
Microsoft®
Operating
System/2
Windows Presentation Manager
Reference

Volume 2

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de­
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1987

Microsoft, the Microsoft logo, MS-DOS, and MS are registered trademarks of
Microsoft Corporation.

Document Number 07-01-87-002
Part Number 00249

Contents

5 Input Functions 1

6 Device Contexts 4 7

7 Graphics Programming Interface 71

8 Metafile Support 327

9 Advanced Vio Interface 347

10 Standard Application Support 365

11 Spooler Interface 373

12 Printing Interface 409

13 General Functions 427

14 Multi-Process and
Multi-Thread Applications 467

iii

Figures

Figure 5.1

Figure 5.2

Figure 7.1

Figure 11.1

Figure 12.1

iv

Right-handed Button Arrangement

Left-handed Button Arrangement

Presentation Manager Pipeline

Spooler Logical Data Flow 376

PicPrint Paper Panel 422

30

30

149

Preface

The Microsoft Operating System/2 Windows Presentation Manager Refer­
ence, Volumes 1, 2, and 3, is derived from the latest draft of the functional
specification of the Windows Presentation Manager. Although this docu­
mentation does not represent the final Windows Presentation Manager
specification, it does provide a reasonable preview of the functionality you
can expect from the final product.

This documentation is preliminary in nature. The application program
interface and other features of the Windows Presentation Manager
described in this document are subject to change. It is strongly recom­
mended that the documentation be read for informational purposes only.

v

Chapter 5
lriput Functions

5.1 Input functions 3
5.1.1 Message Manager Architecture 3
5.1.1.1 Mouse and Keyboard Input 4
5.1.1.2 Synchronized Input 4
5.1.1.3 Input caveats 6
5.1.2 Message manager functions 7
5.1.2.1 Data structures 7
5.1.2.2 Functions 7
5.1.2.3 WinDefWindowProc default behaviors 18
5.1.2.4 Keyboard Input messages 18
5.1.2.5 Keyboard functions 26
5.1.2.6 Mouse Input 28
5.1.2.7 Mouse Capture functions 30
5.1.2.8 Mouse Tracking functions. 36
5.1.2.9 WM-SE1v1NJV1FBSAGES. 40
5.1.2.10
5.1.3
5.1.3.1
5.1.3.2
5.1.3.3

Low level input functions
Window Timers 43

Window Timer Architecture
Timer Routines 44
Timer Messages 45

42

43

1

Input Functions

5.1 Input functions

5.1.1 Message Manager Architecture

Every window in the system has a procedure associated with it called the
Window Procedure. Communication with windows is done with "window
messages", which are sent to the window proc of a window.

The arguments to the window proc make up a window message. There are
four parts to a window msg, which correspond to the 4 arguments of a
window procedure:

Handle of window receiving the message
- msg ID identifying the message

HWND hwnd
UINT msg
ULONG lParaml
ULONG 1Param2

- ULONG parameter (content depends on message ID)
- ULONG parameter (content depends on message ID)

A window message also has a ULONG return value.

The message ID defines the message. The contents of lParaml and
lParam2, and whether or not a return value is required, depend on the
semantics of th_f message as defined by the message ID.

The names of the predefined message IDs begin with "WM_". There are
two ways that you can define your own messages: you can either use an
integer constant within a certain range, or you can use the atom manager
functions to define a window message whose value is unique across all win­
dows in the system. The atom manager need only be used when the same
message must be understood by more than one application. For sending
private messages within an application, you can use any integer constant
in the range WM_ USER to Ox7fff. Values Ox8000 thru Oxbfff are reserved
for use by the system.

The lParam2 parameter often contains more than one piece of informa­
tion. For example, the high-order word may contain an x coordinate, and
the low-order word a y coordinate. The HIUINT() and LOUINT() utility
macros can be used to extract the high- and low-order words of f'Param2.
The HIUCHAR() and LOUCHAR() utility macros can also be used with
HIUINT() and LOUINT() to access any of the bytes. Casting can also be
used.

An application may send window messages to any window in the system.
If the message is being sent to a window owned by the current thread,
then the window proc is called as a subroutine, which is very fast. If the
message is being sent to a window of another application or thread,
Presentation Manager essentially switches to the appropriate
process/thread context and then calls the window procedure. The message
is not placed in a queue.

3

Windows Presentation Manager Reference

Application threads can control whether or not messages may be received
from another thread. lnter-app messages may be received by an thread
only in the following circumstances:

* When WinGetMsg, WinPeekMsg, or WinWaitMsg is called
* When sending a message to another app
* When calling a certain set of Presentation Manager routines

(such as those that implicitly send messages to other apps)

Note: In order to send messages to a window of another thread, the send­
ing thread MUST have allocated a queue.

5.1.1.1 Mouse and Keyboard Input

Presentation Manager supports user input from both the keyboard or a
mouse pointer. A one, two, or three button mouse is supported.

Mouse input is normally directed at the window underneath the mouse
cursor. However, an application may direct all mouse input to a particu­
lar window (regardless of whether the mouse cursor is in the window) by
setting the mouse capture window.

Keyboard input is directed at the keyboard focus. Only one window in the
system may be the keyboard focus.

5.1.1.2 Synchronized Input

In Presentation Manager, an input event may not be processed until all
previous input has been processed. This is because the destination of an
input event, i.e., which application and window the input is intended for,
cannot be known until all preceding input has been processed.

For example: A user wants to type a command in one window, use the
mouse to activate another window by clicking in it, and then type a com­
mand in that window. The routing of the second command to the second
window depends on what happens as a result of the processing of the
mouse click. Since an application process the mouse click, it may or may
not choose to activate the window.

To see how this all works, it's useful to understand how input events are
handled and routed by the system:

4

Input Functions

+-------------+
I Keyboard & I
I Mouse Input I
+-------------+

I
I
I
I v

+--------------+
I System Queue I
+--------------+

I
I
I
I v

+------------------+ +---------------------+
I
I
I
I
I
I
I
I
I
I

I
I

Input Router I
(Keyboard Focus I
Mouse Capture) I

I
I

I
I
I Window Timer,
I Window Repaint,
I WinPostMsg() Input
I
I

I
I
I
I
I
I
I
I
I
I

+-------- ---------+ +--------- ------- ---+
I
I
I
I
I
I

+----------+·

I
I
I
I
I
I +----------+

I
I
I
I
I
I
I
I

I
I

I I

I +-----------)
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

v v

I I
(-------------) : (-------+

I
I

+·----------) : (--------------+
I I I
I I I

I I : +--------------------+
I I I I
I I I I
v v v v

+---~-------+ +-----------+ +-----------+
: App Queue : I App Queue I I App Queue I
+1-----------+ +-----------+ +-----------+

I I I
I I I
I I I
I I I

i v v v
+1-----------+ +-----------+ +-----------+
I; App 1 I I App 2 I I App 3 I
+1-----------+ +-----------+ +-----------+

From a~ appli.cation's point of .view, all in~1!t is read from the application
qu1ue with WmGetMsg() or WmPeekMsg(m the form of a QMSG data
structure, one message at a time. A QMS structure contains a window
me~sage, which includes the window handle that the input message is
intended for.

Be~ore being posted to a particular application queue, all input is first
pl~ced in a single queue, called the System Queue. The System Queue is
qui:te large; it's large enough to store 60 or so keypresses and mouse clicks.
Only raw, untranslated keyboard input is placed in the system queue.

When an application calls WinGetMsg() or WinPeekMsg(), the next avail­
ablb message in the application queue is read and returned to the applica­
tion. If there are no messages in the application queue, the system queue
is checked for any available input. If an input message is available in the
system queue, then the Input Router determines which window and

5

Windows Presentation Manager Reference

application the input is destined for. Keyboard messages are posted to the
application queue associated with the keyboard focus window. Mouse
messages are posted to the queue associated with the mouse capture win­
dow or to the window underneath the mouse cursor.

The message is then read out of the queue, and returned to the applica­
tion.

All of the above processing (except for posting input to the system queue)
is performed by WinGetMsg() or WinPeekMsg(). If, during the input rout­
ing process, it is determined that the next input event is not intended for
the current thread, WinGetMsg() will suspend the current thread, Win­
PeekMsg() will return FALSE, and the message will be made available to
the destination application.

An application may not examine messages in the system queue until the
previous message has been processed. A message has not been processed
until the application that read the previous message finishes processing the
message and calls WinGetMsg() or WinPeekMsg() again for the next item
of input.

Notice that in the diagram above, other queued messages such as timers,
~PAINT messages, and messages directly posted with PostMsg() are
not placed in the system queue. These messages are thus not synchronized
between applications: for instance, two applications may process a
~TIMER message at the same time.

5.1.1.3 Input caveats

Mouse button or key down transitions are not placed in the system queue
if there is no room for the subsequent up transition. This ensures that
applications depending on the state of keys or mouse buttons always accu­
rately reflect the state of the hardware.

~MOUSEMOVE messages are handled in a special way: they are not
actually queued to prevent overflowing the queue. They are coalesced so
that applications receive ~MOUSEMOVE messages only as fast as
they can process them

Autorepeated ~CHAR keydown messages are coalesced: Consecutive
messages are coalesced into a single message, with a repeat count that
reflects the number of keydown messages that occured. In this way, appli­
cations do not receive these messages faster than they can be processed.

The WinGetMsg() or WinPeekMsg() filter parameters can be used to selec­
tively examine mouse or keyboard mput. This also allows keyboard and
mouse input to be processed in a different order than it occured.

6

Input Functions

Messages are not yrocessed until the app processing the previous message
calls WinGet11sgl) or WinPeek11sg() again.

5.1.2 Message manager functions

5.1.2.1 Data structures

Queue message structure:

typedef struct {
HWND hwnd:
UINT msg:
ULONG lParaml:
ULONG 1Param2:
ULONG time:
POINT pt:

} QMSG:

Message queue handle:

typedef HANDLE HMQ:

5.1.2.2 Functions

Format

ULONG Wi~SendMsg(hwnd, msg, lParaml, 1Param2)
HWND hwnd:
UINT message:
ULONG lParaml:
ULONG 1Param2:

Description
This function sends a message to a window. The
four parameters, hwnd, msg, lParaml, and
1Param2 comprise the message being sent. These
parameters are passed to the window procedure of
the receiving window. The return value is the long
value returned by the receiving window's window
proc.

Notes WinSendMSg does not return until the message has
been processed. If the window receiving the mes­
sage belongs to the same thread, the window func­
tion is called immediately, as a subroutine. If the
window is of another thread or process,

7

Windows Presentation Manager Reference

8

Presentation Manager switches to the appropriate
thread and calls the appropriate window function,
passing the message to the window function. The
message is not placed in the destination thread's
queue.

WinTimeou tSendMsg

Format

BOOL WinTimoutSendMsg(hwnd, msg, lParaml, 1Param2,
lplResult, dtTimeout)

HWND hwnd;
UINT message;
ULONG lParaml;
ULONG 1Param2;
ULONG FAR *lplResult;
ULONG dtTimeout;

Description

Format

Same as WinSendMsg, except that Win-
Timeou tSendMsg is used when sending inter­
thread messages. WinTimeoutSendMsg waits up to
dtTimeout milliseconds for the receiving thread to
reply to the message; if a timeout occurs before the
message is replied to, WinTimeoutSendMsg returns
FALSE and *lplResult is set to OL. If no timeout
occurs, then WinTimeOutSendMsg returns TRUE,
and the message return value is returned in
*lplResult.

BOOL WinBroadcastMsg(hwnd, msg, lParaml, 1Param2,
fSend}

HWND hwnd;
UINT message;
ULONG lParaml;
ULONG 1Param2;
BOOL fSend

Description
This function sends or posts a message to all top
level windows in the system. The hwnd, msg,
lParaml, and 1Param2 parameters make up the
message sent or posted. The message is sent if
fSend is TRUE, posted if FALSE. Returns TRUE
if all windows were successfully sent or posted to,
FALSE otherwise.

Input Functions

See "WinPostMsg"

WinDefWindowProc

Format

ULONG WinDefWindowProc(hwnd, msg, lParaml,
1Param2)

HWND hwnd;
UINT message;
ULONG lParaml;
ULONG 1Param2;

Description

Format

This function provides default processing for any
window messages that a given application chooses
not to process. WinDefWindowProc is generally
called in the default case of the window message
switch statement, with the parameters passed to
the window procedure.

The table below describes the default behavior of
messages handled by WinDefWindowProc().

BOOL WininSendMsg(hab)
HAB hab;

Description

Notes

This function is used to determine whether or not
the current thread is processing a message sent by
another thread, and if so, whether or not the mes­
sage was initiated by the activate thread or not.
The "active thread" is the thread associated with
the current active window.

Returns TRUE if the current thread is processing a
message sent by another thread, FALSE otherwise.

See also the WinlsThreadActive function.

WinlnSendMsg typically is used by applications to
determine how to proceed with errors when the
window that is processing the message is not the
active window. For example, if the active window
uses WinSendMsg to send a request for informa­
tion to another window, the other window cannot
become active until it returns control from the
WinSendMsg call. The only method an inactive

9

Windows Presentation Manager Reference

10

window has to inform the user of an error is to
create a message box.

Win CreateMsgQueue

Format

EMQ WinCreateMsgQueue(hab, cMsgs)
HAB hab;
INT cMsgs;

Description
Creates a thread queue for a thread with cMsgs
entries. Returns a queue handle if successful,
NULL otherwise. If cMsgs is 0, then the default
queue size is assumed.

Notes In order to use most Presentation Manager func­
tions, you must call WinCreateMsgQueue.

WinDestroyMsgQueue

Format

BOOL WinDestroyMsgQueue(hmq)
EMQ hmq;

Description

Notes

Format

Destroys the specified thread queue. Returns
TRUE if successful, FALSE otherwise.

WinDestroyMsgQueue() must be called before kil­
ling a thread or terminating an application.

BOOL WinGetMsg(hab, lpQmsg, hwndFilter, msgFilterFi
msgFilterLast);

HAB hab;
LPQMSG lpQmsg;
HWND hwndFilter;
UINT msgFilterFirst, msgFilterLast;

Description
WinGetMsg() get a queue message from the thread
queue and returns the message in *lpQmsg.
WinGetMsg() does not return until a message is
available.

WinGetMsg() returns FALSE if a WM_QUIT

Notes.

Input Functions

message is returned, TRUE otherwise. The return
value of WinGetMsg() is generally used to deter­
mine when to terminate the application's main
loop and exit the program.

Normally, WinGetMsg() is called with hwndFilter
==NULL and msgFilterFirst and msgFilterLast
== 0. In this case, all messages associated with
the current queue are returned, in the order that
they were posted. Msgs for windows of other
queues are never returned.

If hwndFilter is not NULL, only messages intended
for hwndFilter or its children are returned.

If msgFilterFirst and msgFilterLast are non-zero,
only messages whose IDs fall in between msgFilter­
First and msgFilterLast are returned. If msgFilter­
First is greater than msgFilterLast, all messages
except those that fall between msgFilterLast and
msgFilterFirst are returned.

By using filtering, messages may be processed in a
different order than exist in the queue. Messages
that do not match the filter are left in the queue.
Filtering is typically used for rearranging the
priority of messages by filtering first for higher
priority messages followed by lower priority mes­
sages, and in situations where it is inconvenient to
deal with certain messages. For example, when a
mouse down message is received, filtering can be
used to wait for the mouse up message without
having to worry about recieving other messages.

You must be careful when using filtering with
WinGetMsg() to ensure that the message filter will
be eventually satisfied so WinGetMsg() will return.
For example, calling WinGetMsg() with msgFilter­
Min and msgFilterMax equal to WNL CHAR and
with hwndFilter set to a window handle that does
not have the input focus will prevent WinGetMsg()
from returning.

Note that WinGetMsg calls WinTranslateAccel()
for keyboard keystrokes. Thus any keystrokes
which are used as accelerator keys get translated
into W1iL COMMAND or W1iL SYSCOMMAND
messages before WinGetMsg returns and are never
seen by the application. See the section on Com­
mand Key Accelerators for mor€ information.

11

Windows Presentation Manager Reference

12

Format

BOOL WinPeekMsg(hab, lpQmsg, hwndFilter,
msgFilterFirst, msgFilterLast, rgf);
HAB hab;
LPQMSG lpQmsg;
HWND hwndFilter;
UINT msgFilterFirst, msgFilterLast;
UINT rgf;

Description

Format

WinPeekMsg() is identical to WinGetMsg() except
that WinPeekMsg() returns TRUE if a message
was returned, FALSE if none were available. The
rgf parameter controls whether the returned mes­
sage is removed from the queue. This parameter is
specified with a combination of the following flags
ORed together:

WinPeekMsg() Flags

PM__ REMOVE
Remove message from queue

PM__ NOREMOVE
Leave message in queue

The message filter parameters (hwndFilter, msgFil­
terFirst, ms~FilterLast) are the same as for
WinGetMsgl).

void WinWaitMsg(hab, msgFilterFirst, msgFilterLast)
UINT msgFilterFirst, msgFilterLast;

Description
This function is called to wait until another mes­
sage fitting the specified filter parameters is posted
to the current message queue.

WinQuery..;;.Ms__,l.g~P_o_s ___________________ _

Format

void WinQueryMsgPos(hab, lppt)
HAB hab;

Input Functions

LPPOINT lppt;

Description

Notes

Format

This function returns the mouse position, in screen
coordinates, when when the last message obtained
from the current message queue was posted. The
mouse position is the same as that in the pt field of
the QMSG structure.

To obtain the current position of the mouse cursor
instead of the position when the last message
occurred, use the WinQueryCursorPos() function.

ULONG WinQueryMsgTime(hab)
HAB hab;

Description

Notes

Format

This function returns the message time for the last
message retrieved by WinGet11.sg() or Win­
Peek11.sg() from the current message queue. The
message time is the time in milliseconds when the
message was posted. The time value is the same as
that in the time field of the QMSG structure.

You cannot assume that time values are always
increasing. Since the time value is the number of
milliseconds since the system was booted, it is pos­
sible that the value may wrap around to start
again at zero. To accurately calculate time delays
between messages, subtract the time of the second
message from the time of the first.

BOOL WinPostMsg(hab, hwnd, msg, lParaml, 1Param2)
HWND hwnd;
UINT msg;
ULONG lParaml;
ULONG 1Param2;
HAB hab;

Description
This function posts a message in a window's
thread queue. Returns TRUE if successful, FALSE
if the queue was full or otherwise unsuccessful.

13

Windows Presentation Manager Reference

14

Format

The four parameters are placed into the queue as
part of a QMSG structure. The QMSG time and
pt fields are derived from the system time and
mouse position at the time WinPostMsg was
called.

This function can be used to post messages to any
window in the system. The message is posted into
the queue associated with the specified window.

If hwnd is NULL, the message is posted into
current message queue. When the message is
obtained by WinGetMsg() or WinPeekMsg(), the
hwnd field will be NULL.

BOOL WinPostQueueMsg(hmq, msg, lParaml, 1Param2)
HMQ hmq;
UINT msg;
ULONG lParaml;
ULONG 1Param2;

Description

Format

This function posts a message to a message queue.
Returns TRUE if successful, FALSE if the queue
was full or otherwise unsuccessful.

The last three parameters are placed into the
queue as part of a QMSG structure. The QMSG
hwnd field is set to NULL, and the QMSG time and
pt fields are derived from the system time and
mouse position at the time WinPostMsg was
called.

This function can be used to post messages to any
queue in the system.

ULONG WinDispatchMsg(hab, lpQmsg)
HAB hab;
LPQMSG lpQmsg;

Description
This function dispatches the message pointed to by
lpQmsg on to the window procedure of the window
specified by lpQmsg- > hwnd. WinDispatchMsg() is

Notes

Input Functions

essentially equivalent to:

WinSendMsg(lpQmsg->hwnd,
lpQmsg->msg, lpQmsg->lParaml,
lpQmsg->1Param2);

The other two fields of the QMSG structure, pt
and time, may be obtained by a window procedure
with the WinGet11sgPos() and WinGet11sgTime()
functions.

WinGetQueueStatus

Format

ULONG WinGetQueueStatus(hab)
HAB hab;

Description
This function returns a code indicating the status
of the message queue associated with the current
queue. The hi word of the return value contains
bits that indicate what kinds of messages are
currently in the queue. The lo word of the return
value contains bits that indicate what kinds of
messages have been added to the queue since the
last call to WinGetQueueStatus().

Each word of the return value contains a combina­
tion of the flags shown in the table below.

WinGetQueueState() Flags

QS-CHAR
A WM,_ CHAR mesage is available.

QS-MOUSE
A WM.-MOUSEMOVE or mouse button
transition message is available.

QS-MOUSEMOVE
A WM.-MOUSEMOVE message is avail­
able.

QS-TIMER
A WM,_ TIMER or WM_ SYSTIMER
message is available.

QS-PAINT
A WM,_ PAINT message is available.

QS-SEMl
A WM_ SEMI message is available.

15

Windows Presentation Manager Reference

16

QS_SEM2
A WM_ SEM2 message is available.

QS_SEM3
A WM_ SEM3 message is available.

QS_SEM4
A WM_ SEM4 message is available.

QS_POSTMSG
A posted message other than those listed
above is available.

QS_SENDMSG
A message has been sent by another
application to a window associated with
the current queue. In order to receive
the message, WinGet:Msg() or Win­
Peek:Msg() should be called.

The low word of the return value (status since last
time WinGetQueue:Msg() called) will not contain
QS_ bits that do not also exist in the hi word. In
other words, if there are no messages in the queue,
the low word of the return value is 0.

Note This function is very fast. It is typically used
inside loops to determine whether WinGet:Msg() or
WinPeek:Msg() should be called to process input.

WinSet:Msgin terest
~~~~~~~~~~~~~~~~~~~~~~~-

Format 

VOID WinSetMsginterest (hWnd, msg_class, control) 
HWND hWnd; 
UINT msg_class; 
INT control; 

Description 

WinSet:Msglnterest is used by an application to 
indicate the messages that the window hwnd wants 
to process. It also indicates that any other mes­
sages sent to the window will be processed by the 
application in a default manner. This means that 
the application will route all 

msg_ class specifies either a single message ID (e.g. 
\VM_ SHOW) or the ID of a Group of messages. A 
message group is a logical combination of a 
number of message IDs which can be used to facili­
tate bulk enablement/disablement of messages. 
Group IDs are as follows: 



Message Group IDs. 

SMLALL 

Input Functions 

All messages are included in this group. 

TBD many other groupings of messages are 
yet to be identified. 

The Control parameter indicates whether the 
application is interested or not interested in receiv­
ing the specified messages, by setting the following 
values: 

SML INTEREST 
indicates interest in the messages. 

SML NOINTEREST 
indicates not interested in the messages. 

The default state after window creation is deter­
mined by the options setting used for the Winini­
tialise call. For Presentation Manager, the default 
is as if interest in all messages had been notified to 
the system. Thus all messages will be sent to the 
application for either processing or passing to the 
default window procedure. 

Note that in fact, Presentation Manager treats this 
call as a NO-OP. All messages are always given to 
the application. However, other systems imple­
menting this function will make use of this func­
tion to offer potential performance gains and so 
portable applications should use this function. 

Each use of the function is then incremental - i.e. 
the call adds to or subtracts from the previous set 
of messages. 

For example, the call 

WinSetMsginterest(hwnd, SMI_ALL, SMI_INTEREST) 

gives the application total control of all the mes-
sages which the system generates. 

Indicating which messages the application intends 
to process itself offers the system the opportunity 
to optimise processing of those messages which the 
application is not going to process directly. 

Note however, that if an application is to be 
ported between different systems, it must not 
depend upon the receipt of messages not supported 
by one of the systems. Conversely, the application 

17 



Windows Presentation Manager Reference 

should expect that any system has the potential to 
generate messages not present on other systems. It 
is important that the application pass on any such 
messages to the default window procedure. It is 
guaranteed that the default processing of such 
messages will be acceptable in terms of User Inter­
face Standards on all systems. 

5.1.2.3 WinDefWindowProc default behaviors 

Below is a list of the messages processed by WinDefWindowProc() and the 
default actions taken. 

11sg ID Action taken by WinDefWindowProc() 

WM_SETWINDOWPARAMS 
Sets caption text, if text is specified. 

WM_GETWINDOWPARAMS 
Gets caption text, if text is specified. 

WM_ CANCELMODE 
Cancels any internal mode loop (scrolling, size/move track­
ing, etc) 

WM_ PAINT 
Calls WinBeginPain t /EndPain t 

WM_ QUERYENDSESSION 
Returns TRUE 

WM_ SYSCOMMAND 
Standard processing of system commands (size/move track­
ing, etc) 

WM_ ACTIVATE 
If activating, sets focus to hwnd. 

WM_SHOWWINDOW 

WM_ DOSUSPEND 

5.1.2.4 Keyboard Input messages 

18 



Input Functions 

5.1.2.4.1 Keyboard input 

Keyboard input is obtained in the form of messages received via 
WinGetMsg. 

A WM_ CHAR message is delivered for each keydown and keyup for all 
keys on the keyboard. Translation of the scan code received from the key­
board is done by the WinGetMsg call that receives the keystroke. 

WinGetMsg does not send a message for every typamatic repeat from the 
keyboard; it may buffer typamatic repeats into one or more messages. nt 
Each message contains a count, which is the number of typamatic repeats 
that have occurred since the first keydown, or since the last wingetmsg 
call. This count will begin at one for the first keydown. 

Keyboard data along with mouse data is buffered asynchronously into the 
Presentation Manager system queue. Keyboard data is removed from the 
system queue w hen the application that owns the input focus calls 
WinGetMsg or WinPeekMsg. Only one keyboard event is dequeued at a 
time. 

Translation occurs when the event is dequeued. The message obtained 
from WinGetMsg contains three separate fields that represent the key 
pressed: the hardware dependent scan code, the virtual key code and the 
codepoint or dead key. These are discussed below: 

• 

• 

• 

• 

The virtual key (VKEY) concept is that there should be a virtual 
key code for each "word" (eg esc or Fl) on the keytops of the key­
board. Consistency requires that most applications should use the 
PC set of virtual keys built in to Presentation Manager, but appli­
cations with special requirements can define their own virtual key 
sets. An example of valid use of this capability is mainframe appli­
cations accessed via a terminal emulator. These use words such as 
clear, PAI, etc in contrast to PC applications which use esc, home 
etc. 

The code point (OKEY) concept is that there should be a code 
point value for every key on the keyboard with a symbol on it. 
The code points can be either ASCII or EBCDIC and are country 
dependent. Effectively, each code point corresponds to a unique 
"glyph" that can appear on the screen. 

Some keys with words on them (eg Enter) generate both a virtual 
key value and a code point. This is because the key does need to 
be treated as a function key in some applications, but also has a 
defined ASCII code point associated with it which some applica­
tions may pref er to use. 

For OKEY values that correspond to dead keys (e.g. umlaut) 
WinGetMsg will identify these CKEYs with a special flag in the 
WM_ CHAR message. It is the application's responsibility to echo 
the dead key in the appropriate manner (i.e. without advancing the 



Windows Presentation Ma.na.ger Reference 

cursor). If the next CKEY after the dead key is a valid dead key 
combination, then another flag will be set in the WM_ CHAR mes­
sage to identify the composite character. Again it is the 
application's responsibility to echo the character appropriately. 
There are three situations the application must deal with: 

valid de,ad key combination should replace the dead key display 
with the new composite character 

invalid dead key combination (except the space character) 
should leave the dead key displayed, advance the cursor and 
display the new CKEY, followed by a beep. 

dead key followed by a space should leave the dead key 
displayed and advance the cursor. 

• The valid set of dead keys and their combinations with other keys 
is defined for each supported code page. 

5.1.!Lf .. 2 Keystroke Translation 

Presentation Manager keystroke translation provides full flexibility in 
remapping, support of country specific keyboard layouts, and support of 
EBCDIC and ASCII code pages. This is achieved by the use of three types 
of table which are described below: 

• 

• 

• 

20 

The key to VKEY table (VKeyXLateTbl). This table generates vir­
tual key codes based on the key pressed and the shift state. 
Presentation Manager supplies a two tables of this type covering 
the PC VKEY set for the two physically different keyboards. These 
tables cover all languages and keyboard layouts. 

The key to Universal Glyph List (UGL) table(GlyphXLateTbl) . 
(The UGL is a list of all (non-DBCS) glyphs that can be generated 
by a Presentation Manager application using standard Presenta­
tion Manager facilities. All glyphs for all supported languages, plus 
the APL glyphs, are included in the UGL.) The key to UGL table is 
always used in conjunction with the UGL to OKEY table described 
below. It is uniquely defined by the layout of the keytops. Presen­
tation Manager supplies tables of this type corresponding to all 
supported keyboards. 

- The UGL to CKEY table (CharXLateTbl). This table is used in 
conjunction with the previous one. Presentation Managersupplies 
a table of this type for each supported code page. Also included in 
this table is the dead key table, which defines the valid dead keys 
for each code page and the valid dead key combinations. 



Input Functions 

5.1.2.,j.3 AP! Calls 

The API calls allow the application to control the translation process that 
generates the virtual key and character code values that are in the 
WM_ CHAR message. The translation process consists of the following 
steps: 

• Apply scan code/keyboard state to VKeyXLateTbl. Result is a vir­
tual key. 

• Apply scan code/keyboard state to GlyphXLateTbl. Result is a 
glyph code. 

• Apply the glyph code to CharXLateTbl. Result is a character code, 
with appropriate dead key bits set. 

The Presentation Manager keyboard driver is a dynlink library, that con­
tains all of the system provided versions of the above tables as resource 
segments. There are three API calls for accessing these tables, as well as 
~ranslation tables defined as resources in the application's executable 
image: 

WinLoadVKeyXLateTbl( idModule, keyboard) => hXLate 
WinLoadGlyphKLateTbl( idModule, keyboard, country) => hXLate 
WinLoadCharXLateTbl( idModule, codepage) => hXLate 

where all three return a handle to a translation table, whose format is 
defined below. The idModule parameter, returned by the DOS DosLoad­
Module call, is either -1 for accessing the tales in the Presentation 
Manager keyboard driver, 0 for accessing tables in the application's exe­
cutable image or a module handle of some other dynlink module. 

In order to allow an application to dynamically create a translation table 
in memory at runtime, another API call is provided that takes a far 
pointer to a translation table in memory and returns a translation tabie 
handle that can be used in the remaining API calls. 

WinCreateXLateTbl( hab, lpXLateTbl) => hXLate 

along with the following API call to destroy the handle created with Win­
CreateXLateTbl: 

WinDestroyXLateTbl( hXLate) 

Associated with each message queue are handles for the three translation 
tables needed by the translation process. The following API calls allow an 
application to override any or all of these translation tables. 

WinSetVKeyXLateTbl( hab, hXLate) => hOldVKeyXLate 
WinSetGlyphXLateTbl( hab, hXLate) => hOldGlyphXLate 
WinSetCharXLateTbl( hab, hXLate) => hOldCharXLate 

21 



Windows Presentation Manager Reference 

The WinGetMsg function will use these three translation table handles to 
call the KeyTranslate function, which is a private API exported by the 
Presentation Manager keyboard driver for use by the WinGetMsg func­
tion. This API looks like: 

KeyTranslate( lpMsg, scan, fBreak, hVKeyXLate, 
hGlyphXLate, hCharXLate ) 

and will fill in the passed message structure with the appropriate informa­
tion. Internally the KeyTranslate function will maintain the current 
up/down/toggle state of each scan code and any pending dead key. This 
function assumes that it will see ALL key transitions. 

5.1.2.4.4 PC Virtual Keys 

Presentation Manager supplies as part of the toolkit INCLUDE files 
defining the PC VKEY set. 

The PC VKEY set is shown in the table below. 

VK_Fl 

VK_F2 

VK_F3 

VK_F4 

VK_F5 

VILF6 

VK_F7 

VK_F8 

VK_F9 

VK_FlO 

VK_Fll (*) 
VK_F12 (*) 
VK_F13 (*) 
VK_F14 (*) 
VK_F15 (*) 
VILF16 (*) 
VK_F17 (*) 
VK_F18 (*) 

22 



Input Functions 

- VICF19 (*) 
- VICF20 (*) 
- VICF21 (*) 
- VICF22 (*) 
- VICF23 (*) 
- VICF24 (*) 

- VK_PAl (*) 
- VICPA2 (*) 
- VICPA3 (*) 

- VIC SHIFT ( +) 
- VK_CONTROL (+) 

- VICALT (+) 

- VICALTGRAF (+) (*) 

- VIC BACKSPACE ( +) 

- VIC TAB (+) 
- VICBACKTAB (+) 
- VICENTER 

- VK_CLEAR (*) 
- VIC CAPSLOCK (+) 
- VK_ Nillv1LOCK (+) 
- VK_SCRLOCK (+) 
- VICESCAPE (+) 
- VICUP (+) 
- VICDOWN (+) 
- VICLEFT (+) 
- VK_RIGHT (+) 
- VICHOME (+) 
- VICEND (+) 
- VICPAGEUP (+) 

23 



Windows Presentation Manager Reference 

VK_ PAGEDOWN ( +) 
VK_ INSERT ( +) 
VK_DELETE (+) 
VK_ PRINTSCREEN ( +) 
VK_ COPYTOPRINTER ( +) 
VK_ BREAK ( +) 
VK_ SYSREQ ( *) 
VK_ HELP ( *) 
VK_ SELECTORLIGHTPENATTN ( *) 

VK_BUTTONl (=) 
VK_BUTTON2 (=) 

- VK_BUTTON3 (=) 

Note that the keys marked with a * will not be generated by all key­
boards. Applications using them should provide an alternative. 

Note that keys marked with = are never generated with WM_ CHAR mes­
sages, but can be used with WinQueryKeyState() to query the state of the 
mouse buttons. 

WM_CHAR 

Format 

WM_CHAR 
LOUCHAR(LOUINT(lParaml)): 
HIUCHAR(LOUINT(lParaml)): 
HIUINT(lParaml): 
LOUINT (1Param2) : 
HIUINT(1Param2): 
Returns: 

UCHAR brgf; 
UCHAR scancode; 
UINT cRepeat; 
UINT ch; 
UINT vk; 
BOOL fProcessed; 

Description 
The WM_CHAR messages is posted as the result of keyboard events. ch 
contains the character value (translated according to the current 
codepage) resulting from the keyboard event. vk contains the virtual key 
code, if there is one, otherwise 0. cRepeat contains the repeat count. scan­
code contains the hardware scancode for the key that was pressed. 

The low order byte of lParaml contains a combination of the values shown 
below. The KC_ constants are defined as ULONG constants so they may 
be ANDed directly with lParaml to test the flags in brgf. 

24 



Input Functions 

Code Meaning 

KC_ CHAR 
The character value is valid. (Otherwise, the character field con­
tains 0. 

KC_SCANCODE 
The scan code is valid. Otherwise, the scan c~de field contains 
0. Generally, all W1L CHAR messages generated from actual 
user input have KC_ SCANCODE set. However, if the message 
was generated by an application that has issued the Win­
SetHook() function to filter keystrokes, or has been posted to the 
application queue, this bit may not be set. 

KC_ VIRTUALKEY 
The virtual key value is valid. Otherwise, the virtual key field 
contains 0. 

KC_KEYUP 
The event was a key up transition. (Otherwise, it was a down 
transition). 

KC_ PREVDOWN 
The virtual key was previously down. (Otherwise, it was previ­
ously up.) 

KC_DEADKEY 
means that the char. code is a dead key. Application responsible 
for displaying the glyph for the dead key without advancing the 
cursor. 

KC_ COMPOSITE 
means that the char. code was formed by combining the current 
key with the previous dead key. 

KC_ INV ALIDCOMP 
means that the char. code was not a valid combination with the 
preceeding dead key. Application responsible for advancing the 
cursor past the dead key glyph and then if the current character 
is NOT a space, beeping the speaker and displaying the new 
char. code. 

The application window procedure should return TRUE if it processes a 
particular W1L CHAR message, FALSE otherwise. 

Notes Virtual keys are not defined for keys 'A' - 'Z', 'a' - 'z', 'O' - '9', or 
"special" keys. They are only defined for basic keys that will probably be 
country dependent. 

25 



Windows Presentation Manager Reference 

5.1.2.5 Keyboard functions 

26 

WinGetFocus 

Format 

HWND WinGetFocus(hab, fLock) 
HAB hab; 
BOOL fLock; 

Description 

Format 

This function returns the focus window, or NULL 
if there is no focus window. If fLock is TRUE, the 
window is returned locked, otherwise it is returned 
unlocked. 

HWND WinSetFocus(hab, hwnd) 
HWND hwnd; 
HAB hab; 

DescJ:'.iption 
This function sets the input focus to hwnd. 
Returns the handle of the window that previously 
had the focus, or NULL if no window had the 
focus. If hwnd is NULL, then no window has the 
input focus. Returns an unlocked window handle. 
When WinSetFocus() is called, the following events 
take place: 

1. A WM_SETFOCUS message with fFocus == 
FALSE is sent to the current focus window, 
unless it is NULL. 

2. A WM_ACTIVATE message is sent with fAc­
tive ==FALSE to the current active window, 
unless it is NULL, or the active window is not 
changing. 

3. If a new application is being made the active 
application, then a WM-ACTIVATETHREAD 
message with fActive == FALSE is sent to the 
the current active application. 

4. The new focus window, active window, and 
active application are established. 



Notes. 

WM_SETFOCUS 

Format 

Input Functions 

5. If a new application is being made the active 
application, then a WM_ACTIVATETHREAD 
message with fActive ==TRUE is sent to the 
the new active application. 

6. The top level window associated with the new 
focus window is sent a WM-ACTIVATE with 
fActive == TRUE, and fSetFocus = FALSE, 
but only if this window is different than the 
current active window. 

7. The new focus window is sent a 
WM_ SETFOCUS message. 

During the processing of a WinSetFocus() call, if 
WinGetActiveWindow or WinGetFocus() are 
called, the old active and focus windows are 
returned until the new ones have been established. 
In other words, even though WM_ SETFOCUS 
(false) and WM_ACTIVATE(false) messages may 
have been sent to the old windows, those old win­
dows are considered to be active and have the 
focus (until the system establishes the new active 
and focus windows). 

If WinSetFocus() is called during WM_ ACTIVATE 
or WM_ACTIYATETHREAD message processing, 
a WM_ SETFOCUS message with fFocus == 
FALSE is NOT sent, since no window has the 
focus. 

WM_SETFOCUS 
1Param1: HWND hwndFocus 
1Param2: BOOL fFocus 

Description . 
This message is sent by SetFocus() to the window 
receiving or losing the input focus. hwndFocus is 
the window.that previously had the input focus, 
which is NULL if no window previously had the 
focus. If fFocus==F ALSE, the window is losing 
the ·focus, and hwndFocus is the window handle of 
the window that will be receiving the input focus 
(which may be NULL). 

The WM_ SETFOCUS message .is sent before Set­
Focus() returns. 

Except in the case of the WM-ACTIVATE 

27 



Windows Presentation Manager Reference 

message with fActive == TRUE, an application 
processing WM_ SETFOCUS, WM-ACTN ATE, 
or WM-ACTNATETHREAD should not change 
the focus window or active window. If it does, 
focus and active window must be restored before 
the application returns from processing the mes­
sage. For this reason, any dialog boxes or windows 
brought up during WM-SETFOCUS, 
WM-ACTIVATE or WM-ACTN ATETHREAD 
processing should be system modal. 

Win GetKeyState 
~~~~~~~~~~~~~~~~~~~~~~~-

Format

INT WinGetKeyState(hab, vk)
HAB hab:
INT vk:

Description
The WinGetKeyState() function is used to deter­
mine whether a virtual key is up, down, or toggled.
vk may be one of the VJ(_ values shown in the
table above.

The Ox8000 bit is set (less than 0) if the key is
down, otherwise the key is up. If the OxOOOl bit is
set, then the key is toggled. A key is toggled if it
has been pressed an odd number of times since the
system was started.

Notes This function returns the state of the key at the
time that the last message obtained from the
queue was posted. See GetPhysKeyState().

WinGetKeyState() can be used to obtain the state
of the mouse buttons with the VK_BUTTONl,
VK_BUTTON2, and VK_BUTTON3 virtual key
codes.

5.1.2.6 Mouse Input

There are two forms of mouse input: mouse button transitions and mouse
pointer movement. Three mouse buttons are supported. These are known
as mouse buttons 1, 2 and 3. Only button 1 is supported for a single­
button mouse, buttons 1 and 2 for a two-button mouse. Button double
clicks are supported as well: if a mouse button goes down within a certain
amount of time and within a certain screen area from the last time the
button went down, a doubleclick down message is posted.

28

Input Functions

The mouse buttons have virtual key codes assigned to them, though a
WM_ CHAR message is not posted when a transition occurs. These codes
are shown in the table below. As with other virtual keys, it is possible to
poll the state of any of the mouse buttons with the WinGetKeyState()
function, using the mouse button virtual keycodes.

The WM_MOUSEFIRST and WM_MOUSELAST constant values can be
used with WinGetMsg() and WinPeekMsg() to filter for all mouse input
only. These values do not imply the separate existence of messages
WM-MOUSEFIRST and WM-MOUSELAST!

5.1.2.6.1 Mouse Usage and Mouse Button Assignments

Presentation Manager recommends certain standardised usage of mouse
buttons and also provides support for mouse button assignment for left
and right handed users, as follows:

1. All programs should support use of a mouse.

2. Button assignments for mouse support are:

1. Button 1: Select button

2. Button 2 (if available): Application defined. If scroll lock is
implemented and button 2 is available, scroll lock should be
assigned to button 2.

3. Button 3 (if available): Reserved for system use

3. On a two button device, simultaneous pressing of both emulates
button three

4. The user must be allowed the option of using a right- or left­
handed mouse.

1. Right-handed: Buttons numbered left-to-right as illustrated in
the following figure:

+--------------------+ +--------------------+ +--------------------+
I +---+ +---+ +---+ +---+ +---+ I I +---+ +---+

I I I I I I I I I I I I I I I I
I I 1 I I 2 I I 3 I I 1 I I 2 I ~ I I 1 I I 2 I
I I I I I I I I I I I I I I I I I
I +---] +---] +---] +---] +---] I I +---] +---]
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
+--------------------] +--------------------] +--------------------]

3-Button 2-Button 2-Button

29

Windows Presentation Manager Reference

Figure 5.1 Right-handed Button Arrangement

2. Left-handed: Buttons numbered right-to-left as illustrated in
the following figure:

+--------------------+ +--------------------+ +--------------------+
+---+ +---+ +---+

I I I I I I
I 3 I I 2 I I 1 I
I I I I I I
+---] +---] +---]

+---+

I I
I 2. I
I I
+---]

+---+

I I
I 1 I
I I
+---]

+---+

I I
I 2 I
I I
+---]

+---+

I I
I 1 I
I I
+---]

I
I
I
I
I
I
I
I
I
I
I
I
I +--------------------] +--------------------] +--------------------]

3-Button 2-Button 2-Button

Figure 5.2 Left-handed Button Arrangement

5. The following button techniques are supported:

1. "Press and release" on the same item or in the same space (e.g.
you can press and release in "white space"). An intervening
move off the item then back on while the button is held pressed
is OK. If the button is then released it is treated the same as
pressing and releasing while staying on the item.

Press and release is also called "clicking".

2. "Press and release twice", which is accomplished by performing
a press and release within a prescribed (short) time period.

Press and release twice is also called "double clicking".

3. "Press and hold," where an action continues while the button is
held and ceases when the button is released.

6. On one button devices the functions available from buttons 2 and
3 are performed from the keyboard using their assigned keys.

5.1.2.7 Mouse Capture functions

Normally an application only gets mouse input when the mouse cursor is
over one of its windows. The mouse capture functions allow an application
to track the mouse and get all the mouse input no matter where the mouse
cursor goes. Applications for this are usually for dragging 'objects' on the
screen, capturing the mouse once the mouse button goes down, releasing
once the button goes up.

30

Format

HWND WinSetCapture(hab, hwnd)
HWND hwnd;
HAB hab;

Input Functions

Description .

Notes

WinSetCapture() assigns the mouse capture to
hwnd. If hwnd 1s NULL, then the mouse capture is
released. Returns the window handle of the win­
dow that previously captured the mouse, or NULL
if no capture was set.

With the mouse capture set to a window, all mouse
input is directed to that window, regardless of
whether the mouse is over that window.

When WinSetCapture(hab, NULL) is called to
release the mouse capture, a W1L MOUSEMOVE
message is posted regardless of whether the mouse
pointer has actually moved. This is to ensure that
the window underneath the mouse at that time has
a chance to change the mouse cursor shape, etc.

WinSetCapture() returns an unlocked window han­
dle.

W1L CANCELMODE

Format

WM_CANCELMODE
lParaml:
1Param2:
Returns:

Description

Format

This message is sent when a dialog box or message
box is posted to the window with the mouse cap­
ture to terminate any modeloops that may be in
effect.

HWND WinGetCapture(hab, fLock)
HAB hab;
BOOL fLock;

31

Windows Presentation Manager Reference

32

This function returns the window handle that has
the mouse capture. If fLock is TRUE, the window
handle returned is locked, and
WinUnlockWindow(hwnd) must be called at some
point. If fLock is FALSE, the window handle
returned is unlocked.

WM..MOUSEMOVE

Format

WM_MOUSEMOVE
LOUINT (lParaml) :
HIUINT (lParaml) :
1Param2:
Returns:

INT xMouse;
INT yMouse;
UINT wHitTest;
BOOL fProcessed;

Description
The WM.. MOUSEMOVE message is posted when
the mouse pointer moves. lParaml contains the
position of the mouse in window coordinates, rela­
tive to the bottom left corner of the window:
LOUINT(IParaml) has the X coordinate, and
HIUINT<1Paraml) has the Y coordinate.
LOUINT(IParam2) contains the result of the
WM.. HITTEST message, or 0 if a mouse capture is
currently in progress. The window proc should
return TRUE if it processes the message, FALSE
otherwise.

WM.. BUTTONlDOWN

Format

WM_BUTTONlDOWN
LOUINT (lParaml) :
HIUINT(lParaml):
1Param2:
Returns:

WM..BUTTONl UP

Format

WM_BUTTONlUP
LOUINT(lParaml):
HIUINT (lParaml) :
1Param2:
Returns:

INT xMouse;
INT yMouse;
UINT wHitTest;
BOOL fProcessed;

INT xMouse;
INT yMouse;
UINT wHitTest;
BOOL fProcessed;

Input Functions

WM_ BUTTONlDBLCLK

Format

WM_BU'ITONDlBLCLK
LOUINT (lParaml) : INT xMouse;
HIUINT (lParaml) : INT yMouse;
1Param2: UINT wHitTest;
Returns: BOOL fProcessed;

WM_ BUTTON2DOWN

Format

WM_BU'ITON2DOWN
LOUINT(lParaml): INT xMouse;
HIUINT (lParaml) : INT yMouse;
1Param2: UINT wHitTest;
Returns: BOOL fProcessed;

WM_ BUTTON! UP

Format

WM_BU'ITONlUP
LOUINT(lParaml): INT xMouse;
HIUINT(lParaml): INT yMouse;
1Param2: UINT wHitTest;
Returns: BOOL fProcessed;

WM_BUTTONlDBLCLK

Format

WM_BU'ITONlDBLCLK
LOUINT (lParaml) : INT xMouse;
HIUINT (lParaml) : INT yMouse;
1Param2: UINT wHitTest;
Returns: BOOL fProcessed;

WM_ BUTTON3DOWN

Format

WM_BU'ITON3DOWN
LOUINT(lParaml): INT xMouse;
HIUINT (lParaml) : INT yMouse;
1Param2: UINT wHitTest;

33

Windows Presentation Ma.na.ger Reference

34

Returns: BOOL fProcessed;

WM_ BUTTONl UP

Format

WM_BUTrONlUP
LOUINT(lParaml):
HIUINT(lParaml):
1Param2:
Returns:

INT xMouse;
INT yMouse;
UINT wHitTest;
BOOL fProcessed;

WM_BUTTONlDBLCLK

Format

WM_BUTrONlDBLCLK
LOUINT (lParaml):
HIUINT (lParaml):
1Param2:
Returns:

INT xMouse;
INT yMouse;
UINT wHitTest;
BOOL fProcessed;

Description
The mouse transition messages above are posted
when either of the three mouse buttons go up or
down. lParaml contains the position of the mouse
in window coordinates, relative to the tof left
corner of the window: LOUINT(lPara:ml has the X
coordinate, and HIUINT(lParaml) has the Y coor­
dinate. LOUINT(1Param2) contams the result of
the WM_HITTEST message, or 0 if a mouse cap­
ture is currently in progress. The window proc
should return TRUE if it processes the message,
FALSE otherwise.

Normally, WM_BUTTON?UP and
WM_ BUTTON?DOWN messages are posted when
mouse buttons go up or down. However, a
WM_ BUTTON?DBLCLK message will be posted
in in place of a WM_ BUTTON?DOWN if the fol­
lowing conditions are met:

1. The button down occured within a certain
amount of time since the last button down
(typically 1/4 second).

2. Both button downs occured in the same win­
dow, and within a certain distance from each
other (typically an area roughly the size of two
characters).

WM_HITTEST

Format

WM_HITI'EST
lParaml:
1Param2:
Returns:

Input Functions

POINT ptMouse;
OL
UINT wHitTest;

Description
This message is sent to a window by
WinGet/PeekMsg() when determining whether or
not the message is in fact destined for the window.
The application may return one of the following
values:

Value. Meaning

0: The message should be processed as nor­
mal: i.e., a WM-BUTTON* or
WM_ MOUSEMOVE message should be
posted to the window.

HT_ TRANSPARENT:
The part of the window underneath the
mouse cursor is "transparent"; hit­
testing should continue on windows
underneath this window, as if this win­
dow did not exist.

HT-DISCARD:
The message should be discarded: no
message should be posted to the applica­
tion.

HT-ERROR:
Like HT-DISCARD, except that if the
message is a button down message , an
alarm will sound.

WinDefWindowProc() handles this message by
returning HT_ ERROR if the window is disabled,
and 0 otherwise.

Notice that it is the handling of this message
which determines whether or not a disabled win­
dow may process mouse clicks.

ptMouse is in window coordinates.

35

Windows Presentation Manager Reference

5.1.2.8 Mouse Tracking functions.

Functions are provided for tracking mouse movements with a rectangle on
the screen, as follows.

36

Format

BOOL WinTrackRect(hwnd, hps, lpti)
HWND hwnd;
HPS hps;
TRACKINFO lpti;

Description
This is a general purpose mouse tracking routine.
WinTrackRect() draws a rectangle at a specified
location and allows the user to position the entire
rectangle or size a specific side or corner smaller or
larger. The resultant rectangle is then returned to
the application, which can use this new informa­
tion for size and position data. For example, the
window manager interface for moving and sizing
windows via the wide sizing borders simply calls
WinTrackRect().

WinTrackRect() allows the caller to control such
limiting values as:

• A maximum and minimum tracking size

• An absolute tracking position limits

• The tracking rectangle side widths

• A restriction of tracking rectangle movements
to a pre-defined positional grid.

WinTrackRect() is called with a long pointer that
points to a TRACKINFO structure:

typedef struct tagTRACKINFO {
int ex;
int cy;
int cxGrid;
int cyGrid;
RECT rcTrack;
RECT rcBoundary;
POINT ptMinTrack;
POINT ptMaxTrack;
WORD rgf;

} TRACKINFO;

If the passed hps is NULL, hwnd is used to calcu­
late an hps for tracking (hwnd is assumed to be the

Input Functions

window the tracking is taking place in). lpti is a
long pointer to a structure called TRACKINFO. In
this structure, rcTrack is the start rectangle. It is
modified as the rectangle is tracked, holding the
new tracking position on exit.

ex is the width of the left and right tracking sides,
cy is the height of the top and bottom tracking
sides. cxGrid and cyGrid define a positional grid
that all tracking movements will be bound to.
rcBoundary is an absolute bounding rectangle that
the tracking rectangle cannot extend completely
out of (there are two kinds of boundary detection
with rcBoundary, defined by the flag
TF _ LIMITBOUNDARY).

pt:MinTrack defines the minimum x and y tracking
sizes , and ptMaxTrack defines the maximum
tracking sizes. rgf is a bit array of tracking flags
specifying what tracking operation should take
place. TRUE is returned if tracking was success­
ful, FALSE returned if tracking is canceled, or if
the mouse was already captured when Win­
TrackRect() is called. Only one tracking rectangle
may be in use at one time.

If the passed hps is NULL, then the hps will calcu­
lated with the assumption that the window is not a
WS_ CLIPCHILDREN window. In other words,
when the drag rectangle appears, it will not be
clipped by any children within the window. If a
window is a WS_ CLIPCHILDREN window, and
the application wants the drag rectangle to be
clipped, it must explicitly pass an hps.

The tracking flags may be or'ed together. They
are:

TF_LEFT
Track the left side of the rectangle.

TF-TOP
Track the top side of the rectangle.

TF-RIGHT
Track the right side of the rectangle.

TF-BOTTOM
Track the bottom side of the rectangle.

TF_MOVE
Track all sides of the rectangle.

37

Windows Presentation Manager Reference

38

TF _KEYBOARD
Tracking starts with keyboard interface.

TF_GRID
Restrict tracking to a grid defined by
cxGrid and cyGrid.

TF_STANDARD
ex, cy, cxGrid, cyGrid are all multiples of
cxBorder and cyBorder.

TF _ LHvllTBOUNDARY
Make sure the tracking never extends
past rcBoundry. The defualt behavior is
to make sure a minimum part of the
tracking tracking rectangle is always
within rcBoundary. This minimum size is
defined by ex and cy.

If the TF _KEYBOARD flag is included, the mouse
pointer is positioned to the center of the tracking
rectangle. Otherwise the mouse pointer is not
moved from its current position. At this point
there is an established delta between the mouse
position and the part of the tracking rect it moves,
and this value is kept constant.

While moving or sizing with the keyboard inter­
face, the mouse pointer is repositioned along with
the tracking rectangle's new size or position.

While tracking, these keys are active:

ENTER Accepts the new position or size.

LEFT Moves the mouse pointer and tracking
rectangle left.

UP Moves the mouse pointer and tracking
rectangle up.

RIGHT Moves the mouse pointer and tracking
rectangle right.

DOWN Moves the mouse pointer and tracking
rectangle down.

ESCAPE
Cancels the current tracking operation.

The mouse and the keyboard interface are inter­
mixable. The caller doesn't have to include the
TF _KEYBOARD flag to be able to use the key­
board interface; this simply initializes the position
of the mouse pointer.

Notes

Input Functions

The tracking rectangle is usually logically "on top"
of objects it track s, so that the user can see the
old size and position while tracking the new.
Because of this, it is conceivable that a window
"below" the tracking rectangle can update while
part of the tracking rectangle is "above" it.

Since the tracking rectangle is drawn in exclusive­
or mode, no window may draw below the tracking
rectangle (and thereby obliterate it) without first
notifying the tracking code, because undesirable
chunks of tracking rectangle may be left behind. If
the window doing the drawing is clipped out from
the window the tracking is occuring in, there is no
problem.

To catch the general case where a window process­
ing a WM_ PAINT message mig.ht draw over the
tracking rectangle, Windows treats the tracking
rectangle as a system wide resource. Only one may
be in use at any one time. If the currently updating
window has a chance of drawing on the tracking
rectangle, Windows will remove the tracking rec­
tangle while that window and its children update,
and then replace it. This is specifically done inside
of WinBeginPaint() / WinEndPaint(). If the track­
ing rectangle overlaps, it will be removed in Win­
BeginPaint(). In WinEndPaint() all children will be
updated via WinUpdateWindow() before the track­
ing rectangle is redrawn.

WinTrackRect() has a modal loop within its func­
tion. The loop has a WILMSGFILTER hook and
hook code, MSGF _TRACK. Ref er to the Hook
documentation for an explanation of this hook
type.

There are several cases that windows update their images as a result of
some message other than a WM_ PAINT. For this reason, an interface has
be en provided for application use, to preserve the integrity of the tracking
rectangle image:

WinShowTrackRect

Format

INT WinShowTrackRect(hwnd, fShow)
HWND hwnd;
BOOL fShow;

39

Windows Presentation Manager Reference

Description
hwnd is the window handle passed in to Win­
TrackRect<), the window the tracking is taking
place in. WmShowTrackRect() mana!?es a show
count. When a hide request is made tfShow is
FALSE), this count is decremented. When a show
request is made (fShow is TRUE), this count is
incremented. When the count makes a transition
from 0 to -1, the rectangle is hidden. When the
count makes a transition from -1 to 0, the rectan­
gle is shown.

