addr>J[<count>J[<addr>J

Executes the instruction at the start address or current cs:ip.

The a parameter specifies an ending address for the trace.

The c parameter suppresses all output and counts the instructions traced.

The n parameter suppresses the register display. Only the assembly line is displayed.
This option works only if the default command is r.

The s parameter is a special trace that which causes the instruction and count for
every call and return to be displayed.

The t parameter allows the original trap handler address to be traced without unhook­
ing the exception.

The x parameter forces KDB to trace regions of code known to be untraceable.

Unassemble
u [<range>]

Display the instructions in a range in a mnemonic format. All of the 286 and 287 op­
codes can be displayed.

Chapter 13. Debugging 0512 2.1 Device Drivers 223

List Real/Protect Mode Exceptions
vHn I p I v I r I n
Lists the real and protected mode exceptions that the debugger intercepts.

The n option specifies the traps that beep when hit.

The p option specifies only the protect mode vectors.

The r option specifies only the real mode vectors.

The v option specifies both real and protect mode vectors.

The f option directs the kernel to route fatal faults to the debugger and not to display a
pop-up message.

Vectors set with vt (as opposed to vs) will be printed with a star following the vector
number.

Add Interrupt/frap Vector, All Rings
vt [n I p I v I r I fJ n [. n, .. J

Adds a new intercept vector that the debugger intercepts.

The r option will install a debugger handler in the real mode IDT.

The p option will install a debugger handler in the protect mode IDT.

The n option causes the intercepted traps to beep when hit.

The f option directs the kernel to route fatal faults to the debugger and not to display a
pop-up message.

224 Writing OS/2 2. 1 Device Drivers in C

Intercept Trap Vector Except Ring 0
vs[n I p I v I r I f] n[,n, .. J

Identical to vt except that vs will not intercept ring 0 interrupts.

vsv or vtv intercepts V86 mode exceptions or traps.

For GP faults, vsf d is the same a vsp d. For page faults, vsp e would trap all ring 3/2
page faults, but vsf e would trap only the invalid page faults.

Clear Interrupt/Trap Vectors
vc[n I p I v I r I fJ n, [n], ..

Clears the vectors indicated, reinstalling whatever address was in the vector before
the debugger grabbed the vector.

Then option causes the trap(s) not to beep when hit. The trap remains intact.

To intercept general protection faults before OS/2 does, use vtp d before the fault is
hit, examine the information about the fault, and do a vcp d and g, which will let the
OS/2 GP handler get control (and kill the process, etc). Another option would be to
enter a vcp d after hitting the fault and trace into the exception handler. The tt or gt
commands perform this automatically.

Chapter 13. Debugging OS/2 2.1 Device Drivers 225

Debugger Options
y[?J [386envldislwrlregterseJ

Toggles one of the debugger option flags.

386env 386 environment

dislwr display lower case

regterse terse register display flag

The 386env flag controls the size of addresses, registers, and other information when
displayed. When 386env is on, the display format is 32 bits. When off, the display for­
mat is 16 bits.

The dislwr flag, when enabled, displays assembler code in lower case. When disabled,
assembler code is shown in upper case.

The regterse flag determines the number of registers displayed with the r command.
If regterse is on, only the first three lines of registers are displayed. If regterse is off,
all six lines of registers, plus the unassembled instruction, are displayed.

The ? parameter displays the currently supported options.

The y command without any parameters displays the current state of the option flags.

Execute Default Command
z

Executes the current default command. The default command is a string of debugger
commands that are executed any time that the debugger is entered and there is no
breakpoint command attached to the entry. The r command is initialized as the
default command when the system is rebooted.

226 Writing OS/2 2. 1 Device Drivers in C

List Default Command
zl

Lists the current default command.

Change Default Command
zs <string>

Changes the default command to a string. Any errors will cause the default command
to be reset to r.

External Commands

Help
. ?

Prints the help menu for the external debugger commands.

Baud Rate
.b <baud rate> [<port addr>J

This command will set the baud rate of the debugging port.

The legal baud rate values are 150t, 300t, 600t, 1200t, 2400t, 4800t, 9600t, and 19200t.

The port addr parameter is 1 for COMl and 2 for COM2. The default port addr is 2.

Dump AB/OS Common Data Area
.c

Dumps the ABIOS common data area.

Chapter 73. Debugging OS/2 2. 1 Device Drivers 227

Display Data Structure
.d <data struct name> [<addr>J

Displays an OS/2 data structure. The valid data structure names appear in Table 13-9.

Table 13-9. KDB Recognized Structures

Name Description

BPB BIOS Parameter Block

BUF File system buffer

DEV Device driver header

DPB Disk Parameter Block

MFT Master File Table entry

REQ Request Packet

SFT System File Table entry

CDS Current Directory Structure

SEM32 32-Bit Semaphore Structure

OPENQ 32-Bit Semaphore OPENQ chain

MUXQ 32-Bit Semaphore MUXQ chain

KSEM 32-Bit Kernel Semaphore Structure

DT Task State Segment Structure

VPB Volume Parameter Block

228 Writing OS/2 2. 1 Device Drivers in C

Swap In TSO or Page
. i[d I b] [<addr> J
.it[dlbJ [<slot>]

Swaps in a TSD or Page.

The i command with an address will cause the page enclosing the address addr to be
swapped in. The address may contain an optional task slot number override, such as
%2140000.

The it command swaps in the corresponding task's TSD.

The d option queues up a single swap-in request to be acted upon by the KDB dae­
mon thread.

The slot parameter is the task's slot number.

Trace User Stack
.k[slbJ [<ss:bp addr>J [<cs:ip addr>J

Traces the bp chain on the user stack and prints the address, 4 words/ dwords of para­
meters, and any symbol found for the address.

The s option specifies a 16-bit frame width.

The b option specifies a 32-bit frame width.

The ss:bp specifies a stack address other than the current ss:bp.

The cs:ip parameter specifies an execution address other than the current cs:ip val­
ues.

Chapter 13. Debugging OS/2 2.1 Device Drivers 229

Display MTE Segment Table
.lm[oJ[l lplvlxJ <hobmtelladdrl"module name"]

Prints module table entries and their associated object and segment table entries.

The o option suppresses the object or segment table display.

The 1 option displays only library (.D LL) MTEs.

The p option displays only Physical Device Driver (PDD) MTEs.

The v option displays only Virtual Device Driver (VDD) MTEs.

The x option displays only executable (.EXE) MTEs.

If a nonzero hobmte is supplied, only those MTEs with a matching hobmte are print­
ed. If a nonzero linear address is given, only the MTE pointed to by the linear
address is printed. If a quoted string is given, only those MTEs with a matching mod­
ule name are printed.

The module name for a:\bar.dll and c:\foo\bar.exe are both "bar". No drive, path, or
extension information should be given.

230 Writing 05/2 2. 1 Device Drivers in C

Dump Memory Arena Records
.ma[alblclflhll lmlrJ [<harlladdr>J I [<harlladdr> L<number of entries>]

This command displays the virtual memory manager's arena records. If no handle or
linear address is given, the entire table is displayed. If a linear address is given, it is
taken to be a pointer to an arena record. One record or a range of records can be dis­
played.

The a option displays all contexts.

The b option displays only busy entries (default).

The c option finds the corresponding object record, and displays the arena, object,
alias, and context record chains.

The h option walks hash links, displaying the entries.

The 1 option walks forward links, displaying the entries.

The r option walks reverse links, displaying the entries.

The m option specifies the display of all arena records whose linear address encloses
the supplied linear address to be displayed. A linear address must also be supplied,
and no count is allowed. Context information is ignored, so if the linear address is
valid in multiple contexts, multiple arena records will be displayed. A physical
address may be supplied instead of a linear address, to allow not-present linear
addresses to get past the debugger's expression analyzer. If a selector address type is
used, it must be converted to a linear address in the command line.

To find out who owns a selector because of a GP fault in some unknown LDT or GDT
segment or memory object, the following command is used:

.m or .mamc cs:eip

This will display the arena record and memory object record (and the owner) of the
code segment. It will also walk the context record chains and display them. The cs
can be substituted with any selector, and the eip with any offset. This command con­
verts the selector:offset into a linear address automatically, so the resulting address
can be used to find and interpret the arena record(s) and memory object record(s).

Chapter 13. Debugging 05/2 2.1 Device Drivers 231

Dump Memory Context Record
.mc[bjclfJ [<hcolladdr>J I [<hcolladdr> L<number of entries>]

Displays the virtual memory manager's context records. If no parameters are sup­
plied, the entire table is displayed. If a linear address is given, it is taken to be a point­
er to a context record. One record or a range of records can be displayed.

The b option specifies only busy files.

The f option displays only free entries.

The c option walks context record chains and displays them.

Dump Memory Alias Record
.mHblclfJ [<hal jladdr>J I [<hal lladdr> L<number of entries>]

Displays the virtual memory manager's alias records.

If no parameters are supplied, the entire table is displayed.

If a linear address is supplied, it is taken to be a pointer to an alias record. One record
or a range of records can be displayed.

The b option displays only busy entries.

The f option displays only free entries.

The c option finds the corresponding object record, and displays the arena, object,
alias, and context record chains.

232 Writing OS/2 2. 1 Device Drivers in C

Dump Memory Object Record
.mo[blclflmlnlplslvJ [<hoblladdr>J I [<hoblladdr> L<number of entries>]

Display the virtual memory manager's memory object records. If no handle or linear
address is supplied, the entire table is displayed. If a linear address is given, it is taken
to be a pointer to an object record. One record or a range of records can be dis­
played.

The b option causes busy object records to be displayed.

The f option causes free object records to be displayed.

The c option displays the arena, object, alias, and context record chains.

The m option causes all pseudo-object records with an exactly matching linear
address to be displayed. A linear address must also be supplied, and no count is
allowed. If a selector address type is used, it must be converted to a linear address on
the command line. A physical address may be supplied instead of a linear address, to
allow not-present linear addresses to get past the debugger's expression analyzer.

The n option causes non-pseudo object records to be displayed.

The p option causes pseudo-object records to be displayed.

The s option causes object records with the semaphore busy or wanted to be dis­
played.

The v option causes object record linear addresses to be displayed. It also disables the
owner interpretation. This command attempts to display what process, MTE, or
PrDA owns the segment. It will display the owner as a short ASCII string, when
appropriate. It will display the PID of the process and, if possible, the name of the
module that owns this segment. Code segments will normally have only a module
name and no process ID. If the segment is an MTE, PrDA, or LDT, KDB will display
the object name, process ID (if the segment is a PrDA), and the module name, if pos­
sible.

Chapter 13. Debugging OS/2 2.1 Device Drivers 233

Dump Memory Page Frame
.mp[blflhll JrJsJ [<frameJladdr>J I [<framelladdr> L<number of entries>]

Displays the page manager's page frame structures. If no handle or linear address is
supplied, the entire table is displayed. If a linear address is given, it is taken to be a
pointer to a page frame structure. One record or a range of records can be displayed.

The b options displays only busy entries.

The f option displays only free entries.

The h option walks hash links, displaying entries.

The 1 option walks forward links, displaying entries.

The r options walks reverse links, displaying entries.

This data structure contains per-physical page information. To find out the owner of a
particular physical page, use .mp FrameNumber where FrameNumber is the physical
address shifted right by 12 (take off 3 zeros). If the page isn't free, the p VP field con­
tains a flat pointer to the virtual page structure. Use .mv %p VP where p VP is the value
from the .mp dump, to get the contents of the VP. The Hob field of the VP is a handle
to the Object Record. Use .mo Hob to dump it. That will display a readable string for
the owner on the right of the display. ma of the Har field in the object record will give
the base virtual address of the object containing the page (under va). Use the HobPg
field of the VP to get the page offset within the object.

234 Writing OS/2 2. 1 Device Drivers in C

Dump Virtual Page Structure
.mv[blfll lrJ [<vpidlladdr>J I [<swapidlladdr> L<number of entries>]

Displays the swap manager's swap frame structures. If no handle or linear address is
supplied, the entire table is displayed. If a linear address is given, it is taken to be a
pointer to a swap frame structure. One record or a range of records can be displayed.

The b option displays only busy entries.

The f option displays only free entries.

The 1 option walks forward links, displaying entries.

The r option walks reverse links, displaying entries.

Chapter 13. Debugging OS/2 2. 1 Device Drivers 235

Process Status
.p[bluJ [<slot> I # I *]

Displays the current process and thread status. An asterisk (*) by the slot number
indicates the currently running task. A# by the slot number indicates what the debug­
ger thinks the current task is.

The .p command, with no options, displays the following information:

• slot number

• PID of the current process

• PID of the parent process

• command subtree number

• thread number

• current state

• priority

• BlockID

• Per Task Data Area (PTDA)

• Task Control Block (fCB) offset

• dispatch sp register value

• screen group

• name of the process or thread

The pb command directs KDB to display detailed block information including the:

• slot

• BlockID

• name

• address blocked at

• symbol blocked on

• semaphore type.

236 Writing OS/2 2. 1 Device Drivers in C

The pu command directs KDB to display user state information including:

• cs:ip and ss:sp values at the time the kernel was entered

• number of arguments passed and their P"IDA offset

• offset of the register stack frame

• thread number

• P"IDA address

• name.

Display User Registers
.r [<slot> I # I *]

Displays the contents of the user's CPU registers, flags, and the next instruction to be
executed for a specified slot, at time of entry to the kernel.

The slot parameter is the slot number to use.

The #parameter specifies the use of the current slot.

The * parameter specifies to use the currently scheduled slot or the last one blocked.

Reboot
.reboot

Warm-boot the machine.

Change Task Context
.s[s] [<slot> I *]

Chapter 13. Debugging OS/2 2.1 Device Drivers 237

Changes what the debugger thinks the current task context is. If no slot number is
passed, it will print the current task number.

The s option changes the ss and sp to the new task's P"fDA selector and dispatch sp
value. The original ss and sp is restored when the debugger exits or when the ss com­
mand is used to switch back to the current task.

The* parameter changes the current debugger's task number to the real OS/2 task
number.

Dump RAS Trace Buffer
.t [<count>] [maj=<xx> [min=<yy>JJ

Dumps the RAS trace buffer, optionally dumping only events with the specified major
and minor event codes.

CHAPIER 14

An Introduction To
Presentation Drivers

Figure 14-1. OS/2 2.1 Workplace Shell. (Courtesy of
International Business Machines Corporation.)

P:esentation Device Drivers (PMDDs) for OS/2 provide support for graphics
devices such as display terminals, printers, plotters, and scanners. Presentation
drivers provide hardware independence for application programs that perform

I/ 0 to these devices.

239

240 Writing OS/2 2. 1 Device Drivers in C

The presentation driver in OS/2 2.1 is a DLL, which runs at Ring 3, and has the file­
name extension DRV. When an application needs to perform 1/0 to a Presentation
driver, it calls a system DLL, which in tum calls the Presentation Manager graphics
engine. The Presentation Manager graphics engine is contained in PMGRE.DLL.

When a presentation driver is loaded, the graphics engine allocates a dispatch table
containing pointers to routines in the graphics engine. The first time that the presen­
tation driver is called at its OS2_PM_DRV _ENABLE entry point, it replaces pointers
in the dispatch table with pointers to functions supported by the presentation driver.
Some of the pointer replacements are mandatory, and others are optional. The presen­
tation driver is passed the pointer to the dispatch table by the graphics engine with
the FillLogicalDeviceBlock routine function call.

Presentation drivers are called using the C (_cdecl) calling convention. The first para­
meter passed is the function number and flags word. The function numbers are
defined in PMDDIM.H, and represent ordinals for graphics engine (Gre ...) calls. The
flag bits are defined in Table 14-1.

Chapter 14. An Introduction To Presentation Drivers 241

Table 14-1. Presentation driver flag bits

Bit #define Description

0 COM_DRAW if set, draw the output at the device, if clear,
don't draw the data but update the internal
data

1 COM_BOUND if set, the driver calculates the bounding
rectangle for the output. When done, the
driver calls its own GreAccumulateBounds
to accumulate the bounding rectangle
(GPI_BOUNDS). All presentation drivers
must supply this function.

2 COM_ CORR for display drivers only, if set, the presenta-
tion driver must determine if the output
intersects a pick window, and returns
TRUE or FALSE.

3 COM_ALT_BOUND directs a display driver to accumulate
USER_BOUNDS in screen coordinates

4 COM_AREA if set, specifies that the function call is part
of an area.

5 COM_PATH if set, the function is part of a path

6 COM_ TRANSFORM if set, the presentation driver must convert
the coordinates for the specified function
from world to device coordinates using
GreConvert.

7 COM_RECORDING this bit should be ignored.

8 COM_DEVICE if set, the driver should handle this function
and not pass it back to the graphics engine
for disposition.

9-15 NIA ignored.

242 Writing OS/2 2. 1 Device Drivers in C

Device Context
The presentation application usually makes a KDB, MOU, VIO, DEV, AVIO, GPI, or
WIN call to perform 1/0. These functions exist in Ring 3 DLLs, and they call the
graphics engine in PMGRE.DLL. PMGRE.DLL, in tum, calls the display or printer dri­
ver. The display driver may then access the adapter hardware directly through memo­
ry-mapped 1/0, or may call the OS/2 kernel via the standard driver interface mecha­
nism to perform the 1/0.

The application program that needs to write to a Presentation Manager device first
opens a Device Context (DC), using the DevOpenDC call. The application associates a
presentation space with the DC and writes or draws in that space. Each time
DevOpenDC is called, a new instance of a DC is created. This instance is destroyed
when the application closes the Device Context with the DevCloseDC function call.
Each instance of a DC has:

• a device context type

• data type

• instance data

• stack

When the DC is enabled, the type of device that is being opened is passed to the pre­
sentation driver, using one of the context types described in Table 14-2.

Chapter 14. An Introduction To Presentation Drivers 243

Table 14-2. Device Context Types

Type Description

OD_INFO The context is for information only. The driver does not

generate output. All Gre ... functions are processed by the

presentation driver.

OD_MEMORY The driver processes the output for the device, but the out-

put is written to a device-compatible bitmap.

OD_DIRECT The presentation driver processes the Gre ... routines to

generate device specific data. The data is passed to the

adapter PDD via the kernel (hard-copy drivers only).

OD_QUEUED The output is spooled using the Spl... interface (hard-copy

drivers only).

244 Writing OS/2 2. 1 Device Drivers in C

Data Types

Presentation drivers that write to a spool file (OD_QUEUED) must support the two
data types described in Table 14-3.

Table 14-3. Data Types for aueued Date

Data type Description

PM_Q_STD the driver uses the spooler to create a device-indepen-
dent spool file using the SplStd ... and SplQm ... functions

PM_Q_RAW the driver processes the Gre ... functions to generate
device-specific output data, which is written to a spool
file using the SplQm ... functions.

Instance Data

Each instance of a DC contains a double word pointer to information about the cur­
rent context. The pointer is returned to the system by the presentation driver when
the driver context is enabled. The pointer is passed back to the driver as a parameter
in every call through the dispatch table.

Chapter 14. An Introduction To Presentation Drivers 245

Program Stack

Presentation drivers get a 500-byte stack, but should allocate their own stack of about

4Kbytes.

DLL Functions

l

The initialization section of the presentation driver must be compiled and linked to

run in Ring 3, and must EXPO Rf the following functions:

• MoveCursor (display drivers only)

• MoveCursorForlnterrupt (display drivers only)

• OS2_PM_DRV _ENABLE (all drivers)

• OS2_PM_DRV _DEVMODE (hard-copy presentation drivers only)

• OS2_PM_DRV _DEVICENAMES (hard-copy presentation drivers only)

Hard-copy presentation drivers should also export entry points for routines that han­

dle user interaction.

The graphics engine exports the entry points listed in Table 14-4.

Table 14-4. Graphics Engine Exports

Entry Point

InnerGreEntry

GETDRIVERINFO

SETDRIVERINFO

Description

main entry point for all Gre ... ordinals

used by the presentation driver to get the
instance pointer for a device context or pointer
to a bitmap header

used by the presentation driver to set a specific
value in the instance pointer of a device context

J

246 Writing OS/2 2. 1 Device Drivers in C

To access the graphics engine, the module definition file would have most of the func­
tion references associated with the InnerGreEntry point by ordinal.

Presentation Driver Design Considerations
Presentation drivers must always return a 32-bit value.

Coordinate values are normally passed as 32-bit world coordinates, and can be con­
verted to other coordinate systems by calling the graphics engine function
GreConvert. Screen coordinates are device coordinates to which the DC origin has
been added.

Transform Matrix values are signed values represented by a 16-bit integer and 16-bit
fraction. This resolution is maintained by the graphics engine matrix functions.

Angles are 32-bit signed values, where 0 represents a positive X-axis and FFFFFFFF
represents 360 degrees.

Application bounds (COM_BOUND) are accumulated in model space, and user
bounds (COM_ALT_BOUND) are accumulated in device-coordinate space.

If the presentation driver hooks all of the Gre ... path and area functions, it is responsi­
ble for generating closures for :figures within areas or paths. Otherwise, the graphics
engine will generate the closures.

The presentation driver must provide clipping for drawing and text functions except
GreDrawLineslnPath and GrePolyShortLine. Clipping for these two functions is pro­
vided by the graphics engine.

Presentation Driver Errors

When an error occurs in a presentation driver, the driver should call the
WinSetErrorlnfo functions to log the error. The presentation driver must validate all
symbol sets, fonts, bitmaps, and regions before calling the graphics engine. The pre­
sentation driver must also verify all passed parameters and log any errors detected.
Four severity levels are provided for presentation driver errors. The error levels are
defined in Table 14-5.

Chapter 14. An Introduction To Presentation Drivers 247

Table 14-5. Presentation Driver Errors

Severity Description

Warning A problem was detected but a workaround was found.

Error A problem was found, but no workaround was avail-
able. The system state remains intact.

Severe Error A problem occurred and the system cannot reestab-
lish its state.

Irrecoverable Error An error occurred and it is impossible for the system
to reestablish its state. It is also impossible for the
application to restore the system to a known state.

Presentation Driver Error Codes

The presentation driver must call WinSetErrorlnfo with the severity of the error and
error code. Some of the general error codes are defined in Table 14-6. Refer to the
Gre ... function call reference in the IBM OS/2 Presentation Driver Reference for error
codes specific to each Gre ... function.

248 Writing OS/2 2. 1 Device Drivers in C

Table 14-6. Presentation Driver Error Codes

Error Logged by

PMERR_COORDINATE_OVERFLOW functions requiring matrix
computations

PMERR_INSUFFICIENT_MEMORY functions that allocate memory

PMERR_INV _BITMAP functions with hbm as a
parameter

PMERR_INV _HRGN functions with hrgn as a
parameter

PMERR_INV _COORDINATE functions with coordinates as
parameters

PMERR_INV _IN_AREA functions valid inside an open
area

PMERR_BASE_ERROR functions that call DOS routines

PMERR_DEV _FUNC_NOT_INSTALLED functions not supported by the
presentation driver

Additional Presentation Driver Functions
Presentation drivers must also provide correlation to identify whether an object
picked with the mouse, for example, lies within the pick aperture, and must consider
if the object is visible or invisible. Hard-copy presentation drivers may need to support
banding for raster technology hard-copy devices. Banding is technique where the out­
put page is broken up into one or more bands, recorded in memory as a bitmap and
sent to the device or the spooler.

Hard-copy presentation drivers must work with back-level and forward-level drivers
across a network. Hard-copy presentation drivers can also support output to a file.
They must also provide the user with the following push buttons.

Chapter 14. An Introduction To Presentation Drivers 249

• Retry (default position)

• Abort

• Ignore

The hard-copy presentation driver should respond as described in Table 14-7 to each

of the returns.

Table 14-7. Job Error Returns

Return What the hard copy driver should do

MBID_RETRY continue sending data to the output buffer

MBID_ABORT issue a PrtAbort to notify the spooler to delete the current
job.

MBID_IGNORE continue sending data to the output buffer

Examples of presentation drivers can be found in the sample code included with the

IBM OS/2 2.1 Toolkit. Refer to the OS/2 2.1 Presentation Device Driver Reference and

the toolkit documentation for more information on writing presentation drivers.

CHAPIER 15

Working With Pointers

0 S/2 2.1 exploits the flat memory model of the Intel 80x86 processors. This per­
mits applications to be written using a 32-bit compiler and/ or a 32-bit assem­
bler. When the 32-bit application references a variable or function by reference,

it uses a 32-bit linear or flat address. Applications written for OS/2 2.1 can be as large as
512MB, so it is likely that data items such as buffers and structures will cross 64KB tiled
boundaries. This represents somewhat of a problem for driver writers, as the PDD is
still operating in a 16-bit mode. Fortunately, OS/2 2.1 provides the necessary DevHlp
routines to make it easier for the device driver to deal with these 32-bit applications.

C Set/2

The C Set/2 compiler is a 32-bit flat model C compiler from IBM. The C Set/2 compil­
er utilizes full 32-bit linear addressing and pointer manipulation. If the application that
uses your 16-bit device driver is written in a 32-bit compiler such as C Set/2, there are
some special considerations you should take into account. You should also know if
your driver will be called by a 16-bit C/2 or Microsoft C 5.1/6.0 application. If you're
not sure, you should assume the application is a 16-bit application, and design your
driver to work with either 16-bit or 32-bit applications. However, if the application will
be written in a 32-bit compiler such as C Set/2, the device driver can optimize perfor­
mance by using 32-bit pointers.

251

252 Writing OS/2 2. 1 Device Drivers in C

Applications written in MS C5.l/6.0 or IBM C/2 will require no changes when they
are run on OS/2 2.1 and access your 16-bit PDD. Application pointers are 16-bit virtual
addresses which can be used directly by the device drivers. However, a C Set/2 appli­
cation is a 32-bit process, and pointers within the application are 32-bit linear address­
es in the process address space. Linear addresses are special addresses which are
decoded by special page decoding hardware to produce a 32-bit physical address.
Your PDD, however, is a 16-bit program which must deal with the 32-bit addresses
generated by the 32-bit compiler.

When a 32-bit application calls the OS/2 kernel via a standard device driver request,
the kernel converts the addresses contained in the request packet to 16:16 addresses.
Thus, the PDD sees only 16:16 addresses, and has no direct knowledge if the applica­
tion is a 16-bit or 32-bit process. The process of converting the pointers and/or
addresses from 32-bit to 16-bit is called thunking. Conversely, pointers may be also
converted from 16-bit to 32-bit by thunking. Thunking is accomplished by invoking
the DosSelToFlat and DosFlatToSel macros. There is a performance penalty when
you use thunks, however, so it is best to avoid thunking whenever possible.

When your device driver receives a request packet for a DosRead or DosWrite, the
caller's buffer address in the request packet is the 32-bit physical address of the
caller's buffer. The conversion necessary to convert the caller's 32-bit linear address
to a valid physical address has already been performed by the kernel. When your
device driver is called via an IOCtl request from a 32-bit process, the caller's data and
parameter buffer pointers are also converted from linear addresses to 16:16 virtual
addresses. This is done automatically for you by the OS/2 kernel.

If, however, you use the private IOCtl data or parameter buffers to pass the linear
address from the process to the driver, the address is not thunked. This is because
the data and parameter buffers in an IOCtl packet are private data areas shared by the
process and the driver, so the kernel has no way to differentiate the address from a
32-bit data item. Before using linear addresses passed in this fashion, you must con­
vert them to an address which the device driver can use.

A 32-bit linear address, such as the address of a variable in a process, is said to be in
the process address space, or mapped into the local descriptor table (LD1) of the
process. Addresses within the process address space may be used freely by the appli­
cation, providing it has the proper access rights. However, the address is not valid for
a device driver. Since the device driver is operating in ring 0, it needs an address
which is global, or mapped to a global descriptor table (GD1) entry. Pointers which are
valid for the device driver are said to be in the global address space because they utilize
a GDT selector for access.

Chapter 15. Working With Pointers 253

Sharing the pointers between the process and the device driver is easy. A linear
address in the process address space can be made valid for the device driver by a call
to the VMProcessToGlobal DevHlp function. Conversely, a linear address in the glob­
al address space can be made valid for the process by calling the VMGlobalToProcess
DevHlp function. Thus, processes and device drivers can share each other's common
memory areas. An example of this is shown in the Figure 15-1.

II convert driver-relative address to a process address

if CVMGlobalToProcess(linaddr.OxlOOO,OxOl,CFARPOINTER) &new_linaddr))
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

II convert an application address to a global 32-bit address

if CVMProcessToGlobal(linaddr,OxlOOO,OxOl,CFARPOINTER) &new_linaddr))
returnCRPDONE I RPERR I ERROR_GEN_FAILURE);

Figure 15-1. VMGlobalToProcess and VMProcessToGlobal

Your driver may also allocate virtual memory with the VMAlloc DevHlp (see Figure
15-2). VMAlloc will return a 32-bit linear address to the allocated memory. Depending
on the flags parameter passed the VMAlloc, the 32-bit linear address returned will be
in the process address range or the global address range. Thus, a device driver may
allocate a buffer and pass a 32-bit pointer to that buffer to the 32-bit process. VMAlloc
parameters can also specify that the memory to be allocated is above or below the
16MB line, and whether or not the memory is contiguous. This is especially helpful
for DMA buffers which for most clones, must be in the memory area under 16MB.

254 Writing OS/2 2. 1 Device Drivers in C

II use VMAlloc to map the adapter address to a linear address in
II the global address space

ULONG MapAddress = Oxd8000;
LINADDR LinAddress = O;
LINADDR dev_linaddr = O;

II linear address to MapAddress
II for global linear address

II VMalloc requires a linear address to the physical map address

VirtTolin((FARPOINTER)&MapAddress,(PLINADDR)&LinAddress);

if (VMAlloc(LinAddress,OxlOOO,Ox3,(PLINADDR)&dev_linaddr))
{

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, strlen(AllocFailMessage), AllocFailMessage);

else
{

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, strlen(AllocPassMessage), AllocPassMessage);

Figure 15-2. Using VMAlloc

Virtual Addresses

A 16:16 virtual address which has be mapped to a 32-bit linear address is called a tiled
virtual address. It represents a selector I offset of the same physical address as defined
by the 32-bit linear address. The normal addresses used in your device driver are
16:16 virtual addresses. Several DevHlp calls, such as VMLock and LinToPageList,
require the addresses of parameters to be 32-bit linear addresses. If these data items
or parameters exist in the driver's data segment, passing the pointer to these items
will cause these DevHlps to fail. You must first convert the 16:16 virtual addresses to
linear by calling VirtToLin, and then call the DevHlp function as shown in Figure 15-3.

Chapter 15. Working With Pointers 255

Flags= Oxla;

II first convert address arguements to linear

if (VirtTolin((FARPOINTER)Pagelist,(PLINADDR) &lPagelist));

if (VirtTolin((FARPOINTER)LockHandle,(PLINADDR)&llockHandle));

if (VMLock(linaddr,100,lPagelist,llockhandle,
Flags,(FARPOINTER) &Elements))

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, strlen(LockFailMessage), LockFailMessage);

else
{

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, strlen(LockPassMessage), LockPassMessage);

Figure 15-3. Calling VMLock

Pointers In A VDM

DOS applications running in a VDM utilize real mode addressing. A 20-bit real mode
address in the segment:offset form can refer to a physical address within the VDM's
one megabyte address space. If the VDM makes an IOCtl call to your device driver
with pointers in the private data and/ or parameter buffers, the driver must take an
extra step to ensure the pointers are converted correctly. The driver checks the
TypeProcess variable in the local info seg structure to determine of the application is
a VDM application (bit 1 = 1).

If it is a DOS application, the driver allocates a GDT selector and convert the seg­
ment:offset address to a VDM-relative physical address by shifting the segment left 4
bits and adding in the offset. This is the same way the physical address is calculated
in real mode for a real-mode application. The driver then calls LinToGDTSelector with
the 20-bit physical address of the VDM application's buffer and/or parameter address.
This call maps the 20-bit physical address to the caller's address using a GDT selector
which can be accessed at kernel or interrupt time. The selector should be released by
a call to FreeGDTSelector when the driver is finished with it. It is important to note

256 Writing OS/2 2. 1 Device Drivers in C

that normally, LinToGDTSelector requires a 32-bit linear address and not a 20-bit
physical address. This is possible only because LinToGDTSelector can determine that
the current process making the call is in a VDM. If LinToGDTSelector determines
that the caller is a VDM application, it converts the 20-bit real address to a valid 32-bit
linear address before mapping it to the GDT selector.

CHAPIER 16

PCMCIA Device Drivers

The latest technology to affect OS/2 device drivers is called the Personal
Computer Memory Card Interface Association, or PCMCIA, architecture.
The PCMCIA is an organization of hardware and software vendors who are

developing a set of standards for small, credit-card size adapters, dubbed PCMCIA
cards. The PCMCIA has attempted to define both the hardware and software stan­
dards for the PCMCIA adapters, and the standards are still emerging. In order to
support this new emerging technology, OS/2 2.1 has introduced support for the cur-
rent PCMCIA standards. ·

The information supplied here either exists or is planned, and is therefore subject to
change. Since the PCMCIA specifications are still evolving, it is possible that some of
the information presented in this chapter may not be accurate at the time of publica­
tion. In addition, OS/2 2.1 does not support, nor is it planned to support, the full
implementation of the PCMCIA 2.00 services. Future versions of OS/2 2.x may pro­
vide additonal support for PCMCIA services. Please refer to the latest publications
from IBM for the most accurate description of the OS/2 2.1 PCM CIA support.

At the time of this writing, the hardware specification outlines three different size
PCMCIA adapters, although more may be added. The different sizes, or form factors,
specify the thickness of the adapter. The current sizes defined by the PCM CIA speci­
fication are 3.3, 5, and 10 millimeters. The adapters are inserted into a PCMCIA slot
(called a socket) with the power on. The adapter hardware must therefore accommo­
date inrush currents associated with power-on insertion. Although the PCMCIA

257

258 Writing OS/2 2. 1 Device Drivers in C

adapter is usually inserted into a slot without latches or hardware restraints, the PCM­
CIA specification does not preclude such additional hardware. Up to 256 PCMCIA
adapters can be installed on a system, and each adapter can have up to 16 sockets.
PCMCIA adapters can be such things as RAM, flash RAM, hard disks, modems, IAN
adapters, or any other device which can fit within the PCM CIA form factor. Whatever
the size or type device, OS/2 regards the PCMCIA device as just another device, and
is not aware of the PCM CIA architecture.

The PCMC/A Software Trilogy

The software specification outlines three major software components. The OS/2 PDD
that deals with the specific device characteristics is called the client. There must be a
client for each adapter type, but the driver may handle multiple instances of the same
adapter type. This is analogous to a device driver for a multiport serial adapter, which
can handle each port with the same driver. The client driver is usually supplied by the
PCMCIA card vendor, although its possible that generalized OS/2 PCMCIA drivers
will be available from other sources. The client driver may also have a VDD counter­
part for operation in a VDM.

The second part of the PCM CIA software architecture is called card services. Card ser­
vices is responsible for providing the client an interface to the operating system In
OS/2 2.1, card services is implemented as a ring 0 PDD, called PCMCIA$. The PCM­
CIA client performs an AttachDD DevHlp to PCMCIA$, which yields a 16:16 pointer
to the PCMCIA$ device driver's IDC entry point. Subsequent calls to card services are
performed by setting up the proper registers and calling the IDC entry point from the
client. Since card services needs hooks into OS/2, card services is supplied by IBM.

Card services, like the DevHlp routines, are register-based, so in order to write your
PCMCIA driver in C, you'll need to provide a library of C callable functions similar to
the DevHlp library. The optional PDD driver library (see order form at the end of this
book) contains the C callable routines for the PCMCIA card services, allowing you to
write your PCMCIA drivers in C.

The third component of the PCM CIA software is socket services. Socket services is a
hardware-specific layer of software which isolates the socket specific architecture
from the other the software components. It is expected that the supplier of the system
will supply this driver in software form or in the BIOS. The simplified architecture is
shown in Figure 16-1. It should be noted, however, that the PCMCIA specifications
allows the client to perform direct I/0 and memory-mapped operation with the
adapter, avoiding the card services or socket services layer.

Chapter 16. PCMCIA Device Drivers 259

Client POD

Card Services
PCM CIA$

Socket Services
POD or BIOS

PCMCIA Adapter
Hardware

Figure 16-1. PCMCIA software architecture.

OS/2 2.1 PCMC/A Initialization

The first component loaded in CONFIG.SYS is the card services PDD. The card ser­
vices PDD assumes that the following system resources are available:

• Non-system memory from COOOOh to DFFFFh

• IRQ 2-15

• I/0 ports Ox108-0xffff, except Ox3b4, Ox3b5, Ox3bah, ox3bbh, 3c0-3d:fh, and 3f0-3f7h

These are the default resources that card services expects to be available. To deter­
mine what is actually available, another PDD, called the Resource Map Utility or RMU,
is loaded from CONFIG.SYS. When the RMU receives the CMDinitComplete strategy
command, the RMU pokes around the system and verifies the actual resources avail­
able, opens the card services driver PCMCIA$, and calls the card services driver with
the AdjustResourcelnfo function. The card services PDD then adjusts the information
on the available resources so it can more intelligently respond to a subsequent client
request for those resources. It is important to note that the RMU driver has the spe­
cial bit (bit 4) in the capabilities bit strip word set, informing the kernel to call it with
the InitComplete strategy command. It is also important to note that if no RMU is
loaded, or the RMU fails to call the card services driver, that the card services driver
will assume that all the default resources are available.

260 Writing OS/2 2. 1 Device Drivers in C

Next, the socket services driver is loaded, and when processing the InitComplete
strategy command, the socket services driver calls DevHlp AttachDD with PCMCIA$,
which returns a 16:16 pointer to the PCMCIA$ driver's IDC entry point. It then calls
the card services AddSocketServices to establish bidirectional communications with
card services. When card services receives the socket services AddSocketServices
request, it must:

• identify the socket services resources required by calling socket services
GetSetSSAddr, GetSSinfo, InquireAdapter, GetAdapter, InquireSocket and
GetSocket. The socket services are provided by the socket service PDD when the
card services driver calls the socket service driver's IDC entry point.

• allocate resources, if necessary, from the current resource map.

• install any necessary client interrupt handlers by calling DevHlp SetIRQ.

• program socket service hardware with SetAdapter and SetSocket socket services.

Next, the client PDD is loaded to support the particular adapter. The client establishes
communications with card services by calling the AttachDD DevHlp during
InitComplete processing. It is possible that the AttachDD call might fail in the case that
the card services driver is not yet loaded (out of proper sequence in CONFIG.SYS). In
this case, the client driver should enter a dormant state, waiting for the card services
driver to be loaded. When the client driver detects that the card services driver is
loaded, it issues a RegisterClient request and commences normal operation.

Note that the sequence these drivers appear in CONFIG.SYS will determine if pro­
cessing occurs normally. Therefore, each driver should be sensitive to that fact and
execute accordingly. The card services driver must be loaded first, but the other dri­
vers may appear out of sequence. Note also that the CMDinitComplete strategy com­
mand is issued in the reverse order of the way they appear in CONFIG.SYS.

Client Device Driver Architecture

The client driver is a normal OS/2 PDD, but contains additional resource allocation
logic not usually found in a PDD. First, since the client driver exports its entry points,
those entry points must never move or be relocated. This means all of the exported
entry points must exist in the first 64KB code segment. This segment must also con­
tain the strategy, interrupt, timer, and IDC entry points. Second, although a normal
PDD allocates resources using the device helper routines, the client PDD allocates its
resources by calling the card services driver. Since the client driver is activated only
be an inserted card or insertion event, it should not allocate extra memory or
resources until the card is actually detected.