If rectangle tracking, the application should call
this routine to hide the rectangle if there's possi­
bility of corrupting the track rectangle while draw­
ing, showing it afterward. Since rcTrack in the
TRACK.INFO structure is updating continously,
the application can examine the current tracking
rectangle coordinates to determine whether tem­
porary hiding is necessary .

The only case where an application needs to call
WinShowTrackRect is in the case of asynchronous
drawing. If an application is drawing on one
thread, and issuing WinTrackRect on another,
undesirable pieces of tracking rectangle may be left
behind. The drawing thread is therefore responsi­
ble for issuing WinShowTrackRect when tracking
may be in progress. The application should pro­
vide for communication between the two threads
to ensure that if the one thread is tracking the
drawing thread will issue WinShowTrackRect.
This could be done using a semaphore, for exam­
ple.

5.1.2.9 WM_ SEMN MESSAGES.

W;\L SEMn messages are designed to facilitate the operation of applica­
tions that have other non Presentation Manager threads which:

1. Require to wait on external non Presentation Manager events

2. Require to signal the main Presentation Manager thread in the app

There are four semaphore messages.

WM_SEMl
lParaml:
1Param2:
Returns:

40

ULONG lrgfAccumBits
OL
OL

Input Functions

WM_SEM2
lParaml: UL ONG lrgfAccumBits
1Param2: OL
Returns: OL

WM_SEM3
lParaml: UL ONG lrgfAccumBits
1Param2: OL
Returns: OL

WM_SEM4
lParaml: UL ONG lrgfAccumBits
1Param2: OL
Returns: OL

The messages shown above are a special set of 4 messages that are similar
to standard messages except that if more than one is posted before
WinGetMsg() or WinPeekMsg() is called, the messages are coalesced into a
single message.

The value of the QMSG hwnd, pt, and time fields have the values that
correspond to the most recent posting. This means that the message is
always directed at the last window it was posted to. WinPostQueueMsg()
and WinBroadcastMsg() may also be used to post semaphore messages.

The values of all of the lParaml fields of all semaphore messages posted
since the last call to WinGetMsg() or WinPeekMsg() are coalesced by
ORing them together. Thus there are 32 bits per semaphore message that
may be set individually by different postings, and are cleared only by a call
to WinGetMsg() or WinPeekMsg().

The semaphore messages are prioritized in relation to other types of mes­
sages as follows:

Highest:

Lowest:

WM_SEMl
Any message in the queue not listed here

.WM_SEM2
WM_ TIMER
WM_SEM3
WM_PAINT
WM_SEM4

The value of 1Param2 is always OL.

Semaphore message that are sent via WinSendMsg() are sent exactly like
any other message.

The difference between the WM_ SEM messages and user registered mes­
sages are the following:

41

Windows Presentation Manager Reference

1. WM_ SEMn messages OR together bits, the others accumulate
messages in the queue

2. WM_ SEMn messages have more control over priority

3. WM_ SEMn messages will not overflow the queue

5.1.2.10 Low level input functions

The following functions aren't typically used by applications. They are
typically used by computer-based-training programs, journalling pro­
grams, and other system-level applications.

42

Win GetPhysKeyState

Format

INT WinGetPhysKeyState(hab, vk)
HAB hab;
INT vk;

Description

Notes

WinGetPhysKeyState() returns information about
the asynchronous (interrupt level) state of the vir­
tual key indicated by vk.

The Ox8000 bit is set (less than 0) if the key is
down, clear if up. The OxOOOl bit is set if the key
has gone down since the last time WinGetPhys­
KeyState() was called, clear if not. This bit is
cleared by a call to WinGetPhysKeyState().

This function returns the physical state of the key;
it is not synchronized to the processing of input.
See WinGetKeyState().

WinEnablePhyslnput

Format

BOOL WinEnablePhysinput(hab, fEnableinput)
HAB hab;
BOOL fEnableinput;

Description
Used to disable queueing of hardware mouse and
keyboard events. If fEnablelnput is TRUE, mouse
and keyboard input are queued as usual. If fEna­
bleinput is FALSE, mouse and keyboard input are
disabled. Returns TRUE if input was previously
enabled, FALSE otherwise.

Input Functions

5.1.2.10.1 Keyboard State Table

The keyboard state table is a 256 byte table which defines the state of
each key the last time a key message a message obtained from the queue
was posted. It is indexed by virtual key value. For any virtual key, the
Ox80 bit in the corresponding table entry is set if the key is down, 0 if the
key is UJ?. The OxOl bit is set if the key is toggled (pressed an odd number
of times), 0 otherwise.

typedef UCHAR KeyStateTable{256};

WinSetKeyboardStateTable

Format

void WinSetKeyboardStateTable(hab, lpKeyStateTable,
fSet)

HAB hab;
UCHAR far *lpKeyStateTable;
BOOL fSet;

Description

Notes

Used to get or set the keyboard state table. If fSet
is TRUE, sets the keyboard state to *lpbStateT­
able; if fSet is FALSE, copies the system keyboard
state to *lpbStateTable. This function does not
change the physical state the keyboard; it changes
the state returned by WinGetKeyState(), not
WinGetPhysKeyState().

To set the state of a single key, first get the key­
board state, modify the returned state table, then
set the state using the modified tabel.

5.1.3 Window Timers

5.1.3.1 Window Timer Architecture

The window timer functions allow you to cause a message to be posted
automatically after a certain amount of time has elapsed.

A timer is identified by a window handle and an ID value. The ID value is
a word value specified by the programmer, unless the window handle was
specified as NULL. In this case, the ID value is a unique value calculated
automatically when the timer is created. Additionally, the timers created
by the caret routines and scroll bar routines are given the special ID values
of IDCARETTIMER and IDSCROLLBARTIMER respectively. Any win­
dows that may have carets or scroll bars in it must pass any W1L TIMER
messages with these IDs to WinDefWindowProc().

43

Windows Presentation Manager Reference

A timer can be set to time out in anywhere from 1 to 65536 milliseconds.
A timeout value of 0 will cause timers to time out as fast as possible; gen­
erally, this is about 1/18th of a second.

When timers time out, a W:M:_ TlMER message is posted to indicate that
the timer has gone off. A timer repeatedly posts W:M:_ TIMEJl messages
until it is stopped.

W:M:_ TIMER messages are not actually placed in the message queue.
Instead, when WinGetMsg() or WinPeekMsg() is called and there are no
other messages in the queue, all started timers are examined to determine
if any have timed out. If so, a W:M:_ TIMER message is returned.
WinGetMsg() and WinPeekMsg() check for available timer message before
checking for possible W:M:_ P AIN'T messages.

1. Timer messages can never fill up a message queue.

2. Timer messa~es are produced only as often as WinGetMsg() or
WinPeekMsgl) is called.

3. Timer messages have a lower priority than other queued messages.

4. Timer messages have a higher priority than W:M:_ PAINT messages.

If more than one timer times out since the last time WinGetMsgQ or Win­
PeekMsg() was called, the order that the timer messages are received is
indetermmate.

If the timer is not associated with a particular window (hwnd ==NULL),
then WinGetMsg() and WinPeekMsg() will return a wM_ TIMER queue
message with hwnd == NULL.

There is a maximum number of timers that can be started in the system.
To determine the remaining number of timers that may be started, use the
WinGetSysValue() function.

5.1.3.2 Timer Routines

44

Format

UINT WinStartTimer(hab, hwnd, idTimer, dtTimeout)
HWND hwnd:
UINT idTimer:
UINT dtTimeout:
HAB hab:

Description
This function creates a timer identified by hwnd
and idTimer, set to go off every dtTimeout

Format

Input Functions

milliseconds.

A dtTimeout value of 0 will cause the timer to
time out as fast as possible; generally, this is about
1/18th of a second.

When a timer times out, a WM_ TIMER message is
posted.

If hwnd is not NULL, then WinStartTimer returns
1 (TRUE) if successful, 0 (FALSE) otherwise.

If hwnd is NULL, then the idTimer parameter is
ignored, and WinStartTimer returns a unique
non-zero ID value that identifies the timer. The
timer message is posted in the queue associated
with the current thread, with the hwnd field ==
NULL. Returns 0 if unsuccessful.

A second call to WinStartTimer() for a timer that
already exists will reset the existmg timer.

BOOL WinStopTimer(hwnd, idTimer)
HWND hwnd;
UINT idTimer;
HAB hab;

Description
This function stops the timer identified by hwnd
and idTimer. Returns TRUE if successful, FALSE
if the timer didn't exist.

After WinStopTimer() is called, no further mes­
sages are received from the stopped timer, even if
it has gone off since the last call to WinGetMsg().

5.1.3.3 Timer Messages

Format

WM_ TIMER
(LOUINT)lParaml: UINT idTimer
1Param2: OL
Returns: OL

45

Windows Presentation Manager Reference

46

Description
This message is posted when the timer indicated
by idTimer times out. lParaml contains the ID of
the timer that timed out.

This message is always queued. WM_ TIMER
messages are treated specially by WinGet11sg()
and WinPeek11sg() in a number of ways:

• Timers are processed only by calling
WinGet11sg() or WinPeek11sg().

• A timer posts only one WM_ TIMER at a time.

• WM_ TIMER messages have a lower priority
than other queued messages.

• WM_ TIMER messages have a higher priority
than WM-PAINT messages.

Chapter 6
Device Contexts

6.1 Device Contexts 49
6.1.1 Device Context Functions 49

47

Device Contexts

6.1 Device Contexts

A Device Context is the means of writing data to an output device. It is
both the device driver, and the physical device (if any) itself.

There are four types of output device, as follows:

• Screen Device Context, used to write to a window on the screen.

• Memory Device Context, into which a bitmap may be selected to be
drawn into.

• Metafile Device Context, used to generated a metafile.

• Other device Device Context, used to communicate with a printer,
plotter, etc.

A variant on the last of the above types is an 'information' Device Con­
text, used only for querying. A common use for this type of Device Context
is for querying information such as font metrics for a particular printer, in
order to mimic on the screen the spacing etc of the output data, as it
would appear on that printer.

Having created a Device Context, the application can associate it with a
presentation space. Drawing into this presentation space then causes out­
put to the associated Device Context.

In some cases, direct output to the Device Context is required, and the
DevEscape function is provided for this purpose.

6.1.1 Device Context Functions

DevOpenDC

HDC DevOpenDC (hab, type, token, length, data)
HAB hab;
LONG type;
LPSZ token;
LONG length;
LPBUF data;

Creates an output Device Context of a specified type.

The data passed depends upon the type of Device Context
being created. It provides information such as the driver
name, and may also provide data with which the Device Con­
text is to be initialised.

Parameters:

49

Windows Presentation Manager Reference

50

hab The anchor block handle

type The type of Device Context to be created, as fol­
lows:

token

length

data

1 - OD_ DISPLAY
The screen device.

2 - OD_ QUEUED
A device such as a printer or plotter, for
which output is to be queued by the
spooler.

5 - OD-DIRECT
A device such as a printer or plotter.
Output is not queued by the spooler.

6- OD-INFO
As OD-DIRECT, but will only be used
to retrieve information {for example,
font metrics). Drawing can be performed
to a presentation space associated with
such a Device Context, but no output
medium will be updated.

7 - OD_ :METAFILE
The Device Context will be used to write
a metafile. The graphics field defines the
area of interest within the picture in the
metafile (see the section, "Transform
Functions" in the chapter, "Graphics
Programming Interface").

8 - OD_ :MEMORY
A Device Context which will be used to
contain a bitmap.

A string which identifies device information, held
in the PRESSERV.INI file. This information is the
same as that which may be pointed to by data; any
that is obtained from data overrides the informa­
tion obtained by using token.

If token is specified as*"" then no device informa­
tion is taken from PRESSERV.INL Presentation
Manager Release 1 will require *'"' to be specified.

The length of data supplied. This may be shorter
than the full list if omitted items are irrelevant or
supplied from token or elsewhere.

A long pointer to a parameter block containing:­

struct DOPDATA
LPSZ driver_name;

Device Contexts

LPBUF driver_data;
LPSZ log_addr;
LPSZ data_type;
LPSZ comment;
LPSZ proc_name;
LPSZ proc_params;
LPSZ spl_params;
LFSZ network_params;

driver_ name
A string containing the name of the dev­
ice driver (eg "EPSON"). This informa­
tion must always be supplied if it is not
available from token.

driver_ data
Data which is to be passed directly to
the device driver. Whether or not any of
this is required depends upon the device
driver, though the information may
alternatively have been specified via
DevSetEnvironment.

The data consists of the following:­

struct DRIVDATA
LONG length;
LONG version;
SZ device_name;
ULONG general_data;

length The length of the whole
driver_ data structure.

version The version number of the
data. Version numbers are
defined by particular device
drivers.

device_ name
A string in a 32-byte field,
identifying the particular dev­
ice (model number etc). Again,
valid values are defined by dev­
ice drivers.

generaL data
Data as defined by the device
driver.

If the device type is
OD_ :MEMORY, this is a

51

Windows Presentation Manager Reference

52

log_addr

handle to a Device Context
(type HDC), which is compati­
ble with bitmaps which are to
be used with this Device Con­
text. If this is not supplied or
is null, compatibility with the
screen is assumed.

For other device types, the
type of generaL data will be
defined by the device driver.

The logical address of the output device
(eg "LPTI").

• For a OD-DIRECT device, this is
required if it is not available from
token.

• For a OD_ QUEUED device, this is
optional, since the spooler will pro­
vide a default if necessary.

data-type

comment

• For a OD- QUEUED device,
data-. type defines the type of data
which is to be queued, as follows:

• Q.... STD - standard format

• Q.... ESC - escape format

• Q....RAW- raw format

Note that a device driver may define
other data types. For a full descrip­
tion see the chapter, "The Spooler".
If data-. type is not specified for a
OD-QUEUED device, the default is
supplied by the device driver.

In the above case, data-. type information
is defaulted if not specified.

For any other device type, data-. type is
ignored.

A natural language description of the
file. This may, for example, be displayed
for a OD_ QUEUED device by the
spooler to the end user. For a
OD-:METAFILE, it is a descriptive
record of up to 253 bytes which is

Returns:

0 Error

Device Contexts

returned on GpiPlayMetaFile. It is
optional for any device.

proc_name
The name of the queue processor. This
is only relevant for a OD-QUEUED dev­
ice, and will normally be defaulted.

proc_ params
A parameter string for the queue proces­
sor. This is only relevant for a
OD_ QUEUED device, and is optional.

spLparams
A parameter string for the Spooler,
which is optional. This has the following
options, which must be separated by one
or more blanks:

• FORM=f
Specifies a forms code 'f'. This must
be a valid forms code for the printer
(see the section, "Printers" in the
chapter, "The Spooler").

If not specified, then the data is
printed on the forms in use when this
print job is ready to be printed.

• PRTY=n
Specifies a priority in the range 0-99,
with 99 being the highest. If not
specified, then a priority of 50 is
used.

network_ params
network parameters. This is only
relevant for a OD-QUEUED device, and
will be defaulted by the spooler if not
supplied.

!=0 Device context handle

Principal errors:

GPIERR_INVALID_LENGTH
GPIERR_TOKEN_NOT_}..STERISK
Others TBD

DevCloseDC

HMF DevCloseDC (hdc)

53

Windows Presentation Manager Reference

54

HDC hdc;

This closes the specified Device Context.

It is an error if the Device Context is currently associated
with a presentation space. It is also an error if the Device
Context was created with WinCreateWindowDC (ie this is a
screen Device Context or a micro-PS).

Parameters:

hdc Specifies the handle for the Device Context

Returns:

0 Error
1 OK (not metafile device context)

!=0 Metafile handle (metafile device context)

Principal errors:

DevPostDeviceModes

SHORT DevPostDeviceModes (hab,driver_data,driver_name,
device_name,log_addr}

HAB hab;
LPBUF driver_data;
LPSZ driver_name;
SZ device_name;
LPSZ log_addr;

This function causes a device driver to post a dialog box that
allows the user to set options for the device, for example
resolution, font cartridges etc.

The application can call the function first with a NULL data
pointer to find out how much storage is needed for the data
area. Having allocated the storage, the application then
calls the function a second time for the data to be filled in.

The returned data can then be passed on DevOpenDC as
driver_ data.

Parameters:

hab The anchor block handle

driver_ data
A long pointer to a data area, which on return will
contain device data as defined by the driver.

If this pointer is passed as NULL, then the size in
bytes which the data area should be is returned.

The format of the data is the same as that defined

Device Contexts

for driver_ data for DevOpenDC.

driver_ name
A string containing the name of the device driver

device_ name
A string in a 32-byte field, identifying the particu­
lar device (model number etc). Valid names are
defined by device drivers.

log_addr

Returns:

The logical address of the output device (eg
"LPTl ").

data pointer was NULL: -
-1 Error
0 No settable options

>O Size in bytes required for data area
data pointer was not NULL: -

-1 Error
0 No device modes
1 OK

Principal errors:

(TBD)

Dev Escape

LONG DevEscape (hdc, code, in_count, in_data,
out_count, out_data)

HDC hdc;
LONG code;
LONG in_count;
LPBUF in_data;
LONG *Out_count;
LPBUF out_data;

This function allows applications to acces_s facilities of a dev­
ice which are not otherwise available through the APL
Escape calls are in general sent to the device driver and must
be understood by it.

The effects of Escape will be metafiled.

Parameters:

hdc The handle of the Device Context

code Specifies the escape function to be performed. The
following are currently defied:-

• 1 - QueryEscSupport

55

Windows Presentation Manager Reference

in-count

in_ data

• 2 - StartDoc

• 3- EndDoc

• 4- NewFrame

• 5- NextBand

• 6 - AbortDoc

• 7 - DraftMode

• 8 - GetScalingFactor

• 9 - FlushOutput

• 10- RawData

Devices can define additional escape functions,
using code values > 32767.

The number of bytes of data pointd to by in- data.

The input data structure required for this escape.

*Out_ count

out-data

Returns:

-1 Error

The number of bytes of data pointed to by
ouLdata.

A buffer which will receive the output from this
escape. If ouL data is null, no data is returned.

0 Escape not implemented for specified code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

The following descriptions give the specific syntax and meaning of each
DevEscape call.

56

QueryEscapeSupport

LONG DevEscape (hdc, QueryEscapeSupport, in_count, in_data,
out_count, out_data)

HDC hdc;
LONG in_count;
LPBUF in_data;
LONG *OUt_count;
LPBUF out_data;

StartDoc

Device Contexts

This function finds out whether a particular escape function
is implemented by the device driver. The return value gives
the result.

Parameters:

hdc The handle of the Device Context

Flush Output

in_ count

in_ data

Specifies the escape function to be performed.

The number of bytes pointed to by irL data.

Pointer to an escape code value specifying the
escape function to be checked.

*OuLcount
Not used, and can be set to zero.

ouLdata
Not used, and can be set to null.

Returns:

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

LONG DevEscape (hdc, StartDoc, in_count, in_data,
out_count, out_data)

HDC hdc;
LONG in_count;
LPBUF in_data;
LONG *OUt_count;
LPBUF out_data;

This function allows an application to specify that a new
print job is starting and that all subsequent NewFrame calls
should be spooled under the same job, until an EndDoc call
occurs.

This ensures that documents longer than one page are not
interspersed with other jobs.

Parameters:

hdc The handle of the Device Context

57

Windows Presentation Manager Reference

EndDoc

68

StartDoc

in_ count

in_ data

Specifies the escape function to be performed.

Specifies the number of characters in the string
pointed to by i'IL data.

Pointer to an ASCIIZ string, specifying the name
of the document.

*Out-count
Not used, and can be set to zero.

ouLdata
Not used, and can be set to null.

Returns:

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERF.....INVALID_LENGTH

LONG DevEscape (hdc, EndDoc, in_count, in_data,
out_count, out_data)

HDC hdc;
LONG in_count;
LPBUF in_data;
LONG *OUt_count;
LPBUF out_data;

This function ends a print job started by StartDoc.

Parameters:

hdc The handle of the Device Context

EndDoc Specifies the escape function to be performed.

in-count
Not used, and can be set to zero.

in-data
Not used, and can be set to null.

*Out_ count
Not used, and can be set to zero.

ouLdata
Not used, and can be set to null.

Returns:

Device Contexts

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE

New Frame

LONG DevEscape (hdc, NewFrame, in_count, in_data,
out_count, out_data)

HDC hdc;
LONG in_count;
LPBUF in_data;
LONG *OUt_count;
LPBUF out_data;

This function allows an application to specify that it has
finished writing to a page. It is similar to.. GpiErase process­
ing for a Screen DC, and causes a reset of the attributes (eg
color, mix). This escape is usually used with a printer device
to advance to a new page.

Parameters:

hdc The handle of the Device Context

NewFrame
Specifies the escape function to be performed.

in_ count
Not used, and can be set to zero.

in_ data
Not used, and can be set to null.

*out-count
Not used, and can be set to zero.

out-data
Not used, and can be set to null.

Returns:

NextBand

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE

LONG DevEscape (hdc, NextBand, in_count, in_data,
out_count, out_data)

HDC hdc;
LONG in_count;

59

Windows Presentation Manager Reference

60

LPBUF in_data;
LONG *OUt_count;
LPBUE' out_data;

This function allows an application to specify that it has
finished writing to a band. The coordinates of the next band
are returned. This is used by applications that handle band­
ing themselves (see the section, "Printing Using Banding" in
the chapter, "The Spooler").

Parameters:

hdc The handle of the Device Context

Next Band
Specifies the escape function to be performed.

in_ count
Not used, and can be set to zero.

in-data
Not used, and can be set to null.

*Out_ count

ouLdata

Specifies the number of bytes of data pointed to by
ouL data. On return, this is updated to the
number of bytes actually returned.

The address of a buffer which will receive the out­
put from this escape. A structure is returned, con­
taining the device coordinates of the next band,
~hich is a rectangle. The format of the structure
is:

struct BANDRECT
LONG xleft;
LONG ytop;
LONG xright;
LONG ybottom;

xleft

ytop

xright

ybottom

The x coordinate of the upper left corner
of the rectangular band.

The y coordinate of the upper left corner
of the rectangular band.

The x coordinate of the lower right
corner of the rectangular band.

They coordinate of the lower right
corner of the rectangular band.

An empty rectangle (ie xleft > xright, ytop <

AbortDoc

Device Contexts

ybottom) marks the end of the banding operation.

Returns:

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

LONG DevEscape (hdc, AbortDoc, in_count, in_data,
out_count, out_data)

HDC hdc;
LONG in_count;
LPBUF in_data;
LONG *OUt_count;
LPBUF out_data;

This function aborts the current job, era.sing everything the
application has written to the device since the la.st EndDoc.

Parameters:

hdc The handle of the Device Context

AbortDoc
Specifies the escape function to be performed.

in_ count
Not used, and can be set to zero.

in_ data
Not used, and can be set to null

*Out_ count
Not used, and can be set to zero.

ouLdata
Not used, and can be set to null.

Returns:

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_LENGTH

DraftMode

LONG DevEscape (hdc, DraftMode, in_count, in_data,
out_count, out_data)

HDC hdc;

61

Windows Presentation Manager Reference

62

LONG in_count;
LPBUF in_data;
LONG *Out_count;
LPBUF out_data;

This function turns draft mode on or off. Turning it on
instructs the device driver to print faster and with lower
quality, if necessary. The draft mode can only be changed at
page boundaries (eg after a NewFrame).

Parameters:

hdc The handle of the Device Context

DraftMode

in_ count

in-data

Specifies the escape function to be performed.

Specifies the number of bytes pointed to by
in- data.

A long pointer to a SHORT integer value specify­
ing the mode: 1 for draft mode on, 0 for off.

*Out_ count
Not used, and J::an be set to zero.

out-data
Not used, and can be set to null.

Returns:

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

Note: The default is draft mode off.

GetScalingFactor

LONG DevEscape (hdc, GetScalingFactor, ~in_count, in_data,
out_count, out_data)

HDC hdc;
LONG in_count;
LPBUF in_data;
LONG *OUt_count;
LPBUF out_data;

This function retrieves the scaling factors for the x and y
axes of a printing device. For each scaling factor, an
exponent of two is put in ouL data. Thus, the value 3 is
used if the scaling factor is 8.

Device Contexts

Scaling factors are used by devices that cannot support
graphics at the same resolution as the device resolution.

Parameters:

hdc The handle of the Device Context

GetScalingFactor
Specifies the escape function to be performed.

in_ count
Not used, and can be set to zero.

in_ data
Not used, and can be set to null.

*Out_ count
Specifies the number of bytes of data pointed to by
ouL data. On return, this is updated to the
number of bytes actually returned.

ouLdata
The address of a buffer which will receive the out­
put from this escape. A structure is returned, con­
taining the scaling factors for the x and y axes.
The format of the structure is:

Returns:

-1 Error

struct SFACTORS
LONG x;
LONG y;

x The x scaling factor, as an exponent of
two.

y They scaling factor, as an exponent of
two.

0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

DevFlushOutput

LONG DevEscape (hdc, FlushOutput, in_count, in_data,
out_count, out_data)

HDC hdc;
LONG in_count;
LPBUF in_data;
LONG *OUt_count;

63

Windows Presentation Manager Reference

64

LPBUF out_data;

This function flushes any output in the device's buffer.

Parameters:

hdc The handle of the Device Context

Flush Output
Specifies the escape function to be performed.

in_ count
Not used, and can be set to zero.

in_ data
Not used, and can be set to null.

*out_ count
Not used, and can be set to zero.

ouLdata
Not used, and can be set to null.

Returns:

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_LENGTH

DevRawData

LONG DevEscape (hdc, RawData, in_count, in_data,
out_count, out_data)

HDC hdc;
LONG in_count;
LPBUF in_data;
LONG *OUt_count;
LPBUF out_data;

This function allows an application to send data direct to a
device driver. For example, in the case of a printer device
driver, this could be a printer data stream.

Parameters:

hdc The handle of the Device Context

Raw Data
Specifies the escape function to be performed.

in_ count
The number of bytes pointed to by in_ data.

Device Contexts

in_ data
Pointer to the raw data. to be checked.

*OUt-count
Not used, and can be set to zero.

out-data
Not used, and can be set to null.

Returns:

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

DevQueryHardcopyCaps

LONG DevQueryHardcopyCaps (hdc, start, count, info)
HDC hdc;
LONG start;
LONG count;
LPBUF hcinfobuf;

This function returns information about the hardcopy capa­
bilities of the device.

hdc

start

count

info

Specifies the handle for the DC.

Specifies which form code number the query is to
start from. Used with count.

Specifies the number of forms the query is to be on.
Thus if there are 5 form codes defined and start is
2, then if count is 3, a query is performed for form
codes 2, 3 and 4, and the result returned in the
buffer pointed to by info.

If this value is zero, the number of form codes
defined is returned. If non-zero (ie greater than
zero), the number of form codes mformation was
returned for is returned.

Pointer to a buffer containing the results of the
query. The result consists of count copies of the
following structure:

struct HCINFO
CHAR formname[32];
LONG xwidth;
LONG yheight;
LONG xleftclip;
LONG ybottomclip;
LONG xrightclip;

65

Windows Presentation Manager Reference

66

Returns:

-1 Error

LONG ytopclip;
LONG xpels;
LONG ypels;

formname

xwidth

yheight

xleftclip

The ASCIIZ name of the form.

The width (left to right) in millimeters.

The height (top to bottom) in millime­
ters.

The left clip limit in millimeters.

ybottomclip

xrightclip

ytopclip

xpels

The bottom clip limit in millimeters.

The right clip limit in millimeters.

The top clip limit in millim_eters.

Number of pels between left and right
clip limits.

ypels Number of pels between bottom and top
clip limits.

Note: start and count can be used together to
enumerate all available form codes without having
to allocate a buff er large enough to hold informa­
tion on them all.

>=0 I fcount = 0, number of forms available
>=0 Ifcount != 0, number of forms returned

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_ARRAY_COUNT

DevQueryCaps

BOOL DevQueryCaps (hdc, element_no, count, array)
HDC hdc;
LONG element_no;
LONG count;
LONG array[];

This function returns information about the capabilities of
the device.

Device Contexts

Parameters:

hdc Specifies the handle for the Device Context

elemenLno
Gives the index number of the first item of infor­
mation to be returned in array. The first element
is number 1.

count Gives the number of items of information to be
returned in array

array[count]
An array of count elements in which characteristics
information is to be returned. The first item
returned is set into the first element of the array,
the second into the next, and so on.

The following element numbers are defined:-

1

2

3

4

5

6

7

Device familr (values as for type on
DevOpenDCJ

Device input/output capability

1 - Dummy device
2 - Device supports output
3 - Device supports input
4 - Device supports output and input

Technology

0 - Unknown (eg metafile)
1 - Vector plotter
2 - Raster display
3 - Raster printer
4 - Raster camera

Driver version

Default page depth (for a full-screen
maximized window for displays) in
display points. (For a. plotter, a display
point is defined as the smallest possible
displacement of the pen, and can be
smaller than a pen width.)

Default page width (for a full-screen
maximized window for displays) in
display points

Default page depth (for a full-screen
maximized window for displays) in char­
acter rows

67

Windows Presentation Manager Reference

68

8

9

10

11

12

13

14

15

Default page width (for a full-screen
maximized window for displays) in char­
acter columns

Vertical resolution of device in display
points per meter for displays, plotter
units per meter for plotters.

Horizontal resolution of device in display
points per meter for displays, plotter
units per meter for plotters.

Default character-box height in display
points.

Default character box width in display
points.

Default small character box height in
display points (this is zero if there is only
one character box size)

Default small character box width in
display points (this is zero if there is only
one character box size)

Number of distinct colors supported at
the same time, including background
(grayscales count as distinct colors). If
loadable color tables are supported, this
is the number of entries in the device
color table.

For plotters, the returned value is the
number of pens plus 1 (for the back­
ground).

16 Number of color planes

17 Number of adjacent color bits for each
pel (within one plane)

18 Loadable color table support:

BitO - 1 if RGB color table can be loaded,
with a minimum support of 8 bits e
red, green and blue

Bit1 - 1 if color table with other than 8 b.
for each primary can be loaded

19 The number of mouse or tablet buttons
that are available to the application pro­
gram. A returned value of 0 indicates
that there are no mouse or tablet but­
tons available.

Device Contexts

20 Foreground mix support

1 - OR
2 - Overpaint
4 - Underpaint
8 - Exclusive-OR

16 - Leave alone
32 - AND
64 - Mixes 7 thru 17

The value returned is the sum of the
values appropriate to the mixes sup­
ported. A device capable of supporting
OR must, as a minimum, return 1 + 2 +
16 = 19, signifying support for the man­
datory mixes OR, overpaint, and leave­
alone.

Note that these numbers correspond to
the decimal representation of a bit string
that is seven bits long, with each bit set
to 1 if the appropriate mode is sup­
ported.

21 Background mix support

1 - OR
2 - Overpaint
4 - Underpaint
8 - Exclusive-OR

16 - Leave alone

The value returned is the sum of the
values appropriate to the mixes sup­
ported. A device OR must, as a
minimum, return 2 + 16 = 18, signifying
support for the mandatory background
mixes overpaint, and leave-alone.

Note that these numbers correspond to
the decimal representation of a bit string
that is five bits long, with each bit set to
1 if the appropriate mode is supported.

22 Number of symbol sets which may be
loaded for Vio

23 Whether the client area of Vio windows
should be byte-aligned:-

0 - Must be byte-aligned
1 - More efficient if byte-aligned,

but not required
2 - Does not matter whether byte-aligned

69

Windows Presentation Manager Reference

70

24 Number of bitmap formats supported by
device

25 Device raster operations capability

BitO - 1 if GpiBitBlt supported
Bul - 1 if this device supports banding
Bit2 - 1 if GpiBitBlt with scaling supported
Bit 3 - 1 if GpiF 1oodFi11 supported
Bit4 - 1 if GpiSetPel supported

26 Default marker box width in pels

27 Default marker box depth in pels

28 Number of device specific fonts

29 Graphics drawing subset supported

30 Graphics architecture version number
supported

31 Graphics vector drawing subset sup­
ported

32 Device windowing support

BitO - 1 if Device supports windowing

Other bits are reserved zero.

33 Additional graphics support

Returns:

0 Error
1 OK

BitO - 1 if Device supports geometric line t

Other bits are reserved zero.

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_ARRAY_COUNT
GPIERR_INVALID_ELEMENT_NUMBER

Chapter 7

Graphics Programming lnterf ace

7.1 Graphics Programming Interface (GPI) 75
7.1.1 GPI Invocation Mechanism 75
7.1.2 GPI Presentation Spaces 75
7.1.2.1 Relationship to Device Contexts 75
7.1.2.2 Normal PS and Micro-PS 76
7.1.3
7.1.3.1
7.1.3.2
7.1.3.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.lJ)

Stored and Non-Stored Graphics Output
Stored Graphics Output 79
Non-Stored Graphics Output 80
Selection of Stored or Non-Stored 80

Segment Attributes 81
Primitive Attributes 83
GpiPutData 83
Co-ordinate Spaces 84
Fonts and Symbol Sets 85
Color 86

7.1.10 Dynamic Segments 87
7.1.10.1 Errors and Return Codes 88
7.1.10.2 Errors 88
7.1.11 Control Functions 89
7.1.12 Drawing Functions 98

78

7 .1.13 Correlation and Boundary Determination Func-
tions 112
7.1.13.1 Correlation 112
7.1.13.2
7.1.13.3
7.1.13.4

Boundary Determination 112
Functions 112
Pick Aperture and Tag Functions 114

71

7.1.13.5 Correlation Data Functions 116
7.1.13.6 Bounds Data Functions 125
7.1.14 Segment Manipulation Functions 126
7.1.14.1 Whole Segment Functions 126
7.1.14.2 Segment Content Manipulation Functions
(Indirect) 136
7.1.15 TransformFunctions 147
7.1.15.1 Co-ordinate Spaces 147
7.1.15.2 Transforms 150
7.1.15.3 Clipping 151
7.1.15.4 Defaults and Examples 152
7.1.15.5 Modelling Transform Functions 154
7.1.15.6 Viewing Transforms 165
7.1.15.7 Device Transform 171
7 .1.15.8 Clipping 173
7.1.15.9 Conversion Function 179
7.1.16 General Attribute Functions 181
7.1.16.1 Methods for Setting Attributes 181
7.1.16.2 Default and Current Attributes 182
7.1.16.3 Attribute Mode 182
7.1.16.4 Save and Restore Attributes 182
7.1.16.5 Attribute Queries 182
7.1.16.6 Attribute Mode Functions 183
7.1.16.7 Attribute Strip Setting Functions 185
7.1.17 Color and :Mix Functions 191
7.1.17.1 Resources and Default Functions 191
7.1.17.2 Attribute Setting Functions 199
7 .1.18 Line Functions 204
7.1.18.1 Resources and Defaults Functions 205
7.1.18.2 Attribute Setting Functions 208
7.1.18.3 Primitive Functions 217

72

7.1.18.4 Visibility Functions 223
7 .1.19 Arc Functions 224
7.1.19.1 Attribute Setting Functions 224
7.1.19.2 Primitive Functions 226
7.1.20 Area Functions 233
7.1.20.1 Resources and Defaults Functions 235
7.1.20.2 Attribute Setting Functions 236
7.1.20.3 Primitive Functions 240
7.1.21 Character Functions 242
7.1.21.1 Font Selection 244
7.1.21.2 Fonts Which are Supplied with Presentation
Manager 245
7.1.21.3 Resources and Defaults Functions 246
7.1.21.4 Attribute Setting Functions 262
7.1.21.5 Primitive Functions 277
7.1.22 Marker Functions 281
7.1.22.1 Attribute Setting Functions 281
7.1.22.2 Primitive Functions 285
7.1.23 Image Functions 286
7.1.23.1 Primitive Functions 287
7.1.24 Mscellaneous Functions 288
7.1.25 Bitmap Support 294
7.1.25.1 Bitmap Operations 294
7.1.25.2 Standard Bitmap Formats 296
7.1.25.3 Bitmap Info Tables 296
7.1.25.4 Bitmap Example 297
7.1.25.5 Uses for bitmaps 297
7.1.25.6 Creation and Selection Funtions 298
7.1.25.7 Operations on Raw Bitmaps 303
7.1.25.8 Operations through Presentation Spaces 306
7.1.26 Region Support 312

73

7.1.26.1 Region Operations 312
7.1.26.2 Uses for regions 313
7.1.26.3 GRECT and GPOINT structures 313
7.1.26.4 Region Functions 313
7.1.26.5 Clipping Region Functions 320
7.1.26.6 Drawing Functions 325

74

Graphics Programming Interface

7.1 Graphics Programming Interface (GPI)

The GPI provides the function for drawing graphics elements on output
devices, including displays, printers, plotters, etc.

7 .1.1 GPI fuvocation Mechanism

The method of invoking the GPI functions from DOS protected mode
applications is via a set of FAR function calls, linked to the calling code by
means of the DOS dynamic link mechanism. The form of the invocations
and the parameters passed follow the DOS conventions. Function calls are
made directly from the application program to the system functions via
the dynamic link mechanism. The invocation mechanism and the handling
of return codes is similar to that for other DOS function calls, providing a
language-independent interface.

Parameters passed across the API are in Intel format (except where other­
wise stated in the API description). Integer values are passed as 32-bit
integers in Intel format (again except where otherwise indicated). This
includes all co-ordinate values, and transform elements, which are all
currently in fixed format only. (In the Presentation Manager, all integer
values {>assed across the API must be within the range -32768 to +32767
(signed) or 0 to 65535 (unsigned), except where the description states that
the value is treated as 2 bytes integer + 2 bytes fractional, ie 65536
represents 1.0.)

7 .L2 GPI Presentation Spaces

7 .1.2.1 Relationship to Device Contexts

GPI functions operate on GPI presentation spaces. An application may
have multiple GPI presentation spaces, each associated with a different
Device Context (see the chapter "Device Contexts").

GpiCreatePS will create a GPI presentation space and return a GPI handle
which is then used to identify that particular GPI presentation space in
any subsequent GPI function call. Similarly, each Device Context has a
handle which identifies it uniquely. A GPI presentation space is associated
with a particular Device Context using GpiAssociate, which requires both
the GPI presentation space handle and the Device Context handle to be
passed as parameters.

A GPI {>resentation space consists of the following (where they have been
defined):-

75

Windows Presentation Manager Reference

• Se gm en t store

• Definition of symbol sets and fonts

• Definition of line-type sets

• Various controls, eg draw controls

• Logical color table

• Viewing pipeline, down to and including the page and page window

These objects will be retained by the presentation space if it is re­
associated with a new Device Context. Thus it is possible to generate and
display a picture while the presentation space is associated with a screen
Device Context, and then to reassociate the presentation space with a Dev­
ice Context for a printer or metafile, and redraw it.

In many cases this will produce a good copy of the picture on the new dev­
ice. There are, however, some potential problem areas:-

• If the devices have markedly different resolution, and 'raster' type
operations have been used, for example:-

• BitBlt, flood fill, set pel

• Image

• Image symbol sets or fonts

• Region drawing or clipping

• If more colors have been used than are available on the new device

• If a loadable color table has been used, and the new device has no
facility for loading color tables

• If the drawing area for the new device is less, and the picture
(page) was laid out in metric units

• If the aspect ratios (y /x pel spacing) for the two devices are
different, and the picture (page) was laid out in pels

• If fonts or symbol sets have been used which are unavailable on the
new device

7 .1.2.2 Normal PS and Micro-PS

A Gpi presentation space can be defined (at creation) to be one of two
types:-

• Normal PS

• Micro-PS

76

Graphics Programming Interface

A normal PS is one for which the full range of Gpi functions, as defined in
the following sections, is available. A micro-PS supports only a subset of
these functions, but in cases where the subset is adequate, provides
reduced storage overhead and enhanced performance (the latter especially
at association time).

7.1.2.2.1 Normal PS

A normal PS will be used where frequent re-association is not required, or
where there is a need for one or more of the functions disallowed in a
micro-PS. It is recommended that a normal PS be chosen unless there is a
specific reason for requiring a micro-PS.

7.1.2.2.2 lv.ficro-PS

Micro-PS's are suitable for cases where relatively simple drawing is needed
to a large number of windows (for example, to implement controls such as
button boxes), and where it is undesirable for storage reasons for each win­
dow to have a permanently-associated presentation space, yet the execu­
tion overhead of frequent associations is also unacceptable.

A micro-PS may not be re-associated with a new Device Context. When it
is created, the Device Context with which it is to be associated is specified,
and this may not be changed. If, therefore, a picture is to be copied to a
metafile, although a micro-PS may be used for this purpose, it will not be
the same one as that which was used to draw the picture on the screen.

A micro-PS may be associated with any kind of Device Context. For
screen devices, a micro-PS will usually be used in conjunction with a
cached DC.

The following Gpi functions are invalid to a micro-PS:-

• GpiAssociate (no re- association may be performed)

• Storing of segments (see GpiSetDrawingMode)

• Segment manipulation functions (see the section "Segment Mani-
pulation Functions")

• Passing a buffer of function orders (GpiPutData)

• Segment drawing (GpiDrawChain etc)

• Setting 'push' attribute mode (see GpiSetAttrMode)

• GpiCallSegment, GpiPop

• GpiSetTag, GpiQueryTag

77

Windows Presentation Ma.na.ger Reference

•

•
•

Structured correlation (eg GpiCorrelateChain) (correlation on indi­
vidual primitives is allowed by setting the correlate flag in GpiSet­
DrawControl)

GpiSetSegmen tOrigin, Gpi QuerySegmen tOrigin

GpiSetSegmentTransform

Also, less error checking is performed for a micro-PS.

Note that a micro-PS does support loading of symbol sets, logical font
definitions, logical color tables, and line type definitions.

7 .1.3 Stored and Non-Stored Graphics Output

In the Presentation Manager GPI, graphic primitives and attributes may
be

• stored in a segment {'store' mode)

• drawn immediately {'draw' mode)

• both ('draw-and-store' mode)

depending upon the current Drawing Mode (and also on other factors; see
GpiSetDrawingMode).

In each case, graphics primitives may be passed across the API either as
individual functions such as GpiPolyLine, or as a buffer of orders using
GpiPutData.

With immediate drawing, the graphic primitive{s) are drawn on the
display surface immediately and the system 'forgets' about the primitive(s)
once they are drawn. ·

In stored mode, the drawing primitives are stored in one or more seg­
ments, but not drawn until later (segment drawing requests can be ini­
tiated with GpiDrawChain, GpiDrawSegment or GpiDrawFrom).

The composite mode of draw-and-store is provided where the picture prim­
itives are to be drawn as they are passed across the API, but where seg­
ments are also to be built for later drawing.

Stored Graphics is good for building complex pictures, for handling graph­
ics databases and for drawing pictures that are drawn many times with
only few modifications. It is also useful in relieving the application of the
burden of redrawing windows itself if a windowing operation occurs, since
the GPI system can handle this.

78

Graphics Programming Interface

Non-stored Graphics is good for fast drawing of relatively simple pictures,
or where the application wishes to maintain its own graphics database.

In the Functional Descriptions which follow, each function which will
cause a drawing order to be constructed and placed in the current segment
includes a statement to that effect. Typically these include primitive func­
tions, and attribute functions which change the value of a modal attribute
within the picture.

In SAA there will be 2 storage modes, store and non-store. All primitives
will be required to be in segments, although unnamed segments (ie ones
with an identifier of zero) will be allowed.

In store mode primitives will be placed in segment store and retained,
while in non-store mode they will only be kept until they are drawn. Once
a non-store segment has been drawn its contents may be deleted, but the
current attributes will be retained, as will the fact that a segment is open,
so it will not be necessary for the application to re-open a segment or reset
the attributes.

The distinction between the two modes will only affect chained segments
unchained segments will be retained but not drawn (until they are called)
regardless of the mode selected.

Draw-and-store mode (see GpiSetDrawingMode) is not part of SAA.

7 .1.3.1 Stored Graphics Output

Stored Graphics Output functions enable primitives to be stored in Graph­
ics Segments until such time as the segment is destroyed or its contents
are overwritten with new data. Each stored segment has a unique name
and a set of properties (visible, pickable, dynamic etc.) in addition to its
graphics primitives. Segments may be chained together in a required order
and can be called from other segments (and from non-stored primitives).
The GPI enables drawing, correlation and boundary computation to be
performed on an individual segment, part of the segment chain or the
whole chain. In addition, operations such as pan and zoom can be accom­
plished by manipulating the GPI transforms. Special GPI functions are
provided to assist the application with rapid removal and redrawing, in
exclusive-OR mode, of 'dynamic' segments.

An application using stored segments may leave the default window pro­
cedure to redraw its window from the segments if a system windowing
operation occurs.

79

Windows Presentation Manager Reference

7 .1.3.2 Non-Stored Graphics Output

Non-stored graphics output functions allow primitives to be drawn
without first creating a segment to contain them. These are termed non­
stored primitives, in contrast to stored primitives which are held in long­
lived segments in the segment store.

Non-stored primitives are drawn immediately and do not occupy storage
once drawn, in contrast to stored primitives. An application using non­
stored primitives must redraw its window if a system windowing operation
occurs (if stored primitives are used, the window contents can be con­
structed from the segments).

Non-stored primitives are either executed directly from application func­
tion calls or from buffers of graphics drawing orders. Non-stored segments
allow segment properties to be specified for groups of non-stored primi­
tives and allow construction of sections of picture in advance (they can,
for example be written to a metafile - see the chapter "Metafile Support").

A non-stored segment is started by issuing GpiOpenSegment when the
current drawing mode is set to Draw, after which individual primitive
functions or GpiPutData may be issued repeatedly. One may also be
started (with a default name of zero) by issuing individual primitive func­
tions or GpiPutData outside a segment. In either case, the current attri­
butes are set to default values. In the former case, relevant segment attri­
butes may be changed with GpiSetSegmentAttrs; in the latter case they
may not be changed from their initial default values (see GpiOpenSeg­
ment).

7 .1.3.3 Selection of Stored or Non-Stored

The following summarises the ways in which an application may choose to
specify stored or non-stored.

Drawing Mode = Store

GpiOpenSegment

GpiLine (S)
GpiPutData (S)

GpiCloseSegment

GpiLine (NS)
GpiPutData (NS)

80

Drawing Mode = Draw

GpiOpenSegment (NS)

GpiLine (NS)
GpiPutData (NS)

GpiCloseSegment

GpiLine (NS)
GpiPutData (NS)

Graphics Programming Interface

In the above, (S) indicates that the primitives and attributes are stored in
a segment without being drawn at this time (they can be drawn later
using, for example, GpiDraw), and (NS) that they are non-stored (drawn
and discarded).

In draw-and-store mode, the following occurs:-

• Within a segment bracket: the primitive is drawn immediately, and
stored in the current segment.

• Outside a segment bracket: the primitive is drawn immediately,
and discarded.

7 .1.4 Segment Attributes

'Attributes' in this document normally refers to primitive attributes, for
example what color should lines be drawn in. Segment attributes are quite
different from these.

The following is a list of segment attributes:-

Detectability

Visibility

Chained

Dynamic

This can be used to determine whether a correlation function
can be performed on the primitives within the segment. For
correlation on stored segments see GpiCorrelateChain.
Correlation on primitives as they are passed across the API
is controlled by the correlate flag on draw controls (see
GpiSetDrawControls).

Controls whether or not the primitives are to be drawn on
the output medium.

Controls whether or not the segment is a root segment to be
included in the segment drawing chain. In draw or draw­
and-store modes a chained segment will be drawn as it is
passed across the API, an unchained segment will not.

Unchained segments can only be used if called from another
segment.

Controls whether or the segment is to be dynamic, that is,
drawn using exclusive-OR, so that it may readily be erased
by redrawing it. For more information, see the section
"Dynamic Segments".

Only stored segments can be dynamic.

81

Windows Presentation Manager Reference

Fast chaining
Controls whether or not, for a chained segment, the system
can assume that all primitive attributes need not be reset to
default values before execution of the segment.

Propagate detectability
Controls whether or not the value of the detectability attri­
bute for a segment should be propagated (forced) to all seg­
ments beneath it in the hierarchy.

Propagate visibility
Controls whether or not the value of the visibility attribute
for a segment should be propagated (forced) to all segments
beneath it in the hierarchy.

Each of these attributes has a default value, which may be changed by
GpiSetlnitialSegmentAttrs. This is the set which a newly opened segment
will be given (except that a non-stored segment will never be flagged as
'dynamic'). Subsequently, a stored segment's attributes may be changed
by GpiSetSegmentAttrs.

For primitives outside segments, there is a fixed set of attributes which
can never be changed.

Both sets of values are given in the following table.

SEGMENT
ATI'RIBUTE

SWM Detectability
SWM Visibility

M Highlighting
SWM Chained

M Contains prolog
WM Dynamic
WM Fast chaining
WM Propagate detectability
WM Propagate visibility

DEFAULT INITIAL

Not detectable
Visible
Not highlit
Chained
No prolog
Not dynamic
Fast chaining
Propagate
Propagate

S - Defined for the SAA portable subset

W - Defined for general Presentation Manager applications

OUTSIDE SEGMENTS
(UNCHANGEABLE)

Detectable
Visible
Not highlit
Chained
No prolog
Not dynamic
Fast chaining
Propagate
Propagate

M- Defined for a 'compatible' PS for the GCP migration bindings'
use

82

Graphics Programming Interface

7 .1.5 Primitive Attributes

There are five groups of primitives. These are

• Line and arc primitives

• Character primitives

• Marker primitives

• Area primitives

• Image primitives

Each group has a set of current primitive attributes, which control how
these primitives are drawn. For example, lines and arcs have attributes
which include line color, line width, line style, etc.

Primitive attributes are set on a modal basis. Once set, the value applies
until that attribute is set to a new value, or reset to its default value (this
is the value which it starts with when, for example, the presentation space
is first created).

Attributes are reset to their default values at the start of a new segment,
whether stored or non-stored (though see 'fast chaining', in the section
"Segment Attributes"), and at certain other times.

Note that the default values of attributes are fixed, and may not be
changed by the application.

7 .1.6 GpiPutData

The address and length of a buff er of orders are passed as parameters.
The orders are stored and/or drawn onto the output device and the opera­
tion is executed synchronously and may not be paused or stopped.

The current attributes may be updated by orders in the buffer.

So that the application need not parse its buffers in advance, the last order
in the buffer may be incomplete. In this case, no drawing process check is
raised (as would be the case with an incomplete order in a stored segment).
The return code indicates that an incomplete order has been found and a
returned parameter contains the offset of the order within the buffer.

The application may then add this partial order to the start of the next
buffer before it invokes GpiPutData again.

The result is the same as if the application had parsed the data and had
split the data into buffers at order boundaries. However, the application
need not understand the format of orders.

83

Windows Presentation Manager Reference

This is particularly useful for applications dealing with externally­
generated graphics data, such as a host datastream application.

7 .1. 7 Co-ordinate Spaces

A presentation space typically uses application-convenient co-ordinates.
The drawing process must eventually generate device co-ordinates, and it
will usually be efficient for it to make the transition from application co­
ordinates to device co-ordinates in a single step. Notionally, however,
there are additional intermediate co-ordinate spaces. The levels of co­
ordinate spaces are as follows:-

1. Application convenient units. For graphics, these are World Co­
ordinates, and are the units which are used at the API for primi­
tives such as line, arcs etc. For VIO, application convenient units
are character cells.

2. (Graphics only) Model Space, which is arrived at by applying the
model transforms to World Co-ordinates. This can be thought of
as the space in which the picture is constructed, after applying
individual transforms for, say, the four wheels of a car.

3. (Graphics only) Page. This can be thought of as the space in which
the complete picture, including any subpicturing, is built up.

4. Device co-ordinates. These are the co-ordinates natural to the dev-
ice, eg pels on a raster display.

Between each of these levels there is a transform. For graphics, the model
transform goes from World Co-ordinates to Model Space, the Window­
Viewport transform from Model Space to the Page, and the device
transform from the Page to device co-ordinates.

For VIO, there is a single transform from character cells to device co­
ordinates.

The application can specify various units for the Page, which cause
transforms to be defaulted which will be helpful for some commonly­
required cases.

Functions are provided to convert a co-ordinate value between any one
space and another.

By default, Gpi spaces are defined so that y increases upwards, and x
increases to the right. Transformations may, however, be set by the pro­
gram to produce other effects. With VIO co-ordinates, the row number
increases downwards.

84

Graphics Programming Interface

Further details of the graphics model and viewing transforms will be found
in the section "Transform Functions".

7 .1.8 Fonts and Symbol Sets

Gpi describes the use of symbol sets for three purposes:-

• For drawing character strings

• For drawing markers

• For area shading patterns

Fonts carry much more descriptive information than symbol sets, such as
the facename, the font family, the weight, whether it is italic, etc etc, and
also several items of dimensional information. This gives the system a
much better opportunity to synthesize new fonts, from the definitions at
its disposal, according to application requirements.

Fonts and symbol sets may be loaded to a GPI presentation space. Fonts
are loaded from files, and symbol sets from application storage. For sym­
bol sets an 8-character name is supplied by the application, and this is
held by the system as the equivalent of the font facename.

Although the definitions are loaded to the GPI presentation space, they
may be suitable only for certain devices (for example, devices with widely
different resolutions will require different definitions for a raster 12-point
font). It may therefore be necessary to replace them if the presentation
space is associated with a new Device Context.

Both image (raster) and vector formats are supported. Proportional spac­
ing and kerning (the latter for fonts only) are also supported.

In addition to any symbol sets / fonts loaded by the application, the sys­
tem has others permanently loaded and available for use.

Before invoking any kind of draw operation which will require the use of a
symbol set or font, the application must issue a select function, passing a
list of the required attributes for the symbol set/ font, and the local id
(lcid) by which it will refer to it later. At this pomt the system tries to
match the required attributes with the definitions available to it, and
either selects for use one of the sets of definitions, or synthesizes a new set
based on one of the ones available. Synthesis includes scaling image
definitions, converting normal weight to bold, italicising, etc.

In scanning the definitions available, the system assigns weights for each
attribute mismatch between the requirements and the available
definitions. If the application wishes to ensure that a particular set of
definitions is selected, it can match its requirements exactly to the attri­
butes of that set - which can be found by a query.

85

Windows Presentation Manager Reference

7.1.9 Color

An application may load a logical color table. This identifies the color
indices which the application intends to use, and an RGB representation of
the colour it would like for each index. In this case the system will
translate the color index, as each primitive is drawn, to the index which
will give the closest approximation to the required color on the current
device.

Normally the index will be an index into the table. An option is provided,
however, to allow an application to use RGB values as the color 'index'.

There is a default color table, which defines the colors required for color
indices 0 through 7. This will be used for any index within this range,
where no logical color table has been defined (or one has, but the index
used is outside the range of the one defined).

The logical color table facility is provided to help applications to achieve
the best color results on different devices. The logical color table is
retained in the presentation space, so that a new translation will be per­
formed automatically if the presentation space is associated with a Device
Context for a different device. It is also transmitted in a metafile.

The function of loading a ph'!jsical color table to the device (if it supports
this) is a different operation tsee the Escape function), and is one which
should not normally be performed by an application to a shared device (eg
the screen).

A function is, however, provided for an application to request that the
physical color table be updated so as to give the best possible match to its
logical color table. Since this might mean that other applications would if
visible take on a strange appearance, this function should only be used
when an application has been maximised, A corresponding function is pro­
vided, which should be issued when the application ceases to be maxim­
ised, to cause the default physical palette to be reset.

Note that index translation means that the indices generated by certain
mix modes (eg OR) will depend on the translation, so applications should
only use such mixes with caution if they depend upon the resulting color
to be a specific shade.

See the section "Color and Mix Functions" for more details on color.

86

Graphics Programming Interface

7 .1.10 Dynamic Segments

If you want to be able to move or change part of the picture very quickly
(for example, when dragging part of it with the mouse), then the dynamic
segment attribute may be useful. Dynamic segments are always drawn in
exclusive-OR mode, whatever GpiSetMix functions they contain. This
means that, while some visual fidelity may be sacrificed, they can be erased
completely from the display simply by redrawing them, providing, of
course, that no non-dynamic drawing has taken place in the meantime to
the same area of the window.

Having set up a dynamic segment (preferably at the start of the segment
chain), it can be drawn by one of two techniques:-

1. By setting the 'draw dynamics' draw control and issuing, for exam­
ple, a GpiDrawChain, in which case the dynamic segment(s) will be
drawn after the non-dynamic segments, or

2. GpiDrawDynamics, which just draws the dynamic segment(s).

To make a change to a dynamic segment,

1. Issue GpiRemoveDynamics, which removes the image of the seg­
ment from the display.

2. Change the segment(s), for example with GpiSetSeg­
mentTransform, or by using the editing functions.

3. Issue GpiDrawDynamics to replace the image of the segment on the
display.

If there is more than one dynamic segment visible, but not all are to be
changed, the name range on GpiRemoveDynamics may be used to ensure
that only the required one(s) are removed. The subsequent Gpi­
DrawDynamics will automatically only replace the same range.

A GpiDrawDynamics function initiated on another thread can be inter­
rupted by setting the 'stop draw' condition (see GpiSetStopDraw). This
can be done if a new mouse position is detected, in order to respond more
rapidly to the new position. In this case; GpiRemoveDynamics will know
just how much of the dynamic segmentls) need to be 'drawn' in order to
erase them.

Dynamic segments may be used even if the rest of the picture is non­
stored, providing the application ensures that no non-dynamic drawing
occurs over any dynamic segments which are currently visible.

If a presentation space is to be dissociated from a screen Device Context
into which dynamic segments have been drawn, the dynamic segments
should first be removed. If they are not removed, then after any su bse­
quent re-association, they will no longer be removable by

87

Windows Presentation Manager Reference

GpiRemoveDynamics.

7 .1.10.1 Errors and Return Codes

A return code is returned for each GPI function.

If this indicates that an error has occurred, then the application may
determine the value of the error code by invoking the WinGetLastError
function.

The error strategy for the GPI is as follows:-

1. Sufficient validation to avoid a malfunction will always be per­
formed.

2. For environment/objects/resources e.g. SymbolSets, Fonts, Bit­
maps, Regions, Segments full error checking (as defined for that
function) is performed.

3. For segment drawing, and drawing primitives and primitive attri­
butes in draw mode, error checking is permissive i.e. it is optional
whether an invalid value is defaulted or produces the specified
error. Essential context checking will, however, be performed.

4. When storing in segment store or metafiling, full checking is per­
formed and all defined errors will be raised.

7.1.10.2 Errors

The following errors are valid on many GPI calls, and are not detailed
under individual calls.

GPIERIL GPL BUSY
All functions with hgpi·as a parameter (except stop draw).

GPIERILMATRIL OVERFLOW
All functions that may result in matrix computation.

GPIERIL INSUFFIENT_ MEMORY
All functions that result in memory allocation.

GPIERIL INVALID_ GPL HANDLE
All functions with hgpi as a parameter.

GPIERIL INVALID_ COORDINATE
All functions with coordinates as parameters.

GPIERIL DOS_ ERROR (unexpected DOS error)
All functions that directly or indirectly issue DOS calls.

88

Graphics Programming Interface

Drawing Process Check Errors
All functions that perform segment drawing/correlation

Metafile recording errors
All functions that perform metafile recording.

7.1.11 Control Functions

GpiCreatePS

HPS GpiCreatePS (hdc, width, height, options)
HANDLE hdc;
LONG width;
LONG height;
ULONG options;

_ Creates a GPI presentation space and returns the GPI han­
dle. An initial association of the new presentation space
with a Device Context may also be performed (this is manda­
tory for a micro-PS).

The GPI handle returned is used on subsequent GPI calls to
identify the particular GPI presentation space required.

This call also specifies the size and units of the page in which
the picture will be created. See the section "Transform
Functions" for more information.

There are two types of Gpi presentation spaces: micro-PS,
and normal. Only a restricted subset of functions is allowed
to a micro-PS; the storage and execution overheads are, how­
ever, reduced. For more details, see the chapter, "Graphics
Programming Interface".

A Gpi presentation space may be specified to be in implicit
draw mode. In this mode, the drawing mode (see GpiSet­
DrawingMode) is controlled automatically by the system,
which attempts to keep the device up to date with the con­
tents of the presentation space, without the application hav­
ing to issue explicit Draw functions. For more details, see the
chapter, "Graphics Programming Interface".

Parameters:

hdc The handle of a Device Context with which the
new presentation space is to be associated, if the
associate flag is set. If this flag is not set, hdc must
be the anchor block handle; in this case no initial
association is performed. For a micro-PS, associate
must be set, and hdc must ref er to a Device Con­
text.

89

Windows Presentation Manager Reference

90

width,height
Give the size of the page

options This contains 32 bits (with bit 0 the least
significant), in standard Intel format.

The bits have the following meanings:-

(Bits 0-1) Reserved
Must be B'OO'.

(Bits 2-7) Units
Indicates the units for the page size. Pos­
sible values are

PU-ISOTROPIC (B'OOOOOl ')
Arbitrary units, with the origin
at the bottom left.

PU_ PELS (B'OOOOlO')
Pel co-ordinates, with the ori­
gin at the bottom left.

PU_ LOWMETRIC (B'OOOOl l ')
Units of 0.1 mm, with the ori­
gin at the bottom left.

PU-HIMETRIC (B'OOOlOO')
Units ot 0.01 mm, with the ori­
gin at the bottom left.

PU_ LO ENGLISH (B'OOOlOl ')
Units of 0.01 in, with the ori­
gin at the bottom left.

PU_ HIENGLISH (B'OOOl 10')
Units of 0.001 in, with the ori­
gin at the bottom left.

PU_ TWIPS (B'OOOl 11 ')
Units of 1/1440 in, with the
origin at the bottom left.

Other values are reserved.

(Bits 8-11) format
Indicates options to be used when storing
co-ordinate values internaUy in the seg­
ment store.

For most functions, the format is not
directly visible to an application. It is,
however, visible during editing (eg Gpi­
QueryElement). The format will also
have an effect on the amount of storage
required for segment store.

Returns:

0 Error

Graphics Programming Interface

format is one of the following:-

GPIF-DEF AULT (B'OOOO')
Default local format (as
GPIF _SHORT for Presenta­
tion Manager)

GPIF _SHORT (B'OOIO')
2-byte integers

GPIF _LONG (B'OOl 1 ')
4-byte integers

Other values are reserved.

(Bit 12) type
Indicates the type of Gpi presentation
space required. Note that associate must
also be set if type is set):-

GPIT_ NORMAL (B'O')
Normal PS

GPIT_WCRO (B'l')
Micro-PS

(Bit 13) mode
Indicates whether the Gpi presentation
space is to operate in implicit draw mode
or not, as follows:-

GPI1L NORMAL (B'O')
Normal mode

GPI1LIMPLICIT-DRAW (B'l')
Implicit draw mode

(Bit 14) associate
Indicates whether an implicit association
is required between the Gpi presentation
space and a specified Device Context:-

GPLL NOASSOC (B'O')
No association is required

GPLLASSOC (B'l')
Association with hdc required

All other bits are reserved and must be B'O'.

!=0 The new Gpi handle

Principal errors:

Windows Presentation Manager Reference

92

GPIERR_INVALID_PS_DIMENSION
GPIERR_WIDTH_OR_DEPTH_TOO_BIG
GPIERR_INVALID_OR_INCOMPAT_OPTIONS

GpiQueryPS

ULONG GpiQueryPS (hgpi, width, height)
HPS hgpi;
LONG width;
LONG height;

Returns the page parameters, as specified on GpiCreatePS.
See GpiCreatePS for details.

Note: bit 16 (associate) of options is reserved on Gpi­
QueryPS, and is not necessarily the same as was specified
when the presentation space was created.

Parameters:

hgpi Specifies the handle of the GPI presentation space.

*Width,*height

Returns:

0 Error

Variables in which the width and height of the
page are returned.

>O Options (see GpiCreatePS for details)

Principal errors:

GpiDestroyPS

BOOL GpiDestroyPS (hgpi)
HPS hgpi;

Destroys the presentation space for the GPI identified by the
specified handle. All resources owned by this presentation
space are released, and any subsequent calls to the GPI using
this handle will be rejected.

Parameters:

hgpi Specifies the handle of the GPI presentation space.

Returns:

0 Error
1 OK

Principal errors:

Graphics Programming Interface

GpiResetPS

BOOL GpiResetPS (hgpi, options)
HPS hgpi;
ULONG options;

This resets the GPI presentation space.

Three levels of reset are provided. These are, in increasing
order of power:-

• The equivalent of a segment boundary,

• As if the presentation space had just been created, but
without deleting any resources,

• As if the presentation space had just been created.

More details are provided below.

Note that none of these options causes an-y drawing or eras­
ure to take place on the device. GpiErase may be used to
accomplish this. Nor is any association between the specified
presentation space and a Device Context affected.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

options Flags which control the extent of the reset, as
follows:-

GRES-ATTRS (bit 0)
Set to B' 1' (or forced) will cause the
equivalent of a root segment boundary.
The following will occur:-

• Current attributes are reset to
default values.

• Current model transform is reset to
unity.

• Current position is set to (0,0).

• Any open clip, stroke, area, defaults,
or element brackets are terminated.

• Any currently open segment is
closed.

• The current clip area and viewing
limits are reset to no clipping.

GRES_ SEGMENT~S it 1)
Set to B'l' or forced) will force
GRES-A RS, and also:-

93

Windows Presentation Manager Reference

94

Returns:

0 Error
1 OK

• Any stored segments are deleted.

• Initial segment attributes are reset to
their initial values

• Default viewing transform, window,
viewport, page window and graphics
field are reset to the default values

• Drawing mode, draw controls, edit
mode, and attribute mode are reset
to default values

• Kerning enablement is reset to
default values

• Bounds and correlate data are reset

• The currently selected clip region, if
any, is deselected

GRES-ALL (bit 2)
Set to B I' will force GRES_ ATTRS and
GRES_ SEGMENTS, and also:-

• Delete any logical fonts, symbol sets,
lcids for bitmaps, and linetype sets.

• Reset any loaded logica1 color table
to default.

Other flags are reserved. An application wishing to
reset to the initial state may protect against any
future flags being defined by setting GRES_ALL.

Principal errors:

GPIERR_INVALID_RESET_OPTIONS

GpiSavePS

LONG GpiSavePS (hgpi)
HPS hgpi;

Saves various features of the presentation space on a LIFO
stack for the specified presentation space. This stack is
different from that which is used for saving attribute values
(see the section, "General Attribute Functions"), and
GpiSavePS and GpiRestorePS may be used with a micro-PS
as well as a normal PS.

The presentation space itself is unchanged.

The following are saved:-

Graphics Programming Interface

• Current attributes

• Current transforms and clip window and clip area

• Current position

• Reference to selected clip region

• Any loaded logical color table

• References to any loaded logical fonts

• References to any loaded symbol sets

• References to any loaded line type set

• References to the regions created on the associated Dev-
ice Context

The following are not saved:-

• Default attributes

• The visible region

Note that the actual resources which are referenced in a
saved PS (eg clip region, logical fonts, symbol sets, line type
set, references to regions) are not copied by GpiSavePS; only
references to them are copied. They should not therefore be
changed.

This function is valid in an open segment bracket, and also
within an open element bracket. If it occurs within an open
area, clip area, or strokes bracket, then the corresponding
GpiRestorePS should take place before the bracket is closed.

Parameters:

hgpi Specifies the handle of the GPI presentation space.

Returns:

0 Error ,
>1 The identifier for the saved presentation space.

This may be used on a subsequent GpiRestorePS.

Principal errors:

GpiRestorePS

BOOL GpiRestorePS (hgpi, psid)
HPS hgpi;
LONG psid;

Restores the state of the presentation space to that which
existed at the time the corresponding GpiSavePS was issued.

It is possible. to restore to-a saved presentation space which

g5

Windows Presentation Manager Reference

96

was not the one most recently saved. In this case, any which
are skipped over on the stack are discarded.

It is an error to issue this function in an open segment
bracket.

This function is valid in an open segment bracket, and also
within an open element bracket. If it occurs within an open
area, clip area, or strokes bracket, then the corresponding
GpiSavePS should have taken place earlier in the same
bracket.

Parameters:

hgpi Specifies the handle of the GPI presentation space.

psid Identifies which saved presentation space is to be
restored:-

Returns:

0 Error
1 OK

psid > 1

psid = 1

psid = 0

psid < 0

psid must be the identifier of a saved
presentation space on the stack. It is an
error if it does not exist.

All (any) entries on the stack are deleted.
The presentation space is unchanged.

Is an error. (This might have resulted
from an erroneous GpiSavePS.)

The absolute value of psid indicates how
many saved presentation spaces back on
the stack is required. Thus -1 means that
the most recently saved one is to be
restored. It is an error if the absolute
value is larger than the number of
entries on the stack. space is returned.
This may be used on a subsequent
GpiRestorePS.

If an error is returned, the stack is unchanged, as
is the current presentation space.

Principal errors:

GPIERR_INVALID_ID

Graphics Programming Interface

GpiAssociate

BOOL GpiAssociate (hgpi, hdc)
HPS hgpi;
HANDLE hdc;

Associate a GPI presentation space with a Device Context.
Any type of Device Context may be used. Subsequent stored
or non-stored drawing functions direct output to this Device
Context.

If a null handle is supplied for the Device Context, the
presentation space is just dissociated from the currently
associated Device Context.

If, however, the Device Context handle is not null, then it is
an error if either the presentation space is currently associ­
ated with another Device Context, or the Device Context is
currently associated with another presentation space.

The processing described for GRES-ATTRS (see
GpiResetPS) is performed on the presentation space. In addi­
tion, bounds and correlate data are destroyed, and any
selected clip region is lost.

Any dynamic segments left drawn on the device will not be
subsequently removable by GpiRemoveDynamics.

Parameters:

hgpi Specifies the handle of the GPI presentation space.
This must be a normal PS.

hdc Specifies the handle of the display context. If null,
a dissociation occurs.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_PS_ALREADY_ASSOCIATED
GPIERR_DC_ALREADY_ASSOCIATED

GpiErrorSegmen tData

LONG GpiErrorSegmentData (hgpi, name, context)
HPS hgpi;
LONG *name;
LONG *Context;

A function that returns information about the last error that
occurred during a segment drawing operation.

The information returned is the segment name, the context,

97

Windows Presentation Manager Reference

and the byte offset or element number, depending upon the
context.

The byte offset is returned for the following contexts:-

• The error occurred within the data of a GpiPutData, or

• The error occurred within the data of a GpiElement.

Otherwise (segment context), the element number is
returned.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

*name A variable in which the segment name is to be
returned.

*context

Returns:

-1 Error

A variable in which the context of the error is
returned:-

GPIE_ SEGMENT (O)
The error occurred while processing the
contents of a stored segment

GPIE_ ELEMENT (1)
The error occurred while processing the
contents of a GpiElement

GPIE_DATA (2)
The error occurred while processing the
contents of a GpiPutData

>=0 Position. This is either the byte offset or the element
number, depending uponcontext (see above) •

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

7 .1.12 Drawing Functions

GpiErase

98

BOOL GpiErase (hgpi)
HPS hgpi;

Clears the output display of the Device Context associated
with the specified GPI presentation space, to the zero color

Graphics Programming Interface

index value.

This operation is independent of the settings of the draw
controls (see GpiSetDrawControl), and also of any applica­
tion clipping which may be in force.

If this function is followed by primitives or attributes,
without first opening a segment, then the processing will be
as described for GpiCloseSegment.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

Returns:

0 Error
1 OK

Principal errors:

GpiSetDrawControl

BOOL GpiSetDrawControl (hgpi, control, value)
HPS hgpi;
LONG control;
LONG value;

This function sets various options for subsequent GpiDraw ...
and GpiDrawDynamics drawing operations.

The default values are off for all controls other than Display,
which is on.

It is an error to issue this function in any of the following
cases:-

• Inside an open segment

• Outside an open segment, but inside one of the
following:-

• Area bracket

• Strokes bracket

• Element bracket

• Clip area bracket

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

gg

Windows Presentation Ma.na.ger Reference

100

control Specifies which drawing control is to be changed,
as follows:-

1 - Erase before draw

Before GpiDrawChain, GpiDrawFrom, or
GpiDrawSegment, perform an implicit
GpiErase operation.

2- Display(*)

value

Returns:

0 Error
1 OK

Allow drawing to take place on the out­
put medium.

If this flag is off, then except for Gpi­
Erase, no output operations appear on
the output medium. This includes raster
operations, drawing primtives, GpiDraw
operations, etc.

3 - Accumulate boundary data (*)

During any output operations except
GpiErase, accumulate the bounding rec­
tangle of the drawing. See the section,
"Correlation and Boundary Determina­
tion Functions" .

4 - Draw dynamic segments

Perform an implicit GpiRemoveDynam­
ics before GpiDrawChain, Gpi­
DrawFrom, or GpiDrawSegment, and an
implicit GpiDrawDynamics afterwards.

5 - Correlate (*)

When GpiPutData, GpiElement, or indi­
vidual drawing primitives are passed
across the API, perform a correlation
operation on them, and set a return code
if a hit occurs.

Controls identified by (*) above are the only ones
relevant to a micro-PS. Any other control settings
will be ignored for a micro-PS.

Specifies the required value of the drawing
control:-

0 Off
1 On

Graphics Programming Interface

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_SEG_CONTEXT_ERROR
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR
GPIERR_STROKES_CONTEXT_ERROR
GPIERR_INVALID_DRAW_CONTROL
GPIERR_INVALID_DRAW_VALUE

GpiQueryDrawControl

LONG GpiQueryDrawControl (hgpi, control)
HPS hgpi;
LONG control;

This returns a drawing control set by GpiSetDrawControl.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

control identifies the control whose value is to be returned,
as follows:-

Returns:

-1 Error

1 Erase before draw
2 Display
3 Accumulate boundary data
4 Draw dynamic segments
5 Correlate

>=0 Value of the control. See GpiSetDrawControl for details.

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_DRAW_CONTROL

GpiDrawChain

BOOL GpiDrawChain (hgpi)
HPS hgpi;

Draws the picture chain.

The drawing operation is controlled by the functions set by
the draw controls (see GpiSetDrawControl), except for the
correlate control.

If there is not a segment open at the time of the draw, then
at the completion of the draw, processing equivalent to that
described for GpiCloseSegment will be performed. If, how­
ever, a segment is already open at the time of the draw, then
GpiCloseSegment processing will not be performed at the

101

Windows Presentation Ma.na.ger Reference

102

completion of the draw. In this case, if the open segment is
the last in the chain (and no dynamic segments had to be
drawn), then attributes etc will be in the correct state to
continue drawing in any drawing mode.

It is an error to issue this function while any of the following
brackets is open:-

• Area bracket

• Clip area bracket

• Strokes bracket

• Element bracket

Any such error will be detected prior to performing any erase
required by the setting of the 'erase before draw' draw con­
trol (see GpiSetDrawControl).

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR
GPIERR_STROKES_CONTEXT_ERROR
GPIERR_STOP_DRAW_OCCURRED (warning)
GPIERR_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEFN_NOT_COMPLETE (at segment end)

Note that for a 'compatible' PS, the return value is SHORT,
and can be 0 or 1, as above, and also 2 which means
'correlate hit(s)'.

GpiDrawFrom

BOOL GpiDrawFrom (hgpi, namel, name2)
HPS hgpi;
LONG namel;
LONG name2;

Draws a section of the picture chain.

Drawing starts at the segment identified by name1 and
includes all chained and called segments up to, and includ­
ing, the segment identified by name2.

Graphics Programming Interface

The drawing operation is controlled by the functions set by
the draw controls (see GpiSetDrawControl), except for the
correlate control.

If there is not a segment open at the time of the draw, then
at the completion of the draw, processing equivalent to that
described for GpiCloseSegment will be performed. If, how­
ever, a segment is already open at the time of the draw, then
GpiCloseSegment processing will not be performed at the
completion of the draw. In this case, if the open segment is
the last one drawn (and no dynamic segments had to be
drawn), then attributes etc will be in the correct state to
continue drawing in any drawing mode.

It is an error to issue this function while any of the following
brackets is open:-

• Area bracket

• Clip area bracket

• Strokes bracket

• Element bracket

If the 'from' segment does not exist, or is not in the segment
chain, an error is raised. If the 'to' segment does not exist, or
is not in the chain, or is chained before the 'from' segment,
no error is raised, and processing continues to the end of the
chain.

Any errors will be detected prior to performing any erase
requireed by the setting of the 'erase before draw' draw con­
trol (see GpiSetDrawControl).

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

namel Specifies the first segment to be drawn. It must be
>0.

name2 Specifies the last segment to be drawn. It must be
> 0.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR

103

Windows Presentation Manager Reference

GPIERR_STROKES_CONTEXT_ERROR
GPIERR_STOP_DRAW_OCCURRED (warning)
GPIERR__,AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP__,AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEFN_NOT_COMPLETE (at segment end)
GPIERR_NAMED_SEG_DOES_NOT_EXIST (I.E. NAMEl)
GPIERR_NAMED_SEG_NOT_CHAINED (I.E. NAMEl)
GPIERR_INVALID_SEG_ID (I.E. NAMEl or NAME2)

Note that for a 'compatible' PS, the return value is SHORT,
and can be 0 or 1, as above, and also 2 which means
'correlate hit(s)'.

GpiDrawSegment

104

BOOL GpiDrawSegment (hgpi, name)
HPS hgpi;

Draws the specified segment.

The drawing operation is controlled by the functions set by
the draw controls (see GpiSetDrawControl), except for the
correlate control.

If there is not a segment open at the time of the draw, then
at the completion of the draw, processing equivalent to that
described for GpiCloseSegment will be performed. If, how­
ever, a segment is already open at the time of the draw, then
GpiCloseSegment processing will not be performed at the
completion of the draw. In this case, if the open segment is
the last one drawn (and no dynamic segments had to be
drawn), then attributes etc will be in the correct state to
continue drawing in any drawing mode.

It is an error to issue this function while any of the following
brackets is open:-

• Area bracket

• Clip area bracket

• Strokes bracket

• Element bracket

If the 'from' segment does not exist, or is not in the segment
chain, an error is raised. If the 'to' segment does not exist, or
is not in the chain, or is chained before the 'from' segment,
no error is raised, and processing continues to the end of the
chain.

Any errors will be detected prior to performing any erase
requireed by the setting of the 'erase before draw' draw con­
trol (see GpiSetDrawControl).

Parameters:

Graphics Programming Interface

hgpi Specifies the handle for the GPI presentation
space.

name Specifies the segment that is to be drawn. It must
be> 0.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR
GPIERR_STROKES_CONTEXT_ERROR
GPIERR_STOP_DRAW_OCCURRED (warning)
GPIERR_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEFN_NOT_COMPLETE (at segment end)
GPIERR_NAMED_SEG_DOES_NOT_EXIST
GPIERR_INVALID_SEG_ID (I.E. NAME)

Note that for a 'compatible' PS, the return value is SHORT,
and can be 0 or 1, as above, and also 2 which means
'correlate hit(s)'.

GpiSetStopDraw

BOOL GpiSetStopDraw (hgpi, value)
HPS hgpi;

This either sets or clears the 'stop draw' condition. While
this condition exists, if one of the following operations is
either started or already in progress (initiated from another
thread), to the specified GPI presentation space, then it is
terminated.

The operations are:­

GpiDrawChain

GpiDrawFrom

GpiDrawSegment

GpiDrawDynamics

GpiPutData

GpiPlayMetaFile

The stopped operation will terminate with an error return
code.

This function allows an application to set up and control an
asynchronous thread, on which long drawing operations may
be done. At the point at which the controlling thread

105

Windows Presentation Ma.na.ger Reference

realises it wishes to stop a draw, it sets the 'stop draw' con­
dition, and clears it after it has received an acknowledgment
from the drawing thread.

The 'stop draw' condition has no effect on any other func­
tions.

(Any operation other than GpiSetStopDraw, directed at a
presentation space which is currently in use, will give an
error return code, except for a presentation space in implicit
draw mode.)

Note that if this function is issued when an asynchronous
draw to a metafile is taking place, an unusable metafile will
result.

Parameters:

hgpi

value

Returns:

0 Error
1 OK

Specifies the handle for the GPI presentation
space.

The required value of the attribute, as follows:-

0 Clear the 'stop draw' condition
1 Set the 'stop draw' condition

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_VALUE

GpiQueryStopDraw

LONG GpiQueryStopDraw (hgpi)
HPS hgpi;

This returns an indication of whether the 'stop draw' condi­
tion currently exists. See GpiSetStopDraw for details.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

Returns:

-1 Error
0 No 'stop draw' condition currently exists.
1 The 'stop draw' condition does currently exist.

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

106

Graphics Programming Interface

GpiRemoveDynamics

BOOL GpiRemoveDynamics (hgpi, namel, name2)
HPS hgpi;
LONG namel;
LONG name2;

Removes those parts of the displayed image that were drawn
from the dynamic segments in a section of the picture chain.
This includes any parts that were drawn by calls from these
dynamic segments.

The section of the picture chain is identified by the name of
the first and last segments in the section. If name1 and
name2 have the same value, GpiRemoveDynamics erases only
the parts drawn from the named segment and by calls from
that segment.

GpiRemoveDynamics usually indicates (1) that a dynamic
segment is about to be updated; and (2) that, having com­
pleted the update, GpiDrawDynamics will be called to
redraw the dynamic segments.

If a temporary re-association is to be done, GpiRemo­
veDynamics should be issued to remove the dynamic seg­
ments from the display before the first dissociation.

If this function is followed by primitives or attributes,
without first opening a segment, then the_processing will be
as described for GpiCloseSegment.

If the 'from' segment does not exist, or is not in the segment
chain, no action is taken. If the 'to' segment does not exist,
or is not in the chain, or is chained before the 'from' seg­
ment, no error is raised, and processing continues to the end
of the chain.

Parameters:

hgpi The handle of the GPI presentation space.

namel The name of the first segment in the section. It
must be> 0.

name2 The last segment in the section. It must be > 0.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR__AREA_CONTEXT_ERROR
GPIERR_CLIP__AREA_CONTEXT_ERROR

107

Windows Presentation Manager Reference

GPIERR_STROKES_CONTEXT_ERROR
GPIERR_.AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_.AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEFN_NOT_COMPLETE (at segment end)
GPIERR_INVALID_SEG_ID (I.E. NAMEl or NAME2)
GPIERR_INVALID_METAFILE_FUNCTION (warning)

GpiDrawDynamics

BOOL GpiDrawDynamics (hgpi)
HPS hgpi;

Redraws the dynamic segments in, or called from, the pic­
ture chain. If there is no range set by a previous GpiRemo­
veDynamics all dynamic segments are redrawn. However, if
GpiRemoveDynamics specified a range in the picture chain,
the redraw is restricted to the dynamic segments that are in,
or called from, the selected range. (See GpiRemoveDynam­
ics)

Note that the redraw is controlled by the functions set by
previous calls to GpiSetDrawControl.

Note that the 'stop draw' condition can be set (from another
thread) while GpiDrawDynamics is in progress. This is useful
in responding to a new position by setting this condition,
and then clearing it and redrawing at the new position.

If erase was specified in the most recent call to GpiSet­
DrawControl, the presentation space is erased before the
redraw.

108

If this function is followed by primitives or attributes,
without first opening a segment, then the processing will be
as described for GpiCloseSegment.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_STOP_DRAW_OCCURRED (warning)
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_,AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR
GPIERR_STROKES_CONTEXT_ERROR
GPIERR_.AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEFN_NOT_COMPLETE (at segment end)

Graphics Programming Interface

GPIERR_INVALID_METAFILE_FUNCTION (warning)

GpiSetDrawingMode

BOOL GpiSetDrawingMode (hgpi, mode)
HPS hgpi;
LONG mode;

This sets the Drawing Mode to control how subsequent indi­
vidual drawing order and GpiPutData requests are handled.
The orders may be drawn immediately in non-stored mode,
and/or stored in the current segment.

Note that any drawing orders which occur outside a segment
(ie outside a GpiOpenSegment - GpiCloseSegment bracket)
are treated as non-stored. Conversely, any segments which
are not chained are always stored. The following table sum­
marizes the possibilities:-

Type of Segment
Drawing
Mode

Chained
Segment

:unchained
:segment

:outside
:segment

DrawAndStore 1DrawAndStore !Store :Draw
---------------'---------------------------------------' Store : Store : Store : Draw , _______________ , ______________________________________ _

I I

:Draw :Draw !Store :Draw

The actual drawing mode (referred to when describing other
Gpi functions) therefore depends upon the mode as set by
GpiSetDrawingMode, in conjunction with the type of seg­
ment, as in the table.

It is an error to attempt to set the drawing mode within a
segment bracket, and also, outside a segment bracket, in a

• Area bracket

• Strokes bracket

• Clip area bracket

• Element bracket

The default Drawing Mode is Draw (non-stored).

This function is invalid for a presentation space operating in
implicit draw mode (see GpiCreatePS).

Parameters:

109

Windows Presentation Manager Reference

hgpi

mode

Returns:

0 Error
1 OK

Specifies the handle for the GPI presentation
space.

Specifies the mode to be used for subsequent draw­
ing functions, as follows:-

1 Draw (non-stored)
2 Store
9 Draw-and-store

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_IMPLICIT_DRAW_FUNCTION
GPIERR_SEG_CONTEXT_ERROR
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR
GPIERR_STROKES_CONTEXT_ERROR
GPIERR_INVALID_DRAWING_MODE

GpiQueryDrawingMode

LONG GpiQueryDrawingMode (hgpi)
HPS hgpi;

This returns the Drawing Mode.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

Returns:

0 Error
>0 Drawing mode. See GpiSetDrawingMode for details.

Principal errors:

110

GpiPutData

SHORT GpiPutData (hgpi, control, length, data)
HPS hgpi;
LONG control;
LONG *length;
LPBUF data;

Passes a buffer of orders which are either to be added to the
current segment, and/or drawn without storing them in a
segment, depending upon the current drawing mode (see
GpiSetDrawingMode), and whether or not the primitives are

Graphics Programming Interface

within a segment.

If there is an incomplete order at the end of the buffer, then
*length is updated to point to the start of the incomplete
order. The application can then concatenate this partial
order in front of the next buffer.

This function is valid within an element bracket (see GpiBe­
ginElement). It may contain GpiBeginElement and GpiEn­
dElement orders, so long as these are in the correct sequence
with respect to the currently opened segment in segment
store.

Note that no co-ordinate conversion is performed by this
function. The application must ensure that the co-ordinates
within the buffer are in the correct format for the presenta­
tion space.

This function is invalid if the editing mode (see GpiSetEdit­
Mode) is set to replace, and also in insert mode if the element
pointer (see the section, "Segment Content Manipulation
Functions (indirect)") is not pointing to the last element.

For a 'compatible' presentation space, GpiPutData is only
supported in replace mode.

Parameters:

The handle for the GPI presentation space. hgpi

control Gives the co-ordinate type and format used in the
data. This must be

5 Self-identifying

*length A variable which the application sets to the length
of order data pointed to by data. On return, if an
incomplete order occurred, it is updated to the
offset of the start of the incomplete order.

data

Returns:

0 Error
1 OK

*length must not be greater than 63K.

Specifies the starting address of the order data.

2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_LENGTH
GPIERR_DATA_TOO_LONG
GPIERR_INVALID_ORDER
GPIERR_INVALID_EDIT_MODE

111

Windows Presentation Ma.na.ger Reference

GPIERR_INVALID_ELEMENT_POINTER

7 .1.13 Correlation and Boundary Determination
Functions

7 .1.13.1 Correlation

A correlation operation is where the application specifies a rectangle, nor­
mally a small one centered about the point that the operator was pointing
to on the screen, and asks which, if any, primitives cause information to be
displayed that rectangle.

The primitives are subject to clipping by GpiSetViewingLimits, and by
GpiSetGraphicsField, but not by any lower level clipping arising from dev­
ice considerations, such as the limits of the screen window.

For stored segments, correlation is performed independently of drawing.
Non-stored primitives may optionally be correlated at the same time as
drawing (and/or boundary determination).

Only non-dynamic se.gments, with the detectable, attribute, can be corre­
lated upon. This includes both stored and non-stored segments. Primi­
tives outside segments may also be correlated upon.

7 .1.13.2 Boundary Determination

Boundary determination is an operation carried out by the system, which
tells the application the smallest bounding rectangle of the primitives or
segments drawn. This information is useful to an application in deciding
which segments need to be redrawn to heal any particular part of the
display.

The primitives are not subject to any clipping. The information is
returned in Model Space co-ordinates.

Dynamic segments are not included in boundary determination.

7 .1.13.3 Functions

A correlation operation may be performed by one of the following
methods, depending upon whether the picture is first stored, or not:-

• For an already stored picture:-

• Issue one of the GpiCorrelate functions

112

Graphics Programming Interface

• Inspect the data returned in the parameters

This method of correlation will only correlate on segments with a
nonzero identifier (and not called for a segment with a zero identifier),
and on primitives for which the current tag is nonzero.

• For a non-stored picture (draw mode), or while creating a picture in
draw-and-store mode:-

• Set the 'correlate' flag (see GpiSetDrawControl)

• Set the pick aperture (see GpiSetPickAperture)

• Issue a series of GpiPutData functions or pass individual primitives
across the APL

• Inspect the return code as each GpiPutData or primitive is pas~ed.

This method of correlation is still performed even if the segment id is
zero, and/or the primitive tag is currently zero.

A boundary determination operation may be performed as follows:-

• For an already stored picture:-

• Set the 'accumulate boundary data' flag (see GpiSetDrawControl)

• Issue one of the GpiDraw functions

• Inspect the resulting boundary data (see GpiQueryBoundaryData)

• For a non-stored picture (draw mode), or while creating a picture in
draw-and-store mode:-

• Set the 'accumulate boundary data' flag (see GpiSetDrawControl)

• Set the pick aperture (see GpiSetPickAperture)

• Issue a series of GpiPutData functions or pass individual primitives
across the APL

• Inspect the resulting boundary data (see GpiQueryBoundaryData)

Note that in the non-stored case (with either GpiPutData or individual
primitives), a hit on the perimeter of an area will be returned before a hit
on the area interior, which occurs on the GpiEndArea function.

For correlation on geometric thick lines, a hit may be recorded on the
nominal width of the strokes as they are passed, and then correlation is
performed on the whole (set of) strokes at End Strokes time, in a similar
manner to areas.

113

Windows Presentation Manager Reference

7.1.13.4 Pick Aperture and Tag Functions

GpiSetPickAperture

BOOL GpiSetPickAperture (hgpi, options, x, y, w, h)
BPS hgpi;
LONG x;
LONG y;
LONG w;
LONG h;

Sets the position and size of the pick aperture, in Model Space,
for subsequent non-stored correlation operations. The dimen­
sions of the pick aperture are inclusive.

Parameters:

hgpi The handle for the GPI presentation space.

options Specifies how the values wand h are to be interpreted,
as follows:-

0 - PIOKAP- DEF A ULT the default,
same as PICKAP_SCALED

1 - PIOKAP-SOALED the width and height
are set to w and h,
respectively, multiplied by their
default values.

2 - PIOKAP_ REOT the width and height
are set to w and h
respectively

x,y The coordinates of the center of the window.

w,h Depend upon the setting of options, as described
above.

Returns:

0 Error
1 OK

In the case of PICKAP _SCALED (only), the binary
point is considered to be between the second and third
bytes; thus 65536 represents the value unity.

Principal errors:

GPIERR_CEN'IRE_OUTSIDE_PAGE (i.e. x, y)
GPIERR_WINDOW_LIMITS_OUTSIDE_PAGE (W, H TOO LARGE)
GPIERR_INVALID_PICK_APERTURE_DIMENSION

GpiQueryPickAperture

114

BOOL GpiQueryPickAperture (hgpi, x, y, w, h)
BPS hgpi;
LONG *X;

Graphics Programming Interface

LONG *Y;
LONG *W;
LONG *h;

This returns the position and size of the pick window, in Model
Space co-ordinates.

(For a compatible presentation space, they are in GPS co­
ordinates.)

Parameters:

hgpi The handle for the GPI presentation space.

Set to the coordinates of the center of the aperture.

Set to the width and height of the aperture on the x
and y axes, respectively.

Returns:

0 Error
1 OK

Principal errors:

GpiSetTag

BOOL GpiSetTag (hgpi, tag)
HPS hgpi;
LONG tag;

Sets the primitive tag to the specified value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

This function can be modified to push the old value onto the seg­
ment call stack before setting to the new value (see GpiSetAt­
trMode).

Parameters:

hgpi The handle for the GPI presentation space.

tag The new value for the tag.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

Note: Setting the tag to 0 is a special case. Graphics primitives

115

Windows Presentation Manager Reference

cannot be picked if they are assigned a tag of 0.

GpiQueryTag

BOOL GpiQueryTag (hgpi, tag)
HPS hgpi;
LONG *tag;

Sets the current or default primitive tag. This function is
invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

*tag A variable in which the tag value is returned.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

7 .1.13.5 Correlation Data Functions

GpiCorrelateChain

116

SHORT GpiCorrelateChain (hgpi, ctype, x, y, atype,
cl, spec_array, c2, depth, seg_array,
tag_array, num_hits)

HPS hgpi;
LONG ctype;
LONG x;
LONG y;
LONG atype;
LONG cl;
LONG spec_array[];
LONG c2;
LONG depth;
LONG seg_array[];
LONG tag_array[];
LONG num_hits;

Performs a correlate operation on the stored segment chain, and
returns data for each tagged primitive that intersects the
specified aperture. The data returned for each "hit" (or correla­
tion) consists of a set of segment and tag pairs, starting with the
correlated one, then the one which called that segment, repeated
until the root segment (which was not called by another seg­
ment) is reached.

Only primitives with a nonzero tag (see GpiSetTag) in segments

Graphics Programming Interface

with a nonzero identifier are correlated using this call. Primi­
tives in segments called (to any depth in the hierarchy) from a
segment zero are ineligible for correlation.

The depth value specifies the number of sets 9f segment and tag
pairs to be returned for each hit. If the root segment is reached
before depth values, the remaining values are set to zero. If more
than depth values are available, only that number are returned.

The draw controls (see GpiSetDrawControl) are ignored by this
function.

If this function is followed by primitives or attributes, without
first opening a segment, then the processing will be as described
for GpiCloseSegment.

Parameters:

hgpi

ctype

x,y

a type

The handle for the GPI presentation space.

The type of segments on which correlation is to be
performed:-

O - PICKSEL_ VISIBLE
Only visible and detectable segments, with
nonzero identifiers, are correlated.

1 - PICKSEL-ALL
All segments with nonzero identifiers are
correlated, regardless of the detectability
and visibility attributes of the segments.

The co-ordinates of the position of the center of the
aperture in Model Space

The type of aperture to be used:-

O - PICKAP _DEF AULT
The default; same as 1.

1- PICKAP_SCALED
Scaled pick aperture

The spec_ array parameter must contain a
single element, which is a uniform scaling
aperture that is applied to the device's
default pick aperture. In this case the
binary point of the spec_ array parameter is
considered to be between the second and
third bytes; thus 65536 represents the value
unity.

2- PICKAP-RECT
Rectangular aperture

117

Windows Presentation Manager Reference

118

The spec_ array parameter must contain two
Model Space values giving the width and
height (respectively) of a rectangular aper­
ture. The center of the rectangle is posi­
tioned at the point given by the values in the
x and y parameters.

cl The number of elements in the spec_ array parameter

spec_ array[cl] . ..
An array of numbers as defined by the atype parameter

c2 The maximum number of hits which can be returned
in the se!J- array and ta!}- array parameters

depth The number of segment and tag pairs to be returned
for each hit

seg_ array[c2] [depth] j

An array of segment identifiers. For each hit, a set of
depth values are returned.

tag_ array[c2] [depth]
An array of primitive tags. For each hit, a set of depth
values are returned.

*nUm-hitS'
A variable in which the number of hits in the
se!J- array and ta!}- array parameters is returned.

A 'hit' is an instance of a segment identifier and tag
pair for which the primitives lie completely or partially
within the specified aperture. Two different primitives
in the same segment might have the same tag, and
would therefore produce the same hit. This is counted
as a single hit; the hit is only recorded once in the
se!J- array and ta!}- array that are returned. The
num- hits parameter, therefore, returns this distinct
number of hits.

The tables se!J- array and ta!}- array are set to the hits
that are found, up to the maximum defined in the c2
parameter. Corresponding sets of elements form the
'hit' pairs; The number returned in num- hits therefore
contains the number of sets of depth pairs set if the c2
parameter is greater than the number of hits detected.
The number of elements set in the se!J- array and
tag_ array parameters is the number returned in
num- hits multiplied by the depth.

If the same value is returned in the num- hits parame­
ter as is specified in the c2 parameter, there may be
yet more hits that cannot be returned in se!J- array
and ta!}- array. If all hits are important, specify arrays
that are large enough to contain the maximum number

Graphics Programming Interface

Returns:

0 Error
1 OK

of hits that are expected.

2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEFN_NOT_COMPLETE (at segment end)

GpiCorrelateFrom

SHORT GpiCorrelatefrom (hgpi, namel, name2, ctype,
x, y, atype, cl, spec_array, c2, depth,
seg_array, tag_array, num_hits)

HPS hgpi;
LONG namel;
LONG name2;
LONG ctype;
LONG x;
LONG y;
LONG atype;
LONG cl;
LONG spec_array[];
LONG c2;
LONG depth;
LONG seg_array[];
LONG tag_array[];
LONG num_hits;

Performs a correlate operation on a section of the stored seg­
ment chain, starting at the segment identified by namei, and
including chained and called segments up to, and including, the
segment identified by name2.

Data is returned for each tagged primitive that intersects the
specified aperture. The data returned for each "hit" (or correla­
tion) consists of a set of segment and tag pairs, starting with the
correlated one, then the one which called that segment, repeated
until the root segment (which was not called by another seg­
ment) is reached.

Only primitives with a nonzero tag (see GpiSetTag) in segments
with a nonzero identifier are correlated using this call. Primi­
tives in segments called (to any depth in the hierarchy) from a
segment zero are ineligible for correlation.

The depth value specifies the number of sets of segment and tag
pairs to be returned for each hit. If the root segment is reached
before depth values, the remaining values are set to zero. If more
than depth values are available, only that number are returned.

119

Windows Presentation Manager Reference

120

The draw controls (see GpiSetDrawControl} are ignored by this
function.

If this function is followed by primitives or attributes, without
first opening a segment, then the processing will be as described
for GpiCloseSegment.

If the 'from' segment does not exist, or is not in the segment
chain, an error is raised. If the 'to' segment does not exist, or is
not in the chain, or is chained before the 'from' segment, no
error is raised, and processing continues to the end of the chain.

Parameters:

hgpi The handle for the GPI presentation space.

namel Specifies the first segment to be correlated. It must be
>0.

name2 Specifies the last segment to be correlated. It must be
>0.

ctype The type of segments on which correlation is to be
performed:-

x,y

a type

0- PICKSEL_ VISIBLE
Only visible and detectable segments, with
nonzero identifiers, are correlated.

1- PICKSEL-ALL
All segments with nonzero ideJltifiers are
correlated, regardless of the detectability
and visibility attributes of the segments.

The co-ordinates of the position of the center of the
aperture in Model Space

The type of aperture to be used:-

O - PICKAP _DEF AULT
The default; same as 1.

1- PICKAP_SCALED
Scaled pick aperture

The spec- array parameter must contain a
single element, which is a uniform scaling
aperture that is applied to the device's
default pick aperture. In this case the
binary point of the spec_ array parameter is
considered to be between the second and
third bytes; thus 65536 represents the value
unity.

Graphics Programming Interface

2 - PICKAP -RECT
Rectangular aperture

The spec_ array parameter must contain two
Model Space values giving the width and
height (respectively) of a rectangular aper­
ture. The center of the rectangle is posi­
tioned at the point given by the values in the
x and y parameters.

cl The number of elements in the spec_ array parameter

spec_ array[cl]
An array of numbers as defined by the atype parameter

c2 The maximum number of hits which can be returned
in the seg_ array and tag_ array parameters

depth The number of segment and tag pairs to be returned
for each hit

seg_ array[c2] [depth]
An array of segment identifiers. For each hit, a set of
depth values are returned.

tag_ array[c2] [depth]
An array of primitive tags. For each hit, a set of depth
values are returned.

*num_hits
A variable in which the number of hits in the
seg_ array and tag_ array parameters is returned.

A 'hit' is an instance of a segment identifier and tag
pair for which the primitives lie completely or partially
within the specified aperture. Two different primitives
in the same segment might have the same tag, and
would therefore produce the same hit. This is counted
as a single hit; the hit is only recorded once in the
seg_ array and tag_ array that are returned. The
num- hits parameter, therefore, returns this distinct
number of hits.

The tables seg_ array and tag_ array are set to the hits
that are found, up to the maximum defined in the c2
parameter. Corresponding sets of elements form the
'hit' pairs. The number returned in num- hits therefore
contains the number of sets of depth pairs set if the c2
parameter is greater than the number of hits detected.
The number of elements set in the seg_ array and
tag_ array parameters is the number returned in
num- hits multiplied by the depth.

If the same value is returned in the num- hi"ts parame­
ter as is specified in the c2 parameter, there may be

121

Windows Presentation Manager Reference

Returns:

0 Error
1 OK

yet more hits that cannot be returned in seg_ array
and tag_ array. If all hits are important, specify arrays
that are large enough to contain the maximum number
of hits that are expected.

2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_NAMED_SEG_DOES_NOT_EXIST (I.E. NAMEl)
GPIERR_NAMED_SEG_NOT_CHAINED (I.E. NAMEl)
GPIERR_INVALID_SEG_ID (I.E. NAMEl or NAME2)
GPIERR_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEFN_NOT_COMPLETE (at segment end)

Gpi CorrelateSegmen t

122

SHORT GpiCorrelateSegment (hgpi, name, ctype,
x, y, atype, cl, spec_array, c2, depth,
seg_array, tag_array, num_hits)

HPS hgpi;
LONG name;
LONG ctype;
LONG x;
LONG y;
LONG atype;
LONG cl;
LONG spec_array[];
LONG c2;
LONG depth;
LONG seg_array[];
LONG tag_array[];
LONG num_hits;

Performs a correlate operation on the specified segment.

Data is returned for each tagged primitiv;e that intersects the
specified aperture. The data returned for each "hit" (or correla­
tion) consists of a set of segment and tag pairs, starting with the
correlated one, then the one which called that segment, repeated
until the root segment (which was not called by another seg­
ment) is reached.

The root segment name must be non-zero.

The depth value specifies the number of sets of segment and tag
pairs to be returned for each hit. If the root segment is reached
before depth values, the remaining values are set to zero. If more
than depth values are available, only that number are returned.

The draw controls (see GpiSetDrawControl) are ignored by this
function.

Graphics Programming Interface

If this function is followed by primitives or attributes, without
first opening a segment, then the processing will be as described
for GpiCloseSegment.

Parameters:

hgpi

name

ctype

x,y

atype

The handle for the GPI presentation space.

Specifies the root segment to be correlated. It must be
>0.

The type of segments on which correlation is to be
performed:-

0- PICKSEL_ VISIBLE
Only visible and detectable segments, with
nonzero identifiers, are correlated.

1 - PICKSEL-ALL
All segments with nonzero identifiers are
correlated, regardless of the detectability
and visibility attributes of the segments.

The co-ordinates of the position of the center of the
aperture in Model Space

The type of aperture to be used:-

0- PICKAP-DEFAULT
The default; same as 1.

1 - PICKAP_SCALED
Scaled pick aperture

The spec_ array parameter must contain a
single element, which is a uniform scaling
aperture that is applied to the device's
default pick aperture. In this case the
binary point of the spec_ array parameter is
considered to be between the second and
third bytes; thus 65536 represents the value
unity.

2 - PICKAP _ RECT
Rectangular aperture

The spec_ array parameter must contain two
Model Space values giving the width and
height (respectively) of a rectangular aper­
ture. The center of the rectangle is posi­
tioned at the point given by the values in the
x and y parameters.

123

Windows Presentation Manager Reference

124

cl The number of elements in the spec_ array parameter

spec_ array[cl]
An array of numbers as defined by the atype parameter

c2 The maximum number of hits which can be returned
in the seg_ array and tag_ array parameters

depth The number of segment and tag pairs to be returned
for each hit

seg_ array[c2] [depth]
An array of segment identifiers. For each hit, a set of
depth values are returned.

tag_ array[c2] [depth]
An array of primitive tags. For each hit, a set of depth
values are returned.

*nUID- hits

Returns:

A variable in which the number of hits in the
seg_ array and tag_ array parameters is returned.

A 'hit' is an instance of a segment identifier and tag
pair for which the primitives lie completely or partially
within the specified aperture. Two different primitives
iil the same segment might have the same tag, and
would therefore produce the same hit. This is counted
as a single hit; the hit is only recorded once in the
seg_ array and tag_ array that are returned. The
num.. hits parameter, therefore, returns this distinct
number of hits.

The tables seg_ array and tag_ array are set to the hits
that are found, up to the maximum defined in the c2
parameter. Corresponding sets of elements form the
'hit' pairs. The number returned in num.. hits therefore
contains the number of sets of depth pairs set if the c2
parameter is greater than the number of hits detected.
The number of elements set in the seg_ array and
tag_ array parameters is the number returned in
num.. hits multiplied by the depth.

If the same value is returned in the num.. hits parame­
ter as is specified in the c2 parameter, there may be
yet more hits that cannot be returned in seg_ array
and tag_ array. If all hits are important, specify arrays
that are large enough to contain the maximum number
of hits that are expected.

0 Error
1 OK
2 Correlate hit(s)

Graphics Programming Interface

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_NAMED_SEG_DOES_NOT_EXIST
GPIERR_INVALID_SEG_ID (I.E. NAME)
GPIERR_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA.._DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEFN_NOT_COMPLETE (at segment end)

7 .1.13.6 Bounds Data Functions

GpiResetBoundaryData

BOOL GpiResetBoundaryData (hgpi)
HPS hgpi;

Resets the boundary data to null.

This function is only necessary for draw mode boundary deter­
mination. Note that bounds data is not reset at the start of a
segment.

Bounds data is automatically reset before any Draw function.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

GpiQueryBoundaryData

BOOL GpiQueryBoundaryData (hgpi, boundary)
HPS hgpi;
GRECT boundary;

Returns the boundary data that was set upon completion of the
last boundary calculation. Boundary data is returned as the
coordinates in model space.

Parameters:

hgpi The handle for the GPI presentation space. resides.

boundary
A rectangle structure in which the boundary data is
returned.

The data contains the following fields:

125

Windows Presentation Manager Reference

Returns:

0 Error
1 OK

xmm

ymm

xmax

ymax

Principal errors:

lowest x value found

lowest y value found

highest x value found

highest y value found

GPIERR_INVALID_MICROPS_FUNCTION

7 .1.14 Segment Manipulation Functions

Segment manipulation functions fall into three classes:-

1. Those which operate on whole segments

2. Those which manipulate the contents of a segment indirectly

None of the functions described in these sections are allowed to a micro­
PS.

7 .1.14.1 Whole Segment Functions

GpiOpenSegmen t

126

BOOL GpiOpenSegment (hgpi, name)
HPS hgpi;
LONG name;

Opens a segment.

If the current drawing mode is store or draw-and-store (see
GpiSetDrawingMode), the following occurs:-

• If a non-zero name is given, then if a segment with the
specified name does not already exist, a new stored segment
is created. If one does already exist, it is re-opened in store
mode, but is an error in draw-and-store mode.

• If a name of zero is given, then a new stored segment is
created, regardless of whether or not one with a zero name
already exists. There can be more than one segment with a
name of zero, but such segments can never subsequently be
referenced by name. Once created, they will continue to
exist until all segments are deleted. It is an error to attempt
to open a segment zero with either the dynamic, or the not

Graphics Programming Interface

chained segment atrributes.

If the current drawing mode is draw, a new non-stored segment
is started. No check will be made against any possible stored
segment names. The current attributes will be set to default
values (subject to the fast chaining segment attribute - see
below).

The initial attributes of the segment are as set by GpiSetlnitial­
SegmentAttrs (which see for default values). The attributes may
subsequently be changed with GpiSetSegmentAttrs (except for a
segment with a name of zero). It is an error to attempt to open
a new segment in draw or draw-and-store mode, with the
dynamic segment attribute.

GpiOpenSegment causes a segment bracket to be started. While
the bracket is in effect, any primitive and attribute functions are
considered to be part of the segment, and will be stored in it if
the drawing mode is Store or Draw-and-store. The bracket will
be terminated by a GpiCloseSegment. It is an error if GpiOpen­
Segment is issued when a segment is already open.

The following occurs when drawing of a chained segment is
started (either as it is passed across the API in draw or draw­
and-store mode, or as it is found during a GpiDraw operation),
unless the segment has the fast chain£ng attribute:-

• Current attributes are reset to default values

• Current model transform is reset to unity

• Current position is set to (0,0)
• ~he current clip area and viewing limits are reset to no clip-

pmg

• The current window /viewport transform is reset to unity

If the segment has the fast chaining attribute, the system may
choose whether or not to perform these operations. It is the
application's responsibility to ensure that either choice will pro­
duce the same results.

Parameters:

hgpi

name

Returns:

0 Error
1 OK

The handle of the GPI presentation space.

The segment name. Negative names should not be
used.

Principal errors:

127

Windows Presentation Manager Reference

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (I.E. NAME)
GPIERR_GRAPHICS_SEG_IS_CURRENT (I.E. OPEN)
GPIERR_AREA_DEFN_NOT_COMPLETE
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE
GPIERR_STROKES_DEFN_NOT_COMPLETE

GpiCloseSegment

128

BOOL GpiCloseSegment (hgpi)
HPS hgpi;

Closes the current segment.

Any subsequent primitives, not preceded by a GpiOpenSegment
function, will not be stored, irrespective of the current drawing
mode.

If any of the following brackets is currently open:-

• Area

• Clip area

• Strokes

then it will be aborted.

In draw or draw-and-store mode a warning will be given, but the
close processing will continue. In store mode, no warning will be
given. If a stored segment with one of these unended brackets is
subsequently drawn, an error will be raised.

If an element bracket is open when a segment is closed, then the
element bracket is first closed automatically.

If this function is followed by primitives or attributes, without
first opening a segment, then the following may or may not have
been reset to their default values:-

• Current attribute values

• Current model transform

• Current position

• The current clip area and viewing limits

Any such quantity may only be assumed to contain its default
value if it is known either that it has not been changed from it,
or that last time it was changed, it was set to its default value.

The current window/viewport transform, however, is guaranteed
to be reset to unity for primitives outside segments.

Parameters:

hgpi The handle of the GPI presentation space.

Returns:

Graphics Programming Interface

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_NO_CURRENT_GRAPHICS_SEG
GPIERR_AREA_DEFN_NOT_COMPLETE (warning)
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE (warning)
GPIERR_STROKES_DEFN_NOT_COMPLETE (warning)

GpiDeleteSegment

BOOL GpiDeleteSegment (hgpi, name)
HPS hgpi;
LONG name;

Deletes the specified segment.

If the segment is open when it is deleted, there will be no open
segment after this function.

If the segment is in the picture chain, it is removed from the
chain.

Parameters:

hgpi The handle of the GPI presentation space.

name The name of the segment to be deleted. It must be >
0.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (I.E. NAME)
GPIERR_SEG_UNKNOWN

GpiDeleteSegments

BOOL GpiDeleteSegments (hgpi, namel, name2)
HPS hgpi;
LONG namel;
LONG name2;

Deletes all segments in the given name range. Note that name1
and name2 can have the same value; in this case, only the named
segment is destroyed. If namel is greater than name2 then only
the segment with name1 is destroyed.

If one of the segments deleted is the currently open segment,
there will be no open segment after this function.

If any of the segments are in the picture chain, they are removed
from the chain.

129

Windows Presentation Manager Reference

Parameters:

hgpi The handle of the GPI presentation space.

namel The first name in the range. It must be > 0.

name2 The last name in the range. It must be > 0.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (I.E. NAME! or NAME2)
GPIERR_SEG_UNKNOWN

GpiQuerySegmen tNames

130

LONG GpiQuerySegmentNames (hgpi, namel, name2, n, names)
HPS hgpi;
LONG namel;
LONG name2;
LONG n;
LONG names[];

This returns the names of all segments that exist with names in
a specified name range. Non-stored segment names will not be
included. If name1 is the same as or greater than name2 then
the search will terminate after querying only the segment with
name1. ·

Parameters:

hgpi The handle of the GPI presentation space.

namel The first name in the range. It must be > 0.

name2 The last name in the range. It must be > 0.

n The maximum number of names to be returned in
names.

names[n]
An array in which the required names are returned.

Returns:

-1 Error
> =0 Number of names returned

Rrincipal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (I.E. NAME! or NAME2)
GPIERR_INVALID_ARRAY_COUNT

Graphics Programming Interface

GpiSetlnitialSegmentAttrs

BOOL GpiSetinitialSegmentAttrs (hgpi, attribute, value)
HPS hgpi:
LONG attribute:
LONG value:

This function sets a segment attribute which is to be assumed by
subsequent segments when they are initially created (ie when
GpiOpenSegment is issued, and the segment does not already
exist). See the section, "Segment Attributes"_, for an explana­
tion of segment attributes, including default settings.