Chapter 16. PCMCIA Device Drivers 261

When the user inserts a card into a PCM CIA slot, the card services interrupt handler
is called to signal the insertion. The card services driver acknowledges the card inser­
tion interrupt by calling the socket services driver with the Acknowledgelnterrupt
function, which returns the identification of the socket that caused the interrupt. The
card services driver sets up a timer handler to handle the card insertion event.

The timer handler calls the socket services driver's GetStatus, GetSocket, and
SetSocket functions to determine the cause of the interrupt. The timer handler then
calls each client that has previously registered for a card insertion event for that par­
ticular socket.

The client processes the card insertion event by calling the card services function
GetConfigurationlnfo to determine if the card was previously claimed by another
client driver. The client may get more detailed information from the card by calling
the card service tuple functions GetFirstTuple, GetNextTuple, and GetTupleData. If
the card cannot be supported by the client, the client just returns. If the card can be
supported, the client calls the card services functions RequestIO and
RequestConfiguration to allocate the resources. The card services driver then calls
the socket services SetSocket function to program the card for the proper configura­
tion. The client then calls the SetIRQ DevHlp routine to hook its interrupt handler like
a normal PDD.

Under normal operation, the client driver processes requests like any other PDD.

When the PCMCIA card is removed, the card causes a status change interrupt to the
card services driver. Card services calls the socket services driver's
Acknowledgelnterrupt function to get the socket that generated the interrupt. The
card services driver then sets up a timer handler like it did in the card insertion event.

When the timer handler is entered, it processes the interrupt by calling the socket
service GetStatus, GetSocket, and SetSocket function to determine the cause of the
interrupt. The timer handler then calls all the clients that have registered for the par­
ticular socket.

The client drivers process the event by calling the card services
ReleaseConfiguration, ReleaseIO, and ReleaseIRQ functions. When the card services
driver receives the ReleaseConfiguration command, it calls socket services to repro­
gram the card to stop generating interrupts or other events.

If the client previously claimed a system interrupt with a SetIRQ call, the must call
UnSetIRQ to give back to interrupt to OS/2.

262 Writing 05/2 2. 1 Device Drivers in C

OS/2 2.1 Restrictions

The OS/2 2.1 card services driver contains the following restrictions:

• a maximum of 4 adapters

• a maximum of 8 sockets

• a maximum of 16 clients

• a maximum of 4 socket services drivers

• a maximum of 16 Memory Technology Drivers (MTDs)

• a maximum of 16 memory handles

• a maximum of 16 erase queues

• a maximum of 16 memory regions

• a maximum of 16 disk partitions

• a maximum of 7 memory windows (5 memory and 2 I/0)

In addition, card services provides no power management support or write protection.
For PCMCIA disk drivers, the following restrictions apply:

• the client must claim all the logical drives it supports, even if the DASD card is
not currently inserted

• disks with multiple partitions must have a driver letter assigned to each partition

• PCM CIA disk cards do not support HPFS or disk caching

Card Services Functions

Card services provides for the following client services:

• function

• callbacks

• events

• MTD helpers

• media access routines

• return code information

Chapter 16. PCMCIA Device Drivers 263

The OS/2 PCMCIA implementation also has reserved IOCtl category 13 for a PCM­
CIA application interface. OS/2 2.1 supports or is planned to support the card services
functions shown in Table HH.

Table 16-1. OS/2 PCMCIA Card Services (Continued)

Function Code

CloseMemory OxOl

DeregisterClient Ox02

GetClientlnfo Ox03

GetConfigurationlnfo Ox04

GetFirstPartition Ox05

GetFirstRegion Ox06

GetFirstTuple Ox07

GetN extPartition Ox08

GetNextRegion Ox09

GetN extTuple OxOa

GetCardServiceslnfo Ox Ob

GetStatus OxOc

GetTupleData OcOd

GetFirstClient OxOe

RegisterEraseQueue OxOf

RegisterClient OxlO

ResetCard Oxll

264 Writing OS/2 2. 1 Device Drivers in C

Table 16-1. OS/2 PCMCIA Card Services (Continued)

Function Code

MapLogSocket Ox12

MapLogWindow Ox13

MapMemPage Ox14

MapPhySocket Ox15

MapPhyWindow Ox16

ModifyWindow Ox17

OpenMemory Ox18

ReadMemory Ox19

RegisterMTD Oxla

ReleaseIO Oxlb

ReleaseIRQ Oxlc

Release Window Oxld

ReleaseCon:figuration Oxle

RequestIO Oxlf

RequestIRQ Ox20

RequestWindow Ox21

RequestSocketMask Ox22

ReturnSSEntry Ox23

WriteMemory Ox24

Chapter 16. PCMCIA Device Drivers 265

Table 16-1. OS/2 PCMCIA Card Services

Function Code

CheckEraseQueue Ox26

M:odifyConfiguration Ox27

SetRegion Ox29

GetN extClient Ox2a

ValidateCIS Ox2b

RequestExclusive Ox2c

ReleaseExclusive Ox2d

GetEventM:ask Ox2e

ReleaseSocketM:ask Ox2f

RequestConfiguration Ox30

SetEventM:ask Ox31

AddSocketServices Ox32

ReplaceSocketServices Ox33

AdjustResourcelnfo Ox35

266 Writing OS/2 2. 1 Device Drivers in C

Calling Card Services

Card services, like the OS/2 DevHlps, are register-based. The current registers
assigned to these functions under OS/2 2.1 are shown in Tables 16-2 and 16-3.

Table 16-2. Card Services Register Interface (input)

Register Contents

AL function number

AH settoAFh

DX handle

DI:SI pointer

ES:BX argpointer

ex arglength

Table 16-3. Card Services Register Interlace (output)

Register Contents

AX status argument

CF pass/fail carry flag

Chapter 16. PCMCIA Device Drivers 267

All addresses must be in 16:16 form, and the caller must set DS to the DS value
returned from the AttachDD call before calling card services. Card services are not
reentrant, so a function request may be returned BUSY.

Callbacks

Client device drivers can be called by card services when certain events occur. The
action of calling the client device driver from card services is called a callback. The
callbacks that are supported or planned to be supported by OS/2 2.1 are described in
Table 16-4.

Table 16-4. OS/2 2.1 Callbacks (Continued)

Function Function Code

BATIERY_DEAD OxOl

BATIERY_LOW Ox02

CARD_LOCK Ox03

CARD_READY Ox04

CARD_REMOVAL Ox05

CARD _UNLOCK Ox06

EJECTION_ COMPLETE Ox07

EJECTION_REQUEST Ox08

INSERTION_ COMPLETE Ox09

INSERTION_REQUEST OxOa

EXCLUSIVE_COMPLETE OxOd

EXCLUSIVE_REQUEST OxOe

268 Writing OS/2 2. 1 Device Drivers in C

Table 16-4. OS/2 2.1 Callbacks

Function Function Code

RESET_PHYSICAL Ox Of

RESET_REQUEST OxlO

CARD_RESET Oxll

MTD_REQUEST Oxl2

CLIENT_INFO Ox14

SS_ UPDATED Oxl6

CARD_INSERTION Ox40

RESET_COMPLETE Ox80

ERASE_ COMPLETE Ox81

REGISTRATION_ COMPLETE Ox82

Chapter 16. PCMCIA Device Drivers 269

The callback interface is described in Tables 16-5 and 16-6. The ClientData structure
is shown in Figure 16-2.

Table 16-5. Callback Register Interface (input)

Register Contents

AL function argument

ex socket argument

DL card status

DH socket status

DI ClientVal from ClientData struct

DS ClientDS from ClientData struct

SI ClientOff from ClientData struct

ES:BX buffer argument

BX misc argument when no buffer argument

Table 16-6. Callback Register Interface (output)

Register Contents

AX status argument

CF pass/fail carry flag

270 Writing OS/2 2. 1 Device Drivers in C

#typedef struct _ClientData
{

USHORT ClientVal;
USHORT ClientDS;
USHORT ClientOff
USHORT Reserved
ClientData;

II client specific data value
II clients DS value
II client's callback offset
II for future use

Figure 16-2. ClientData structure.

CHAPIER 17

Tips And Techniques

I get a large number of questions from driver writers on how to perform certain dri­

ver-related tasks. This chapter outlines some of the things you might want to do in

your device driver. Some of these may seem apparent, but to my knowledge, this

information does not appear anywhere else.

Q. I have an application that allocates a local buffer which is semaphore pro­
tected for access by several threads. I want the driver to send data to this
buffer from my interrupt handler, but I don't want to keep calling the device

driver. How can I do this?

A The application sends the device driver, via an IOCtl, the address of the buffer. The

device driver calls VMProcessToGlobal to get a pointer to the buffer, and VMLock to

lock the buffer. The driver then calls LinToGDTSelector to gain GDT access to the

buffer. The device driver calls VMLock to prevent the buffer from being paged. The

driver then transfers data freely from the interrupt handler.

Q. How can I get control of the floppy disk controller registers to support an
add-on tape drive that uses the floppy disk controller?

A Call IOCtl Category 8, function Ox5d. This function toggles the floppy disk driver

and Sets/UnSets the floppy IRQ.

271

272 Writing OS/2 2. 1 Device Drivers in C

Q. My company sells ISA bus adapters which can be jumpered to one of sev­
eral memory-mapped addresses. I only want to supply one device driver.
How can I dynamically configure the device driver for the particular system?

A Place the configuration information on the same line as the DEVICE= statement in
the CONFIG.SYS file. During initialization, the kernel sends the driver a 16:16 virtual
address of the DEVICE= command buffer. The driver can use this pointer to parse
driver-specific information and use it to configure the device driver. For instance, the
CONFIG.SYS file entry might contain DEVICE=MYDRIVER.SYS d8000 3e8 5, where
d8000 is the memory-mapped address, 3e8 is the base port address, and 5 is the IRQ.

Q. My company supplies an ISA and Micro Channel version of the same
adapter. How can I tell if the machine contains an ISA bus or Micro Channel
bus, and can I use the same device driver for both systems?

A Using the same driver for ISA and Micro Channel machines is a common occur­
rence. The first thing your device driver should do is determine the bus type. You can
do this by calling GetLIDEntry, requesting a POS LID. If the call fails, its not a Micro
Channel machine. If the call succeeds, the system is Micro Channel-based. You can
then take the appropriate action. For Micro Channel, scan the planar for your target
adapter ID, and call SetIRQ with the share flag to verify your interrupt level. For ISA
bus systems, call SetIRQ with the no-share flag.

Q. How can I reboot my machine from the command line?

A Write a simple device driver that calls the SendEvent DevHlp with the parameter to
reboot for IOCtl function 1. Then write an application that calls the IOCtl.

Q. My driver needs to identify the caller and determine its PID. How can I
do this?

A From your driver, call GetDOSVar, which returns a pointer to the application's
local infoseg. Using that pointer, you can extract the necessary information.

Chapter 17. Tips And Techniques 273

Q. My Micro Channel initialization section is setting up the wrong memory­
mapped address from the POS registers. How can I check the value of the
POS registers while debugging?

A First, you must know what slot the particular adapter is in. The slots are number 0-

7, with 0 being the motherboard, and 1-7 the 8 slots on the motherboard. Slot 1 is the

slot closest to the power supply. Once the slot number is known, turn on the -CD
SETUP line for that slot using the debugger, by issuing the command o 96,slot+ 1. If

the adapter was located in slot 2, the command would be o 96,3. Once enabled, the

adapter POS register contents can be read by an input of address OxlOO, OxlOl, Oxl02,

etc. The adapter ID is located in POS register 0 and 1, located at OxlOO and OxlOl, in
the low-high format. To make the POS registers invisible again and bring the system

back to normal, issue the o 96,0 command.

Q. I need to change the contents of the adapter POS registers while my dri­
ver is running. How can I read or write the Micro Channel POS registers "on

the :fly'' with my device driver?

A Call GetLIDEntry to get a POS LID. Next, get the size of the LID Request Block by

calling ABIOSCall. Initialize the Request Block for the request and call ABIOSCall.
The ABIOS routines will fill in the Request Block with the POS register data. Change

the data and Request Block command field and call ABIOScall again to write the data.

Remember that the POS register information is kept in two places. The first is the

adapter itself, and the second is the motherboard's NVRAM. When the POST is run

on power-up, the system compares the NVRAM configuration with the actual POS
register configuration to determine if an adapter was reconsidered or removed. If

you're going to make the POS register change permanent, be sure to write to both

places.

Q. My adapter requires a program be downloaded to it during Init. How can
I get access to my adapter's memory during Init, and how can I download

the program to the adapter?

A To access the adapter during Init, you'll need to create LDT access, since Init is a

ring 3 thread. Call PhysToUVirt to get a selector to the adapter memory. Then call
DosOpen and DosRead to read the adapter's program from a binary file, and move it

to the adapter using the pointer from the PhysToUVirt call.

27 4 Writing OS/2 2. 1 Device Drivers in C

Q. I need to delay for 5 seconds during the Init of my driver so my adapter
can get set up. I can't call DosSleep, so how can I do this?

A Call the Beep DevHlp with a duration of 5 seconds, and a frequency out of the audi­
ble range.

Q. How can I return specific errors from my driver?

A If you return an error via one of the standard driver calls, the system adds a hex 13
to the value. If you use an IOCtl, the lower 8 bits are your's to set as you please. The
system will not touch the value. The error code returned to your program will have
Oxff in the upper 8 bits. Thus, returning a Ox14 from an IOCtl will yield a Oxff14 at the
application level.

Q. When my driver times out, I get a coffin on my screen. How can I sup­
press this?

A Be sure to set the OPEN_FLAGS_FAIL_ON_ERROR bit in the DosOpen call.

APPENDIX A

Device Helper Reference

De.vice Helper Functions

Table A-1. Device Helper Functions (Continued)

DevHlp Function Code Description

SchedClockAddr 00 Get system clock routine address

Dev Done 01 Device I/ 0 complete

Yield 02 Yield the CPU

TCYield 03 Yield the CPU to a time-critical thread

Block 04 Block thread on event

Run 05 UnBlock a previously Blocked thread

SemRequest 06 Claim a semaphore

SemClear 07 Release a semaphore

SemHandle 08 Get a semaphore handle

275

276 Writing 05/2 2. 1 Device Drivers in C

Table A-1. Device Helper Functions (Continued)

DevHlp Function Code Description

PushReqPacket 09 Add a Request Packet to list

PullReqPacket Oa Remove a Request Packet from list

PullParticular Ob Remove a specific Request Packet
from list

SortReqPacket Oc Sort Request Packets

AllocReqPacket Od Allocate a Request Packet

FreeReqPacket Oe Free a Request Packet

Queuelnit Of Initialize a character queue

QueueFlush 10 Clear a character queue

Queue Write 11 Put a character in the queue

QueueRead 12 Get a character from the queue

Lock 13 Lock segment

Unlock 14 Unlock segment

PhysToVirt 15 Map physical to virtual address

VirtToPhys 16 Map virtual to physical address

PhysTo UVirt 17 Map physical address to user virtual
address

AllocPhys 18 Allocate physical memory

FreePhys 19 Free physical memory

SetIRQ lb Attach a hardware interrupt handler

Appendix A - Device Helper Reference 277

Table A-1. Device Helper Functions (Continued)

DevHlp Function Code Description

UnSetIRQ le Detach a hardware interrupt handler

SetTimer ld Attach a timer handler

ResetTimer le Detach a timer handler

MonitorCreate 1f Create a device monitor

Register 20 Install a device monitor

DeRegister 21 Remove a device monitor

Mon Write 22 Pass data records to a device monitor

MonFlush 23 Remove all data from device monitor

stream

GetDOSVar 24 Return a pointer to DOS variable

SendEvent 25 Indicate an event

Verify Access 27 Verify Memory Access

ABIOSGetParms 29 Get ABIOS parameters for LID

AttachDD 2a Establish communications with anoth-

er Physical Device Driver

InternalError 2a Signal an internal error

AllocGDTSelector 2d Allocate GDT Descriptors

PhysToGDTSelector 2e Map physical address to GDT virtual

EOI 31 Issue an end-of-interrupt to the PIC

UnPhysTo Virt 32 Mark physical to virtual complete

278 Writing OS/2 2. 1 Device Drivers in C

Table A-1. Device Helper Functions (Continued)

DevHlp Function Code Description

TickCount 33 Modify/Create timer setting

GetLIDEntry 34 Get a Logical ID (PS/2 only)

FreeLIDEntry 35 Release a Logical ID (PS/2 only)

ABIOSCall 36 Invoke an ABIOS function (PS/2 . only)

ABIOSCommonEntry 37 Invoke an ABIOS Common Entry
Point (PS/2 only)

GetDeviceBlock 38 Get ABIOS Device Block (PS/2 only)

RegisterStack Usage 3a Indicate Stack Usage

VideoPause 3c Suspend/resume video active threads

SaveMsg 3d Display a message (base drivers)

RegisterDeviceClass 43 Register an ADD device class

RegisterPDD 50 Register a 16:16 drv for PDD-VDD
comm.

Register Beep 51 Register a PDDs Beep Entry Point

Beep 52 Create a Beep

FreeGDTSelector 53 Free allocated GDT selector

PhysToGDTSel 54 Map physical address to GDT selector

VMLock 55 Lock linear address range in segment

VMUnlock 56 Unlock linear address range

Appendix A - Device Helper Reference 279

Table A-1. Device Helper Functions (Continued)

DevHlp Function Code Description

VMAlloc S7 Allocate a block of physical memory

VMFree SB Free memory or mapping

VMProcessToGlobal S9 Map process address space into global

VMGlobalToProcess Sa Map global address into process

address

VirtToLin Sb Convert sel:offset to linear address

LinToGDTSelector Sc Convert linear address to virtual

address

GetDesclnfo Sd Get descriptor info

LinToPageList Se Get physical pages mapped to the lin-

ear address

PageListToLin Sf Map physical pages to linear address

PageListToGDTSelector 60 Map physical address to a selector

RegisterTmrDD 61 Get kernel address of the Tmr value

AllocateCtxHook 63 Allocate a context hook

FreeCtxHook 64 Free a context hook

ArmCtxHook 6S Arm a context hook

VMSetMem 66 Commit/ decommit physical memory

OpenEventSem 67 Open a 32-bit shared event semaphore

CloseEventSem 68 Close a 32-bit shared event semaphore

PostEventSem 69 Post a 32-bit shared event semaphore

280 Writing OS/2 2. 1 Device Drivers in C

Table A-1. Device Helper Functions

DevHlp Function Code Description

ResetEventSem 6a Reset a 32-bit shared event semaphore

Register Freq 6b Register PfD freq service with kernel

DynamicAPI 6c Create a ring 0 callgate to a worker

DevHlp Services and Device Contexts
OS/2 device drivers may run in one of three modes or contexts. These three contexts
are:

1. Kernel mode - the context in which the device driver Strategy section runs. This is
sometimes referred to as "Strategy time" or "task time".

2. Interrupt mode - the context in which the driver's interrupt handler runs while servic­
ing hardware interrupts.

3. INIT mode - the context in which the device driver runs when called by the kernel to
INIT the driver. This is a special mode at Ring 3 with I/ 0 privileges.

Not all DevHlp services are available in each mode. Table A-2 describes which
DevHlp functions are available in the various modes.

Appendix A - Device Helper Reference 281

Table A-2. Device Helper Contexts (Continued)

DevHlp Function Code Kernel Interrupt INIT

SchedClockAddr OOh x x

Dev Done Olh x x

Yield 02h x

TCYield 03h x

Block 04h x

Run 05h x x

SemRequest 06h x

SemClear 07h x x

SemHandle 08h x x

PushReqPacket 09h x

PullReqPacket OAh x x

PullParticular OBh x x

SortReqPacket OCh x

AllocReqPacket ODh x

FreeReqPacket OEh x

Queuelnit OFh x x x

QueueFlush lOh x x

Queue Write llh x x

QueueRead 12h x x

282 Writing OS/2 2. 1 Device Drivers in C

Table A-2. Device Helper Contexts (Continued)

DevHlp Function Code Kernel Interrupt INIT

LockSeg 13h x x
UnlockSeg 14h x x
PhysToVirt 15h x x x
VirtToPhys 16h x x
PhysTo UVirt 17h x x
AllocPhys 18h x x
Free Phys 19h x x
SetIRQ lBh x x
UnSetIRQ lCh x x x
SetTimer lDh x x
ResetTimer lEh x x x
Mon Create lFh x x
DeRegister 21h x

Mon Write 22h x x

MonFlush 23h x

GetDOSVar 24h x x
SendEvent 25h x x

Verify Access 27h x

ABIOSGetParms 29h x x x

Appendix A - Device Helper Reference 283

Table A-2. Device Helper Contexts (Continued)

DevHlp Function Code Kernel Interrupt INIT

AttachDD 2Ah x x
InternalError 2Bh x x x
AllocGDTSelector 2Dh x
PhysToGDTSelector 2Eh x x x

EOI 3lh x x
UnPhysTo Virt 32h x x x
TickCount 33h x x x
GetLID Entry 34h x x
FreeLIDEntry 35h x x
ABIOSCall 36h x x x
ABIOSCommonEntry 37h x x x
GetDeviceBlock 38h x
RegisterStackU sage 3Ah x
VideoPause 3Ch x x x
SaveMsg 3Dh x
RegisterDeviceClass 43h X*

RegisterPDD 50h x x
Register Beep 51h x x
Beep 52h x x x

284 Writing OS/2 2. 1 Device Drivers in C

Table A-2. Device Helper Contexts (Continued)

DevHlp Function Code Kernel Interrupt INIT

FreeGDTSelector 53h x x
PhysToGDTSel 54h x x x
VMLock 55h x x
VMUnlock 56h x x
VMAlloc 57h x x
VMFree 58h x x
VirtToLin 5Bh x x x
LinToGDTSelector 5Ch x x x
GetDesclnfo 5Dh x X** x
LinToPageList 5Eh x x x
PageListToLin 5Fh x x x
PageListToGDTSelector 60h x x x
RegisterTmrDD 6lh x
AllocateCtxHook 63h x x
FreeCtxHook 64h x x
ArmCtxHook 65h x x x
VMSetMem 66h x x
OpenEventSem 67h x
CloseEventSem 68h x

Appendix A - Device Helper Reference 285

Table A-2. Device Helper Contexts

DevHlp Function Code Kernel Interrupt INIT

PostEventSem 69h x
ResetEventSem 6Ah x
DynamicAPI 6Ch x x

* ADD initialization is performed at ring 0

**This function can return information on a Global Descriptor only at interrupt time.

286 Writing OS/2 2. 1 Device Drivers in C

Device Helper Categories

The OS/2 DevHlp Functions can also be grouped by functionality into 13 major cate­
gories.

Category 1 - System Clock Management
• SchedClockAddr

Category 2 - Process Management
• Block

• DevDone

• Run

• TCYield

• Yield

Category 3 - Semaphore Functions
• CloseEventSem

• OpenEventSem

• PostEventSem

• ResetEventSem

• SemClear

• SemHandle

• SemRequest

Appendix A - Device Helper Reference 287

Category 4 - Request Queue Functions
• AllocReqPacket

• FreeReqPacket

• PullParticular

• PullReqPacket

• PushReqPacket

• SortReqPacket

Category 5 - Memory Management Functions
• AllocGDTSelector

• AllocPhys

• FreeGDTSelector

• FreePhys

• LlnToGDTSelector

• LlnToPageList

• Lock

• PageLlstToGDTSelector

• PageLlstToLin

• PhysToGDTSel

• PhysToGDTSelector

• PhysToUVrrt

• PhysTo Virt

• Unlock

• UnPhysTo Virt

• VerifyAccess

• VirtToLin

• VrrtToPhys

• VMAlloc

288 Writing 05/2 2. 1 Device Drivers in C

• VMFree

• VMGlobalToProcess

• VMLock

• VMProcessToGlobal

• VMSetMem

• VMUnlock

Category 6 - Device Monitor Functions
• DeRegister

• MonF1ush

• MonitorCreate

• MonWrite

• Register

Category 7 - Character Queue Functions
• QueueFlush

• Queuelnit

• QueueRead

• QueueWrite

Category 8 - Interrupt Management
• EOI

• SetIRQ

• UnSetIRQ

Appendix A - Device Helper Reference 289

Category 9 - Timer Functions
• RegisterTmrDD

• ResetTimer

• SetTimer

• TickCount

Category 10 - System Functions
• Beep

• SaveMsg

• DynamicAPI

• GetDesclnfo

• GetDOSVar

• RegisterBeep

• RegisterDeviceClass

• SendEvent

• VideoPause

Category 11 - Advanced BIOS (AB/OS) Functions (PS/2 Only)
• ABIOSCall

• ABIOSCommonEntry

• ABIOSGetParms

• FreeLIDEntry

• GetDeviceBlock

• GetLlD Entry

290 Writing OS/2 2. 1 Device Drivers in C

Category 12 - POD - VOO Communications Services
• RegisterPDD

Category 13 - Context Hook Services
• AllocateCt:xHook

• ArmCt:xHook

• FreeCt:xHook

DevH/p Routines

The DevHlp functions are register based calls to the OS/2 kernel to perform func­
tions necessary for OS/2 device driver operation. All parameters are passed and
returned in registers. To provide an environment in which to write OS/2 2.1 device
drivers in C, you will have to provide a C-language interface to the DevHlp routines.
You can write your own, or you can order them using the order form at the back of
the book. All C callable routines use the PASCAL calling convention.

Appendix A - Device Helper Reference 291

ABIOSCal/ Mode: Kernel, Interrupt, /nit
Invoke an ABIOS service for the Operating System Transfer Convention.

C Calling Convention

if (ABIOSCall(USHORT Lid,USHORT Subfunction,
(FARPOINTER) &ABIOSReqBlock)) error

Lid =The LID obtained by a previous GetLIDEntry call
Subfunction = ABIOS define subfunction
&ABIOSReqBlk =far pointer to OS-relative ABIOS request block

Comments
The indicated ABIOS function is called according to the Operating System Transfer
Convention. ABIOSCall will clean up the stack before returning to the device driver.

292 Writing OS/2 2. 1 Device Drivers in C

Example

II Get the size of the LID request block

ABIOS_l_blk.f_parms.req_blk_len = sizeof(struct lid_block_def);
ABIOS_l_blk.f_parms.LID =lid;
ABIOS_l_blk.f_parms.unit = O;;
ABIOS_l_blk.f_parms.function = GET_LID_BLOCK_SIZE;
ABIOS_l_blk.f_parms.ret_code = Ox5a5a;
ABIOS_l_blk.f_parms.time_out = O;

if (ABIOSCall(lid,(FARPOINTER)&ABIOS_l_blk,0))
return 1;

lid_blk_size = ABIOS_l_blk.s_parms.blk_size; II Get the block size

II Fill POS regs and card ID with FF in case this does not work

*card_ID = OxFFFF;
for (i=O; i<NUM_POS_BYTES; i++) { pos_regs[i] = OxOO; };

II Get the POS registers and card ID for the commanded slot

ABIOS_r_blk.f_parms.req_blk_len = lid_blk_size;
ABIOS_r_blk.f_parms.LID =lid;
ABIOS_r_blk.f_parms.unit = O;;
ABIOS_r_blk.f_parms.function = READ_POS_REGS_CARD;
ABIOS_r_blk.f_parms.ret_code = Ox5a5a;
ABIOS_r_blk.f_parms.time_out = O;

ABIOS_r_blk.s_parms.slot_num =(unsigned char)slot_num & OxOF;
ABIOS_r_blk.s_parms.pos_buf = (FARPOINTER)pos_regs;
ABIOS_r_blk.s_parms.card_ID = OxFFFF;

if (ABIOSCall (lid,(FARPOINTER)&ABIOS_r_blk,0))
re = FAILURE;

else
{ I I Else

*card_ID = ABIOS_r_blk.s_parms.card_ID; II Set the card ID value
re = SUCCESS;

}

FreeLIDEntry(lid);
return(re);

Appendix A - Device Helper Reference 293

ABIOSCommonEntry Mode: Kernel, Interrupt, /nit

Invoke an ABIOS Common Entry Point according to the Advanced BIOS Transfer
Convention.

C Calling Convention

if (ABIOSComm(USHORT Subfunction,(FARPOINTER) &ABIOSReqBlk)) error

Subfunction = ABIOS defined subfunction
&ABIOSReqBlk =far pointer to OS-relative ABIOS request block

Comments
ABIOSCommonEntry invokes the indicated ABIOS common entry point.

Example

if (ABIOSCommonEntry(O,(FARPOINTER)&ABIOS_r_blk))
error;

294 Writing OS/2 2. 7 Device Drivers in C

ABIOSGetParms Mode: Kernel, Interrupt, /nit
Get ABIOS Parameters.

C Calling Convention

if (ABIOSGetParms(USHORT Lid,(FARPOINTER) &ABIOSParmBlock)) error

Lid =The LID obtained by a previous GetLIDEntry call
&ABIOSParmBlk =far pointer to OS-relative ABIOS parameter block

Comments
Refer to the IBM Personal System/2 and Personal Computer BIOS Inteeface Technical
Reference, part number S68X-2341-00, for more detailed information on the use of
ABIOS and its associated data structures.

Appendix A - Device Helper Reference 295

AllocateCtxHook Mode: Kernel, /nit

Allocate a context hook.

C Calling Convention

if (AllocateCtxHook((OFF)&HookHandler,ULONG Val,
(PLHANDLE) &NewHandle)) error

&HookHandler = 16 bit offset to context hook handler
Val = Oxffffffff (reserved value)
NewHandle =far pointer to returned handle

Comments
AllocateCtxHook allocates a context hook for use by a device driver that needs task
time processing, but has no task time thread available to complete it.

When the context hook is armed and triggers, the Hook Handler function is called
with register EAX equal to the value passed in the HookData parameter of the
ArmCt:xHook call, and EBX equal to -lL

The hook handler is responsible for saving and restoring registers on entry and exit.
The hook handler address should be zero extended.

Context hooks should never block.

296 Writing 05/2 2. 1 Device Drivers in C

AllocGDTSe/ector Mode: /nit

Allocate one or more GDT selectors for a device driver to use.

C Calling Convention

if (AllocGDTSelector(USHORT Count,(FARPOINTER) &SelArray)) error

Count =number of selectors to allocate
&SelArray = far pointer to selector array

Comments
This allocation is performed at device driver INIT time.

AllocGDTSelector is used to allocate one or more GDT selectors for a device driver to
use for kernel and interrupt mode operations.

Allocating a GDT selector and then mapping an address to it using the
PhysToGDTSelector DevHlp allows a driver to access the memory defined by the
GDT selector in any context.

Even though GDT selectors can be allocated at INIT time, they cannot be used during
INIT since INIT is perfomed at ring 3. Ring 3 threads have no access to the GDT.

Appendix A - Device Helper Reference 297

Example

if (!(SetIRQ(5,(PFUNCTION)INTERRUPT_HANDLER,0)))
{

if (!(AllocGDTSelector(l,(FARPOINTER)&Sel)))
{

if (!(PhysToGDTSelector(Oxd8000,0x1000,Sel ,&err)))
{

II output initialization message

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, 8, devhdr.DHname);
DosPutMessage(l, strlen(InitMessage), InitMessage);

II send back our cs and ds end values to osl2

if (Seglimit(HIUSHORT((void far*) Init), &rp->s.InitExit.finalCS)
I I Seglimit(HIUSHORT((void far*) InitMessage),
&rp->s.InitExit.finalDS))

Abort();
return(RPDONE);

298 Writing OS/2 2. 1 Device Drivers in C

AllocPhys Mode: Kernel, /nit

Allocate a block of physical memory.

C Calling Convention

if CAllocPhys(ULONG Size,USHORT Flag.far CPPHYSADDR) &pPhysAddr)) error

Size
Flag

=number of bytes to allocate
= 0 - Allocate memory above lMB
= 1 - Allocate memory below lMB

&Physaddr = pointer to returned physical address

Comments
The memory allocated by this function is fixed memory, and may not be "unfixed"
through the Unlock call.

If memory is requested to be allocated high (above lMB), and no memory above
lMB is available, then an error is returned. The device driver could then attempt to
allocate low memory.

Conversely, if memory is requested to be allocated low (below lMB), and no memory
below lMB is available, then an error is returned and the device driver could try allo­
cating high memory, if appropriate.

Example

II allocate a 64KB segment above lMB

if CAllocPhys(OxlOOOO,l,CPPHYSADDR) &AllocAddress)) error

Appendix A - Device Helper Reference 299

AllocReqPacket Mode: Kernel
Return a pointer to an empty request packet.

C Calling Convention

if(AllocReqPacket(USHORT Flag,(PREQPACKET) &Ptr)) error

Flag= 0 - wait
= 1 - do not wait

&Ptr = far pointer to Request Packet returned

Comments
AllocReqPacket returns a pointer to a maximum-size request packet. Some OS/2
device drivers need to have additional request packets to service requests. Once the
Request Packet address is obtained, it can be pushed on the request packet work
queue with the PushReqPacket DevHlp.

Request packets allocated by the AllocReqPacket DevHlp should be returned to the
kernel as soon as possible by calling the FreeReqPacket DevHlp, as the number of
free request packets is limited system wide.

300 Writing 05/2 2. 1 Device Drivers in C

ArmCtxHook Mode: Kernel, Interrupt, /nit

Arm a context hook.

C Calling Convention

if (ArmCtxHook(ULONG HookData,LHANDLE HookHandle,ULONG Val)) error

HookData =data to be passed to hook handler
HookHandle = handle returned from AllocCtxHook
Val = Oxffffffff (reserved value)

Comments

ArmCtxHook arms a context hook allocated by the AllocateCtxHook DevHlp func­
tion. This function can be called at interrupt time. The next available task time thread
will be used to call the function address specified at hook allocation time.

After the context hook is armed, it operates once and automatically disarms itself. It is
an error to attempt to arm a context hook that is already armed. Once the context
hook starts execution, the hook can be rearmed.

Context hooks should never block.

Appendix A - Device Helper Reference 301

Attach DD Mode: Kernel, /nit

Return the address of the Inter-Device Driver Communication (IDC) Entry Point to a
specified device.

C Calling Convention

if (AttachDD("DEVICE ",(PATTACHAREAl &AttachArea)) error

&AttachArea = near pointer to returned structure, type AttachArea

AttachArea struct {
USHORT RealOffset; // real mode offset of IDC entry point
USHORT RealSegment; // real mode segment of IDC entry point
USHORT RealDS; // real mode DS of IDC device driver
USHORT ProtOffset; // protect mode offset of IDC entry point
USHORT ProtCS; //protect mode CS selector of IDC entry
USHORT ProtDS; // protect mode OS of IDC driver
}

·comments
The name field contains the ASCII name of the target device driver which must be
eight characters in length. If the target device driver is a character device driver, the
device driver name must match the name in the target device driver's Device Header.

Before the device driver calls the entry point, it must verify that the entry point
received is nonzero. The IDC entry point of the target device driver must follow the
FAR CALL/RET model.

302 Writing 05/2 2. 1 Device Drivers in C

Beep Mode: Kernel, Interrupt, /nit

Generate a beep.

C Calling Convention

if (Beep(USHORT Freq,USHORT Duration)) error

Freq = frequency of beep in hertz
Duration= duration of beep in milliseconds

Comments
This function is similar to the DosBeep APL It generates a tone at Freq for Duration
milliseconds.

Example

Beep (1000,1000);

Appendix A - Device Helper Reference 303

Block

Block the current thread.

C Calling Convention

if (Block(ULONG BlockID,ULONG Timeout,USHORT Flag,
(FARPOINTER) &Error)) error

Bl ockID
Timeout
Flag

&Error

= ID used for Block and subsequent Run
=timeout in milliseconds or -lL Block forever
= 0 - Block is interruptible
= 1 - Block is noninterruptible
= far Pointer to error returned
= 1 - Block timed out
= 2 - Block interrupted by control-C

Comments

Mode: Kernel

The Block DevHlp blocks the current requesting thread and removes it from the run
queue until it is released by a call to the Run DevHlp.

The return from the Block call indicates whether the wake-up occurred as the result
of a Run DevHlp call or an expiration of the time limit. Block removes the current
thread from the run queue, allowing any other waiting threads to run. The thread
blocked in the device driver is reactivated and Block returns when Run is called with
the same event identifier, when the time limit expires, or when the thread is signalled.
The event identifier is an arbitrary 32-bit value, but an acceptable convention is to use
the address of the request packet that made the request.

Since the device driver may be Blocked in one mode and Run in the other, using the
address of the request packet is the best choice, as this bimodal address is valid in
either mode. It is up to the device driver writer to ensure that the Block was woken up
by the correct mechanism, and not accidentally. To avoid a deadlock condition by get­
ting a Run before the Block call is completed, the device driver should disable inter­
rupts before issuing the Block. The Block DevHlp re-enables the interrupts.

A timeout value of -1 means that Block waits indefinitely until Run is called. Only the
Strategy sections of the device driver can call Block, but Run can be called by the
Strategy section, interrupt handler, or timer handler. When using Block to block a
thread, the device driver can specify whether or not the Block may be interrupted. If

304 Writing OS/2 2. 1 Device Drivers in C

the Block is interruptible, then the kernel can abort the blocked thread and return
from the Block without using a corresponding Run. In general, the Block should be
marked as interruptible so that a signal such as a control C will UnBlock the thread.

The Block call will return when the thread has been run, when the timeout has
expired, or if the thread was UnBlock by a signal, such as a control C. If the Block
returns with a 1, the Block has timed out. If the Block returns a 2, the Block was inter­
rupted. If the Block returns a 0, or valid return, then the Block was released by a call
to the Run DevHlp, and the device driver should take the appropriate action.

Example

if (Block(WriteID,blockcount, 0, &err))
if (err= 2) II interrupted

return(RPDONEjRPERRIERROR_CHAR_CALL_INTERRUPTED);
if (err= 1)

return CRPDONEjRPERRjERROR_NOT_READY);

Appendix A - Device Helper Reference 305

CloseEventSem Mode: Kernel

Close a shared-event semaphore.

C Calling Convention

if (CloseEventSem(ULONG SemHandle)) error

SemHandle =handle of shared event semaphore

Comments
CloseEventSem closes an event semaphore that was previously opened with
OpenEventSem. If this is the last reference to this event, then the event semaphore is
destroyed.

CloseEventSem can be called only from a Ring 0 device driver or file system device
driver. The handle passed in must be a handle to a shared-event semaphore. If the
handle does not exist, or is not a "shared-event" semaphore, or if the semaphore was
not previously opened with OpenEventSem, then ERROR INVALID HANDLE will be
returned.

The system semaphores reside in a memory buffer. When the last process that has a
semaphore open exits or closes that semaphore, the semaphore is destroyed.

Open and close operations may be nested. A maximum of 65,534 opens per process is
allowed for each semaphore at any one time. If this limit is exceeded, the
OpenEventSem will return ERROR_TOO _MANY_OPENS.

In order for a process to intentionally destroy a semaphore prior to termination, the
number of CloseEventSem calls must equal the number of OpenEventSem calls.

306 Writing 05/2 2. 1 Device Drivers in C

DeRegister Mode: Kernel

Remove a device monitor.

C Calling Convention

if (DeRegister(USHORT Handle,USHORT Pid,(PERRCODE) &Error)) error

Handle= the handle of the monitor chain
Pid =PIO of the process that created the monitor chain
&Error = far pointer to error returned

Comments
DeRegister removes all of the monitors associated with the specified process from the
specified monitor chain.

This function may only be called at Strategy time in protect mode.