Parameters:

hgpi The handle of the GPI presentation space.

attribute
Specifies which segment attribute is to be changed, as
follows:-

value

Returns:

0 Error
1 OK

1 Detectability
2 Visibility
9 Highlighting
6 Chained
7 Contains prolog
8 Dynamic
9 Fast chaining

10 Propagate detectability
11 Propagate visibility

The required value of the attribute, as follows:-

0 Off/no
1 On/yes

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ATI'R_CODE
GPIERR_INVALID_SEG_ATI'R

GpiQuerylnitialSegmentAttrs

LONG GpiQueryinitialSegmentAttrs (hgpi, attribute)
HPS hgpi:
LONG attribute:

This function returns an initial segment attribute.

Parameters:

131

Windows Presentation Manager Reference

hgpi The handle of the GPI presentation space.

attribute

Returns:

-1 Error

Specifies which initial segment attribute is to be
returned, as follows:-

1 Detectability
2 Visibility
3 Highlighting
6 Chained
7 Contains prolog
8 Dynamic
9 Fast chaining

10 Propagate detectability
11 Propagate visibility

>=0 Attribute value, as follows: -
0 Off/no
1 On/yes

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_,ATI'R_CODE

GpiSetSegmentAttrs

132

BOOL GpiSetSegmentAttrs (hgpi, name, attribute, value)
HPS hgpi;
LONG name;
LONG attribute;
LONG value;

This function sets a segment attribute for the specified segment.
The segment may be any stored segment.

If the name is that of the currently open segment

• In store mode this is valid

• In draw-and-store mode, the stored segment is updated, but
there is no change to the immediate drawing

• In draw mode, it is invalid

Parameters:

hgpi

name

attribute

The handle of the GPI presentation space.

The name of the segment whose attribute is to be
updated. It must be > 0.

Specifies which segment attribute is to be changed, as
follows:-

Graphics Programming Interface

value

Returns:

0 Error
1 OK

1 Detectability
2 Visibility
9 Highlighting
6 Chained
7 Contains prolog
8 Dynamic
9 Fast chaining

10 Propagate detectability
11 Propagate visibility

The required value of the attribute, as follows:-

0 Off/no
1 On/yes

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN
GPIERR_INVALID_SEG_ATI'R_CODE
GPIERR_INVALID_SEG_ATI'R
GPIERR_NOT_IN_STORE_MODE (CAN'T CHANGE ATI'RS OF CURR SEG)

GpiQuerySegmentAttrs

LONG GpiQuerySegmentAttrs (hgpi, name, attribute)
HPS hgpi;
LONG name;
LONG attribute;

This function returns a segment attribute for the specified seg­
ment. The segment may be any stored segment (including the
currently open one if stored).

Parameters:

hgpi

name

attribute

The handle of the GPI presentation space.

The name of the segment whose attribute is to be
returned. It must be > 0.

Specifies which segment attribute is to be returned, as
follows:-

1 Detectability
2 Visibility
9 Highlighting
6 Chained
7 Contains prolog
8 Dynamic
9 Fast chaining

133

Windows Presentation Ma.na.ger Reference

Returns:

-1 Error

10 Propagate detectability
11 Propagate visibility

>=0 Attribute value, as follows:-
0 Off/no
1 On/yes

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN
GPIERR_INVALID_SEG_ATTR_CODE

GpiSetSegmen tPriori ty

134

BOOL GpiSetSegmentPrlorlty (hgpi, name, ref_name, order)
HPS hgpi:
LONG name;
LONG ref_name:
LONG order;

This function changes the order of the specified segment within
the segment chain.

In the stored segment model, the application may redraw the
picture by drawing the segment chain (see GpiDrawChain). This
causes the segments in the chain to be processed from beginning
to end, so that if segments overlap, later ones will be drawn on
top (assuming a default mix mode) of earlier ones, and will
therefore appear to have higher priority. Changing the position
of the segment in the chain therefore has the effect of changing
its priority to the end user.

Parameters:

hgpi

name

reLname

order

The handle of the GPI presentation space.

The name of the segment whose priority is to be
updated. It must be >= 0.

The name of a reference segment. This is the one
which the segment specified by name is to be posi­
tioned either immediately before or immediately after:

If ref- name is 0, then name will be positioned either
first or last in the chain, depending upon the value of
order.

ref-name must be> 0.

The position required for name relative to ref- name,
as follows:-

Graphics Programming Interface

Returns:

0 Error
1 OK

-1name

1name

Principal errors:

is to be lower priority thanre/-name
(ifref-name =O thenname is to
be thehigheBt priority segment)

is to be higher priority thanre/_name
(ifref-name =O thenname is to
be theloweBt priority segment)

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_INVALID_REFSEG_ID (REF_NAME)
GPIERR_SEG_ID_UNKNOWN
GPIERR_REFSEG_ID_UNKNOWN
GPIERR_GRAPHICS_SEG_IS_CURRENT (I.E. OPEN)
GPIERR_ORDERING_FARAMETER_INVALID
GPIERR_SEG__AND_REFSEG_ARE_SAME
GPIERR_SEG_NOT_CHAINED
GPIERR_REFSEG_NOT_CHAINED

GpiQuerySegmen tPriority

LONG GpiQuerySegmentPriority (hgpi, ref_name, order)
HPS hgpi;
LONG ref_name;
LONG order;

This function returns the identifier of the named segment which
is before or after the specified segment. The segment which is
before the specfied segment is considered to have a lower priority
than the specified segment; the segment which is after the
specfied segment is considered to have a higher priority than the
specified segment.

Parameters:

hgpi The handle of the GPI presentation space.

reLname

order

The name of the reference segment.

If ref- name is 0, then the identifier of either the first
or the last segment in the chain will be returned,
depending upon the value of order.

ref-name must be>= 0.

Shows whether the segment immediately before or
after ref- name is required, as follows:-

-1 Return the next segment withlower priority
thanre/- name
(ifre/_ name =O then the segment with the

135

Windows Presentation Manager Reference

Returns:

-1 Error

lowest priority is required)
1 Return the next segment withhigher priority

than re/_ name
(ifre/_ name =O then the segment with the

highest priority is required)

>=0 Name of the segment immediately before or after
ref- name (or first or last in the chain) . 0 is
returned if there is not one

Principal errors:

GPIERR_INVALID_MICR.OPS_FUNCTION
GPIERR_INVALID_REFSEG_ID (REF_NAME)
GPIERR_REFSEG_ID_UNKNOWN
GPIERR_ORDERING_PARAMETER_INVALID
GPIERR_REFERENCE_SEG_NOT_CHAINED

7.1.14.2 Segment Content Manipulation Functions (Indirect)

Elements

A segment is constructed by means of API calls. Typically these are calls
to cause certain primitives to be drawn (eg GpiLineJ or to set attributes
(eg GpiSetColor). Each such API function generates one element of the
segment.

The currently open segment has an element pointer, which points to a par­
ticular element in the segment. When a stored segment is first opened, the
element pointer is set to zero (empty segment). It is incremented each
time a call causes an element (a single API ca11) to be placed in the seg­
ment. When a segment is re-opened, the element pointer will be set to
zero, ie before the first element. In this position, if an element is inserted,
it will be the first element in the segment. Essentially each element is put
into the segment at the place indicated by the element pointer.

Segment zero cannot be edited.

The element pointer for a segment is not remembered if the segment is
closed and subsequently re-opened. Functions requiring an element
pointer are only valid if the currently open segment is stored, and indeed
only if the current drawing mode (see GpiSetDrawingMode) is store.
(They are not valid in draw-and-store mode.)

Associated with each element are a type and description data.

136

Graphics Programming Interface

type is a long integer. For elements generated directly from calls, it is set
to a system-defined value, depending upon the call. For an element gen­
erated via a data buffer (see GpiElement) the application defines the type,
from a specific range of values.

description data is a variable length string. For system-defined element
types this is also system-defined (description data for system-defined ele­
ment types will not be provided in Presentation Manager release 1). For
an element generated by GpiElement the application defines the descrip­
tion.

Two editing modes are provided:-

• Insert mode

In this mode, element generating API calls will insert an element fol­
lowing the element indicated by the element pointer.

• Replace mode

In this mode, element generating API calls will replace the element
indicated by the element pointer. Note that it is an error to replace an
element with the element pointer at zero.

Labels

A function is provided to create a label within a segment. A label is itself
an element, which is inserted into the segment. It may subsequently be
used to reference the point at which it was inserted. For example, the ele­
ment pointer may be set to point to the element defined by a particular
label.

Labels need not be unique within the presentation space. Indeed, they need
not even be unique within a segment, although normally they will be.

The use of labels to set the element pointer may in some circumstances be
faster than setting it to a particular element number.

GpiSetEditMode

BOOL GpiSetEditMode (hgpi, mode)
HPS hgpi;
LONG mode;

Sets the current editing mode for the specified presentation
space.

This determines whether data is to be inserted into a segment,
moving any subsequent elements further along the segment, or
whether each element is to replace the current element.

The editing mode may be changed at any time, and is not an
attribute of a specific segment. It only applies to the storing of

137

Windows Presentation Manager Reference

data within stored segments, though it is not an error to issue
this function in other drawing modes. It is invalid within an ele­
ment bracket. The default editing mode (set by GpiCreatePS or
GpiResetPS) is insert.

Parameters:

hgpi

mode

Returns:

0 Error
1 OK

The handle of the GPI presentation space.

The mode, as follows:-

1 Insert mode
2 Replace mode

Principal errors:

GPIERR_INVALID~MICROPS_FUNCTION
GPIERR_INVALID_EDIT_MODE

GpiQueryEditMode

LONG GpiQueryEditMode (hgpi)
HPS hgpi;

Returns the current editing mode (see GpiSetEditMode).

This function may be issued in any drawing mode.

Parameters:

hgpi The handle of the GPI presentation space.

Returns:

0 Error
>O Current editing mode

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

GpiSetElemen tPoin ter

138

BOOL GpiSetElementPointer (hgpi, element)
HPS hgpi;
LONG element;

Sets the element pointer, within the current segment, to the ele­
ment number specified.

If the value specified is negative, the element pointer is set to 0.
If the value specified is greater than the number of elements in
the segment, it is set to the last element.

This function is only valid when the drawing function mode is

Graphics Programming Interface

set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.

element The element number required.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIER.R__INVALID_ELEMENT_NUMBER
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG

GpiQueryElementPointer

LONG GpiQueryElementPointer (hgpi)
HPS hgpi;

Returns the current element pointer (see
GpiSetElementPoin ter).

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress.

Parameters:

hgpi The handle of the GPI presentation space.

Returns:

-1 Error
>=0 Current element pointer

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_ELEMENT_NUMBER
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG

GpiOffsetElementPointer

BOOL GpiOffsetElementPointer (hgpi, offset)
HPS hgpi;
LONG offset;

Sets the element pointer, within the current segment, to the
current value plus the specified offset.

If the resulting value is negative, the element pointer is set to 0.

139

Windows Presentation Manager Reference

If the resulting value is greater than the number of elements in
the segment, it is set to the last element.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invahd within an element bracket.

Parameters:

hgpi

offset

Returns:

0 Error
1 OK

The handle of the GPI presentation space.

The offset which is to be added to the element pointer.

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG
GPIERR_ELEMENT_CONTEXT_ERROR

GpiDeleteElement

140

BOOL GpiDeleteElement (hgpi)
HPS hgpi;

Deletes the element indicated by the element pointer. The ele­
ment pointer is set to the element immediately preceding the
deleted element.

If the element pointer has a value of 0 (points logically before
the first element), nothing is deleted and the element pointer is
not changed.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invahd within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG
GPIERR_ELEMENT_CONTEXT_ERROR

Graphics Programming Interface

GpiDeleteElemen tRange

GpiLabel

BOOL GpiDeleteElementRange (hgpi, element!, element2)
HPS hgpi;
LONG element!;
LONG element2;

Deletes all elements between and including the elements indi­
cated by the specified element numbers.

If either element number is outside the range of the current seg­
ment, it is set to the nearest valid value.

At the conclusion of this function, the element pointer is set to
the element immediately preceding the deleted elements.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invahd within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.

elementl ,element2

Returns:

0 Error
1 OK

The numbers of the first and last elements to be
deleted.

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_ELEMENT_NUMBER
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG
GPIERR_ELEMENT_CONTEXT_ERROR

BOOL GpiLabel (hgpi, label)
HPS hgpi;
LONG label;

Generates an element containing the specified label. This has no
effect unless a stored segment is being constructed.

This function is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.

label The required label. No check is made on the value of
label.

141

Windows Presentation Manager Reference

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_ELEMENT_CONTEXT_ERROR

GpiSetElemen tPoin ter AtLabel

BOOL GpiSetElementPointerAtLabel (hgpi, label)
HPS hgpi;
LONG label;

Sets the element pointer, within the current segment, to the ele­
ment containing the specified label.

The search will start from the next element beyond the one
which the element pointer is currently pointing to. If no
occurrence of the specified label is found between there and the
end of the segment, an error will be generated and the element
pointer left unchanged.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.

label The label required.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_LABEL_NOT_FOUND
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG
GPIERR_ELEMENT_CONTEXT_ERROR

GpiDeleteElemen tsBetweenLabels

142

BOOL GpiDeleteElementsBetweenLabels (hgpi, labell, label2)
HPS hgpi;
LONG labell;
LONG label2;

Deletes all elements between but not including the elements
found to contain the indicated labels.

The search for the elements is conducted, separately, in the same

Graphics Programming Interface

way as described for GpiSetElementPointerAtLabel. If either
label cannot be found between the current element pointer loca­
tion and the end of the segment, an error is generated and no
deletion occurs.

At the conclusion of this function, the element pointer is set to
the element immediately preceding the deleted elements.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invahd within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.

labell ,label2
The labels marking the bounds of the elements to be
deleted.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_LABEL_NOT_FOUND (LABEL!)
GPIERR_LABEL2_NOT_FOUND (LABEL2)
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG
GPIERR_ELEMENT_CONTEXT_ERROR

GpiQueryElementType

LONG GpiQueryElementType (hgpi, type, desc_length, desc)
HPS hgpi;
LONG *type;
LONG *desc_length;
LPBUF desc;

Returns information about the element which the element
pointer currently points to.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invahd within an element bracket.

Parameters:

hgpi

*type

The handle of the GPI presentation space.

A variable in which the type of the element is
returned. The type may be system-defined or
application-defined (see GpiElemen t)

143

Windows Presentation Manager Reference

*desc- length
A variable which contains the length of data in the
buffer pointed to by desc. On return, it is updated to
the number of bytes actually stored.

desc A variable in which the description data for the ele­
ment is returned. The description may be system­
defined or application-defined (see GpiElemen t) Note:
system-defined element data is not supported in the
current version of Presentation Manager.

Returns:

-1 Error
>=0 Size of the data required to hold the

element content. This may be used for a
subsequent GpiQueryElement function.

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_CURRENT_ELEMENT_DOES_NOT_EXIST
GPIERR_NOT_IN_STORE_MODE
GPIERR_INVALID_LENGTH
GPIERR_ELEMENT_CONTEXT_ERROR

GpiQueryElement

144

LONG GpiQueryElement (hgpi, start, length, buffer)
HPS hgpi;
LONG start;
LONG length;
LPBUF buffer;

Returns the element content (or part of the element content) for
the element which the element pointer currently points to.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.

start The starting byte offset within the content.

length The maximum length of data which may be returned.

buffer An area of *length bytes in which the element content
data is to be returned.

Returns:

-1 Error
>=0 Actual number of bytes returned

Principal errors:

Graphics Programming Interface

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_START
GPIERR_CURRENT_ELEMENT_DOES_NOT_EXIST
GPIERR_NOT_IN_STORE_MODE
GPIERR_INVALID_LENGTH
GPIERR_ELEMENT_CONTEXT_ERROR

GpiElement

SHORT GpiElement (hgpi, type, desc, length, buffer)
HPS hgpi:
LONG type:
LPSZ desc:
LONG length:
LPBUF buffer:

Specifies a complete element which is to be stored in the current
segment (in Store or Draw-and-store mode). The element will be
drawn in Draw or Draw-and-store mode.

It is an error if the element data contains any begin or end ele­
ment orders. Similarly, GpiElement is invalid within an element
bracket.

Note that no co-ordinate conversion is performed by this func­
tion. The application must ensure that the co-ordinates within
the element are in the correct format for the presentation space.

Parameters:

hgpi The handle of the GPI presentation space.

type The type which is to be associated with the element.

desc A variable length character string which is recorded
with the type

length The length of content data for the element.

This must not be greater than 63K.

buffer A pointer to a buffer of length bytes, which contains
the element content data. The format of the data is
TBD.

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_ELEMENT_TYPE
GPIERR_INVALID_LENGTH
GPIERR_DATA_TOO_LONG
GPIERR_INVALID_ORDER
GPIERR_ELEMENT_CONTEXT_ERROR

145

Windows Presentation Manager Reference

GpiBeginElemen t

BOOL GpiBeginElement (hgpi, type, desc)
HPS hgpi;
LONG type;
LPSZ desc;

Specifies the start of an element, which will be stored in the
current segment (in Store or Draw-and-store mode). The ele­
ment will be drawn in Draw or Draw-and-store mode.

The primitives and attributes which are contents of the element
will be passed on subsequent API functions. GpiElement, which
itself generates a complete element is not allowed within an ele­
ment bracket. The element extends up to the next GpiEndEle­
ment function (or GpiCloseSegment, which causes an implicit
GpiEndElement to be generated).

Elements may not be nested.

Parameters:

hgpi The handle of the GPI presentation space.

type The type which is to be associated with the element.

desc A variable length character string which is recorded
with the type

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_ATTEMPT_TO_START_SECOND_ELEMENT
GPIERR_INVALID_ELEMENT_TYPE
GPIERR_ELEMENT_CONTEXT_ERROR

GpiEndElement

146

BOOL GpiEndElement (hgpi)
HPS hgpi;

Terminates an element, which had been started by GpiBeginEle­
ment.

Parameters:

hgpi The handle of the GPI presentation space.

Returns:

0 Error
1 OK

Principal errors:

Graphics Programming Interface

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_END_ELEMENT_IGNORED
GPIERR_ELEMENT_CONTEXT_ERROR

7 .1.15 Transform Functions

The four co-ordinate spaces used by GPI were introduced in the section
"Co-ordinate Spaces". This section defines the functions which specify the
relationships between these spaces.

7 .1.15.1 Co-ordinate Spaces

Applications typically work in the following kinds of units:

1. Device units

• Actual pels

• A simple multiple of pels, for extra granularity with scaling
transforms

2. Metrics

Fractions of an inch or of a millimetre or of a printer's point

3. Fractions of the screen

This is convenient for constructing simple graphics which will look
similar on a range of devices

4. Application convenient units

Anything appropriate to the application, such as grid reference units,
or world-oriented metrics.

A Presentation Manager application may, if it wishes, exercise direct con­
trol over the co-ordinate spaces it uses. Alternatively, it may make use of
certain defaults to give some of the simpler options.

Starting from application co-ordinates, the drawing process must eventu­
ally generate device co-ordinates, and it will usually be efficient for it to
make the transition from application co-ordinates to device co-ordinates in
a single step. Notionally, however, there are additional intermediate co­
ordinate spaces. In the general case these are required to facilitate various
functions which are described below. It must be emphasised, however,
that the defaulting rules mean that applications need not be directly con­
cerned with any spaces which they do not wish to control explicitly.

The levels of co-ordinate spaces are as follows:

147

Windows Presentation Manager Reference

148

(pels, metrics,
isotropic)

Device
(pels)

I
I
I
I

World Co-ordinates I
I
I
I

------+------ ------+------

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

v

Segment / Model Transform

+--------+
IWindow-11

: +------%-+

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
v

+--------+
IWindow-21

: +------%-+
------+------

Model
Space ------+------

Page

Window / Viewport Transform
and Default Viewing Transform

+---------------+
I
I

+--------- ----------------:--------+
+------- ------------+ :

v : :
+---*------+
IViewport-11
I I
I I

+----------+

: v
+--+---*---+
iViewport-21
+--+-------+

I
I

1Page window :
+------------%-------+

+-------------- --------------------

Device Transform

I
I v

+---+---------*-------+
: Page viewporti
I I
I I
>-----+ :

I
I
I
I

Space 1 1 1 I
------+---+--%--*-----------+-----------

! I I I
I I I I
I I I I
I I I I

+---+--:--------------+
I I
I I

Graphics Programming Interface

I
I
I
I

Windowing System Translation!

Media Space
(pels)

I
I
I
I

+------:-----------------+
: v :
: u----+ :
: I Media :
I I Window :
I I I
I I I : +-----+ :
+------------------------+

Figure 7 .1 Presentation Manager Pipeline

1. World Co-ordinate Space

These are application convenient units. They are the units which are
used at the API for primitives such as lines, arcs etc. In store mode,
this is the space in which primitive co-ordinates are stored.

2. Model Space

Segments and primitives may optionally be subjected to segment and
model transforms. These are used to construct the picture. For exam­
ple, there may be a single segment for drawing a wheel of a locomotive,
which is called several times, once for each wheel, using a different
transform to position it at the correct place - possibly also to scale it.

Model Space is equivalent to World Co-ordinate Space if no segment or
modelling transforms are used.

3. Page

The page is where the picture is assembled. It may be that the picture
is composed of more than one subpicture. For example, it may be con­
venient to construct a business graph as one subpicture containing the
axes and lines, and another containing the legend. The final picture,
which may include several subpictures, is assembled in the Page.

The size of the Page may be defined in various units. See GpiCreatePS,
and also the section, "Defaults and Examples".

A window on the Page (the Page Window) defines the maximum area
of the page which may be visible at any time. It also, in conjunction
with the Page Viewport in Device Space, defines the Device Transform.

4. Device Space

It will be seen that an application can deal directly, right from the top,
in device co-ordinates if it wishes. Some applications, however, will
want to construct pictures in device independent spaces. Device Space
allows the Page above it to be device independent if the application so
wishes. Device Space itself is defined in device units.

149

Windows Presentation Manager Reference

5. Media Space

The picture, or a portion of it, is finally displayed in the window on the
screen (or the paper on a printer, etc). A final transform, which only
supports translation, maps the total picture in Device Space into the
screen window or printer page etc. On a display, this will be used to
ensure, for example, that when the window is moved, the visible con­
tents will not change. This transform is set only by the windowing
system.

Functions are provided to convert a co-ordinate value between any one
space and another.

7 .1.15.2 Transforms

Between each of the above co-ordinate spaces there is a transform. These
are as follows (see):-

1. Segment and Model transform

These convert from World Co-ordinates to Model Space. They are
typically used during the construction of a picture, for example to
scale up one construct in a picture. A segment transform applies to a
whole segment; a model transform can apply to a group of primitives
within a segment. For stored segments, either transform may be
changed after the segment has been constructed.

One form of model transform is the instance transform which is
specified when a segment is called.

These transforms support rotation.

2. Viewing Transforms

There are two componenets of the transform from Model Space to the
Page, as follows:-

150

• Window /Viewport transform

This provides a transform from Model Space to the Page, which
may be used for one or more segments. It may be used to provide a
general transformation (not a rotation) to a part, or all of the pic­
ture. It may not be changed within a segment.

For stored segments, the window /viewport transform is fixed at
the time the segment is created, and may not subsequently be
changed without re-creating the segment.

• Default Viewing Transform

This transform, which is initialised to unity, applies after the
window-viewport transform. There is a single default viewing
transform, which applies across the entire picture. It may be
thought of as an override to the viewport positions and sizes, and
its purpose is to allow scrolling or zooming of the whole picture.

Graphics Programming Interface

3. Device Transform

This specifies how the Page Window is mapped into the Page Viewport
in Device Space. It is a convenient way of changing all of the co­
ordinates of a picture (as, for example, where all co-ordinates represent
a given metric on the screen). This allows a device-independent pic­
ture to be constructed in the Page.

Any non-squareness in the device co-ordinates (pels on a raster device)
is also allowed for here.

4. Windowing System Translation

This takes the notional picture in device space and maps it to the phy­
sical device. Its normal function is to allow for the positioning of the
window on the screen. This transform is set only by the windowing
system.

7.1.15.2.1 Transform Range and Precision

Internally, Presentation Manager will convert all transforms to a matrix
form, as follows:-

(a b c)
(d e f)
(0 0 1)

so that a point with co-ordinates (x,y) is transformed to the point

(a*X + b*y + C, d*X + e*y + f)

All of the relevant transforms (model, viewing, device, etc) will be con­
catenated together. Intermediate results are held to the same range and
precision as is each constituent transform. This is as follows:-

• For the scaling/rotation elements (a,b,d,e): 32-bit signed values, with a
notional binary point between the second and third bytes (ie 1.0 is
represented as 65536).

• For the translation elements (c,f) 32-bit signed integers.

In order to avoid overflow, the application should ensure that it uses
values which will not cause these ranges to be exceeded, in whatever order
the concatenation is performed.

7 .1.15.3 Clipping

Clipping may take place logically at various points in the pipeline:

1. Clip area

This is a shape defined by primitives. The shape may either be rec­
tangular (in which case GpiSetViewingLimits may be used to set it), or

151

Windows Presentation Manager Reference

more general, in which case GpiBeginClipArea is used to introduce the
primitives required to define the shape.

The default is the whole of space.

2. Graphics field

This is a rectangle specified in the Page. The default is the whole Page.

3. Media window

Data is clipped to the client area of the (media) screen window.

Clipping will take place to the intersection of all three of the above,
transformed to the same space. By default, only the client area of the
media window, and the page size, will be relevant.

In addition to the above, there is also clipping introduced via the clipping
region. This takes place logically in device space, and may be to any irreg­
ular (even disjoint) shape.

7 .1.15.4 Defaults and Examples

Before accessing Gpi functions, a presentation space must be created (Gpi­
CreatePS). This function includes as parameters the specification of a
Page, incfuding its units, and its width and height.

Units are one of the following:-

• Device co-ordinates (pels)

• Metrics (various options, eg 0.1 mm)

• Arbitrary

The origin of the Page co-ordinate system is at the bottom left.

Creating a Page (of width wand height h) also sets the following:-

• A Page Window the same size (and units) as the page.

• A Window in Model Space, of (bottom left to top right):

• (Page units= pels): from (0,0) to (w-l,h-1).

• (Page units= metrics): from (0,0) to (w-l,h-1).

• (Page units= arbitrary): from (0,0) to (w-l,h-1).

• A Graphics Field (clipping limit) of the same size (and units) as the
Page.

Creating (or defaulting) a Graphics Field also sets the following:-

152

Graphics Programming Interface

• A Viewport of the same size as the Graphics Field.

The Viewport may be changed subsequently.

The size and units of the Page, and the size and origin of the Page Win­
dow, are part of the presentation space. The Page Viewport is logically not
part of the presentation space. When a presentation S:{>ace is associated
with a new Device Context, the Page Viewport (in pelsJ is computed, tak­
ing into account the pel spacing on the new device, from the following
rules:-

• Page units= pels

The Page Viewport is the same size as the Page Window, with the bot­
tom left corner of the Page Window mapping to the origin of Device
Space

• Page units = metrics

The size of the Page Viewport gives the correct physical size as desig­
nated by the Page Window (depending upon the physical pel spacing),
with the bottom left corner of the Page Window mapping to the origm
of Device Space

• Page units = arbitrary

For any device, there is a default size. In the case of a screen, this is
the maximised window size. For a plotter, it is the accessible size of the
paper. The Page Viewport is constructed such that Page co-ordinates
will give equal x and y spacing. The bottom left corner of the Page
Window maps to the origin of Device Space.

Examples

1. To use only pel co-ordinates:-

• Specify the Page size in pels.

• Viewports may also be laid out in pels. Each time a new viewport
is defined, the window must also be redefined with the same size as
the viewport, but with arbitrary origin.

2. To use only metric co-ordinates:-

• Specify the Page size in the appropriate metrics.

• Viewports may also be laid out in the same metrics. Each time a
new viewport is defined, the window must also be redefined with
the same size as the viewport, but with arbitrary origin.

3. To adjust the size of the picture depending upon the size of the client
area on the screen (eg a clock):-

• Specify a Page size in arbitrary units.

163

Windows Presentation Ma.na.ger Reference

• Respecify the Page Viewport whenever the client area changes.

4. To scroll the picture in Page units

• Change the default viewing transform, or move the page window.
(The graphics field cli{>ping boundary may affect the result if the
iatter method is used.)

5. To scroll the picture in page units, using a combination of BitBlt and
redraw (assuming for simplicity that no model or viewing transforms
are in force):-

• Identify the amount to be scrolled in page units (DeltaP)

• Issue GpiBitBlt, quoting the source and destination rectangles
separated by DeltaP.

• Set up a clipping region for the part of the window to be healed by
redrawing. Use GpiExcludeClipRegion, quoting the rectangle that
was used for the destination on GpiBitBlt.

• Put in a translation component of DeltaP to the default view
transform (GpiSetDefaultView).

• Move the pattern origin by DeltaP.

• Redraw the picture (possibly restrict the primitives passed to those
which the application knows may contribute to the new part.

7 .1.15.5 Modelling Transform Functions

GpiSetSegmen tOrigin

154

BOOL GpiSetSegmentOrigin (hgpi, name, x, y)
HPS hgpi;
LONG name;
LONG x;
LONG y;

This sets the origin of the specified segment in world co­
ordinates. This provides a reference point about which model
transformations fsee GpiSetModelTransform), segment transfor­
mations (see GpiSetSegmentTransform), and instance transfor­
mations (see GpiCallSegment), will be performed.

Primitives outside segments always have an effective origin of
(0,0). This cannot be changed.

Parameters:

hgpi

name

The handle of the Gpi presentation space.

The name of the segment. It must be > 0.

Graphics Programming Interface

x,y The co-ordinates of the segment origin.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN

Gpi QuerySegmen tOrigin

BOOL GpiQuerySegmentOrigin (hgpi, name, x, y)
HPS hgpi;
LONG name;
LONG tx;
LONG •y;

This returns the position of the segment origin of the identified
segment in world co-ordinates.

Parameters:

hgpi

name

The handle of the Gpi presentation space.

The name of the segment. It must be > 0.

Variables which are set to the x and y co-ordinates of
the segment origin.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN

GpiSetSegmentTransform

BOOL GpiSetSegmentTransform (hgpi, name, sx, sy,
hx, hy, rx, ry, dx, dy, type)

HPS hgpi;
LONG name;
LONG sx;
LONG sy;
LONG hx;
LONG hy;
LONG rx;
LONG ry;
LONG dx;
LONG dy;
LONG type;

155

Windows Presentation Manager Reference

156

Sets the two-dimensional segment transform which is to apply to
all of the primitives in the specified segment.

This performs the same function as GpiSetSegmentTransform­
Matrix, but specifies the transform as scale, shear, rotation and
displacement components, rather than as a direct matrix.

The parameters specified are effectively combined into a single
transformation matrix in the order scale, shear, rotation, dis­
placement. This matrix is then used to update the existing seg­
ment transformation, depending upon the value of type.

If scaling values greater than unity are given, care must be taken
that the combined effect of this and any other relevant
transforms do not exceed fixed-point implementation limits. See
the section, "Transform Range and Precision".

Segment transformations do not apply to primitives outside seg­
ments.

Parameters:

hgpi

name

sx,sy

hx,hy

The handle for the GPI presentation space.

The name of the segment. It must be > 0.

A scale transformation in terms of an x-axis scaling (
sx) and a y-axis scaling (sy). The segment origin is
used as a reference point; the axes that are used to
scale are parallel to the x and y axes, and pass through
the segment origin. A scale factor of between 0 and 1
shrinks primitives; a scale factor greater than 1
stretches primitives. A negative scale factor reflects
primitives about the other axis.

The values are each represented as signed 32-bit
values, with the low-order 16 bits taken to be to the
right of the binary point. Specifying scale factors of 1
and 1 (actually, in this representation, 65536 and
65536) does not perform any scaling.

A shear transformation in terms of the displacements
which a point on the y-axis makes after shearing. The
axes used for shearing are parallel to the x and y axes,
but pass through the current segment origin. Note
that primitives below the x axis are sheared in the
opposite direction from those above the x axis. Points
on the x axis itself are not moved. hx = a and hy = b
produce an identical effect to hx = -a and hy = -b.

Specifying hx = 0 and hy = 1 does not perform any
shearing. Specifying hy = 0 is invalid, because it would
produce an infinite shear.

Graphics Programming Interface

rx,ry A rotation transformation in terms of the displace­
ments which a point on the x-axis makes after rotat­
ing. The axes used for rotating are parallel to the x
a~d y axes, but pass through the current segment ori­
gm.

dx,dy

type

Returns:

0 Error
1 OK

Specifying rx = 1 and ry = 0 does not perform any
rotation.

Because two zero values would be ambiguous, specify­
ing rx = 0 and ry = 0 is taken as equivalent to rx = 1
and ry = 0 (no rotation).

Specify a displacement of dx parallel to the x axis, and
dy parallel to the y axis. This transformation does not
use the segment origin.

Specifying dx = 0 and dy = 0 does not perform any
translation.

Specifies how the specified transform should be com­
bined with/replace the existing segment transform.
The new segment transform is computed, and the
result stored back in the segment, replacing the exist­
ing value. The stored segment transform is always
additive with respect to any segment, model, and
instance transforms in calling segments.

0- New/replace
The existing segment transform is discarded
and replaced by the combined effect of the
specified components.

1 - Additive
The combined effect of the specified com­
ponents is added to the effect of the existing
segment transform, in the order (1) existing
transform, (2) new transform. This option is
most useful for incremental updates to
transforms.

2 - Preemptive
The combined effect of the specified com­
ponents is added to the effect of the existing
segment transform, in the order (1) new
transform, (2) existing transform.

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

157

Windows Presentation Manager Reference

GPIERR_INVALID_SEG_ID (NAME}
GPIERR_SEG_UNKNOWN
GPIERR_INVALID_TRANSFORM_TYPE
GPIERR_INVALID_TRANSFORM_PARAMETER

GpiSetSegmen tTransformMatrix

158

BOOL GpiSetSegmentTransformMatrix (hgpi, name, n,
array, type)

RPS hgpi;
LONG name;
LONG n;
LONG array[];
LONG type;

Sets the two-dimensional segment transform which is to apply to
all of the primitives in the specified segment.

This performs the same function as GpiSetSegmentTransform,
but specifies the transform as a matrix rather than scale, shear,
rotation and displacement components.

The matrix is used to update the segment transformation,
depending upon the value of type.

The transform is specified as a one-dimensional array of n ele­
ments, being the first n elements of a 3-row by 3-column matrix
ordered by rows. The order of the elements is as follows:-

Matrix

a b c
d e f
0 0 l

Array

(a,b,c,d,e,f,0,0,1)

The last row, if specified, must be (0,0,1). The transform acts on
the co-ordinates of the primitives in a segment, so that a point
with co-ordinates (x,y) is transformed to the point

(a*X + b*Y + C, d*X + e*y + f)

The initial value of the segment transform is the identity
matrix, as shown below:-

Matrix

l 0 0)
0 1 0)
0 0 1)

Array

(1,0,0,0,1,0,0,0,l)

If scaling values greater than unity are given, care must be taken
that the combined effect of this and any other relevant
transforms do not exceed fixed-point implementation limits. See
the section, "Transform Range and Precision".

Segment transformations do not apply to primitives outside seg­
ments.

Parameters:

hgpi

name

n

array[n]

type

Returns:

0 Error
1 OK

Graphics Programming Interface

The handle for the GPI presentation space.

The name of the segment. It must be > 0.

The number of elements supplied in array. If n is less
than 9, the elements omitted default to the
corresf.onding elements of the identity matrix (see
above . Specifying n = 0 means that the identity
matrix is used. Specifying 6 elements means that the
last row is assumed to be (0,0,1).

The elements of the transformation matrix, in row
order.

The first, second, fourth, and fifth elements (a, b, d
and e in the example above) are specified with an
assumed binary point between the second and third
bytes. Thus a value of 1.0 is represented as 65536.
Other elements are normal signed integers.

The seventh, eight, and ninth elements, if specified,
must be 0, 0, and 1.

Specifies how the specified transform should be com­
bined with/replace the existing segment transform.
The new segment transform is computed, and the
result stored back in the segment, replacing the exist­
ing value. The stored segment transform is always
additive with respect to any segment, model, and
instance transforms in calling segments.

0 - New /replace
The existing segment transform is discarded
and replaced by the combined effect of the
specified components.

1 - Additive
The combined effect of the specified com­
ponents is added to the effect of the existing
segment transform, in the order (1) existing
transform, (2) new transform. This option is
most useful for incremental updates to
transforms.

2 - Preemptive
The combined effect of the specified com­
ponents is added to the effect of the existing
segment transform, in the order (1) new
transform, (2) existing transform.

159

Windows Presentation Manager Reference

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN
GPIERR_INVALID_TRANSFORM_TYPE
GPIERR_INVALID_TRANSFORM_PARAMETER

GpiQuerySegmentTransformMatrix

BOOL GpiQuerySegmentTransformMatrix (hgpi, name, n, array)
RPS hgpi;
LONG name;
LONG n;
LONG array[];

Returns the segment transform of the specified segment. See
GpiSetSegmentTransformMatrix.

Parameters:

hgpi

name

n

The handle for the GPI presentation space.

The name of the segment. It must be > 0.

The number of elements supplied in array. It must be
iu. the range 0 through 9.

array[n] The array into which the elements of the segment
transform matrix will be returned.

Returns:

0 Error
1 OK

The first, second, fourth, and fifth elements will be
returned with an assumed binary point between the
second and third bytes. Thus a value of 1.0 is
represented as 65536. Other elements are normal
signed integers.

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_ARRAY_COUNT
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN

GpiSetModelTransform

160

BOOL GpiSetModelTransform (hgpi, sx, sy, hx, hy,
rx, ry, dx, dy, type)

HPS hgpi;
LONG sx;
LONG sy;
LONG hx;
LONG hy;
LONG rx;

Graphics Programming Interface

LONG ry;
LONG dx;
LONG dy;
LONG type;

Sets the two-dimensional model transform which is to apply to
subsequent primitives in this segment.

The parameters specified are effectively combined into a single
transformation matrix in the order scale, shear, rotation, dis­
placement. This matrix is then used to update the previous
current model transformation, depending upon the value of type.

If scaling values greater than unity are given, care must be taken
that the combined effect of this and any other relevant
transforms do not exceed fixed-point implementation limits. See
the section, "Transform Range and Precision".

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The default model transform is the unity transform, with zero
translation.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

hgpi

sx,sy

hx,hy

The handle for the GPI presentation space.

A scale transformation in terms of an x-axis scaling (
sx) and a y-axis scaling (sy). The segment origin is
used as a reference point; the axes that are used to
scale are parallel to the x and y axes, and pass through
the segment origin. A scale factor of between 0 and 1
shrinks primitives; a scale factor greater than 1
stretches primitives. A negative scale factor reflects
primitives about the other axis.

The values are each represented as signed 32-bit
values, with the low-order 16 bits taken to be to the
right of the binary point. Specifying scale factors of 1
and 1 (actually, in this representation, 65536 and
65536) does not perform any scaling.

A shear transformation in terms of the displacements
which a point on the y-axis makes after shearing. The
axes used for shearing are parallel to the x and y axes,
but pass through the current segment origin. Note
that primitives below the x axis are sheared in the
opposite direction from those above the x axis. Points
on the x axis itself are not moved. hx = a and hy = b
produce an identical effect to hx = -a and hy = -b.

161

Windows Presentation Manager Reference

162

Specifying hx = 0 and hy = 1 does not perform any
shearing. Specifying hy = 0 is invalid, because it would
produce an infinite shear.

rx,ry A rotation transformation in terms of the displace­
ments which a point on the x-axis makes after rotat­
ing. The axes used for rotating are parallel to the x
a~d y axes, but pass through the current segment ori­
gm.

dx,dy

type

Returns:

0 Error
1 OK

Specifying rx = 1 and ry = 0 does not perform any
rotation.

Because two zero values would be ambiguous, specify­
ing rx = 0 and ry = 0 is taken as equivalent to rx = 1
and ry = 0 (no rotation).

Specify a displacement of dx parallel to the x axis, and
dy parallel to the y axis. This transformation does not
use the segment origin.

Specifying dx = 0 and dy = 0 does not perform any
translation.

Specifies how the specified transformation should be
used to modify the existing current model transforma­
tion (the existing transformation is the concatenation,
in the current call context, of the instance, segment
and model transformations, from the root segment
downwards):-

0 - New/ replace
The previous model transform is discarded
and replaced by the combined effect of the
specified components.

1 - Additive
The combined effect of the specified com­
ponents is added to the effect of the existing
model transform, in the order (1) existing
transform, (2) new transform. This option is
most useful for incremental updates to
transforms.

2 - Preemptive
The combined effect of the specified com­
ponents is added to the effect of the existing
model transform, in the order (1) new
transform, (2) existing transform.

Graphics Programming Interface

Principal errors:

GPIERR_INVALID_TRANSFORM_TYPE
GPIERR_INVALID_TRANSFORM_PARAMETER

GpiCallSegment

SHORT GpiCallSegment (hgpi, name, sx, sy, hx, hy,
rx, ry, dx, dy, type)

HPS hgpi;
LONG name;
LONG sx;
LONG sy;
LONG hx;
LONG hy;
LONG rx;
LONG ry;
LONG dx;
LONG dy;
LONG type;

Calls the specified segment.

The transformation specified by the parameters is set before cal­
ling the segment, to allow its scale, shear, rotation, and position
to be specified. This transform only applies to the called seg­
ment, and is reset on return, to the transform in operation
before the call was made. If the type parameter specifies the
additive or preemptive option, the transform is combined with
the previous model transform (if any) in force at the time.

The elements of the transformation are processed in the order
scale, shear, rotation, and displacement.

If scaling values greater than unity are given, care must be taken
that the combined effect of this and any other relevant
transforms do not exceed fixed-point implementation limits. See
the section, "Transform Range and Precision".

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

Parameters:

hgpi

name

sx,sy

The handle for the GPI presentation space.

The name of the segment that is to be called. It must
be> 0.

A scale transformation in terms of an x-axis scaling (
sx) and a y-axis sc.aling (sy). The segment origin is
used as a reference point; the axes that are used to
scale are parallel to' the x and y axes, and pass through
the segment origin, A scale factor of between 0 and 1
shrinks primitives; a scale factor greater than 1

163

Windows Presentation Manager Reference

hx,hy

rx,ry

dx,dy

type

164

stretches primitives. A negative scale factor reflects
primitives about the other axis.

The values are each represented as signed 32-bit
values, with the low-order 16 bits taken to be to the
right of the binary point. Specifying scale factors of 1
and 1 (actually, in this representation, 65536 and
65536) does not perform any scaling.

A shear transformation in terms of the displacements
which a point on the y-axis makes after shearing. The
axes used for shearing are parallel to the x and y axes,
but pass through the current segment origin. Note
that primitives below the x axis are sheared in the
opposite direction from those above the x axis. Points
on the x axis itself are not moved. hx = a and hy = b
produce an identical effect to hx = -a and hy = -b.

Specifying hx = 0 and hy = 1 does not perform any
shearing. Specifying hy = 0 is invalid, because it would
produce an infinite shear.

A rotation transformation in terms of the displace­
ments which a point on the x-axis makes after rotat­
ing. The axes used for rotating are parallel to the x
a~d y axes, but pass through the current segment ori­
gm.

Specifying rx = 1 and ry = 0 does not perform any
rotation.

Because two zero values would be ambiguous, specify­
ing rx = 0 and ry = 0 is taken as equivalent to rx = 1
and ry = 0 (no rotation).

Specify a displacement of dx parallel to the x axis, and
dy parallel to the y axis. This transformation does not
use the segment origin.

Specifying dx = 0 and dy = 0 does not perform any
translation.

Specifies how the specified transformation should be
used to modify the existing current model transforma­
tion (the existing transformation is the concatenation,
in the current call context, of the instance, segment
and model transformations, from the root segment
downwards):-

0- New/replace
Any existing model transform is discarded
and replaced by the combined effect of the
specified components.

Graphics Programming Interface

1 - Additive
The combined effect of the specified com­
ponents is added to the effect of the existing
model transform, in the order (1) existing
transform, (2) new transform.

2 - Preemptive
The combined effect of the specified com­
ponents is added to the effect of the existing
model transform, in the order (1) new
transform, (2) existing transform.

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN
GPIERR_SEG_CALL_PRODUCES_RECURSIVE_LOOP
GPIERR_CALLED_SEG_NOT_FOUND
GPIERR_CALLED_SEG_IS_CURRENT
GPIERR_INVALID_TRANSFORM_TYPE
GPIERR_INVALID_TRANSFORM_PARAMETER

7 .1.15.6 Viewing Transforms

GpiSet Window

BOOL GpiSetWindow (hgpi, xl, xr, yb, yt)
HPS hgpi;
LONG xl;
LONG xr;
LONG yb;
LONG yt;

This sets the window, in Model Space, which corresponds to the
viewport (see GpiSetViewport) in the Page. This defines the
viewing transform.

This function is only valid outside segments. It applies, until
changed, to all subsequently opened segments (it has no effect on
primitives outside segments). All graphics primitives in a seg­
ment must have the same window. Once set for a segment, it
can never be altered.

If the mapping of the window to the viewport (including the
effect of any default viewing transform), and subsequently
through the device transform, is such that one x-axis unit does
not map to the same physical distance as one y-axis unit, the

165

Windows Presentation Manager Reference

picture will appear 'squashed', for example circles at the API
will not appear to be circular.

Parameters:

hgpi

xl,xr

yb,yt

Returns:

0 Error
1 OK

The handle of the Gpi presentation space.

The left and right boundaries of the window.

The bottom and top boundaries of the window.

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_GRAPHICS_SEG_IS_CURRENT (I.E. OPEN)
GPIERR_INVALID_WINDOW_SPECIFICATION

GpiSetUniform Window

166

BOOL GpiSetUniformWindow (hgpi, xl, xr, yb, yt)
HPS hgpi;
LONG xl;
LONG xr;
LONG yb;
LONG yt;

This sets the window, in Model Space, which corresponds to the
viewport (see GpiSetViewport) in the Page. This defines the
viewing transform.

The window is set such that either the x axis spans the entire
width of the viewport and they axis is within the height of the
viewport, or that they axis spans the entire height of the
viewport and the x axis is within the width of the viewport.
Thus, unless anisotropy has been deliberately built-in to the dev­
ice transform (as, for example, with Page units of pels, on a dev­
ice with non-square pels), one unit along x in Model Space will
represent the same physical distance as one unit along y. If
either axis is shorter than the width or height of the viewport,
that axis is centred within the viewport.

GpiQueryWindow can subsequently be used to find the actual
window bounds set as a result of this call.

This function is only valid outside segments. It applies, until
changed, to all subsequently opened segments (it has no effect on
primitives outside segments). All graphics primitives in a seg­
ment must have the same window. Once set for a segment, it
can never be altered.

Parameters:

Graphics Programming Interface

hgpi

xl,xr

yb,yt

Returns:

0 Error
1 OK

The handle of the Gpi presentation space.

The left and right boundaries of the window.

The bottom and top bound,aries of the window.

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_GRAPHICS_SEG_IS_CURRENT (I.E. OPEN)
GPIERR_INVALID_WINDOW_SPECIFICATION

GpiQueryWindow

BOOL GpiQueryWindow (hgpi, xl, xr, yb, yt)
HPS hgpi;
LONG *Xl;
LONG *Xr;
LONG *yb;
LONG *yt;

This returns the current window definition.

Parameters:

hgpi The handle of the Gpi presentation space.

*xl,*xr Variables which are set to the x co-ordinates of the left
and right boundaries of the window.

*Yb,*yt Variables which are set to they co-ordinates of the
bottom and top boundaries of the window.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

GpiSet Viewport

BOOL GpiSetViewport (hgpi, xl, xr, yb, yt)
HPS hgpi;
LONG xl;
LONG xr;
LONG yb;
LONG yt;

This sets the viewport, in the Page, to which the window (see
GpiSetWindow) will be mapped. This defines the viewing
transform. Gp1QueryPage can be issued to determine the extent
of the Page.

167

Windows Presentation Manager Reference

A viewport is a subregion of the page. Viewports can be used to
position the parts of a composite picture. The viewport boun­
daries are parallel to those of the page, space, and must be
entirely within the page.

This function is only valid outside segments. It applies, until
changed, to all subsequently opened segments (it has no effect on
primitives outside segments). All graphics primitives in a seg­
ment must have the same v1ewport. Once set for a segment, it
can never be altered.

Parameters:

hgpi

xl,xr

yb,yt

Returns:

0 Error
1 OK

The handle of the Gpi presentation space.

The left and right boundaries of the viewport, in page
units.

The bottom and top boundaries of the viewport, in
page units.

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_GRAPHICS_SEG_IS_CURRENT (I.E. OPEN)
GPIERR_UPPER_BOUNDARY_NOT_GREATER_THAN_LOWER
GPIERR_RIGHT_BOUNDARY_NOT_GREATER_THAN_LEFT

GpiQueryViewport

168

BOOL GpiQueryViewport (hgpi, xl, xr, yb, yt)
HPS hgpi;
LONG *Xl;
LONG *Xr;
LONG *Yb;
LONG *Yt;

This returns the current viewport definition.

Parameters:

hgpi

*Xl,*Xr

Returns:

0 Error
1 OK

The handle of the Gpi presentation space.

Variables which are set to the x co-ordinates of the left
and right boundaries of the viewport.

Variables which are set to the y co-ordinates of the
bottom and top boundaries of the viewport.

Graphics Programming Interface

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

GpiSetDef a ult View

BOOL GpiSetDefaultView (hgpi, sx, sy, hx, hy,
rx, ry, dx, dy, type)

HPS hgpi;
LONG sx;
LONG sy;
LONG hx;
LONG hy;
LONG rx;
LONG ry;
LONG dx;
LONG dy;
LONG type;

Sets the two-dimensional default viewing transform which is to
apply to the whole picture.

The parameters specified are effectively combined into a single
transformation matrix in the order scale, shear, rotation, dis­
placement. This matrix is then used to update any previous
default viewing transformation, depending upon the value of
type.

If scaling values greater than unity are given, care must be taken
that the combined effect of this and any other relevant
transforms do not exceed fixed-point implementation limits. See
the section, "Transform Range and Precision".

Parameters:

hgpi

sx,sy

hx,hy

The handle for the GPI presentation space.

A scale transformation in terms of an x-axis scaling (
sx) and a y-axis scaling (sy). The origin of the scale is
the origin of the page. If another scale origin is
required, appropriate translations must be applied
before and after. A scale factor of between 0 and 1
shrinks primitives; a scale factor greater than 1
stretches primitives. A negative scale factor reflects
primitives about the other axis.

The values are each represented as signed 32-bit
values, with the low-order 16 bits taken to be to the
right of the binary point. Specifying scale factors of 1
and 1 (actually, in this representation, 65536 and
65536) does not perform any scaling.

A shear transformation in terms of the displacements
which a point on the y-axis makes after shearing. The
axes used for shearing are parallel to the x and y axes,
and pass through the page origin. Note that

169

Windows Presentation Manager Reference

170

primitives below the x axis are sheared in the opposite
direction from those above the x axis. Points on the x
axis itself are not moved. hx = a and hy = b produce
an identical effect to hx = -a and hy = -b.

Specifying hx = 0 and hy = 1 does not perform any
shearing. Specifying hy = 0 is invalid, because it would
produce an infinite shear.

rx,ry A rotation transformation in terms of the displace­
ments which a point on the x-axis makes after rotat­
ing. The axes used for rotating are parallel to the x
and y axes, and pass through the page origin. If
another rotation origin is required, appropriate trans­
lations must be applied before and after.

dx,dy

type

Returns:

0 Error

Specifying rx = 1 and ry = 0 does not perform any
rotation.

Because two zero values would be ambiguous, specify­
ing rx = 0 and ry = 0 is taken as equivalent to rx = 1
and ry = 0 (no rotation).

Specify a displacement of dx parallel to the x axis, and
dy parallel to the y axis, in page units.

Specifying dx = 0 and dy = 0 does not perform any
translation.

Specifies how the specified transformation should be
used to modify the existing default viewing transfor­
mation, as follows:-

0 - New/replace
The previous default viewing transform is
discarded and replaced by the combined
effect of the specified components.

1 - Additive
The combined effect of the specified com­
ponents is added to the effect of the existing
default viewing transform, in the order (1)
existing transform, (2) new transform. This
option is most useful tor incremental
updates to transforms.

2 - Preemptive
The combined effect of the specified com­
ponents is added to the effect of the existing
default viewing transform, in the order (1)
new transform, (2) existing transform.

Graphics Programming Interface

1 OK

Principal errors:

GPIERR_INVALID_TRANSFORM_TYPE
GPIERR_INVALID_TRANSFORM_PARAMETER

7.1.15.7 Device Transform

GpiSetPage Window

BOOL GpiSetPageWindow (hgpi, x, y, w, h}
HPS hgpi;
LONG x;
LONG y;
LONG w;
LONG h;

Sets the origin and size of the page window within the page.

The page window defines a window within the page. The corners
of the page window are mapped to the corners of the page
viewport, so the two together define the device transform.

It is not an error for any part of the page window to lie outside
the page.

By default, the page window is coincident with the page.

Parameters:

hgpi

x,y

w,h

Returns:

0 Error
1 OK

The handle for the GPI presentation space.

The origin of the page window in page units. If either
is specified as ??, the corresponding existing value is
unchanged.

The width and height of the page window in page
units. If either is specified as ??, the corresponding
existing value is unchanged. If either is specified as 0,
the corresponding page dimension is used.

Principal errors:

GPIERR_WINDOW_DEPTH_IS_INVALID
GPIERR_WINDOW~WIDTH_IS_INVALID
GPIERR_WINDOW_ROW_IS_INVALID
GPIERR_WINDOW_COLUMN_IS_INVALID

171

Windows Presentation Ma.na.ger Reference

GpiQueryPage Window

BOOL GpiQueryPageWindow (hgpi, x, y, w, h)
HPS hgpi;
LONG *X;
LONG *Y:
LONG *W;
LONG *h;

This returns the origin and size of the page window.

Parameters:

hgpi

*X,*Y

Returns:

0 Error
1 OK

The handle for the GPI presentation space.

Variables in which the origin of the page window are
returned.

Variables in which the width and height of the page
window are returned.

Principal errors:

GpiSetPage Viewport

172

BOOL GpiSetPageViewport (hdc, x, y, w, h)
HPS hgpi;
LONG x;
LONG y;
LONG w;
LONG h;

Sets the origin and size of the page viewport within device space.

The page window (see GpiSetPageWindow) maps to the page
viewport; together they define the device transform.

When a presentation space is associated with a Device Context,
a default page viewport is set up, as described in the section,
"Defaults and Examples".

Parameters:

hdc

x,y

w,h

The handle for the Device Context

The origin of the page viewport in device units. If
either is specified as n, the corresponding existing
value is unchanged.

The width and height of the page viewport in device
units. If either is specified as ??, the corresponding
existing value is unchanged. If either is specified as 0,

Graphics Programming Interface

Returns:

0 Error
1 OK

the corresponding default dimension is used.

Principal errors:

GPIERR_UPPER_BOUNDARY_NOT GREATER_THAN_LOWER
GPIERR_RIGHT_BOUNDARY_NOT_GREATER_THAN_LEFT

GpiQuery Page Viewport

BOOL GpiQueryPageViewport (hdc, x, y, w, h)
HPS hgpi;
LONG *X;
LONG *Y:
LONG *W;
LONG *h;

This returns the origin and size of the page viewport.

Parameters:

hdc The handle for the Device Context

*X,*Y Variables in which the origin of the page viewport are
returned.

Returns:

0 Error
1 OK

Variables in which the width and height of the page
viewport are returned.

Principal errors:

7 .1.15.8 Clipping

GpiBeginClipArea

BOOL GpiBeginClipArea (hgpi, control, mode)
HPS hgpi;
ULONG control;
LONG mode;

This introduces the definition of a clip area, which is terminated
by a GpiEndClipArea function. The primitives between these
cause no drawing to occur, but instead define a clip area. At
GpiEndClipArea, this area is combined, in the manner specified
by mode, with the existing clip area, to form the new clip area,

173

Windows Presentation Manager Reference

174

which is used for subsequent clipping.

It is valid for a normal area (GpiBeginArea .. GpiEndArea) to
occur within a clip area definition. If this occurs, the GpiBe­
ginArea and GpiEndArea are effectively ignored, except that,
within the area bracket, closure lines are generated as usual.

The co-ordinates are specified in world co-ordinates. A segment
viewing limits (GpiSet ViewingLimits) function causes a rec­
tangular clip area to be set up.

At the start of each root segment, the clip area reverts to the
default (infinite).

A null clip area (as, for example, if there are no primitives
between the GpiBeginClipArea and the GpiEndClipArea), causes
all subsequent drawing to be clipped.

The following are the only Gpi functions allowed to the same
presentation space, within a GpiBeginClipArea - GpiEndCli­
pArea bracket:-

GpiBeginE lement (containing only valid function(s))
GpiElement (containing a valid function)
GpiEndElement
GpiSetModelTransform
GpiCallSegment
GpiSetAttrMode
GpiQueryAttrMode
GpiPop (Providing only a valid function is popped)
GpiSetCurrentPosition
GpiQueryCurrentPosition
GpiMove
GpiLine
GpiPolyLine
GpiBox
GpiSetArcParams
GpiQueryArcParams
GpiArc
GpiFullArc
GpiPartialArc
GpiPolySpline
GpiPolyFillet
GpiPolyFilletSharp
GpiSetCharSet, GpiSetCharBox
GpiSetCharAngle, GpiSetCharShear
GpiSetCharDirection, GpiSetCharMode
GpiSetCharSpacing, GpiSetCharExtra, GpiSetCharBreakExtra
GpiSetTextAlignment
GpiCharString, GpiCharStringAt
GpiCharStringPos, GpiCharStringPosAt

GpiCharString(Pos)(At) functions are only valid for characters
drawn with vector symbol sets or outline fonts.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be

Graphics Programming Interface

constructed and placed into the current segment.

Parameters:-

hgpi The handle for the GPI presentation space

control A 4-byte parameter containing flags:-

mode

Returns:

0 Error
1 OK

GPICA_ WINDING
(bit 1) - Set to '1 'B if the clip area is to be
constructed in winding mode. Otherwise it is
constructed in alternate mode.

Defines how a new clip area is to be formed from the
combination of the old clip area and the one to be
defined:-

GPICA_UNION (1) - Union of old and
specified areas

GPICA_REPLACE (2) - Specified area replaces
old area

GPICA_SYMDIFF (4) - Symmetrical difference
of specified and old areas

GPICA_INTERSECTION (6) - Intersection of old and
specified areas

GPICA_DIFF (7) - Old area AND
NOT(specified area)

GPICA_INFINITE (17) - New clip area is infinite,
regardless of specified area

Principal errors:

GPIERR_INVALID_CLIP_,AREA_CONTROL
GPIERR_INVALID_MODE
GPIERR_ATTEMPT_TO_START_SECOND_CLIP_,AREA

GpiEndClipArea

BOOL GpiEndClipArea (hgpi)
HPS hgpi;

This terminates the definition of a clip area, introduced by a
previous GpiBeginClipArea function.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

Parameters:-

175

Windows Presentation Manager Reference

hgpi The handle for the GPI presentation space

Returns:

0 Error
1 OK

Principal errors:

GPIERR_END_CLIP_AREA_DEFN_IGNORED

GpiSetGraphicsField

BOOL GpiSetGraphicsField (hgpi, x, y, w, h)
HPS hgpi;
LONG x;
LONG y;
LONG w;
LONG h;

This sets the mandatory clipping limits on the Page.

By default, the graphics field boundaries are coincident with the
page boundaries. This function allows the mandatory clipping
limits to be set to an area less than that of the whole page.

The boundaries are inclusive, ie a point on the boundary is not
clipped.

Parameters:

hgpi The handle for the GPI presentation space.

x,y The origin of the graphics field in page space.

w,h The width and height of the graphics field in page
units.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_GRAPHICS_FIELD_ORIGIN
GPIERR_INVALID_GRAPHICS_WIDTH_OR_DEPTH

GpiQueryGraphicsField

176

BOOL GpiQueryGraphicsField (hgpi, x, y, w, h)
HPS hgpi;
LONG *X;
LONG *Y;
LONG *W;
LONG *h;

This returns the dimensions of the graphics field.

Parameters:

Graphics Programming Interface

hgpi

*X,*Y

The handle for the GPI presentation space.

Variables in which the origin of the graphics field in
page space are returned.

Variables in which the width and height of the graph­
ics field in page units are returned.

Returns:

0 Error
1 OK

Principal errors:

GpiSet ViewingLimits

BOOL GpiSetViewingLimits (hgpi, xl, xr, yb, yt)
HPS hgpi;
LONG xl;
LONG xr;
LONG yb;
LONG yt;

This sets the viewing limits of the current segment in Model
Space.

The viewing limits, which are not subject to the current model
or segment transform, define the boundaries to which subse­
quent primitives are to be clipped as they are drawn.

If this function is issued in a called segment, it overrides the
values in force. However, the values are reset to defaults (no
limit) at the start of the next root segment.

By specifying each of the four co-ordinates as zero, the viewing
limits can be reset to their default values (no limit).

The boundaries are inclusive, ie a point on the boundary is not
clipped.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

Attribute Mode (see GpiAttribMode) has no effect on this func­
tion.

The default view limits are converted under the current
Window-Viewport transform to a clipping rectangle in the page.
This will remain in force until changed by a subsequent GpiSet­
ViewingLimits function. Clipping actually takes place to the
intersection of the viewing limits, the page window, the graphics
field, and the client area on the device.

177

Windows Presentation Manager Reference

If not explicitly set, the default view limits cover all space.

Parameters:

hgpi

xl,xr

yb,yt

Returns:

0 Error
1 OK

The handle for the GPI presentation space.

The x coordinates of the left and right limits.

The y coordinates of the bottom and top limits

Principal errors:

GPIERR_INVALID_SEG_VIEWING_LIMIT_SPECIFICATION
GPIERR_UPPER_BOUNDARY_NOT_GREATER_THAN_LOWER
GPIERR_RIGHI'_BOUNDAR.Y_NOT_GREATER_THAN_LEFT

GpiQueryViewingLimits

178

BOOL GpiQueryViewingLimits (hgpi, xl, xr, yb, yt)
HPS hgpi;
LONG *Xl;
LONG *Xr;
LONG *yb;
LONG *yt;

Returns the current viewing limits (see GpiSetViewingLimits).

This function is only valid for drawing modes of draw or draw­
and-store.

Parameters:-

hgpi The handle for the GPI presentation space.

*Xl,*xr Variables in which the x co-ordinates of the left and
right limits are returned.

*Yb,*yt Variables in which they co-ordinates of the bottom
and top limits are returned.

Returns:

0 Error
1 OK

Principal errors:

Graphics Programming Interface

7 .1.15.9 Conversion Function

GpiConvert

BOOL GpiConvert (hgpi, src, targ, n, points)
RPS hgpi;
LONG src;
LONG targ;
LONG n;
GPOINT points[];

This converts an array of (x,y) co-ordinate pairs from one co­
ordinate space to another.

The array contains xl, yl, x2, y2, ... The co-ordinates are con­
verted in situ.

Parameters:

hgpi The handle for the GPI presentation space.

src,targ Specify the source and target co-ordinate space,
respectively, as follows:-

CVTC_WORLD (1) World co-ordinates
CVTC_MODEL (2) Model space
CVTC_DEFAULTPAGE (3) Page space prior to default

viewing transform
CVTC_PAGE (4) Page space after to default

viewing transform
CVTC_DEVI CE (5) Dev ice space

n The number of co-ordinate pairs in points.

points[] An array of (x,y) co-ordinate pair structures.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_SRC_OR_TARG
GPIERR_INVALID_ARRAY_COUNT

GpiQueryViewportSize

BOOL GpiQueryViewportSize (hgpi, units, n, wh_array)
RPS hgpi;
ULONG units;
LONG n;
LONG wh_array[];

This calculates the sizes of viewports required (in page space), to
correspond to specified window sizes, under the influence of the
current transforms.

179

Windows Presentation Manager Reference

180

For example, if a window of 100 x 100 units of 0.1 mm is going
to be used, and the current page units are 0.01 mm, this will
return (1000,1000).

The array contains wl, hl, w2, h2, ... - pairs of (width,height)
"'."indow sizes. The co-ordinates are converted in situ to viewport
sizes.

Parameters:

hgpi The handle for the GPI presentation space.

units This contains 32 bits (with bit 0 the least significant),
in standard Intel format.

Bits (2-7) have the following meanings:-

PU_ ISOTROPIC (B'OOOOOl ')
Arbitrary units, with the origin at the bot­
tom left.

PU_ PELS {B'OOOOlO')
Pel co-ordinates, with the origin at the bot­
tom left.

PU_ LOWMETRIC {B'OOOOl l ')
Units of 0.1 mm, with the origin at the bot­
tom left.

PU_ HIMETRIC (B'OOOlOO')
Units o~ 0.01 mm, with the origin at the bot­
tom left.

PU-LOENGLISH {B'OOOlOl ')
Units of 0.01 in, with the origin at the bot­
tom left.

PU_ HIENGLISH {B'OOOl 10')
Units of 0.001 in, with the origin at the bot­
tom left.

PU_ TWIPS (B'OOOl 11 ')
Umts of 1/1440 in, with the origin at the
bottom left.

Other values are reserved. Other bits are also reserved
and must be B'O'.

n The number of co-ordinate pairs in wh... a_rray.

wh_arrayrl
Specifies an array of (width, height) co-ordinate pairs.

Returns:

0 Error
1 OK

Graphics Programming Interface

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_UNITS
GPIERR_INVALID_ARRAY_COUNT

7 .1.16 General Attribute Functions

Functions described in this section are general functions for handling
attributes.

7 .1.16.1 Methods for Setting Attributes

Primitive attributes may be set in one of three ways:

1. Individually, as in GpiSetLineType

2. As a 'strip' of all attributes for a particular primitive type, as in
GpiSetAttrs

3. Similar attributes may be set across all primitive types, as in
GpiSetColor {this technique is only available for {foreground and back­
ground) color and mix attributes).

It makes no lasting difference which method is used; the second and third
techniques may be looked upon as a kind of macro facility.

Individual attribute setting functions are described in the section of this
document for the appropriate primitive type. 'Strip' functions are
described in this section.

With color and mix attributes there is a third way of setting the attri­
butes: across all primitive types. Thus GpiSetColor is a macro-like facility
for setting the line color, the area color, the character color, etc. These
functions are described in the section "Color and Mix Functions". There
are no specific functions for setting individual color and mix attributes for
specific primitive types - for example, there is no GpiSetLineColor func­
tion. The 'strip' technique can be used, however, to accomplish this (using
an appropriate mask to indicate that only one attribute is being set).

If the third technique (eg GpiSetColor) is used in push-and-set mode (see
below), each of the individual primitive values is pushed onto the stack. A
single GpiPop function will suffice to recall all of them.

181

Windows Presentation Ma.na.ger Reference

7 .1.16.2 Default and Current Attributes

Each primitive attribute has a default value (not settable by the applica­
tion), to which it is set at certain specific times, as described in the sec­
tion, "Stored and Non-Stored Graphics Output". Also, the default version
of any particular attribute may be requested, for example, by issuing
GpiSetLineType with a parameter of 0. This will cause the default value
of that parameter to be copied to the current value.

7 .1.16.3 Attribute Mode

Current values may either be set, or push-and-set. In the latter case the
previous value is pushed onto a LIFO stack, before setting the attribute to
the specified value. The old value may be reset either explicitly using Gpi­
Pop, or implicitly by reaching the end of the segment in which it was
pushed.

Whether a set or a push-and-set operation is performed is controlled by
the attribute mode (see GpiSetAttrMode).

Micro-PS's do not support push-and-set mode. GpiSetAttrMode is invalid
for a micro-PS.

7 .1.16.4 Save and Restore Attributes

Functions are provided to cause various features of a presentation space,
including the attributes, to be saved and restored. These functions operate
with a stack which is independent of that used when the attribute mode is
push_ an<L set, and also work for a micro-PS as well as a normal PS. See
GpiSavePS and GpiRestorePS in the section, "Control Functions".

7 .1.16.5 Attribute Queries

Functions are provided to return the current values of primitive attri­
butes. If an attribute has been set to its def a ult value, then the value
returned will be the apsropriate default value. For exa.mple, if.the charac­
ter direction attribute for which the default is left-to-right) has never
been changed, the Gpi ueryCharDirection will return 0 (default) rather
then 1 (left-to-right).

Primitive attribute querying functions are invalid if the drawing mode is
store (and also in implcit draw mode).

182

Graphics Programming Interface

7 .1.16.6 Attribute Mode Functions

GpiSetAttrMode

BOOL GpiSetAttrMode (hgpi, mode)
HPS hgpi;
LONG mode;

Sets the API attribute mode which defines whether, when attri­
butes are set, the old value should first be pushed to the segment
call stack. If this is done, the value may be popped from the
stack either explicitly using GpiPop, or implicitly at the end of
the segment. The latter technique may be used, for example, to
ensure that when a called segment terminates, the primitive
attributes are the same as they were when it was called.

This is an API mode. Which mode to use for a particular
GpiSet... function is decided by the attribute mode current at
the time the GpiSet ... function is passed across the APL The
mode may be changed at any time, and will not affect any attri­
bute setting functions which have already been stored in the seg­
ment store.

Attribute mode only applies to attributes passed across the API
in individual GpiSet ... functions (including GpiSetAttrs and
functions such as GpiSetColor). It does not apply to any attri­
bute setting functions passed across in bulk, such as MetPlayMe­
taFile; these already indicate individually whether they should
cause the old value to be pushed.

Parameters:

hgpi

mode

Returns:

0 Error
1 OK

The handle for the GPI presentation space.

This must be a normal PS, not a micro-PS.

The attribute mode, as follows:-

0 Push attributes before setting (default)
1 Do not push attributes before setting

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_ATTR_MODE

GpiQuery At tr Mode

LONG GpiQueryAttrMode (hgpi)
HPS hgpi;

183

Windows Presentation Manager Reference

GpiPop

184

This returns the current setting of the attribute mode (see
GpiSetAttrMode).

Parameters:-

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Current attribute mode (see GpiSetAttrMode.)

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

BOOL GpiPop (hgpi, count)
HPS hgpi;
LONG count;

Pops, from the segment call stack, the most recent attribute or
control that was pushed by the current segment (see GpiSetAt­
trMode).

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

Parameters:

hgpi

count

Returns:

0 Error
1 OK

The handle for the GPI presentation space.

This must be a normal PS, not a micro-PS.

The number of attributes which are to be popped from
the stack. (Note that GpiSetAttrs pushes as many
attributes onto the stack as were indicated at the
time.)

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_PRIMITIVE_STACK_EMPTY
GPIERR_INVALID_ATTR_COUNT

same as 1
but any that are

Graphics Programming Interface

7.1.16.7 Attribute Strip Setting Functions

GpiSetAttrs

BOOL GpiSetAttrs (hgpi, prim_type, attrs_mask,
defs_mask, attrs)

HPS hgpi;
LONG prim_type;
ULONG attrs_mask;
ULONG defs_mask;
LPBUF attrs;

Sets attributes for the specified primitive type.

Any attribute (for the specified primitive type) for which the
appropriate flag is set in the attrs_ mask has its value updated:-

• If the corresponding flag in defs_ mask is also set, the attri­
bute is set to default.

• If the corresponding flag in defs_ mask is not set, then the
attribute is set to the value specified in the attrs structure.

Any attribute for which the appropriate flag in attrs_ mask is not
set is unchanged, regardless of the setting of the corresponding
flag in defs_ mask.

The defs_ mask and attrs_ mask parameters each consist of 32
flags. Each attribute of the primitive type in question is
represented by one flag. The flag numbering, which is the same
in both fields, is described below.

The data in the attrs buffer consists of a structure of attribute
data. The layout of the structure is fixed (see below) for each
primitive type. Only data for attributes for which the flag is set
in attrs_ mask (but not in defs_ mask) will be inspected; any
other data will be ignored (indeed, the buffer -need be no longer
than is necessary to contain the data for the highest offset attri­
bute referenced).

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, order(s) will be con­
structed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the functions (one for each attribute, in
the order in which the attributes are specified) are generated.

Parameters:

hgpi The handle for the GPI presentation space.

prim_ type
The primitive type for which attributes are to be set,
as follows:-

185

Windows Presentation Manager Reference

186

BATI'R_LINE 1 - Line and arc primitives
BATI'R_C:HAR 2 - Character primitives
BATI'R_MARKER 3 - Marker primitives
BATI'R_FATI'ERN 4 - Area primitives (pattern)
BATI'R_IMAGE 5 - Image primitives

attrs_mask
A 4-byte parameter containing 32 flags (see below for
numbering). Each flag which is set indicates that
either the corresponding flag in defs_ mask is set, or
that the attrs buffer contains data for the correspond­
ing attribute. If all of the flags in attrs_ mask are zero,
the attrs buffer address is not used.

defs_mask
A 4-byte parameter containing 32 flags (see below for
numbering). Each fl.a& which is set (and for which
attrs_ mask is also set) causes the corresponding attri­
bute to be set to its default value.

attrs A buffer containing attribute values for each attribute
for which the attrs_ mask flag was set, at the correct
offset as specified below for the particular primitive
type.

• Line attributes :-

attrs: -

struct LINEBUNDLE {
LONG color;
LONG back_color;
UINT mix_mode;
UINT back_mix_mode;
ULONG width;
LONG geom_ width;
UINT type;
UINT end;
UINT join;
UINT set;
UINT symbol;

};

attrs_ mask anddefs- mask bi ts : -

LBB_COLOR
LBB_BACK_COLOR
LBB_MIX_MODE
LBB_BACK_MIX_MODE
LBB_TYPE
LBB_WIDTH
LBB_GEOM_WIDTH
LBB_END
LBB_JOIN
LBB_PATTERN_SET
LBB_PATI'ERN_SYMBOL

OxOOOOOOOlL
O:X:00000002L
Ox00000004L
Ox00000008L
OxOOOOOOlOL
Ox00000020L
Ox00000040L
Ox00000080L
OxOOOOOlOOL
Ox00000200L
Ox00000400L

Graphics Programming Interface

• Character attributes :-

attrs: -

struct CHARBUNDLE{
LONG color;
LONG back_color;
UINT mix_mode;
UINT back_mix_mode;
UINT set;
UINT precision;
LONG cell[2];
LONG angle_xy[2];
LONG shear_xy[2];
LONG text_align[2];
LONG spacing[2];
UINT direction;
UINT break_extral;
LONG break_extra2;
LONG break_extra3;
LONG extra[2];

} CHARBUNDLE; /* cbnd */

attrs_ mask andde/s- mask bi ts: -

CBB_COLOR
CBB_BACK_COLOR
CBB_MIX_MODE
CBB_BACK_MIX_MODE
CBB_SET
CBB_MODE
CBB_BOX
CBB__ANGLE_XY
CBB_SHEAR_XY
CBB_ALIGNMENT
CBB_SPACING
CBB_DIRECTION
CBB_BREAK_EXTRA
CBB_EXTRA

OxOOOOOOOlL
Ox00000002L
Ox00000004L
Ox00000008L
OxOOOOOOlOL
Ox00000020L
Ox00000040L
Ox00000080L
OxOOOOOlOOL
Ox00000200L
Ox00000400L
Ox00000800L
OxOOOOlOOOL
Ox00002000L

Text alignment contains two 2-byte values.

Character break extra is a 2-byte code point, fol­
lowed by 4-byte horizontal and vertical values.

• Marker attributes :-

attrs: -

struct MARKERBUNDLE{
LONG color;
LONG back_color;
UINT mix_mode;
UINT back_mix_mode;
UINT set;
UINT symbol;
LONG cell [2];

};

187

Windows Presentation Manager Reference

188

Returns:

0 Error
1 OK

attrs_ mask anddefs_ mask bi ts: -

MBB_COLOR
MBB_BACK_COLOR
MBB_MIX_MODE
MBB_BACK_MIX_MODE
MBB_SET
MBB_SYMBOL
MBB_BOX

OxOOOOOOOlL
Ox00000002L
Ox00000004L
Ox00000008L
OxOOOOOOlOL
Ox00000020L
Ox00000040L

• Pattern attributes (note that pattern reference
point is not settable in this way):-

attrs: -

struct PATTERNBUNDLE{
LONG color;
LONG back_color;
UINT mix_mode;
UINT back_mix_mode;
UINT set;
UINT symbol;

};

attrs_ mask anddefs- mask bi ts: -

PBB_COLOR
PBB_BACK_COLOR
PBB_MIX_MODE
PBB_BACK_MIX_MODE
PBB_SET
PBB_SYMBOL

• Image attributes :­

attrs: -

struct IMAGEBUNDLE{
LONG color;
LONG back_color;
UINT mix_mode;

OxOOOOOOOlL
Ox00000002L
Ox00000004L
Ox00000008L
OxOOOOOOlOL
Ox00000020L

UINT back_mix_mode;
}:

attrs_ mask anddefs_ mask bi ts: -

IBB_COLOR
IBB_BACK_COLOR
IBB_MIX_MODE
IBB_BACK_MIX_MODE

OxOOOOOOOlL
Ox00000002L
Ox00000004L
Ox00000008L

Principal errors:

GPIERR_INVALID_FOREGROUND_BACKGROUND_MIX_COMBINATION
GPIERR_INVALID_PRIMITIVE_TYPE

Graphics Programming Interface

GPIERR_ATI'RS_MASK_SPECIFIES_UNSUPPORTED_ATI'RS
GPIERR_DEFS_MASK_SPECIFIES_UNSUPPORTED_ATI'RS
GPIERR_INVALID_FUNCTION_IN_VECTOR_SYMBOL_SET
GPIERR_INVALID_FUNCTION_IN_IMAGE_DEFN
GPIERR_INVALID_FUNCTION_IN_ROOT_SEG_pROLOG
GPIERR_INVALID_COLOR_ATI'R
GPIERR_INVALID_BACKGND_COLOR_ATI'R
GPIERR_INVALID_MIX_ATI'R
GPIERR_INVALID_BACKGROUND_MIX_ATI'R
GPIERR_INVALID_LINE_TYPE_ATI'R
GPIERR_INVALID_LINE_WIDTH_ATI'R
GPIERR_INVALID_GEOM_LINE_WIDTII_ATI'R
GPIERR_INVALID_LINE_END_ATI'R
GPIERR_INVALID_LINE_JOIN_ATI'R
GPIERR_INVALID_LINE_PATTERN_SET_ATI'R
GPIERR_INVALID_LINE_PATTERN_ATI'R
GPIERR_INVALID_PATTERN_SET_ATI'R
GPIERR_INVALID_PATTERN_ATI'R
GPIERR_INVALID_CHAR_SET_ATI'R
GPIERR_INVALID_CHAR_BOX_ATI'R
GPIERR_INVALID_CHAR_ANGLE_ATI'R
GPIERR_INVALID_CHAR_SHEAR_ATTR
GPIERR_INVALID_CHAR_DIRECTION_ATI'R
GPIERR_INVALID_CHAR_MODE_ATI'R
GPIERR_INVALID_CHAR_SPACING_ATI'R
GPIERR_INVALID_CHAR_EXTRA_ATI'R
GPIERR_INVALID_CHAR_BREAK_EXTRA_ATI'R
GPIERR_INVALID_TEXT_ALIGN_ATI'R
GPIERR_INVALID_MARKER_SET_ATI'R
GPIERR_INVALID_MARKER_ATI'R
GPIERR_INVALID_MARKER_BOX_ATI'R

GpiQuery Attrs

BOOL GpiQueryAttrs (hgpi, prim_type, attrs_mask,
defs_mask, attrs)

HPS hgpi;
LONG prim_type;
ULONG attrs_mask;
ULONG •defs_mask;
LPBUF attrs;

Returns current attributes for the specified primitive type.

This function is only valid for draw or draw-and-store modes.

If the value of a requested attribute is 'default', then as well as
returning data in attrs, the corresponding bit in defs_ mask is
turned on. Otherwise, the flag in defs_ mask is reset.

The parameters returned by GpiQueryAttrs may be used to rein­
state exactly the same attributes as were queried, using
GpiSetAttrs.

Parameters:

189

Windows Presentation Manager Reference

190

hgpi The handle for the GPI presentation space.

prim_ type
The primitive type for which attributes are to be set,
as follows:-

BATI'R_LINE 1 - Line and arc primitives
BATI'R_CHAR 2 - Character primitives
BATI'R_MARKER 3 - Marker primitives
BATI'R_PATTERN 4 - Area primitives (pattern)
BATI'R_IMAGE 5 - Image primitives

attrs-mask
A 4-byte parameter containing 32 flags (see
GpiSetAttrs for numbering). Each flag which is set
indicates that the corresponding flag in defs_ mask
should be updated, and that the value of the attribute
should be returned in the attrs buffer.

If all of the flags in attrs_ mask are zero, the attrs
buff er address is not used.

*defs_mask
A 4-byte parameter containing 32 flags (see
GpiSetAttrs for masks).

Each flag in defs_ mask is updated if the corresponding
flag in attrs_ mask was set. It is set if the attribute is
set to the default, and reset otherwise. Other flags are
undefined.

attrs A buffer in which is returned the value of each attri­
bute for which the attrs_ mask flag was set, in the
order specified in GpiSetAttrs for the particular primi­
tive type.

Returns:

0 Error
1 OK

Only data for attributes for which the appropriate flag
in attrs_ mask is set is updated, so attrs need only be as
long as required for the highest offset attribute to be
returned (see GpiSetAttrs).

Principal errors:

GPIERR_INVALID_PRIMITIVE_TYPE
GPIERR__ATI'RS_MASK_SPECIFIES_UNSUPPORTED__ATI'R.S

Graphics Programming Interface

7.1.17 Color and :M1x Functions

This section describes functions available for loading a logical color table,
and for manipulating the foreground and background color and mix attri­
butes.

Note that there are separate color and mix attributes for each primitive
type. The color and mix setting functions described here set the appropri­
ate values across all primitive types. They are provided for applications
which do not require to distinguish the values between primitive types,
and prefer to view them as global attributes. The query functions actually
return the values for line primitives.

The individual primitive types are as follows:-

• Line and arc primitives

• Character primitives

• Marker primitives

• Area primitives

• Image primitives

Default values of these attributes are (for all primitive types):-

Color: Color 7
Background color: Color 0
Mix: Overpaint
Background mix: Leave alone

For further information on the treatment of color in GPI, see the section,
"Color".

7.1.17.1 Resources and Default Functions

GpiCreateLogColorTable

BOOL GpiCreateLogColorTable (hgpi, options, format,
start, count, data)

HPS hgpi;
ULONG options;
LONG format;
LONG start;
LONG count;
LPBUF data;

This function defines the entries of the logical color table.

It may cause the color table to be preset to the default values.
These are:- ·

0 - Background (black on display, white on printer)

Windows Presentation Manager Reference

192

1 - Blue
2 - Red
3 - Pink (magenta)
4 - Green
5 - Turquoise (cyan)
6 - Yellow
7 - Neutral (white on display, black on printer)

Color 0 is special in that it is the one which GpiErase clears to.
Colors beyond 7 have device-dependent defaults.

Parameters:

hgpi The handle for the GPI presentation space.

options Specifies various options:-

LCOL-RESET (bit 0)
Set to B'l' if the color table is to be reset to
default before processing the remainder of
the data in this function

LCOL-REALIZABLE (bit 1)
Set to B'l' if the application may issue
GpiRealizeColorTable at an appropriate
time. This may affect the way the system
maps the indices when the logical color table
is not realised.

If this option is not set, GpiRealizeColorT­
able may have no effect

Other flags are reserved and must be B'O'.

format The format of entries in the table, as follows:-

start

count

LCOLF-INDRGB (1)
Array of (index,RGB) values. Each pair of
en tries is 8 bytes long, 4 bytes (local format)
index, and 4 bytes color value.

LCOLF_CONSECRGB (2)
Array of (RGB) values, corresponding to
color indices param upwards. Each entry is 4
bytes long.

LCOLF-RGB (3)
Color index = RGB

starting index (only relevant for
LCOLF _ CONSECRGB)

The number of elements supplied in data. This may be
0 if, for example, the color table is merely to be reset
to the default, or for LCOLF-RGB. For
LCOLF_INDRGB it must be an even number.

Graphics Programming Interface

data The start address of the application data area, con­
taining the color table definition data. The format
depends on the value of format.

Returns:

0 Error
1 OK

Each color value is a 4-byte integer, with a value of

(R * 65536) + (G * 256) + B

where

R = red intensity value
G = green intensity value
B = blue intensity value

(since there are 8 bits for each primary). The max­
imum intensity for each primary is 255.

Principal errors:

GPIERR_INVALID_COLOR_OPTIONS
GPIERR_INVALID_COLOR_FORMAT
GPIERR_INVALID_START_INDEX
GPIERR_INVALID__ARRAY_COUNT
GPIERR_INVALID_COLOR_DATA

GpiRealizeColorTable

BOOL GpiRealizeColorTable (hgpi)
RPS hgpi;

This function causes the system, if possible, to ensure that the
device physical color table is set to the closest possible match to
the logical color table.

If the presentation space is currently associated with a screen
window device, then this function should only be issued when
the associated window is maximized.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

0 Error
1 OK

Principal errors:

GpiUnrealizeColorTable

BOOL GpiUnrealizeColorTable (hgpi)
RPS hgpi;

193

Windows Presentation Manager Reference

This function is the reverse of GpiRealizeColorTable. It should
be issued when the associated window ceases to be maximised. It
causes the default color table to be reinstated.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

0 Error
1 OK

Principal errors:

GpiQueryColorData

194

BOOL GpiQueryColorData (hgpi, count, array)
HPS hgpi;
LONG count;
LONG array[];

Returns information about the currently available color table
and device colors.

Parameters:

hgpi

count

The handle for the GPI presentation space.

The number of elements supplied in array.

array[count]
An array which on return will contain:-

array[O] Format of loaded color table if any:-

LCOLF-DEFAULT (0)
Default color table is in force.

LCOLF-INDRGB (1)
Color table loaded which provides
translation from index to RGB.

LCOLF-RGB (3)
Color index = RGB.

array[l] Smallest color index loaded (0 if the default
color table is in force)

array[2] Largest color index loaded (0 if the default
color table is in force)

array[3] Maximum number of distinct colors avail­
able at one time

Returns:

0 Error
1 OK

Graphics Programming Interface

array[4] Maximum number of distinct colors
specifiable on device

Information will only be returned for the number of
elements supplied. Any extra elements supplied will be
zeroed by the system.

Principal errors:

GPIERR_INVALID_ARRAY_COUNT

GpiQueryLogColorTable

LONG GpiQueryLogColorTable (hgpi, options, start,
count, array)

BPS hgpi;
ULONG options;
LONG start;
LONG count;
LONG array[];

Returns the logical color table currently associated device, one
at a time.

Parameters:

hgpi The handle for the GPI presentation space.

options Specifies various options:-

LOPT_INDEX (bit 1)
Set to B'l' if the index is to be returned for
each RGB value.

Other flags are reserved and must be B'O'.
start The starting index for which data is to be returned.

count The number of elements available in array.

array[count].
An array in which the information is returned. If
LOPT-INDEX = B'O', this is an array of color values
(each value is as defined for GpiCreateLogColorTable),
starting with the specified index, and ending either
when there are no further loaded entries in the table,
or when count has been exhausted. If the logical color
table is not loaded with a contiguous set of indices, -1
will be returned as the color value for any index values
which are not loaded.

If LOPT_INDEX ~ B'l', it is an array of alternating

195

Windows Presentation Manager Reference

Returns:

-1 Error

color indices and values, in the order indexl, valuel,
index2, value2, ... An even number of elements will
always be returned in this case. If the logical color
table is not loaded with a contiguous set of indices,
any index values which are not loaded will be skipped.

>=0 Number of elements returned

Principal errors:

GPIERR_INVALID_COLOR_OPTIONS
GPIERR_INVALID_START_INDEX
GPIERR_INVALID_ARRAY_COUNT

GpiQueryRealColors

196

LONG GpiQueryRealColors (hgpi, options, start, count, array)
HPS hgpi;
ULONG options;
LONG start;
LONG count;
LONG array[];

Returns the rgb values of the distinct colors available on the
currently associated device, one at a time.

Parameters:

hgpi The handle for the GPI presentation space.

options Specifies various options:-

start

count

LOPT-REALIZED {bit 0)
Set to B'l' if the information required is to
be for when the logical color table {if any) is
realized; B'O' if it is to be for when it is not
realized.

LOPT_INDEX (bit 1)
Set to B' 1' if the index is to be returned for
each RGB value.

Other flags are reserved and must be B'O'.

The ordinal number of the first color required. To
start the sequence this would be 0. Note that this
does not necessarily bear any relationship to the color
index; the order in which the colors are returned is not
defined.

The number of elements available in array.

Graphics Programming Interface

array[count]
An array in which the information is returned.

If LOPT_INDEX = B'O', this is an array of color
values (each value is as defined for Gpi­
CreateLogColorTable).

If LOPT_INDEX = B'l', it is an array of alternating
color indices and values, in the order indexl, valuel,
index2, value2, ... An even number of elements will
always be returned in this case.

Returns:

-1 Error
>=0 Number of elements returned

Principal errors:

GPIERR_INVALID_COLOR_OPTIONS
GPIERR_START_INDEX
GPIERR_INVALID_ARRAY_COUNT

GpiQuery NearestColor

LONG GpiQueryNearestColor (hgpi, options, in_rgb_color)
HPS hgpi;
ULONG options;
LONG in_rgb_color;

Returns the nearest color available to the specified color, on the
currently associated device. Both colors are specified in RGB
terms.

Parameters:

hgpi The handle for the GPI presentation space.

options Specifies various options:-

LOPT-REALIZED (bit 0)
Set to B' 1' if the information required is to
be for when the logical color table {if any) is
realized; B'O' if it is to be for when it is not
realized.

Other flags are reserved and must be B'O'.

in_ rgb_ color
The required color

Returns:

-1 Error
>=O Nearest available color to the one specified

Principal errors:

197

Windows Presentation Manager Reference

GPIERR_INVALID_COLOR_OPTIONS
GPIERR_INVALID_RGBCOLOR

GpiQueryColorlndex

LONG GpiQueryColorindex (hgpi, options, rgb_color)
HPS hgpi;
ULONG options;
LONG rgb_color;

This returns the color index of the device color which is closest
to the specified RGB color representation, for the device con­
nected to the specified presentation space.

Parameters:

hgpi The handle for the GPI presentation space.

options Specifies various options:-

LOPT_REALIZED (bit 0)
Set to B' 1' if the information required is to
be for when the logical color table (if any) is
realized; B'O' if it is to be for when it is not
realized.

Other flags are reserved and must be B'O'.

rgb_color
Specifies a color in RGB terms

Returns:

-1 Error
>=0 Color index providing closest match to the

specified color

Principal errors:

GPIERR_INVALID_COLOR_OPTIONS
GPIERR_INVALID_RGBCOLOR

GpiQueryRGBColor

198

LONG GpiQueryRGBColor (hgpi, options, color)
HPS hgpi;
ULONG options;
LONG color;

This returns the actual RGB c0lor which will result from the
specified color index, for the device connected to the specified
presentation space.

Parameters:

hgpi The handle for the GPI presentation space.

Graphics Programming Interface

options Specifies various options:-

LOPT_REALIZED (bit 0)
Set to B' 1' if the information required is to
be for when the logical color table (if any) is
realized; B'O' if it is to be for when it is not
realized.

color

Returns:

-1 Error

Other flags are reserved and must be B'O'.

Specifies a color index

>=0 RGB color providing closest match to the
specified color index

Principal errors:

GPIERR_INVALID_COLOR_OPTIONS
GPIERR_INVALID_COLOR_INDEX

7 .1.17 .2 Attribute Setting Functions

GpiSetColor

BOOL GpiSetColor (hgpi, color)
HPS hgpi;
LONG color;

Sets the current color index attribute, for each individual primi­
tive type, to the specified value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The current values for each primitive type will be updated. The
attribute mode (see GpiSetAttrMode) determines whether or not
the push form ot the function is generated (in this case the
values of the color attribute for each primitive type are pushed.
A single GpiPop will restore them).

Parameters:

hgpi

color

The handle for the GPI presentation space

The color index value required, as follows:-

-3 - set to default value
-2 - equivalent to 7 (display), or 0 (printer)

(ie white for default color table)
-1 - equivalent to 0 (display), or 7 (printer)

199

Windows Presentation Manager Reference

Returns:

0 Error
1 OK

(ie black for default color table)
~n - color index value

Principal errors:

GPIERR_INVALID_COLOR_ATTR

GpiQueryColor

LONG GpiQueryColor (hgpi)
RPS hgpi;

Returns the current (line) color index attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-4 Error
>=-3 Color index

Principal errors:

GpiSetBackColor

200

BOOL GpiSetBackColor (hgpi, color)
RPS hgpi;
LONG color;

Sets the current background color index attribute, for each indi­
vidual primitive type, to the specified value.

Note that if the background mix is transparent, the default set­
ting, the background color will not be seen.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated (in this case
the values of the background color attribute for each primitive
type are pushed. A single GpiPop will restore them).

Parameters:

hgpi The handle for the GPI presentation space.

Graphics Programming Interface

color The color index value required, as follows:-

-3 - set to default value
-2 - equivalent to 7 (display), or 0 (printer)

(ie white for default color table)
-1 - equivalent to 0 (display), or 7 (printer)

(ie black for default color table)

Returns:

0 Error
1 OK

~n - color index value

GpiQueryBackColor

LONG GpiQueryBackColor (hgpi)
HPS hgpi;

Returns the current (line) background color index attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

The handle for the GPI presentation space. hgpi

*Color A variable in which the (line) background color index
attribute is returned.

Returns:

-4 Error
>=-3 Background color index

Principal errors:

GpiSetMix

BOOL GpiSetMix (hgpi, mix_mode)
HPS hgpi;
LONG mix_mode;

Sets the current mix attribute, for each individual primitive
type, to the specified value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated (in this case
the values of the mix attribute for each primitive type are
pushed. A single GpiPop will restore them).

Parameters:

201

Windows Presentation Ma.na.ger Reference

hgpi The handle for the GPI presentation space.

mix-mode

Returns:

0 Error
1 OK

The required mix mod!OJ. Valid values for mix_ mode
are:

MIX_DEFAULT
MIX_ OR
MIX_OVERPAINT
MIX_UNDERPAINT
MIX_XOR
MIX_LEAVEALONE
MIX__AND
MIX_SUBTRACT
MIX_MASKSRCNOT
MIX_ZERO
MIX_NOTMERGESRC
MIX_NOTXORSRC
MIX_INVERT
MIX_MERGESRCNOT
MIX_NOTCOPYSRC
MIX_MERGENOTSRC
MIX_NOTMASKSRC
MIX_ ONE

(0) - Use default
(1) - Or (*)
(2) - Overpaint (*)
(3) - Underpaint
(4) - XOR
(5) - Leave alone (invisible) (*)
(6) - AND
(7) - (inverse source) AND dest
(8) - Source AND (inverse dest)
(9) - All zeroes
(10) - Inverse (source OR dest)
(11) - Inverse (source XOR dest)
(12) - Inverse (dest)
(13) - Source OR (inverse dest)
(14) - Inverse (source)
(15) - Inverse (source) OR dest
(16) - Inverse (source AND dest)
(17) - All ones

Mixes marked with an asterisk (*) are mandatory for
all devices, except that OR is only mandatory for dev­
ices capable of supporting it. Unsupported mix values
will produce overpaint. DevQueryCaps can be used to
determine the level of support.

Principal. errors:

GPIERR_INVALID_MIX_ATTR

GpiQueryMix

202

LONG GpiQueryMix (hgpi)
HPS hgpi:

Returns the current (line) mix attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Mix mode

Principal errors:

Graphics Programming Interface

GpiSetBackMix

BOOL GpiSetBackMix (h,gpi, mix_mode)
HPS hgpi;
LONG mix_mode;

Sets the current background mix attribute, for each individual
primitive type, to the specified value.

Note that if the background mix is transparent, the default set­
ting, the background mix will not be seen.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated (in this case
the values of the background mix attribute for each primitive
type are pushed. A single GpiPop will restore them).

The following primitives are affected by the background mix
attribute:-

Areas The background of an area is defined to be every pixel
within the area that is not set by the shading pattern.

Mode-1 and Mode-2 Text
The background of a mode-1 or mode-2 character is
every pixel within the character definition that is not
set.

Mode-3 Text
The background of a mode-3 character is the complete
character box.

Images For an image, the background is every pixel within the
image that is not set.

Markers
For an image marker, the background is every pixel
within the marker definition that is not set. The back­
ground of a vector marker is the complete marker box.

Parameters:

hgpi The handle for the GPI presentation space.

mix-mode
Valid values for mix._ mode are:

MIX_DEFAULT
MIX_ OR
MIX_OVERPAINT
MIX_UNDERPAINT

(0) - Use default
(1) - Or (*)
(2) - Overpaint (*)
(3) - Underpaint

203

Windows Presentation Manager Reference

Returns:

0 Error
1 OK

MIX_XOR (4) - XOR
MIX_LEAVEALONE (5) - Leave alone (invisible) (*)

Background mixes marked with an asterisk (*) are
mandatory for all devices. Unsupported mix values
will produce transparent. DevQueryCaps can be used
to determine the level of support.

Principal errors:

GPIERR_INVALID_BACKGROUND_MIX_ATIR
GPIERR_INVALID_FOREGROUND_BACKGROUND_MIX_COMBINATION

GpiQueryBackMix

LONG GpiQueryBackMix (hgpi)
HPS hgpi;

Returns the current (line) background mix attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
> =0 Background mix mode

Principal errors:

7 .1.18 Line Functions

Functions described in this section are for drawing lines and boxes, and
setting up line attributes. The attributes described also affect arc func­
tions described in the section, "Arc Functions".

Lines, boxes and arcs are drawn with the following attributes:-

• Line color

• Line background color

• Line mix

• Line background mix

204

Graphics Programming Interface

• Line type

• Line width

• Line geometric type

• Line geometric width

• Line end

• Line join

• Line pattern set

• Line pattern symbol

These attributes may either be set individually, or in a single function.

The manipulation of the color, background color, mix, and background
mix attributes globally is described in the section, "Color and Mix Func­
tions".

The default values of line attributes are as follows:-

Line color:
Line background color:
Line mix:
Line background mix:
Line type:
Line width:
Line width geometric:
Line type geometric:
Line end:
Line Join:
Line pattern set:
Line pattern symbol:

Color 7
Color 0
Overpaint
Leave alone
Solid
Normal
Use cosmetic width
Solid
Flat
Bevel
Standard 17-value set
Solid shading

7 .1.18.1 Resources and Defaults Functions

GpiLoadLineType

BOOL GpiLoadLineType (hgpi, length, data)
HPS hgpi;
LONG length;
LPBUF data;

Loads one or more line-type definitions, from a specified applica­
tion data area, into the presentation space.

These are cosmetic line types, which are used when the current
geometric line width is not either -1 or 0.

When a new definition is provided for an already loaded
codepoint, the existing definition will be replaced.

205

Windows Presentation Manager Reference

206

Parameters:

hgpi The handle for the GPI presentation space.

length The length of the data structure.

data The address of the data area containing the line-type
definition(s). The format is as follows:-

Returns:

Byte 0 Flagsl

B*1 •1 1 B specifies clear all definitions,
and set table_id = 'FFFF'X, 'O'B speci
do not clear (add to / replace definit
(i.e. '80'X specifies clear).

Byte 1 Flags2

Reserved - must be zero.

Bytes 2 & 3
table-id

• >FFFF'X specifies leave the table_ id
unchange.d

• Values in the range 'OOOO'X-'OOFE'X
specify change it to this value.

• Other values are invalid.

This is followed by self defining parameters with the
following format.:

Byte 0 (n + I) Length of Self Defining Parame.ter

Byte 1 Type '01 'X = Media Pel Image

Byte 2 Line type codepoint of definition, in range 65
- 254 inclusive

Byte 3 Reserved 'OO'X

Bytes 4-n
Counts in pairs of bytes; first byte= pels on,
second byte = pels off.

0 Error
1 OK

Principal errors:

GPIERR_INVALID_OR_INCONSISTENT_LENGTHS
GPIERR_INVALID_LINE_TYPE_CODEPOINT
GPIERR_INVALID~RESERVED_FIELD
GPIERR_INVALID_LTI'ID
GPIERR_INCOMPLETE_L.INE_DEFN

Graphics Programming Interface

GpiQueryLineTypes

LONG GpiQueryLineTypes (hgpi, length, data)
HPS hgpi;
LONG length;
LPBUF data;

This returns a record providing details of all available cosmetic
line types, including both standard ones and loaded ones.

Parameters:

hgpi The handle for the GPI presentation space.

length The length of the data buff er

data A pointer to a data buffer in which the line type data
is to be returned. The data is returned as a record
consisting of the length of data returned in bytes fol­
lowed by the data.

The format is as follows:-

Byte O 'OO'X Flags - reserved

Byte 1 '09'X Number of Pairs

Byte 2 'OO'X attribute= zero (default)

Byte 3 '07'X action = solid

Byte 4 '01 'X attribute= 1

Byte 5 '01 'X action = dotted

Byte 6 '02'X attribute = 2

Byte 7 '02'X action = short dashed

Byte 8 '03'X attribute = 3

Byte 9 '03'X action = dash, dot

Byte 10 '04'X attribute = 4

Byte 11 '04'X action = double dotted

Byte 12 '05'X attribute = 5

Byte 13 '05'X action= long dashed

Byte 14 '06'X attribute= 6

Byte 15 '06'X action= dash, double dot

Byte 16 '07'X attribute = 7

Byte 17 '07'X action = solid

207

Windows Presentation Ma.na.ger Reference

Returns:

-1 Error

Byte 18

Byte 19

Byte 20

Byte 21

Byte 22

Byte 23

'08'X attribute = 8

'08'X action = invisible

'04'X Length of (Loadable Formats) self
defining parameter

'01 'X Self defining parameter type (Loadable
Formats)

'40'X Format Type (media pel image)

'OO'X Reserved

Byte 24 (n - 23) Length of (Loaded Line Types) self
defining parameter including this byte

Byte 25 '02'X Self defining parameter type (Loaded
Line Types)

Bytes 26 & 27
table-id ('FFFF'X if not loaded).

Bytes 28-n
List of already loaded codepoints (one byte
per codepoint)

>=0 Length of data returned

Principal errors:

GPIERR_INVALID_LENGTH

7 .1.18.2 Attribute Setting Functions

GpiSetLineType

208

BOOL GpiSetLineType (hgpi, line_type)
HPS hgpi;
LONG line_type;

Sets the current cosmetic line-type attribute to the specified
value. A non-solid line-type consists of a sequence of 'on' and
'off' runs which gives the appearance of a dotted, dashed, etc
line.

This attribute specifies the cosmetic line type, which is used
when the current geometric line width is not either -1 or 0.

The 8 standard line-types are implemented on each device to
give a good appearance on that device, taking into account the
pel resolution. Application-loaded line-type definitions are
defined in terms of pel runs, and may need to be changed

Graphics Programming Interface

between devices with very different pel resolutions.

The system maintains position within the line-type definition
(either standard or application-loaded), so that, for example, a
curve may be implemented as a polyline. However, certain func­
tions cause position to be reset to the start of the definition.
These are:-

• GpiSetLineType

• GpiMove

• GpiSetCurrentPosition

• GpiCallSegment

• GpiSetSegmentTransform

• GpiSetModelTransf orm

• GpiSet Window

• GpiSetUniform Window

• GpiSet Viewport

• GpiSetPage Window

• GpiSetPage Viewport

• GpiPop (or end of called segment) which pops current posi-
tion or a model transform

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment. will be updated.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

line_ type
Valid values for line- type are:-

LINETYPE_DEFAULT (0) - Use default
LINETYPE_DOT (1) - Dotted
LINETYPE_SHORTDASH (2) - Short dashed
LINETYPE_DASHDOT (3) - Dash dot
LINETYPE_DOUBLEDOT (4) - Double dot
LINETYPE_LONGDASH (5) - Long dash
LINETYPE_DASHDOUBLEDOT (6) - Dash, double dot
LINETYPE_SOLID (7) - Solid
LINETYPE_INVISIBLE (8) - Invisible

(65 through 254) - User
defined line types

If the specified line type is not valid, the default type

209

Windows Presentation Manager Reference

Returns:

0 Error
1 OK

is used.

Principal errors:

GPIERR_INVALID_LINE_TYPE_A'ITR

GpiQueryLineType

LONG GpiQueryLineType (hgpi)
RPS hgpi;

Returns the current cosmetic line-type attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
> =0 Line type

Principal errors:

GpiSetLineWidth

210

GpiSetLineWidth (hgpi, line_width)
RPS hgpi;
LONG line_width;

Sets the current cosmetic line-width attribute to the specified
value.

The cosmetic line width specifies a multiplier on the 'normal'
line thickness for the device. Cosmetic thickness does not depend
upon transforms, so that, for example, lines do not become
thicker if a 'zoom in' occurs.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

Graphics Programming Interface

line_ width
The required line width. The value passed is treated
as a 4-byte fixed-point number with the high-order
word as the integer portion and the low-order word as
the fractional portion. Thus, a value of 65536 specifies
a width of 1.0.

LINEWIDTH_DEFAULT (0) - Use default
LINEWIDTH_NORMAL (1) - Normal width
LINEWIDTH_THICK (2) - Thick (double width)

Any other positive value is a multiplier on the 'normal'
line width. In many implementations values<= 1.0
(other than 0.0~ will be treated as 'normal', and values

Returns:

0 Error
1 OK

> 1.0 as 'thick .

Principal errors:

GPIERR_INVALID_LINE_WIDTH_,ATI'R

GpiQueryLine Width

LONG GpiQueryLineWidth (hgpi)
HPS hgpi;
LONG x;

Returns the current line-width attribute.

The value returned is a 4-byte fixed-point number with the
high-order word as the integer portion and the low-order word
as the fractional portion (see GpiSetLineWidth).

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Line width

Principal errors:

GpiSetLine Width Geom

BOOL GpiSetLineWidthGeom (hgpi, line_width)
HPS hgpi;
LONG line_width;

Sets the current geometric line-width attribute to the specified

211

Windows Presentation Manager Reference

value.

The geometric line width is specified in Drawing Order Co­
ordinate Space units, so that, for example, the thickness varies
on a zoom operation.

Setting the geometric line thickness (to > 0) also brings the
geometric line type into effect (see CpiSetLineTypeCeom).

If more than one API function is needed to define a thick line
construct, the functions should be enclosed within a strokes
bracket. See CpiBeginStrokes.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see CpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

hgpi The handle for the CPI presentation space.

line_ width

Returns:

0 Error
1 OK

A signed long integer containing the required
geometric line width. Valid values are:-

0 Use default
-1 Use cosmetic line width
>0 Thickness in world co-ordinates

Principal errors:

GPIERR_INVALID_GEOM_LINE_WIDTH_ATIR
GPIERR_STROKES_CONTEXT_ERROR

CpiQueryLine WidthCeom

212

LONG GpiQueryLineWidthGeom (hgpi)
HPS hgpi;

Returns the current geometric line-width attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the CPI presentation space.

Returns:

-4 Error
>=-1 OK

Graphics Programming Interface

Principal errors:

GpiSetLineEnd

BOOL GpiSetLineEnd (hgpi, line_end)
HPS hgpi;
LONG line_end;

Sets the current line-end attribute to the specified value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

line_ end
Valid values for line- end are:

Returns:

0 Error
1 OK

LINEEND_DEFAULT
LINEEND_FLAT
LINEEND_SQUARE
LINEEND_ROUND

Principal errors:

GPIERR_INVALID_LINE_END__ATI'R

GpiQueryLineEnd

LONG GpiQueryLineEnd (hgpi)
HPS hgpi;

(0) - Use default
(1) - Flat
(2) - Square
(3) - Round

Returns the current line-end attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Line end

Principal errors:

213

Windows Presentation Manager Reference

GpiSetLineJoin

BOOL GpiSetLineJoin (hgpi, line_join)
HPS hgpi:
LONG line_join:

Sets the current line-join attribute to the specified value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

line_ join
Valid values for line-join are:

Returns:

0 Error
1 OK

LINEJOIN_DEFAULT
LINEJOIN_BEVEL
LINEJOIN_ROUND
LINEJOIN_MITRE

Principal errors:

GPIERR_INVALID_LINE_JOIN_ATTR

(0) - Use default
(1) - Bevel
(2) - Round
(3) - Mitre

GpiQueryLineJoin

214

LONG GpiQueryLineJoin (hgpi)
HPS hgpi:

Returns the current line-join attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Line join

Principal errors:

Graphics Programming Interface

GpiSetLinePatternSet

BOOL GpiSetLinePatternSet (hgpi, line_pattern_set)
HPS hgpi; •
LONG line_pattern_set;

Sets the current line-pattern-set attribute to the specified value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

line_ pattern_ set

Returns:

0 Error
1 OK

Valid values for line- patter11- set are:

0 Use default

64 Range of values for
thru the ID of a loaded
239 symbol set.

240 Base pattern set.

Principal errors:

GPIERR_INVALID_LINE_PA'ITERN_SET_.ATI'R

GpiQueryLinePatternSet

LONG GpiQueryLinePatternSet (hgpi)
HPS hgpi;

Returns the current line-pattern-set attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Line pattern set

Principal errors:

215

Windows Presentation Manager Reference

GpiSetLinePatternSymbol

BOOL GpiSetLinePatternSymbol (hgpi, line_pattern_symbol)
HPS hgpi; •
LONG line_pattern_symbol;

Sets the current line-pattern-symbol attribute to the specified
value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

line_ pattern_ symbol
Valid values for line.... patter.,,_ symbol with the base
pattern set are:

BASESYM_SHADEl (1) - Hi intensity
BASESYM_SHADE2 (2) -)
BASESYM_SHADE3 (3) -)

shading

BASESYM_SHADE4 (4) -) - Solid shading with

Returns:

0 Error
1 OK

BASESYM_SHADE5
BASESYM_SHADE6
BASESYM_SHADE7
BASESYM_SHADE8
BASESYM_VERT
BASESYM_HORIZ
BASESYM_DIAGUPl
BASESYM_DIAGUP2
BASESYM_DIAGDOWNl
BASESYM_DIAGDOWN2
BASESYM_NOSHADING
BASESYM_SOLID

BASESYM_BLANK

Principal errors:

(5)
(6)
(7)
(8)
(9)
(10)

. (11)
(12)
(13)
(14)
(15)
(16)

(64)

GPIERR_INVALID_LINE_PATTERN__ATTR

-) decreasing intensity
-)
-)
- Lo intensity shading
- Vertical lines
- Horizontal lines
- Bottom left to top right
- Bottom left to top right
- Top left to bottom right
- Top left to bottom right
- No shading
- Solid color

- Blank

GpiQueryLinePatternSymbol

216

LONG GpiQueryLinePatternSymbol (hgpi)
HPS hgpi;

Returns the current line-pattern-symbol attribute.

Graphics Programming Interface .

·Tlris "fumftiun -I-s -jlfvalid -in b'ture -mode ur forp'licit dnrw -mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Line pattern symbol

Principal errors:

7 .1.18.3 Primitive Functions

GpiSetCurren tPosi ti on

BOOL GpiSetCurrentPosition (hgpi, x, y)
BPS hgpi;
LONG x;
LONG y;

Sets the current x,y position to the specified value.

This function also has the effect of resetting position within a
line-type sequence, and, if within an area, of starting a new
closed figure and causing any previous one to be auto-closed if
necessary.

The only difference between this function and GpiMove is that
with this function the value of the current position may be
pushed onto the attribute stack before changing it if the attri­
bute mode (see GpiSetAttrMode)is set appropriately.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

x,y The co-ordinates of the point to which current posi­
tion is to be moved.

Returns:

0 Error
1 OK

Principal errors:

217

Windows Presentation Ma.na.ger Reference

GpiQueryCurrentPosition

GpiMove

218

BOOL GpiQueryCurrentPosition (hgpi, x, y)
HPS hgpi;
LONG *X;
LONG *Y:

Queries the current x,y position.

This function is only meaningful in draw or draw-and-store
modes.

Parameters:

hgpi The handle for the GPI presentation space.

*X,*Y Variables in which current position is returned.

Returns:

0 Error
1 OK

Principal errors:

BOOL GpiMove (hgpi, x, y)
HPS hgpi;
LONG x;
LONG y;

Sets the current x,y position to the specified value.

This function also has the effect of resetting position within a
line-type sequence, and, if within an area, of starting a new
closed figure and causing any previous one to be auto-closed if
necessary.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, order(s) will be con­
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

x,y The co-ordinates of the point to which cllrrent posi­
tion is to be moved.

Returns:

0 Error
1 OK

Principal errors:

GpiLine

SHORT GpiLine (hgpi, x, y)
HPS hgpi;
LONG x;
LONG y;

Graphics Programming Interface

Draws a straight line from current position to the specified end­
point.