To remove a monitor from a monitor chain, the device driver supplies the PID of the
process that created the monitor and the handle of the monitor chain. All monitors
belonging to the PID are removed from the monitor chain. Since a process may regis­
ter more than one monitor, all the monitors associated with the PID are removed with
on{(call to DeRegister.

Appendix A - Device Helper Reference 301

OevOone Mode: Kernel, Interrupt

Set the done bit in the request packet and run any blocked threads waiting for the

request to be completed.

C Calling Convention

if (DevDone((PREQPACKET) &RequestPacket)) error

&RequestPacket = far pointer to Request Packet

Comments
The DevDone DevHlp sets the DONE bit in the status field of the request packet

header and issue RUNs on threads that are blocked in the kernel waiting for the par­

ticular request packet to be completed. DevDone will not work with request packets

that were allocated from the AllocReqPacket DevHlp call. The device driver does not

call DevDone to complete requests in the Strategy routine, rather the device driver

returns to the kernel with the done status.

308 Writing 05/2 2. 1 Device Drivers in C

SaveMsg (formerly DispMsg) Mode: /nit
Display a message from a base device driver on the system console.

C Calling Convention

DispMsg((FPSTRING) &MsgTbl)

&MsgTbl = far pointer to message table struct

Comments
The message is not displayed immediately, but is queued until system initialization
retrieves it from the system message file.

The structure of the message table is:

MsgTbl struct
WORD
WORD
DWORD
DWORD
DWORD

Message ID
Number of fill-in items
Pointer to first fill-in item of ASCII-Z string
Pointer to second fill-in item of ASCII-Z string
Pointer to last fill-in item of ASCII-Z string

The messages are obtained, by ordinal, from the system message file OSOOOl.msg
with DosGetMessage. The driver can substitute elements of the message with its own
message, but leave country and language-specific data intact. For instance, the word
"printer", in English, would be different for each country. The driver can use the data
contained in the message file to build a buffer of data to send to the display device.
DispMessage then calls DosPutMessage to display the data. Drivers that utilize
DispMsg can be used without regard to country or language differences.

If an error message is displayed, the "press any key to continue" message is displayed
unless the CONFIG.SYS file contains PAUSEONERROR=NO.

Appendix A - Device Helper Reference 309

OynamicAPI Mode: Kernel, /nit

Create a Ring 0 call gate to a routine in a device driver.

C Calling Convention

if (DynamicAPI((FARPOINTER) &Worker,USHORT ParamCount,USHORT Flag,
(FPUSHORT) &Sel)) err

&Worker = 16:16 or 0:32 bit address of driver function
ParamCount = count of the number of parameters

if 16:16 call gate, the number of words
if 0:32 call gate, the number of dwords

Flag =bit 0 = 1 - 16 bit call gate
bit 0 = 0 - 32 bit call gate
bit 1 = 1 - 16:16 function address
bit 1 = 0 - linear function address

Sel =far pointer to Selector returned

Comments
The maximum number of parameters cannot exceed 16. ParamCount cannot be larg­

er than 16for16:16 call gates or 8 for 0:32 call gates.

310 Writing OS/2 2.1 Device Drivers in C

Example

II get ring 0 call gate

if(DynamicAPI((FARPOINTER)test_it,0,3,(FARPOINTER)&Newsel))
return(RPDONE I RPERR J ERROR_GEN_FAILURE);

II send back call gate to application

if (MoveBytes((FARPOINTER) &Newsel,
rp->s.IOCtl .buffer,
2))

return(RPDONE I RPERR I ERROR_GEN_FAILURE);

Appendix A - Device Helper Reference 311

EDI Mode: Interrupt, /nit

Issue an EOI to the 8259 PIC.

C Calling Convention

EOI(USHORT IROnum)

IROnum = IRO number to issue EOI against

Comments
This routine is used to issue an End-Of-Interrupt to the cascaded 8259 priority inter­
rupt controllers. If the interrupt is located on the second 8259, and EOI is also issued
to the lower 8259.

If the specified interrupt level is for the slave 8259 interrupt controller, then this rou­
tine will issue the EOI to both the master and slave 8259s.

On ISA bus systems, the interrupt handler is entered with the interrupts off. To pre­
vent the nesting of interrupts, interrupts should not be re-enabled until the EOI has
been issued. On PS/2 and EISA systems, the interrupt handler is entered with inter­
rupts enabled. In this case, to prevent nested interrupts, the interrupt routine should
disable interrupts, issue the EOI, and return to OS/2, where interrupts will be re­
enabled.

Example

EOI(10);

312 Writing OS/2 2.1 Device Drivers in C

FreeCtxHook Mode: Kernel, /nit

Free a context hook.

C Calling Convention

if (FreeCtxHook((LHANDLE) HookHandle)) error

HookHandle = handle from AllocateCtxHook

Comments
FreeCtxHook frees a context hook allocated by the AllocateCtxHook DevHlp service.

FreeGDTSelector Mode: Kernel, /nit

Free a GDT selector.

C Calling Convention

if (FreeGDTSelector(USHORT Sel)) error

Sel = selector allocated by AllocGDTSelector call

Comments
FreeGDTSelector frees a selector allocated with the AllocGDTSelector DevHlp ser­
vice.

The selector passed to this function must have been allocated using
AllocGDTSelector. This is verified and an error is returned if the selector was not
properly allocated.

Appendix A - Device Helper Reference 313

FreeLIDEntry Mode: Kernel, /nit

Release a Logical ID (LID).

C Calling Convention

if (FreeLIDEntry(USHORT Lid)) error

Lid= LID obtained from a previous GetLIDEntry DevHlp call

Comments
This routine is used to release a Logical ID. This can be done at either DEINSTALL
or when the device driver is closed.

The attempt to free a Logical ID not owned by the device driver, or that does not
exist, will fail.

Example

if (!(GetLIDEntry(OxlO, 0, 1, &lid)))
FreeLIDEntry(lid);

II get LID for POS

314 Writing 05/2 2.1 Device Drivers in C

Free Phys Mode: Kernel, /nit
Release previously allocated memory.

C Calling Convention

if (FreePhys((PHYSADDR) &PhysAddress)) error

&PhysAddress = 32 bit physical address of allocated memory

Comments
FreePhys is used to release memory previously allocated by the AllocPhys DevHlp
call.

Any memory that the device driver allocated by way of the AllocPhys should be
released prior to device driver termination.

Appendix A - Device Helper Reference 315

FreeReqPacket Mode: Kernel

Release an allocated request packet.

C Calling Convention

if (FreeReqPacket((PREOPACKET) &RequestPacket))error

&RequestPacket = far pointer to Request Packet

Comments
This function is used to release a request packet previously allocated by a
AllocReqPacket DevHlp call.

FreeReqPacket should only be performed on a request packet that was previously
allocated by an AllocReqPacket DevHlp call. The DevDone function should not be
used to return an allocated request packet. Since the system has a limited number of
request packets, it is important that a device driver free up allocated request packets
as soon as possible.

316 Writing 05/2 2.1 Device Drivers in C

GetDesc/nfo Mode: Kernel, Interrupt, /nit
Obtain information about a descriptor's contents.

C Calling Convention

if (GetDsecinfo(USHORT Selector,(FPUSHORT) &AX_Reg,(FPULONG) &ECX_Reg,
(FPULONG) &EDX_Reg)) error

Selector
AX_Reg
ECX_Reg
EDX_Reg

any selector
AX register (see below)
ecx register (see below)
edx register (see below)

Register Contents Returned

If descriptor was a call gate:
AL (LOUSHORT AX_Reg) =descriptors access byte
AH (HIUSHORT AX_Reg) = number of parameters
CX (LOUSHORT ECX_Reg) =selector
EDX = 32-bit offset (0:32 addressing)

If descriptor was not a
AL (LOUSHORT AX_Reg)
AH (HIUSHORT AX_Reg

ECX
EDX

Comments

call gate:
= descriptors access byte
= BIG and GRANULARITY fields of attribute

byte
=the 32 bit linear address in descriptor
=the 32 bit byte-granular size of the

decsriptor(O if 4GB)

When called for an LDT (Local Descriptor Table) descriptor, GetDesclnfo may block
other threads from executing. Therefore, at interrupt time, this routine is callable only
on GDT (Global Descriptor Table) descriptors. The routine can be called with either
type of descriptor at initialization or task time.

Appendix A - Device Helper Reference 317

GetOeviceB/ock Mode: /nit

Return an ABIOS Device block pointer.

Calling Sequence

if (GetDeviceBlock(USHORT Lid.far (FARPOINTER) &ABIOSDeviceBlock)) error

Lid =lid from GetLIDEntry
&ABIOSDeviceBlock =far pointer to device block data

Comments
GetDeviceBlock returns an ABIOS Device block pointer. The function returns a pro­
tect mode pointer only. Real mode pointers are not returned, rather the data is initial­
ized to zero.

This function will always fail on non-PS/2 machines.

Refer to the IBM Personal System/2 and Personal Computer BIOS Inteiface Technical
Reference, part number S68X-2341-00, for more detailed information on the use of
ABIOS and its associated data structures.

318 Writing OS/2 2.1 Device Drivers in C

GetOOSVar Mode: Kernel, /nit
Return the address of system variables.

C Calling Convention

if (GetDOSVar(USHORT IO,(FPFARPOINTER) &Ptr)) error

ID =identifier number of the variable
&Ptr = far pointer to address of returned pointer

Comments
Table A-4 contains a list of read-only variables that can be examined.

Appendix A - Device Helper Reference 319

Table A-4. Read Only System Variables

ID Description of Variable

1 SysINFOseg:WORD - segment address of the
System Global InfoSeg. Valid at both task time
and interrupt time, but not Init time.

2 LocINFOseg:DWORD- Selector/Segment
address of the local (LDT) INFO segment. Valid
only at task time.

3 Reserved

4 VectorSDF:DWORD- Pointer to the stand-alone
dump facility. Valid at both task time and inter-
rupttime.

5 VectorReboot:DWORD - Pointer to restart OS/2.
Valid at both task time and interrupt time.

6 Reserved

7 YieldFlag:BYfE - Indicator for performing time-
critical yields. Valid only at task time.

8 TCYieldFlag:BYfE - Indicator for performing
time-critical yields. Valid only at task time.

9 Reserved

10 Reserved

11 DOS mode Code Page Tag Pointer: DWORD
Segment/ offset of the current code page tag of
DOS mode. Valid only at Strategy time.

14 16:16 pointer to table of registered ADD entry
points

320 Writing OS/2 2. 1 Device Drivers in C

Example

II get current processes id

if (GetDOSVar(2,&ptr))
return (RPDONE I RPERR I ERROR_BAD_COMMAND);

II get process info

liptr = *((PLINFOSEG far*) ptr);

II if this device never opened, can be opened by any process

if (opencount ~ 0) II first time this device opened

else
{

}

savepid = liptr->pidCurrent; II save current process id

if (savepid != liptr->pidCurrent) II another proc tried to open
return (RPDONE I RPERR I RPBUSY); II so return error

++opencount[dev]; II bump counter, same pid

return (RPDONE);

Appendix A - Device Helper Reference 321

GetLIDEntry Mode: Kernel, /nit
Obtain a Logical ID (LID) for an existing device.

C Calling Convention

if (GetLIDEntry(USHORT DevType,USHORT Spec,USHORT Type,
(FPUSHORT) &Lid)) error

Dev ID
Spec
Type

=device type
0 - get first unclaimed LID, 1 - the first LID
1 - OMA or POS
0 - all others

&Lid far pointer to variable where the LID is returned

Comments
GetLIDEntry is used by a device driver to obtain a LID entry. Because OS/2 does not
support the Advanced BIOS Sleep/Wake functions, only devices that are "awake" are
considered to exist, and thus available to device drivers.

This function may be employed in two ways. One way is for the device driver to speci­
fy a relative LID. Because the ordering of LlDs corresponds to the ordering of physi­
cal devices, a device driver that desires to support a certain relative device can deter­
mine if a LID entry is available. (An example is a character device driver that supports
COM4; that is, it wishes to get the LID entry for the fourth COM port.)

The other way to use this function is for the device driver to request the first available
LID for its device type. (An example is a block device driver that wishes to get the
first available LID for diskettes.)

In either use of this function, GetLIDEntry will search the ABIOS Common Data Area
table for an entry corresponding to the specified device ID. If an entry is located that
matches the caller's form of request, it is returned to the caller. If a LID entry is found

322 Writing OS/2 2. 1 Device Drivers in C

but already owned, an error is returned. If no LID entry is found, an error is also
returned.

Example

if (!(GetLIDEntry(OxlO, 0, 1, &lid)))
FreeLIDEntry(lid);

II get LID for POS

Appendix A - Device Helper Reference 323

Internal Error Mode: Kernel, Interrupt, /nit

Indicate that an internal error has occurred.

C Calling Convention

InternalError((PSTRING) &Msg,USHORT Msglen)

&Msg = DS relative offset of message
Msglen = length of message

Comments
This DevHlp routine should be used only when an major internal problem is detected.
Continuing from this point may cause serious problems or possible data loss, so the
routine never returns. InternalError should not be used for less than fatal errors.

The maximum message length is 128 characters. Longer messages are truncated to
128 characters. The device driver name should appear as the first item in the message
text.

324 Writing OS/2 2. 7 Device Drivers in C

Lin ToGDTSelector Mode: Kernel, Interrupt, /nit
Convert linear address to virtual address.

C Calling Convention

if (LinToGDTSelector(USHORT Selector,LINADDR Address,ULONG Size)) error

Selector
Address
Size

selector allocated by AllocGDTSelector
32 bit linear address
size of memory in bytes

Comments
LlnToGDTSelector converts a linear address to a virtual (Selector:Offset) address by
mapping the given GDT (Global Descriptor Table) selector to the memory region
referred to by the given linear address and range. The size of the range mapped must
be less than or equal to 64KB.

The memory that is being mapped must be fixed or locked prior to this call. After this
call is issued for a particular selector, the addressability will remain valid until the
device driver changes its content with a subsequent call to the
PageListToGDTSelector, PhysToGDTSel, PhysToGDTSelector, or
LinToGDTSelector DevHlp services.

Appendix A - Device Helper Reference 325

Lin ToPageList Mode: Kernel, Interrupt, /nit

Convert a linear address to PageList array.

C Calling Convention

if (LinToPagelist(LINADDR LinAddress,ULONG Size,
CFLATPOINTER) &Pagelist, FPULONG Elements)) error

Li nAddress
Size
&Pagelist
Elements

32 bit linear starting address
size of the range to translate
flat pointer to Pagelist structure
number of elements in Pagelist array

The linear address range is translated into an array of PageList structures. Each
PageList structure describes a single physically contiguous subregion of the physical
memory that is mapped by the linear range. The format of the PageList structure is:

typedef struct _PAGELIST
ULONG pl_PhysAddr;

ULONG pl_cb;

II physical address of first byte
II in this subregion
II Number of contiguous bytes
II starting at pl_PhysAddr

326 Writing OS/2 2. 1 Device Drivers in C

Comments
LinToPageList translates a linear address range to an array of PageList structures that
describes the physical pages to be mapped.

The sum of the pl_cb fields in the PageList array produced by this function will be
equal to Size.

The physical pages that are mapped by the linear range must be fixed or locked prior
to this call.

It is the device driver's responsibility to ensure that enough entries have been
reserved for the range of memory being translated (possibly one entry per page in the
range, plus one more if the region does not begin on a page boundary).

Appendix A - Device Helper Reference 327

LockSeg Mode: Kernel, /nit

Lock a segment in memory.

C Calling Convention

if (LockSeg(USHORT Sel ,USHORT Type,USHORT Wait,(PLHANDLE) &Lhandle)) error

Sel
Type

Wait

=selector of user's memory from req packet
= 00 short term, any memory
= 01 long term, any memory
= 03 long term, high memory
= 04 short term, any memory, verify lock
= 00 block until available
= 01 return if not immediately available

&Lhandle = far pointer to returned handle

Comments
LockSeg is called by device drivers at Strategy time to lock a caller's memory seg­
ment.

LockSeg should be called to lock the caller's memory segment before attempting to
transfer data from the device driver to the calling application or from the application
to the device driver.

LockSeg Type 3:
For type 3, the segment is marked fixed, and the system may move it into the region
reserved for fixed segments. If the Lock returns no error, the segment is guaranteed
to be in high memory. Type 3 is available only during INIT, and is generally used to
reserve extra code or data segments for use by the device driver. A type 3 Lock can­
not be undone.

328 Writing 05/2 2. 1 Device Drivers in C

LockSeg Type 4:
The segment remains swappable. It will not be freed or shrunk until the verify lock is
removed.

Additional Comments
1. Short term locks are less than 2 seconds. Long-term locks are always greater than 2

seconds. Unless the device driver operation will be completed very quickly, do not
use the short-term LockSeg. Using up all swappable memory could cause a system
hang if the operating system runs out of swappable memory.

2. Failure to call UnLockSeg to release the locked segment will result in all of the GDT
entries being used up and the system will halt.

3. If the device driver is entered with a standard device driver function, such as
DosRead or DosWrite, the caller's segment is already locked by the kernel.
However, if the device driver is entered as a result of an IOCtl call, the device driver
must lock the segment. Although some documentation states that the caller's seg­
ment should be locked before verifying that it is valid (with the VerifyAccess call), it
is still safe to verify the segment first and then lock it immediately after the
Verify Access call.

4. OS/2 2.1 device drivers should always call LockSeg with the wait option (wait= 0).

Example

II lock the segment down temp

if(LockSeg(
SELECTOROFCrp->s.IOCtl .buffer),
0,
0,
CPLHANDLE) &lock_seg_han))

return CRPDONE I RPERR I

II selector
II lock for< 2 sec
II wait for seg lock
II handle returned
ERROR_GEN_FAILURE);

Appendix A - Device Helper Reference 329

Mon Flush
Flush a monitor chain.

C Calling Convention

if CMonFlush(SHANDLE Handle,CPERRCODE) &Error))error

Handle= short (16-bit) monitor handle
&Error = far pointer to error code

Comments

Mode: Kernel

MonFlush removes all data from the specified monitor chain (such as the data
stream).

This function may be called at task time only.

When a device driver calls MonFlush, the OS/2 monitor dispatcher creates and
places a flush record into the monitor chain. The general format of monitor records
requires that every record contains a flag word as the first entry. One of the flags is
used to indicate that this record is a flush record. The flush record consists only of
the flag word. This record is used by monitors along the chain to reset internal state
information, and to assure that all internal buffers are flushed. The flush record must
be passed along to the next monitor, because the monitor dispatcher will not process
any more information until the flush record is received at the end of the monitor
chain. That is, until it is returned to the device driver's monitor chain buffer at the end
of the monitor chain

Subsequent Mon Write requests will fail (or block) until the flush completes, that is,
until the flush record is returned to the device driver's monitor chain buffer.

330 Writing OS/2 2. 1 Device Drivers in C

Mon Create Mode: Kernel, /nit

Create or remove a monitor chain.

C Calling Convention

if (MonCreate((PSHANDLE) &Handle,(FARPOINTER) &Buf ,(FPFUNCTION) &Routine,
(PERRCODE) &Error)) error

&Handle = far pointer to handle
&Buf = far pointer to monitor buffer
&Routine = far pointer to monitor routine
&Error = far pointer to returned error

Comments
MonCreate creates an initially empty chain of monitors or removes an empty chain of

monitors.

This function may be called at task time only.

The monitor chain buffer (final buffer) is a buffer owned by the device driver. On call­

ing Mon Create, the first word of this buffer is the length of the buffer in bytes (includ­

ing the first word).

When the monitor chain handle specified is 0, a new monitor chain is created. When

the monitor chain handle specified is a handle that was previously returned from a

call to MonCreate (that is, Handle != O) the monitor chain referenced by that handle is

destroyed.

A monitor chain is a list of monitors, with a device driver monitor chain buffer address

and code address as the last element on this list. Data is placed into a monitor chain

through the Mon Write function; the monitor dispatcher feeds the data through all

registered monitors, putting the resulting data, if any, into the specified device driver

monitor chain buffer. When data is placed in this buffer, the device driver's notifica­

tion routine is called at task time. The device driver should initiate any necessary

action in a timely fashion and return from the notification entry point without delay.

Appendix A - Device Helper Reference 331

The Mon Create function establishes one of these monitor chains. The chains are cre­
ated empty so that data written into them is placed immediately into the device dri­
ver's buffer.

This routine can also destroy a monitor chain if the handle parameter (AX) is nonze­
ro. The nonzero value is the handle of the chain to remove. If the monitor chain to be
removed is not empty (that is, all monitors registered with this chain have not been
previously deregistered), an invalid parameter error is returned to the device driver.

A MonCreate call must be made before a monitor can be registered with the chain.
This can be done at any time, including during the installation of the device driver at
system load time.

The device driver's notification routine is called by the monitor dispatcher when a
data record has been placed in the device driver's monitor chain buffer. The device
driver must process the contents of the monitor chain buffer before returning to the
monitor dispatcher.

When the driver's notification routine is called, the first word of the buffer is filled in
with the length of the record just sent to the device driver. There is one notification
routine call for each record.

332 Writing OS/2 2. 1 Device Drivers in C

Mon Write Mode: Kernel, Interrupt

Write data to monitor chain.

C Calling Convention

if (MonWrite(SHANDLE Handle, (POINTER) &Rec,USHORT Size,USHORT Flag,
ULONG SyncTime,far &Error))error

Handle =monitor handle
&Rec = pointer to data record
Size = length of data record
Flag =wait flag, explained below
SyncTime =sync time, see below
&Error = address of returned error code

Comments
This function may be called at task time or interrupt time. The wait flag is set to 0 if
the Mon Write request occurs at task or user time and the device driver indicates that
the monitor dispatcher is to do the synchronization. If the wait flag is set to 0, the
device driver waits until the data can be placed into the monitor chain before the mon­
itor dispatcher returns to the device driver. If the wait flag is set to 1, the device driver
does not wait; and if the data cannot be placed into the monitor chain, the monitor dis­
patcher will return immediately with the appropriate error. The wait flag must be set
to 1 if the Mon Write request occurs at interrupt time. Wait flag is set to 2 if the
Mon Write request occurs at task or user time, and the device driver indicates that the
monitor dispatcher is to do the synchronization for the time in milliseconds, specified
in Timeout

The error, NOT_ENOUGH_MEMORY, will be returned to the device driver when the
Mon Write call is made and the monitors are not able to receive the data. If this condi­
tion occurs at interrupt time, an overrun occurred. If it occurs at task (or user) time,
the process can block.

The error, NOT_ENOUGH_MEMORY, also will be returned to the device driver
when a flush record, sent to the monitors by a previous MonFlush call, was not
returned to the device driver.

Appendix A - Device Helper Reference 333

If the thread on which the device driver calls Mon Write blocks (the device driver
specified the wait option) and is awakened because the process that owns the thread
is terminating, a ERROR_CHAR_CALL_INTERRUPfED is returned to the device dri­
ver.

Each call to Mon Write will send a single record. The data sent by this call is consid­
ered to be a complete record. A data record must not be longer than two bytes less
than the length of the device driver's monitor chain buffer.

334 Writing OS/2 2. 1 Device Drivers in C

OpenEventSem Mode: Kernel
Open a 32-bit shared-event semaphore.

Calling Sequence

if (OpenEventSem(LHANDLE Handle)) error

Handle = long handle to shared event semaphore

Comments
OpenEventSem can be called only from a Ring 0 device driver or file system device
driver. If the handle does not exist, or is not a "shared-event" semaphore, then
ERROR_INV ALID _HANDLE is returned.

The open and close operations can be nested. A maximum of 65,534 opens per
process are allowed for each semaphore at any one time. If this limit is exceeded,
OpenEventSem will return ERROR_TOO_MANY_OPENS. In order for a process to
intentionally destroy a semaphore prior to termination, the number of CloseEventSem
calls must equal the number of OpenEventSem calls.

Event semaphores are used for signaling between threads.

Appendix A - Device Helper Reference 335

PageListToGDTSelector Mode: Kernel, Interrupt, /nit

Map physical pages to a GDT selector.

C Calling Convention

if (PagelistToGDTSelector(USHORT Selector,ULONG Size,
(LINADDR) &Pagelist,USHORT Access,(FPUSHORT) &ModSelector)) error

Selector =selector to map
Size = number of bytes to map
&Pagelist =flat pointer to an array of PAGELIST structures
Access = descriptor's type and privilege level
&ModSelector =far pointer to selector returned with modified RPL bits

&PageLlst is the flat address of an array of PageLlst structures. Each PageLlst struc­
ture describes a single physically contiguous subregion of the physical memory to be
mapped. The format of the PageLlst structure is:

typedef struct _PAGELIST
ULONG pl_PhysAddr;

ULONG pl_cb;

II physical address of first byte
II in this subregion
II Number of contiguous bytes
II starting at pl_PhysAddr

336 Writing OS/2 2. 1 Device Drivers in C

Comments
PageListToGDTSelector maps physical addresses described in an array of PageList
structures to a CDT (Global Descriptor Table) selector, setting the access byte of the
descriptor to the requested type. The virtual memory needed to map the physical
ranges described by the PageList array must not exceed 64KB.

The physical memory that is being mapped must be fixed or locked prior to this call.
After this call, offset 0 within the selector will correspond to the first byte in the first
entry in the array pointed to by PageList. If the PageList is an unmodified return array
from VMLock or LinToPageList, then the mapping returned from this call will be the
same as the original linear range. However, if the PageList array was constructed by
some other means, or is a concatenation of two or more PageList arrays returned
from various other DevHlp services, the selector mapping may be noncontiguous.

The first byte mapped by the selector will correspond to the first byte described in the
first entry in the PageList array. The next n bytes, where n is the size parameter of the
first PageList entry, will be mapped contiguously from that point.

After this call has been issued for a particular selector, the addressability will remain
valid until the device driver changes its content with a subsequent call to the DevHlp
PageListToGDTSelector, PhysToGDTSel, PhysToGDTSelector, or
LinToGDTSelector.

Appendix A - Device Helper Reference 337

PageListToLin Mode: Kernel, Interrupt, /nit

Map an array of PageList structures.

C Calling Convention

if (PagelistTolin(ULONG Size,(FLATPOINTER) &Pagelist,
(PLINADDR) &LinAddr)) error

Size = count of bytes of memory to be mapped
&Pagelist =flat pointer to Pagelist structs
&LinAddr =far pointer to variable to receive linear address

Each PageList structure describes a single physically contiguous subregion of the
physical memory to be mapped. The format of the PageList structure is:

typedef struct _PAGELIST
ULONG pl_PhysAddr;

ULONG pl_cb;

II physical address of first byte
II in this subregion
II Number of contiguous bytes
II starting at pl_PhysAddr

338 Writing OS/2 2. 1 Device Drivers in C

Comments
PageListToLin maps physical memory pages, described in an array of PageList struc­
tures, to a linear address. The size of the linear mapping must not exceed 64KB.

The physical memory that is being mapped must be fixed or locked prior to this call.
After this call, the first byte within the returned linear range will correspond to the
first byte in the first entry in the array pointed to by PageList. If the PageList is an
unmodified return array from VMLock or LinToPageList, then the mapping returned
from this call will be the same as the original linear range. However, if the PageList
array was constructed by some other means, or is a concatenation of two or more
PageList arrays returned from various other DevHlp services, the linear mapping may
be noncontiguous.

The first byte in the linear mapping will correspond to the first byte described in the
first entry in the PageList array. The next n bytes, where n is the size parameter of the
first PageList entry, will be mapped contiguously from that point.

The starting linear address of subsequent PageList entries may be computed by
rounding up the linear address of the end of the previous entry to a page boundary,
and then adding on the low order 12 bits of the physical address of the target PageList
entry. ·

The linear mapping produced by calling PageListToLin is only valid until the caller
yields the CPU, or until it issues another PageListToLin call or a PhysToVirt call.
Calling PageListToLin will invalidate any previous PhysTo Virt mappings.

Appendix A - Device Helper Reference 339

PhysToGDTSel Mode: Kernel, Interrupt, /nit

Map a GDT selector to a physical address.

C Calling Convention

if CPhysToGDTSel(PHYADDR PhysAddr,ULONG Size,SEL Selector,
USHORT Access, CFPUSHORT) &NewSel)) error

PhysAddr = physical address to be mapped to selector
Size = size of segment, must be less than or equal to 64KB
Selector= GOT selector. from AllocGDTSelector
Access =descriptor's type and access level
&NewSel = address of returned modified selector

Comments
PhysToGDTSel maps a given GDT selector to a specified physical address, setting the

access byte of the descriptor to the desired privilege value. The specified segment

size must be less than or equal to 64KB.

The physical memory that is being mapped must be fixed or locked prior to this call.

After this call has been issued the addressability remains valid until the device driver

calls PhysToGDTSel, PhysToGDTSelector, PageListToGDTSelector, or

LinToGDTSelector.

340 Writing OS/2 2. 1 Device Drivers in C

PhysToGOTSelector Mode: Kernel, Interrupt, /nit
Convert a 32-bit physical address to a GDT selector-offset pair.

C Calling Convention

if (PhysGDTSelector(PHYSADDR Physaddr,USHORT Len,SEL Sel,
(PERRCODE) &Error)) error

Physaddr = physical address to map selector to
Len = length of segment
Sel =selector from AllocGDTSelector
&Error = far pointer to returned error code

Comments
PhysToGDTSelector is used to provide addressability through a GDT selector to data.
The interrupt handler of a device driver must be able to address data buffers regard­
less of the context of the current process. The GDT selector will remain valid until
another PhysToGDTSelector call is made for the same selector.

The AllocGDTSelector function is used at !NIT time to allocate the GDT selectors
that the device driver may use with the PhysToGDTSelector.

PhysToGDTSelector creates selector:offset addressability for a 32-bit physical
address. The selector created, however, does not represent a normal memory seg­
ment, but is a "fabricated segment" for private use by the device driver. Such a seg­
ment cannot be passed on system calls, and may only be used by the device driver to
fetch data.

Remember that GDT selectors mapped during !NIT cannot be used during !NIT, as
!NIT is run as a ring 3 thread.

Appendix A - Device Helper Reference 341

Example

if (!(SetIRQ(5,(PFUNCTION)INTERRUPT_HANDLER,0)))
{

if (!(AllocGDTSelector(l,(FARPOINTER)&Sel)))
{

if (!(PhysToGDTSelector(Oxd8000,0xlOOO,Sel ,&err)))
{

II output initialization message

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, 8, devhdr.DHname);
DosPutMessage(l, strlen(InitMessage), InitMessage);

II send back our cs and ds end values to osl2

if (Seglimit(HIUSHORT((void far*) Init), &rp->s.InitExit.finalCS)
I I Seglimit(HIUSHORT((void far*) InitMessage),
&rp->s.InitExit.finalDS))

Abort();
return (RP DONE) ;

342 Writing OS/2 2. 1 Device Drivers in C

Phys ToUVirt Mode: Kernel, /nit
Convert a physical address to a user virtual address.

C Calling Convention

if (PhysToUVirt(PHYSADDR Physaddr,USHORT Len,USHORT Type,
(FPFARPOINTER) &Virt)) error

Physaddr =physical address to map to LDT selector
Len = length of fabricated segment
Type = create, release (see comments)
&Vi rt =far pointer to returned virtual address

Comments
PhysToUVirt converts a 32-bit physical address to a valid selector-offset pair address­
able out of the current LDT.

This function is typically used to provide a caller of a device driver with addressability
to a fixed memory area, such as a memory-mapped adapter address. The device dri­
ver must know the physical address of the memory area to be addressed.

PhysTol1Virt creates selector:offset LDT addressability for a 32-bit physical address.
This function is provided so that a device driver can give an application process
addressability to a fixed memory area, such as in the BIOS-reserved range from
.640KB to lMB. It can also be used to give a ring 3 application addressability to a
device driver's data segment.

The selector created, however, does not represent a normal memory segment but is a
fabricated segment for private use between a device driver and an application. Data
within such a segment cannot be passed on system calls, and may only be used by the
receiving application to fetch data variables.

PhysToUVirt mappings are limited to 64KB.

Appendix A - Device Helper Reference 343

In OS/2 l.x, all LDT selectors returned by the PhysToUVirt Device Helper routine

were marked as privilege level 3 selectors. In OS/2 Version 2.1, the device driver can

specify whether the selector should be marked with DPL 3 or DPL 2. This allows an

LDT selector used by a dynamic link library routine, which is running with IOPL, to

be protected from accidental modification by the application program.

Example

II map board address to pte

if (PhysToUVirt(DRIVER_BASE,BASE_LENGTH,l,&mem))
return (RPDONE I RPERR I ERROR_GEN_FAILURE);

344 Writing OS/2 2. 1 Device Drivers in C

Phys To Vi rt Mode: Kernel, Interrupt, /nit
Convert a physical address to a virtual address.

C Calling Convention

if CPhysToVirtCPHYSADDR Physaddr,USHORT Len,USHORT Type,
CFPFARPOINTER) &Virt)) error

Physaddr =physical address to map GOT selector to
Len = length of fabricated segment
Type =must be 0 for returned selector in DS:SI
&Virt =far pointer to returned virtual address

Comments
The returned virtual address will not remain valid if the device driver blocks or yields
control. The returned virtual address may also destroyed if the device driver routine
that issues the PhysTo Virt calls another routine.

The device driver must not enable interrupts or change the segment register before
the device driver has finished accessing the data. When the device driver has finished
accessing the data, it must restore the interrupt state.

While pointers generated by this routine are in use, the device driver may only call
another PhysToVirt request. No other DevHlp routines can be called, because they
may not preserve the special DS/ES values created by the PhysTo Virt.

The converted addresses are valid as long as the device driver does not relinquish
control (Block, Yield, or RED. An interrupt handler may use converted addresses
prior to its EOI, with interrupts enabled. For performance reasons, a device driver
should try to optimize its usage of PhysTo Virt and UnPhysTo Virt.

Under OS/2 2.1, UnPhysToVrrt performs no function.

PhysTo Virt mappings are limited to 64KB.

Appendix A - Device Helper Reference 345

Example

II get pointer to screen memory, 16K long

if(PhysToVirt(Oxb8000L,Ox4000,0,(FARPOINTER) &Address)) error

346 Writing OS/2 2. 1 Device Drivers in C

PostEventSem Mode: Kernel
Post a 32-bit shared-event semaphore.

C Calling Convention

if (PostEventSem(LHANDLE Handle)) error

Handle= long handle to shared event semaphore

Comments

If the event is already posted, the post count is incremented and the
ERROR_ALREADY_POSTED return code is returned. Otherwise, the event is posted,
the post count is set to one, and all threads that called DosWaitEventSem are made
runnable.

PostEventSem can be called only from a ring 0 device driver or file system driver. The
handle passed in must be a handle to a shared-event semaphore. If the handle does
not exist, is not a "shared-event" semaphore, or if the semaphore was not previously
opened with OpenEventSem, then ERROR_INVALID_HANDLE will be returned.

There is a limit of 65,535 posts allowed per event semaphore. If this limit is exceeded,
then ERROR_TOO_MANY_POSTS return code is returned.

Calling ResetEventSem will reset the event, so that any threads that subsequently
wait on the event semaphore (with DosWaitEventSem) will be blocked.

Appendix A - Device Helper Reference 347

Pu I/Particular Mode: Kernel, Interrupt

Pull a particular request packet from the request packet linked list.

C Calling Convention

if (PullParticular((PQHEAD) &QueueHead,(PREOPACKET) &RequestPacket))error

&QueueHead = address of queue head
&RequestPacket = far pointer to Request Packet

Comments
A device driver uses the PushReqPacket and PullReqPacket DevHlps to maintain a

work queue for each of its devices. PullParticular is used to remove a specific request

packet from the work queue, typically for the case where a process has terminated

before finishing its I/ 0.

PullParticular may also be used to remove request packets that were allocated by an

AllocReqPacket from the request packet linked list.

The pointer to the request packet is used to determine the request packet to be

retrieved.

348 Writing 05/2 2. 1 Device Drivers in C

Pul/ReqPacket Mode: Kernel, Interrupt
Pull the next waiting request packet from the selected request packet linked list.

C Calling Convention

if CPullReqPacket((PQHEAD) &QueueHead,(PREOPACKET) &RequestPacket)) error
&QueueHead = address of queue head
&RequestPacket = far pointer to Request Packet

Comments
A device driver uses the PushReqPacket and PullReqPacket DevHlps to maintain a
work queue for each of its devices/units. The device driver must provide the storage
for the work queue head, which defines the start of the request packet linked list. The
work queue head must be initialized to 0.

PullReqPacket may also be used to remove request packets that were allocated by an
AllocReqPacket from the request packet queue.

Appendix A - Device Helper Reference 349

PushReqPacket Mode: Kernel

Add the current request packet to the linked list of packets.

C Calling Convention

if (PushReqPacket((PQHEAD) &QueueHead,(PREQPACKET) &RequestPacket)) error

&QueueHead = address of queue head
&RequestPacket = far pointer to of Request Packet

Comments
A device driver uses the PushReqPacket and PullReqPacket DevHlps to maintain a
work queue for each of its devices. The device driver must provide the storage for the
work queue head, which defines the start of the request packet linked list. The work
queue head must be initialized to 0.

PushReqPacket may also be used to place request packets that were allocated by an
AllocReqPacket in the request packet work queue.

350 Writing OS/2 2. 1 Device Drivers in C

aueueFlush Mode: Kernel, Interrupt
Clear the specified character queue.

C Calling Convention

if (QueueFlush((PCHARQUEUE) &CharQueue)) error

&CharQueue =address of OS relative CHARQUEUE

Comments
QueueFlush operates on the simple character queue structure initialized by
Queuelnit.

typedef struct _CHARQUEUE
USHORT Qsize;
USHORT Oindex;
USHORT Qcount
UCHAR buf[Qsize]
} CHARQUEUE;

{

II size of queue in bytes
II index of next char out
II count of chars in the queue
II start of queue buffer

Appendix A - Device Helper Reference 351

aueuelnit Mode: Kernel, Interrupt, /nit
Initialize the specified character queue.

C Calling Convention

if (Queuelnit((PCHARQUEUE) &CharQueue)) error

&CharQueue =address of OS relative CHAROUEUE

Comments
Queuelnit must be called before any other queue manipulation subroutine. The
device driver must allocate the character queue buffer and initialize the Qsize field
before the queue is used.

typedef struct _CHAROUEUE {
USHORT Qsize; II size of queue in bytes
USHORT Oindex; II index of next char out
USHORT Qcount II count of chars in the queue
UCHAR buf[Qsize] II start of queue buffer
} CHARQUEUE;

352 Writing OS/2 2. 1 Device Drivers in C

aueueRead Mode: Kernel, Interrupt
Read a character from the beginning of the specified character queue.

C Calling Convention

if (QueueRead((PCHAROUEUE) &CharOueue, CFPUCHAR) &Char)) error

&CharQueue =address of OS relative CHARQUEUE
&Char = far pointer to returned char

Comments
QueueRead reads a single character from the specified queue.

typedef struct _CHARQUEUE {
USHORT Qsize; // size of queue in bytes
USHORT Olndex; // index of next char out
USHORT Qcount // count of chars in the queue
UCHAR buf[Qsize] //start of queue buffer
} CHARQUEUE;

Appendix A - Device Helper Reference 353

aueueWrite Mode: Kernel, Interrupt
Add a character at the end of the specified character queue.