Upon completion, the current x,y position is at the specified end
point.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, order(s) will be con­
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

x,y The co-ordinates of the end-point.

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GpiPolyLine

SHORT GpiPolyLine (hgpi, n, x, y)
HPS hgpi;
LONG n;
LONG x[];
LONG y[];

Draws a series of one or more connected lines, starting at
current position.

Upon completion, the current x,y position is the end point of the
last line in the series.

The maximum number of lines allowed in the polyline depends _
upon the length of co-ordinates but is at least 8000.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, order(s) will be con­
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

219

Windows Presentation Manager Reference

GpiBox

220

n The number of x,y pairs.

x An array of integer values (x coordinates).

y An array of integer values (y coordinates).

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_ARRAY_COUNT

for example

SHORT GpiBox (hgpi, control, xl, yl, h_round, v_round)
HPS hgpi:
LONG control:
LONG xl:
LONG yl:
LONG h_round:
LONG v_round:

Draws a rectangular box with one corner at current position and
the diagonally opposite corner at the specified position. The
sides of the box are parallel to the x and y axes, in Drawing
Order Co-ordinate Space.

The corners of the box may be rounded by means of quarter
ellipses, with the specified horizontal and vertical axis lengths.

The box is defined to be drawn from (xO,yO) to (xl,yO) to (xl,yl)
to (xO,yl) to (xO,yO). This is relevant to, for example, area wind­
ing mode - see GpiBeginArea in the section, "Area Functions".

Current position is unchanged by this function.

Either the outline of the box, or its interior, or both, may be
drawn. If the interior is to be drawn, then this function must not
itself be within a GpiBeginArea - GpiEndArea bracket. In this
case also, a correlation hit will result if the pick window is
wholly within the box; if the outline only is drawn, the pick win­
dow must intersect the outline to score a hit.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

Graphics Programming Interface

control Specifies whether the interior of the box should be
filled, and whether the outline should be drawn, as
follows:-

xl,yl

1 Fill interior
2 Draw outline
3 Draw outline and fill interior

The co-ordinates of the diagonally opposite corner

h_ round, v_ round
Specify the horizontal and vertical length of the full
axes of the ellipses used for rounding at each corner. If
either of these is zero, no rounding occurs.

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_BOX_CONTROL
GPIERR_INVALID_ROUNDING_PAR.AMETERS

GpiBeginStrokes

SHORT GpiBeginStrokes (hgpi)
HPS hgpi;

Defines the start of a strokes bracket. The significance of a
strokes bracket is that if geometric thick lines are in force (see
GpiSetLineWidthGeom), the primitives within the bracket will
be drawn as a whole.

For example, enclosing the appropriate primitives within a
strokes bracket will achieve the following:-

1. A line may be joined to, for example, an arc. The common
point will be handled according to the Line Join parameter,
rather than applying Line Ends at each end.

2. If the end of a polyline is coincident with the start, then the
joining rules will be followed rather than the ending rules, at
the start/end point. .

3. A series of lines in XOR mix may be drawn so that intersec­
tions are not XOR'ed out. The series may be longer than just
a single polyline or polyfillet.

Any geometric thick lines not drawn within a bracket have line
ends at each end of the primitive.

The strokes bracket is terminated by GpiEndStrokes. This must
occur in the same segment as the GpiBeginStrokes. The bracket
may occur within an area bracket, but cannot cross an area
bracket boundary. If within an area bracket, closure lines will

221

Windows Presentation Manager Reference

be generated as normal; otherwise, closure lines are not gen­
erated.

It is feasible for move functions to occur within the bracket, for
example an 'X' in thick lines.

The following are the only primitive/attribute functions allowed
to the same GPI presentation space within a strokes bracket:-

GpiBeginElement (containing only valid function(s))
GpiElement (containing a valid function)
GpiEndElement
GpiSetModelTransform
GpiCallSegment
GpiSetAttrMode
GpiQueryAttrMode
GpiPop (Providing only a valid function is popped)
GpiSetCurrentPosition
GpiQueryCurrentPosition
GpiMove
GpiLine
GpiPolyLine
GpiBox
GpiSetArcParams
GpiQueryArcParams
GpiArc
GpiFullArc
GpiPartialArc
GpiPieSlice
GpiPolySpline
GpiPolyFillet
GpiPolyFilletSharp

Parameters:-

hgpi The handle for the GPI presentation space

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GPIERR.....ATI'EMPT_TO_START_SECOND_STROKES_BRACKET

GpiEndStrokes

222

SHORT GpiEndStrokes (hgpi)
RPS hgpi;

Terminates a strokes bracket (see GpiBeginStrokes).

Parameters:-

Graphics Programming Interface

hgpi The handle for the GPI presentation space

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GPIERR_END_STROKES_IGNORED

7 .1.18.4 Visibility Functions

GpiPt Visible

SHORT GpiPtVisible (hgpi, x, y)
HPS hgpi;
LONG x;
LONG y;

This checks whether a point is visible within the clipping region
of the device associated with the specified presentation space.
The clipping region for this purpose is defined as the intersection
between the application clipping region, and any clipping as a
result of windowing etc.

Parameters:

hgpi

x,y
Returns:

0 Error

The handle of a Gpi presentation space.

The co-ordinates of the point in world co-ordinates.

1 Not visible
2 Visible

Principal errors:

GpiRectVisible

SHORT GpiRectVisible (hgpi, xl, yl, x2, y2)
HPS hgpi;
LONG xl;
LONG yl;
LONG x2;
LONG y2;

This checks whether any part of a rectangle lies within the clip­
ping region of the device associated with the specified presenta­
tion space. The clipping region for this purpose is defined as the
intersection between the application clipping region, and any

223

Windows Presentation Manager Reference

clipping as a result of windowing etc.

Parameters:

hgpi

xl,yl

x2,y2

Returns:

0 Error

The handle of a Gpi presentation space.

The co-ordinates of the bottom left corner of the rec­
tangle in world co-ordinates.

The co-ordinates of the top right corner of the rectan­
gle in world co-ordinates.

1 Not visible
2 Some of the rectangle is visible
9 All of the rectangle is visible

Principal errors:

7 .1.19 Arc Functions

Functions described in this section are for drawing arcs, including

• 3-point arcs

• Full arcs

• Partial arcs

• Fillets

• Fillets with specified sharpness

• Splines

The shape of the arc drawn depends upon the arc parameters. This can be
set, and the value pushed, onto the segment call stack, just like attributes.

The attributes which control the color, width, etc, of the arc are the line
attributes, described in the section, "Line Functions".

7.1.19.1 Attribute Setting Functions

GpiSetArcParams

224

BOOL GpiSetArcParams (hgpi, p, q, r, s)
BPS hgpi;
LONG p;
LONG q;
LONG r:

Graphics Yrogramming Interface

LONG s;

Sets the current arc parameters to the specified values.

The arc parameters define the shape and orientation of an ellipse
which is used for subsequent GpiArc, GpiFullArc, and GpiPar­
tialArc functions. For all of these functions except GpiArc, they
also determine the direction of drawing, as follows:-

• If p.q > r.s the direction is anti-clockwise

• If p.q < r.s the direction is clockwise

• If p.q = r.s a straight line is drawn

Also except for GpiArc, they define the nominal size of the
ellipse, although this may be changed by using the multiplier.
For GpiArc, the size of the ellipse is determined by the three
points specified on GpiArc.

The arc parameters define a transformation that maps the unit
circle to the required ellipse, placed at the origin (0,0):-

x' = p.x + r.y
y' = s.x + q.y

If p.r + s.q = 0, then the transform is termed orthogonal, and
the line from the origin (0,0) to the point (p,s) is either the
radius of the circle, or half the major axis of the ellipse. The line
from the origin to the point (r,q) is either the radius of the cir­
cle, or half of the minor axis of the ellipse.

For maximum accuracy orthogonal transforms should be used.

The default values of arc parameters are

p = 1
s = 0

r = 0
q = 1

so that the figure remains a unit circle.

The arc parameters transformation takes place in World Co­
ordinates. Any other non-square transformations in force will
change the shape of the figure accordingly.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

p,s The x,y co-ordinates of the end of the major axis, rela­
tive to 0,0.

225

Windows Presentation Manager Reference

r,q The x,y co-ordinates of the end of the minor axis, rela­
tive to 0,0.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_.ARC_PARAMETER

GpiQuery ArcParams

BOOL GpiQu~ryArcParams (hgpi, p, q, r, s)
HPS hgpi;
LONG *P:
LONG *q;
LONG *r;
LONG *s;

This returns the current arc parameters used to draw arcs, cir­
cles, or ellipses.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

*P,*S Variables which are set to contain p ands.

*q,*r Variables which are set to contain q and r.

Returns:

0 Error
1 OK

Principal errors:

7 .1.19.2 Primitive Functions

GpiArc

226

SHORT GpiArc (hgpi, xl, yl, x2, y2)
HPS hgpi;
LONG xl;
LONG yl;
LONG x2;
LONG y2;

Creates an arc, using the current arc parameters, through three
x,y positions starting at the current x,y position. The parame­
ters specify co-ordinates that identify the second and third

Graphics Programming Interface

positions (x1,y1 and x2,y2) of the arc.

Upon completion, the current x,y position is x2,y2.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

Parameters:

hgpi

xl,yl

x2,y2

Returns:

0 Error
1 OK

The handle for the GPI presentation space.

The intermediate point

The end point

2 Correlate hit(s)

Principal errors:

GpiFullArc

SHORT GpiFullArc (hgpi, control, m)
HPS hgpi;
LONG control;
LONG m;

Creates a full arc with its center at the current x,y position.

The current x,y position is not changed.

The arc parameters determine whether the full arc is drawn
clockwise or anti-clockwise.

Either the outline of the full arc, or its interior, or both, may be
drawn. If the interior is to be drawn, then this function must not
itself be within a GpiBeginArea - GpiEndArea bracket. In this
case also, a correlation hit will result if the pick window is
wholly within the full arc; if the outline only is drawn, the pick
window must intersect the outline to score a hit.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

control Specifies whether the interior of the full arc should be
filled, and whether the outline should be drawn, as
follows:-

227

Windows Presentation Manager Reference

1 Fill interior
2 Draw outline
3 Draw outline and fill interior

m A multiplier that determines the size of the arc in rela­
tion to an arc with the current arc parameters.

Returns:

0 Error
1 OK

The value passed is treated as a 4-byte fixed-point
number with the high-order word as the integer por­
tion and the low-order word as the fractional portion.
Thus, a value of 65536 specifies a multiplier of 1.
There is a current implementation limit of 255 for the
multiplier (ie a value passed of 255 x 65536 =
16711680).

2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_ARC_CONTROL
GPIERR_INVALID_MULTIPLIER

GpiPartialArc

228

SHORT GpiPartialAre (hgpi, xe, ye, m, ts, te)
HPS hgpi;
LONG xe;
LONG ye;
LONG m;
LONG ts;
LONG te;

Draws two figures:-

1. A straight line, from current position to the starting point of
a partial arc, and

2. The arc itself, with its center at the specified point.

The full arc, of which the arc is a part, is identical to that
defined by GpiFullArc. The part of the arc drawn by this primi­
tive is defined by the parameters ts and te, which represent the
angles subtended from the centre, if the current arc parameters
specify a circular form. If they do not, these angles are skewed to
the same degree that the ellipse is a skewed circle. ts and te are
measured anticlockwise from the x axis of the circle prior to the
application of the arc parameters. Whether the arc is drawn
clockwise or anti-clockwise is determined by the arc parameters,
and ts and te.

Current position is updated to the final point on the arc. Note
this difference from GpiFullArc, where current position remains
at the center of the figure. A primitive (eg GpiLine) following

Graphics Programming Interface

GpiPartialArc will draw from the end point of the arc.

A segment of a pie may be drawn by

1. GpiMove, to center of pie

2. GpiPartialArc, drawing one spoke and the arc

3. GpiLine, back to center

The third step may be performed implicitly by autoclosure if an
area is being drawn.

A closed figure bounded by a chord and an arc may be drawn by

1. GpiSetLineType to invisible

2. GpiPartialArc, with ts = te = angle2 to define the start
point

3. GpiSetLineType to visible

4. GpiPartialArc, with ts = angle2, te = anglel

(If an area is to be drawn, it should be started after step 2 or 3.)

This functions can occur within the picture; for example if either
is issued in store or draw-and-store mode, order(s) will be con­
structed and placed into the current segment.

Parameters:

hgpi

xc,yc

m

ts,te

Returns:

0 Error
1 OK

The handle for the GPI presentation space.

The centre point

A multiplier that determines the size of the arc in rela­
tion to an arc with the current arc parameters.

The value passed is treated as a 4-byte fixed-point
number with the high-order word as the integer por­
tion and the low-order word as the fractional portion.
Thus, a value of 65536 specifies a multiplier of 1.
There is a current implementation limit of 255 for the
multiplier (ie a value passed of 255 x 65536 =
16711680).

The start and ending angles in scaled radians, such
that 2*pi is represented as 2**31-1, as described
above. If ts = te, a null arc is drawn. The values must
be positive.

2 Correlate hit(s)

Principal errors:

229

Windows Presentation Manager Reference

GPIERR_INVALID_MULTIPLIER
GPIERR_INVALID_ANGLE_PARAMETER

GpiPolyFillet

230

SHORT GpiPolyFillet (hgpi, n, x, y)
HPS hgpi;
LONG n;
LONG x[];
LONG y[];

Creates a fillet on a series of connected lines, with the first line
starting at current position.

If only two points are supplied, an imaginary line is drawn from
current position to the first point, anda second line from the first
point to the second. A curve is then constructed, starting at
current position and tangential to the first line at that point.
The curve is drawn such that it reaches the last point at a
tangent to the second line.

The curve has the appearance of a fillet. The lines are imaginary,
and are not drawn.

If more than two points are supplied, an imaginary series of lines
is constructed through them (as in GpiPolyLine). All the lines
except the first and last are then divided in two at their mid­
points. A series of curved fillets are then drawn, each starting at
the end point of the last, at one of the mid-points.

Upon completion, the current x,y position is the end point of the
last line in the series.

The maximum number of fillets allowed depends upon the length
of co-ordinates but is at least 4000.

This function can occur within the picture; for example if either
is issued in store or draw-and-store mode, order(s) will be con­
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

n The number of x,y pairs.

x[n] An array of integer values (x coordinates).

y[n] An array of integer values (y coordinates).

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

Graphics Programming Interface

GPIERR_INVALID_,ARRAY_COUNT

GpiPolyFilletSharp

SHORT GpiPolyFilletSharp (hgpi, n, x, y, s)
HPS hgpi;
LONG n;
LONG x[];
LONG y[];
LONG s[];

Creates a fillet on a series of connected lines, with the first line
starting at current position. Subsequent x,y pairs identify the
end points of the lines.

This function is similar to GpiPolyFillet, except that instead of
allowing the implementation to choose the sharpness of each of
the constituent fillets, these are specified explicitly by the appli­
cation.

The sharpness of each fillet is defined as follows. Let A and C be
the start and end points, respectively, of the fillet, and let B be
the control point. Let W be the mid-point of AC. Let D be the
point where the fillet intersects WB. Then the sharpness is given
by

sharpness = WD/DB

so that

> 1.0 means a hyperbola is drawn
= 1.0 means a parabola is drawn
< 1.0 means an ellipse is drawn

Upon completion, the current x,y position is the end point of the
last line in the series.

The maximum number of fillets allowed depends upon the length
of co-ordinates but is at least 4000.

This function can occur within the picture; for example if either
is issued in store or draw-and-store mode, order(s) will be con­
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

n The number of x,y pairs.

x[n] An array of integer values (x coordinates).

y[n] An array of integer values (y coordinates).

s An array of (n-1) integer values of sharpness. Each
value, when divided by 65536, gives the sharpness of
successive fillets, as above.

Returns:

231

Windows Presentation Manager Reference

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID__ARRA.Y_COUNT
GPIERR_INVALID_SHARPNESS_PARAMETER

GpiPolySpline

232

SHORT GpiPolySpline (hgpi, n, x, y)
HPS hgpi;
LONG n;
LONG x[];
LONG y[];

Creates a succession of Bezier splines. The first one starts from
current position and goes to the third specified point, with the
first and second points used as control points. Subsequent
splines start from the ending point of the previous spline, and
end at the next specified point but two, with the intervening
points their first and second control points. It is the
application's responsibility to ensure that the gradient is con­
tinuous at each end/start point, if this is required.

Upon completion, the current x,y position is the end point of the
last line in the series.

The maximum number of splines allowed depends upon the
length of co-ordinates but is at least 2500.

This function can occur within the picture; for example if either
is issued in store or draw-and-store mode, order(s) will be con­
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

n The number of x,y pairs. This must be 3*s, where s is
the number of splines

x[n] An array of integer values (x coordinates).

The x and y values are each given in the following
order:-

cll, cl2, el, c21, c22, e2, c31, c32, e3, .•.
where

csi is the i'th control point of
the s'th spline

es is the endpoint of the s'th
spline

y[n] An array of integer values (y coordinates).

Returns:

Graphics Programming Interface

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_ARRAY_COUNT

7 .1.20 Area Functions

Functions described in this section are for specifying the start and end of a
filled area, and for controlling the attributes within which the area is
drawn.

The boundaries of an area are specified by line and/or arc primitives (see
the section, "Line Functions", and the section, "Arc Functions").

An area will consist of one or more closed figures. Each of these may be
specified as a single closed primitive (box or full arc), or a series of con­
nected strokes (lines, arcs, partial arcs, or fillets).

The following functions are valid within an area:-

• GpiMove, GpiSetCurrentPosition

• GpiLine, GpiPolyLine, GpiBox

• GpiSetAttrMode, GpiSetAttrs (for line attributes)

• GpiSetColor, GpiSetBackColor

• GpiSetMix, GpiSetBackMix

• GpiSetLineType, GpiSetLineWidth, GpiSetLineWidthGeom

• GpiSetLineEnd, GpiSetLineJoin

• GpiSetLinePatternSet, GpiSetLinePatternSymbol

• GpiSetArcParams

• GpiArc, GpiFullArc, GpiPartialArc

• GpiPolyFillet, GpiPolyFilletSharp, GpiPolySpline

• GpiCallSegment

• GpiSetModelTransform

• GpiPop which pops one of the above functions

• GpiSetCharSet, GpiSetCharBox

• GpiSetCharAngle, GpiSetCharShear

• GpiSetCharDirection, GpiSetCharMode

233

Windows Presentation Ma.na.ger Reference

• GpiSetCharSpacing, GpiSetCharExtra, GpiSetCharBreakExtra

• GpiSetTextAlignment

• GpiCharString, GpiCharStringAt

• GpiCharStringPos, GpiCharStringPosAt

GpiBox, GpiFullArc, and GpiPartialArc are only valid within an area
bracket (ie between GpiBeginArea and GpiEndArea) with control set to 2.
Other values of control on these functions cause an implicit area bracket
around the function.

GpiCharString(Pos)(At) functions are only valid for characters drawn with
vector symbol sets or outline fonts.

The start of a new figure is indicated by:-

• GpiMove

• GpiSetCurrentPosition

• GpiCallSegment

• GpiSetModelTransform

• GpiPop (or end of called segment) which pops current position or a
model transform

The system ensures that each figure is closed, by adding a line from the
last point specified to the starting point of the figure if necessary.

Optionally, as well as filling the interior, the boundary lines may be
drawn; if they are, the line attributes define the appearance of these lines.

Areas are drawn with the following attributes:-

• Pattern color

• Pattern background color

• Pattern mix

• Pattern background mix

• Pattern set

• Pattern symbol

• Pattern reference point

The manipulation of the color, background color, mix, and background
mix attributes globally is described in the section, "Color and Mix Func­
tions".

234

Graphics Programming Interface

The default values of pattern attributes are as follows:-

Pattern color:
Pattern background color:
Pattern mix:
Pattern background mix:
Pattern set:
Pattern symbol:
Pattern reference point:

Color 7
Color 0
Overpaint
Leave alone
Standard 17-value set
Solid
(0, 0)

The pattern used for area shading may either be taken from a symbol
within a symbol set (mono- or multi-colored), or else it may be a bitmap.

Pattern attributes are also used for various raster operations - see the sec­
tion, "Bitmap Support". They are also used when drawing the interior of
a box or full arc.

7 .1.20.1 Resources and Defaults Functions

GpiSetBitmapld

BOOL GpiSetBitmapid (hgpi, hbm, lcid)
RPS hgpi;
HBITMAP hbm;
LONG lcid;

Tags a bitmap with a local id, so that it may be used as a pat­
tern set.

In order to use the bitmap for area shading (or as the pattern in
a GpiBitBlt operation), a GpiSetPatternSet must be issued with
the specified lcid.

Parameters:

hgpi The handle for the GPI presentation space.

hbm The handle of the bitmap.

lcid A local id with which the bitmap is to be tagged.

It is an error if the lcid is already in use to ref er to a
font, symbol set, or bitmap.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_BITMAPJiANDLE
GPIERR_INVALID_LCID
GPIERR_LCID_ALREADY_IN_USE

235

Windows Presentation Manager Reference

GpiQueryBitmapHandle

HBITMAP GpiQueryBitmapHandle (hgpi, lcid)
HPS hgpi;
LONG lcid;

Returns the handle of the bitmap currently tagged with the
specified local id.

A null handle is returned if a bitmap is not currently tagged
with the specified lcid.

Parameters:

hgpi The handle for the GPI presentation space.

lcid The local id.

Returns:

0 Error
f =0 Bitmap handle

Principal errors:

GPIERR_BITMAP_NOT_FOUND
GPIERR_INVALID_LCID

7 .1.20.2 Attribute Setting Functions

GpiSetPatternSet

236

BOOL GpiSetPatternSet (hgpi, pattern_set)
HPS hgpi;
LONG pattern_set;

Sets the current pattern-set attribute to the specified value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

pattern_ set
The local identifier (lcid) of the required pattern set:

0 Default set.

64 Range of values for
thru the ID of a loaded

Graphics Programming Interface

Returns:

0 Error
1 OK

239 symbo 1 set.

240 Base pattern set.

Principal errors:

GPIERR_AREA_CONTEXT_ERROR
GPIERR_INVALID_PATrERN_SET_A'ITR

GpiQueryPatternSet

LONG GpiQueryPatternSet (hgpi)
HPS hgpi;

Returns the current pattern-set attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Pattern set

Principal errors:

GpiSetPattern

BOOL GpiSetPattern (hgpi, pattern_symbol)
HPS hgpi;
LONG pa,ttern_symbol;

Sets th~ eyrrent pattern symbol attribute to the specified value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

If the current pattern set specified a bitmap (see GpiSetBitma­
pld and GpiSetPatternSet), then pattern-symbol must be 65 in
order to use the bitmap.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

P,arameters:

hgpi The handle for the GPI presentation space.

237

Windows Presentation Manager Reference

pattern_ symbol

Returns:

0 Error
1 OK

The identity of the required pattern. A value of 0
selects the default pattern, any other value identifies a
pattern in the current pattern set. Valid values in the
base pattern set are:

BASESYM_SHADEl
BASESYM_SHADE2
BASESYM_SHADE3
BASESYM_SHADE4
BASESYM_SHADE5
BASESYM_SHADE6
BASESYM_SHADE7
BASESYM_SHADE8
BASESYM_VERT
BASESYM_HORIZ
BASESYM_DIAGUPl
BASESYM_DIAGUP2
BASESYM_DIAGDOWNl
BASESYM_DIAGDOWN2
BASESYM_NOSHADING
BASESYM_SOLID

BASESYM_BLANK

(1) - Hi intensity shading
(2) -)
(3) -)
(4) -)- Solid shading with
(5) -) decreasing intensity
(6) -)
(7) -)
(8) - Lo intensity shading
(9) - Vertical lines
(10} - Horizontal lines
(11) - Bottom left to top right (1)
(12} - Bottom left to top right (2)
(13) - Top left to bottom right (1)
(14) - Top left to bottom right (2)
(15) - No shading
(16} - Solid color

(64) - Blank

If the specified pattern is not valid, the default (device
dependent) is used.

Principal errors:

GPIERR_AREA_CONTEXT_ERROR
GPIERR_INVALID_PATTERN_ATTR

GpiQueryPattern

238

LONG GpiQueryPattern (hgpi}
HPS hgpi;

Returns the current pattern-symbol attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the CPI presentation space.

Returns:

-1 Error
>=0 Pattern symbol

Principal errors:

Graphics Programming Interface

GpiSetPatternRefPoint

BOOL GpiSetPatternRefPoint (hgpi, x, y)
HPS hgpi;
LONG x;
LONG y;

Sets the current pattern reference point to the specified value.

The pattern reference point is the point which the origin of the
area filling pattern maps to. The pattern is mapped into the area
to be filled by conceptually replicating the pattern definition in a
horizontal and vertical direction.

Since the pattern reference point is subject to all of the
transforms, if an area is moved by changing a transform and
redrawing, the fill pattern will also appear to move so as to
retain its position relative to the area boundaries. This allows
part of a picture to be moved with a GpiBitBlt operation, and
the remainder to be drawn by changing the appropriate
transform, with no discontinuity at the join.

The pattern reference point, which is specified in World Co­
ordinates, need not be inside the actual area to be filled. The
pattern reference point is not subject to clipping, although of
course the area to be filled will be.

The pattern reference point applies to filled areas and to Gpi­
FloodFill.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

The default pattern reference point is (0,0).

Parameters:

hgpi The handle for the GPI presentation space.

x,y The x,y co-ordinates of the pattern reference point in
World Co-ordinates.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_AREA_CONTEXT_ERROR

GpiQueryPatternRefPoint

BOOL GpiQueryPatternRefPoint (hgpi, x, y)

239

Windows Presentation Ma.na.ger Reference

HPS hgpi;
LONG *X;
LONG *Y:

This returns the cummt pattern referenc~ point, used in filling
areas, and in GpiFloodFill. ·

This function is invalid in store ~<!>de or implicit draw mode.

Parameters:

hgpi

*X,*Y

Returns:

0 Error
1 OK

The handle for the GPI presentation space.

Variables which are set to cdntaih the pattern refer­
ence point.

Principal errors:

7 .1.20.3 Primitive Functions

GpiBeginArea

240

SHORT GpiBeginArea (hgpi, control)
HPS hgpi;
ULONG control;

Indicates the beginning of a set of primitives that define the
boundary of an area.

The area interior is constructed either in alternate mode or in
winding mode. In alternate mode, whether any point is within
the interior is determined by drawing an imaginary line from
that point to infinity; if there is an odd number of boundary
crossings, the point is inside the area, if there is an even number
of crossings, it is not.

With winding mode, the directidnality of the boundary lines. is
taken into account. Using the same imaginary line, the number
of crossings is counted as with alternate mode, but now boun­
dary lines going in one direction score plus one, and boundary
lines going in the other score minus one. The.original point is in
the interior if the final score is noh-zero.

Although the current x,y position is not changed by GpiBe­
ginArea, it will be affected by the drawing ordersin the boun­
dary definition.

This function can occur within the picture; for example if it is

Graphics Programming Interface

issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

control A 4-byte parameter containing 2 flags at the least
signi~cant end (bits 0 and 1). These have the following
meanmgs:-

Bit 0

Bit 1

0 Do not draw boundary lines

1 Draw boundary lines

0 Construct interior in alternate
mode

1 Construct interior in winding mode

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_AREA.._CONTROL
GPIE~'ITEMPT_TO_START_SECOND_AREA

GpiEndArea

SHORT GpiEndArea (hgpi)
HPS hgpi;

Indicates the end of a set of primitives that define the boundary
of an area.

Upon completion, the current x,y position is the last x,y position
specified in the boundary definition, unless autoclosure occurred,
in which case it is the starting point of the last figure.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

0 Error
1 OK
2 Correlate hit
9 Multiple correlate hits

241

Windows Presentation Manager Reference

Principal errors:

GPIERR_END_AREA_IGNORED

7 .1.21 Character Functions

Functions described in this section are for drawing character strings, and
for controlling the attributes with which they are drawn.

There are three basic character string drawing primitives:-

• GpiCharString, which draws a character string consisting of a number
of codepoints, where the positioning of characters after the first
depends upon the character and/or font attributes

• GpiCharStringPos, as GpiCharString, but additional positioning infor­
mation is provided for each character

Character strings are drawn with the following attributes:-

• Character color

• Character background color

• Character mix

• Character background mix

• Character set

• Character box

• Character angle

• Character shear

• Character direction

• Character mode

• Character spacing

• Character extra

• Character break extra

• Text alignment

The manipulation of the color, background color, mix, and background
mix attributes globally is described in the section, "Color and Mix Func­
tions".

The default character attributes are:-

Character color:
Character background color:
Character mix:
Character background mix:

242

Color 7
Color 0
Overpaint
Leave alone

Graphics Programming Interface

Character set:
Character box:
Character angle:
Character shear:
Character direction:
Character mode:
Character spacing:
Character extra:
Character break extra:
Text alignment:

Base set
Device dependent
No rotation
No shear
Left-to-right
String
No spacing
No extra spacing
No break extra spacing
Standard

Characters may be drawn using symbol sets.

Characters can also be drawn using fonts.

• Symbol sets have the following characteristics:-

• Always loaded from application storage.

• Only available to the Gpi presentation space into which they are
loaded.

• Always include the actual character definitions, in either raster
(image) or vector form.

• May be proportionally spaced.

• The set is identified only by an 8-character name. The meaning of
this name is installation-dependent.

• The only metric; information available is the box size (plus any pro-
portional spacing data).

• Positioned by the corner of the character cell.

Symbol sets are loaded by the GpiLoadSymbolSet function.

In drawing using symbol sets, characters are positioned by the
appropriate corner of the character box.

• Fonts have both physical and logical characteristics.

Physical font characteristics:-

• Always loaded from disk storage.

• Available across the system.

• May include the actual character definitions.

• Include descriptive data such as facename, pitch, whether bold, etc
etc.

• Include considerable metrics data.

• Positioned by the font baseline (for left-to-right or right-to-left
directions).

Logical font characteristics are specified by an application:-

243

Windows Presentation Ma.na.ger Reference

• Descriptive and metric data of font required.

• No actual character definitions.

Physical fonts are loaded into the system by GpiLoadFonts. The logi­
cal font definition is supplied with GpiCreateLogFont.

In drawing using fonts, characters are positioned by the baseline of the
characters within the box.

7 .1.21.1 Font Selection

The GpiSetCharSet function selects a Character Set or Font for use in
subsequent Text drawing functions. The function specifies an LCID value.
This value represents either:

1. A Symbol Set loaded by GpiLoadSymbolSet.

2. A logical font definition created by GpiCreateLogFont.

For a Symbol Set, the Symbol Set that is to be used is completely defined
at the time GpiSetCharSet is issued. The appearance of text strings using
the Symbol Set can be changed by the Character Drawing Attributes,
however. For example, if the Symbol Set is a Vector one, changing the
Character Cell size changes the size at which the characters from the set
are drawn.

For a Font, the situation is different. The GpiSetCharSet function call
specifies the logical font required by the application. However, the selec­
tion operates in one of two ways, depending on the setting of the Font Use
parameter defined in the GpiCreateLogFont function:

Fixed Font mode
where the Font to use is completely defined by the GpiSetChar­
Set function and can only be changed by a susequent
GpiSetCharSet call.

Meta Font mode
where the Font to use is defined by the GpiSetCharSet call but
can be modified by subsequent changes to the Character Draw­
ing Attributes.

Fixed Font mode.

In Fixed Font mode, the font used is completely specified by the Gpi­
CreateLogFont function. It is not affected by any subsequent setting of
the Character Drawing Attributes. Using this mode, an application can
set up a set of fonts in advance of drawing, knowing that the fonts will not
be changed during picture drawing.

244

Graphics Programming lnterfaee

Meta Font mode. In Meta Font mode, GpiCreateLogFont generates a com­
plete logical definition of a font. However, after selecting a particular font
definition using GpiSetCharSet, some of the Character Drawing Attributes
can subsequently change the font in use. Fpr example, changing the Char­
acter Cell attribute will change the size of font in use.

Thus Meta Font mode implies a fresh mapping of the LCID to an actual
font each time a Character Drawing Attribute is changed. In practice, the
mapping will be done when the next Character String is drawn. At this
point, both the LCID and the current Character Drawing Attributes define
the required font, which is then chosen.

The character attributes involved b:i the selection of the font are:

Character Cell
affects the point size of font selected and also any scaling that is
applied when realising the font.

Character Direction
affe'ots the font selected - the font should be designed for the
specified direction.

Character A.ngle
should be satisfied by the range of baseline directions supported
by the font.

Character Shear
specifies a shear angle which should be matched by the slope
range supported by the font.

Character Precision
defines the drawing fidelity required by the user. The font
should be capable of matching the fidelity requested. Precision 3
implies that the font's characters should be transformable at
will, for example.

7 .1.21.2 Fonts Which are Supplied with Presentation Manager

The fonts that are supplied with Presentation Manager are:

• System font

Size appropriate to device resolution

• Times Roman

8, 10, 12, 16, 18 point sizes

• Helvetica

8, 10, 12, 16, 18 point sizes

245

Windows Presentation Manager Reference

• Courier

8, 10, 12 point sizes

The listed fonts are available for all display adapters supported by Presen­
tation Manager, and also for two printer resolutions. These sizes are sup­
ported by image fonts, to provide greatest legibility and high performance.

In addition, each typeface is also supported by an outline font, in

• Normal

• Bold

• Italic

• Bold italic

These provide for a wider range of point sizes, a wider range of point
sizes, but with generally lower legibility and lower performance.

Note that additional fonts can be added to the system as required, but
these are not supplied with Presentation Manager itself.

7 .1.21.3 Resources and Defaults Functions

GpiLoadSym bolSet

246

BOOL GpiLoadSymbolSet (hgpi, name, lcid, length, data)
HPS hgpi; .
LPS'IR name;
LONG lcid;
LONG length;
LPBUF data;

Loads a symbol-set definition, from a specified application data
area, into the GPI. (The data starts with the 'length' field, and
the symbol set id and store number fields are ignored.)

Parameters:

hgpi

name

lcid

The handle for the GPI presentation space.

An 8-character name which may be used to describe
the symbol set, for interchange for example.

The local identifier (lcid) for the symbol set. This
must be in the range 64 through 239.

It is an error if the lcid is already in use to refer to a
font, symbol set, or bitmap; except that an incremen­
tal load is allowed to a symbol set, providing it is not
currently selected.

Graphics Programming Interface

length The length of the data. This should be the same as the
length field at the start of the data.

data The start address of the data area which contains the
symbol set definition.

Returns:

0 Error
1 OK

Principal errors:

Gf IERR_INVALID_NAME
GPIERR_!NVALID_LENGTH_FOR_SYMBOL_SET
GPIERR_!NVALID_EXTENDED_HEADER_LENGTH
GPIERR_INCOMPLETE_SYMBOL_DEFN
GPIERR_INVALID_LCID
GPIERR_INVALID_SYMBOL_SET_TYPE
GPIERR_INCONSISTENT_SYMBOL_SET_TYPE
GP!ERR_LCID_,ALREADY_IN_USE
GPIERR_INVALID_SYMBOL_SET_FORMAT
GPIERR_INADEQUATE_LENGTH_FOR_SYMBOL_SET
GPIERR_INVALID_SYMBOL_SET_CODEPOINT
GPIERR_UNSUPPORTED_SYMBOL_SET_OPTION
GPIERR_CONFLICTING_SYMBOL_SET_ID
GPIERR_INVALID_VECTOR_SYMBOL_DEFN

GpiLoadFonts

BOOL GpiLoadFonts (hab, filename)
HAB hab;
LPSZ filename;

Loads font(s) from the specified resource file. All of the fonts in
the file become available for all applications to use. The font
definition is as produced by the Font Editor.

Parameters:

hab The anchor block handle

filename

Returns:

0 Error
1 OK

The filename of the font resource file.

Principal errors:

GPIERR_FONT_NOT_FOUND
GPIERR_INVALID_FONT_FILENAME
GPIERR_INVALID_FONT_DEFN
Others TBD

247

Windows Presentation Manager Reference

GpiUnloadFonts

BOOL GpiUnloadFonts (hab, filename)
HAB hab;
LPSZ filename;

Unloads font definition(s) which had previously been loaded
from the specified resource file.

Parameters:

hab The anchor block handle

filename

Returns:

0 Error
1 OK

The filename of the font resource file.

Principal errors:

GPIERR_FONT_NOT_LOADED
GPIERR_INVALID_FONT_FILENAME

GpiCreateLogFont

248

BOOL GpiCreateLogFont (hgpi, name, lcid, attrs)
HPS hgpi;
LPSTR name;
LONG lcid;
LPBUF attrs;

A logical definition of a font (ie in terms of its attributes) which
the application requires to use. The system will utilise whichever
of the fonts at its disposal most closely matches the require­
ments. An application may, however, force selection of a partic­
ular font by quoting the match value in attrs, to be that returned
for the desired font by GpiQueryFonts.

The local identifier (lci'cf) which the application wishes to use to
reference this logical font for later drawing operations is also
specified. See GpiSetCharSet.

If facename in attrs is null, and all of the attributes except the
code page are set to zero, the system default font will be
selected, in the specified code page.

Parameters:

hgpi

name

The handle for the GPI presentation space.

An 8-character name which may be used to describe
the logical font. Its main use is interchange files,
where it can help to identify the required font. For
example, it can reference a filename which contains the

Graphics Programming Interface

font for a remote system.

lcid The local id which the application will use to ref er to
this font. This must be in the range 64 through 289.

It is an error if the lcid is already in use to ref er to a
font, symbol set, or bitmap.

attrs The address of a buffer containing the required attri­
butes of the font. The format is as follows:-

Field Name

Length of record 2 byte integer
Match 4 byte integer
Facename FACESIZE size string
Registry id 2 byte integer
Code page 2 byte integer
Height 4 byte integer
Average character width 4 byte fixed point
Width class 2 byte integer
Weight class 2 byte integer
Selection flags 2 byte flags
Type flags 2 byte flags
Quality 2 byte integer

Returns:

0 Error
1 OK

Font use flags 2 byte flags

For more information see Appendix A.

Principal errors:

GPIERR_FONT_NOT_LOADED
GPIERR_INVALID_LCID
GPIERR_LCID_ALREADY_IN_USE
GPIERR_INVALID_FONT_ATI'RS
GPIERR_INVALID_NAME
Others TBD

GpiDeleteSetld

BOOL GpiDeleteSetid (hgpi, lcid)
HPS hgpi;
LONG lcid;

Does one of the following, depending upon the object referred to
by lcid :-

• If lcid refers to a loaded symbol set, the symbol set is
deleted, and is no longer available for use.

• If lcid refers to a logical font, the logical font is deleted, and
is no longer available for use.

249

Windows Presentation Manager Reference

• If Leid refers to a bitmap, then the bitmap is no longer tagged
with the lcid. The bitmap handle is still valid.

In all cases the lcid is freed and is now available for re-use.

Optionally, this operation may be performed for every lcid
currently in use.

Parameters:

hgpi The handle for the GPI presentation space.

lcid The local identifier {lcid) for the object.

Returns:

0 Error
1 OK

If -1 is specified, all loaded symbol sets, are deleted.
Also all logical fonts are deleted, and all bitmap tag­
ging removed.

Principal errors:

GPIERR_INVALID_LCID
GPIERR_LCID_NOT_LOADED

GpiQuery NumberSetlds

LONG GpiQueryNumberSetids (hgpi)
HPS hgpi;

Returns the total number of lcids currently in use, referring to
symbol sets, fonts, or bitmaps. This may be used to perform a
subsequent GpiQuerySetlds.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Number of lcids in use

Principal errors:

GpiQuerySetlds

250

BOOL GpiQuerySetids (hgpi, n, types, names, lcids)
HPS hgpl;
LONG n;
LONG types [] ;
LPSTR names [] ;
LONG lclds [] ;

Returns data about loaded symbol sets (see GpiLoadSymbolSet),

Graphics Programming Interface

fonts (see GpiCreateLogFont), and tagged bitmaps (see GpiSet­
Bitmapld). Information about the first n objects is returned; if
there are fewer than n, types and lcids elements for the
remainder are set to zero.

Parameters:

hgpi The handle for the GPI presentation space.

n The number of objects to be queried.

The number of lcids currently in use, and therefore the
maximum number of objects for which information
can be returned, may be found with GpiQueryNumber­
Setlds.

types[n] An array of length n.

1 Image symbol set
2 Vector symbol set
6 Logical font
7 Bitmap id

names[n]
An array of pointers to 8-byte fields, into which the 8-
character names associated with the symbol sets are
returned.

A similar name is returned for logical fonts while for
bitmaps, an all-blank name is returned.

lcids[n] An array in which the lcids are returned.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_ARRAY_COUNT

GpiQuerySymbolSetData

BOOL GpiQuerySymbolSetData (hgpi, lcid, count, data)
HPS hgpi:
LONG lcid:
LONG count:
LONG data[]:

Returns data about a symbol set loaded with GpiLoadSymbol­
Set.

Parameters:

hgpi The handle for the GPI presentation space.

251

Windows Presentation Manager Reference

lcid The local identifier (Icid) for the symbol set for which
information is required.

count

It is an error if the lcid value does not refer to a
currently loaded symbol set.

The number of elements supplied in data.

data[count]
An array of length count. Up to count elements are
returned.

Returns:

0 Error
1 OK

1 The width of the box in which the symbol is
defined.

2 The height of the box in which the symbol is
defined.

3 Whether the symbol set supports propor­
tional spacing. 1 if so, otherwise 0.

Any further elements will be zeroed.

Principal errors:

GPIERR_INVALID_LCID
GPIERR_LCID_NOT_A....SYMBOL_SET
GPIERR_INVALID.....ARRAY_COUNT

GpiQueryFonts

252

LONG GpiQueryFonts (hgpi, facename, n,
metrics_length, metrics)

HPS hgpi;
LONG x;
LPSZ facename;
LONG *n;
LONG metrics_length;
LPBUF metrics;

This returns a record providing details of the fonts which match
the specified facename.

Font metrics are returned for as many matching fonts as there is
room for in metrics.

By inspecting the returned data, the application may choose
which of the available fonts is most appropriate for its require­
ments. If necessary, it can force selection of a particular font, by
specifying its match (as returned in metrics) in the attrs structure
for GpiCreateLogFont.

By specifying n as 0, and then looking at the value returned, an

Graphics Programming Interface

application can determine how many fonts there are which
match the facename.

All sizes are returned in world co-ordinates.

Parameters:

hgpi The handle for the GPI presentation space.

facename
The facename of the fonts of interest.

*n The number of fonts for which the application requires
the metrics. The number of fonts that were actually
returned is returned in this variable.

metrics_ length
The length of each metrics record to be returned. The
buffer pointed to by metrics must be m multiplied by
metrics.... length long.

metrics In this buffer are returned the font metrics of up to *n
matching fonts. The format for each record is as
defined for GpiQueryFontMetrics. For each font, no
more data than metrics.... length will be returned.

Returns:

-1 Error
>=0 Number of fonts not returned

Principal errors:

GPIERR_INVALID_FACENAME
GPIERR_INVALID__.ARRAY_COUNT (METRICS)
GPIERR_INVALID_LENGTH (metrics_length)

GpiQueryFontMetrics

BOOL GpiQueryFontMetrics (hgpi, metrics_length, metrics)
HPS hgpi;
LONG metrics_length;
LPBUF metrics;

This returns a record providing details of the font metrics for
the currently selected logical font.

All sizes are returned in world co-ordinates.

Parameters:

hgpi The handle for the GPI presentation space.

metrics_ length
The length of the buffer pointed to by metrics.

253

Windows Presenta.tion Ma.na.ger Reference

254

metrics In this buffer are returned the font metrics of a match­
ing font. The format is

Field Name
======

Family name
Facename
Registry id
Code page
Em height
X height
Max ascender
Max descender
Lower case ascent
Lower case descent
Internal leading
External leading
Average character width
Maximum character increment
Maximum baseline extent
Character slope
Inline direction
Character rotation
Weight class
Width class
X device resolution
Y device resolution
First character
Last character
Default character
Break character
Nominal point size
Minimum point size
Maximum point size
Type flags
Selection flags
Capabilities
Subscript size
Subscript position
Superscript size
Superscript position
Underscore width
Underscore spacing
Strikeout size
Strikeout position
Kerning pairs
Kerning tracks
Match

Field Type
======

FACESIZE size string
FACESIZE size string
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
1 byte unsigned
1 byte unsigned
1 byte unsigned
1 byte unsigned
2 byte integer
2 byte integer
2 byte integer
2 byte flags
2 byte flags
2 byte flags
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
2 byte integer
4 byte integer

No more data than metrics_ length will be returned.

Returns:

0 Error
1 OK

Principal errors:

Graphics Programming Interface

GPIERR_INVALID_LENGTH (metrics_length)

GpiQueryKerningPairs

BOOL GpiQueryKerningPairs (hgpi, count, data)
HPS hgpi;
LONG count;
LPBUF data;

This returns kerning pair information for the currently selected
logical font.

Note that the number of kerned pairs is a field in the text
metrics.

Parameters:

hgpi

count

data

Returns:

0 Error
1 OK

The handle for the GPI presentation space.

The number of kerning pairs for which there is room in
data.

An array of count kerning pair records in which infor­
mation is returned. No more than count records will be
returned.

Each record consists of the following:-

Field Name Field Type

2 byte integer
-2 byte integer

First character of pair
Second character of pair
Kerning amount 2 byte signed

integer, with positive
numbers indicating
increased inter-character
spacing

Principal errors:

GPIERR__INVALID_ARRAY_COUNT

GpiQueryKerningTracks

BOOL GpiQueryKerningTracks (hgpi, count, data)
HPS hgpi;
LONG count;
LONG data[];

This returns kerning track information for the currently selected
logical font.

Parameters:

255

Windows Presentation Manager Reference

hgpi

count

The handle for the GPI presentation space.

The number of elements contained in data. The
number which should be allowed for in order to
retrieve the full kerning track data for this font may
be found by GpiQueryFontMetrics.

data[count]
An array of count elements, in which kerning track
information is returned. No more than count elements
will be returned.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID__ARRAY_COUNT

GpiQueryWidthTable

256

BOOL GpiQueryWidthTable (hgpi, first_char, count, data)
HPS hgpi;
LONG first_char:
LONG count;
LONG data[];

This returns width table information for the currently selected
logical font.

Parameters:

hgpi The handle for the GPI presentation space.

first-char
The codepoint of the initial character for which width
table information is required.

count The number of elements contained in dat_a (i.e. the
number of elements to be returned). The number
which should be allowed in order to retrieve the the
full width table data for this font may be found by
Gpi Query Fon tMetrics.

data[count]
An array of count elements, in which width table infor­
mation is returned. No more than count elements will
be returned.

Returns:

0 Error
1 OK

Principal errors:

Graphics Programming Interface

GPIERR_INVALID_:FIRST_CHAR
GPIERR_INVALID__ARRAY_COUNT

GpiEnableKerning

BOOL GpiEnableKerning (hgpi, flags)
HPS hgpi;
ULONG flags;

This enables or disables pair and track kerning. Note that this
applies globally for the presentation space, not individually by
font.

By default, both pair and track kerning are on. The kerning
state is not metafiled, but is retained across re-associations.

It is an error to issue this function in any of the following cases:-

• Inside an open segment

• Outside an open segment, but inside one of the following:-

• Area bracket

• Strokes bracket

• Element bracket

• Clip area bracket

Parameters:

hgpi The handle for the GPI presentation space.

flags Option flags, as follows:-

EI<- PAIR (Bit 0)
Set to 13'1' to enable pair kerning, B'O' to
disable pair kerning

EI<- TRACK (Bit 1)
Set to B'l' to enable track kerning, B'O' to
disable track kerning

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_KERNING_FLAGS

GpiQueryKerning

LONG GpiQueryKerning (hgpi)
HPS hgpi;

This returns whether pair and track kerning are currently
enabled.

257

Windows Presentation Manager Reference

GpiSetCp

The return parameter is a set of flags, as follows:-

EK_ PAIR (Bit 0)
Set to B'l' if pair kerning is enabled, B'O' otherwise

EIC TRACK (Bit 1)
Set to B' 1' if track kerning is enabled, B'O' otherwise

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Flags

Principal errors:

BOOL GpiSetCp (hgpi, codepage)
HPS hgpi;
LONG codepage;

This selects the codepage id to be used for graphics characters
for the base (default) character set.

Any one of three codepages may be selected, either of the two
ASCII codepages defined to DOS, or the additional EBCDIC
(CECP) one appropriate to the national language version of
shipment.

When a Gpi presentation space is first created, the code page in
force is that defined by the process code page.

Parameters:

hgpi specifies the handle for the GPI presentation space.

codepage

Returns:

0 Error
1 OK

The codepage id. WinQueryCpList can be used to find
which ones are available.

Principal errors:

GPIERR_INVALID_CODEPAGE

GpiQueryCp

258

LONG GpiQueryCp (hgpi)
HPS hgpi;

Graphics Programming Interface

This returns the currently selected graphics codepage id.

Parameters:

hgpi specifies the handle for the GPI presentation space.

Returns:

0 Error
!=0 Code page

Principal errors:

Gpi QueryTextBox

BOOL GpiQueryTextBox (hgpi, n, ch, count, x, y)
HPS hgpi;
LONG n;
LPSTR ch;
LONG count;
LONG *X;
LONG *Y:

This processes the specified string as if it were to be drawn,
under the current character attributes, and returns an array of
up to 5 (x,y) co-ordinate pairs. The first four of these pairs are
the co-ordinates of the top-left, bottom-left, top-right and
bottom-right corners of the parallelogram which encompasses
the string when drawn on the associated device. The fifth point
is the concatenation point, which is the position at which a sub­
sequent string would have to be drawn if it were to follow on
smoothly.

All co-ordinates are relative to the start point of the string, as
defined by the character direction.

This information may be used to box or underline the string, or
to change the attributes in the middle of a longer string.

Parameters:

hgpi

n

ch

count

The handle for the GPI presentation space.

The length of the string

The character string to be examined

The number of elements in *X and *Y·

*X,*Y

Returns:

Variables in which the co-ordinate pairs are returned.

0 Error
1 OK

Principal errors:

259

Windows Presentation Manager Reference

GPIERR_DBCS_SYMBOL_SET_NOT_AVAILABLE (warning)
GPIERR_INVALID_CHAR_STRING_LENGTH
GPIERR_INVALID_DBCS_CHAR_IN_STRING (warning)
GPIERR_DBCS_CHAR_STRING_MUST_HAVE_EVEN_LENGTH (warning)
GPIERR_INVALID__ARRAY_COUNT

GpiQueryTextBreak

LONG GpiQueryTextBreak (hgpi, n, ch, extent, count)
HPS hgpi;
LONG n;
LPSTR ch;
LONG extent;
LONG *Count;

This processes the specified string as if it were to be drawn,
under the current character attributes, and finds where the
string must be split if it is not to exceed the specified extent.

By breaking the string at the indicated character (or before),
and distributing the remainder amongst the characters using
GpiSetTextCharacterExtra, text justification may be achieved.

Parameters:

hgpi The handle for the GPI presentation space.

n The length of the string

ch The character string to be examined

extent The maximum extent for the string, measured along
the baseline for left-to-right and right-to-left charac­
ters directions, and along the shearline for top-to­
bottom and bottom-to-top character directions.

*count A variable in which the number of characters which fit
within the extent is returned. If no characters fit, zero
is returned.

Returns:

-1 Error
>=0 Amount ofextent which will be unused if only

count characters are kept in the string

Principal errors:

GPIERR_DBCS_SYMBOL_SET_NOT_AVAILABLE (warning)
GPIERR_INVALID_CHAR_STRING_LENGTH
GPIERR_INVALID_DBCS_CHAR_FOUND_IN_STRING (warning)
GPIERR_DBCS_CHAR_STRING_MUST_HAVE_EVEN_LENGTH (warning)
GPIERR_INVALID_EXTENT

GpiQueryCharCorr

260

BOOL GpiQueryCharCorr (hgpi)
HPS hgpi;

Graphics Programming Interface

This function returns an offset which indicates which character
within a string was selected, the last time that a character string
primitive returned a successful correlation hit. It is valid
whether the correlation was against a primitive stored in a seg­
ment, or processed in draw or draw-and-store mode.

If more than one character in the string was selected, the offset
of the first one in the string is returned.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-4 Error
-1 No offset
>=0 Ordinal number of character (first is 0) within the string

Principal errors:

GpiQueryDefCharBox

BOOL GpiQueryDefCharBox (hgpi, width, height)
HPS hgpi;
LONG •width;
LONG •height;

This function returns the size of the default graphics character
box, in world co-ordinates.

Parameters:

hgpi The handle for the GPI presentation space.

*Width, *height

Returns:

0 Error
1 OK

Variables in which the default width and height are
returned.

Principal errors:

261

Windows Presentation Manager Reference

7 .1.21.4 Attribute Setting Functions

GpiSetCharSet

BOOL GpiSetCharSet (hgpi, set}
HPS hgpi;
LONG set;

Sets the current character-set attribute to the specified value.

This functions can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiAttrMode) determines whether or
not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

set The local identifier (lcid) of the required character set.

Returns:

0 Error
1 OK

0 Default set
1 APL set (if featured; character mode 1 only)
8 Default DBCS character set (if featured}

64 Range of values for
thru the ID of a loaded
299 logical font or symbol set.

240 Base character set.

Principal errors:

GPIERR_INVALID_CHAR_SET_ATI'R

GpiQueryCharSet

262

LONG GpiQueryCharSet (hgpi}
HPS hgpi;

Returns the current character set attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Character set (lcid}

Graphics Programming Interface

Principal errors:

GpiSetCharBox

BOOL GpiSetCharBox (hgpi, width, height)
HPS hgpi;
LONG width;
LONG height;

Sets the current character-box attribute to the specified value.

The parameters wz"dth and hez"ght specify values for the width and
height of a character box in terms of the drawing order coordi­
nate space.

This function can occur within the picture; for example if it is
· issued in store or draw-and-store mode, an order will be con­

structed and placed into the current segment.

The attribute mode (see GpiAttrMode) determines whether or
not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

width ,height

Returns:

0 Error
1 OK

The width and height of the character box. These are
long signed integers, with a notional binary point
between the second and third bytes. Thus a width of 8
world co-ordinate units is represented as 8*65536.

The width determines the spacing of consecutive char­
acters along the baseline.

Both width and height can be positive, negative, or
zero.

When either parameter is negative, the spacing occurs
in the opposite direction to normal and each character
z"s drawn reflected in character mode 3. Thus, for exam­
ple, a negative height in the standard direction in
mode 3 means that the characters are drawn upside
down, and the string drawn below the baseline (assum­
ing no other transformations cause inversion).

A zero character width or height is also valid; here, the
string of characters collapses into a line. If both are
zero, the string is drawn as a single point.

Principal errors:

263

Windows Presentation Manager Reference

GPIERR_INVALID_CHAR_BOX_ATI'R

Gpi QueryChar Box

BOOL GpiQueryCharBox (hgpi, width, height)
HPS hgpi;
LONG *Width;
LONG *height;

Returns the current character box attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

*Width,*height

Returns:

0 Error
1 OK

Variables in which the character box attribute are
returned.

Principal errors:

GpiSetCharAngle

264

BOOL GpiSetCharAngle (hgpi, ax, ay)
HPS hgpi;
LONG ax;
LONG ay;

Sets the current character-angle attribute to the specified value.
The parameters ax and ay specify integer values for the coordi­
nates of the end of a line starting at the origin (0,0); the base
line for subsequent character strings is parallel to this line.

In character-mode 1, the call has no effect when characters are
drawn.

In character-mode 2, the angle is used to determine the position
of each character, but the orientation of characters within the
character box is inherent in their definitions. The characters are
positioned so that the lower left-hand corners of the character
definitions are placed at the lower left-hand corners of the char­
acter boxes.

In character-mode 3, the angle is observed accurately, and the
character boxes are rotated to be normal to the character base­
line. If the co-ordinate system is such that one x-axis unit is not
physically equal to one y-axis unit, a rotated character string
appears to be sheared.

Graphics Programming Interface

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiAttrMode) determines whether or
not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

ax,ay The co-ordinates of a point defining the baseline. If
both ax and ay are zero, the character angle is reset to
the default value.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_CHAR_ANGLE_ATIR

GpiQueryCharAngle

BOOL GpiQueryCharAngle (hgpi, ax, ay)
HPS hgpi;
LONG *ax;
LONG *ay;

Returns the current character angle attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

*aX,*ay Variables in which the character angle attribute are
returned.

Returns:

0 Error
1 OK

Principal errors:

GpiSetCharShear

BOOL GpiSetCharShear (hgpi, hx, hy)
HPS hgpi;
LONG hx;
LONG hy;

Sets the current character-shear attribute to the specified value.

265

Windows Presentation Manager Reference

The parameters hx and hy specify integer values that identify
the end coordinates of a line originating at 0,0; the vertical
strokes in subsequent character strings are drawn parallel to the
defined line. The top of the character box remains parallel to
the character baseline.

If hx = 0 and hy = 1 (the default), 'upright' characters result. If
hx and hy are both positive or both negative, the characters
slope from bottom left to top right. If hx and hy are of opposite
signs, the characters slope from top left to bottom right. No
character inversion takes place as a result of shear alone. (Inver­
sion can be performed with the CpiCharBox call).

Usually, it is an error to specify a zero value for hy, because this
would imply an infinite shear. However, if both hx and hy are
zero, the attribute is set to the default value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see CpiAttrMode) determines whether or
not the push form of the function is generated.

Parameters:

hgpi

hx,hy

Returns:

0 Error
1 OK

The handle for the CPI presentation space.

The co-ordinates of a point defining the shearline.

Principal errors:

GPIERR_INVALID_CHAR_SHEAR_ATTR

CpiQueryCharShear

GpiQueryCharShear (hgpi, hx, hy)

266

HPS hgpi;
LONG *hx;
LONG *hy;

Returns the current character shear attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the CPI presentation space.

*hX,*hY Variables in which the character shear attribute are
returned.

Returns:

Graphics Programming Interface

0 Error
1 OK

Principal errors:

GpiSetCharDirection

BOOL GpiSetCharDirection (hgpi, direction)
RPS hgpi;
LONG direction;

Sets the current character-direction attribute to the specified
value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiAttrMode) determines whether or
not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

direction
Valid values for dz"recti"on are:

CHARDIRECTION_DEFAULT
CHARDIRECTION_LEFTTORIGHT
CHARDIRECTION_TOPTOBOTTOM
CHARDIRECTION_RIGHTTOLEFT
CHARDIRECTION_BOTTOMTOTOP

(0) - Use default
(1) - Left to right
(2) - Top to bottom
(3) - Right to left
(4) - Bottom to top

If the specified direction is not valid, the default direc­
tion is used.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_CHAR_DIRECTION_ATTR

GpiQueryCharDirection

LONG GpiQueryCharDirection (hgpi)
RPS hgpi;

Returns the current character direction attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

267

Windows Presentation Manager Reference

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Character direction

Principal errors:

GpiSetCharMode

268

BOOL GpiSetCharMode (hgpi, mode)
HPS hgpi;
LONG mode;

Sets the current current character-mode attribute to the
specified value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiAttrMode) determines whether or
not the push form of the function is generated.

Parameters:

hgpi

mode

The handle for the GPI presentation space.

Valid values for mode are:-

CHARMODE_DEFAULT
CHARMODE_LOW
CHARMODE_MED
CHARMODE_HIGH

(0) - Use default
(1) -)
(2) -)- see below
(3) -)

CHARPREC-DEFAULT
Use the default.

CHARPREC-LOW
Use an image character set or font, as deter­
mined by the character set attribute. The
positioning of characters after the first one is
influenced only by the character direction
attribute; other character attributes are
ignored.

CHARPREC-MED
Use an image character set or font, as deter­
mined by the character set attribute. The
values of character box, character angle,
character direction, character shear, charac­
ter spacing, character extra, character break
extra and text alignment are taken into

Graphics Programming Interface

consideration for the purposes of positioning
successive characters, although the indivi­
dual character definitions are not scaled or
rotated.

CHARPREC_ HIGH
Use a vector character set or font, as deter­
mined by the character set attribute. All
character attributes are followed exactly,
both for positioning individual characters
and also for scaling, rotating, and shearing
them.

If the specified mode is not valid, the default is used.

Returns:

0 .Error
1 OK

Principal errors:

GPIERR_INVALID_CHAR_MODE_ATTR

GpiQueryCharMode

LONG GpiQueryCharMode (hgpi)
HPS hgpi;

Returns the current character mode attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Character mode

Principal errors:

GpiSetCharSpacing

BOOL GpiSetCharSpacing (hgpi, width_mult, height_mult)
HPS hgpi;
LONG width_mult;
LONG height_mult;

Sets the amount of space or overlap to be provided between suc­
cessive characters in a string.

The multipliers apply to the character box dimensions (see
GpiSetCharBox). They produce increments to the width and
height which are applied equally to all characters in the string,

269

Windows Presentation Manager Reference

irrespective of any proportional spacing or kerning which may
take place.

Only one of the two multipliers will be relevant for any particu­
lar character string primitive; this depends upon the character
direction (see GpiSetCharDirection). The width increment is
used for left-to-right and right-to-left character directions, and
the height increment for bottom-to-top and top-to-bottom char­
acter directions.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiAttrMode) determines whether or
not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

width_ mult,height_ mult

Returns:

0 Error
1 OK

The width and height multipliers, respectively. These
are each in the form of 4-byte signed fixed point
numbers with the high-order word as the integer por­
tion and the low-order word as the fractional portion.
Thus, a value of 65536 specifies a multiplier of 1.0.

The values may be negative, zero, or positive:-

• A negative value forces the characters closer
together

• A va.lue of zero (the default) results in standard
spacmg

• A positive value allows extra space between char­
acter boxes

Principal errors:

GPIERR_INVALID_CHAR_SPACING_ATI'R

GpiQueryCharSpacing

270

BOOL GpiQueryCharSpacing (hgpi, width_mu1t, height_mu1t)
RPS hgpi;
LONG *Width_mu1t;
LONG •height-:mu1t;

Returns the current character spacing attribute.

This function is invalid in store mode or implicit draw mode.

Graphics Progra.mming Interface

Parameters:

hgpi The handle for the GPI presentation space.

*Width_ mult
A variable in which the width multiplier is returned.

*height_ mult
A variable in which the height multiplier is returned.

Returns:

0 Error
1 OK

Principal errors:

GpiSetCharExtra

BOOL GpiSetCharExtra (hgpi, width_extra, height_extra)
HPS hgpi;
LONG width_extra;
LONG height_extra;

Sets the amount of space or overlap to be provided between suc­
cessive characters in a string. The effect of this is identical to
the spacing produced by GpiSetCharSpacing, except that the
values are additive deltas rather than multipliers. If both char­
acter spacing and character extra is used, the effects will be
cumulative. Character extra is particularly useful for fonts,
where the character box attribute may not be applicable, and
are increments to the width and height which are applied equally
to all characters in the string, irrespective of any proportional
spacing or kerning which may take place.

Only one of the two values will be relevant for any particular
character string primitive; this depends upon the character
direction (see GpiSetCharDirection). The width increment is
used for left-to-right and right-to-left character directions, and
the height increment for bottom-to-top and top-to-bottom char­
acter directions.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiAttrMode) determines whether or
not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

271

Windows Presentation Manager Reference

width_ extra,heighL extra

Returns:

0 Error
1 OK

The width and height increments, respectively. These
are each in the form of 4-byte signed fixed point
numbers with the high-order word as the integer por­
tion and the low-order word as the fractional portion.
Thus, a value of 65536 specifies an increment of 1.0.

The values may be negative, zero, or positive:-

• A negative value forces the characters closer
together

• A va.lue of zero (the default) results iii standard
spacmg

• A positive value allows extra space between char­
acter boxes

Principal errors:

GPIERR_INVALID_CHAR_EXTRA_ATI'R

GpiQueryCharExtra

272

BOOL GpiQueryCharExtra (hgpi, width_extra, height_extra)
HPS hgpi;
LONG *Width_extra;
LONG *height_extra;

Returns the current character extra attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

*Width- extra
A variable in which the width increment is returned.

*height_ extra
A variable in which the height increment is returned.

Returns:

0 Error
1 OK

Principal errors:

Graphics Programming Interface

GpiSetCharBreakExtra

BOOL GpiSetCharBreakExtra (hgpi, code_point,
width_extra, height_extra)

HPS hgpi;
LONG code_point;
LONG width_extra;
LONG height_extra;

Sets the amount of additional space to be provided at a break
(normally space) character within a string. The effect of this is
additional to any spacing produced by GpiSetCharSpacing and
GpiSetCharExtra. The values are additive deltas in world co­
ordinates, and are irrespective of any proportional spacing or
kerning which may take place.

Only one of the two values will be relevant for any particular
character string primitive; this depends upon the character
direction (see GpiSetCharDirection). The width increment is
used for left-to-right and right-to-left character directions, and
the height increment for bqttom-to-top and top-to-bottom char­
acter directions.

Character break extra is useful for achieving right justification
of a character string.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiAttrMode) determines whether or
not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

code-point
The code point of the break character.

width_ extra,heighL extra
The width and height increments, respectively. These
are each in the form of 4-byte signed fixed point
numbers with the high-order word as the integer por­
tion and the low-order word as the fractional portion.
Thus, a value of 65536 specifies an increment of 1.0.

The values may be negative, zero, or positive:-

• A negative value reduces the size of a break char­
acter

• A value of zero (the default) gives the normal size
(subject to any other spacing in force)

273

Windows Presentation Manager Reference

Returns:

0 Error
1 OK

• A positive value increases the size of a break char­
acter

Principal errors:

GPIERR_INVALID_CHAR_BREAI(_EXTRA_ATI'R

GpiQueryCharBreakExtra

BOOL GpiQueryCharBreakExtra (hgpi, code_point, width_extra, he:
HPS hgpi;
LONG *COde_point;
LONG *Width_extra;
LONG *height_extra;

Returns the current character break extra attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

*Code-point
A variable in which the break character code point is
returned.

*Width- extra
A variable in which the width increment is returned.

*height_ extra

Returns:

0 Error
1 OK

A variable in which the height increment is returned.

Principal errors:

GpiSetTextAlignment

274

BOOL GpiSetTextAlignment (hgpi, horiz, vert)
HPS hgpi;
LONG horiz;
LONG vert;

Sets the current alignment, in horizontal and vertical directions,
of subsequently output character strings. The parameters
specify the alignment of character strings horizontally and verti­
cally. Together they define a reference point within the string
that is positioned on the starting point specified for the string.

Graphics Programming Interface

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

The attribute mode (see GpiAttrMode) determines whether or
not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

horiz The horizontal alignment. Possible values are

CHARHALIGN_STANDARD (-1)
Standard. The alignment depends on the
current character direction:-

Left to right (0,1}
Top to bottom (2)
Right to left (3)
Bottom to top (4)

Left edge of first characte:
Left edge of first characte·
Right edge of first charact'
Left edge of first characte

CHARHALIGN-DEF AULT (0)
The default (-1)

CHARHALIGN_ NORMAL (1)
Normal. The alignment depends on the
current character direction:-

Left to right (0,1} Left
Top to bottom (2)
Right to left (3)
Bottom to top (4)

Center
Right
Center

CHARHALIGN-LEFT (2)
Left alignment. The string is aligned on the
left edge of its leftmost character.

CHARHALIGN_ CENTER (3)
Center alignment. The string is aligned on
the arithmetic mean of left and right.

CHARHALIGN_RIGHT (4)
Right alignment. The string is aligned on
the right edge of its rightmost character.

vert The vertical alignment. Possible values are

CHARVALIGN-STANDARD (-1)
Standard. The alignment depends on the
current character direction:-

Left to right (0,1}
Top to bottom (2)
Right to left (3)
Bottom to top (4)

Bottom edge of first charac
Top edge of first character
Bottom edge of first charac
Bottom edge of first charac

275

Windows Presentation Manager Reference

276

Returns:

0 Error
1 OK

CHARYALIGN_DEFAULT (0)
The default (-1)

CHARY ALIGN_ NORMAL (1)
Normal. The alignment depends on the
current character direction:-

Left to right (0,1)
Top to bottom (2)
Right to left (3)
Bottom to top (4)

Base
Top
Base
Base

CHARY ALIGN_ TOP (2)
Top alignment. The string is aligned on the
top edge of its topmost character.

CHARYALIGN_CAP (3)
Cap alignment. The string is aligned on the
cap of its topmost character. Where cap is
not defined by the symbol set or font, this is
the same as top.

CHARYALIGN_HALF (4)
Half alignment. The string is aligned on the
arithmetic mean of base and cap.

CHARY ALIGN_ BASE (5)
Base alignment. The string is aligned on the
base of its bottom character. Where base is
not defined by the symbol set or font, this is
the same as bottom.

CHARYALIGN_BOTTOM (6)
Bottom alignment. The string is aligned on
the bottom edge of its bottom character.

Principal errors:

GPIERR_INVALID_TEXT_ALIGN_,ATTR

The terms "top left", "bottom right", and so on, are well defined
when the character angle and the direction of the co-ordinate
system are such that the baseline is parallel to the ~ axis, run­
ning from left ot right on the device, and there is no character
shear.

If the character is rotated or sheared, the term "top left" applies
to the corner of the character box that appears in the top left
when no rotation or shear is applied.

Graphics Programming Interface

GpiQueryTextAlignment

BOOL GpiQueryTextAlignment (hgpi, horiz, vert)
HPS hgpi;
LONG *horiz;
LONG *Vert;

Returns the current horizontal and vertical text alignment
values.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi

*horiz

*Vert

Returns:

0 Error
1 OK

The handle for the GPI presentation space.

A variable in which the horizontal text alignment is
returned.

A variable in which the vertical text alignment is
returned.

Principal errors:

7 .1.21.5 Primitive Functions

GpiCharString

SHORT GpiCharString (hgpi, n, ch)
HPS hgpi;
LONG n;
LPSTR ch;

GpiCharStringAt

SHORT GpiCharStringAt (hgpi, xO, yO, n, ch)
HPS hgpi;
LONG xO;
LONG yO;
LONG n;
LPSTR ch;

Draws a character string starting at the current x,y position
(GpiCharString), or at the specified position (GpiCharStringAt).

Current position is updated to the point at which the next char­
acter would have been drawn, had there been one.

This function can occur within the picture; for example if it is

277

Windows Presentation Ma.na.ger Reference

issued in store or draw-and-store mode, order(s) will be con­
structed and placed into the current segment.

Parameters:

hgpi

xO,yO

n

ch

Returns:

0 Error
1 OK

The handle for the GPI presentation space.

The starting position (GpiCharStringAt only).

The number of characters in the string.

The string of character codepoints.

2 Correlate hit(s)

Principal errors:

GPIERR_DBCS_SYMBOL_SET_NOT_.AVAILABLE (warning)
GPIERR_INVALID_CHAR_STRING_LENGTH
GPIERR_INVALID_DBCS_CHAR_IN_STRING (warning)
GPIERR_DBCS_CHAR_STRING_MUST_HAVE_EVEN_LENGTH (warning)

GpiCharStringPos

SHORT GpiCharStringPos (hgpi, rect, options,
n, ch, dx)

HPS hgpi;
GRECT rect;
ULONG options;
LONG n;
LPSTR ch;
LONG dx[J;

GpiCharStringPosAt

278

SHORT GpiCharStringPosAt (hgpi, xO, yO, rect, options, n, ch, ,
HPS hgpi;
LONG xO;
LONG yO;
GRECT rect;
ULONG options;
LONG n;
LPSTR ch;
LONG dx[];

Draws a character string starting at the current x,y position
(GpiCharStringPos), or at the specified position (GpiCharString­
PosAt).

A vector of increments may optionally be specified. which allows
control over the positioning of each character after the first.
These are distances measured in world co-ordinates (along the
baseline for left-to-right and right-to-left character directions,
and along the shearline for top-to-bottom and bottom-to-top).

Graphics Programming Interface

The i'th increment is the distance of the reference point (eg bot­
tom left corner) of the (i+l)'th character from the reference
point of the i'th. The last increment may be needed to update
current position.

These increments, if specified, set the widths of each character.
Any spacing called for by

• GpiSetCharSpacing

• GpiSetCharExtra

• GpiSetCharBreakExtra
is applied in addition to the widths defined by the vector.

A further option allows a rectangle to be specified, which is to be
used as the background of the string, rather than using the nor­
mal method of defining the background. Thi~ rectangle will be
painted using the current character background color and an
overpaint mix (unless this is in a dynamic segment, when leave­
alone will be used). Both corners of the rectangle are specified,
so that the rectangle is positioned independently of current posi­
tion.

A further option allows clipping of the string to the rectangle.
This is independent of whether the rectangle is actually drawn.

The string may optionally be drawn de-emphasized. This is used
in menus to denote options which are not currently selectable.
The implementation may choose whichever method of de­
emphasis is most appropriate on the particular device.

Current position may optionally be updated to the point at
which the next character would have been drawn, had there been
one, or it can be left unchanged by this function.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, order(s) will be con­
structed and placed into the current segment.

Parameters:

hgpi

xO,yO

re ct

options

The handle for the GPI presentation space.

The starting position (GpiCharStringPosAt only).

A rectangle structure defining the two corners of the
rectangle, which defines the background of the charac­
ters. Ignored if CHS_ OPAQUE is B'O' and CHS_ CLIP
is B'O'.

Formatting options. This consists of 32 flags (with 0
the least significant). These may be used in combina­
tion. Each set bit has the following meaning:-

279

Windows Presentation Ma.na.ger Reference

280

n

ch

dx[n]

Returns:

0 Error
1 OK

CHS_ OPAQUE (bit 0) ,
Background of characters is defined by rec­
tangle with corners at {xO,yO), {x1,y1), rather
than by the characters as usual. The rectan-
gle is to be shaded (with background color
and overpaint) before drawing.

CHS_ VECTOR (bit 1)
Increments vector supplied (dx). If this bit
is zero, dx is ignored

CHS_ DEEMPHASIZED (bit 2)
String to be drawn de-emphasized. This is
used for selection items to indicate that the
item is not currently selectable.

CHS_LEAVEPOS (bit 3)
Leave current position at the start of the
string. If this bit is not set, current position
is moved to the position at which the next
character would have been drawn, if there
had been one.

CHS_ CLIP (bit 4)
Chps the string to the rectangle if set.

Other bits are reserved and must be zero.

The number of characters in the string.

The string of character codepoints

A vector of (n values of) increment values. These are
4-byte signed integers, m world co-ordinates.

2 Correlate hit(s)

Principal errors:

GPIERR_DBCS_SYMBOL_SET_NOT__AVAILABLE (warning)
GPIERR_INVALID_CHAR_STRING_LENGTH
GPIERR_INVALID_DBCS_CHAR_IN_STRING (warning)
GPIERR_DBCS_CHAR_STRING_MUST_HAVE_EVEN_LENGTH (warning)
GPIERR_INVALID_POSITIONING_VALUE

Graphics Programming Interface

7 .1.22 Marker Functions

Functions described in this section are for drawing markers, and for con­
trolling the attributes with which they are drawn.

Markers are drawn with the following attributes:-

• Marker color

• Marker background color

• Marker mix

• Marker background mix

• Marker set

• Marker symbol

• Marker box

The default marker attributes are:-

Marker color:
Marker background color:
Marker mix:
Marker background mix:
Marker set:
Marker symbol:
Marker box:

Color 7
Color 0
Overpaint
Leave alone
Standard 11-value set
Cross
Device dependent

Markers may be drawn using either symbol sets or fonts. For further infor­
mation see the section, "Character Functions".

7 .1.22.1 Attribute Setting Functions

GpiSetMarkerSet

BOOL GpiSetMarkerSet (hgpi, set)
HPS hgpi;
LONG set;

Sets the current marker-set attribute to the specified value.

These functions can occur within the picture; for example if
either is issued in store or draw-and-store mode, an order will be
constructed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

281

Windows Presentation Manager Reference

hgpi The handle for the GPI presentation space.

set The identity (Icid) of the required marker set:

Returns:

0 Error
1 OK

0 Default set.

64 Range of values for
thru the ID of a loaded
299 symbo 1 set .

240 Base marker set.

Principal errors:

GPIERR_INVALID_MARKER_SET_ATI'R

GpiQueryMarkerSet

LONG GpiQueryMarkerSet (hgpi)
HPS hgpi;

Returns the current marker set attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=0 Marker set

Principal errors:

GpiSetMarker

282

BOOL GpiSetMarker (hgpi, symbol)
HPS hgpi;
LONG symbol;

Sets the current value of the marker-symbol attribute to the
specified value.

These functions can occur within the picture; for example if
either is issued in store or draw-and-store mode,

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

Graphics Programming Interface

hgpi The handle for the GPI presentation space.

symbol The identity of the required marker symbol. A value
of 0 selects the default marker symbol, any other value
identifies a symbol in the current marker set. Valid
values in the base marker set are:

MARKSYM_CROSS (1) - Cross.
MARKSYM_PLUS (2) - Plus.
MARKSYM_DIAMOND (3) - Diamond.
MARKSYM_SQUARE (4) - Square.
MARKSYM_SIXPOINTSTAR (5) - Six-point star.
MARKSYM_EIGHTPOINTSTAR (6) - Eight-point star.
MARKSYM_SOLIDDIAMOND (7) - Filled diamond.
MARKSYM_SOLIDSQUARE (8) - Filled square.
MARKSYM_DOT (9) - Dot.
MARKSYM_SMALLCIRCLE (10) - Small circle.

Returns:

0 Error
1 OK

MARKSYM_BLANK (64) - Blank.

Principal errors:

GPIERR_INVALID_MARKER_ATTR

GpiQueryMarker

LONG GpiQueryMarker (hgpi)
HPS hgpi;

Returns the current marker-symbol attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

Returns:

-1 Error
>=O Marker symbol

Principal errors:

GpiSetMarkerBox

BOOL GpiSetMarkerBox (hgpi, width, height)
HPS hgpi;
LONG width;
LONG height;

Sets the current marker-box attribute to the specified value.

These functions can occur within the picture; for example if

283

Windows Presentation Manager Reference

either is issued in store or draw-and-store mode, an order will be
constructed and placed into the current segment.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

width, height

Returns:

0 Error
1 OK

The marker box dimensions in world co-ordinates.
These are long signed integers, with a notional binary
point between the second and third bytes. Thus a
width of 8 world co-ordinate units is represented as
8*65536.

Principal errors:

GPIERR_INVALID_MARKER_BOX_,ATI'R

GpiQueryMarkerBox

284

BOOL GpiQueryMarkerBox (hgpi, width, height)
HPS hgpi;
LONG •width;
LONG •height;

Returns the current marker-box attribute.

This function is invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.

*Width,*height
Variables in which the marker box dimensions are
returned.

Returns:

0 Error
1 OK

Principal errors:

Graphics Programming Interface

7 .1.22.2 Primitive Functions

GpiMarker

SHORT GpiMarker (hgpi, x, y)
HPS hgpi;
LONG x;
LONG y;

Draws a marker, with its center at the specified position.

Current position is moved to the specified point.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

x,y The co-ordinates of the point at which the marker is
to be drawn.

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GpiPolyMarker

SHORT GpiPolyMarker (hgpi, n, x, y)
HPS hgpi;
LONG n;
LONG x[];
LONG y[];

Draws a series of one or more markers, at each of the specified
positions.

The center of the marker is drawn at the specified position(s).

Upon completion, the current x,y position is the x,y position of
the last marker in the series.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the current segment.

Parameters:

286

Windows Presentation Manager Reference

hgpi The handle for the GPI presentation space.

n The number of x,y pairs.

x An array of integer values (x coordinates).

y An array of integer values (y coordinates).

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_AR.RAY_COUNT

7 .1.23 Image Functions

Functions described in this section are for drawing images, and for con­
trolling the attributes with which they are drawn.

Image attributes are also used to control GpiBitBlt and GpiStretchBlt
functions (see the section, "Bitmap Support"), and also GpiPaintRgn (see
the section, "Region Support").

Images are drawn with the following attributes:-

• Image color

• Image background color

• Image mix

• Image background mix

The manipulation of the color, background color, mix, and background
mix attributes globally is described in the section, "Color and Mix Func­
tions".

The default image attributes are:-

Image color:
Image background color:
Image mix:
Image background mix:

286

Color 7
Color 0
Overpaint
Leave alone

Graphics Programming Interface

7 .1.23.l Primitive Functions

Gpilmage

SHORT Gpi!mage (hgpi, format, width, depth, length, data)
HANDLE hgpi;
LONG format;
LONG width;
LONG depth;
LONG length;
LPBUF data;

Draws a rectangular image with the top left corner at current
position.

The width and height specify the size of the image in pixels.
The .data contains pixel data for each of the depth rows, starting
with the top row. For each row, the data contains one bit per
pixel, left to right, with width/8 bytes, rounded up if the width
is not a multiple of 8. If, for example, the image width specified
is 12, each row of data must be padded out to a length of 16 so
that the data in the row occupies 2 bytes exactly.

The current x,y position is not changed.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, order(s) will be con­
structed and placed into the current segment.

Parameters:

hgpi

format

width

depth

length

data

Returns:

0 Error
1 OK

The handle for the GPI presentation space.

Format of image data. This is a reserved field that
should be specified as zero.

Width of image area (specified as a number of pels).

Depth of image area {specified as a number of pels).

Length of data, in bytes

Image data as described above.

Principal errors:

GPIERR_INVALID_IMAGE_FORMAT
GPIERR_INVALID_IMAGE_DIMENSION
GPIERR_INVALID_IMAGE_DATA_LENGTH

287

Windows Presentation Manager Reference

7 .1.24 l\1iscellaneous Functions

GpiComment

288

BOOL GpiComment (hgpi, n, data)
HPS hgpi;
LONG n;
LPBUF data;

Indicates a Comment drawing order containing the specified
data.

This function can occur within the picture; for example if it is
issued in store or draw-and-stored mode, an order will be con­
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

n The length of data in bytes. n must not be greater
than 255.

data A pointer to the comment string

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_COMMENT_LENGTH

Graphics Programming Interface

GpiSegmen tCharacteristics

BOOL GpiSegmentCharacteristics (hgpi, chid, length, data)
HPS hgpi;
LONG chid;
LONG length;
LPBUF data;

This order provides the facility to specify architected or user
defined characteristics for a segment.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con­
structed and placed into the prologue of the current segment.

Parameters:

Windows Presentation Manager Reference

hgpi The handle for the GPI presentation space.

chid The identification code for the characteristics (X'OO' -
X'7F' for architected characteristics and X'80' - X'FF'
for user-defined characteristics).

length The length of data in data

data A pointer to a buffer containing the characteristics
data.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_SEG_CHARACTERISTICS_LENGTH

GpiQueryDDALength

290

LONG GpiQueryDDALength (hgpi, type)
HPS hgpi;
LONG type;

This returns the length of the storage data block which the sys­
tem needs to hold the intermediate values for a particular DDA
sequence.

A DDA sequence should consist of the following:-

1. Issue GpiQueryDDALength to determine the system block
length required

2. Acquire storage for the system block of this length

3. Initialise the block -

• First 4 bytes are zero

• Parameters for the particular DDA request { eg line end­
points)

4. Issue GpiDDA as many times as necessary, until the end of
the sequence is reached. The system block should not be
altered while this sequence is in progress.

Parameters:

hgpi The handle for the GPI presentation space.

type Specifies which DDA sequence is going to be issued, as
follows:-

1 GpiLineDDA
2 GpiFilletDDA
9 GpiPartialArcDDA
4 GpiArcDDA
5 GpiFilletSharp

GpiDDA

Graphics Programming Interface

6 GpiSpline

Returns:

-1 Error
>=0 Length required for the system block

Principal errors:

GPIERR_INVALID_DDA.._TYPE

LONG GpiDDA (hgpi, type, sys_block, n, points)
HPS hgpi;
LONG type;
LPBUF sys_block;
LONG n;
LPBUF points;

This causes a DDA request to be performed, within a sequence
(see GpiQueryDDALength).

This is a request for the system to trace the outline of a figure.
Instead of drawing it, the system passes the co-ordinates of the
points which would have been drawn, back to the application.

Attributes are not taken into account for a DDA sequence. All
current transformations, however (including arc parameters if
applicable) are taken into consideration. The input co-ordinates
are in World Co-ordinates, the output co-ordinates are in device
co-ordinates.

A DDA sequence should consist of the following:-

• Issue GpiQueryDDALength to determine the system block
length required

• Acquire storage for the system block of this length

• Initialise the system block -

• First 4 bytes are zero

• Parameters for the particular DDA request (eg line end­
points). See below for details. .

• Issue GpiDDA as many times as necessary, until the number
of points returned is less than the number for which the
application has allowed. The system block should not be
altered while this sequence is in progress.

Parameters:

hgpi The handle for the GPI presentation space.

type Specifies which type of DDA is required, as follows:-

1 GpiLineDDA

291

Windows Presentation Manager Reference

292

2 GpiFilletDDA
9 GpiPartialArcDDA
4 GpiArcDDA
5 GpiFilletSharp
6 GpiSpline

Unpredictable results will occur if this is changed
within a particular sequence.

sys_ block
The address of the system block, which must be of
adequate length (as returned by GpiQueryD­
DALength).

The start of syB- block must be initialised before the
first GpiDDA call in the sequence, and not changed
again before the end of the sequence. The values
depend upon the DDA type, as follows:-

• For Line DDA :-

• Bytes 00-03: Zeroes

• Bytes 04-07: x co-ordinate of start point

• Bytes 08-0B: y co-ordinate of start point

• Bytes OC-OF: x co-ordinate of end point

• Bytes 10-13: y co-ordinate of end point

• For Fillet DDA :-

• Bytes 00-03: Zeroes

• Bytes 04-07: x co-ordinate of start point

• Bytes 08-0B: y co-ordinate of start point

• Bytes OC-OF: x co-ordinate of join point

• Bytes 10-13: y co-ordinate of join point

• Bytes 14-17: x co-ordinate of end point

• Bytes 18-lB: y co-ordinate of end point

See GpiPolyFillet for more details.

• For Partial Arc DDA :-

• Bytes 00-03: Zeroes

• Bytes 04-07: x co-ordinate of line start

• Bytes 08-0B: y co-ordinate of line start

• Bytes OC-OF: x co-ordinate of centre

• Bytes 10-13: y co-ordinate of centre

Graphics Programming Interface

• Bytes 14-17: multiplier

• Bytes 18-1B: start angle

• Bytes 1 C-1F: end angle

See GpiPartialArc for more details.

• For Arc DDA :-

• Bytes 00-03: Zeroes

• Bytes 04-07: x co-ordinate of start point

• Bytes 08-0B: y co-ordinate of start point

• Bytes OC-OF: x co-ordinate of intermediate
point

• Bytes 10-13: y co-ordinate of intermediate
point

• Bytes 14-17: x co-ordinate of end point

• Bytes 18-1B: y co-ordinate of end point

See GpiArc for more details.

• For FilletSharp DDA :-

• Bytes 00-03: Zeroes

• Bytes 04-07: x co-ordinate of start point

• Bytes 08-0B: y co-ordinate of start point

• Bytes OC-OF: x co-ordinate of join point

• Bytes 10-13: y co-ordinate of join point

• Bytes 14-17: sharpness

• Bytes 18-1B: x co-ordinate of end point

• Bytes 1C-1F: y co-ordinate of end point

See GpiPolyFilletSharp for more details.

• For Spline DDA :-

• Bytes 00-03: Zeroes

• Bytes 04-07: x co-ordinate of start point

• Bytes 08-0B: y co-ordinate of start point

• Bytes OC-OF: x co-ordinate of 1st control point

• Bytes 10-13: y co-ordinate of 1st control point

• Bytes 14-17: x co-ordinate of 2nd control point

293

Windows Presentation Manager Reference

n

points

Returns:

-1 Error

• Bytes 18-lB: y co-ordinate of 2nd control point

• Bytes lC-lF: x co-ordinate of end point

• Bytes 20-23: y co-ordinate of end point

See GpiPolySpline for more details.

The maximum number of co-ordinate pairs for which
there is room in points. ·

The address of a buffer in which the (x,y) co-ordinates
of the next n points in the sequence will be returned,
as long integers in local format.

>=0 Number of points returned (this may be less thann,
if the end of the sequence has been reached. The applicatic
should check this to detect the end of the sequence.

Principal errors:

GPIER.R_INVALID_DDA..._TYPE
GPIERR_INVALID_ARRAY_COUNT

7 .1.25 Bitmap Support

Bitmaps can either be created in memory, or loaded from file. At this
stage the only operations which may be performed on the bitmap are to
get and set the contents of the bitmap, as a stream of bytes.

A bitmap can be selected into a Device Context, and the Device Context
associated with a presentation space (GpiAssociate or VioAssociate).
Copy (GpiBitBlt) operations may now be performed, with the bitmap as a
source or target (or both). The presentation space can also be drawn into
the bitmap.

Certain devices, notably a raster screen, may be treated as bitmaps, and
the same BitBlt operations performed on them, through their associated
presentation spaces.

7 .1.25.1 Bitmap Operations

(The term 'raster operations' is also used elsewhere in this document to
refer to bitmap operations.)
• A bitmap can be created and destroyed using the GpiCreateBitmap

and GpiDestroyBitmap functions.

• A bitmap can be loaded from a resource using the GpiLoadBitmap
function.

294

Graphics Programming Interface

• A bitmap may be selected into a memory Device Context using the
GpiSelectBitmap function.

• A GPI presentation space may be drawn into a Device Context associ­
ated with a bitmap using the GpiDraw .. functions

• An Advanced Vio presentation space may be drawn into a Device Con­
text associated with a bitmap using the VioShowPS or VioShowBuf
functions

• A source bitmap, selected into a suitable Device Context, and associ­
ated with either a Gpi or Vio presentation space, may be copied into
another suitable Device Context (also associated with either a Gpi or
Vio presentation space) using the GpiBitBlt function

• A bitmap may be copied to/from application storage using the Gpi­
GetBitmapBits and GpiSetBitmapBits functions. The format of data
in application storage is the same as the format of the data created by
the bitmap editor. Thus the application may read the bitmap
defintion created by the bitmap editor, and pass the data to the bit­
map interface.

• Operations are provided to cause an individual pel to be set or
retrieved, and also to perform a flood fill operation.

As an example, to create a bitmap, draw into it, and then copy this draw­
ing to a window on the screen, the following must be done:-

1. DevOpenDC

Create a memory DC, compatible with the screen

2. GpiCreateBitmap

Create a bitmap, in a format also compatible with the screen

3. GpiSelectBitmap

Select the bitmap into the memory DC

4. GpiCreatePS

Create a Gpi presentation space

5. GpiAssociate

Associate this presentation space with the memory DC

6. Draw functions to the Gpi presentation space

The bitmap receives the rastered image of the drawing operations

7. (Assume that a presentation space is already available for drawing to
the screen window)

8. GpiBitBlt

Copy from one bitmap (presentation space) to the screen window

295

Windows Presentation Ma.na.ger Reference

7 .1.25.2 Standard Bitmap Formats

There are four standard bitmap formats. All device drivers are required to
be able to translate between any of these formats and their own internal
formats. The standard formats are as follows:

Bitcount Planes

1
4
8

24

1
1
1
1

These formats are chosen because they are identical or similar to all for­
mats commonly used by raster devices. Only single plane formats are
standard, but it is very easy to convert these to any multiple plane format
used internally by a device.

The pixel data is stored in the bitmap in the order of the coordinates as
they would appear on a display screen. That is, the pixel in the lower left
corner is the first in the bitmap. Pixels are scanned to the right and up
from there. The first pixel's bits are stored beginning in the most
significant bits of the first byte. The data for pixels in each scan line is
packed together tightly. Each scanline, however, will be padded at the
end so that each scan line begins on a ULONG boundary.

7.1.25.3 Bitmap Info Tables

Each standard format bitmap must be accompanied by a Bitmap Info
Table. Because the standard format bitmaps are intended to be traded
between devices, the color indices in the bitmap are meaningless without
more information. A bitmap info table has the following structure:

struct BitmapinfoTable {
UINT BitmapWidth;
UINT BitmapHeight;
UINT BitmapPlanes;
UINT BitmapBitcount;
RGB BitmapColors[];

}BMINFO;

/* length of a scanline in pixels
/* number of scanlines (pixels)
/* number of planes (1 if standard format)
/* number of adjacent bits per pixel
/* color table

The BitmapColors array is a packed array of 24 bit RGB values. If there
are N bits per pixel, then the BitmapColors array will contain 2**N RGB
values, unless N = 24. The standard format bitmap with 24 bits per pixel
is assumed to contain RGB values and does not need the BitmapColors
array.

Some calls use a structure which is like BMINFO but does not have the
BitmapColors array. This is defined as follows:-

struct BitmapinfoHeader {

296

Graphics Programming Interface

UINT BitmapWidth;
UINT BitmapHeight;
UINT BitmapPlanes;
UINT BitmapBitcount;

/* length of a scanline in pixels */
/* number of scanlines (pixels) */
/* number of planes (1 if standard format) */
/* number of adjacent bits per pixel */

}BMINFOH;

7 .1.25.4 Bitmap Example

To make the ordering of all the bytes clear, consider the following simple
example of a 5 x 3 array of colored pixels:

Red Green Blue Red Green
Blue Red Green Blue Red
Green Blue Red Green Blue

ULONG ExampleBitmap[] = {
Ox23,0xl2,0x30,0x00
Ox31,0x23,0xl0,0x00
Oxl2,0x31,0x20,0x00

};

#define BLACK
#define RED
#define GREEN
#define BLUE

OxOOOOOOL
OxOOOOFFL
OxOOFFOOL
OxFFOOOOL

struct BitmapinfoTable Example!nfo
5,

};

3,
l,
4,
BLACK,RED,GREEN,BLUE,
BLACK, BLACK, BLACK, BLACK,
BLACK, BLACK, BLACK, BLACK,
BLACK, BLACK, BLACK, BLACK

7 .1.25.5 Uses for bitmaps

Uses of Bitmaps include:

/* bottom line */
/* middle line */
/* top line */

= {
/*
/*
/*
/*
/*

width */
height */
planes */
bitcount •/
color table •/

• Menus which can be put on screen and removed very rapidly.

• Generation of images from graphical data for subsequent storage and
transmission.

• Creation and use of application symbols.

• Rapid re-healing of a picture when an overlaying Window is removed.

• Animation.

297

Windows Presentation Manager Reference

Although the operations described in this section will be recorded in a
metafile, the results of them are likely to be device dependent, and may
cause significantly different results between devices with different resolu­
tions as well as color capabilities.

7 .1.25.6 Creation and Selection Funtions

GpiLoadBitmap

298

HBITMAP GpiLoadBitmap (hdc, idModule, bitmapid, width, height)
HDC hdc;
UINT idModule;
UINT bitmapid;
LONG width;
LONG height;

This loads a bitmap from a resource, and returns the bitmap
handle. The bitmap is now available for selection into a Device
Context.

Optionally, the bitmap will be stretched to the specified size.

The bitmap may have been created by the bitmap editor.

Parameters:

hdc The handle of a DC which identifies a device whose
memory should be used, if possible, to hold the bit­
map. If it is not possible, main memory will be used,
but the bitmap will be in a format compatible with the
specified device.

idModule

bitmapid

The module handle of the dynlink resource library. If
this is NULL, the application resource file is used.

The id of the bitmap within the resource file.

width,height

Returns:

0 Error

These integers define the width and height of the bit­
map in pels. If either is zero, the bitmap will retain its
original size. Otherwise, it will be stretched to the
specified width and height.

!=0 Bitmap handle

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_RESOURCE_HANDLE

Graphics Programming Interface

GPIERR_INVALID_RESOURCE_ID

GpiCreateBitmap

HBITMAP GpiCreateBitmap (hdc, info_hdr, usage)
HDC hdc;
BMINFOH info_hdr;
ULONG usage;

This creates a Bitmap of the specified form and returns the bit­
map handle.

On some devices it may be possible to create the bitmap in the
device's own memory. A non-null DC handle may be supplied to
indicate that this should be done if possible. The DC can be any
DC connected to the device in question (eg any window DC for
the screen).

There are a number of standard bitmap formats which should
normally be adhered to. See the section, "Standard Bitmap For­
mats". Another format may be used if it is known that the dev­
ice supports it.

The application may also indicate whether the system is at
liberty to discard this bitmap in the event of a memory shortage.

The bitmap is now available for selection into a Device Context.

Parameters:

hdc The handle of a DC which identifies a device whose
memory should be used, if possible, to hold the bit­
map. If it is not possible, main memory will be used,
but the bitmap will be in a format compatible with the
specified device.

info_hdr
A Bitmap Info Header structure which defines the for­
mat of the bitmap to be created. It contains the width,
height, number of planes, and bitcount:

Bitmap Width, BitmapHeight
These integers define the width and height of
the Bitmap in pels.

BitmapPlanes
The number of color planes in the bitmap.
Each plane logically contains
(width*height*bitcount) bits (the actual
length may be greater because of padding)

BitmapBitcount
The number of color bits per pel, within one
plane. ·

299

Windows Presentation Ma.na.ger Reference

usage

Returns:

0 Error

Usage information for this bitmap as follows:-

BM_ BACKUP (Bit 0)
Memory backup

0 No need to retain this bitmap in
PC storage while it is in device
storage

1 Keep memory backup while in dev­
ice storage

BM-DISCARD (Bit 1)
Discardabihty

0 May discard this bitmap if short of
storage (providing the bitmap is
not either selected into a Device
Context, or in use as the currently
selected area fill pattern. Note
that the bitmap can be discarded
if it has an lcid associated with it,
but is not the currently selected fill
pattern. In general, if a bitmap is
to be used for area filling, it should
not be designated as discardable.)

1 May not discard this bitmap

If the bitmap is stored on a device, the usage parame­
ter is passed to the device. Bits 16-31 may be used for
special reasons known to be supported by the particu­
lar device driver.

!=0 Bitmap handle

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_BITMAP_FARAMETER
GPIERR_INVALID_USAGE

GpiDeleteBitmap

300

BOOL GpiDeleteBitmap (hbm)
HBITMAP hbm;

This destroys the specified bitmap.

Parameters:

\

Graphics Programming Interface

hbm The handle of the bitmap to be deleted.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_BI'IMAP_HANDLE
GPIERR_CANNOT_DELETE_SELECTED_BI'IMAP

GpiSelectBitmap

HBI'IMAP GpiSelectBitmap (hdc, hbm)
HDC hdc;
HBI'IMAP hbm;

This selects the specified bitmap into the specified memory Dev­
ice Context.

The Device Context may represent a different physical device
from the one which the bitmap was originally loaded or created
on, providing its format is convertible to one supported on the
new device. This is guaranteed if one of the standard formats
has been used.

Following this function, the bitmap must be associated (using
Gpi.Associate or VioAssociate) before it can be used for drawing
into or copying to/from.

If there is already a bitmap selected into the Device Context,
then the handle of this bitmap will be returned, before the new
bitmap is selected in.

It is an error if the new bitmap is already selected into any Dev­
ice Context.

Parameters:

hdc The handle of the Device Context.

hbm The handle of the bitmap to be selected. A null han­
dle causes the bitmap currently selected into this DC
to become deselected.

Returns:

-1 Error
0 OK (null handle)

<-1 Old bitmap handle
>0 Old bitmap handle

Principal errors:

GPIERR_INVALID_BI'IMAP_IIANDLE
GPIERR_INVALID_DC_IIANDLE
GPIERR_BI'IMAP__AND_DC_INCOMPATIBLE

301

Windows Presentation Manager Reference

GpiSetBitmapDimension

BOOL GpiSetBitmapDimension (hbm, size)
HBITMAP hbm;
LONG size[];

This associates a width and height with a bitmap, in 0.1 mm
units. These values are not used internally by the system, but
are retained with the bitmap. GpiQueryBitmapDimension can be
used to retrieve them.

Parameters:

hbm

size[2]

Returns:

0 Error
1 OK

The handle of the bitmap.

A two-element array which contains two unsigned
integers, which are the width and height, respectively,
of the bitmap in 0.1 mm units.

Principal errors:

GPIERR_INVALID_BITMAPJIANDLE

GpiQueryBitmapDimension

302

BOOL GpiQueryBitmapDimension (hbm, size)
HBITMAP hbm;
LONG size[];

This returns the width and height of a bitmap, as specified on a
previous GpiSetBitmapDimension.

Parameters:

hbm

size[2]

Returns:

0 Error
1 OK

The handle of the bitmap.

A two-element array which on return contains two
unsigned integers, the width and height, respectively,
of the bitmap in 0.1 mm units.

If GpiSetBitmapDimension has not been used to set
these values, zeroes will be returned.

Principal errors:

GPIERR_INVALID_BITMAP_HANDLE

Graphics Programming Interface

7 .1.25. 7 Operations on Raw Bitmaps

GpiQueryDeviceBitmapFormats

BOOL GpiQueryDeviceBitmapFormats (hdc, count, data)
HDC hdc;
LONG count;
LONG data[] ;

This returns the formats of bitmaps which may participate in
GpiBitBlt operations with the specified device class. This will
normally be a smaller set than the standard bitmap formats (see
the section, "Standard Bitmap Formats").

The number of device bitmap formats may be found from
DevQueryCaps.

The first pair of (planes, bitcount) returned will be the one
which most closely matches the device.

Parameters:-

hdc The handle of a Device Context for the class of device
for which formats are required. This must either be a
memory Device Context, or a Device Context for a
device which supports raster operations.

count The number of elements in data. It must be an even
number. To get the complete set of formats returned,
it must be at least double the number of device for­
mats returned by DevQueryCaps.

data[count]
An array of elements which, on return, is set to pairs
of (number of planes, bitcount), for each supported
format in turn. Any excess elements are set to zero.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_ARRAY_COUNT

GpiQueryBitmapParameters

BOOL GpiQueryBitmapParameters (hbm, info_hdr)
HBITMAP hbm;
BMINFOH info_hdr;

Returns information about the the bitmap identified by the
specified bitmap handle.

303

Windows Presentation Manager Reference

Parameters:-

hbm The handle of the bitmap.

info_hdr

Returns:

0 Error
1 OK

A Bitmap Info Header structure which on return will
have been filled in with data about the specified bit­
map. The structure is the first four elements (width,
height, planes, bitcount) of a Bitmap Info Table (see
the section, "Bitmap Info Tables").

Principal errors:

GPIERR_INVALID_BITMAP_HANDLE

GpiGetBitmapBits

304

LONG GpiGetBitmapBits (hdc, scan_start, scan_count,
address, info)

HDC hdc;
LONG scan_start;
LONG scan_count;
LPBUF address;
BMINFO info;

This transfers bitmap data from the specified Device Context to
application storage. The Device Context must be a memory
Device Context, with a bitmap currently selected.

The Bitmap Info Table (see the section, "Bitmap Info Tables")
must be initialized by the application with the values of
BitmapPlanes and BitmapBitcount, for the format of data which
it wants. This must be one of the standard formats (see the sec­
tion, "Standard Bitmap Formats"). On return, Bitmap Width,
BitmapHeight, and the BitmapColors array will have been filled
in by the system.

Conversion of the bitmap data will have been carried out if
necessary.

address must point to a storage area large enough to contain
data for the requested number of scanlines. The amount of
storage required for one scanline can be determined by calling
GpiQueryBitmapParameters. It is

((bitcount*width + 31)/32)*height*planes*4 bytes

Parameters:

Graphics Programming Interface

hdc The handle of the Device Context.

scan_ start
The scan-line number at which the data transfer is to
start.

scan_ count
The number of scan lines to be returned.

address The address in application storage into which the bit­
map data is copied.

info The address in application storage of a Bitmap Info
Table as described above.

Returns:

-1 Error
>=0 Number of scanlines actually returned

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_SCAN_COUNT
GPIERR_INVALID_START_SCAN
GPIERR_INVALID_INFO_TABLE
GPIERR_INVALID_DC_TYPE
GPIERR_NO_BITMAP_SELECTED_INTO_DC

GpiSetBitmapBits

LONG GpiSetBitmapBits (hdc, scan_start, scan_count,
address, info)

HDC hdc;
LONG scan_start;
LONG scan_count;
LPBUF address;
BMINFO info;

This transfers bitmap data from application storage into the
specified Device Context.

The Device Context must be a memory Device Context, with a
bitmap currently selected. Note that this function will not set
bits directly to any other kind of device.

If the format of the supplied bitmap does not match that of the
device, it is converted, using the supplied Bitmap Info Table.
Only the standard formats will be supported (see the section,
"Standard Bitmap Formats").

Parameters:

hdc The handle of the Device Context.

scan-start
The scan-line number at which the data transfer is to
start.

305

Windows Presentation Manager Reference

scan_ count
The number of scan lines to be transmitted.

address The address in application storage from which the bit­
map data is to be copied.

info The address in application storage of the Bitmap Info
Table (see the section, "Bitmap Info Tables").

Returns:

-1 Error
>=0 Number of scanlines actually set

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_SCAN_COUNT
GPIERR_INVALID_START_SCAN
GPIERR_INVALID_INFO_TABLE
GPIERR_INVALID_DC_TYPE
GPIERR_NO_BI'IMAP_SELECTED_INTO_DC

7 .1.25.8 Operations through Presentation Spaces

GpiBitBlt

308

SHORT GpiBitBlt (hgpi_targ, hgpi_src, n,
xy_array, rop, mode)

HPS hgpi_targ;
HPS hgpi_src;
LONG n;
LONG xy_array[];
LONG rop;
LONG mode;

This copies a rectangle of bitmap image data from a bitmap
selected into a Device Context associated with the source presen­
tation space to a bitmap selected into a Device Context associ­
ated with the target presentation space. Alternatively, either
presentation space may be associated with a Device Context
which specifies a suitable raster device, for example the screen.
(It is an error if either device does not support raster opera­
tions.) ·

Unless the device is a banded printer, both source and target
may ref er to the same presentation space. If so, the copy will be
non-destructive if the source and target rectangles overlap.

A rectangle may be specified in both the source and target
presentation spaces, in world co-ordinates for the respective
presentation spaces. These values are transformed, using all of
the appropriate transforms, into device co-ordinates. The
resulting rectangles are non-inclusive, so that they include the

Graphics Programming Interface

left and lower boundaries in device space, but not the right and
upper boundaries. Thus if the bottom left maps to the same dev­
ice pixel as the top right, that rectangle is deemed to be empty.

Depending upon the mode, stretching and/or compressing of the
data may occur. If the mode specifies 0, no stretching or
compressing of the data occurs, and the size of the data copied
from the source in device units is equal to the size of the target
rectangle in device units. The top right of the source rectangle,
if specified, is ignored.

For mode values of 1 - 3, if the size of the source rectangle is
different from that of the target rectangle (in device units), the
source data will be stretched or compressed as necessary in each
dimension (the pattern data is never stretched or compressed).
mode specifies how any eliminated rows/columns of bits are to
be treated.

Values of mode >= 32768 are not necessarily invalid. The
parameters are passed on to the device driver, so that advantage
may be taken of any special device capability known to be sup­
ported on a particular device.

The following current attributes of the target presentation space
are used:-

Pattern color

Pattern background color

Pattern set

Pattern symbol

The color values are used in converting between monochrome
and color data. This is the only format conversion performed by
GpiBitBlt. The conversions are as follows:-

• Outputing a monochrome pattern to a color device

In this case the pattern is converted first to a color pattern,
using the current pattern colors:

- source ls -> pattern foreground color

- source Os -> pattern background color

• BltBlting from a monochrome bitmap to a color bitmap (or
device)

The source bits are converted as follows:

- source ls -> image foreground color

- source Os - > image background color

• BltBlting from a color bitmap to a monochrome bitmap (or
device)

307

Windows Presentation Manager Reference

308

pels which are the source background color -> image
background color

all other pels -> image foreground color

Note that in all of these cases it is the attributes of the target
presentation space which are used.

If the mix (rop) does not call for a pattern, then the pattern set
and pattern symbol are not used. If it does not require a source
(this is invalid for mode = 1 - 9), then hgpi.... src is not required
and must be null. Sxl,Syl are also ignored in this case. An
example where neither the source nor the pattern is required is
when (part of) a bitmap is to be cleared to a particular color.

If the mix does require both source and pattern, then a 3-way
operation is performed.

If any of the source data is not available, for example if the
source presentation space is connected to a screen window, and
the source rectangle is not currently all visible, the contents of
the unavailable parts are undefined. GpiRectVisible can be used
if necessary, prior to the GpiBitBlt operation, to see if this will
be the case.

If this function occurs while the drawing mode in hgpi.... src is
store or draw-and-store, order(s) will be constructed and placed
in the current segment. Note, however, that this function is
very device-dependent.

Parameters:

hgpi_ targ
The handle of the target Gpi presentation space.

hgpi-src
The handle of the source Gpi presentation space.

n The number of (x,y) points specified in xy_ array. For
mode = 0, this must be at least 9, and for mode = 1 -
9, it must be at least 4.

xy_ array[]
An array of n (x,y) points, in the order
Tx1, Tyl, Tx2, Ty2,Sx1,Sy1. These are as follows:-

Txl,Tyl

Tx2,Ty2

Specify the bottom left corner of the target
rectangle in target world co-ordinates.

Specify the top right corner of the target
rectangle in target world co-ordinates.

Graphics Programming Interface

Sxl ,Syl Specify the bottom left corner of the source
rectangle in source world co-ordinates.

Sx2,Sy2 Specify the top right corner of the source
rectangle in source world co-ordinates (not
required for mode = 0).

rop The mixing function required.

mode

Each plane of the target can be considered to be pro­
cessed separately. For any pel in a target plane, three
bits together with the rop values are used to determine
its final value. These are the value of that pel in the
Pattern (P) and Source (S) data and the initial value
of that pel in the Target (T) data. For any combina­
tion of P S T pel values, the final target value for the
pel is determined by the appropriate Mix bit value as
shown in the table below:-

p s T (initial) T (final)
0 0 0 Index bit 0 (LS)
0 0 1 Index bit 1
0 1 0 Index bit 2
0 1 1 Index bit 3
1 0 0 Index bit 4
1 0 1 Index bit 5
1 1 0 Index bit 6
1 1 1 Index bit 7 (MS)

The index formed in the above way determines the
mixing required. rop actually contains not this index
directly, but a long integer value which is an encoding
for the operations required. A table of rop values for
each value of the index can be found in an appendix.
There are Mnemonic names are available for
commonly-used mixes:-

ROP_SRCCOPY
ROP_SRCPAINT
ROP_SRCAND
ROP_SRCINVERT
ROP_SRCERASE
ROP_NOTSRCCOPY
ROP_NOTSRCERASE
ROP_MERGECOPY
ROP_MERGEPAINT
ROP_PATCOPY
ROP_FATPAINT
ROP_FATINVERT
ROP_DSTINVERT
ROP_ZERO
ROP_ONE

OxOOOOOOCCL /* SRC
OxOOOOOOEEL /* SRC OR DST
Ox00000088L /* SRC AND DST
Ox00000066L /* SRC XOR DST
Ox00000044L /* SRC AND NOT(DST)
Ox00000033L /* NOT(SRC)
OxOOOOOOllL /* NOT(SRC) AND NOT(DST)
OxOOOOOOCOL /* SRC AND PAT
OxOOOOOOBBL /* NOT(SRC) OR DST
OxOOOOOOFOL /* PAT
OxOOOOOOFBL /* NOT(SRC) OR PAT OR DST
OxOOOOOOSAL /* DST XOR PAT
OxOOOOOOSSL /* NOT(DST)
OxOOOOOOOOL /* 0
OxOOOOOOFFL /* 1

Specifies how eliminated lines/columns are treated if a
compression is performed:-

309

Windows Presenta.tion Ma.na.ger Reference

Returns:

0 Error
1 OK

BL'IMODE_NOSCALE (0) - Do not stretch or compress
the data

BL'IMODE_OR (1) - Stretch/compress as necessary,
OR'ing any eliminated rows/columns.
This is used for white on black.

BL'IMODE....AND (2) - Stretch/compress as necessary,
AND'ing any eliminated rows/columns.
This ls used for black on white

BL'IMODE_IGNORE (3) - Stretch/compress as necessary,
ignoring any eliminated rows/columns.
This is used for color.

Other values of mode up to and including 32767 are
reserved. Values of 32768 and above may be used for
privately-supported modes for particular devices.

2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_SOURCE_GPI_HANDLE
GPIERR_INVALID_y.RRAY_COUNT
GPIERR_~.NVALID_BITBLT_MIX

GPIERR_INVALID_BITBLT_MODE

GpiSetPel

310

SHORT GpiSetPel (hgpi, x, y)
HPS hgpi;
LONG x;
LONG y;

This sets a pel, at a position specified in world co-ordinates,
using the current color.

If this function occurs while the drawing mode is store or draw­
and-store, order(s) will be constructed and placed in the current
segment.

Parameters:

hgpi The handle of a Gpi presentation space.

x,y Specify a position in world co-ordinates

Returns:

0 Error
1 OK
2 Correlate hlt(s)

Principal errors:

Graphics Programming Interface

GpiQueryPel

LONG GpiQueryPel (hgpi, x, y)
HPS hgpi;
LONG x;
LONG y;

This returns the color of a pel, at a position specified in world
co-ordinates.