C Calling Convention

if (QueueWrite((PCHARQUEUE) &CharQueue,UCHAR Char)) error

&CharQueue =address of DS relative queue
&Char = character to write to queue

Comments
QueueWrite writes a single character to the specified queue. The queue must have
been previously allocated and initialized with Queuelnit

typedef struct _CHARQUEUE
USHORT Qsize;
USHORT Qlndex;
USHORT Qcount
UCHAR buf[Qsize]
} CHARQUEUE;

{
II size of queue in bytes
II index of next char out
II count of chars in the queue
II start of queue buffer

354 Writing 05/2 2. 1 Device Drivers in C

Register Mode: Kernel

Add a device monitor.

C Calling Convention

if (Register(SHANOLE Handle,USHORT Position,PIO,(FARPOINTER) &Inbuf,
(OFF) &Outbuf ,(PERRCOOE) &Error)) error

Handle =monitor handle
Position = position in chain
PIO = PIO of owning program
&Inbuf = far address of monitor input buffer
&Outbuf = short offset of output buffer
&Error = far address of returned error code

Comments
Register adds a device monitor to the chain of monitors for a class of device.

This function may be called at task time only. The monitor chain must have previous­
ly been created with MonCreate.

A single process may register more than one monitor (with different input and output
buffers) with the same monitor chain. The first word of each of the input and output
buffers must contain the length in bytes (length-word inclusive) of the buffers. The
length of the monitor's input and output buffers must be greater than the length of the
device driver's monitor chain buffer plus 20 bytes.

The input buffer, output buffer offset, and placement flag are supplied to the device
driver by the monitor application that is requesting monitor registration.

The device driver must identify the monitor chain with the monitor handle returned
from a previous MonCreate call. The device driver can determine the PID of the
requesting monitor task by calling GetDOSVar, and retrieving it from the local infoseg.

Appendix A - Device Helper Reference 355

RegisterBeep Mode: Kernel, /nit

Register the beep service entry point.

C Calling Convention

if (RegisterBeep((FPFUNCTION) &BeepRoutine)) error

&BeepRoutine = 16:16 address of driver's beep routine

Comments
RegisterBeep is called by the clock device driver during initialization time to register
its beep service entry point.

356 Writing 05/2 2. 1 Device Drivers in C

RegisterDeviceC/ass Mode: Kernel, Interrupt, /nit

Register an ADD Device Class.

C Calling Convention

if (RegisterDeviceClass(&DDName,&CmdHandler,Flags,Class,&Handle)) error

ASCIIZ driver name &DDName
&CmdHandl er.
Flags

16:16 address of ADD's command handler
0 for ADDs

Class
&Handle

Comments

1 for ADDs
address of returned ADD handle

If this call fails, the driver should fail quietly by returning RPDONE I
ERROR_l24_QUIET+INIT_FAIL.

Information about each registered device is kept in a class table. The driver can obtain a
16:16 pointer to the table by calling the GetDosVar DevHlp with the
DHGETDOSV _DEVICECIASSTABLE option. The class table format is described in
FigureA-1.

A device driver can derive an ADD's entry point using the ADD's handle by calling
GetDOSVar, and then using the code stub shown in Figure A-2.

Appendix A - Device Helper Reference 357

II
II Device Class Structure - returned by dh_GetDOSVar when
II AL=DHGETDOSV_DEVICECLASSTABLE and CX = device_class
II
II

#define MAXDEVCLASSNAMELEN 16 II Max len of DevClass Name
#define MAXDEVCLASSTABLES 2 II Max num of DevClass tables

#define MAXDISKDCENTRIES 32 II Max num of entries in DISK table
#define MAXMOUSEDCENTRIES 3 II Max num of entries in Mouse table

II structures for the DeviceClassTable

struct DevClassTableEntry
{

} ;

USHORT
USHORT
USHORT
UC HAR

DCOffset;
DCSelector;
DCFl ags;
DCName[MAXDEVCLASSNAMELENJ;

struct DevClassTableStruc
{

USHORT DCCount;
USHORT DCMaxCount;
struct DevClassTableEntry DCTableEntries[lJ;

} ;

Figure A-1. ADD Device Class Table.

358 Writing 05/2 2. 1 Device Drivers in C

USHORT Index= AddHandle-1

AddSel = pClassTable->DCTableEntries[IndexJ.DCSelector;
AddOff = pClassTable->DCTableEntries[IndexJ.DCOffset;

Figure A-2. Retreiving an AD D's entry point using GetDOSVar.

Appendix A - Device Helper Reference 359

RegisterPOO Mode: Kernel, /nit

Register a 16:16 PDD to support PDD-VDD communications.

C Calling Convention

if (RegisterPDD((FPUCHAR) &DDName,(FPFUNCTION) &DDFunction)) error

&DDName =address of ASCII-Z driver name
&DDFunction = 16:16 address of POD function

Comments
RegisterPDD registers a 16:16 physical device driver (PDD) for PDD-VDD communi­
cation with a virtual device driver (VDD).

The function is used by a physical device driver to register its name and a communi­
cation entry point with the DOS Session Manager. Later, a virtual device driver can
use VDHOpenPDD to open communication with the physical device driver.

If the function fails, a system halt will occur.

If the address of the PDD function is NULL (O;O), this call removes the registration of
this physical device driver's name.

The physical device driver name supplied to this service does not need to match the
string in the physical device driver's header.

If a physical device driver ever deactivates itself, it must close down any interaction
with virtual device drivers.

If a physical device driver registers an entry point during initialization, but fails later
during initialization, it must call this function with a NULL function pointer in order to
remove the registration.

360 Writing OS/2 2. 1 Device Drivers in C

RegisterStackUsage Mode: /nit
Register interrupt stack requirements.

C Calling Convention

if(RegisterStackUsage((PREGSTACK) &RSUstruct)) error

&RSUstruct = DS-reative address of STACKUSAGE structure

Comments
RegisterStackUsage indicates the expected stack usage of the device driver to the
interrupt manager.

The StackUsage data structure has the following format:

typedef struct _STACKUSAGE { II StackUsage struct
USHORT cbStruct; II set to 14 before using
USHORT flags; II Bit OxOOOl indicates that the interrupt

II procedure enables interrupts. All other
II bits are reserved.

USHORT iIRO; II IRO of interrupt handler that is being
II described by the following data.

USHORT cbStackCLI;ll Number of bytes of stack used in the
II interrupt proc when rupts are disabled.

USHORT cbStackSTI;ll Num of bytes of stack after interrupt
II procedure enables interrupts.

USHORT cbStackEOI;ll Number of bytes of stack used after
II interrupt procedure issues EOI.

USHORT cNest; II Maximum number of levels that the device
II driver expects to nest.

} STACKUSAGE;

Appendix A - Device Helper Reference 361

A device must issue RegisterStackUsage once for each IRQ that it expects to receive.

OS/2 2.1 supports a total of 8KB of interrupt stack.

362 Writing OS/2 2. 1 Device Drivers in C

RegisterTmrDD Mode: /nit

Get pointers to Tmr variables.

C Calling Convention

if (RegisterTmrDD((FPFUNCTION) &TimerEntry,FPFARPOINTER &TmrRollover,
(FPFARPOINTER) &TmrValue)) error

&TimerEntry = 16:16 address of Timer entry point

Comments
RegisterTmrDD sends the device driver pointers to the Tmr value and Tmr rollover

count in kernel address space.

RegisterTmrDD is callable only at Timer device driver initialization time. It returns

the Tmr value and rollover count

Appendix A - Device Helper Reference 363

ResetEventSem Mode: Kernel

Reset a 32-bit shared-event semaphore.

C Calling Convention

if CResetEventSem(LHANDLE Handle,(PLINADDR) &Posts)) error

Handle= semaphore handle
&Posts= address of variable to receive# of posts before reset

Comments
ResetEventSem resets an event semaphore that has previously been opened with
OpenEventSem.

The number of posts performed on the event before it was reset is returned to the
caller in the pulPostCt parameter. If the event was already reset, the ERROR
ALREADY RESET return code is returned, and zero is returned in the pulPostCt para­
meter. It is not reset a second time.

ResetEventSem can only be called from a Ring 0 device driver or file system driver.
The handle passed in must be a handle to a shared-event semaphore. If the handle
does not exist or is not a "shared-event" semaphore, or if the semaphore was not pre­
viously opened with OpenEventSem, then ERROR_INVALID_HANDLE will be
returned.

To reverse this operation, call PostEventSem. This will post the event, so that any
threads that were waiting for the event semaphore to be posted (with
Dos W aitEventSem) will be allowed to run.

364 Writing OS/2 2. 1 Device Drivers in C

ResetTimer Mode: Kernel, Interrupt, /nit

Remove a timer handler.

C Calling Convention

if (ResetTimer((PFUNCTION) &TimerRoutine)) error

&TimerRoutine =address of OS relative timer

Comments
This function removes a timer handler from the list of timer handlers. Timer handlers
are analogous to the user timer interrupt (INT lCh) of DOS.

DS should be set to the device driver's data segment. If the device driver had done a
PhysToVirt referencing the DS register, it should restore DS to the original valu~.

Appendix A - Device Helper Reference 365

Run Mode: Kernel, Interrupt

Run a blocked thread.

C Calling Convention

if (Run((ULONG) ID)) error

ID= ID of previously Blocked thread

Comments
This is the companion routine to Block. When Run is called, it awakens the threads
that were blocked for this particular event identifier.

Run returns immediately to its caller; the awakened threads will be run at the next
available opportunity. Run is often called at interrupt time.

366 Writing OS/2 2. 1 Device Drivers in C

SchedC/ockAddr Mode: Kernel, /nit
Get system clock tick handler address.

C Calling Convention

if (SchedClockAddr((PFARPOINTER) &Ptr)) error

&Ptr =OS-relative far pointer to returned address

Comments
This service is provided to the clock device driver to allow it to obtain a pointer to the
address of the system's clock tick handler, SchedClock. SchedClock must be called
on each occurrence of a periodic clock tick.

The clock device driver calls this DevHlp service during the clock device driver's ini­
tialization. SchedClock must be called at interrupt time for each periodic clock tick to
indicate the passage of system time. The "tick" is then dispersed to the appropriate
components of the system.

The clock device driver's interrupt handler must run with interrupts enabled as the
convention, prior to issuing the EOI for the timer interrupt. Any critical processing,
such as updating the fraction-of-seconds count, must be done prior to calling
SchedClock. SchedClock must then be called to allow system processing prior to the
dismissal of the interrupt. When SchedClock returns, the clock device driver must
issue the EOI and call SchedClock again. Note that once the EOI has been issued, the
device driver's interrupt handler may be reentered. The DevHlp SchedClock is also
reentrant.

The device driver must not get the actual address of the SchedClock routine, but
instead use the pointer returned by the DevHlp call.

Appendix A - Device Helper Reference 367

SemClear Mode: Kernel, Interrupt
Clear a 16-bit semaphore.

C Calling Convention

if (SemClear(LHANDLE Handle)) error

Handle= handle to semaphore

Comments
This function releases a semaphore and restarts any blocked threads waiting on the
semaphore.

A device driver may clear either a RAM semaphore or a system semaphore. The
device driver may obtain (own) a semaphore through SemRequest.

The semaphore handle for a RAM semaphore is the virtual address of the doubleword
of storage allocated for the semaphore. To access a RAM semaphore at interrupt time,
the device driver must locate the semaphore in the device driver's data segment.

For a system semaphore, the handle must be passed to the device driver by the caller
by way of a generic IOCtl. The device driver must convert the caller's handle to a sys­
tem handle with SemHandle.

A RAM semaphore can be cleared at interrupt time only if it is in storage that is direct­
ly addressable by the device driver, that is, in the device driver's data segment.

SemClear cannot be used to clear a 32-bit application semaphore.

368 Writing OS/2 2. 1 Device Drivers in C

SemHandle Mode: Kernel, Interrupt

Get handle to a 16-bit semaphore.

C Calling Convention

if (SemHandle(LHANDLE Handle,USHORT Flag,(PLHANDLE) &NewHandle)) error

Handle = handle of user's semaphore
Flag = see comments
&NewHandle = pointer to new DD-specific handle

Comments
This function provides a semaphore handle to the device driver.

This function is used to convert the semaphore handle provided by the caller of the

device driver to a system handle that the device driver may use. This new handle

becomes the handle that the device driver uses to reference the system semaphore.

This allows the system semaphore to be referenced at interrupt time by the device

driver.

SemHandle is called at task time to indicate that the system semaphore is IN-USE,

and is called at either task time or interrupt time to indicate that the system sema­
phore is NOT-IN-USE. IN-USE means that the device driver may be referencing the

system semaphore. NOT-IN-USE means that the device driver has finished using the

system semaphore and will not be referencing it again.

The handle of a RAM semaphore is its virtual address. SemHandle may be used for
RAM semaphores. Because RAM semaphores have no system handles, SemHandle

will simply return the RAM semaphore handle back to the caller.

SemHandle cannot be used to obtain the handle of a 32-bit application semaphore.

Appendix A - Device Helper Reference 369

It is necessai:y to call SemHandle at task time to indicate that a system semaphore is
IN-USE because:

1. The caller-supplied semaphore handle refers to task-specific system semaphore
structures. These structures are not available at interrupt time, so SemHandle con­
verts the task-specific handle to a system-specific handle.

2. An application could delete a system semaphore while the device driver is using it If
a second application were to create a system semaphore soon after, the system struc­
ture used by the original semaphore could be reassigned. A device driver that tried
to manipulate the original process's semaphore would inadvertently manipulate the
new process's semaphore. Therefore, the SemHandle IN-USE indicator increases a
counter so that, although the calling thread may still delete its task-specific reference
to the semaphore, the semaphore remains in the system.

370 Writing 05/2 2.1 Device Drivers in C

SemRequest Mode: Kernel
Request a 16-bit semaphore.

C Calling Convention

if CSemRequestCLHANDLE Handle,ULONG Timeout,CPERRCODE) &Error)) error

Handle = handle of DD semaphore
Timeout =how long to wait in ms
&Error =far address of variable to receive error code

Comments

If the semaphore is already owned, the thread in the device driver is blocked until the
semaphore is released or until a time-out occurs.

SemRequest checks the state of the semaphore. If it is unowned, SemRequest marks
it "owned" and returns immediately to the caller. If the semaphore is owned,
SemRequest will optionally block the device driver thread until the semaphore is
unowned, then try again. The time-out parameter is used to place an upper limit on
the amount of time to block before returning to the requesting device driver thread.

SemClear is used at either task time or interrupt time to release the semaphore.

The semaphore handle for a RAM semaphore is the virtual address of the doubleword
of storage allocated for the semaphore. To access a RAM semaphore at interrupt time,
the device driver must locate the semaphore in the device driver's data segment.

For a system semaphore, the handle must be passed to the device driver by the caller
through a generic IOCtl. The device driver must convert the caller's handle to a sys­
tem handle with SemHandle.

SemRequest may not be used to request a 32-bit application semaphore.

Appendix A - Device Helper Reference 371

Send Event Mode: Kernel, Interrupt
Simulate the occurrence.

C Calling Convention

if (SendEvent(USHORT EventNumber,USHORT Parameter)) error

EventNumber =number of event (see comments)
Parameter = (see comments)

372 Writing OS/2 2. 1 Device Drivers in C

The device driver events are described in Table A-5.

Table A-5. Device Driver Events

Event Event Parameter Comments
number

Session manager 0 2-byte time stamp Where the high-order

hot key from the byte is in seconds and the

mouse low-order byte is in hun-
dredths of seconds.

Ctrl +Break 1 0

Ctrl + C 2 0

Ctrl + NumLock 3 Foreground
session number

Ctrl + PrtSc 4 0

Shift + PrtSc 5 0

Session Manager 6 Hot Key ID The keyboard device

hot key from the driver uses the hot key

keyboard ID, which was set by way
of keyboard IOCtl 56H
(SET SESSION MANAG-
ER HOT KEY).

Reboot key 7 0
sequence from
the keyboard

Appendix A - Device Helper Reference 373

Set/Ra Mode: Kernel, /nit

Register for a particular interrupt.

C Calling Convention

if (SetIRQ(USHORT IRQNumber,(PFUNCTION) &Handler,USHORT SharedFlag)) error

IRQNumber = IRQ level
&Handler =offset to interrupt handler in 1st code segment
SharedFlag = shared or unshared interrupt

Comments
This service is used to set a hardware interrupt vector to the device driver interrupt
handler.

The attempt to register an interrupt handler for an IRQ to be Shared will fail if the IRQ

is already owned by another device driver as Not Shared, or is the IRQ used to cas­
cade the slave 8259 interrupt controller (IRQ 2).

Hardware interrupt sharing is not supported on all systems. A SetIRQ request to

share an interrupt level on a system where sharing is not supported (ISA bus) will

return an error.

Example

if(SetIRQ(lO,(PFUNCTION)INT_HNDLR,0))
{

II if we failed, deinstall driver with cs+ds=O

DosPutMessage(l, 8, devhdr[devJ.DHname);
DosPutMessage(l,strlen(IntFailMsg),IntFailMsg);
rp->s.InitExit.finalCS =(OFF) O;
rp->s.InitExit.finalDS =(OFF) O;

return (RPDONE \ RPERR \ ERROR_BAD_COMMAND);

37 4 Writing OS/2 2. 1 Device Drivers in C

SetTimer Mode: Kernel, /nit
Add a timer handler.

C Calling Convention

if (SetTimer((PFUNCTION) &TimerHandler)) error

&TimerHandler =offset of timer handler routine in first code segment

Comments
SetTimer adds a timer handler to the list of timer handlers to be called on a timer tick.

The DevHlp SetTimer is a subset of the DevHlp TickCount.

This function allows a device driver to add a timer handler to a list of timer handlers
called on every timer tick. A device driver may use a timer handler to drive a non­
interrupt device instead of using time-outs with the Block and Run services. Timer
handlers are required to save and restore registers.

A maximum of 32 timer handlers are available in the system.

Appendix A - Device Helper Reference 375

SortReqPacket Mode: Kernel

Sort request packet queue by sector.

C Calling Convention

if (SortReqPacket((PQHEAD) &QueueHead,(PREOPACKET) &RequestPacket))) error

&QueueHead = address of queue head
&RequestPacket = far address of Request Packet

Comments
This routine is used by block (disk) device drivers to add a new request to their work

queue. This routine inserts the request packet in the linked list of request packets in

the order of starting sector number.

The sorting by sector number is aimed at reducing the length and number of head

seeks. This is a simple algorithm and does not account for multiple heads on the media
or for a target drive in the request packet. SortReqPacket inserts the current request

packet into the specified linked list of packets, sorted by starting sector number.

SortReqPacket may be used to place request packets that were allocated by an

AllocReqPacket in the request packet queue.

376 Writing OS/2 2. 1 Device Drivers in C

TCYield Mode: Kernel
Allow time-critical threads to run.

C Calling Convention

TCYield()

Comments
This function is similar to the Yield function, except that the CPU may only be yielded
to a time-critical thread, if one is available.

It is not necessary for the device driver to do both a Yield and a TCYield. The TCYield
function is a subset of the Yield function.

If your device driver transfers large blocks of data, you should periodically check the
TCYield Flag, and call the TCYield function to yield the CPU to a time-critical thread.

The location of the TCYield Flag is obtained from the GetDOSV ar call.

For performance reasons, the device driver should check the TCYield Flag once
every three milliseconds. If the flag is set, then the device driver should call TCYield.

Because the device driver may relinquish control of the CPU, the device driver should
not assume that the state of the interrupt flag will be preserved across a call to
TCYield.

Appendix A - Device Helper Reference 377

TickCount Mode: Kernel, Interrupt, /nit

Set up a timer handler with a specified time interval.

C Calling Convention

if (TickCount((PFUNCTION) &TimerRoutine,USHORT Count)) error

&TimerRoutine =offset of timer handler in first code segment
Count =number of ticks

Comments
TickCount will register a new timer handler, or modify a previously registered timer
handler, to be called on every n timer ticks instead of every timer tick.

A device driver may use a timer handler to drive a non-interrupt device, instead of
using time-outs with the Block and Run services. Block and Run are costly on a char­
acter-by-character basis; the cost is one or more task switches for each character I/0.
Timer handlers are required to save and restore registers.

For a previously registered timer handler, TickCount changes the number of ticks
that must take place before the timer handler gets control. This will allow device dri­
vers to support the time-out function without needing to count ticks.

378 Writing OS/2 2. 1 Device Drivers in C

UnlockSeg Mode: Kernel, /nit

Unlock a memory segment.

C Calling Convention

if (UnlockSeg(LHANDLE Handle)) error

Handle= handle to memory area from LockSeg call

Comments
This DevHlp UnLocks a segment previously locked with the LockSeg DevHelp.

Example

if(UnlockSeg(lock_seg_han))
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

Appendix A - Device Helper Reference 379

UnPhysToVirt Mode: Kernel, Interrupt, /nit

Release selector previously allocated by a call to PhysToVirt or PhysToUVirt.

C Calling Convention

/if CUnPhysToVirt()) error

Comments
UnPhysTo Virt is required to mark the completion of address conversion from
PhysTo Virt.

For OS/2 1.x, UnPhysToVirt must be called by the same procedure that issued the
PhysTo Virt when the use of converted addresses is completed and before the proce­
dure returns to its caller. The procedure that called PhysTo Virt may call other proce­
dures before calling UnPhysToVirt. Multiple PhysToVirt calls may be issued prior to
issuing the UnPhysTo Virt. Only one call to UnPhysTo Virt is needed.

Under OS/2 2.1, UnPhysToVirt performs no function, but is left in for compatibility
with OS/2 1.x drivers.

Example

if CUnPhysToVirt())
returnCRPDONE I RPERR I ERROR_GEN_FAILURE);

380 Writing OS/2 2. 1 Device Drivers in C

UnSet/Ra Mode: Kernel, Interrupt, /nit
Remove the current hardware interrupt handler.

C Calling Convention

if (UnSetIRQ(USHORT IRQNum)) error

IRQNum = IRQ level to remove

Comments
DS must point to the device driver's data segment upon entry.

Appendix A - Device Helper Reference 381

Verify Access Mode: Kernel
Verify access to the callers memory area.

C Calling Convention

if (VerifyAccess(SEL Sel ,OFF Off ,USHORT Memsize,USHORT Code)) error

Sel
Off
Memsize
Code

=selector of memory area
= offset of memory area
= number of bytes to verify
= read, read/write. (see comments)

Comments
This routine verifies that the user process has the correct access rights for the memo­
ry that it passed to the device driver. If the process does not have the needed access
rights to the memory, then it will be terminated. If it does have the needed access
rights, these rights are guaranteed to remain valid until the device driver exits its
Strategy routine.

A device driver can receive addresses to memory as part of a generic IOCtl request
from a process. Because the operating system cannot verify addresses imbedded in
the IOCtl command, the device driver must request verification in order to prevent
itself from accidentally erasing memory on behalf of a user process. If the verification
test fails, then Verify Access will terminate the process.

Once the device driver has verified that the process has the needed access to address­
es of interest, it does not need to repeat the verification until it yields the CPU. When
the device driver yields the CPU, all address access verifications that it has done
become unreliable, except for segments that have been locked. The device driver
could yield the CPU by accessing a not-present-segment, exiting its Strategy routine,
or calling a DevHlp service that yields while performing the service.

382 Writing OS/2 2. 1 Device Drivers in C

Example

II verify caller owns this buffer area

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl .buffer),
OFFSETOF(rp->s.IOCtl .buffer),
4,

II selector
II offset
II 4 bytes

0))
return (RPDONE I RPERR I

II read only
ERROR_GEN_FAILURE);

Appendix A - Device Helper Reference 383

VideoPause Mode: Kernel, Interrupt, /nit

Start or stop high-priority threads.

C Calling Convention

if (VideoPause(USHORT PauseFlag)) error

PauseFlag = 0 - turn off pause
= 1 - turn on pause

Comments
This function is called by device drivers when the controller reports a DMA overrun.
VideoPause starts or stops high-priority threads. This halts threads using the CPU for
video transfers, which allows the diskette DMA to complete termination properly.

Use this function after a DMA transfer retry has failed. Tum VideoPause on just long
enough to accomplish the DMA transfer; otherwise, impairment of the system could
occur. If multiple device drivers tum VideoPause on, it is not turned off until all device
drivers have turned it off.

384 Writing OS/2 2. 1 Device Drivers in C

VirtToLin Mode: Kernel, Interrupt, /nit

Convert a Selector:Offset pair into a linear address.

C Calling Convention

if (VirtTolin((FARPOINTER) VirtAddress,(PLINADDR) &LinAddr)) error

VirtAddress = 16:16 virtual address
LinAddr =variable to receive linear address

Example

Flags= Oxla;

if (VirtTolin((FARPOINTER)Pagelist,(PLINADDR)&lpPagelist));

if (VirtTolin((FARPOINTER)LockHandle,(PLINADDR)&lplockHandle));

if (VMLock(linaddr,100,lpPagelist,lpLockHandle,
Flags,(FARPOINTER) &Elements))

. {
DosPutMessage(l, 2, Crlf);
DosPutMessage(l, strlen(LockFailMessage), LockFailMessage);

else
{

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, strlen(LockPassMessage), LockPassMessage);

Appendix A - Device Helper Reference 385

VirtToPhys Mode: Kernel, /nit
Convert a selector-offset pair to a 32-bit physical address.

C Calling Convention

if (VirtToPhys((FARPOINTER) &VirtAddr,(PHYSADDR) &PhysAddr))error

&VirtAddr =virtual pointer to memory
&PhysAddr = pointer to returned physical address

Comments
The virtual address should be locked by way of the DevHlp Lock call prior to invoking
this function, if the segment is not known to be locked already.

This function is typically used to convert a virtual address supplied by a process, by
way of a generic IOCtl, in order that the memory may be accessed at interrupt time.

Example

II get physical address of buffer

if (VirtToPhys(
(FARPOINTER) rp->s.IOCtl .buffer,// the virtual address
(FARPOINTER) &appl_buffer)) // physical address

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

386 Writing 05/2 2. 1 Device Drivers in C

VMAl/oc Mode: Kernel, /nit

Allocate memory or map a physical address.

C Calling Convention

if (VMAlloc((PLINADDR) &Physaddr,ULONG Size,ULONG Flags,
(PLINADDR) &Linaddr)) error

Physaddr =physical address to be mapped
Size = size of object in bytes
Flags =flags used for allocation request (see comments)
&Linaddr =pointer to linear address returned

Comments
VMAlloc allocates virtual memory and, depending on the value of a flag, either com­

mits physical storage or maps virtual memory to a given physical address.

VMAlloc obtains a global, Ring 0 linear mapping to a block of memory. The physical

address of the memory can be specified for non-system memory, or the system will

allocate the block from general system memory. A linear address is returned to

address the memory. For contiguous fixed allocation requests, the physical address is
also returned.

The physical address passed to VMAlloc is actually the linear address of a variable

containing the physical address to be mapped.

Virtual memory is allocated in global (system) address space, unless private process

space is requested.

Memory requested in process space can only be swappable.

If requested, memory allocated in process space can be registered under screen

group switch control. In that case, a task will be denied write access to this memory

unless it is in the foreground.

Appendix A - Device Helper Reference 387

Flags
Bit 0, if set, specifies the creation of the object in the region below 16MB. Bit 0 is used
by device drivers that cannot support more than 16MB addresses. If the device driver
requests memory below 16MB, the memory must also be resident at all times.

Bit 1, if set, specifies that the object remain in memory at all times and not be
swapped or moved.

Bit 2, if set, specifies the allocation of swappable memory. Bit 1 must be clear if bit 2 is
set.

Bit 3, if set, specifies that the object must be in contiguous memory. Bit 1 must also be
set if bit 3 is set.

Bit 4, if set, specifies linear address mapping for the physical address in the parame­
ters. If bit 4 is set, virtual memory is mapped to a given physical address. The physical
memory must be fixed or locked. This could be used for non-system memory, like
memory-mapped adapters or the video buffer. If it is used for system memory, it is the
device driver's responsibility to ensure that the physical pages corresponding to the
PhysAddr will never move or become invalid.

Bit 5, if set, specifies that the linear address returned will be in the process address
range.

Bit 6, if set, specifies that the allocated memory can be registered under screen group
switch control, such as a video shadow buffer. Memory-mapping allocated with bit 6
set will be invalid when the process is not in the foreground.

Bit 7 is reserved, and should be set to 0.

Bit 8, if set, specifies that the memory only be reserved, but not actually mapped. If bit
8 is set, the linear address returned will be page-aligned. The size requested will be
rounded up to the nearest page boundary. All other allocations may return byte granu­
lar size and addresses.

Bits 9-31 must be 0.

388 Writing OS/2 2. 1 Device Drivers in C

Example

II use VMAlloc to map the adapter address to a linear address in the
II global address space

ULONG MapAddress = Oxd8000;
LINADDR LinAddress = O;
LINADDR dev_linaddr = O;

II linear address to MapAddress
II for global linear address

II VMalloc requires a linear address to the physical map address

VirtTolin((FARPOINTER)&MapAddress,(PLINADDR)&LinAddress);

if (VMAlloc(LinAddress,OxlOOO,Ox3,(PLINADDR)&dev_linaddr))
{

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, strlen(AllocFailMessage), AllocFailMessage);

else
{

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, strlen(AllocPassMessage), AllocPassMessage);

Appendix A - Device Helper Reference 389

VMFree Mode: Kernel, /nit

Free a mapping to memory.

C Calling Convention

if (VMFree(LINADDR Linaddr)) error

Linaddr = 32 bit linear address of memory to release

Comments
VMFree frees memory allocated with VMAlloc, or a mapping created by
VMProcessToGlobal, or VMGlobalToProcess.

All memory-mapping allocated by the device driver must be released before device
driver termination.

390 Writing 05/2 2. 1 Device Drivers in C

V/fl/Globa/ToProcess /fl/ode: Kernel
Map an address in the system region of the global address space into an address in
the current process's address space.

C Calling Convention

if VMGlobalToProcess(LINADDR Linaddr,ULONG Len,ULONG Flags,
(PLINADDR) &Plinaddr)) error

Linaddr =linear address in global address space
Len =length of memory to be mapped
Flags = (see comments)
&Plinaddr =pointer to returned linear address

Comments
The mapping created by this call must be released with VMFree.

The address range must not cross object boundaries.

The process's address space used in this call is the current process.

Flags
Bit 0, if set, specifies read/write access, Bit 0 clear specifies read-only access.

Bit 1, if set, specifies a map of the 32-bit memory region, using 16-bit selectors.

Bit 2, if set, the mapping is tracked for the validation and invalidation of screen
buffers.

Bit 3, if set, specifies that the memory be allocated on a 4K page boundary.

Bits 4-31 must be 0.

Appendix A - Device Helper Reference 391

Example

if (VMGlobalToProcess(linaddr,OxlOOO,OxOl,(FARPOINTER) &new_linaddr))
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

392 Writing OS/2 2. 1 Device Drivers in C

VMLock Mode: Kernel, /nit

Lock a memory object

C Calling Convention

if (VMLock(LINADDR Linaddr,ULONG Len,(PLINADDR) &Pagelist,
(PLINADDR) &Locklnfo, ULONG Flags, FPULONG)) error

Linaddr
Len
&Pagel i st
&Locklnfo

Flags

= 32 bit linear address of region to lock
= 32 bit length in bytes
=flat pointer to PAGELIST struct
=linear address of 12-byte variable to receive the lock

handle
= (see comments)

Each PageList structure will describe a single physically contiguous subregion of the
physical memory that was locked. The format of the PageList structure is:

typedef struct _PAGELIST
ULONG pl_PhysAddr;

ULONG pl_cb;

II physical address of first byte
II in this sub-region
II Number of contiguous bytes
II starting at pl_PhysAddr

Appendix A - Device Helper Reference 393

Comments
VMLock verifies accessibility to a region of memory and locks the memory region
into physical memory. If the region is unavailable, the caller must specify whether
VMLock should block until the region is available and locked, or return immediately.

The use of short-term locks for greater than two seconds can prevent an adequate
number of pages from being available for system use. Under these circumstances, a
system halt could occur.

If satisfying the lock request will reduce the amount of free memory in the system to
below a predetermined minimum, both short- and long-term locks can fail.

Address verification is done automatically with every VMLock request. Locking down
memory in fixed physical addresses is done only if the ''verify only'' bit is not set.

It is the device driver's responsibility to ensure that enough entries have been
reserved for the range of memory being locked (possibly one entry per page in the
range, plus one more if the region does not begin on a page boundary). If this pointer
contains the value - 1, then no physical addresses are returned. This parameter must
be - 1 for verify locks.

Since locking occurs on a per-page basis, the VMLock service routine will round lin­
ear address down to the nearest page boundary. If physically contiguous locking is
requested, length cannot exceed 64KB; otherwise an error is returned. Because lock­
ing occurs on a per-page basis, the combination of linear address + length will be
rounded up to the nearest page boundary.

Flags
Bit 0, if set, specifies an immediate return if the pages are not available. If bit 0 is 0,
the call will block until the pages become available.

Bit 1, if set, specifies that the pages be contiguous.

Bit 2, if set, specifies that the memory be below the 16MB address line.

Bit 3, if set, specifies that the device driver plans to write to the segment.

Bit 4, if set, specifies a long-term lock.

Bit 5, if set, specifies a verify-only lock.

Bits 6-31 must be 0.

394 Writing 05/2 2. 1 Device Drivers in C

Example

Flags= Oxla;

if (VirtTolin((FARPOINTER)Pagelist,(PLINADDR)&lpPagelist));

if CVirtTolinCCFARPOINTER)LockHandle,(PLINADDR)&lplockHandle));

if (VMLock(linaddr,100,lpPagelist,lplockHandle,
Flags,(FARPOINTER) &Elements))

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, strlen(LockFailMessage), LockFailMessage);

else
{

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, strlen(LockPassMessage), LockPassMessage);

Appendix A - Device Helper Reference 395

VAl/ProcessToG/obal Al/ode: Kernel
Map an address in the current process address space to an address in the system
region of the global address space.

C Calling Convention

if (VMProcessToGlobal (LINADDR Linaddr,ULONG Len,ULONG Flags,
(PLINADDR) &Address)) error

Linaddr = linear address within process address space that is to be
mapped into a global context

Len = len in bytes
Flags = (see comments)
&Address= pointer to linear address returned

Comments
The address range must be on a page boundary and must not cross object bound­
aries.

Flags
Bit 0, if set, specifies that the mapping be writable, If clear, the mapping will be read­
only.

Bits 1-31 must be 0.

This call copies the linear mapping from the process's address space to the system
shared address space, which allows the device driver to access the data independent
of the current process's context. The following steps show how you would use the
DevHlp services to gain interrupt-time access to a process's buffer.

1. Call VMLock to verify the address and to lock the range of memory needed into
physical memory.

2. Call VMProcessToGlobal to map a process's private address into global address
space. If the device driver requests it, an array of physical addresses corresponding
to the locked region will be returned. You may also map the linear address to a GDT
selector by calling LinToGDTSelector.

396 Writing OS/2 2. 1 Device Drivers in C

3. Access the memory using the linear address returned by the call to
VMProcessToGlobal.

4. Call VMFree to remove global mapping to process address space.

5. Call VMUnlock to unlock the object.

Example

if (VMGlobalToProcess(linaddr,OxlOOO,OxOl,(FARPOINTER) &new_linaddr))
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

Appendix A - Device Helper Reference 397

VMSetMem Mode: Kernel, /nit
Commit and decommit physical storage.

C Calling Convention

if (VMSetMem(LINADDR Linaddr,ULONG Size,ULONG Flags)) error

Linaddr =linear address, page aligned, of memory
Size = size in bytes in 4k pages
Flags = (see comments)

Comments
VMSetMem commits and decommits physical storage, or changes the type of com­
mitted memory reserved with the VMAlloc DevHlp service. The address range speci­
fied must not cross object boundaries. The range must be entirely of uniform type,
that is, all decommitted (invalid), all swappable, or all resident. The range to be
decommitted must be entirely precommitted.

The entire region Oinear address + size) must lie within a memory object previously
allocated with a VMAlloc 'Reserved Only' call.

Flags
Bit 0, if set, specifies that the address range is to be decommitted.

Bit 1, if set, specifies that the address range is to be made resident.

Bit 2, if set, specifies that the address range is to be made swappable.

398 Writing OS/2 2. 1 Device Drivers in C

VMUnlock

Unlock a memory object.

C Calling Convention

if (VMUnlock(LHANDLE LockHandle)) error

LockHandle =handle from VMLock

Comments
VMUnlock unlocks a previously locked memory range.

Mode: Kernel, /nit

A successful Unlock may modify the caller's lock handle.

Appendix A - Device Helper Reference 399

Yield Mode: Kernel

Yield the CPU to higher priority threads.

C Calling Convention

Yield();

Comments
OS/2 is designed so that the CPU is never scheduled preemptively while in kernel
mode. In general, the kernel either performs its job and exits quickly, or it blocks
waiting for (usually) 1/0 or (occasionally) a resource. It is not necessary for the
device driver to do both a Yield and a TCYield; the Yield function is a superset of the
TCYield function.

The one part of the kernel that can take a lot of CPU time are device drivers, particu­
larly those that perform program 1/0 on long strings of data, or that poll the device.
These drivers should periodically check the Yield Flag and call the Yield function to
yield the CPU if another process needs it. Much of the time the context won't switch;
Yield switches context only if an equal or higher priority thread is scheduled to run.

The address of the Yield Flag is obtained from the GetDOSVar call. For performance
reasons, the device driver should check the Yield Flag once every 3 milliseconds. If
the flag is set, then the device driver should call Yield.

Because the device driver may relinquish control of the CPU to another thread, the
device driver should not assume that the state of the interrupt flag will be preserved
across a call to Yield.

APPENDIXB

Reference Publications

Bowlds, Pat, Micro Channel Architecture, New York: Van Nostrand Reinhold, 1991.

Deitel, H. M.; Kogan, M. S., The Design of OS/2, New York: Addison-Wesley, 1992.

IBM Corporation, IBM Operating System/2 Programming Tools and Information:
IBM, 1992.

IBM Corporation, IBM OS/2 2.1 Physical Device Driver Reference: IBM, 1992.

IBM Corporation, IBM OS/2 2.1 Presentatio~ Driver Reference: IBM, 1992.

IBM Corporation, IBM OS/2 2.1 Virtual Device Driver Reference: IBM, 1992.

IBM Corporation, IBM OS/2 2.1 Control Program Reference: IBM, 1992.

Intel Corporation, iAPX 86/88 User's Manual Hardware Reference: Intel, 1989.

Letwin, Gordon, Inside OS/2, Redmond, Washington: Microsoft Press, 1988.

401

APPENDIXC

Listings

Device Header, One Device

II sample Device Header, 1 device

DEVICEHDR devhdr = {

(void far*) OxFFFFFFFF, II link
(DAW_CHR I DAW_OPN I DAW_LEVELl), II attribute
(OFF) STRAT, II &strategy
(OFF) 0, II &IDCroutine
"DEVICEl " II device name
} ;

403

404 Writing 05/2 2. 1 Device Drivers in C

Device Header, Two Devices

DEVICEHDR devhdr[2] = {

{ (void far*) &devhdr[l],
(DAW_CHR I DAW_OPN I DAW_LEVELl),
(OFF) STRATl,
(OFF) 0,
"DEVICEl "
}.

II link to next dev
II attribute
II &strategy
I I &IDCrout i ne

{(void far*) OxFFFFFFFF, II link(no more devs)
(DAW_CHR I DAW_OPN I DAW_LEVELl), II attribute
(OFF) STRAT2, II &strategy
(OFF) 0, II &IDCroutine
"DEVICE2 "
}

} :

Appendix C - Listings 405

C Startup Routine, One Device

C startup routine, one device, w/interrupt and timer

PUBLIC
PUBLIC
PUBLIC
PUBLIC

EXT RN
EXT RN
EXT RN

_STRAT
_acrtused

INT_HNDLR
_TIM_HNDLR

_interrupt_handler:near
_timer_handler:near
_main:near

_DATA segment word public 'DATA'
_DATA ends

CONST segment word public 'CONST'
CONST ends

_BSS segment word public 'BSS'
_BSS ends

DGROUP group CONST, _BSS, _DATA

_TEXT segment word public 'CODE'

assume cs:_TEXT,ds:DGROUP,es:NOTHING, ss:NOTHING
.286P

_STRAT proc far
_acrtused: ; no startup code

push 0
jmp start ;signal device 0

start:
push es ;send Request Packet address
push bx
call _main ;call driver mainline
pop bx ;restore es:bx

406 Writing OS/2 2. 1 Device Drivers in C

pop es
add sp,2 ;clean up stack
mov word ptr es:[bx+3J,ax ;send completion status
ret

_STRAT endp

_INT_HNDLR proc far

call
ret

_INT_HNDLR endp

_interrupt_handler

_TIM_HNDLR proc far

push a
push es
push ds
call _timer_handler
pop ds
pop es
pop a
ret

_TIM_HNDLR endp

_TEXT ends
end

;handle rupts
;bail out

C Startup Routine, Four Devices

C startup routine, 4 devices

PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC

EXT RN
EXTRN
EXT RN

_STRATl
_STRAT2
_STRAT3
_STRAT4
_acrtused

INT_HNDLR
_TIM_HNDLR

_interrupt_handler:near
_timer_handler:near
_main:near

_DATA segment word public 'DATA'
_DATA ends

CONST segment word public 'CONST'
CONST ends

_BSS segment word public 'BSS'
_BSS ends

DGROUP group CONST, _BSS, _DATA

_TEXT segment word public 'CODE'

Appendix C - Listings 407

assume cs:_TEXT,ds:DGROUP,es:NOTHING,ss:NOTHING
.286P

_STRATl proc far
_acrtused:

push 0
jmp start

_STRA Tl endp

; satisfy EXTRN modules

;signal device 0

408 Writing 05/2 2. 1 Device Drivers in C

_STRAT2 proc far

push 1 ;signal second device
jmp start

_STRAT2 endp

_STRAT3 proc far

push 2 ;signal third device
jmp start

_STRAT3 endp

_STRAT4 proc far

push 3 ;signal fourth device
jmp start

start:
push es ;send Request Pkt address
push bx
call _main ;call driver mainline
pop bx ;restore es:bx
pop es
add sp,2 ;clean up stack
mov word ptr es:[bx+3J,ax ;send completion status
ret

_STRAT4 endp

_INT_HNDLR proc far

call _interrupt_handler ;handle rupts
ret ;bail out

_INT_HNDLR endp

_TIM_HNDLR proc far

push a
push es
push ds
call _timer_handler
pop ds
pop es
pop a
ret

_TIM_HNDLR endp

_TEXT ends
end

Standard OS/2 Device Driver Include File

II file drvlib.h

Appendix C - Listings 409

II This header file contains definitions intended to go along
II with DRVLIB.LIB, a C-callable subroutine library.
II
II This file is for OSl2 2.1

typedef unsigned char
typedef unsigned short
typedef unsigned short
typedef unsigned long
typedef UCHAR near
typedef UCHAR far
typedef USHORT near
typedef USHORT far
typedef ULONG near
typedef ULONG far
typedef char near
typedef short near
typedef long near
typedef void near

UCHAR;
USHORT;
BOOLEAN;
ULONG;
*PUCHAR;
*FPUCHAR;
*PUSHORT;
*FPUSHORT;
*PULONG;
*FPULONG;
*PCHAR;
*PSHORT;
*PLONG;
*POINTER;

410 Writing OS/2 2. 1 Device Drivers in C

typedef POINTER near *PPOINTER;
typedef void far *FARPOINTER;
typedef FARPOINTER near *PFARPOINTER;
typedef FARPOINTER far *FPFARPOINTER;

typedef USHORT
typedef ERRCODE far
typedef UCHAR
typedef FLAG far
typedef USHORT
typedef SEL near
typedef SEL far
typedef USHORT
typedef USHORT
typedef ULONG
typedef USHORT
typedef USHORT
typedef ULONG
typedef ULONG
typedef LINADDR far
typedef PLINADDR far
typedef PHYSADDR far
typedef char near
typedef char far
typedef USHORT
typedef SHANDLE far
typedef ULONG
typedef LHANDLE far

ERRCODE; II error code returned
*PERRCODE; II pointer to an error code
FLAG; II 8-bit flag
*PFLAG; II pointer to 8-bit flag
SEL; II 16-bit selector
*PSEL; II pointer to a selector
*FPSEL; II far pointer to selector
SEG; II 16-bit segment
OFF; II 16-bit offset
LOFF; II 32-bit offset
PIO; II Process ID
TIO; II Thread ID
PHYSADDR; II 32-bit physical address
LINADDR; II 32-bit linear address
*PLINADDR; II pointer to 32 bit lin addr
*PPLINADDR; II pointer to lin addr pointer
*PPHYSADDR; II pointer to 32-bit phys addr
*PSTRING; II pointer to character string
*FPSTRING; II far pointer to string
SHANDLE; II short (16-bit) handle
*PSHANDLE; II pointer to a short handle
LHANDLE; II long (32-bit) handle
*PLHANDLE; II pointer to a long handle

II pointers to functions

typedef int (pascal
typedef int (pascal
typedef int (pascal
typedef int (pascal

II macros

#define FALSE 0
#define TRUE 1

near *PFUNCTION) () ;
near * near *PPFUNCTI ON) () ;
far *FPFUNCTION) () ;
far * near *PFPFUNCTION) () ;

Appendix C - Listings 411

#define NP near pascal

II far pointer from selector-offset

#define MAKEP (se 1 • off) ((void far*) MAKEULONG(off, sel))

II get selector or offset from far pointer

#define SELECTOROF(p)
#define OFFSETOF(p)

(((USHORT far*) &(p)) [1])
(((USHORT far*) &(p)) [OJ)

II Combine 1 (ow) & h(igh) to form a 32 bit quantity.

#define MAKEULONG(l. h) ((ULONG)(((USHORT)(l))[((ULONG)((USHORT)(h)))<<l6))
#define MAKELONG(l, h) ((LONG)MAKEULONG(l, h))
#define MAKEBIGOFFSETOF(p) ((ULONG) (OFFSETOF (p)))

II Combine 1 (ow) & h(igh) to form a 16 bit quantity.

#define MAKEUSHORT(l, h) (((USHORT)(l)) [((USHORT)(h)) « 8)
#define MAKESHORT (1 • h) ((SHORT) MAKEUSHORT (1 , h))

II get high and low order parts of a 16 and 32 bit quantity

LOUCHAR(w)
HIUCHAR(w)
((UCHAR)(w))

#define LOBYTE(w)
#define HIBYTE(w)
#define LOUCHAR(w)
#define HIUCHAR(w)
#define LOUSHORT(l)
#define HIUSHORT(l)

(((USHORT)(w) » 8) & Oxff)
((USHORT) (1))

((USHORT)(((ULONG)(l) >> 16) & Oxffff))

II the driver device header

typedef struct DeviceHdr {
struct DeviceHdr far *DHnext;
USHORT DHattribute;
OFF DHstrategy;
OFF DHidc;
UCHAR DHname[8];
char reserved[8J;
ULONG bit_strip;

II pointer to next header.or -1
II device attribute word
II offset of strategy routine
II offset of IDC routine
II dev name (char) or #units

II bit 0 DevIOCtl2,bit 1 32 bit

412 Writing OS/2 2.1 Device Drivers in C

} DEVICEHDR;
typedef DEVICEHDR near *PDEVICEHDR;

II driver device attributes word

#define DAW_CHR Ox8000
#define DAW_IDC Ox4000
#define DAW_IBM Ox2000
#define DAW_SHR OxlOOO
#define DAW_OPN Ox0800
#define DAW_LEVELl Ox0080
#define DAW_LEVEL2 OxOlOO
#define DAW_LEVEL3 Ox0180
#define DAW_GIO Ox0040
#define DAW_CLK Ox0008
#define DAW_NUL Ox0004
#define DAW_SCR Ox0002
#define DAW_KBD OxOOOl

II capabilities bit strip

#define CBS_SHD
#define CBS_HMEM
#define CBS_PP
#define CBS_ADD
#define CBS_INIT

OxOOOl
Ox0002
Ox0004
OxOOlO
Ox0020

II SaveMessage structure

typedef struct MessageTable
USHORT id;
USHORT fill_in_item;
FARPOINTER iteml;
FARPOINTER item2;
FARPOINTER item_last;
} MESSAGETABLE;

II 0512 circular character queues

#define QUEUE_SIZE 512
typedef struct CharQueue {

II l=char, O=block
II l=IDC available in this Db
II l=non-IBM block format
II l=supports shared dev access
II l=openlclose, or rem. media
I I level 1
11 level 2 DosDevIOCtl 2
II level 3 bit strip
II l=generic IOCtl supported
II l=CLOCK device
II l=NUL device
II l=STDOUT (screen)
II l=STDIN (keyboard)

II l=shutdownlDevIOCtl2
II high memory map for adapters
II supports parallel ports
II driver is an ADD driver
II Cmdlnit call from kernel

II size of queues

USHORT qsize;
USHORT qchrout;
USHORT qcount;
UCHAR qbuf[QUEUE_SIZEJ;
} CHARQUEUE;

typedef CHARQUEUE near *PCHARQUEUE;

Appendix C - Listings 413

II number of bytes in queue
II index of next char to put out
II number of charactes in queue

II AttachDD inter device driver communication data area

typedef struct AttachArea
OFF realOFF;
SEG realCS;
SEG realDS;
OFF protOFF;
SEL protCS;
SEL protOS;
} ATTACHAREA;

II real-mode off of idc ent pt
II real-mode CS of IDC ent pt
II real-mode OS of IDC DD
II protect-mode off of ent pt
II protect-mode CS of ent pt
II protect-mode OS of other DD

typedef ATTACHAREA near *PATTACHAREA;

II driver request packet

typedef struct ReqPacket
UCHAR RPlength; II request packet length
UC HAR RP unit; II unit code for block DD only
UCHAR RPcommand; II command code
USHORT RPstatus; II status word
UC HAR RPreserved[4J; II reserved bytes
ULONG RPqlink; II queue linkage
union { II command-specific data
UC HAR avail [19];
struct { II i nit

UC HAR units; II number of units
FPFUNCTION DevHlp; II &DevHlp
char far *args; II &args
UC HAR drive; II drive #
}Init;

struct {
UC HAR units; II same as input
OFF final CS; II final offset, 1st code seg
OFF finalDS; II final offset, 1st data seg
FARPOINTER BPBarray; II &BPB

414 Writing OS/2 2. 1 Device Drivers in C

} Ini tExit;

struct {
UCHAR media;
PHYSADDR buffer;
USHORT count;
ULONG startsector;
USHORT reserved;
} ReadWrite;

struct {
UCHAR media;
PHYSADDR buffer;
USHORT count;
ULONG startsector;
USHORT reserved;
} CReadWrite;

struct {
UCHAR subcode;
ULONG reserved;
} Shutdown;

struct {
USHORT sysfilenum;
} OpenClose;

struct {
UC HAR
UC HAR
FA RPO INTER
FARPOINTER
} IOCtl;

struct {

category;
function;
parameters;
buffer;

UCHAR char_returned;
} ReadNoWait;

struct {
UC HAR
UC HAR

media;
return_code;

II read, write, write w/verify
II media descriptor
II transfer address
II bytes/sectors
II starting sector#

II cached read, write.write ver
II media descriptor
II transfer address
II bytes/sectors
II starting sector#

II system shutdown
II sub request code

II open/close
II system file number

II IOCtl
II category code
II function code
II ¶meters
II &buff er

II read, no wait
II char to return

II media check
II media descriptor
II see #defines

FARPOINTER prev_volume;
} MediaCheck;

struct {
UCHAR media;
FARPOINTER buffer;
FARPOINTER BPBarray;
UCHAR drive;
} BuildBPB;

struct {
UCHAR count;
ULONG reserved;

. } Partition able;

struct {
ULONG units;
ULONG reserved;
} GetFixedMap;

struct {
UCHAR reserved[3J;
FARPOINTER capstruct;
FARPOINTER volcharstruct;
} GetDriverCaps;

} s;

REOPACKET;

typedef REQPACKET far *PREQPACKET;
typedef PREQPACKET far *PPREQPACKET;

Appendix C - Listings 415

II &previous volume ID

II build BPB
II media descriptor
II 1-sector buffer FAT
II &BPB array
II drive #

II query part. fixed disks
II# disks

II fixed disk LU map
II units supported

II get driver capabilities

II 16:16 pointer to DCS
II 16:16 pointer to VCS

II command info

typedef PREQPACKET QHEAD; II Queue Head is &ReqPacket
typedef QHEAD near *POHEAD;

II Global Info Seg

typedef struct _GINFOSEG
ULONG time;
ULONG msecs;
UCHAR hour;
UCHAR minutes;

II time in seconds
II milliseconds
II hours
II minutes

416 Writing OS/2 2. 1 Device Drivers in C

UC HAR
UC HAR
USHORT
USHORT
UC HAR
UC HAR
USHORT
UC HAR
UC HAR
UC HAR
UC HAR
UC HAR
UC HAR
UC HAR
UC HAR
US HORT
UC HAR
UC HAR
US HORT
USHORT
US HORT
UC HAR
UC HAR
UC HAR

} GINFOSEG;

seconds;
hundredths;
timezone;
cusecTimerinterval;
day;
month;
year;
weekday;
uchMajorVersion;
uchMinorVersion;
chRevisionletter;
sgCurrent;
sgMax;
cHugeShift;
fProtectModeOnly;
pidForeground;
fDynamicSched;
csecMaxWait;
cmsecMinSlice;
cmsecMaxSlice;
bootdrive;
amecRAS[32J;
csgWindowableVioMax;
csgPMMax;

typedef GINFOSEG far *PGINFOSEG;

II local info seg

struct _LINFOSEG { typedef
PIO
PIO
USHORT
TIO
US HORT
UC HAR
UC HAR
US HORT
UC HAR
UC HAR
SEL

pidCurrent;
pidParent;
prtyCurrent;
tidCurrent;
sgCurrent;
rfProcStatus;
dummyl;
fForeground;
typeProcess;
dummy2;
selEnvironment;

II seconds
II hundredths
II minutes from UTC
II timer interval, .0001 secs
II day of month
II month, 1-12
II year
I I day of week, 0-Sunday, 1 =Monday ...
II major version number
II minor version number
I I rev level
II current foreground session
II max number of sessions
II shift count for huge elements
II protect mode only
II pid of last process in foreground
II dynamic variation flag
II max wait in seconds
II min timeslice in milliseconds
II max timeslice in milliseconds
II boot drive (O=a, l=b_)
II system trace major code flag bits
II max number of VIO sessions
II max number of PM sessions

II current process pid
II process id of parent
II priority of current thread
II thread id of current thread
II current session id
II process status
II reserved
II current process is in foreground
II process type
II reserved
II selector of environment

USHORT
USHORT
USHORT
US HORT
US HORT
SEL

LINFOSEG;

offCmdline;
cbDataSegment;
cbStack;
cbHeap;
hmod;
selDS;

Appendix C - Listings 417

II command line offset
II length of data segment
II stack size
II heap size
II module handle of application
II data segment handle of application

typedef LINFOSEG far *PLINFOSEG;

typedef struct _REGSTACK
USHORT usStruct;
USHORT usFlags;

USHORT us I RO;
USHORT usStackCLI;
USHORT usStackSTI;
USHORT usStackEOI;
USHORT usNest;
} REGSTACK;

II stack usage structure
II set to 14 before using
II OxOl means that the interrupt proc
II enables interrupts. All others resvd
II IRQ of interrupt handler
II# of stack bytes with interrupts off
II# of stack bytes with interrupts on
II number of bytes needed after EOI
II max number of nested levels

typedef REGSTACK near *PREGSTACK;

II page list struct

typedef struct _PAGELIST
ULONG pl_Physaddr;

ULONG pl_cb;
} PAGE LIST;

typedef PAGELIST far *PPAGELIST;

II RPstatus bit values

#define RP ERR Ox8000 II
#define RP DEV Ox4000 II
#define RP BUSY Ox0200 II
#define RP DONE OxOlOO II

II error codes returned in RPstatus

#define ERROR_WRITE_PROTECT

error occurred, err in RPstatus
error code defined by driver
device is busy
driver done with request packet

OxOOOO

418 Writing OS/2 2.1 Device Drivers in C

#define ERROR_BAD_UNIT OxOOOl
#define ERROR_NOT_READY Ox0002
#define ERROR_BAD_COMMAND Ox0003
#define ERROR_CRC Ox0004
#define ERROR_BAD_LENGTH Ox0005
#define ERROR_SEEK Ox0006
#define ERROR_NOT_DOS_DISK Ox0007
#define ERROR_SECTOR_NOT_FOUND Ox0008
#define ERROR_OUT_OF_PAPER Ox0009
#define ERROR_WRITE_FAULT OxOOOA
#define ERROR_READ_FAULT OxOOOB
#define ERROR_GEN_FAILURE OxOOOC
#define ERROR_DISK_CHANGE OxOOOD
#define ERROR_WRONG_DISK OxOOOF
#define ERROR_UNCERTAIN_MEDIA OxOOlO
#define ERROR_CHAR_CALL_INTERRUPTED OxOOll
#define ERROR_NO_MONITOR_SUPPORT Ox0012
#define ERROR_INVALID_PARAMETER Ox0013
#define ERROR_DEVICE_IN_USE Ox0014

II driver request codes B=block, C=character

#define RPINIT OxOO
#define RPMEDIA_CHECK OxOl
#define RPBUILD_BPB Ox02
#define RPREAD Ox04
#define RPREAD_NO_WAIT Ox05
#define RPINPUT_STATUS Ox06
#define RPINPUT_FLUSH Ox07
#define RPWRITE Ox08
#define RPWRITE_VERI FY Ox09
#define RPOUTPUT_STATUS OxOa
#define RPOUTPUT_FLUSH OxOb
#define RPOPEN OxOd
#define RPCLOSE OxOe
#define RPREMOVABLE OxOf
#define RPIOCTL OxlO
#define RPRESET Oxll
#define RPGET_DRIVE_MAP Oxl2
#define RPSET_DRIVE_MAP Oxl3
#define RPDEINSTALL Oxl4

II BC
II B
II B
II BC
II C
II C
11 C
II BC
II BC
II C
11 C
11 BC
II BC
II B
II BC
II B
II B
II B
II C

#define RPPARTITIONABLE Oxl6
#define RPGET_FIXED_MAP Ox17
#define RPSHUTDOWN Oxlc
#define RPG ET _DR IV ER_CAPS Oxld
#define RPINIT_DONE Oxlf

II B
II B
II BC
II B
II BC

Appendix C - Listings 419

II check for monitor call in DosOpenlDosClose

#define MON_OPEN_STATUS Ox08
#define MON_CLOSE_STATUS Ox08

II media descriptor byte

#define MDB_REMOVABLE Ox04
#define MDB_EI GHT _SECTORS Ox02
#define MDB_DOUBLE_SIDED OxOl

II return codes from MediaCheck

#define MC_MEDIA_UNCHANGED OxOl
#define MC_MEDIA_CHANGED OxFF
#define MC_MEDIA_UNSURE OxOO

II event numbers for SendEvent

#define EVENT_SM_MOUSE OxOO
#define EVENT_CTRLBRK OxOl
#define EVENT_CTRLC Ox02
#define EVENT_CTRLNUMLK Ox03
1fdefi ne EVENT_CTRLPRTSC Ox04
#define EVENT_SHFTPRTSC Ox05
#define EVENT_SM_KBD Ox06

II defines for 1.x movedata function

#define MOVE_PHYSTOPHYS 0
#define MOVE_PHYSTOVIRT 1
#define MOVE_VIRTTOPHYS 2
#define MOVE_VIRTTOVIRT 3

II Micro Channel specific

II open from DosMonOpen
II close from DosMonClose

II l=removable
II 1=8 sectors per track
II l=double-sided media

II session switch via mouse
II contra l break
II contra l c
II control num lock
II control prints c reen
II shift printscreen
II session switch hot key

II move bytes from phys to
II move bytes from phys to
II move bytes from virt to
II move bytes from virt to

phys
vi rt
phys
vi rt

420 Writing OS/2 2. 1 Device Drivers in C

int NP GetLIDEntry CUSHORT, USHORT, USHORT, FPUSHORT);
int NP FreeLIDEntry CUSHORT);
int NP ABIOSCall CUSHORT, USHORT, FARPOINTER);
int NP ABIOSComm (USHORT, FARPOINTER);
int NP GetDeviceBlock(USHORT, FARPOINTER);

II special routines

void NP INT3 (void);
void NP Enable (void);
void NP Disable (void);
void NP Abort (void);
int NP Seglimit CSEL,OFF far*);
int NP MoveBytes CFARPOINTER,FARPOINTER,FLAG);
int NP MoveData CFARPOINTER,FARPOINTER,USHORT,USHORT);

II system services and misc.

int NP GetDOSVar (USHORT,FPFARPOINTER);
int NP SendEvent (USHORT,USHORT);
void NP SchedClockAddr(PFARPOINTER);
int NP AttachDD CPSTRING,PATTACHAREA);
int NP InternalError CPSTRING,USHORT);
int NP SaveMessage CFPSTRING);
int NP ProtToReal (void);
int NP RealToProt (void);
int NP SetROMVector CUSHORT,PFUNCTION,PFUNCTION,FARPOINTER);

II process mgmt

void NP Yield (void);
void NP TCYield (void);
int NP Block (ULONG,ULONG,USHORT,FARPOINTER);
void NP Run CULONG);
void NP DevDone (PREQPACKET);
int NP VideoPause(USHORT);

II memory management

int NP AllocPhys (ULONG,USHORT,PPHYSADDR);

Appendix C - Listings 421

int
int
int
int

NP FreePhys
NP VerifyAccess
NP LockSeg
NP UnLockSeg

(PHY SAD DR) ;
(SEL.OFF,USHORT.USHORT);
(SEL,USHORT,USHORT,PLHANDLE);
(LHANDLE);

II address conversion

int NP AllocGDTSelector (USHORT,FARPOINTER);
int NP PhysToGDTSelector(PHYSADDR,USHORT,SEL,PERRCODE);
int NP VirtToPhys (FARPOINTER,PPHYSADDR);
int NP PhysToUVirt (PHYSADDR,USHORT,USHORT,FPFARPOINTER);
int NP PhysToVirt (PHYSADDR,USHORT,USHORT,FARPOINTER);
int NP UnPhysToVirt (void);

II request packet queue stuff

int NP AllocReqPacket(USHORT,PPREOPACKET);
void NP FreeReqPacket (PREOPACKET);
void NP PushReqPacket (PQHEAD,PREQPACKET);
void NP SortReqPacket (PQHEAD,PREOPACKET);
int NP PullReqPacket (PQHEAD,PPREQPACKET);
int NP PullParticular(PQHEAD,PREQPACKET);

II driver semaphores

int NP SemHandle CLHANDLE,FLAG,PLHANDLE);
int NP SemRequest(LHANDLE,ULONG,PERRCODE);
void NP SemClear (LHANDLE);

II circular character queues

void NP Queueinit (PCHAROUEUE);
void NP QueueFlush(PCHARQUEUE);
int NP QueueWriteCPCHAROUEUE,UCHAR);
int NP QueueRead (PCHAROUEUE,FPUCHAR);

II interrupt stuff

int NP SetIRO
int NP UnSetI RO
int NP EOI

(USHORT,PFUNCTION,USHORT);
(USHORT);
C USHORT);

422 Writing OS/2 2. 7 Device Drivers in C

void NP Claiminterrupt (void);
void NP Refuseinterrupt (void);
int NP RegisterStackUsage(PREGSTACK);

II timer stuff

int NP SetTimer (PFUNCTION);
int NP ResetTimer (PFUNCTION);
int NP TickCount (PFUNCTION,USHORT);

II device monitors

int NP MonCreate
int NP Register
int NP MonWrite
int NP Mon Flush
int NP DeRegister

II 2.l specfic

(PSHANDLE,FARPOINTER,FARPOINTER,PERRCODE);
(SHANDLE,USHORT,PID,FARPOINTER,OFF,PERRCODE);
(SHANDLE,POINTER,USHORT,USHORT,ULONG,PERRCODE);
(SHANDLE,PERRCODE);
(SHANDLE,PID,PERRCODE);

int NP RegisterPDD (FPUCHAR,FPFUNCTION);
int NP RegisterBeep (FPFUNCTION);
int NP Beep (USHORT, USHORT) ;
int NP FreeGDTSelector (USHORT);
int NP PhysToGDTSel (PHYSADDR,ULONG,SEL,USHORT,FPUSHORT);
int NP VMLock (LINADDR,ULONG,LINADDR,LINADDR,ULONG,FPULONG);
int NP VMUnlock (LHANDLE);
int NP VMAlloc (PLINADDR,ULONG,ULONG,PLINADDR);
int NP VMFree (PHYSADDR);
int NP VMProcessToGlobal (LINADDR,ULONG,ULONG,PLINADDR);
int NP VMGlobalToProcess (LINADDR,ULONG,ULONG,PLINADDR);
int NP VirtTolin (FARPOINTER,PLINADDR);
int NP LinToGDTSelector (SEL,LINADDR,ULONG);
int NP GetDescinfo (SEL,FPUSHORT,FPULONG,FPULONG);
int NP LinToPagelist (LINADDR,ULONG,LINADDR,FPULONG);
int NP PagelistTolin (ULONG,LINADDR,PLINADDR);
int NP PagelistToGDTSelector(SEL,ULONG,LINADDR,USHORT,FPUSHORT);
int NP RegisterTmrDD (FPFUNCTION,FPFARPOINTER,FPFARPOINTER);
int NP AllocateCtxHook (OFF,ULONG,PLHANDLE);
int NP FreeCtxHook (LHANDLE);
int NP ArmCtxHook (ULONG,LHANDLE,ULONG);

Appendix C - Listings 423

int NP VMSetMem (LINADDR,ULONG,ULONG);
int NP OpenEventSem (LHANDLE);
int NP CloseEventSem (LHANDLE);
int NP PostEventSem (LHANDLE);
int NP ResetEventSem
int NP DynamicAPI

(LHANDLE,FPULONG);
(FARPOINTER,USHORT,USHORT,FPUSHORT);

II these are the only API's available to the driver at Init time

#define APIENTRY far pascal

USHORT APIENTRY DosBeep(USHORT,USHORT);
USHORT APIENTRY DosCaseMap(USHORT,FARPOINTER,FARPOINTER);
USHORT APIENTRY DosChgFilePtr(SHANDLE,long,USHORT,FARPOINTER);
USHORT APIENTRY DosClose(SHANDLE);
USHORT APIENTRY DosDelete(FARPOINTER,ULONG);
USHORT APIENTRY DosDevConfig(FARPOINTER,USHORT,USHORT);
USHORT APIENTRY DosDevIOCtl(FARPOINTER,FARPOINTER,USHORT,USHORT,USHORT);
USHORT APIENTRY DosFindClose(SHANDLE);
USHORT APIENTRY DosFindFirst(FARPOINTER,FARPOINTER,USHORT,FARPOINTER,

USHORT, FARPOINTER,ULONG);
USHORT APIENTRY DosFindNext(SHANDLE,FARPOINTER,USHORT,FARPOINTER);
USHORT APIENTRY DosGetEnv(FARPOINTER,FARPOINTER);
USHORT APIENTRY DosGetMessage(FARPOINTER,USHORT,FARPOINTER,USHORT,

USHORT, FARPOINTER,FARPOINTER);
USHORT APIENTRY DosOpen(FARPOINTER,FARPOINTER,FARPOINTER,ULONG,

USHORT,USHORT,USHORT,ULONG);
USHORT APIENTRY DosPutMessage(SHANDLE,USHORT,FARPOINTER);
USHORT APIENTRY DosQCurDir(USHORT,FARPOINTER,FARPOINTER);
USHORT APIENTRY DosQCurDisk(FARPOINTER,FARPOINTER);
USHORT APIENTRY DosQFileinfo(SHANDLE,USHORT,FARPOINTER,USHORT);
USHORT APIENTRY DosQFileMode(FARPOINTER,FARPOINTER,ULONG);
USHORT APIENTRY DosRead(SHANDLE,FARPOINTER,USHORT,FARPOINTER);
USHORT APIENTRY DosWrite(SHANDLE,FARPOINTER,USHORT,FARPOINTER);

II end of DRVLIB.H

424 Writing 05/2 2. 1 Device Drivers in C

Skeleton Strategy Section

int main(PREQPACKET rp, int dev)

switch(rp->RPcommand)

case RPINIT: II OxOO

II init called by kernel

return Init(rp);

case RPREAD: II Ox04

return (RPOONE);

case RPWRITE: II Ox08

return (RPDONE);

case RPINPUT_FLUSH: II Ox07

return (RPDONE);

case RPOUTPUT_FLUSH: II OxOb

return (RPDONE);

case RPOPEN: II OxOd

return (RPDONE);

case RPCLOSE: II OxOe

return (RPDONE);

case RPIOCTL: II OxlO

switch (rp->s.IOCtl .function) {
case OxOO: II our function def 1

Appendix C - Listings 425

return (RPDONE);

case OxOl: II our function def 2
return (RPDONE);

II deinstall request

case RPDEINSTALL: II Oxl4
return(RPDONE I RPERR I ERROR_BAD_COMMAND);

II all other commands are ignored

default:

return(RPDONE);

Sample IOCtl Call, 16-Bit

if (DosDevIOCtl(&data_buf,&parm_buf,cat,func,dhandle))
error

Sample IOCtl Call, 32-Bit
if (DosDevIOCtl(dhandle,cat,func,&parm_buf,parm_buf_length,

&parm_length,&data_buf ,data_buf_length,&data_length))error

426 Writing OS/2 2. 1 Device Drivers in C

Sample Interrupt Handler

II 82050 interrupt handler

void interrupt_handler ()

{

int rupt_dev;
int source;
int cmd_b;
int st_b;
int port;
int temp;
int rxlevel;

port=UART_PORT_ADDRESS;
outp((port+2),0x20);
source= getsrc ();
switch (source)
{

II switch to bank 1
II get vector

II optional timer service routine

case timer :

st_b=inp (port+3);
if (ThisReadRP == 0)

break;

II dee transmit cnt
II nobody waiting

ThisReadRP->RPstatus=(RPDONE I RPERR I ERROR_NOT_READY);
Run ((LJLONG) ThisWriteRP); II run thread
ThisWriteRP=O;
break;

case txm
case txf

II spurious write interrupt

if (ThisWriteRP == 0)
{

temp=inp(port+2);

break;

II keep transmitting until no data left

if (!(QueueRead(&tx_queue,&outchar)))
{

outp((port), outchar);
tickcount=MIN_TIMEOUT;
break;

II done writing, run blocked thread

tickcount=MIN_TIMEOUT;
disable_write();
ThisWriteRP->RPstatus = (RPDONE);
Run ((ULONG) ThisWriteRP);
ThisWriteRP=O;
break;

case ccr

II control character, treat as normal

inchar=inp(port+5);

case rxf

II rx fifo service routine

if (ThisReadRP ~ 0)
inchar=inp (port); II get character

else
{
temp=inp(port+4);
rxlevel=(temp & Ox70) I OxlO;

II empty out chip FIFO

while (rxlevel !=0) {

Appendix C - Listings 427

428 Writing OS/2 2. 1 Device Drivers in C

inchar=inp (port); II get character
rxlevel-;
tickcount=MIN_TIMEOUT;

II write input data to queue

if(QueueWriteC&rx_queue,inchar))

II error, queue must be full

}

ThisReadRP->RPstatus = (RPDONE\RPERR\ERROR_GEN_FAILURE);
Run ((ULONG) ThisReadRP);
Thi sReadRP=O;
break;

com_error_word \= inp(port+5);

} II while rxlevel
} II else

II switch (source)

Sample Timer Handler

void timer_handler()
{

if CThisReadRP == 0)
return;

tickcount-;
if(tickcount == 0) {

ThisReadRP->RPstatus=(RPDONE);
Run CCULONG) ThisReadRP);
Thi sReadRP=OL;
tickcount=MIN_TIMEOUT;
}

Appendix C - Listings 429

Simple OS/2 Parallel Physical Device Driver

II
II This driver supports DosOpen, DosClose, DosRead, DosWrite
II and IOCtl Ox91 codes 1, 2 and 3. All other driver calls and
II IOCtls are ignored (returns ERROR_BAD_COMMAND).
II
II The driver also uses these #defs
II
11 //define
11 #define
11 #define
II #define
II #define
II

DIGIO_CAT Ox91 driver category
DIGIO_BASE Ox2c0 base port address
DIGIO_OUTPUT DIGIO_BASE output port
DIGIO_INPUT DIGIO_BASE+l input port
DIGIO_CONFIG DIGIO_BASE+3 initialization port

II 1. Open the driver with:
II
II
II
II
II
II
II
II
II
II
II

if ((RetCode=DosOpen("DIGIO$",
&digio_handle,
&ActionTaken,
Fil eSi ze.
Fil eAttri bute.
FILE_OPEN,
OPEN_SHARE_DENYNONE I OPEN_FLAGS_FAIL_ON_ERROR
I OPEN_ACCESS_READWRITE,Reserved)) !=0)

pri ntf("\nopen error = %d". RetCode);

II 2. Output byte to the output port (base +0) with this IOCtl:
II
II
II
II
II
II
II

DosDevIOCtl(NULL,&char,l,Ox91,digio_handle);

or with this standard request:

DosWrite(digio_handle,&char,l,&bytes_written;

II 3. Read data from the input port (base+ 1) with this IOCtl.
II The driver will block until the bit in specified in the
II mask is set:
II
II DosDevIOCtl(&char,NULL,2,0x91,digio_handle);

430 Writing 05/2 2. 1 Device Drivers in C

II 4. Read data from the input port (base+ 1) with this IOCtl.
II This IOCtl returns immediately with the status:
II
II DosDevIOCtlC&char,NULL,3,0x91,digio_handle);
II
II or with this standard driver request:
II
II DosReadCdigio_handle,&char,l,&bytes_read;
II
II
#include "drvlib.h"
#include "digio.h"

extern void STRATEGY();
extern void TIMER_HANDLER();

DEVICEHDR devhdr = {
(void far*) OxFFFFFFFF,
CDAW_CHR I DAW_OPN I DAW_LEVELl),
(OFF) STRATEGY,
(OFF) 0,
"DIGIO$ "

} ;

FPFUNCTION
UC HAR
US HORT
LHANDLE
PHYSADDR
ERRCODE
ULONG
USHORT
USHORT
void
FARPOINTER
char
char

II messages

DevHlp=O;
opencount = O;
savepid=O;
l ock_seg_han;
appl_buffer=O;
err=O;
ReadID=OL;
num_rupts=O;
temp_char;
far *ptr;
appl_ptr=O;
input_char,output_char;
input_mask;

II name of strat rout. in drvstart
II timer handler in drvstart

II link
II attribute word
II &strategy
I I &IDC routine
II namel#units

II pointer to DevHlp entry point
II keeps track of open's
II save thread pid
II handle for locking appl. seg
II address of caller's buffer
II error return
II current read pointer
II count of interrupts
II temp character for in-out
II temp far pointer
II pointer to application buffer
II temp character storage
II mask for input byte

Appendix C - Listings 431

char Crlf[J= "\r\n";
char InitMessagel[J = " 8 bit Digital IIO ";
char InitMessage2[J =" driver installed\r\n";
char FailMessage[J =" driver failed to install. \r\n";

II common entry point for calls to Strategy routines

int main(PREOPACKET rp)
{

void far *ptr;
PLINFOSEG liptr;
inti;

switch(rp->RPcommand)
{

case RPINIT:

II pointer to global info seg

II OxOO

II init called by kernel in protected mode

return Init(rp);

case RPREAD: II Ox04

rp->s.ReadWrite.count = O; II in case we fail

input_char = inp(DIGIO_INPUT);ll get data

if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,
1, 0 ,&appl_ptr))

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

if (MoveBytes((FARPOINTER)&input_char,appl_ptr,l))
return (RPDONE I RPERR I ERROR_GEN_FAILURE);

rp->s.ReadWrite.count = l;
return (RP DONE) ;

case RPWRITE:

rp->s.ReadWrite.count = O;

II one byte read

II Ox08

432 Writing 05/2 2. 1 Device Drivers in C

if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,
1,0,&appl_ptr))

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

if (MoveBytes(appl_ptr,(FARPOINTER)&output_char,l))
return (RPDONE I RPERR I ERROR_GEN_FAILURE);

outp (DIGIO_OUTPUT,output_char); II send byte

rp->s.ReadWrite.count = l;
return (RPDONE);

case RPOPEN:

II get current process id

if (GetDOSVar(2,&ptr))

II one byte written

II OxOd open driver

return (RPDONE I RPERR I ERROR_BAD_COMMAND);

II get process info

liptr = *((PLINFOSEG far*) ptr);

II if this device never opened, can be opened by anyone

if (opencount ~ 0)
{

II first time this dev opened

opencount=l; II bump open counter
savepid = liptr->pidCurrent; II save current PIO

else
{

if (savepid != liptr->pidCurrent) II another proc
return (RPDONE I RPERR I ERROR_NOT_READY);llerr

-++opencount; II bump counter, same pid
}
return (RPDONE);

case RPCLOSE: II OxOe DosClose,ctl-C, kill

II get process info of caller

Appendix C - Listings 433

if (GetDOSVar(2,&ptr))
return CRPDONE I RPERR I ERROR_BAD_COMMAND);

II get process info from osl2

liptr= *((PLINFOSEG far*) ptr); II ptr to linfoseg

II
make sure that process attempting to close this device
is the one that originally opened it and the device was
open in the first place.

if (savepid != liptr->pidCurrent 11 opencount = 0)
return CRPDONE RPERR \ ERROR_BAD_COMMAND);

-opencount;
return (RPDONE);

case RPIOCTL:

II

II close counts down open cntr
II return 'done' status

II OxlO

The function code in an IOCtl packet has the high bit set
for the DIGIO$ board. We return all others with the done
bit set so we don't have to handle things like the 5-48

code page IOCtl

if (rp->s.IOCtl .category != DIGIO_CAT)ll other IOCtls
return CRPDONE I RPERR I ERROR_BAD_COMMAND);

switch (rp->s.IOCtl .function)
{

case OxOl: II write byte to digio port

II verify caller owns this buffer area

if(Veri fyAccess (

434 Writing OS/2 2. 1 Device Drivers in C

SELECTOROF(rp->s.IOCtl .parameters), // selector
OFFSETOF(rp->s.IOCtl .parameters), //offset
1, // 1 byte
0)) // read only

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

if(MoveBytes(rp->s.IOCtl .parameters,(FARPOINTER)&output_char,1))
return (RPDONE I RPERR I ERROR_GEN_FAILURE);

outp(DIGIO_OUTPUT,output_char); //send to digio
return (RPDONE);

case Ox02: II read byte w/wait from port

II verify caller owns this buffer area

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl .buffer), // selector
OFFSETOF(rp->s.IOCtl .buffer), //offset
1, // 1 bytes)
0)) II read only

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

II lock the segment down temp

if (LockSeg (
SELECTOROF(rp->s.IOCtl .buffer),
1.
o.

II selector
I I lock forever
II wait for seg loc
II handle returned (PLHANDLE) &lock_seg_han))

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

if(MoveBytes(rp->s.IOCtl .parameters,(FARPOINTER)&input_mask,1))
return (RPDONE I RPERR I ERROR_GEN_FAILURE);

II wait for switch to be pressed

ReadID = (ULONG)rp; // block ID
if (Block(ReadID,-lL,O,&err))

if (err = 2)
return(RPDONE I RPERR I ERROR_CHAR_CALL_INTERRUPTED);

Appendix C - Listings 435

II move data to users buffer

if(MoveBytes((FARPOINTER)&input_char,rp->s.IOCtl .buffer,l))
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

II unlock segment

if(UnlockSeg(lock_seg_han))
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

return (RP DONE) ;

case Ox03: II read byte immed digio port

II verify caller owns this buffer area

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl .buffer),
OFFSETOF(rp->s.IOCtl .buffer),
4,

II selector
II offset
II 4 bytes

0)) II read only
return (RPDONE I RPERR I ERROR_GEN_FAILURE);

input_char = inp(DIGIO_INPUT); II get data

if(MoveBytes((FARPOINTER)&input_char,rp->s.IOCtl .buffer,l))
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

return (RPDONE);

default:
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

II don't allow deinstall

case RPDEINSTALL: II Oxl4
return(RPDONE I RPERR I ERROR_BAD_COMMAND);

436 Writing 05/2 2. 1 Device Drivers in C

II all other commands are flagged as bad

default:
return(RPDONE I RPERR I ERROR_BAD_COMMAND);

timr_handler()
{

if (Read ID != 0)
{

II read data from port

input_char = inp(DIGIO_INPUT) ;l I get data

if ((input_char && input_mask) !=0)
{

Run (ReadID);
ReadID=OL;

II Device Initialization Routine

int Init(PREOPACKET rp)
{

II store DevHlp entry point

DevHlp = rp->s.Init.DevHlp;

II install timer handler

if(SetTimer((PFUNCTION)TIMER_HANDLER))

II if we failed, effectively deinstall driver with cs+ds=O

DosPutMessage(l, 8, devhdr.DHname);

Appendix C - Listings 437

DosPutMessage(l,strlen(FailMessage),FailMessage);
rp->s.InitExit.finalCS = (OFF) 0;
rp->s.InitExit.finalDS =(OFF) 0;
return (RPDONE I RPERR I ERROR_GEN_FAILURE);
}

II configure 8255 parallel chip

outp (DIGIO_CONFIG,Ox91);

II output initialization message

DosPutMessage(l, 2, Crlf);
DosPutMessage(l, 8, devhdr.DHname);
DosPutMessage(l, strlen(InitMessagel), InitMessagel);
DosPutMessage(l, strlen(InitMessage2), InitMessage2);

II send back our code and data end values to osl2

if (Seglimit(HIUSHORT((void far*) Init),
&rp->s.InitExit.finalCS) I I Seglimit(HIUSHORT((void far*)
InitMessage2), &rp->s.InitExit.finalDS))

Abort();
return (RP DONE) ;

438 Writing OS/2 2. 1 Device Drivers in C

C Startup Routine for Parallel Device Driver

C Startup routine for parallel device driver

EXT RN
EXT RN
PUBLIC
PUBLIC
PUBLIC

_main:near
_timr_handler:near
_STRATEGY
_acrtused
_TIMER_HANDLER

_DATA segment word public 'DATA'
_DATA ends

CONST segment word public 'CONST'
CONST ends

_BSS segment word public 'BSS'
_BSS ends

DGROUP group CONST, _BSS, _DATA

_TEXT segment word public 'CODE'

assume cs:_TEXT, ds:DGROUP, es:NOTHING, ss:NOTHING
.286

_STRATEGY proc far
_acrtused:

start:
push es
push bx
call _main
pop bx
pop es
mov word ptr es:[bx+3J,ax
ret

_STRATEGY endp

_TIMER_HANDLER proc far

;to satisfy C

&reqpacket high part
&reqpacket low part

plug in status word

Appendix C - Listings 439

pusha ;save flags, regs
push ds
push es ;make up for the 'almost all' push
call _timr_handler ;handle interrupts
pop es
pop ds
popa ;restore everything and
ret ;bail out

_TIMER_HANDLER endp

_TEXT ends
end

Parallel Device Driver Include File

II
II digio.h memory map for osl2 device driver
II
#define DIGIO_CAT Ox91 II category for DosDevIOCtl
#define DIGIO_BASE Ox2c0 11 board address
#define DIGIO_OUTPUT DIGIO_BASE II output port
#define DIGIO_INPUT DIGIO_BASE+lll input port
#define DIGIO_CONFIG DIGIO_BASE+311 initialization port

440 Writing OS/2 2. 7 Device Drivers in C

Parallel Device Driver Make File

digio.sys: drvstart.obj digio.obj
link /nod /noi /map drvstart+digio,digio.sys,digio,\

c:\c6\lib\os2+c:\c6\lib\slibcep+c:\drvlib\drvlib\drvlib,digio.def
mapsym digio

drvstart.obj: drvstart.asm
masm -Mx -e -t -L -N drvstart;

digio.obj: digio.c drvlib.h digio.h
cl -c -Asnw -Gs -G2 -Fe -Zl -Zp -Ox digio.c

Parallel Device Driver DEF File

I

LIBRARY D!G!OI
. PROTMODE

Sample OS/2 Serial Device Driver
II file sample.c
II sample OS/2 serial device driver

#include "drvlib.h"
#include "uart.h"
#include "sample.h"

extern void near STRAT();
extern void near TIMER();
extern int near INT_HNDLR();

DEVICEHDR devhdr = {

(void far*) OxFFFFFFFF,
(DAW_CHR I DAW_OPN I DAW_LEVELl),
(OFF) STRAT,
(OFF) 0,

II name of strat rout.
II timer handler
II interrupt hand

II link
II attribute
II &strategy
11 &IDCrouti ne

Appendix C - Listings 441

Sample OS/2 Serial Device Driver (Continued)

"SAMPLES"
} ;

CHAROUEUE
CHARQUEUE
FPFUNCTION
LHANDLE
PHYSADDR
PREOPACKET
ERRCODE
void
DEVICEHDR
USHORT
UART REGS
ULONG
ULONG
PREOPACKET
PREOPACKET
char
USHORT
unsigned
UC HAR
ULONG
unsigned
USHORT
US HORT
QUEUE

rx_queue;
tx_queue;
Device_Help=O;
lock_seg_han;
appl_buffer=O;
p=OL;
err=O;
far *ptr;
*hptr;
i ;
uart_regs;
WriteID=OL;
ReadID=OL;
Thi sReadRP=OL;
ThisWriteRP=OL;
inchar,outchar;
baud_rate;
int savepid;
opencount;
tickcount;
int com_error_word;
port;
temp_bank;
rqueue;

void near init();
void near enable_write();
void near disable_write();
void near set_dlab();
void near reset_dlab();
void near config_82050();

II receiver queue
II transmitter queue
II for DevHlp calls
II handle for locking
II address of caller
II Request Packet ptr
II error return
II temp far pointer
II pointer to Device
II general counter
II uart registers
II ID for write Block
II ID for read Block
II for read Request
II for write Request
II temp chars
II current baud rate
II PIO of driver own
II number of times
II for timeouts
II UART status
II port variable
II holds UART bank
II receive queue info

char IntFailMsg[J = " interrupt handler failed to install .\r\n";
char MainMsg[J =" OSl2 Serial Device Driver Vl.O installed.\r\n";

II common entry point to strat routines

int main(PREOPACKET rp, int dev)

442 Writing OS/2 2. 1 Device Drivers in C

Sample OS/2 Serial Device Driver (Continued)

void far *ptr;
int far *pptr;
PLINFOSEG l iptr;
int i ;
ULONG addr;

switch(rp->RPcommand)
{

case RPINIT:

II pointer to local info

II OxOO

II init called by kernel in prot mode

return Init(rp,dev);

case RPOPEN: II OxOd

II get current processes id

if (GetDOSVar(2,&ptr))
return (RPDONEIRPERRIERROR_BAD_COMMAND);

II get process info

liptr = *((PLINFOSEG far*) ptr);

II if this device never opened

if (opencount == 0) II lst time dev op'd
{

else

ThisReadRP=OL;
ThisWriteRP=OL;
opencount=l; II set open counter
savepid = liptr->pidCurrent; II PIO
Queuelnit(&rx_queue); II init driver
Queuelnit(&tx_queue);

{

if (savepid != liptr->pidCurrent)
return (RPDONE I RPERR I RPBUSY);

Appendix C - Listings 443

Sample OS/2 Serial Device Driver (Continued)

++opencount;
}

return (RPDONE);

case RPCLOSE:

II get process info of caller

if (GetDOSVar(2,&ptr))

II bump counter

II OxOe

return (RPDONEIRPERRIERROR_BAD_COMMAND); II no info

II get process info from osl2

liptr= *((PLINFOSEG far*) ptr); II PIO
if (savepid != liptr->pidCurrent II

opencount = 0)
return (RPDONEIRPERRIERROR_BAD_COMMAND);
-opencount; II close counts down open

if (ThisReadRP !=O && opencount = 0) {
Run((ULONG) ThisReadRP); II dangling
Thi sReadRP=OL;

}
return (RPDONE);

case RPREAD:

II Try to read a character

ThisReadRP = rp;
if (opencount = 0)
{

rp->s.ReadWrite.count = O;
return(RPDONE);

II return 'done'

II Ox04

II drvr was closed

11 EOF

com_error_word=O; II start off no errors
ReadID = (ULONG) rp;
if (Block(ReadID, -lL, 0, &err))

if (err = 2) 11 interrupted
return(RPDONEIRPERRIERROR_CHAR_CALL_INTERRUPTED);

444 Writing 05/2 2. 1 Device Drivers in C

if (rx_queue.qcount ~ 0) {
rp->s.ReadWrite.count=O;
return (RPDONEJRPERRJERROR_NOT_READY);
}

i=O;
do {

if (Movedata(&inchar,
(FARPOINTER) (rp->s.ReadWrite.buffer+i),
1, 2))

return(RPDONEJRPERRJERROR_GEN_FAILURE);

while (++i < rp->s.ReadWrite.count
&& !QueueRead(&rx_queue,&inchar));

rp->s.ReadWrite.count = i;
Queuelnit(&rx_queue);
return(rp->RPstatus);

case RPWRITE: II Ox08

ThisWriteRP = rp;

II transfer characters from user buffer

addr=rp->s.ReadWrite.buffer; II get addr
for (i = rp->s.ReadWrite.count; i; -i ,++addr)
{

}

if (Movedata((FARPOINTER)addr,
&outchar,1,1))

return (RPDONEJRPERRJERROR_GEN_FAILURE);

if (QueueWrite(&tx_queue,outchar))
return (RPDONEJRPERRJERROR_GEN_FAILURE);

WriteID = (ULONG) rp;
enable_write();

if (Block(WriteID, -ll, 0, &err))
if (err~ 2) II interrupted

return(RPDONE J RP ERR J ERROR_CHAR_CALL_INTERRUPTED);

tickcount=MIN_TIMEOUT;
QueueinitC&tx_queue);
return (rp->RPstatus);

case RPINPUT_FLUSH:

QueueFlush(&rx_queue);
return (RPDONE);

case RPOUTPUT_FLUSH:

OueueFlush(&tx_queue);
return (RPDONE);

case RPIOCTL:

II reset timeout

II Ox07

II OxOb

II OxlO

if (!((rp->s.IOCtl .category~ SAMPLE_CAT)
I I (rp->s.IOCtl .category~ OxOl)))

return (RPDONE);

switch (rp->s.IOCtl .function)
{

case Ox41: II set baud rate
II set baud rate to 1.2, 2.4, 9.6, 19.2
II verify caller owns the buffer area

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl .parameters),
OFFSETOF(rp->s.IOCtl .parameters),
2, II two bytes
1)) I I readlwri te

Appendix C - Listings 445

return (RPDONEIRPERRIERROR_GEN_FAILURE);

II lock the segment down temp

if(LockSeg(
SELECTOROF(rp->s.IOCtl .parameters),
O, I I 1 ock for < 2 sec
0, II wait for seg lock
(PLHANDLE) &lock_seg_han)) II handle

return (RPDONEIRPERRIERROR_GEN_FAILURE);

446 Writing OS/2 2. 1 Device Drivers in C

II get physical address of buffer
if (VirtToPhys(
(FARPOINTER) rp->s.IOCtl .parameters,
(FARPOINTER) &appl_buffer))

return (RPDONEIRPERRIERROR_GEN_FAILURE);

II move data to local driver buffer

if(MoveOata(
(FARPOINTER)
&baud_rate.
2,

appl_buffer, II source
II destination
II 2 bytes

1))

return
II phys to virt

(RPDONEIRPERRIERROR_GEN_FAILURE);

if (UnPhysToVirt()) II release selector
return(RPOONEIRPERRIERROR_GEN_FAILURE);

II unlock segment

if(UnLockSeg(lock_seg_han))
return(RPDONEIRPERRIERROR_GEN_FAILURE);

switch (baud_rate)
{

case 1200:

uart_regs.Bal=OxeO;
uart_regs.Bah=OxOl;
break;

case 2400:

uart_regs.Bal=OxfO;
uart_regs.Bah=OxOO;
break;

case 9600:

uart_regs.Bal=Ox3c;
uart_regs.Bah=OxOO;

error:

break;

case 19200:

uart_regs.Bal=Oxle;
uart_regs.Bah=OxOO;
break;

case 38400:

uart_regs.Bal=OxOf;
uart_regs.Bah=OxOO;
break;

return (RPDONEIRPERRIERROR_BAD_COMMAND);

Appendix C- Listings 447

}

init(); II reconfigure uart
return (RPDONE);

case Ox68: II get number of chars

II verify caller owns the buffer

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl .buffer),
OFFSETOF(rp->s.IOCtl .buffer),
4, II 4 bytes
1)) I I read/write

return (RPDONEIRPERRIERROR_GEN_FAILURE);

II lock the segment down temp

if(LockSeg(
SELECTOROF(rp->s.IOCtl .buffer),
0, I I lock for < 2 sec
0, II wait for seg lock
(PLHANDLE) &lock_seg_han)) II handle

return (RPDONEIRPERRIERROR_GEN_FAILURE);

448 Writing OS/2 2. 1 Device Drivers in C

II get physical address of buffer

if (VirtToPhys(
(FARPOINTER) rp->s.IOCtl .buffer,
(FARPOINTER) &appl_buffer))

return (RPDONEIRPERRIERROR_GEN_FAILURE);

rqueue.cch=rx_queue.qcount;
rqueue.cb=rx_queue.qsize;

II move data to local driver buffer

if(Movedata(
&rx_queue,
(FARPOINTER)
4,

II source
appl_buffer, II dest

II 4 bytes
2))

return
II virt to phys

(RPDONEIRPERRIERROR_GEN_FAILURE);

if (UnPhysToVirt())
return(RPDONEIRPERRjERROR_GEN_FAILURE);

II unlock segment

if(UnlockSeg(lock_seg_han))
return(RPDONEIRPERRIERROR_GEN_FAILURE);

return (RPDONE);

case Ox6d: II get COM error info

II verify caller owns the buffer

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl .buffer),
OFFSETOF(rp->s. IOCtl . buffer),
2, II two bytes
1)) I I readlwri te

return (RPDONEIRPERRjERROR_GEN_FAILURE);

II lock the segment down temp

if(LockSeg(
SELECTOROF(rp->s.IOCtl .buffer),

Appendix C - Listings 449

0, II lock for< 2 sec
0, II wait for seg lock
(PLHANDLE) &lock_seg_han)) II handle

return (RPDONEIRPERRIERROR_GEN_FAILURE);

II get physical address of buffer

if (VirtToPhys(
(FARPOINTER) rp->s.IOCtl .buffer,
(FARPOINTER) &appl_buffer))

return (RPDONEIRPERRIERROR_GEN_FAILURE);

II move data to application buffer

if(Movedata(
&com_error_word,
(FARPOINTER) appl_buffer,
2.

II source
II dest
II 2 bytes

2)) II virt to phys
return (RPDONEIRPERRIERROR_GEN_FAILURE);

if (UnPhysToVirt())
return(RPDONEIRPERRIERROR_GEN_FAILURE);

II unlock segment

if(UnlockSeg(lock_seg_han))
return(RPDONEIRPERRIERROR_GEN_FAILURE);

return (RPDONE);

default:
return(RPDONEIRPERRIERROR_GEN_FAILURE);

II don't allow deinstall

case RPDEINSTALL: II Ox14

450 Writing OS/2 2. 1 Device Drivers in C

return(RPDONEIRPERRIERROR_BAD_COMMAND);

II all other commands are ignored

default:
returnCRPDONE);

void enable_write()

II enable write interrupts on uart

}

int port;
int reg_val;

port=UART_PORT_ADDRESS;
reg_val=inp(port+2) & Ox60;
set_bankCOO);
outp((port+l),inp(port+l) Ox12);
outp((port+2),reg_val);

void disable_write()

II turn off write interrupts on uart

int port;
int reg_val;

port=UART_PORT_ADDRESS;
reg_val=inp(port+2) & Ox60;
set_bankCOO);
outp((port+l),inp(port+l) & Oxed);
outp((port+2),reg_val);

Appendix C - Listings 451

void init ()

II intializes software and configures 82050

config_82050 ();
set_bank(Ol);

void config_82050()

II Configure the 82050

int port;
intinval;

Disable();
port=UART_PORT_ADDRESS;

II set stick bit

set_bank(Ol);
outp((port+7),0x10);
outp ((port+l), uart_regs.Txf);

set_bank (02);
outp ((port+ 4), uart_regs.Imd);
outp ((port+ 7), uart_regs.Rmd);
outp ((port+ 5), uart_regs.Acrl);
outp ((port+ 3), uart_regs.Tmd);
outp ((port+ 1), uart_regs.Fmd);
outp ((port+ 6), uart_regs.Rie);

set_bank (03);

outp ((port+ 0), uart_regs.Clcf);
set_dlab (03);
outp ((port+ 0), uart_regs.Bbl);
outp ((port+ 1), uart_regs.Bbh);
reset_dlab (03);

II Configure 82050

II disable interrupts

II stick bit
II reset port
II stick bit

II general config
//auto rupt

II cntl-z
11 no 9 bit
II rx fifo
II enable

II modemconfiguration

II clock
II
II BRGB lsb
II BRGB msb
II

452 Writing 05/2 2.1 Device Drivers in C

outp ((port+ 3), uart_regs.Bbcf); II BRGB
outp ((port+ 6), uart_regs.Tmie); II timer b

set_bank (00);
outp ((port+ 1),
outp ((port+ 3),
outp ((port+ 7),
outp ((port+ 4),
set_dlab (00);
outp ((port+ 0),
outp ((port+ 1),
reset_dl ab (00);
set_bank(Ol);

II general cfg
uart_regs.Ger); II enable
uart_regs.Lcr); II 8 bit
uart_regs.AcrO); II CR
uart_regs.Mcr_O);ll no DTR

II
ua rt_regs. Bal) ; I I BRGA l sb
uart_regs.Bah); II BRGA msb

Enable(); II turn on

void set_dlab (bank)

II Set DLAB bit to allow access to divisior registers

int bank;
{

int inval;
int port;

port=UART_PORT_ADDRESS;
set_bank (00);
inval=inp(port +3);
inval =inval I Ox80;
outp ((port+3),inval);
set_bank (bank);

getsrc()

int v,src;
int port;

port=UART_PORT_ADDRESS;

II set dlab in LCR

II get base address

v=inp(port+2);
src=v & OxOe;
src=srcl2;
return(src);

set_bank(bank_num)

II set bank of 82050 uart

int bank_num;

int reg_val;
int port;

II get data
II mask bits
II divide by 2
II and pass it back

reg_val=bank_num*Ox20; II select bank numb
port=UART_PORT_ADDRESS; II get real port
outp(port+gir_addr,reg_val); II output

void reset_dlab (bank)

II Reset DLAB bit of LCR

int bank;

int inval;
int port;

port=UART_PORT_ADDRESS;
set_bank (00);
inval=inp (port +3);
inval = (inval & Ox7f);
outp ((port+3),inval);
set_bank (bank);

II 82050 interrupt handler

II dlab = 0 in LCR

Appendix C - Listings 453

454 Writing OS/2 2. 1 Device Drivers in C

void interrupt_handler ()
{

int rupt_dev;
int source;
int cmd_b;
int st_b;
int port;
int temp;
int rxl evel;

port=UART_PORT_ADDRESS;
outp((port+2),0x20);
source= getsrc ();
switch (source)
{

II switch to bank 1
II get vector

II optional timer service routine

case timer :

st_b=inp (port+3);
if (ThisReadRP ~ 0)

II dee transmit count
II nobody waiting

break;
ThisReadRP->RPstatus=(RPDONEIRPERRIERROR___NOT_READY);
Run ((ULONG) ThisWriteRP);ll run thread
Thi sWriteRP=O;
break;

case txm
case txf

II spurious write interrupt

if (ThisWriteRP ~ 0)
temp=inp(port+2);
break;

II keep transmitting until no data left

if (!(QueueRead(&tx_queue,&outchar)))
{

outp((port), outchar);
tickcount=MIN_TIMEOUT;
break;

II done writing, run blocked thread

tickcount=MIN_TIMEOUT;
disable_write();
ThisWriteRP->RPstatus = (RPDONE);
Run ((ULONG) ThisWriteRP);
ThisWriteRP=O;
break;

case ccr

II control character, treat as normal

inchar=inp(port+5);

case rxf

II rx fifo service routine

if (ThisReadRP ~ 0)
inchar=inp (port); II get character

else
{
temp=inp(port+4);
rxlevel=(temp & Ox70) I OxlO;

II empty out chip FIFO

while (rxlevel !=0) {

i ncha r=i np (port); I I get character
rxlevel-;
tickcount=MIN_TIMEOUT;

Appendix C - Listings 455

456 Writing OS/2 2. 1 Device Drivers in C

II write input data to queue

if(QueueWriteC&rx_queue,inchar))

II error, queue must be full

{

ThisReadRP->RPstatus=CRPDONEIRPERRIERROR_GEN_FAILURE);
Run CCULONG) ThisReadRP);
ThisReadRP=O;
break;
}

com_error_word I= inpCport+5);

} II while rxlevel
} II else

II switch (source)

void timer_handler()
{

if CThi sReadRP = 0)
return;

tickcount-;
if(tickcount = 0) {

ThisReadRP->RPstatus=CRPDONE);
Run ((ULONG) ThisReadRP);
Thi sReadRP=OL;
tickcount=MIN_TIMEOUT;
}

II Device Initialization Routine

int Init(PREQPACKET rp, int dev)
{

register char far *p;

II store DevHlp entry point

Device_Help = rp->s.Init.DevHlp;

II install interrupt hook in vector

if (SetTimer((PFUNCTION)TIMER))
goto fail;

rx_queue.qsize=QUEUE_SIZE;
tx_queue.qsize=OUEUE_SIZE;
init();
tickcount=MIN_TIMEOUT;

II init queue
II init the port
II set timeout

if(SetIRQ(5,(PFUNCTION)INT_HNDLR,0)) {

II if we failed, deinstall driver cs+ds=O
fail :

Appendix C - Listings 457

DosPutMessage(l, 8, devhdr.DHname);
DosPutMessage (1,strlen(IntFailMsg),IntFailMsg);
rp->s.InitExit.finalCS =(OFF) O;
rp->s.InitExit.finalDS =(OFF) O;
return (RPDONE I RPERR I ERROR_BAD_COMMAND);
}

II output initialization message

DosPutMessage(l, 8, devhdr.DHname);
DosPutMessage(l, strlen(MainMsg), MainMsg);

II send back our cs and ds values to osl2

if (Seglimit(HIUSHORTC(void far*) Init),&rp->s.InitExit.finalCS)
I I Seglimit(HIUSHORTC(void far*) MainMsg),
&rp->s.InitExit.finalDS))
Abort();

return(RPDONE);

458 Writing OS/2 2. 1 Device Drivers in C

Serial Device Driver Make File

sample.sys: drvstart.obj sample.obj drvlib.lib
link /nod /noi /map drvstart+sample,sample.sys,sample,\

c:\c6\lib\os2+c:\c6\lib\slibcep+c:\drvlib\drvlib\drvlib,sample.def
mapsym sample

drvstart.obj: drvstart.asm
masm -Mx -t -L -N drvstart;

sample.obj: sample.c drvlib.h sample.h uart.h
cl -c -Asnw -Gs -G2 -Fe -Zl -Zp -Ox sample.c

Serial Device Driver DEF File
LIBRARY SAMPLE$
PROTMODE

Sample C Callable DevHlp Interface

DevHlp Ox35
this routine releases the logical ID (LID)

C Calling Sequence:
if (FreeLIDEntry (USHORT id)) err

include drvlib.inc

public FREELIDENTRY

extrn _DevHlp:dword
assume CS: _TEXT

_TEXT segment word public 'CODE'

FREELIDENTRY proc near

push bp
mov bp,sp
mov ax,[bp+4J ; logical ID
mov dl ,DevHlp_FreeLIDEntry
call [_DevHlpJ

Appendix C - Listings 459

jc error error from device help
xor ax.ax
pop bp
ret 2

error:
mov ax,l
pop bp
ret 2

FREELIDENTRY endp
_TEXT ends

end

no errors

fix up the stack

return error for C

fix up stack and return

460 Writing 05/2 2. 1 Device Drivers in C

C Callable Debugger Breakpoint

int3.asm

this is NOT a DevHlp, but merely a simple way to break the
KDB at a specified point

C calling sequence:
INT3();

.286
public INT3
assume CS: _TEXT

_TEXT segment word public 'CODE'
INT3 proc near

int 3
ret

INT3 endp
_TEXT ends

end

Appendix C- Listings 461

Data Transfer Routine

movebyte.asm OS/2 Version 2.1

this routine transfers data to and from the device driver

C Calling Sequence:
if (MoveBytes(far &From.far &To,USHORT Lenth)) err

.286
include drvlib.inc
public MOVEBYTES
extrn _DevHlp:dword
assume CS:_TEXT

_TEXT segment word public 'CODE'

MOVEBYTES proc near

push bp
mov bp,sp
pus hf save flags
push di save segment regs
push si and others we use
push es
push ds
mov cx,[bp+4J length
or ex.ex exit if zero
mov ax,1 set for bad parameter
jz get_out
lds si ,[bp+lOJ from
l es di. [bp+6] to
cld
test cx,3 can we optimize?
jz double_move yep
test cx,l if even number of bytes, save a
jz wordmove little time by doing a word move
rep movsb
jmp short finish done

double_move:
shr cx,2

462 Writing OS/2 2. 1 Device Drivers in C

rep movsd blast it
jmp short finish done

wordmove:

shr cx,l half the number of bytes
rep movsw

finish:
xor ax.ax

get_out:
pop ds
pop es
pop si ; restore regs
pop di
po pf ;restore flags
pop bp
ret 10 ; fix up stack

MOVEBYTES endp
_TEXT ends

end

Appendix C - Listings 463

Sample OMA Routines

II mmap.h OMA Channel data structure

typedef struct _DMACh
UCHAR Fi 11 er; II force all fields aligned

II boundaries
UCHAR PageSelect;
USHORT BaseAddress;
USHORT WordCount;
} DMACh;

II OMA Channel 5

II page select
II base address
II word count

#define DMA_PAGE_SELECT_5 Ox8B
#define DMA_BASE_ADDRESS_5 OxC4
#define DMA_WORD_COUNT_5 OxC6

II OMA Channel 6

#define DMA_PAGE_SELECT_6 Ox89
#define DMA_BASE_ADDRESS_6 OxC8
#define DMA_WORD_COUNT_6 OxCA

II OMA Channel 7
#define DMA_PAGE_SELECT_? Ox8A
#define DMA_BASE_ADDRESS_? OxCC
#define DMA_WORD_COUNT_7 OxCE

II Other OMA Registers

#define DMA_REFRESH_CHANNEL Ox8F
#define DMA_MASK_REGISTER OxD4
#define DMA_MODE_REGISTER Ox06
#define DMA_BYTE_POINTER_FLIPFLOP OxD8
#define DMA_MASTER_RESET OxDA
#define DMA_RESET_MASK_REGISTER OxDC

II OMA Mode Flag Bit Definitions

#define DMA_WRITE Ox04
#define DMA_READ Ox08
#define DMA_AUTOINIT OxlO

II write transfer
II read transfer
II autoinit enabled

464 Writing 05/2 2. 1 Device Drivers in C

Udefine DMA_DECREMENT Ox20
Udefine DMA_SINGLE Ox40
Udefine DMA_BLOCK Ox80
Udefine DMA_CASCADE OxCO

II address dee selected
II SINGLE mode selected
II BLOCK mode selected
II CASCADE mode selected

USHORT SetupDMACUSHORT channel)
{
i f(DMAChannel Busy(channel))

return CDMA_CHANNEL_BUSY);
MaskDMACchannel);
SetDMAMode(channel ,DMA_SINGLE I DMA_READ);
InitDMACchannel ,(UCHAR) DMACh.PageSelect,

CUSHORT) DMACh.BaseAddress,
CUSHORT) DMACh.WordCount);

UnmaskDMACchannel);
return CDMA_COMPLETE);
}

void MaskDMACUSHORT channel)
{

UCHAR channel_mask;

II output a channel specific value to mask a OMA channel

switch (channel)

case 5:
channel_mask = 5;
break;

case 6:
channel_mask = 6;
break;

case 7:
channel_mask = 7;
break;
}

out8reg(DMA_MASK_REGISTER,channel_mask);

void SetDMAMode(USHORT channel ,UCHAR mode)
{

unsigned char mode_byte;

Appendix C - Listings 465

II output a channel specific value to unmask a OMA channel

switch (channel)

case 5:
mode_byte =mode I OxOl;
break:

case 6:
mode_byte =mode I Ox02:
break;

case 7:
mode_byte =mode I Ox03;
break;

}
out8reg(DMA_MODE_REGISTER,mode_byte);

void InitDMA(USHORT channel ,UCHAR page,USHORT address,
USHORT count)

II set up page select. addr, and cnt for specified channel

switch (channel)

case 5:
out8reg(DMA_PAGE_SELECT_5,page);
outl6reg(DMA_BASE_ADDRESS_5,address);
outl6reg(DMA_WORD_COUNT_5,count);
break;

case 6:
out8reg(DMA_PAGE_SELECT_6,page);
outl6reg(DMA_BASE_ADDRESS_6,address);
outl6reg(DMA_WORD_COUNT_6,count);
break;

466 Writing 05/2 2. 1 Device Drivers in C

case 7:
out8reg(DMA_PAGE_SELECT_7,page);
out16reg(DMA_BASE_ADDRESS_7,address);
out16reg(DMA_WORD_COUNT_7,count);
break;
}

void UnmaskDMA(USHORT channel)
{

unsigned char unmask_byte;

II output a channel specific value to unmask a OMA channel

switch (channel)

case 5:
unmask_byte = l;
break;

case 6:
unmask_byte = 2;
break;

case 7:
unmask_byte = 3;
break;
}

out8reg(DMA_MASK_REGISTER,unmask_byte);
}

USHORT DMAChannelBusy(USHORT ch)
{

UCHAR ch_status;
USHORT re;

II returns 0 if not busy, 1 if busy

ch_status = inp (DMA_STATUS_REG47)
re = O;
switch(ch)

case 5:
if (ch_status & Ox20)
re= l;
break;

case 6:
if (ch_status & Ox40)
re= l;
break;

case 7:
if (ch_status & Ox80)
re= l;
break

return (re);

Appendix C - Listings 467

468 Writing 05/2 2. 1 Device Drivers in C

outl6reg(port,word);

write a 16-bit value to a OMA register by issuing two
consecutive writes to an 8-bit register

.286

include mmap.inc

_TEXT SEGMENT BYTE PUBLIC 'CODE'
_TEXT ENDS

assume CS: _TEXT

_TEXT SEGMENT

_out16reg proc near

public _out16reg

cli
push
mov
pus ha
pus hf
push
push

bp
bp,sp

es
ds

;set up base pointer
;save regs
; and flags

;make sure that first write goes to low byte of register

mov dx,DMA_BYTE_POINTER_FLIPFLOP
mov al ,0 ;reset byte pointer
out dx,al
jmp $+2 ;register delay
jmp $+2
mov dx,word ptr [bp+4J ;output port address
mov al ,byte ptr [bp+6] ;byte to be output
out dx,al ;output low byte
jmp $+2
jmp $+2
mov al ,byte ptr [bp+7J ;byte to be output

out
jmp
jmp
pop
pop
po pf
pop a
pop
sti
ret

_out16reg endp

_text ends
end

dx,al
$+2
$+2
ds
es

bp

Appendix C - Listings 469

;output high byte

;restore registers

470 Writing OS/2 2.1 Device Drivers in C

out8reg(port,byte)

write a simple 8 bit register with interrupts off

.286

include mmap.inc

_TEXT SEGMENT BYTE PUBLIC 'CODE'
_TEXT ENDS

assume CS: _TEXT

_TEXT SEGMENT

_out8reg proc near

public _out8reg

cl i
push
mov
push a
pus hf
push
push
mov
mov
out
jmp
jmp
pop
pop
po pf
pop a

bp
bp,sp

es
ds
dx,word ptr [bp+4]
al ,byte ptr [bp+6J
dx,al
$+2
$+2
ds
es

pop bp
sti
ret

_out8reg endp

_text ends
end

;set up base pointer
;save regs
;and flags

;output register address
;byte to be output
;output low byte

;restore registers

Appendix C- Listings 471

title _word_dma
.286P
. model sma 11
include bsedos.inc

dma set up and execute routine

calling sequence:

word_dma(USHORT operation,
USHORT channel,
USHORT count,
ULONG address,
USHORT auto,
USHORT i nit)

l=write, 2=read
5, 6 or 7
0-65535 (0=1 word)
far to/from address
0 for single, 1 for auto
0 no auto init, 1 auto init

_text segment public 'CODE'
assume cs:_text,ds:NOTHING
public _word_dma

_word_dma proc near
push bp
mov bp,sp ;current frame pointer
cli ;disable rupts during dma setup
push bx
push dx
mov ax, [bp+6] ;get channel number
sub ax,4 ;minus 4 for second controller
mov bx,[bp+4] ;get mode byte and make command
shl bx,2 ;make valid mode bits
or ax.bx
mov bx,[bp+l4J ;or in initialize bit
cmp bx,O ;autoinitialize selected?
jz output ;no
or ax,OlOh ;yes, add in autoinitialize bit

output:
mov bx, [bp+l6J ;block or single mode?
or ax,40h ;default single
cmp bx,O
jz single ;single mode
and ax,Obfh ;make block mode
or ax,080h

[bp+4]
[bp+6]
[bp+8]
[bp+l0,12]
[bp+l4]
[bp+l6]

472 Writing OS/2 2.1 Device Drivers in C

single:
out Od8h,al ;set the first/last flip flop
jmp short $+2 ;small delay
out Od6h,al ;output the mode byte
mov dx, [bp+6] ;get channel number
sub dx,4 ;minus 4 for second controller
mov ax,08ah ;set page register
add ax,dx
push dx ;save port temp
mov dx,ax ;put page register address in dx
mov ax,ds ;high page address
out dx,al ;do it
pop dx
rol dx,2 ;times 4 for proper address
add dx,OcOh ;this is port address
mov ax,[bp+lOJ ;low offset address
out dx,al
jmp short $+2
mov al, ah ;now high part
out dx,al ;do it
jmp short'$+2
add dx,2 ;formulate count address
mov ax,[bp+BJ ;put low and
out dx,al ;high count to controller
jmp short $+2
mov al , ah
out dx,al
jmp short $+2
sti ;re-enable interrupts
mov ax,4 ;request dma transfer
or ax,[bp+6] ;add in channel number
out Od2h,al ;request dma transfer
jmp short $+2
pop dx
pop bx
pop bp
ret

_word_dma endp

_text ends
end

Appendix C - Listings 473

Obtaining POS Register Contents

USHORT get_POSCUSHORT slot_num.USHORT far *card_ID,UCHAR far *pos_regs)
{

USHORT re, i , lid;

if (GetLIDEntry(OxlO, O. 1. &lid)) II POS LID
return (l);

II Get the size of the LID request block

ABIOS_l_blk.f_parms.req_blk_len=sizeof(struct lid_block_def);
ABIOS_l_blk.f_parms.LID =lid;
ABIOS_l_blk.f_parms.unit = O;;
ABIOS_l_blk.f_parms.function = GET_LID_BLOCK_SIZE;
ABIOS_l_blk.f_parms.ret_code = Ox5a5a;
ABIOS_l_blk.f_parms.time_out = O;

if CABIOSCall(lid,0,(void far *)&ABIOS_l_blk))
return Cl);

lid_blk_size = ABIOS_l_blk.s_parms.blk_size;

II Fill POS regs with 0 and card ID with -1

*card_ID = OxFFFF;
for (i=O; i<NUM_POS_BYTES; i-t+) { pos_regs[i] =

OxOO; } ;

II Get the POS registers and card ID for slot

ABIOS_r_blk.f_parms.req_blk_len = lid_blk_size;
ABIOS_r_blk.f_parms.LID =lid;
ABIOS_r_blk.f_parms.unit = O;;
ABIOS_r_blk.f_parms.function = READ_POS_REGS_CARD;
ABIOS_r_blk.f_parms.ret_code = Ox5a5a;
ABIOS_r_blk.f_parms.time_out = 0;

ABIOS_r_blk.s_parms.slot_num = CUCHAR)slot_num & OxOF;
ABIOS_r_blk.s_parms.pos_buf =(void far*) pos_regs;
ABIOS_r_blk.s_parms.card_ID = OxFFFF;

474 Writing 05/2 2.1 Device Drivers in C

if (ABIOSCall(lid,0,(void far *)&ABIOS_r_blk))
re = 1;

else {
*eard_ID = ABIOS_r_blk.s_parms.eard_ID;
re = O;
}

FreeLIDEntry(lid);
return(re);
}

AB/OS Specific Include File

II ABIOS specific includes

#define POS_BASE
#define NUM_POS_BYTES
#define MAX_NUM_SLOTS
#define POS_PORT
#define POS_BASE

OxlOO
64
8

Ox96
OxlOO

II Constants used by ABIOS calls

#define GET_LID_BLOCK_SIZE OxOl
#define POS_LID OxlO
#define READ_POS_REGS_RAM OxOB
#define WRITE_POS_REGS_RAM OxOC
#define READ_POS_REGS_CARD OxOD
#define WRITE_POS_REGS_CARD OxOE

II ABIOS request function parameters

typedef struct function_parms_def
USHORT req_blk_len;
USHORT LID;
USHORT unit;
USHORT function;
USHORT resvdl;
USHORT resvd2;
USHORT ret_code;
USHORT time_out;
} function_parms_type;

typedef struct service_parms_def
UCHAR slot_num;
UCHAR resvd3;
USHORT card_ID;
USHORT resvd4;
UCHAR far *pos_buf;
USHORT resvd5;
USHORT resvd6;

Appendix C - Listings 475

II MCA adapter base
II maximum num POS bytes
II model 80 8 slots
II use this to enable POS
II all POS regs start here

II ABIOS command
II get POS LID from ABIOS
II read POS from NVRAM
II write NVRAM POS data
II read POS data from card
II write POS data to card

II length, must be init.
II the LID
II unit within a LID
II category of request
II reserved
II reserved
I I return code
II timeout in seconds

II lOh slot number
I I llh reserved
11 12h card ID
II 14h reserved
II 16h address of buffer
II lAh reserved
II lCh reserved

476 Writing OS/2 2.1 Device Drivers in C

UCHAR resvd7[40];
} service_parms_type;

II LID request parameters

II lEh work area

typedef struct lid_service_parms_def {
UCHAR irpt_level; II lOh interrupt level
UCHAR arb_level; II llh arbitration level
USHORT device_id; II 12h device ID
USHORT unit_count; II 14h count of units
USHORT flags; II 16h LID flags
USHORT bl k_s i ze; I I 18h req bl k length
US HORT secnd_ id; I I lAh secondary dev ID
USHORT resvd6; I I lCh reserved
USHORT resvd7; 11 lEh reserved
} lid_service_parms_type;

II complete request block

typedef struct req_block_def
function_parms_type f_parms;
service_parms_type s_parms;
} REQBLK;

II complete LID block

typedef struct lid_block_def
function_parms_type f_parms;
lid_service_parms_type s_parms;
} LIDBLK;

II card struct, contains ID and POS reg data

typedef struct card_def {
USHORT card_ID; II ID of the card slot
UCHAR pos_regs[NUM_POS_BYTESJ;
} CARD;

Appendix C - Listings 477

IOPL Routine For 16-Bit and 32-Bit Applications

Sample IOPL segment

IOSEG

IN_PORT

PUBLIC IN_PORT
PUBLIC OUT_PORT

.model large

.286P

segment word public USE16 'CODE'

assume CS: _IOSEG, OS: DGROUP, SS:
.286P

proc far

push bp ;set up stack frame
mov bp,sp ;save bp
push dx ;save dx
mov dx,[bp+6J ;get port address
in ax,dx ;do input
pop dx ;restore regs
pop bp ;return in ax

DGROUP

ret 2 ;remove from IOPL stack

IN_PORT endp

OUT_PORT proc far

push bp ;set up stack frame
mov bp,sp ; save it
push ax ;save ax
push dx ;and dx
mov ax, [bp+6J ;get data
mov dx, [bp+8J ;get port
out dx,al ;do output
pop dx ;restore regs
pop ax
pop bp

478 Writing OS/2 2.1 Device Drivers in C

ret
' OUT_PORT endp

IOSEG ends
end

4 ;remove off local stack

IOPL Routine Make File

ioseg.dll: ioseg.obj
link /MAP /NOI /NOD ioseg,ioseg.dll,ioseg,d:\lib\llibcdll+\

os2286,ioseg.def

ioseg.obj: ioseg.asm
masm ioseg.asm;

IOPL Routine DEF File

LIBRARY
PROTMODE
STACKSIZE 8192
SEGMENTS
_IOSEG IOPL
EXPORTS
IN_PORT 1
OUT_PORT 2

IOPL Test Program, 16-Bit

II
II testio.c - test IOPL functions
II

#define INCL_DOS
#include <os2.h>

#define INPUT_PORT Ox2f8

#define OUTPUT_PORT Ox2f8
#define TEST_DATA Ox41

extern far pascal in_port();
extern far pascal out_port();

int main()
{

USHORT in_stuff;

in_stuff = in_port (INPUT_PORT);
out_port (OUTPUT_PORT,TEST_DATA);

IOPL Test Program Make File, 16-Bit

testio.exe: testio.obj ioseg.obj

Appendix C- Listings 479

link /CO /nod /noe /noi /map testio+ioseg,testio.exe,testio,\
c:\c6\lib\os2+c:\c6\lib\llibcep,testio.def

testio.obj: testio.c
cl -c -AL -G2 testio.c

ioseg.obj: ioseg.asm
masm /MX IT ioseg.asm;

IOPL Test Program DEF File, 16-Bit

NAME TESTIO
STACKSIZE 8192
SEGMENTS

IOSEG IOPL
EXPORTS

IN_PORT 1
OUT_PORT 2

PROTMODE

480 Writing 05/2 2. 1 Device Drivers in C

IOPL Test Program, 32-Bit

II testio.c - test IOPL functions

#define INCL_DOS
#include <os2.h>

tfdefi ne INPUT_PORT Ox2f8
tfdefine OUTPUT_PORT Ox2f8
tfdefine TEST_DATA Ox41

extern USHORT _Far16 _Pascal in_port(USHORT);
extern void _Far16 _Pascal out_port(USHORT,USHORT);

int main(vide)
{

USHORT in_stuff;

in_stuff = in_port (INPUT_PORT);
out_port (OUTPUT_PORT,TEST_DATA);

/OPL Test Program Make File, 32-Bit

all: ioseg.lib testio32.exe

ioseg.lib: ioseg.def
implib /nologo ioseg.lib ioseg.def

testio32.exe: testio32.obj ioseg.obj
link386 /noi /map /pm:vio testio32,,testio32,ioseg,testio32

testio32.obj: testio32.c
ice -c -0 -Gd testio32.c

/OPL Test Program DEF File, 32-Bit

I
NAME TESTI032

. PROTMODE

Appendix C - Listings 481

Device Driver For Memory-Mapped Adapters

II OSl2 Device Driver for memory mapped IIO
II
II ©Steve Mastrianni
II
II This driver is loaded in the config.sys file with the DEVICE=
II statement. For ISA configuration, the first parameter to the "DEVICE="
II is the board base memory address in hex.
II
II This driver also returns a boolean to the calling application to
II inform it of the bus type (Micro Channel or ISA).
II
II All numbers are in hex. For MCA configuration, the board address
II is read from the board POS regs. The POS regs data is specific for
II each adapter, so the address calculations here may not work with
II your specific adapter. Refer to the hardware tech reference for the
II particular adapter to determine where and how the address appears
II in the POS registers.
II
II
II This driver allows the application IIO to run in Ring 2 with IOPL.
II The CONFIG.SYS files *must* contain the IOPL=YES statement.
II
II This driver supports 4 IOCtls, Category Ox90.
II
II IOCtl OxOl test for MCA or ISA bus
II IOCtl Ox02 gets and returns a selector to fabricated board memory
II IOCtl Ox03 gets the value of a selected POS register
II IOCtl Ox04 gets the board address that the driver found
II
II The driver is made by using the make file mmap.mak.

#include "drvlib.h"

482 Writing OS/2 2. 1 Device Drivers in C

#include "mmap.h"

extern void near STRATEGY(); II name of strat rout. in DDSTART

DEVICEHDR devhdr = {
(void far*) OxFFFFFFFF, II link
(DAW_CHR I DAW_OPN DAW_LEVELl),11 attribute
(OFF) STRATEGY, II &strategy
(OFF) 0, 11 &IDCroutine
"MMAP$

} ;

FPFUNCTION DevHlp=O;
LHANDLE lock_seg_han;
PHYSADDR appl_buffer=O;
PREOPACKET p=OL;
ERRCODE err=O;
void far *ptr;
USHORT i ,j;
PHYSADDR board_address;
USHORT opencount;
USHORT savepid;
USHORT cntr = O;
USHORT bus = O;
REOBLK ABIOS_r_blk;
LIDBLK ABIOS_l_blk;
USHORT lid_blk_size;
CARD card[MAX_NUM_SLOTS+l];
CARD *pcard;
USHORT matches = O;
POS_STRUCT pos_struct;
ADDR_STRUCT addr_struct;
USHORT chunkl,chunk2;

II storage area for DevHlp calls
II handle for locking appl. segment
II address of caller's buffer
II pointer to request packet
II error return
II temp far pointer
II general counters
II base board address
II count of DosOpens
II save the caller's PIO
II misc counter
II default ISA bus
II ABIOS request block
II ABIOS LID block
II size of LID block
II array for IDs and POS reg values
II pointer to card array
II match flag for card ID
II struct to get POS reg
II struct for passing addresses
II temp variables for address calc

char arguments[64]={0}; II save command line args in dgroup
char NoMatchMsg[J ="no match for selected Micro Channel card ID found.\r\n";
char MainMsgMCA[J = "\r\nOSl2 Micro Channel rrnmry-mapped driver installed.\r\n";
char MainMsgISA[J = "\r\n0Sl2 ISA bus rrnmry-mapped driver installed. \r\n";

II prototypes

int
US HORT
UC HAR
UC HAR

hex2bin(char c);
get_POS();
get_pos_data ();
nget_pos_data();

Appendix C - Listings 483

II common entry point for calls to Strategy routines

int main(PREQPACKET rp
{

void far *ptr;
int far *pptr;
PLINFOSEG liptr;
int i ;
ULONG addr;
USHORT in_data;

switch(rp->RPcommand)
{

case RPINIT:

II pointer to local info seg

II OxOO

II init called by kernel in protected mode ring 3 with IOPL

return I nit(rp);

case RPOPEN: II OxOd

II get current processes id

if (GetDOSVar(2,&ptr)) ·
return (RPDONE I RPERR I ERROR_BAD_COMMAND);

II get process info

liptr = *((PLINFOSEG far*) ptr);

II if this device never opened, can be opened by any process

if (opencount ~ 0)
{

II first time this device opened

opencount=l; II set open counter
savepid = liptr->pidCurrent; II save current process id

484 Writing OS/2 2. 1 Device Drivers in C

else
{

if (savepid != liptr->pidCurrent) II another proc tried to open
return (RPDONE I RPERR I RPBUSY); II so return error

++opencount; II bump counter, same pid
}
return (RP DONE) ;

case RPCLOSE: II OxOe

II get process info of caller

if (GetDOSVar(2,&ptr))
return (RPDONE I RPERR I ERROR_BAD_COMMAND); II no info

II get process info from osl2

liptr= *((PLINFOSEG far*) ptr); II ptr to process info seg

II
II make sure that process attempting to close this device
II one that originally opened it and the device was open in
II first place.
II

if (savepid != liptr->pidCurrent 11 opencount = 0)
return (RPDONE I RPERR I ERROR_BAD_COMMAND);

II if an LDT selector was allocated, free it

PhysToUVirt(board_address,Ox8000,2,&addr_struct.mapped_addr);

-opencount;
return (RPDONE);

case RPREAD:

return(RPDONE);

case RPWRITE:

II close counts down open counter
II return 'done' status to caller

II Ox04

II Ox08

Appendix C - Listings 485

return (RP DONE) :

case RPIOCTL: II OxlO

if (rp->s.IOCtl .category != OUR_CAT) II only our category
return (RPDONE);

switch (rp->s.IOCtl .function)
{

II this IOCtl returns the bus type. If the type is Micro Channel
II the return is OxffOl. If ISA, the return is ffOO

case OxOl: II check if MCA or ISA
return (RPDONE I RPERR I bus);

II this IOCtl maps an adapter memory to an LDT selector:offset,
II and sends it to the application for direct application reads
II and writes

case Ox02: II send memory-mapped addr to app

II verify caller owns this buffer area

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl .buffer).
OFFSETOF(rp->s.IOCtl .buffer),
8,

II selector
II offset
II 8 bytes

1)

return (RPDONE I RPERR I
II read write

ERROR_GEN_FAILURE);

II lock the segment down temp

if(LockSeg(
SELECTOROF(rp->s.IOCtl .buffer),
o.
o.

II selector
II lock< 2 sec
II wait for seg lock
II handle returned (PLHANDLE) &lock_seg_han))

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

486 Writing 05/2 2. 1 Device Drivers in C

II map the board address to an LDT entry

if (PhysToUVirt(board_address,Ox8000,l,&addr_struct.mapped_addr))
return (RPDONE I RPERR I ERROR_GEN_FAILURE);

II move data to users buffer

if (MoveBytes (
&addr_struct,
rp->s.IOCtl .buffer,
8))

II source
II dest
II 8 bytes

return (RPDONE RPERR I ERROR_GEN_FAILURE);

II unlock segment

if(UnlockSeg(lock_seg_han))
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

return (RP DONE) ;

II this IOCtl demonstrates how an application program can get the
II contents of a Micro Channel Adapter's POS registers

case Ox03: II get pos reg data

II verify caller owns this buffer area

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl .buffer),
OFFSETOF(rp->s. IOCtl . buffer),
6,

II selector
II offset
II 6 bytes

1)

return (RPDONE I RPERR I
II read write

ERROR_GEN_FAILURE);

II lock the segment down temp

if(LockSeg(
SELECTOROF(rp- >s. IOCtl . buffer),
0,
0,
(PLHANDLE) &lock_seg_han))

II selector
II lock< 2 sec
II wait for seg lock
II handle returned

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

II move slot data to driver buffer

if(MoveBytes(
(FARPOINTER) appl_buffer,
&pos_struct,
6))

return (RPDONE I RPERR I

II source
II for pos data
II 6 bytes

ERROR_GEN_FAILURE);

pos_struct.data = get_pos_data(pos_struct.slot,pos_struct.reg);

II move POS reg data to users buffer

if(MoveBytes (
&pos_struct,
(FARPOINTER) appl_buffer,
6))

return (RPDONE I RPERR I

II unlock segment

if(UnLockSeg(lock_seg_han))

II for pos data
II source
II 6 bytes

ERROR_GEN_FAILURE);

return(RPDONE I RPERR I ERROR_GEN_FAILURE);

return (RPDONE);

II this IOCtl is essentially the same as Ox02, except the
II user virtual address is mapped to a linear address in the
II process address range and then sent to the application. This
II saves the SelToFlat and FlatToSel each time the pointer is
II referenced.

case Ox04: II 32-bit memory-mapped addr to app

II verify caller owns this buffer area

if(VerifyAccess(
SELECTOROF(rp->s.IOCtl .buffer), II selector
OFFSETOF(rp->s.IOCtl .buffer), II offset

487

488 Writing OS/2 2. 1 Device Drivers in C

8, II 8 bytes
1) II read write

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

II lock the segment down temp

if(LockSeg(
SELECTOROF(rp->s.IOCtl .buffer),
0,
0,

II selector
II lock< 2 sec
II wait for seg lock
II handle returned (PLHANDLE) &lock_seg_han))

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

II map the board address to an LDT entry
II we could have used VMAlloc

if (PhysToUVirt(board_address,Ox8000,l,&addr_struct.mapped_addr))
return (RPDONE I RPERR I ERROR_GEN_FAILURE);

II now convert it to a linear address

if (VirtTolin((FARPOINTER)addr_struct.mapped_addr,
(PLINADDR)&addr_struct.mapped_addr))

return (RPDONE I RPERR I ERROR_GEN_FAILURE);

II move data to users buffer

II source
II dest

if(MoveBytes(
&addr_struct,
rp->s.IOCtl .buffer,
8))

return (RPDONE
II 8 bytes

RPERR I ERROR_GEN_FAILURE);

II unlock segment

if(UnlockSeg(lock_seg_han))
return(RPDONE I RPERR I ERROR_GEN_FAILURE);

return (RP DONE) ;

II switch (rp->s.IOCtl .function

case RPDEINSTALL: II Oxl4

returnCRPDONE I RPERR I ERROR_BAD_COMMAND);

II all other commands are ignored

default:
return(RPDONE);

int hex2bin(char c)
{
if(c < Ox3a)

return Cc - 48);
else

return ((c & Oxdf) - 55);

II read all the POS register data into a structure

Appendix C - Listings 489

USHORT get_POSCUSHORT slot_num,USHORT far *card_ID,UCHAR far *pos_regs)
{
USHORT re, i , l id;

if (GetLIDEntry(OxlO, 0, 1, &lid)) II get LID for POS
return Cl);

II Get the size of the LID request block

ABIOS_l_blk.f_parms.req_blk_len = sizeof(struct lid_block_def);
ABIOS_l_blk.f_parms.LID =lid;
ABIOS_l_blk.f_parms.unit = O;;
ABIOS_l_blk.f_parms.function = GET_LID_BLOCK_SIZE;
ABIOS_l_blk.f_parms.ret_code = Ox5a5a;
ABIOS_l_blk.f_parms.time_out = O;

if CABIOSCall(lid,0,(void far *)&ABIOS_l_blk))
return (l);

490 Writing OS/2 2. 1 Device Drivers in C

lid_blk_size = ABIOS_l_blk.s_parms.blk_size; II Get the block size

II Fill POS regs and card ID with FF in case this does not work

*card_ID = OxFFFF;
for (i=O; i<NUM_POS_BYTES; i++) { pos_regs[i] = OxOO; };

II Get the POS registers and card ID for the commanded slot

ABIOS_r_blk.f_parms.req_blk_len = lid_blk_size;
ABIOS_r_blk.f_parms.LID =lid;
ABIOS_r_blk.f_parms.unit = 0;;
ABIOS_r_blk.f_parms.function = READ_POS_REGS_CARD;
ABIOS_r_blk.f_parms.ret_code = Ox5a5a;
ABIOS_r_blk.f_parms.time_out = O;

ABIOS_r_blk.s_parms.slot_num = (UCHAR)slot_num & OxOF;
ABIOS_r_blk.s_parms.pos_buf = (void far *)pos_regs;
ABIOS_r_blk.s_parms.card_ID = OxFFFF;

if (ABIOSCall (lid,0,(void far *)&ABIOS_r_blk))
re= l;

else { I I Else
*card_ID = ABIOS_r_blk.s_parms.card_ID; II Set the card ID value
re = O;

}

FreeLIDEntry(lid);
return (re);

UCHAR get_pos_data (int slot, int reg)
{

UCHAR pos;
CARD *cptr;

cptr = &card[slot-1]; II set pointer to beg of card array
if (reg== 0) II card ID

pos = LOUSHORT(cptr->card_ID);
else

if (reg = 1)
pos = HIUSHORT(cptr->card_ID);

else
pos = cptr->pos_regs[reg-2];

return (pos);

II Device Initialization Routine

int Init(PREQPACKET rp)
{

USHORT lid;

register char far *p;

II store DevHlp entry point

DevHlp = rp->s.Init.DevHlp;

Appendix C- Listings 491

II POS data register

II save DevHlp entry point

if (!(GetLIDEntry(OxlO, 0, 1, &lid))) II get LID for POS regs
{

FreeLIDEntry(lid);

I I Micro Channel (tm) setup section

bus= l; II MCA bus

II Get the POS data and card ID for each of 8 possible slots

for (i=O;i <= MAX_NUM_SLOTS; i++)
get_POS(i+l,(FARPOINTER)&card[i].card_ID,(FARPOINTER)card[i].pos_regs);

matches = O;
for (i=O, pcard = card; i <= MAX_NUM_SLOTS; i++, pcard++)
{

if (pcard->card_ID = TARGET_ID)
{

matches= l;
break;

492 Writing 05/2 2. 1 Device Drivers in C

if (matches = 0)
{

II at least one board found

DosPutMessage(l, 8, devhdr.DHname);
DosPutMessage(l,strlen(NoMatchMsg),NoMatchMsg);
rp->s.InitExit.finalCS =(OFF) O;
rp->s.InitExit.finalDS =(OFF) O;
return (RPDONE I RPERR I ERROR_BAD_COMMAND);

II calculate the board address from the POS regs

board_address =((unsigned long) get_pos_data(i+l, 4) « 16) I
((unsigned long)(get_pos_data(i+l, 3) & 1) << 15);

else

II ISA bus setup

bus = O; I I ISA bus

II get parameters, IRO (not used yet), port addr and base mem addr

for (p = rp->s.Init.args;
for(; *p = • '; ++p);
if (*p)

*p && *p !=' ';++p);ll skip driver name
II skip blanks following driver name

{
board_address=O; II ilo port address
for (; *p != '\O'; ++p) II get board address
board_address = (board_address << 4) + (hex2bin(*p));
addr_struct.board_addr = board_address;

if (bus)
DosPutMessage(l,strlen(MainMsgMCA),MainMsgMCA);

else
DosPutMessage(l,strlen(MainMsgISA),MainMsgISA);

Appendix C - Listings 493

II send back our cs and ds end values to osl2

if (Seglimit(HIUSHORT((void far*) Init), &rp->s.InitExit.finalCS) I I
Seglimit(HIUSHORT((void far*) MainMsgISA), &rp->s.InitExit.finalDS))

Abort();

Beep(200,3000);
return (RPDONE);

Memory-Mapped Device Driver DEF File

I LIBRARY MMAPI
PROTMODE

494 Writing OS/2 2. 1 Device Drivers in C

Memory-Mapped Device Driver Make File

makefile for memory mapped driver

mmap.sys: ddstart.obj mmap.obj
link /nod /noi /map ddstart+mmap,mmap.sys,mmap,c:\c6\lib\os2+\

c:\lib\slibcep+c:\drvlib\drvlib\drvlib,mmap.def
mapsym mmap

ddstart.obj: ddstart.asm
masm -Mx -t -L -N ddstart;

mmap.obj: mmap.c drvlib.h mmap.h
cl -Fa -c -Asnw -Gs -G2 -Zl -Zp -Ox mmap.c

Memory-Mapped Device Driver Header File

II include file for memory-mapped driver MMAP$

#define OUR_CAT Ox91
#define MEMSIZE 32800
#define POS_BASE OxlOO
#define TARGET_ID Ox6CFD
#define NUM_POS_BYTES 64
#define MAX_NUM_SLOTS 8
#define MAX_DEV_NUMS 8
#define POS_PORT Ox96
#define POS_BASE OxlOO

II Constants used by ABIOS calls

#define GET_LID_BLOCK_SIZE OxOl
#define POS_LID OxlO
#define READ_POS_REGS OxOB
#define READ_POS_REGS_RAM OxOB
#define READ_POS_REGS_CARD OxOD

typedef struct _POS_STRUCT {
USHORT slot;
USHORT reg;

II category for DosDevIOCtl
II 32 K bytes per adapter
II MCA adapter base
I I adapter ID

Appendix C - Listings 495

USHORT data;
} POS_STRUCT;

typedef POS_STRUCT far *PPOS_STRUCT;

typedef struct _ADDR_STRUCT {
void far *mapped_addr;
ULONG board_addr;
} ADDR_STRUCT;

typedef ADDR_STRUCT far *PADDR_STRUCT;

typedef struct function_parms_def {
USHORT req_blk_len;
USHORT LID;
USHORT unit;
USHORT function;
USHORT resvdl;
USHORT resvd2;
USHORT ret_code;
USHORT time_out;
} function_parms_type;

typedef struct service_parms_def {
UCHAR slot_num; II lOh
UCHAR resvd3; II llh
USHORT card_ID; II 12h
USHORT resvd4; II 14h
UCHAR far *pos_buf; II 16h
USHORT resvd5; II lAh
USHORT resvd6; II lCh
UCHAR resvd7[40]; II lEh
} service_parms_type;

typedef struct lid_service_parms_def {
UCHAR i rpt_l evel; 11 lOh
UCHAR arb_level; II llh
USHORT device_id; II 12h
USHORT unit_count; II 14h
USHORT flags; II 16h
USHORT blk_size; II 18h
USHORT secnd_id; II lAh
USHORT resvd6; II lCh

496 Writing OS/2 2. 1 Device Drivers in C

USHORT resvd7; // lEh
} lid_service_parms_type;

typedef struct req_block_def
function_parms_type f_parms;
service_parms_type s_parms;
} REOBLK;

typedef struct lid_block_def {
function_parms_type f_parms;
lid_service_parms_type s_parms;
} LIDBLK;

typedef struct card_def {
USHORT card_ID; // ID of the card in this slot
UCHAR pos_regs[NUM_POS_BYTESJ;
} CARD;

Memory-Mapped Device Driver Test Program - 16-Bit

#define
#define
#define
#define
#include
#include
#include
HFILE
USHORT
UC HAR
USHORT
USHORT
ULONG
USHORT
ULONG

INCL_DOSFI LEMGR
INCL_DOS
INCL_DOSDEVICES
INCL_DOSDEVIOCTL
<os2.h>
<stdio.h>
"test.h"
driver_handle=O;
err;
far *myptr=O;
ActionTaken;
re;
Fil eSi ze=O;
FileAttribute;
Reserved=O L;

UCHAR Data1[8]={0};
UCHAR Data2=0;
PADDR_STRUCT paddr_ptr;

void main()
{

II open the driver

if ((re = DosOpen("MMAPS
&driver_handle,
&ActionTaken,
FileSize,
FileAttribute,
FILE_OPEN,

Appendix C - Listings 497

OPEN_SHARE_DENYNONE I OPEN_FLAGS_FAIL_ON_ERROR I OPEN_ACCESS_READWRITE,
Reserved)) !=0)
{

printf("\nDosOpen failed, error= %d",rc);
DosExit(EXIT_PROCESS,0);

printf ("Bus Type = ");

re= DosDevIOCtl(&Datal,&Data2,0x01,0UR_CAT,driver_handle);

if (re & Ox01)
printf ("Micro Channel (tm)\n");

else
printf ("ISA\n");

if (re= DosDevIOCtl(&Datal,&Data2,0x02,0UR_CAT,driver_handle))
{

printf ("DevIOCtl failed, error code= %d\n",rc);
DosExit(EXIT_PROCESS,0);

II pointer to data buffer

paddr_ptr = (PADDR_STRUCT) Datal;

498 Writing OS/2 2. 1 Device Drivers in C

printf ("Memory Mapped Address = %p\nPhysical Address
paddr_ptr->mapped_addr,paddr_ptr->board_addr);

myptr = (void far*) paddr_ptr->mapped_addr;

printf ("First Byte Of Adapter= %x\n",*myptr);

II close driver

DosClose(driver_handle);

= %lx\n",

Memory-Mapped Test Program Header File - 16-Bit

II include file for test.c

#define OUR_CAT Ox91
#define DRIVER_BASE OxDBOOO
#define BASE_LENGTH OxlOOO

typedef struct _ADDR_STRUCT {
void far *mapped_addr;
ULONG board_addr;
} ADDR_STRUCT;

II category for DosDevIOCtl
II board address
II length of memory map

typedef ADDR_STRUCT far *PADDR_STRUCT;

Memory-Mapped Test Program Def File - 16-Bit

I protmode

Memory-Mapped Test Program Make File - 16-Bit

test.exe: test.obj
link test,test,test,+c:\c6\lib\os2+c:\c6\lib\llibcep,,test.def

test.obj: test.c
cl -AL -G2 -c test.c

Appendix C - Listings 499

Memory-Mapped Test Program - 32-Bit, 16-Bit Pointers

#define INCL_DOS
#include <os2.h>

#define EABUF OL
#define OUR_CAT Ox91L
#define BUS_TYPE OxOlL
#define GET_PTR Ox02L
#define GET_POS Ox03L

typedef struct _ADDR_STRUCT
{

void * _Seg16 mapped_addr; II 16:16 pointer to adapter
ULONG board_addr;

} ADDR_STRUCT;

typedef ADDR_STRUCT *PADDR_STRUCT;

char buf[lOOJ = {0};
USHORT BytesRead;
ULONG ActionTaken;
APIRET re;
ULONG FileSize=O;
ULONG FileAttribute;
HFILE handle=O;
UCHAR parmbuf [20];
UCHAR databuf[20J;
ULONG plength,dlength;
PADDR_STRUCT paddr_ptr;
UCHAR * _Seg16 myptr;

main()
{

re = Dos0pen("MMAP$
&handle,
&ActionTaken,
FileSize,
FileAttribute,
OPEN_ACTION_OPEN_IF_EXISTS,

II for file opens
II return code for driver open
II NULL file size
II attribute bits

OPEN_ACCESS_READWRITE I OPEN_SHARE_DENYNONE I OPEN_FLAGS_NOINHERIT,

500 Writing 05/2 2. 1 Device Drivers in C

EABUF);
if (re)
{

printf("\nDosOpen failed, error= %ld",rc);
DosExit(EXIT_PROCESS,0); II exit gracefully

printf ("Bus Type = ");

re= DosDevIOCtl(handle,OUR_CAT,BUS_TYPE,O,OL,&plength,databuf,8L,&dlength);

if (re & OxOl)
printf ("Micro Channel (tm)\n");

else
printf ("ISA\n");

re= DosDevIOCtl(handle,OUR_CAT,GET_pTR,O,OL,&plength,databuf,8L,&dlength);

if (re)
{

printf C"DevIOCtl failed, error code= %ld\n",rc);
DosExit(EXIT_PROCESS,0);

paddr_ptr = CPADDR_STRUCT) databuf;

printf ("Memory Mapped Address = %p\nPhysical Address
paddr_ptr->mapped_addr,paddr_ptr->board_addr);

myptr = paddr_ptr->mapped_addr;

printf ("First Byte Of Adapter= %x\n",*myptr);

DosClose(handle);

= %lx\n",

Appendix C - Listings 501

Memory-Mapped Test Program DEF File - 32-Bit

I name test32
protmode

Memory-Mapped Test Program Make File - 32-Bit

test32.exe: test32.obj
link386 /MAP /NOI /PM:vio test32,test32,test32,,,test32.def

test32.obj: test32.c
ice le /Gt+ test32.c

Memory-Mapped Test Program - 32-Bit, 32-Bit Pointers

#define INCL_DOS
#include <os2.h>

#define EABU F 0 L
#define OUR._CAT Ox91L
#define BUS_TYPE OxOlL
#define GET_PTR Ox02L
#define GET_POS Ox03L
#define GET_LIN Ox04L

typedef struct _ADDR_STRUCT {
void *mapped_addr; //pointer to adapter memory
ULONG board_addr;
} ADDR_STRUCT;

typedef ADDR_STRUCT *PADDR_STRUCT;

char
US HORT
ULONG
APIRET
ULONG
ULONG

buf[lOOJ = {0};
BytesRead;
ActionTaken;
re;
Fil eSi ze=O;
FileAttribute;

II for file opens
II return code for driver open
II NULL file size
II attribute bits

502 Writing OS/2 2. 1 Device Drivers in C

HFILE handle=O;
UCHAR parmbuf [20];
UCHAR databuf[20J;
ULONG plength,dlength;
PADDR_STRUCT paddr_ptr;
UCHAR *myptr;

main()
{

re = Dos0pen("MMAP$
&handle,
&ActionTaken,
Fil eSi ze,
FileAttribute,
OPEN_ACTION_OPEN_IF_EXISTS,
OPEN_ACCESS_READWRITE I OPEN_SHARE_DENYNONE I OPEN_FLAGS_NOINHERIT,
EABUF);

if (re)
{

printf("\nDosOpen failed, error= %ld",rc);
DosExit(EXIT_PROCESS,0); //exit gracefully

printf ("Bus Type = ");

re= DosDevIOCtl(handle,OUR_CAT,BUS_TYPE,O,OL,&plength,databuf,8L,&dlength);

if (re & OxOl)
printf ("Micro Channel (tm)\n");

else
printf ("ISA\n");

re= DosDevIOCtl(handle,OUR_CAT,GET_LIN,O,OL,&plength,databuf,8L,&dlength);

if (re)
{

printf ("DevIOCtl failed, error code= %ld\n",rc);
DosExit(EXIT_PROCESS,0);

paddr_ptr = (PADDR_STRUCT) databuf;

Appendix C - Listings 503

printf ("Memory Mapped Address = %p\nPhysical Address
paddr_ptr->mapped_addr,paddr_ptr->board_addr);

myptr = paddr_ptr->mapped_addr;

printf ("First Byte Of Adapter= %x\n",*myptr);

DosClose(handle);

Memory-Mapped Test Program DEF File - 32-Bit

I protmode
name test31a

Memory-Mapped Test Program Make File - 32-Bit

test32a.exe: test32a.obj

= %lx\n",

link386 /MAP /NOI /PM:vio test32a,test32a,test32a,, ,test32a.def

test32a.obj: test32a.c
ice le /Gt+ test32a.c

504 Writing 05/2 2. 1 Device Drivers in C

Macros

SelToFl at MACRO

where AX= selector
BX = off set

exit with EAX =linear address

ENDM

shl eax,Odh
and eax,OlfffOOOOh
mov ax.bx

FlatToSel MACRO

where EAX =linear address

exit with AX= selector, BX =offset

ENDM

mov bx,ax
shr eax,Odh
or ax,Ox7h

APPENDIXD

OEMHLP And TESTCFG

OEMHLP

T he OEMHLP interface was originally designed to assist Original
Equipment Manufacturers (OEM's) in adapting the OS/2 operating sys­
tem to their hardware. Prior to OS/2 2.0, OS/2 1.x was built specifically

for a particular OEM machine. If an OEM wanted the OS/2 operating system to
run on their machine, they would have to build a modified version of the OS/2
operating system to sell under their logo. Having a pre-existing interface helped
speed the adaptation of OS/2 to their hardware. However, IBM realized that in
order to sell OS/2 2.0 to the largest possible number of users, that OS/2 2.0 had
to work on the majority of OEM hardware without any modifications. OS/2 2.0
was designed to meet this goal, and IBM currently tests the OS/2 operating sys­
tem on a wide variety of OEM hardware and configurations to ensure continued
compatibility.

The OEMHLP interface began as a simple interface for obtaining information in real
mode and passing it on to protect-mode applications and PDDs, and evolved into a
dedicated PDD. Protect-mode applications and PDDs cannot access BIOS through
the INT interface, yet they sometimes need information from the BIOS. The
OEMHLP interface was extended to allow access to necessary BIOS information. The
OEMHLP device support supports several IOCtls for aiding device driver writers.
These IOCtls can be found in Table D-1.

505

506 Writing OS/2 2. 1 Device Drivers in C

Using the OEMHLP device driver, a device driver can use INT 15h calls from the ini­
tialization code to determine if a particular EISA adapter is present and to set up that
particular adapter. The following example code in Figure D-1 illustrates how you
would use the OEMHLP device driver to determine if a particular EISA adapter is pre­
sent.

USHORT FindMyEISACard(void)
{

HFILE filehandle;
USHORT action;
EISAFunctioninfo.efi_SubFunc = OEM_GET_SLOT_INFO;
EISAFunctioninfo.efi_Slot = O;
if (re= Dos0pen("OEMHLP$",

return 1;

&filehandle,
&action,
OL,
0,
1.
Ox40,
OU)

for(index=l;index<CFG_MAX_EISA_SLOTS;index++)
{

II Get Slot
II Slot 0

II For each slot

EISAFunctioninfo.efi_Slot = CUCHAR) index; II Slot Number
EISASl otinfo.esi_CardID = O; 11 Reset Card ID
if (re= DosDevIOCtl((PVOID)&EISASlotinfo, II Data Packet

return 1;

(PVOID)&EISAFunctioninfo, II Parm Packet
(USHORT)OEMHLP_QUERYEISACONFIG,
CUSHORT)OEMHLP_CATEGORY,
(HFILE)filehandle))

II If IOCtl successful and slot has adapter, then store away
the adapter ID, otherwise mark as empty with a zero.

if(EISASlotinfo.esi_Error~O)
{

if (EISASlotinfo.esi_CardID ~ MYCARDID)
DosClose(filehandle);

Figure D-1. Locating An EISA Bus Adapter Using OEMHLP (Continued)

Appendix D - OEMHLP And TESTCFG 507

return O;

DosClose(filehandle);
return(NOTFOUND);

Figure D-1. Locating An EISA Bus Adapter Using OEMHLP

Table D-1. OEMHLP Supported IOCtl Calls

Function Description

OOh Query OEM Adaptation Information

Olh Query Machine Information

02h Query Display Combination Code

03h Return Video Fonts

04h Query EISA Configuration Information

05h Query ROM BIOS Information

06h Query Miscellaneous Video Information

07h Query Video Adapter

08h Query SVGA Information

09h Query Memory Information

Oah Query DMQS Information

508 Writing 05/2 2. 1 Device Drivers in C

FUNCTION DDh - Query OEM Adaptation Information
This function returns information about a specific OEM adaptation of the OS/2 oper­
ating system.

Data Packet Format

typedef struct _DataPacket
{

UCHAR OEMName[20];
UCHAR OS2Revision[10];
VataPacket;

OEMName - If this is a non-IBM-logo'ed version of the OS/2 operating system
and additional OEMHLP functions have been added, the OEM Name
field contains the ASCIIZ name of the OEM.

OS2Revision - The OS/2 version number, stored as an ASCIIZ string.

Comments
OEM's may add nonstandard OEMHLP IOCtls to the OS/2 operating system if they
sell the OS/2 operating system under their logo. Programs that use these IOCtls will
only work with that OEM's adaptation of the OS/2 operating system and, as such,
should issue the Query OEM Adaptation Information IOCtl routine and verify the
OEM Name.

Appendix D - OEMHLP And TESTCFG 509

FUNCTION 01 h - auery OEM Machine Information

Data Packet Format

typedef struct DataPacket
{

UCHAR Manufacturer[20J;
UCHAR ModelNumber[lOJ;
UCHAR RomRevisionNumber[lOJ;
DataPacket;

Manufacturer - ASCIIZ name of manufacturer

ModelNumber -ASCIIZ machine model number from ROM (if available)

RomRevisionNumber -ASCIIZ ROM revision number

Comments
This function will attempt to find the name of the manufacturer, the machine model
number, and the ROM revision number. If the machine cannot be identified, the fields
returned in the Data Packet are set to NULLs.

510 Writing 05/2 2.1 Device Drivers in C

FUNCTION 02h - Query Display Combination Code

Data Packet Format

typedef struct _DataPacket
{

BYTE DisplayCode;
DataPacket;

This function returns the display combination code.

DisplayCode - binary display combination code returned from INT lOh (AH =
lAh)

Comments
This function returns the display combination code, as returned from INT lOh
(AH=lAh). If this INT lOh function is not supported by the BIOS, then 0 will be
returned.

Pointers returned by this IOCtl are real-mode addresses and must be converted to
protect-mode addresses before being used by protect-mode applications and device
drivers.

See the IBM Personal System/2 and Personal Computer BIOS Interface Technical
Reference or the technical reference manual for your personal computer for more
information on the display combination codes returned from INT lOh (AH= lAh).

Appendix D - OEMHLP And TESTCFG 511

FUNCTION 03h - Return Pointers To Video Fonts

Data Packet Format

typedef struct _DataPacket
{

FARPOINTER P8Xl4;
FARPOINTER P8X8;
FARPOINTER PT8X8;
FARPOINTER P9X14;
FARPOINTER P8X16;
FARPOINTER P9X16;
DataPacket;

This function returns an array of 16:16 pointers to the ROM video fonts, as returned
by the INT lOh, AX=1130h.

P8X14 -16:16 pointer to 8x14 ROM font

P8X8 -16:16 pointer to 8 x 8 ROM font

Pf8X8 -16:16 pointer to 8 x 8 ROM font (top)

P9X14 -16:16 pointer to 9 x 14 ROM font

P8X16 -16:16 pointer to 8 x 16 ROM font

P9X16 -16:16 pointer to 9 x 16 ROM font

Comments
See the IBM Personal System/2 and Personal Computer BIOS Intetface Technical
Reference or the technical reference manual for your personal computer for more
information on the video font pointers returned from INT lOh (AX=1130h).

512 Writing 05/2 2.1 Device Drivers in C

FUNCTION 04h - Query EISA Configuration Information

Data Packet Format (subfunction O)

typedef struct _DataPacket
{

BYTE ReturnByte;
BYTE Flags;
BYTE MajorRevision;
BYTE MinorRevision;
USHORT Checksum;
BYTE DeviceFunc;
BYTE Funcinfo;
ULONG CardID;
Data Packet;

ReturnByte

Flags

- return code from BIOS

- binary value returned from BIOS

MajorRevision - binary value returned from BIOS

Minor Revision - binary value returned from BIOS

Checksum - binary value returned from BIOS

DevFunc - binary value returned from BIOS

Funclnfo - binary value returned from BIOS

CardID - binary EISA card ID returned from BIOS

Data Packet Format (subfunction 1)

typedef struct _DataPacket
{

BYTE ReturnByte;
UCHAR ConfigDataBlock[320];
} DataPacket;

Appendix 0- OEMHLPAnd TESTCFG 513

ConfigDataBlock - EISA Configuration Data Block

Parameter Packet Format

typedef struct _ParmPacket
{

BYTE SubFuncNum;
BYTE SlotNum;
BYTE FuncNum;
ParmPacket;

SubFuncNum - the EISA subfunction to perform (O=Query EISA slot information,
l=Query EISA function information).

SlotNum - binary EISA slot number (planar = 0)

FuncNum - binary EISA function to issue

This function routes selected EISA function calls to the EISA BIOS.

Comments
See the technical reference manual for your personal computer for more information
on EISA functions and returned values.

514 Writing OS/2 2.1 Device Drivers in C

FUNCTION 05h - auery ROM BIOS Information

Parameter Packet Format

typedef struct _ParmPacket
{

USHORT Model ;
USHORT BIOSRevlevel;
USHORT Flags;
ParmPacket;

Return ROM BIOS Information.

Model - binary machine model byte zero extened

BIOSRevisionLevel - binary machine submodel byte zero extened

Flags - binary value, ABIOS present (bit 0=1), all other bits reserved

Comments
Version 2.0 of the OS/2 operating system does not support RAM-loaded ABIOS
machines. Version 2.0 of the OS/2 operating system returns bit 0 set to zero on
machines with RAM-loaded ABIOS.

Version 2.1 of the OS/2 operating system supports RAM-loaded ABIOS machines.
Version 2.1 of the OS/2 operating system returns bit 0 set to one on machines with
RAM-loaded ABIOS.

Appendix D- OEMHLPAnd TESTCFG 515

FUNCTION 06h - Query Miscellaneous Video Information

Data Packet Format

typedef struct _DataPacket
{

BYTE VideoStateinfo;
} DataPacket;

Return miscellaneous video state information.

Bit 7 - reserved

Bit 6 - P70 video adapter active

Bit 5 -video attribute bit (O=background intensity, 2=blinking)

Bit 4 - cursor emulation active

Bit 3 - mode set default palette loading disabled

Bit 2 - monochrome display attached

Bit 1 - summing active

Bit 0 - all modes on all displays active

Comments
Bit 0 and bit 4 are always 0 for the IBM PS/2 Model 8530.

See the IBM Personal System/2 and Personal Computer BIOS Interface Technical
Reference or the technical reference manual for your personal computer for more
information on the miscellaneous video state information returned from INT lOh
(AX=lBOOh).

516 Writing 05/2 2.1 Device Drivers in C

FUNCTION 01h - auery Video Adapter

Data Packet Format

typedef struct _DataPacket
{

BYTE AdapterType;
} DataPacket;

Returns the video adapter type.

BitO - MPA

Bitl - CGA

Bit2 - EGA

Bit3 - VGA

Bits 4-7 - reserved

Appendix D - OEMHLP And TESTCFG 517

FUNCTION OBh - Query SVGA Information

ATA Packet Format

typedef struct _DataPacket
{

USHORT AdapterType;
USHORT ChipType;
ULONG VideoMemory;
Data Packet;

Returns SVGA video information.

Adaptetrype - binary video adapter type (see Table D-2)

ChipType - binary value of video chipset (see Table D-2)

VideoMemory - number of bytes of video RAM

518 Writing 05/2 2.1 Device Drivers in C

Table D-2. Video Chip Set Information

Manufacturer Chip Set Adapteflype Chip Type

Indeterminate 0 0

Headland HT205 1 1

HT206 1 2

HT209 1 3

Trident 8800 2 1

8900 2 2

Tseng ET3000 3 1

ET4000 3 2

Western Digital PVGAlA 4 1

WD90COO 4 2

WD90Cll 4 3

WD90C30 4 4

ATI 18800 5 1

28800 5 2

IBM VGA256C 6 1

Cirrus Logic GD5422 7 1

GD5424 7 2

GD5426 7 3

Appendix D - OEMHLP And TESTCFG 519

FUNCTION 09h - auery Memory Information

Data Packet Format

typedef struct _DataPacket
{

USHORT LowMemorySize;
USHORT HighMemorySize;
DataPacket;

LowMemorySize - the amount of RAM available below the lMB region.

HighMemorySize - the amount of RAM available above the lMB region.

This function returns the amount of RAM available on the machine.

Comments
The number of KB in high memory is a DWORD field for Version 2.1 of the OS/2
operating system. Previous versions of the OS/2 operating system used a WORD
field. Applications should query the version of the OS/2 operating system to deter­
mine the size of the data packet required. This can be done by issuing an OEMHELP
category 80 IOCtl function OOH, or issuing a GetDosVar DevHlp with index=l and
looking at the MajorVersion and MinorVersion.

520 Writing 05/2 2. 1 Device Drivers in C

FUNCTION Oah - Query/Set XGA DMQS Information

Data Packet Format

typedef struct _DataPacket
{

PVOID pDqmslnfo;
} DataPacket;

pDqmslnfo - a 16:16 pointer to the XGA DQMS information

This function returns a pointer to the XGA DQMS video information block.

Comments
The pointer returned is a protect-mode address. Protect-mode applications and device
drivers do not need to convert this address before using it

The XGA DMQS information is available only for IBM XGA/2 adapters and compati­
bles.

Information on XGA Display Mode Query and Set (DMQS) can be found in the IBM
Personal System/2 Hardware lnteeface Technical Reference - Video Subsystem.

The following program, which was supplied by IBM, demonstrates how you would
call the OEMHLP device driver to obtain the necessary configuration information.

Appendix D- OEMHLPAnd TESTCFG 521

II OEMHLP category

#define OEMHLP_CATEGORY Ox80

II OEMHLP functions

#define OEMHLP_QUERYOEMADAPTATIONINFO OxOO
#define OEMHLP_QUERYMACHINEINFORMATION OxOl
#define OEMHLP_QUERYDISPLAYCOMBINIATION Ox02
#define OEMHLP_GETVIDEOFONTS Ox03
#define OEMHLP_QUERYEISACONFIG Ox04
#define OEMHLP_QUERYBIOSINFO Ox05
#define OEMHLP_QUERYMISCVIDEOINFO Ox06
#define OEMHLP_QUERYVIDEOADAPTER Ox07
#define OEMHLP _QUERYSVGAINFO Ox08
#define OEMHLP_QUERYMEMORYINFO Ox09
#define OEMHLP_QUERYDMQSINFO OxOA

typedef struct _OEMADAPTATIONINFO{
CHAR oai_OEMName[20];
CHAR oai_InternalRevision[lOJ;

} OEMADAPTATIONINFO;

typedef OEMADAPTATIONINFO far * POEMADAPTATIONINFO;

typedef struct _MACHINEINFO{
CHAR mi_Manufacturer[20J;
CHAR mi_ModelNumber[lOJ;
CHAR mi_ROMRevision[lOJ;

} MACHINEINFO;

typedef MACHINEINFO far * PMACHINEINFO;

typedef BYTE DISPLAYCOMBINATIONCODE;

typedef struct _VIDEOFONTS{
ULONG vf_8X14Font;
ULONG vf_8X8Font;
ULONG vf _8X8TFont;
ULONG vf_9X14Font;
ULONG vf_8X16Font;

522 Writing OS/2 2. 1 Device Drivers in C

ULONG vf _9X16Font;
VIDEOFONTS;

typedef VIDEOFONTS far * PVIDEOFONTS;

II OEM EISA Subfunctions

#define OEM_GET_SLOT_INFO 0
#define OEM_GET_FUNCTION_INFO 1

II Adapter Slot

#define CFG_MAX_EISA_SLOTS 16

II OEM HELP typedefs

typedef struct _EISASLOTINFO
UCHAR esi_Error;
UCHAR esi_Flags;
UCHAR esi_MajorVer;
UCHAR esi_MinorVer;
USHORT esi_CheckSum;
UCHAR esi_DevFunc;
UCHAR esi_Funcinfo;
DLONG esi_CardID;

} EISASLOTINFO;

typedef EISASLOTINFO far * PEISASLOTINFO;

typedef struct _EISAFUNCTIONINFO
UCHAR efi_SubFunc;
UCHAR efi_Slot;
UCHAR efi_Func;
EISAFUNCTIONINFO;

typedef EISAFUNCTIONINFO far * PEISAFUNCTIONINFO;

typedef struct _BIOSINFO {
USHORT bi_Model;
USHORT bi_SubModel;
USHORT bi_Revisionlevel;

USHORT bi_ABIOS_Present;
BIOSINFO;

typedef BIOSINFO far *PBIOSINFO;

typedef BYTE MISCVIDEOINFO;

typedef BYTE VIDEOADAPTER;

typedef struct _SVGAINFO {
USHORT si_AdapterType;
USHORT si_ChipType;
ULONG si_VideoMemory;
SVGAINFO;

typedef SVGAINFO far *PSVGAINFO;

typedef struct _OLDMEMORYINFO {
USHORT omi_LowMemory;
USHORT omi_HighMemory;

} OLDMEMORYINFO;

Appendix D - OEMHLP And TESTCFG 523

typedef OLDMEMORYINFO far *POLDMEMORYINFO;

typedef struct _NEWMEMORYINFO {
USHORT nmi_LowMemory;
ULONG nmi_HighMemory;

} NEWMEMORYINFO;

typedef NEWMEMORYINFO far *PNEWMEMORYINFO;

typedef PVOID DMQSINFO;

II mainline oemhelp.c

#define INCL_DOSDEVICES
#define INCL_DOSDEVIOCTL
#define INCL_DOSERRORS
#define INCL_DOS
#define INCL_TYPES

1 524 Writing OS/2 2. 1 Device Drivers in C

#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include "OEMHELP.H"

const PSZ OEMHLPDD = "OEMHLP$";

II***
II Data/Parameter Packets
II***

OEMADAPTATIONINFO OEMAdaptationinfo -· {0};
MACHINEINFO Machineinfo = {0};
DISPLAYCOMBINATIONCODE DisplayCombiniationCode = O;
VIDEOFONTS VideoFonts {0};
EISASLOTINFO EISASl otinfo {0};
EISAFUNCTIONINFO EISAFunctioninfo {0};
BIOSINFO BIOSinfo {0};
MISCVIDEOINFO MiscVideoinfo = O;
VIDEOADAPTER VideoAdapter = O;
SVGAINFO SVGAinfo { 0};
OLDMEMORYINFO OldMemoryinfo = {0};
NEWMEMORYINFO NewMemoryinfo = {0};
DMQSINFO DMQSinfo = 0;

II***
II Procedure Prototypes
II***

USHORT main(USHORT argc,char *argv[J);

//***
II MAIN Procedure
II***

USHORT mainCUSHORT argc, char * argv[J)

USHORT usAction,index;
USHORT re = 0;
HFILE filehandle;

Appendix D - OEMHLP$ And TESTCFG 525

long templow,temphigh,tempall;

if (0 != (re= DosOpen(OEMHLPDD,
&filehandle,
&usAction,
OL,
o.
1,
OxC2,
OU))

printf("\n Error opening OEMHLP device driver.\n");
return(re);

II***
II OEMHLP_QUERYOEMADAPTATIONINFO OxOO
II***

if (re= DosDevIOCtl((PVOID)&OEMAdaptationinfo,
(PVOID)NULL,
(USHORT)OEMHLP_QUERYOEMADAPTATIONINFO,
(USHORT)OEMHLP_CATEGORY,
(HFILE)filehandle))

printf("\n Error from function OEMHLP_QUERYOEMADAPTATIONINFO,
RC=%xH.\n",rc);

else
{

printf("\n OEMName = %s" ,OEMAdaptationinfo.oai_OEMName);
printf("\n Internal Revision= %s",

OEMAdaptationlnfo.oai_InternalRevision);
printf("\n");
}

II**
II OEMHLP_QUERYMACHINEINFORMATION OxOl
II**

if (re= DosDevIOCtl((PVOID)&Machineinfo,

526 Writing 05/2 2. 1. Device Drivers in C

CPVOID)NULL,
CUSHORT)OEMHLP_QUERYMACHINEINFORMATION,
CUSHORT)OEMHLP_CATEGORY,
CHFILE)filehandle))

printf("\n Error from function OEMHLP_QUERYMACHINEINFORMATION,
RC=%xH. \n", re);

else
{

printf("\n Manufacturer
printf("\n Model
printf("\n ROM Revision
pri ntf("\n") ;

= %s",Machineinfo.mi_Manufacturer);
= %s",Machineinfo.mi_ModelNumber);
= %s" ,Machi neinfo. mi_ROMRevi si on);

II**
II OEMHLP_QUERYDISPLAYCOMBINIATION Ox02
II**

if (re= DosDevIOCtlCCPVOID)&DisplayCombiniationCode,
CPVOID)NULL,
CUSHORT)OEMHLP_QUERYDISPLAYCOMBINIATION,
CUSHORT)OEMHLP_CATEGORY,
(HFILE)filehandle))

printf("\n Error from function OEMHLP_QUERYDISPLAYCOMBINIATION,
RC=%xH.\n",rc);

else
{

printf("\n Display Combination code= %xH",DisplayCombiniationCode);
pri ntf("\n") ;

II**
II OEMHLP_GETVIDEOFONTS Ox03
II***~**********

if (re= DosDevIOCtl((PVOID)&VideoFonts,
(PVOID)NULL,

Appendix D - OEMHLP And TESTCFG 527

(USHORT)OEMHLP_GETVIDEOFONTS,
(USHORT)OEMHLP_CATEGORY,
(HFILE)filehandle))

pri ntf("\n Error from funeti on OEMHLP _GETVIDEOFONTS, RC=%xH. \n", re);

else
{

pri ntf("\n 8X14Font = %p", Vi deoFonts. vf_8X14Font);
pri ntf("\n 8X8Font = %p", Vi deoFonts. vf_8X8Font);
pri ntf("\n 8X8TFont = %p", Vi deoFonts. vf_8X8TFont);
printf("\n 9X14Font = %p",VideoFonts.vf_9X14Font);
pri ntf("\n 8X16Font = %p", Vi deoFonts. vf_8X16Font);
printf("\n 9Xl6Font = %p",VideoFonts.vf_9X16Font);
printf("\n");

II**
II OEMHLP_OUERYEISACONFIG Ox04
II**

II initialize EISA parameters

EISAFunetioninfo.efi_SubFune = OEM_GET_SLOT_INFO;ll EISA Get Slot
EISAFunetioninfo.efi_Slot = O; II Slot 0

if (re= DosDevIOCtl((PVOID)&EISASlotinfo,
(PVOID)&EISAFunetionlnfo,
(USHORT)OEMHLP_QUERYEISACONFIG,
(USHORT)OEMHLP_CATEGORY,
(HFILE)filehandle))

printf("\n Error issuing QueryEISAConfig assuming non-EISA,
RC=%u. \n", re);

else
{

printf("\n Slot 0
printf("\n
printf("\n
printf("\n

(planar) ID= %lxH ",EISASlotinfo.esi_CardID);
Error = %xH ". (SHORT)EISASlotinfo.esi_Error);
Flags = %xH ",(SHORT)EISASlotinfo.esi_Flags);

MajorVer = %xH "

528 Writing OS/2 2. 1 Device Drivers in C

(SHORT)EISASlotinfo.esi_MajorVer);
printf("\n MinorVer = %xH ",

(SHORT)EISASlotinfo.esi_MinorVer);
printf("\n Checksum= %xH ",

(SHORT)EISASlotinfo.esi_CheckSum);
printf("\n DevFunc = %xH ",

(SHORT)EISASlotinfo.esi_DevFunc);
printf("\n Funcinfo = %xH ",

(SHORT)EISASlotinfo.esi_Funcinfo);
for(index=l;index<CFG_MAX_EISA_SLOTS;index++) II For each slot
{

EISAFunctioninfo.efi_Slot = (UCHAR) index; II Slot Number
EISASlotinfo.esi_CardID = O; II Reset Adapter ID
re= DosDevIOCtl((PVOID)&EISASlotinfo, II Data Packet

(PVOID)&EISAFunctioninfo, II Parm Packet
(USHORT)OEMHLP_QUERYEISACONFIG,
(USHORT)OEMHLP_CATEGORY,
(HFILE)filehandle);

II If IOCTL successful and EISA has adapter, then store away
II the adapter ID, otherwise mark as empty with a zero.

if((rc~O)&&(EISASlotinfo.esi_Error~O))
{

printf("\n Slot %d ID= %lxH ",index,EISASlotinfo.esi_CardID);
printf("\n Error = %xH ", (SHORT)EISASlotinfo.esi_Error);
printf("\n Flags = %xH ",(SHORT)EISASlotinfo.esi_Flags);
pri ntf("\n MajorVer = %xH ",(SHORT) EISASl otinfo .esi_MajorVer);
printf("\n MinorVer = %xH ",(SHORT)EISASlotinfo.esi_MinorVer);
printf("\n Checksum= %xH ",(SHORT)EISASlotinfo.esi_CheckSum);
printf("\n DevFunc = %xH ", (SHORT)EISASl otinfo.esi_DevFunc);
printf("\n Funcinfo = %xH ", (SHORT)EISASl otinfo.esi_Funcinfo);

}

else
{

}

printf("\n Error reading Slot %d ID, RC=%u, EISA Error=%u "
index,rc,(SHORT)EISASlotinfo.esi_Error);

} II for
printf("\n");

Appendix D - OEMHLP And TESTCFG 529

II**
11 OEMHLP _QUERYBIOSINFO Ox05
II**

if (re= DosDevIOCtl((PVOID)&BIOSinfo,

{

(PVOID)NULL,
(USHORT)OEMHLP_QUERYBIOSINFO,
(USHORT)OEMHLP_CATEGORY,
(HFILE)filehandle))

pri ntf("\n Error from function OEMHLP _QUERYBIOSINFO, RC=%xH. \n", re);
}

else
{

= %xH ",BIOSinfo.bi_Model); printf("\n Model byte
printf("\n Submodel byte
printf("\n Revision level
printf("\n ABIOS Present
printf("\n");

= %xH ",BIOSinfo.bi_SubModel);
= %xH ",BIOSinfo.bi_Revisionlevel);
= %xH ",BIOSinfo.bi_ABIOS_Present);

II**
II OEMHLP_QUERYMISCVIDEOINFO Ox06
II**

if (re= DosDevIOCtl((PVOID)&MiscVideoinfo,
(PVOID)NULL,
(USHORT)OEMHLP_QUERYMISCVIDEOINFO,
(USHORT)OEMHLP_CATEGORY,
(HFILE)filehandle))

pri ntf("\n Error from function OEMHLP _OUERYMISCVIDEOINFO,
RC=%xH. \n". re);

else
{

printf("\n Misc Video Info = %xH ",MiscVideoinfo);
printf("\n");

530 Writing OS/2 2. 1 Device Drivers in C

II**
II OEMHLP_QUERYVIDEOADAPTER Ox07
II**

if (re= DosDevIOCtl((PVOID)&VideoAdapter,
(PVOID)NULL,
(USHORT)OEMHLP_QUERYVIDEOADAPTER,
(USHORT)OEMHLP_CATEGORY,
(HFILE)filehandle))

pri ntf ("\n Error from function OEMHLP _QUERYVIDEOADAPTER,
RC=%xH. \n", re);

else
{

printf("\n Video Adapter
printf("\n");

= %xH ",VideoAdapter);

II**
II OEMHLP_OUERYSVGAINFO Ox OB
II**

if (re= DosDevIOCtlCCPVOID)&SVGAinfo,
(PVOID)NULL,
CUSHORT)OEMHLP_QUERYSVGAINFO,
(USHORT)OEMHLP_CATEGORY,
CHFILE)filehandle))

pri ntf ("\n Error from funeti on OEMHLP _QUERYSVGAINFO, RC=%xH. \n", re);

else
{

printf("\n Adapter Type
printf("\n Chip Type
printf("\n Video memory
printf("\n");

= %xH " ,SVGAinfo.si_AdapterType);
= %xH " ,SVGAinfo.si_ChipType);
= %lxH ",SVGAinfo.si_VideoMemory);

II***

Appendix D - OEMHLP And TESTCFG 531

II OEMHLP_QUERYMEMORYINFO Ox09
II***

if (strncmp(OEMAdaptationinfo.oai_InternalRevision,"20.",3))
{

II String is different, use old memoryinfo

if (re= DosDevIOCtl((PVOID)&OldMemoryinfo,
(PVOID)NULL,
(USHORT)OEMHLP_QUERYMEMORYINFO,
(USHORT)OEMHLP_CATEGORY,
(HFILE)filehandle))

printf("\n Error from function OEMHLP_QUERYMEMORYINFO,
RC=%xH.\n",rc);

else
{

}

templow=OldMemoryinfo.omi_LowMemory;
temphigh=OldMemoryinfo.omi_HighMemory;
tempall=templow+temphigh;
printf("\n Low Memory = %d" ,OldMemoryinfo.omi_LowMemory);
printf("\n High Memory = %d" ,OldMemoryinfo.omi_HighMemory);
printf("\n Total Memory = %ld ",tempall);
pri ntf("\n");

else
{

II String is same use new memoryinfo

if (re= DosDevIOCtl ((PVOID)&NewMemoryinfo,
(PVOID)NULL,
(USHORT)OEMHLP_QUERYMEMORYINFO,
(USHORT)OEMHLP_CATEGORY,
(HFILE)filehandle))

printf("\n Error from function OEMHLP_QUERYMEMORYINFO,
RC=%xH.\n",rc);

532 Writing 05/2 2. 1 Device Drivers in C

else
{

templow=NewMemoryinfo.nmi_LowMemory;
temphigh=NewMemoryinfo.nmi_HighMemory;
tempall=templow+temphigh;
printf("\n Low Memory = %d " ,NewMemoryinfo.nmi_LowMemory);
pri ntf("\n High Memory = %1 d " , NewMemoryinfo. nmi_Hi ghMemory);
pri ntf("\n Total Memory = %1 d ", tempa 11) ;
printf("\n");

II***
11 OEMHLP _QUERYDMQSINFO OxOA
II***

if (re= DosDevIOCtl((PVOID)&DMQSinfo,
(PVOID)NULL,
(USHORT)OEMHLP_OUERYDMQSINFO,
(USHORT)OEMHLP_CATEGORY,
(HFILE)filehandle))

pri ntf ("\n Error from function OEMHLP _QUERYDMQSINFO, RC=%xH. \n", re);

else
{

printf("\n DMQS Pointer= %p",DMQSinfo);
printf("\n");

if (rc=DosClose(filehandle))
{

printf("\n Error closing OEMHLP device driver, RC=%xH.\n",rc);

return (re);

Appendix D - OEMHLP And TESTCFG 533

TESTCFG

The TESTCFG device driver offers some additonal functionality to aid in determining

the machine bus type and hardware configuration. It consists of six IOCtls in category

Ox80. The IOCtls are described in Table D-3. TESTCFG is opened with the name

TESTCFG$.

Table 0-3. TESTCFG IOCtls, Category OxBO.

Function Description

Ox40 Get copy of non-system memory

Ox41 "IN" instruction

Ox42 "OUT' instruction

Ox60 Get bus type

Ox61 Get POS registers

Ox62 GetEISAIDs

534 Writing OS/2 2. 1 Device Drivers in C

FUNCTION 40h - Get Copy Of Non-system Memory

Parameter Packet Format

typedef struct _ParmPacket
{

ULONG command;
ULONG physaddr;
USHORT numbytes
DataPacket;

Data Packet Format

II must be set to 0
II physical address OxcOOOO to Oxfffff
II number of bytes to get

typedef struct _DataPacket
{

BYTE bytes[numbytes];
} DataPacket;

Comments
This IOCtl returns copies the contents of physical memory below the lMB region to a
local buffer.

Appendix D - OEMHLP And TESTCFG 535

FUNCTION 41 h - Perform an 11IN" Instruction

Parameter Packet Format

typedef struct _ParmPacket
{

USHORT portaddress; II IIO port
USHORT width; II# bytes, l=byte, 2=word, 3=dword
DataPacket;

Data Packet Format

typedef struct _DataPacket
{

ULONG data;
} DataPacket;

Comments

II data read

Ports below Ox.100 are not accessible.

536 Writing OS/2 2. 1 Device Drivers in C

FUNCTION 42h - Issue An 110UT" Instruction

Parameter Packet Format

typedef struct _ParmPacket
{

USHORT portaddress; // I/O port
USHORT width; //#bytes, l=byte, 2=word, 4=dword

} DataPacket;

Data Packet Format

None.

Comments
Ports below OxlOO are not accessible.

Appendix D - OEMHLP And TESTCFG 537

FUNCTION 60h - Query Bus Architecture

Parameter Packet Format

typedef struct _ParmPacket
{

ULONG command;
} DataPacket;

Data Packet Format

II must be set to 0

typedef struct _DataPacket
{

ULONG BusType;
l DataPacket;

Comments

II 0 =ISA, 1= Micro Channel. 2=EISA

This IOCtl returns the current bus type.

538 Writing OS/2 2. 1 Device Drivers in C

FUNCTION 61 h - Get All Micro Channel Adapter IDs

Parameter Packet Format

typedef struct _ParmPacket
{

ULONG command;
} DataPacket;

Data Packet Format

II must be set to 0

typedef struct _DataPacket
{

USHORT AdapterID[16J; II receives IDs
} DataPacket;

Comments
This function returns Adapter ID [n] = 0 for ISA or EISA adapters.

Appendix D - OEMHLP And TESTCFG 539

FUNCTION 62h - Get EISA Adapter /Os

Parameter Packet Format

typedef struct _ParmPacket
{

ULONG command;
} ParmPacket;

Data Packet Format

II must be set to 0

typedef struct _DataPacket
{

UCHAR EISAtype[16][4]; II EISA adapter IDs returned
} DataPacket;

Comments
This function returns EISAType[n] [n] = 0 for ISA or Micro Channel adapters.

INDEX

0:32 addressing, 22

16:16 addressing, 22

32-bit applications, 251

80286,22

80386,22

80486,22

A
ABIOS, 59, 88, 107, 226, 274, 321

adapter,4, 12, 13, 16, 17, 19,20,29,93,
107, 108,225,127,134, 136,163, 164,
166, 173, 177, 185

Advanced Properties, 124

ATbus, 16

AttachDD, 277, 283

B
bandwidth, 173

BASIC, 1

binary, 4

·BIOS, 5, 7, 73, 123, 127, 128, 132, 164

bit, 4

bus, 4, 6, 13, 15, 16, 18

c
C Set/2 compiler, 251

callback,262,267,269

capabilities bit strip, 48

card services, 262

client driver, 267

Close, 60

compatibility box, 30, 144

CP/M,5

CPU,3

D
DEF file, 169

DevHlp

ABIOSCall, 27 4, 277

541

542 Index

ABIOSCommonEntry, 276
AllocateCt:x:Hook, 280
AllocGDTSelector, 166, 281
AllocPhys, 298
AllocReqPacket, 299
ArmCt:x:Hook, 300
AttachDD, 47, 301
Beep, 302
Block, 100, 303
CloseEventSem, 305
DeRegister, 306
DevDone, 307
DispMsg (SaveMsg), 308
DynamicApi, 309
EOI, 311
FreeCt:x:Hook, 312
FreeGDTSelector, 312
FreeLIDEntry, 313
FreePhys, 314
FreeReqPacket, 315
GetDesclnfo, 316
GetDeviceBlock, 317
GetDOSVar, 318
GetLIDEntry, 273, 321
InternalError,323
LinToGDTSelector, 1423, 256, 324
LinToPageList, 325
LockSeg,327
MonCreate, 330
MonFlush, 329
Mon Write, 332
OpenEventSem, 334
PageListToGDTSelector, 335
PageListToLin, 337

PhysToGDTSel, 339
PhysToGDTSelector, 166, 340
PhysToUVirt, 166, 273, 342
PhysToVirt, 79,344
PostEventSem,346
PullParticular, 347
PullReqPacket, 348
PushReqPacket, 349
QueueFlush, 350
Queuelnit, 351
QueueRead, 352
QueueWrite, 353
Register, 354
RegisterBeep, 355
RegisterPDD, 356, 359
RegisterStackUsage, 360
RegisterTmrDD, 362
ResetEventSem, 363
ResetTimer, 364
Run,65, 106,365
SaveMsg,308
SchedClockAddr, 366
SemClear, 367
SemHandle, 368
SemRequest, 370
SendEvent, 371
SetIRQ, 60, 373
SetTimer,66,95,374
SortReqPacket, 375
TCYield, 376
TickCount, 66, 377
UnlockSeg, 378
UnPhysTo Virt, 379
UnSetIRQ, 88, 380

VerifyAccess, 99, 381

VideoPause, 383

VirtToLin, 384

VirtToPhys, 385

V1V1Alloc,253,386

VMFree, 389

VMGlobalToProcess, 390

VMLock, 271, 392

VMProcessToGlobal, 253, 395

VMSetMem, 397

VMUnlock, 398

Yield, 399

Device Attribute Word, 47, 48

Device Context, 242

Device Header, 46, 48, 49, 95

device monitors, 41

DevOpenDC, 242

DLL, 25, 28, 122, 239

DMA, 61, 163, 173

channels, 173

controller, 173

page registers, 177

DMA controller, 61

DOS emulation component, 122

DOS Session Window Manager, 135

DosDevIOCtl2, 85

DosFlatToSel, 252

DosOpen, 43, 94, 96

DosRead, 55, 85

DosSelToFlat, 252

DosWrite, 55, 85

DPMI, 36

Driver Capabilities Structure, 184

driver functions

E

Build BPB, 77

Deinstall, 88

Generic IOCtl, 84

Index 543

Get Driver Capabilities, 91, 92, 184

Get Fixed Disk/LU Map, 90

Get/Set Logical Drive, 87

Init, 72

Input/Ouput Flush, 82

Media Check, 75

Nondestructive Read No Wait, 80

Open/Close, 82

Partitionable Fixed Disk, 89

Read/Write, 79

Removable Media, 84

Reset Media, 86

Shutdown, 91

Status, 81

Dynamic Data Exchange, 36

EEPROM, 6, 18

EISA bus, 20, 60

EPROM,2

exports, 170

Extended Device Driver Interface, 183

F
File Allocation Table, 77

File System Driver, 196

flat memory model, 251

floppy disk, 3, 15, 115, 128, 130, 131

FSDinfo structure, 196

544 Index

G
GDT,23,58

GP fault, 164

graphics engine, 240

H
hardware, 2

I
IBMPCAT, 16

IBMXT, 15

idle loop, 132

initialization, 57, 58

INT05h, 132

INT09h, 132

INTlOh, 136

INT14h, 127

INT15h, 132

INT 18h, 132

INT 21h, 121, 132

INT2Fh, 136

INT3, 42

INT33h, 133

interrupt, 16, 17, 18, 19,20,39,40,41,61

controller, 16

device, 59

drivers, 40

handler, 15,40,41,60,63,64,65,66

level, 17, 18

levels, 16

processing, 40

sharing, 107

system, 10, 15, 25, 40

timer, 48, 59, 66

vectors, 60

IOCtl, 56, 60, 100, 165

IOPL, 25, 167

IRQl, 132

ISA bus, 16

K
KDB,41

KD B Commands

Add Interrupt/ Trap Vector, All
Rings, 223

Add/Remove Active Map, 216

Baud Rate, 226

Change Default Command, 225

Change Task Context, 237

Clear Breakpoint(s), 210

Clear Interrupt/Trap Vectors, 224

Compare Bytes, 210

Conditional Execution, 216

Debugger Options, 225

Display MTE Segment Table, 229

Display User Registers, 236

Dump ABIOS Common Data Area,
226

Dump Bytes, 210

Dump Data Structure, 227

Dump Doublewords, 211

Dump GDT Entries, 211

Dump IDT Entries, 211

Dump LDT Entries, 211

Dump Loadall Buffer, 213

Dump Memory, 210

Dump Memory Alias Record, 231

Dump Memory Arena Records, 230

Dump Memory Context Record, 231

Dump Memory Object Record, 232

Dump Memory Page Frame, 233

Dump Page Directory /Page Table
Entries, 212

Dump RAS Trace Buffer, 237

Dump Task State Segment ([SS),
213

Dump Virtual Page Structure, 234

Dump Words, 211

Enable Breakpoint(s), 210

Enter Data, 213

Execute Default Command, 225

Fill Memory With Pattern, 213

Go, 214

Help, External Commands, 226

Help/Print Expression, 215

Hex Arithmetic, 215

Input Port, 215

Intercept Trap Vector Except Ring 0,
224

List Absolute Symbols, 216

List Breakpoint(s), 209

List Default Command, 225

List Groups, 215

List Maps, 216

List Near Symbols, 216

List Real/Protect Mode Vectors, 223

List Symbols, 217

Move Memory, 217

Ouput Byte, 217

Process Status, 235

Ptrace/Program Step, 218

Reboot, 236

Register, 218

Search, 221

Set Breakpoint, 208

Index 545

Set Register Breakpoint, 209

Set Timestamping Breakpoint, 209

Show Timestamp Entries, 209

Swap In TSD or Page, 228

Trace, 222

Trace User Stack, 228

Unassemble, 222

Kernel Debugger, 199

L
LDT, 22, 164, 166

LID, 88, 107

LIM, 123, 151

linear addressing, 251

Local Descriptor Table, 43

M
machine code, 3

MAPSYM utility, 201

memory, 2, 13

addressing, 21, 22, 25

memory-mapped adapters, 163

Micro Channel, 18, 60, 107, 164

Micro Channel II, 20

mouse, 133

MS-DOS,28

N
NVRAM,24

546 Index

0
offset, 22

Open, 60

OS/2

1.0, 32

1.1, 32

1.2, 33

2.0,35

API, 37

OS/2 1.X, 119

p
PC bus, 15

PCMCIA, 303

Physical Device Driver, 93, 120

PID,96,97

pixel, 10

PMGRE.DLL, 240

polling, 7,9,94,132

POS registers, 107, 108, 164, 260

POST, 261

Presentation Device Drivers, 239

Presentation Manager, 27

priorities, 30

protectmode,21,22,29,41,107

PS/2, 19,28, 107,125

Q
queues,64

R
Read,60

real mode, 21

Request Header, 189

Request List, 187

Request List Header, 187

Request Packet, 40, 42, 43, 46, 56, 96, 97,
100, 106, 108,152

Resource Map Utility, 260

ring architecture, 25

ring transition, 170

ROM, 6, 19

RPL, 164

s
scatter/gather descriptors, 183, 194

selector, 22

socket, 258

socketservices,259

software, 2

stack, 94

Strategy 2, 183

Strategy section, 43, 55, 56

swapping, 29

system file number, 79

T
threads, 30

thunking, 252

time slice, 29

timer handler, 40, 51, 65, 66, 95

u
UART,45,61

UNIX, 31

v
VDD, 120 •
VDM,255

Virtual 8086 Mode, 23, 120

Virtual Clock Device Driver, 128

Virtual COM Device Driver, 126

Virtual Device Helper, 123

VDHCloseVDD, 126

VDHinstallUserHook, 123

VDHOpenPDD, 126

VDHRequestVDD, 126

VDHWaitVRR, 132

VHDRegisterProperty, 124

Virtual Disk Device Driver, 130

Virtual DOS Machine, 120

Virtual Keyboard Device Driver, 132

Virtual Line Printer Device Driver, 133

Virtual Video Device Driver, 134

virtualization, 29

Volume Characteristics Structure, 185

VVIDEO, 123

w
Work Place Shell, 36

Index 547

LIBRARY ORDER FORM

AC callable DevHlp library is available for $79.00 without the library source, or for $149.00

with complete source of the 1.3 and 2.1 libraries, supplied on 3.511 1.4 MB floppy disk.

Company P.O.s accepted by mail or Fax. Checks should be made payable to Personal

Systems Software, Inc. International orders must include check payable in US dollars

drawn on an international bank or wired to our account. Sorry, we do not take credit cards.

Use the order blank below to order the DevHlp library. Please allow 1 week for delivery.

Qty _ C Callable 2.1 DevHlp library without source @ $79.00

Qty _ C Callable 2.1 DevHlp library with source@$149.00

Mail total plus $5.00 shipping to:

Ship to:

Personal Systems Software, Inc.
15 Great Oak Lane
Unionville, CT 06085
Fax (203) 693-9042

549

VHY WASTE VALUABLE TIME ...
WHEN YOU CAN GO
STRAIGHT TO THE SOURCE?

'troducing the only magazine
xclusively devoted to software
evelopers working in the OS/2
nvironment.

::J THE SOURCE for 05/2 tips
and techniques, direct from
Big Blue to you.

D THE SOURCE for those
working with everything from
LANs to multimedia to DBMS
architecture.

::J THE SOURCE for valuable
news and information for 05/2
application developers.

D THE SOURCE for new
software development ideas
and products.

1bscribe now and pay just $39. 95 for four big issues, delivered every single quarter to
)Ur office desk - straight from the source.

-----------------------------, ! Send me a full year of IBM OS/2 Developer. I'll pay just $39.95 for four big issues!

_______________ Title _____ _

te/Zip ___________________ _

My Credit Card : 0 VISA 0 MC DAMEX
1mber: ___________________ _

on Date: Signature: __________ _

my by enclosing a check or money order made out to IBM OS/2 Developer, or by enclosing VISA, Masten:::ard or American Express number, expiration date,

ture. Delivery of first issue will be in 6-8 weeks. Canadian and international surface mail orders, add $16 per year for postage. International surface mail is an

per year for postage. Checks must be in U.S. funds. .J -----------------------------

SPEED YOUR ORDER!
1-800-WANT-052
1-708-647-5960

(OUTSIDE THE U.S.)

FAX:
1-708-647-0537

MAIL THIS FORM TO:
IBM OS/2 DEVELOPER
P.O. Box 1079
SKOKIE, IL, 60606

-VNR COMPUTER LIBRARY Operating Systems/OS/2 Programming

EVERYTHING YOU NEED TO:
• Exploit new C language or operating system calls
• Use 16-bit drivers in 32-bit applications
• Write OS/2 device drivers on Micro Channel bus machines

This updated edition provides you with the skills to write OS/2 device drivers and get applications working fast. It cov­
ers changes to the 16-bit environment under version 2 .1 , as well as the effects of these changes on the DOS and
Windows 3.1 ® environment.

Writing OS/2 2. 1 Device Drivers in C, Second Edition, defines each type of driver, explains how various components
of the operating system interact, and shows you how to fit drivers into your system. It also gives you numerous tips
on debugging , tuning, and enhancing driver performance .

Discussion of OS/2 2.1 drivers , migration from version 1.x drivers , and how to use new C language or operating sys­
tem calls is included.

You'll find out what you need to know about application interfaces , mouse drivers , storage devices, leading-edge
Micro Channel devices, and tools . A disk is included that contains all of the source code that appears in the book,
plus source code for four complete drivers. Everything is here to make you an OS/2 2.1 driver expert!

Discover how to:
• Design and debug physical device drivers, virtual device drivers, and presentation drivers
• Build an 8-bit parallel port device driver
• Handle memory-mapped adapters
• Perform direct port 1/0 without a device driver
• Use Direct Memory Access IDMAJ
• Support PCMCIA devices

About the Author

Steven J. Mastrianni is President of Personal Systems Software, Inc., a company that specializes in OS/2 develop­
ment. His clients include IBM, General Motors , Chrysler , Gerber Scientific , l'eleco Oil Field Services, Optivision, and
United Technologies .

OS/2 Accredited logo is a trademark of IBM Corporation and is
used by Van Nostrand Reinhold under license.
0512® is a registered trademark of IBM Corporation .

Cover Photo by Larry Keenan Assoc., The Image Bank

Van Nostrand Reinhold
11 5 Fifth Avenue , New York, NY 1 0003

SR28-4392-00

Printed in U.S.A.