Parameters:

hgpi The handle of a Gpi presentation space.

x,y Specify a position in world co-ordinates.

Returns:

-1 Error
>=0 Color index of the pel

Principal errors:

GpiFloodFill

SHORT GpiFloodFill (hgpi, bnd_color)
HPS hgpi;
LONG bnd_color;

This fills an area of the device with the current pattern. The
area starts at current position, and extends in all directions until
it comes to pels of the specified color.

The following current attributes of the presentation space are
used:-

Pattern color

Pattern background color

Pattern mix

Pattern background mix

Pattern set

Pattern symbol

If this function occurs while the drawing mode is store or draw­
and-store, order(s) will be constructed and placed in the current
segment.

The results produced by this function are highly device dependent.

Parameters:

311

Windows Presentation Manager Reference

hgpi The handle of a Gpi presentation space.

bnd_color

Returns:

0 Error
1 OK

The color index which bounds the filled area.

2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_BOUNDARY_COLOR

7 .1.26 Region Support

7 .1.26.1 Region Operations

Operations are provided to construct regions, which may range from sim­
ple rectangular shapes to complex shapes including ones with non­
rectangular boundaries, or ones which are disjoint, or have holes in.

Once constructed, a region may be used for one of two purposes:

• To define a clipping region for a GPI presentation space. ~By default,
the clipping region context extends over the whole drawing surface.

Having defined (or defaulted) the clipping region, other functions are
provided to change it.

• To draw a shape, defined by the region, into the presentation space.

As mentioned above, the generality of the functions allows complex
regions to be generated. However(applications should use this capability
with caution, since in some cases especially in the case of clipping regions
which are not simple rectangles) performance may be degraded.

Note that the clipping region described in these operations is the clipping
region as perceived by an application. For actual drawing, this region has
to be intersected with any clipping arising from the fact that the window
on the device is of limited size, and may indeed be overlaid by other win­
dows.

The co-ordinates with which regions are created and defined are taken to
be device co-ordinates at the time a region is used to specify a clip win­
dow, or for drawing.

For clipping and other purposes, a point on the boundary of a rectangle or
region is defined to be logically inside the rectangle or region. Any rectan­
gle for which the right boundary is less than the left, or the top is less that
the bottom, is deemed to be a NULL rectangle.

312

Graphics Programming Interface

7 .1.26.2 Uses for regions

A clipping region may be used to restrict drawing to a certain part of the
picture which the application knows needs repainting, either because of its
own operations, or because it is told by the system that a certain area
needs repainting.

Care must be taken if metafiling or printing a picture constructed using
clipping regions, since these are very device dependent. It is preferable
where possible to restrict the use of clipping regions to 'healing' opera­
tions, and to use the other clipping functions defined in the section
"Transform Functions".

A shape defined by a .region can be useful for drawing complex areas, espe­
cially inverted shapes. However, again because of the device-dependent
nature of clipping regions, it is preferable if possible to use the area func­
tions defined in the section, "Area Functions".

7 .1.26.3 GRECT and GPOINT structures

This section documents the GRECT and GPOINT data structures. They
are:-

typedef struct
LONG xl;
LONG yb;
LONG xr;
LONG yt;

GRECT;

typedef struct
LONG x;
LONG y;

GPOINT;

7 .1.26.4 Region Functions

GpiCreateRegion

HRGN GpiCreateRegion (hdc, n, rects)
HDC hdc;
LONG n;
GRECT rects [] ;

This creates a region, for a particular class of device, using a
series of rectangles. The new region is defined by the OR of all
of the rectangles specified.

Parameters:

313

Windows Presentation Manager Reference

hdc

n

rects[]

Returns:

0 Error

The handle of a Device Context. A region suitable for
use with the corresponding device is created.

The number of rectangles specified in rects. If n = 0,
an empty region is created, and rects is ignored.

A long pointer to an array of n rectangles, with the
data specified in the order x1bl,y1bl,x1tr,y1tr,
x2bl,y2bl,x2tr,y2tr, ... , where x1bl,y1bl are the co­
ordinates of the bottom left of the first rectangle, and
x1tr,y1tr are the co-ordinates of the top right of the
first rectangle, etc.

!=0 Region handle

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_ARRAY_COUNT

GpiSetRegion

314

BOOL GpiSetRegion {hdc, hrgn, n, rects)
HDC hdc;
HRGN hrgn;
LONG n;
GRECT rects[];

This is similar to GpiCreateRegion, except that it changes an
already existing region to be the OR of the supplied rectangles,
instead of creating a new region.

The previous contents of the region are irrelevant.

Parameters:

hdc

hrgn

n

rects[]

Returns:

0 Error
1 OK

The handle of the Device Context for the device for
which the region was created.

A region handle.

The number of rectangles specified in rects. If n = 0,
the region is set to EMPTY, and rects is ignored.

A long pointer to an array of n rectangles, with the
data specified in the order x1bl,y1bl,x1tr,y1tr,
x2bl,y2bl,x2tr,y2tr, ... , where x1bl,y1bl are the co­
ordinates of the bottom left of the first rectangle, and
x1tr,y1tr are the co-ordinates of the top right of the
first rectangle, etc.

Graphics Programming Interface

Principal errors:

GPIERR_INVALID_DCJIANDLE
GPIERR_INVALID_REGION_HANDLE
GPIERR_INVALID...,ARRAY_COUNT

GpiDestroyRegion

BOOL GpiDestroyRegion (hdc, hrgn)
HDC hdc:
HRGN hrgn:

This destroys a region.

Parameters:

hdc The handle of the Device Context for the device for
which the region was created.

hrgn The handle of the region to be destroyed.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_DCJIANDLE
GPIERR_INVALID_REGION_HANDLE
GPIERR_INVALID_OPERATION_FOR_CLIP_REGION

GpiCombineRegion

SHORT GpiCombineRegion (hdc, hrgn_dest, hrgn_srcl,
hrgn_src2, mode)

HDC hdc:
HRGN hrgn_dest:
HRGN hrgn_srcl:
HRGN hrgn_src2:
LONG mode:

This combines two regions. The result is placed into the specified
des~ination region, which may in fact be one of the two source
regions.

Source and destination regions must all be of the same device
class.

Parameters:

hdc The handle of the Device Context for the device for
which the region was created.

hrgn_dest
The handle of the destination region.

315

Windows Presentation Manager Reference

hrgn_ src 1, hrgn_ src2
The handles of the two regions to be combined.

mode Method of combination, as follows:-

Returns:

0 Error

CRGN_OR
CRGN_COPY
CRGN_XOR

CRGN_AND
CRGN_DIFF

1 NULL region
2 RECTangular region
9 COMPLEX region

Principal errors:

(1) - Union of srcl and src2
(2) - srcl only (src2 ignored)
(4) - Symmetric difference of
srcl and src2
(6) - Intersection of srcl and src2
(7) - srcl AND NOT(src2)

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_REGION_HANDLE
GPIERR_INVALID_REGION_MIX
GPIERR_INVALID_OPERATION_FOR_CLIP_REGION

GpiEqualRegion

SHORT GpiEqualRegion (hdc, hrgn_srcl, hrgn_src2)
HDC hdc;
HRGN hrgn_srcl;
HRGN hrgn_src2;

This checks whether two regions are identical.

Both regions must be of the same device class.

Parameters:

hdc The handle of the Device Context for the device for
which the region was created.

hrgn_ src 1, hrgn_ src2
The handles of the two regions to be checked.

Returns:

0 Error
1 Not equal
2 Equal

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_REGION_HANDLE

GpiOffsetRegion

316

BOOL GpiOffsetRegion (hdc, hrgn, x, y)
HDC hdc;

Graphics Programming Interface

HRGN hrgn;
LONG x;
LONG y;

This moves the given region by the specified offsets.

Parameters:

hdc The handle of the Device Context for the device for
which the region was created.

hrgn The handles of the region to be moved.

x,y The increments by which the region is to be moved.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_REGION_HANDLE
GPIERR_INVALID_OPERATION_FOR_CLIP_REGION

GpiPtlnRegion

SHORT GpiPtinRegion (hdc, hrgn, x, y)
HDC hdc;
HRGN hrgn;
LONG x;
LONG y;

This checks whether a point lies within a region.

Parameters:

hdc The handle of the Device Context for the device for
which the region was created.

hrgn The handl~ of the region.

x,y The co-ordinates of the point.

Returns:

0 Error
1 Not in region
2 In region

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_REGION_HANDLE

GpiRectlnRegion

SHORT GpiRectinRegion (hdc, hrgn, rect)
HDC hdc;

317

Windows Presentation Ma.na.ger Reference

HRGN hrgn;
GRECT rect;

This checks whether any part of a rectangle lies within the
specified region.

Parameters:

hdc The handle of the Device Context for the device for
which the region was created.

hrgn The handle of the region.

rect A long pointer to a rectangle structure xbl,ybl,xtr,ytr,
where xbl,ybl are the co-ordinates of the bottom left of
the rectangle, and xtr,ytr are the co-ordinates of the
top right of the rectangle.

Returns:

0 Error
1 Not in region
2 Some in region
3 Al 1 in region

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_REGION_HANDLE

GpiQueryRegionBox

318

SHORT GpiQueryRegionBox (hdc, hrgn, rect)
HDC hdc;
HRGN hrgn;
GRECT rect;

Returns the dimensions of the tightest rectangle around the
region, ie which completely encloses it.

If the region is null, the rectangle returned will have the right
boundary less than the left, and the top boundary less than the
bottom.

Parameters:

hdc The handle of the Device Context for the device for
which the region was created.

hrgn The handle of the region.

rect A long pointer to a rectangle structure in which are
returned xbl,ybl,xtr,ytr, the co-ordinates of the bottom
left and top right corners of the bounding rectangle.

Returns:

0 Error
1 NULL region

Graphics Programming Interface

2 RECTangular region
9 COMPLEX region

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_REGION_HANDLE

GpiQueryRegionRects

BOOL GpiQueryRegionRects (hdc, hrgn, bound, control, rects)
HDC hdc;
HRGN hrgn;
GRECT bound;
LPBUF control;
GRECT rects;

This returns the rectangles which, if OR'ed together, define the
specified region.

Parameters:

hdc

hrgn

bound

control

The handle of the Device Context for the device for
which the region was created.

The handle of the region.

A pointer to a bounding rectangle. Only rectangles
which intersect this bounding rectangle will be
returned. If this pointer is NULL, all rectangles in the
region will be returned. If it is not NULL, then each of
the rectangles returned will be the intersection of the
bounding rectangle with a rectangle in the region.

A pointer to a structure which controls the processing.
It contains the following:-

struct RegionRect {
UINT start;
UINT count;
UINT retcount;
UINT direction;

} RGNRECT;

start

count

retcount

The rectangle number to start enumerating
a~. Set this to zero to start from the begin­
nmg.

The number of rectangles which will fit into
XY- array. It must be at least 1.

The number of rectangles actually written
into XY- array. A value below start indicates
that there are no more rectangles to
enumerate.

319

Windows Presentation Manager Reference

\

rects

Returns:

0 Error
1 OK

direction
The direction in which the (leading edge of
the) rectangles are to be returned, as
follows:-

RECTDIR_LFRT_TOPBOT (1) - left to right,
top to bottom

RECTDIR_RTLF_TOPBOT (2) - right to left,
top to bottom

RECTDIR_LFRT_BOTTOP (3) - left to right,
bottom to top

RECTDIR_RTLF_BOTTOP (4) - right to left,
bottom to top

A long pointer to an array of rectangle structures, in
which are returned x1bl,y1bl,x1tr,y1tr,
x2bl,y2bl,x2tr,y2tr, ... , where x1bl,y1bl are the co­
ordinates of the bottom left of the first rectangle, and
x1tr,y1tr are the co-ordinates of the top right of the
first rectangle, etc.

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_REGION_HANDLE
GPIERR_INVALID_REGION_CONTROL

7.1.26.5 Clipping Region Functions

320

A region may be selected for use as the clipping region of a Gpi
presentation space. Since regions need not be rectangular, this
may be used to provide non-rectangular clipping, though in a
very device-dependent form. This clipping is independent from
the clipping mandated by the layout of the windows on the
screen (the VisRegion); ultimately, drawing is done to the inter­
section of the application clipping region and the VisRegion.

To set up an application clipping region, a region of the required
shape may first be constructed using the region functions
described in the previous section. In this case, the co-ordinates
used are device co-ordinates (device co-ordinates are the natural
co-ordinates for the device, eg pels on a raster display; the origin
is at the bottom left).

A particular region is established as the clipping region by
GpiSelectClipRegion. Any further region operations (as defined
in the previous section) on it are now invalid. However, the clip­
ping region functions described in this section may now be

Graphics Programming Interface

performed on it. These operate in world co-ordinates, and so are
subject to current transformations before being combined with
the existing clipping region.

When the clipping region is deselected, it reverts to being a nor­
mal region again. However, it retains the effect of any clipping
region operations which were performed upon it.

A region may not be selected as the clipping region for more
than one presentation space at a time.

GpiSelectClipRegion

HRGN GpiSelectClipRegion (hgpi, hrgn)
HPS hgpi;
HRGN hrgn;

Specifies the region to be used for clipping, when any drawing
takes place through the specified presentation space.

Region operations (as opposed to clipping region operations)
may no longer be performed upon the region, neither may it be
selected into any other presentation space as a clipping region,
until it becomes deselected again.

The co-ordinates of the region are taken to be device co­
ordinates within the Device Context.

The previous clip region, if any, is converted to a region, and a
handle to it is returned. This may be used in a subsequent
GpiSelectClipRegion to reinstate the same clipping as before. If
there was no clip region, a null handle is returned.

If this function occurs while the drawing mode is store or draw­
and-store, order(s) will be constructed and placed in the current
segment. Note, however, that this function is very device­
dependent.

Parameters:

hgpi The handle of a Gpi presentation space.

The presentation space must be currently associated
with a Device Context of the correct class of device
(defined when the region was first created).

hrgn The handle of the region. If hrgn is null, the clipping
region is set to no clipping, its initial state.

Returns:

-1 Error
0 Null handle (no region was selected)

<-1 Old region handle
>O Old region handle

Principal errors:

321

Windows Presentation Manager Reference

GPIERR_INVALID_REGION_HANDLE

GpiQueryClipRegion

HR.GN GpiQueryClipRegion (hgpi)
HPS hgpi;

Returns the handle of the currently selected clip region.

The handle of the currently selected clip region, if any, is
returned. If there is no currently selected clip region, a null han­
dle is returned.

Parameters:

hgpi The handle of a Gpi presentation space.

Returns:

-1 Error
0 Null handle (no region was selected)

<-1 Old region handle
>O Old region handle

Principal errors:

GpiQueryClipBox

322

SHORT GpiQueryClipBox (hgpi, rect)
HPS hgpi;
GRECT rect;

Returns the dimensions of the tightest rectangle which com­
pletely encloses the intersection of all of the various clipping
definitions.

This includes the effect of all of the following:-

• Clip region

• Visible region (ie any windowing considerations)

• Clip area

• Viewing limits

• Graphics field

If the intersection is null, the rectangle returned will have the
right boundary less than the left, and the top boundary less than
the bottom.

Parameters:

hgpi The handle of a Gpi presentation space.

Graphics Programming Interface

rect A long pointer to an array in which are returned
xbl,ybl,xtr,ytr, the co-ordinates of the bottom left and
top right corners of the bounding rectangle, in world
co-ordinates.

Returns:

0 Error
1 NULL region
2 RECTangular region
9 COMPLEX region

Principal errors:

GpilntersectClipRectangle

SHORT GpiintersectClipRectangle (hgpi, rect)
HPS hgpi;
GRECT rect;

Sets the new clipping region to be the intersection of the current
clip region and the specified rectangle.

If this function occurs while the drawing mode is store or draw­
and-store, order(s) will be constructed and placed in the current
segment.

Parameters:

hgpi The handle of a Gpi presentation space.

rect A long pointer to a rectangle structure, in which are
returned xbl,ybl,xtr,ytr, where xbl,ybl are the co­
ordinates of the bottom left of the rectangle, and
xtr,ytr are the co-ordinates of the top right of the rec­
tangle.

The co-ordinates are world co-ordinates.

Returns:

0 Error
1 NULL region
2 RECTangular region
9 COMPLEX region

Principal errors:

GpiExcludeClipRectangle

SHORT GpiExcludeClipRectangle (hgpi, rect)
HPS hgpi;
GRECT rect;

Excludes the specified rectangle from the clipping region.

323

Windows Presentation Manager Reference

A point on the boundary of the rectangle will be excluded from
the clipping region.

If this function occurs while the drawing mode is store or draw­
and-store, order(s) will be constructed and placed in the current
segment.

Parameters:

hgpi The handle of a Gpi presentation space.

rect A long pointer to a rectangle structure, in which are
returned xbl,ybl,xtr,ytr, where xbl,ybl are the co­
ordinates of the bottom left of the rectangle, and
xtr,ytr are the co-ordinates of the top right of the rec­
tangle.

The co-ordinates are world co-ordinates.

Returns:

0 Error
1 NULL region
2 RECTangular region
9 COMPLEX region

Principal errors:

GpiOffsetClipRegion

324

SHORT GpiOffsetClipRegion (hgpi, x, y)
HPS hgpi;
LONG x;
LONG y;

Moves the clipping region by the specified amounts.

If this function occurs while the drawing mode is store or draw­
and-store, order(s) will be constructed and placed in the current
segment.

Parameters:

hgpi The handle of a Gpi presentation space.

x,y The x and y increments in world co-ordinates by which
the clipping region is to be moved.

Returns:

0 Error
1 NULL region
2 RECTangular region
9 COMPLEX region

Principal errors:

Graphics Programming Interface

7 .1.26.6 Drawing Functions

GpiPain tRegion

SHORT GpiPaintRegion (hgpi, hrgn)
RPS hgpi;
HRGN hrgn;

Paints the specified region into the specified presentation space,
using the current Gpi pattern.

The current Gpi pattern foreground and background colours and
mix and background mix of the presentation space are also used.

If this function occurs while the drawing mode is store or draw­
and-store, order(s) will be constructed and placed in the current
segment. Note, however, that this function is very device­
dependent.

Parameters:

hgpi The handle of a Gpi presentation space.

hrgn The handle of the region.

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_REGION_HANDLE

325

Chapter 8
Metafile Support

8.1 Metafile Support 329
8.1.1 Presentation l\1anager Restrictions 330
8.1.2 · Metafile Operations 332
8.1.2.1 Metafile Generation 333
8.1.2.2 Using a Previously-Generated Metafile 334
8.1.3 Uses for Metafiles 335
8.1.4 Functional Description 335
8.1.4.1 Metafile Interface Function Call Summary 335

327

Metafile Support

8.1 Metafile Support

A metafile is a sequence of functions which can cause all, or part, of a pic­
ture to be drawn. The functions which it contains are designed to retain as
much as possible of the application's intent, so that the same picture may
be reproduced on different systems as faithfully as possible. This concept
is similar to the rationale for presentation spaces; indeed the information
contained in graphics presentation spaces and metafiles is very similar.

Applications using metafiles may operate in the same workstation, and
interchange metafiles using, for example, the clipboard, or they may be in
other workstations reached via a network, or even on other machines.

Presentation Manager will support two levels of interchange. These are

• The metafile, which has the functionality of the Presentation
Manager graphics, and

• Picture Interchange Format (PIF), which has lesser functionality.

Only the metafile form can be generated and played directly through the
Presentation Manager graphics. A utility will be provided to convert
between the metafile and PIF formats.

Only graphics functions are defined for a metafile. Vio data cannot be
metafiled.

Certain raster operations will be included in a metafile, but their effect will
be lost if the metafile is subsequently converted into a PIF interchange file.
These are:-

• GpiBitBlt

• GpiSetPel

• GpiFloodFill

• GpiSelectClipRegion

• GpiOffsetClipRegion

• GpilntersectClipRectangle

• GpiExcludeClipRectangle

The effect of these functions will be retained if the metafile is subsequently
played through Presentation Manager, but because of their nature, unex­
pected effects may occur if they are replayed to a different device. Apart
from differences arising from different pel resolutions, some functions may
not work on some devices, for example, BitBlt operations on a plotter.

329

Windows Presentation Manager Reference

Note that GpiBitBlt operations are only recorded where the presentation
space associated with the metafile is the target of the operation. If the
source is a different presentation space, the size of the metafile may be
large.

Any application colour table in force will be included in the metafile.

References to loaded symbol sets will be included in the metafile, as will
logical fonts and linetype definitions. The actual character definitions,
however, for both fonts and symbol sets, will not be metafiled.

The objective in recording a metafile is to permit the application to per­
form any sequence of (legal) operations, and on replay to be able to repro­
duce the same picture as that sequence would have generated if it had
been issued directly at the same device context (assuming the same start­
ing conditions).

Because the actual format of a metafile is a 'snapshot', this means that a
certain amount of remapping must take place in order to generate an
equivalent snapshot to the actual sequence of operations. For example, in
non-stored mode, the same lcid may be re-used for different fonts. When
such a sequence is metafiled, different lcids will be used by the system.

On replay, there is an additional requirement to be able to play a picture
into a presentation space which already has objects in it. The origin of
the picture in the metafile may be unknown, and it must therefore be
presumed that it may use any legal values of segment names, lcids, etc,
which might clash with those already in use in the presentation space. On
replay, therefore, a similar process of remapping will take place to enable
the metafile to be brought in as a 'subpicture'.

8.1.1 Presentation Manager Restrictions

The restrictions documented in this section override any statements else­
where in this specification.

In the first release of Presentation Manager, there will be no remapping as
described elsewhere, on either generate or replay. The latter means that
only a limited subset of the MetPlayMetaFile options will be supported.

It will, however, still be possible to do the following:-

330

1. Generate a metafile in draw mode, and replay it also in draw mode,
with the same initial conditions of the presentation space, and

2. Generate a metafile in any drawing mode, but subject to certain
restrictions as described below, and replay it in any drawing mode,
to an empty presentation space.

Meta.file Support

The restrictions, which only apply to case 2 above, are as follows:-

• Prior to the first draw operation to a presentation space with a
metafile, the following must be established:-

• Color table

• Page window

• Logical fonts

• Symbol sets

• Bitmaps for patterns

• Line type definitions

• Graphics field

• Default viewing transform

• No changes to any of these must occur while the metafile Device
Context is open.

• Once a bitmap has been used as the source of a GpiBitBlt opera-
tion, it must not be modified.

If these restrictions are followed (in both of the above cases this time), the
interchange file generated will be one which can be converted to a PIF file
(and can be used by the Plot Processor - see the chapter, "Spooler lnter­
tace").

On replay, the page units and the co-ordinate format must match those of
the presentation space with which the metafile was generated.

A further restriction is that bitmaps may not be accesssed by any process
other than the one which created/loaded it.

The following functions are not supported in the first release of the t.:-

• MetCopyMetaFile

• MetGetMetaFileBits

• MetSetMetaFileBits

• MetQueryMetaFileLength

The default code page of the presentation space will not be handled by
remapping to a different default code page set in the first release of the
Presentation Manager. It may either be ignored, or replace the default
code page of the receiving presentation space.

331

Windows Presentation Manager Reference

The following restrictions apply to MetPlayMetaFile in the first release of
the Presentation Manager:-

•

•

•
•

•
•

No segment renaming will be done; seg_ base must be 0 (or
defaulted).

No transform manipulation will be done; load.... type must be 1 (or
defaulted).

resolve must be 1 (or defaulted) .

lcids must be either 1 for defaulted) or 3. For 1, no lcid objects will
be loaded, even if the icid is not currently loaded.

line.... type.... sets must be either 1 (or defaulted) or 3 .

co/or_ tables must be either 1 (or defaulted) or 3 .

All of the restrictions described in this section will be lifted in a subse­
quent release of the Presentation Manager.

8.1.2 Metafile Operations

At any time, a metafile may be in one of three states:-

1. In a file on disk. Filename is used to ref er to it.

2. Known internally to the system, and kept in storage. Metafile han­
dle used to ref er to it.

3. Being written to within a Device Context. Only the DC handle is
available to ref er to it.

The intermediate state is provided so that if a metafile is being constantly
used, it does not necessarily have to be fetched from disk every time. Simi­
larly, if it has just been created, it may not need to be written to disk
before being played. If there is insufficient storage, however, the system
may need to use the disk file.

The functions are of two kinds:-

• Generation of a metafile, and

• Using an already generated metafile

If a metafile is either generated through a micro-PS, or played back
through a micro-PS, then only the micro-PS function subset is allowed. In
particular, stored segments will not be allowed, so no GpiCallSegment
functions may be contained within it.

332

Metafile Support

8.1.2.1 Metafile Generation

To create a metafile, a metafile Device Context must first be created, and
a presentation space associated with it. Drawing into this presentation
space then has the effect of putting data into the metafile. After all of the
drawing has been completed, closing the Device Context closes the
metafile, which is now in state 2 (above), ie there is a metafile handle
available which may be used to access it. Once it is closed, no further
drawing into it is possible; it may not be re-opened.

So long as the metafile Device Context remains open, multiple drawing
operations, and even re-associations, are permitted.

After a metafile Device Context has been associated with a presentation
space in one co-ordinate format, it cannot be associated with a presenta­
tion space which has a different co-ordinate format. On playback, how­
ever, it is not necessary for the presentation space to have the same format
as that with which the metafile was created; conversion will be performed
if necessary.

If one of the GpiDraw functions is issued, stored segments are 'drawn' into
the metafile. A common operation would be to draw the graphics chain of
segments into the metafile; this would create a metafile representing the
current picture (assuming that the application had maintained a valid
chain).

In draw mode, a (chained) metafile segment is created for each GpiOpen­
Segment. It is not possible to tell from a metafile whether the graphics
was originally stored or not.

Any graphics not introduced by a GpiOpenSegment (and therefore not
stored), will be allocated a segment name of zero.

If there is more than one draw (stored or non-stored) then segments gen­
erated for draws after the first are added to the end of the chain. Applica­
tions are responsible for ensuring that duplicate segments are not added.
This capability is provided so that applications which wish to may miss
out parts of the chain, or use a mixture of stored and non-stored.

Dynamic segments will be metafiled if processed by one of the GpiDraw
operations, and the 'draw dynamic segments' Draw Control (see GpiSet­
DrawControl) flag is set. GpiRemoveDynamics and GpiDrawbynamics
have no effect when the presentation space is associated with a metafile
Device Context.

No regions except the Clip Region will be metafiled. On a
GpiSelectClipRegion call, order(s) will be built into the metafile to
describe the shape of the region. On playback, this clip region will replace
the existing clip region. GpilntersectClipRegion, GpiExcludeClipRegion,
and GpiOffsetClipRegion will be metafiled as orders.

333

Windows Presentation Manager Reference

The graphics field defines the area of interest within the picture in the
metafile (see the section, "Transform Functions").

The code page of the presentation space will be meta:filed. On replay, if
this is not the same as the code page of the receiving presentation space, a
new default font will be set up with the code page of the metafile default
set.

Escape functions will be meta:filed.

Whether kerning is enabled will also be meta:filed.

Segments are only meta:filed if the display flag (see GpiSetDrawControl) is
on. For primitives outside segments, the effect of changing the display hag
will be recorded in the meta:file, including the maintenance of current posi­
tion and attributes across the change.

If a GpiErase function is performed to a presentation space associated
with a metafile, the meta:file data saved during the current association will
be deleted. Close segment processing will be performed as usual for a Gpi­
Erase.

The following sequence illustrates a simple example of generating a
meta:file:-

GpiCreatePS
/* load fonts,
Dev Open DC
GpiAssociate
GpiLine

/* the presentation space
color tables, etc

GpiCloseDC
MetSaveMetaFile

/* (type = metafile)
/* the PS with the DC

/* draw the picture
/* returns metafile handle
/* metafile now on disk

Query functions may be performed in the normal way to a Gpi presenta­
tion space associated with a metafile Device Context.

No correlation will be performed for a presentation space associated with a
metafile Device Context.

8.1.2.2 Using a Previously-Generated Metafile

The operation of 'playing' a metafile into a presentation space causes the
metafile contents to be drawn into the presentation space, and from there
into any device for which a Device Context is currently assocfated with it.

Whether or not the metafile segments are stored in the presentation space
depends upon whether the presentation space is in store (or draw-and­
store) mode at the time the MetPlayMetaFile is issued (though any non­
chained segments will be stored anyway). Note that in store mode, the

334

Metafile Support

application will have to issue a draw function if it wishes the picture to be
displayed.

If required, the application can issue GpiResetPS, before 'playing' the
metafile.

The following sequence illustrates a simple example of playing a metafile:-

GpiCreatePS
DevOpenDC
GpiAssociate
MetLoadMetaFile
MetPlayMetaFile
MetSaveMetaFile

8.1.3 Uses for Metafiles

/* the presentation space •/
/* the device to play it to */
/* the PS with the DC */
/* get a metafile handle */
/* quote the metafile handle */
/* no longer referring to it •/

Metafiles can be used for the following purposes:-

• To interchange a picture with another application possibly at some
remote node in the network.

• To generate a picture to be printed, again possibly at some remote
node in the network. This might be used particularly where the
eventual printer type was unknown.

• To save a picture for rapid recall and display, for example to show
a series of pictures for a presentation.

• To record some common part of a picture, such as a company logo,
which might be maintained centrally.

8.1.4 Functional Description

8.1.4.1 Metafile Interface Function Call Summary

Short list of the function calls:

• MetLoadMetaFile

• MetCopyMetaFile

• MetPlay MetaFile

• MetSaveMetaFile

• MetDeleteMetaFile

• MetGetMetaFileBits

335

Windows Presentation Manager Reference

• MetSetMetaFileBits

• MetQueryMetaFileLength

See also

• DevOpenDC

• DevCloseDC

• GpiAssociate

MetLoadMetaFile

HMF MetLoadMetaFile (hab, filename)
RAB hab;
LPSZ filename;

This loads a metafile, and returns a metafile handle which
MetPlayMetaFile can use.

Parameters:

hab The anchor block handle.

filename
A string giving the metafile's filename.

Returns:

0 Error
!=0 Metafile handle

Principal errors:

GPIERR_INVALID_METAFILE_FILENAME
GPIERR_METAFILE_FILENAME_NOT_FOUND

MetCopyMetaFile

336

HMF MetCopyMetaFile (hmf_src)
HMF hmf_src;

Note: MetCopyMetaFile will not be supported in the first
release of the Presentation Manager. See the section, "Presen­
tation Manager Restrictions" .

This copies a metafile. The source metafile must already
have been loaded or generated, and is identified by a metafile
handle. The new metafile is also identified by a handle,
which is returned (it may be used, for example, by MetPlay­
MetaFile).

Parameters:

Metafile Support

hmLsrc
The handle to the source metafile.

Returns:

0 Error
!=0 New metafile handle

Principal errors:

GPIERR_INVALID_METAFILE_HANDLE

MetPlayMetaFile

LONG MetPlayMetaFile (hgpi, hmf, countl, opt_array,
count2, desc)

HPS hgpi;
HMF hmf;
LONG countl;
LONG opt_array;
LONG count2;
LPBUF desc;

-
Note: Only a restricted subset of MetPlayMetaFile will be sup-
ported in the first release of the Presentati"on Manager. None
of the remapping functi"ons will be supported. See the section,
"Presentation Manager Restrictions".

This causes the specified metafile to be 'played' into the
specified graphics presentation space.

Whether the graphics are drawn and/or stored in segment
store depends upon the current drawing function mode (see
GpiSetDrawingMode) in the presentation space (but note
that any non-chained segments will always be stored). If
chained segments are stored, they will be added to the end of
any existing segment chain. A segment must not be open
when this call is issued. At the completion of the call, there
will be no open segment.

The application may need to reset the presentation space by
GpiResetPS, before issuing this function.

Segments can be loaded either with the same identifiers
which they had when the metafile was created, or with a new
set of identifiers.

Segments retain the segment attributes which they originally
possessed.

An attempt will always be made to load any symbol sets,
logical fonts, and bitmaps used as shading patterns, provid­
ing that they use local identifiers (lcid s) which are not
already in use. If an lcid is already in use, then the applica­
tion may choose whether or not such objects are loaded. If
they are loaded, then they will use currently unused lcid s,
determined by the system. All references to these lcid s

337

Windows Presentation Ma.na.ger Reference

338

within the segments will be mapped to the new values.

The option to load, and map lcid s, would normally be used
by an application integrating a picture from another source,
where no application or installation standards exist as to the
use of lcid s. Where such standards do exist, the option not
to load if the lcid is in use would be selected.

Parameters:

hgpi The handle of the presentation space through
which the metafile is to be played.

hmf The handle of the metafile to be played.

countl The number of elements specified in the opL array
parameter.

opL array[countl]
Various options which control the playing of the
metafile:

seg_ base
The starting segment identifier for stor­
ing segments.

If either seg_ base or count1 is zero, any
segments which are stored retain their
original identifiers.

If seg_ base is greater than zero, the first
named segment to be stored is given the
identifier seg_ base; subsequent named
segments are renumbered with consecu­
tive segment identifiers. Any Call Seg­
ment order which references a segment
has the segment identifier changed to the
new identifier given to that segment.

The default action for references which
cannot be resolved is to warn the user
that a called segment could not be
found, and to ignore the call segment
order. The resolve parameter below
allows unresolved references to remain
unchanged.

Unnamed segments (those with a zero
segment identifier) remain unnamed
(that is, they retam a segment name of
0).
If the current drawing mode is Draw,
only unchained segments will be named.
Chained segments will be drawn and

Met11.file Support

discarded.

load_ type
Specifies what transformations should be
performed on the imported picture. The
options are:

0 The default; same as 1.

1 The graphics are restored
using the current window and
viewport co-ordinate system
(see GpiSetWindow and
GpiSet Viewport), rather than
the one which was in use when
the data was created. This is
the default action.

2 The graphics field of the
imported picture is drawn as
large as possible within the
current viewport, while
preserving the aspect ration
which the picture had when it
w~ saved. The picture is cen­
tered, horizontally or vertically
as appropriate, within the
viewport. Any primitives which
would have drawn outside the
graphics field (but which would
have been clipped) may or may
not be clipped, depending upon
the clipping currently in force.

3 The bottom left corner of the
graphics field of the imported
r,icture is placed at the origin
~0,0) of model space, preserv­
mg the physic2.l size of the pic­
ture when it was created.

same as 1

resolve Specifies the action to be taken when
loading a metafile that contains call seg­
ment orders to segments which do not
exist in the metafile. The options are:

0 Default; same as 1

1 The identifier of the called seg­
ment is not changed. It is
presumed that the called seg­
ment is either already available

339

Windows Presentation Manager Reference

340

in segment store, or will be
available when drawing takes
place subsequently.

2 A warning is issued. This
option is used if the metafile
being loaded is expected to be
complete.

lcids Specifies the action to be taken for any

• Logical font definitions, or

• Symbol set mappings, or

• Bitmaps referenced by lcid s for use
as shading patterns

which are held in the metafile, and for
which the corresponding lcid is not
already loaded.

The options are:

0 Default; same as 1

1 Do not load such objects. This
is the default, and will be used
where the application expects
the correct objects to be
already loaded.

2 Load such objects, and map
the lcid s, including all ref er­
ences to it within the picture,
to a new, currently unused,
value. This would be used
where the application has no
consistent use of lci'd s with the
picture in the metafile.

3 Load all objects referenced in
the metafile, first deleting any
already existing in the presen­
tation space, for which the
referenced lcid is already in
use.

line_ type_ sets
Specifies the action to be taken for any
line-type definitions which are held in
the metafile.

The options are:

Metafile Support

0 Default; same as 1

1 Do not load. This is the
default, and will be used where
the application expects the
correct definition to be already
loaded.

2 Load the definitions with
conflicting code point(s),
changing all references to them
within the picture, to new,
currently unused, values. This
would be used where the appli­
cation has no consistent use of
line-type definitions s with the
picture in the metafile.

3 Unload any definitions already
loaded in the presentation

· space, and load any definitions
in the metafile.

color_ tables
Specifies the action to be taken with
respect 1to any color table implied or
present within the metafile.

The options are:

0 Default; same as 1

1 Ignore. The default or loaded
color table in the presentation
space is unchanged, as are the
references to color attributes in
the new data. This is the
default; it is suitable where it
is known that the currently
loaded color table (if any) is
suitable for the use of cofor in
the imported picture.

2 Merge the color table implied
or present in the metafile with
the currently loaded one.
Where the current color table
already has an entry for a color
in the metafile color table,
color indices are remapped to
that entry. Where one does not
already exist, a new one is
created and again indices are

341

Windows Presentation Manager Reference

342

remapped. This option would
be used where maximum color
fidelity for the existing picture,
and the imported picture, is
required.

3 Overwrite the currently loaded
color table (if any), with that
implied or present in the
metafile. This could be used
where there is no existing pic­
ture.

color_ realizable

kerning

Specifies whether the color realizable flag
contained in the metafile should be used
or not.

The options are:

0 Default; same as 1

1 Ignore the color realizable flag
in the metafile. This is the
default, and is used where the
application playing the
metafile will determine
whether or not the color table
should be realizable.

2 Set the presentation space's
color realizable flag to the
value of the flag in the
metafile. This is used to ensure
the same realizability as
existed when the picture was
saved.

Specifies whether the global kerning
enablement flag contained in the metafile
should be used or not.

The options are:

0 Default; same as 1

1 Ignore the kerning enablement
flag in the metafile. This is the
default, and is used where
kerning enablement is deter­
mined by the application play­
ing the metafile.

Metafile Support

2 Set the presentation space's
kerning enablement flag to the
value of the flag in the
metafile. This is used to ensure
the same kerning enablement
state as existed when the pic­
ture was saved.

count2 The length supplied for desc parameter.

descriptor

Returns:

-1 Error

The descriptive record, of up to 253 bytes, that
was saved with the metafile.

>=0 Number of segments which were_ renumbered.
0 is always returned if eitherseg_ base or
count10.

Principal errors:

GPIERR_INVALID_METAFILE_HANDLE
GPIERR_INVALID_ARRAY_COUNT (countl)
GPIERR_INVALID_LENGTH (count2)
GPIERR_INVALID_PLAY_METAFILE_OPTIONS
GPIERR_SYMBOL_SET_DEFINITION_NOT_FOUND (warning)
GPIERR_LOGICAL_FONT_DEFINITION_NOT_FOUND
GPIERR_INCOMPATIBLE_METAFILE
GPIERR_STOP_DRAW_OCCURRED (warning)

MetSaveMetaFile

BOOL MetSaveMetaFile (hmf, filename)
HMF hmf;
LPSZ filename;

This deletes access to the specified memory metafile. The
metafile itself is written to disk and may be accessed again
by MetLoadMetaFile.

Parameters:

hmf The handle of the metafile which is to be saved.

filename

Returns:

0 Error
1 OK

A string specifying the filename to which the
metafile is to be written.

Principal errors:

GPIERR_INVALID_METAFILE_HANDLE

343

Windows Presentation Manager Reference

GPIERR_INVALID_METAEILE_FILENAME

MetDeleteMetaFile

BOOL MetDeleteMetaFile (hmf)
HMF hmf;

This deletes access to the specified memory metafile. The
memory metafile is destroyed.

Parameters:

hmf The handle of the metafile which is to be deleted.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_METAEILE_HANDLE

MetGetMetaFileBits

344

BOOL MetGetMetaFileBits (hmf, offset, length, address)
HMF hmf;
LONG offset;
LONG length;
LPBUF address;

Note: MetGetMetaFileBits will not be supported in the first
release of the Presentation Manager. See the section, "Presen­
tation Manager Restrictions".

This transfers the specified metafile to application storage.

The total length of a metafile may be found from the data
returned by MetQueryMetaFileLength. This function allows
an application to retrieve the data is convenient sized units.

Parameters:

hmf The handle to a memory metafile.

offset The 4-byte offset in bytes into the metafile data
from which the transfer must start. This is used
when the metafile data is too long to fit into a sin­
gle application buffer.

length The 4-byte length in bytes of the metafile data to
copy.

address The address in application storage into which the
metafile data is copied.

Returns:

0 Error

1 OK

Principal errors:

GPIERR_INVALID_METAFILE_HANDLE
GPIERR_INVALID_METAFILE_OFFSET
GPIERR_INVALID_METAFILE_LENGTH

MetSetMetaFileBits

Metafile Support

BOOL MetSetMetaFileBits (hmf, offset, length, address)
HMF hmf;
LONG offset;
LONG length;
LPBUF address;

Note: MetSetMetaFileBits will not be supported in the first
release of the Presentation Manager. See the section, "Presen­
tation Manager Restrictions".

This transfers metafile data from application storage into a
memory metafile Device Context. The application must
ensure that the data is in the correct format - it should have
been created by GetMetaFileBits, and not changed.

Parameters:

hmf The handle to a memory metafile.

offset The 4-byte offset in bytes into the metafile data
from which the transer must start. This is used
when the metafile data is too long to fit into a sin­
gle application buffer.

length The 4-byte length in bytes of the metafile data to
copy.

address The address in application storage from which the
metafile data is to be copied.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_METAFILE_HANDLE
GPIERR_INVALID_METAFILE_OFFSET
GPIERR_INVALID_METAFILE_LENGTH

MetQueryMetaFileLength

LONG MetQueryMetaFileLength (hmf)
HMF hmf;

Note: MetQueryMetaFileLength will not be supported in the
first release of the Presentation Manager. See the section,
"Presentation Manager Restrictions".

345

Windows Presentation Manager Reference

346

This returns the total length in bytes of a memory metafile.
This is for use in subsequent MetGetMetaFileBits functions.

Parameters:

hmf The handle to a memory metafile.

Returns:

-1 Error
>=0 Total length of the metafile

Principal errors:

GPIERR_INVALID_METAFILE_HANDLE

Chapter 9
Advanced Vio lnterf ace

9.1 Advanced Vio Interface 349
9.1.1 Extensions for Advanced Vio 349
9.1.1.1 Advanced Vio presentation spaces 349
9.1.1.2 Multiple Windows/Bitmaps 350
9.1.1.3 Character sets 351
9.1.1.4 Device Cell Size Support 351
9.1.1.5 Advanced Vio Query functions 352
9.1.1.6 Screen content 352
9.1.1. 7 WM_ SIZE Message Processing 353
9.1.2 Restrictions to DOS base Vio 353
9.1.3 DOS base Vio - Functional Description 353
9.1.3.1 Valid Function call summary 354
9.1.3.2 Invalid Function call summary 356
9.1.4 Advanced Vio - Functional Description 357
9.1.4.1 Function call summary 357
9.1.4.2 Function call detail 358

347

Advanced Vio Interface

9.1 Advanced Vio Interface

9.1.1 Extensions for Advanced Vio

For Presentation Manager the DOS base Vio interface is extended to pro­
vide the following additional functions:

• support for a Device Context environment

• support for multiple presentation spaces

• support for multiple character sets

• support for extended attributes

The new interface is called Advanced Vio.

9.1.1.1 Advanced Vio presentation spaces

An Advanced Vio presentation space is created by VioCreatePS. This may
have 2 or 4 bytes per character cell. Shown below are representations of
the two supported presentation space formats.

2 bytes per cell (CGA format)

·---
• I I I II
II I I I I

I I code 1 CGA I I code 1 CGA I I •..
11 point I attribute 11 point I attribute 11
I I I I I I II
I I I I I I II

·---
<----------------------->

cell

4 bytes per cell (extended format)

·--
.I I I I
11 I II

I I code 1 CGA I extended I spare I I code
11 point I attribute I attribute I 11 point
I I I I I II
I I I I I I I

·--
<--->

cell

Attribute byte contents.

349

I
I
I
I•••
I
I
I
I

Windows Presentation Manager Reference

CGA Attribute byte

Bits 7-4 - background colour
Bits 3-0 - foreground colour

Note Presentation Manager display device drivers do not support
the blink or intensify attributes.

Extended Attribute byte

Bit 7 - underscore
Bit 6 - reverse video
Bit 5 - reserved
Bit 4 - background transparency (transparent=!, opaque=O)
Bits 3-2 - reserved
Bits 1-0 - character set 0,1,2 or 3

Note See section "Advanced Graphics and Alphanumerics" for
details of transparency support in Presentation Manager.

Spare Attribute byte

for application use

If one attribute byte is prese-n.t, then the system assumes suitable defaults
(eg no highlighting, opaque, character set 0).

The actual colours that appear on the screen will depend on the current
physical colour palette. It is the application's responsibility to ensure the
colours displayed are the colours expected.

All valid Vio function calls may access all Advanced Vio presentation
spaces. It is up to the caller to ensure that data is in the correct format
for a particular function, i.e. VioWrtCellStr to a 3 attribute byte presenta­
tion space should have cells 4 bytes long.

9.1.1.2 Multiple Windows/Bitmaps

An application can create and use a number of screen Windows and Bit­
maps. In order to draw into one of these using an Advanced Vio presenta­
tion space, the latter must first be associated with the appropriate Device
Context. A presentation space may be associated with only one Device
Context at a time. An association to another Device Context will cause an
implicit dissociation from the current association.

If an Advanced Vio presentation space is associated with a metafile Device
Context, the metafile data will be converted to graphics format.

350

Advanced Vio Interface

9.1.1.3 Character sets

An application can reference up to 4 character sets, 1 base and 3 loadable.
All loadable character sets are image character sets. The character set to
be used for a particular character is controlled by the character set bits,
where character set 0 is the base character set.

The base character set to be used for an Advanced Vio presentation space
is set when the presentation space is created and will be ASCII. Presenta­
tion Manager will issue DosGetCp to determine which ASCII code page is
the default for the process and will use that for the base character set.

The Vio code page function calls have been extended to allow for switch­
ing to the EBCDIC CECP supplied with Presentation Manager.

An application that wishes to use an EBCDIC base character set is
required to issue a VioSetCp to switch the base character set for the
created presentation space. All base character set definitions for all sup­
ported device cell sizes are supplied in the Presentation Manager screen
group.

The default Vio presentation space may not be switched from an ASCII
base character set.

The application can define its own character set definitions. The VioGet­
DeviceCellSize function will return the current device cell size in pels so
that character sets can be specified in the correct format. An application
can copy its own character set definition to any of the loadable character
sets.

Unpredictable results will occur if a loadable character set is used before a
character set definition has been loaded.

Only symbol sets may be used with Advanced Vio. Fonts (see the section,
"Character Functions" in the chapter, "Graphics Programming Interface")
are not available.

9.1.1.4 Device Cell Size Support

There is support in Presentation Manager to allow an application to use
any device cell size a particular device supports. The device cell size is
specified in pels. There is a default device cell size for a particular device.
This cell size will be used when a presentation space is associated with a .
Device Context.

An Advanced Vio application may alter the device cell size by issuing
VioSetDeviceCellSize specifying the required cell size in pels. Presentation
Manager will best fit the required size to one of those supported by the
particular device. The application should issue VioGetDeviceCellSize to

351

Windows Presentation Manager Reference

check what cell size was set. The device cell size is chosen such that for a
given supported device cell the cell width is less than or equal to the
required cell width AND the cell height is less than or equal to the
required cell height. If no supported cell size meets these criteria, then the
smallest supported cell size will be selected.

A default Vio application {see the section, "Support of MS OS/2 VIO,
KBD, and MOU Calls") may vary the device cell size by altering the
number of Alpha Rows with VioSetMode. The number of rows requested
must be supported by the particular device.

When the device cell size is altered Presentation Manager will switch to
using the base character set definition corresponding to the cell size. It is
an applications responsibility to ensure that loaded character set
definitions are valid. If a mismatch exists between the cell size specified in
the Presentation Space and the loaded symbol set, then the characters
defined in the symbol sets will appear as blanks.

9.1.1.5 Advanced Vio Query functions

Two query functions are supplied for an application. VioQueryPSFormats
will return a list of presentation space formats supported in the Presenta­
tion Manager screen group. VioQuerySymbolSets will return a list con­
taining the current base character set plus all loaded character sets for an
Advanced Vio presentation space.

DevQueryCaps is extended to indicate whether windows used for
Advanced Vio on a particular device

• Must be character aligned,

• Should be character aligned for best performance, or

• May be either character or pel aligned, with no significant impact
on performance.

Undefined results are produced for devices which return the first option, if
this is not adhered to.

9.1.1.6 Screen content

The size of the Advanced Vio presentation space is specified by the appli­
cation. If it is smaller than the window in either direction, then the excess
area is left unchanged; if larger, then the excess data is not displayed.

The origin (ie data to be displayed in the top left of the window) may be
specified by the application. If an area of the window is "exposed" by the
origin being altered such that the presentation space right or bottom edge
moves left or up in the window then the "exposed" area is cleared. This

362

Advanced Vio Interface

would also remove any graphics present in the area. The application would
need to restore the graphics as documented in section "Advanced Graphics
and Alphanumerics".

After directly updating the Advanced Vio presentation space the applica­
tion issues a call to request the system to reflect the change on the screen.
This function is already available for DOS base Vio via the VioShowBuf
function call; however it is extended in Advanced Vio to allow the applica­
tion to specify the rectangle within the presentation space which bounds
the changes made since the last such call. The system may optionally
optimise its performance by only updating from within this rectangle.
This new function is achieved using the VioShowPS function call.

9.1.1.7 WM..SIZE Message Processing

Avio applications must pass the processing for WM_ SIZE messages to the
routine WinDefAVio WindowProc:

ULONG FAR PASCAL WinDefAVioWindowProc(lpVioPS, hWnd, wMsg,
lParaml, 1Param2);

HPS
HWND
UINT
UL ONG
UL ONG

FAR * lpVioPS;
hWnd;
wMsg;
lParaml;
1Param2;

where h Wnd, wMsg, lParaml, and 1Param2 are taken from the original
message arguments, and Ip VioPS is a long pointer to the AVio presenta­
tion space associated with the designated window.

This routine, which only handles WM-SIZE messages, maintains the size
data in the presentation space. It must be called before the application
attempts to access the window.

9.1.2 Restrictions to DOS base Vio

Any restrictions to DOS base Vio are listed below, either as restrictions to
supported DOS base calls or by the call being unsupported.

9.1.3 DOS base Vio - Functional Description

All DOS base Vio functions calls are supported in the Presentation
Manager screen group although certain calls are invalid and will return
error return codes if issued.

353

Windows Presentation Manager Reference

9.1.3.1 Valid Function call summary

The following function calls are handled by Presentation Manager. All
may use a zero or non-zero Vio handle (unless otherwise stated). Calls
with a zero handle will be routed to the default presentation space (L VB)
and default window.

VioEndPopUp
Deallocate a popup display screen. Only valid for default
Vio. An error will be returned if issued with a non zero han­
dle.

VioGetAnsi
Get Ansi state.

VioGetBuf
This function returns the address and length of the
Advanced Vio presentation space. The presentation space
may be used to directly manipulate displayed information.

VioGetConfig

VioGetCp

Get the video configuration. Only adapter type and display
type are set.

Query code page currently used to display text on the screen.

VioGetCurPos
This function returns the current row and column position of
the cursor.

VioGetCurType
This function returns the cursor type. The cursor type con­
sists of the cursor start line, end line, width (always returned
as 0 - one column width) and attribute (normal or hidden).

VioGetMode

354

This function returns the current mode of the video display.
Only valid for default Vio. An error will be returned if
issued with a non zero handle.

VioPopUp
Allocate a popup display screen. Only valid for default Vio.
An error will be returned if issued with a non zero handle.

VioPrtSc
Print the contents of the screen.

VioPrtScToggle
Toggle the Ctrl-PrtSc flag.

VioReadCellStr
Read a string of character/attributes (or cells) from the
Advanced Vio presentation space starting at the specified

Advanced Vio Interface

location.

VioRead CharStr
Read a character string from the Advanced Vio presentation
space starting at the specified location.

VioScrollDn
Scroll the current screen down the specified number of lines.

VioScrollLf
Scroll the current screen left the specified number of
columns.

VioScrollRt
Scroll the current screen right the specified number of
columns.

VioScrollUp
Scroll the current screen up the specified number of lines.

VioSetAnsi
Set Ansi on or off.

VioSetCp
Set code page currently used to display text on the screen.

VioSetCurPos
Position the cursor to the specified row and column on the
display.

VioSetCurType
Set the cursor type. The cursor type consists of the cursor
start line, end line, width (assumed 0 - one column width)
and attribute (normal or hidden).

VioSetMode
This function sets the mode of the video display. Only valid
for default Vio. An error will be returned if issued with a
non zero handle. The only variable that will be examined is
the Alpha Rows. This must valid for the particular device.

VioShowBuf
This function updates the display with the Advanced Vio
presentation space. The caller may specify a subset of the
presentation space for update.

Vio WrtCellStr
Write a character attribute string to the Advanced Vio
presentation space. The caller must specify the starting loca­
tion on the presentation space where the string is to be writ­
ten.

Vio WrtCharStr
Write a character string to the Advanced Vio presentation
space. The caller must specify the starting location on the
presentation space where the string is to be written.

355

Windows Presentation Manager Reference

Vio WrtCharStrAtt
Write a character string with a repeated attribute code to
the Advanced Vio presentation space. The caller must
specify the starting location on the presentation space where
the string is to be written.

VioWrtNAttr
Write an attribute code to the Advanced Vio presentation
space a specified number of times. The caller m)lst specify
the starting location on the presentation space where the
attribute code is to be written.

Vio WrtNCell
Write a cell (or character,attribute) to the Advanced Vio
presentation space a specified number of times. The caller
must specify the starting location on the presentation space
where the cell is to be written.

Vio WrtNChar
Write a character to the Advanced Vio presentation space a
specified number of times. The caller must specify the start­
ing location on the presentation space where the character is
to be written.

VioWrtTIY
Write a character string from the current cursor position in
TIY mode to the Advanced Vio presentation space. The
cursor will be positioned at the end of the string+ 1 at the
end of the write.

9.1.3.2 Invalid Function call summary

The following function calls must not be issued by an application. An
error code will be returned if any calls are issued.

VioDeRegister
Deregister a video subsystem

VioGetFont
Return the current font.

VioGetPhysBuf
Return the address of the physical video buffer

VioGetState
Return the current setting of the video state.

VioModeUndo
Restore mode undo

356

Advanced Vio Interface

VioModeWait
Restore mode wait

VioRegister
Register a video subsystem within a screen group

VioSavRedrawWait
Screen save redraw wait.

VioSavRedrawUndo
Screen save redraw undo.

VioScrLock
lock screen.

VioScrUnlock
Unlock screen.

VioSetFont
Set the display font.

VioSetState
Set the video state.

9.1.4 Advanced Vio- Functional Description

9.1.4.1 Function call summary

The following DOS Advanced Vio functions have been defined:-

VioAssociate
Associate an Advanced Vio presentation space with a Device
Context

VioCreatePS
Allocate an Advanced Vio presentation space

VioDeleteSymbolSet
Delete a symbol set

VioDestroyPS
Destroy the Advanced Vio presentation space

VioGetDeviceCellSize
Get the current device cell size

VioGetOrg
Get Origin

VioLoadSymbolSet
Load a Symbol Set

357

Windows Presentation Manager Reference

VioQueryPSFormats
Query supported Advanced Vio presentation space formats.

VioQuerySymbolSets
Query base symbol set plus all loaded symbol sets.

VioSetDeviceCellSize
Set the device cell size

VioSetOrg
Set Origin

VioShowPS
Update the display with the Advanced Vio presentation
space for a rectangle

9.1.4.2 Function call detail

358

VioAssociate (PresH,DCH)

Associate an Advanced Vio presentation space with a Device
Context. Any type of Device Context may be used. Subse­
quent VioShowPS or VioShowBuf functions direct output to
this Device Context.

If the Advanced Vio presentation space is currently associ­
ated with another Device Context, that association will be
broken. Similarly, if another Advanced Vio presentation
space is currently associated with the Device Context, that
association is broken.

A screen Device Context is the only kind of Device Context
which may be associated with an Advanced Vio presentation
space.

If a null handle is supplied for the Device Context, the
presentation space is just dissociated from the currently
associated Device Context.

Parameters:

PresH (type hpvs)
The presentation space handle returned to the
application by VioCreatePS.

DCH The Device Context handle. If null, a dissociation
occurs.

Returns:

0 Error
1 OK

Advanced Vio Interface

VioCreatePS (Reserved,NumAttr,Format, Width,Depth,PreslL var)

Allocate an Advanced Vio presentation space.

Parameters:

Reserved

NumAttr

Reserved (must be zero).

The number of attribute bytes in the presentation
space per character cell. This may be 1 or 3.

Format Identifies the format of the attribute byte(s) in the
presentation space. Currently Format 0 is the only
defined format; for this, the presentation space lay­
out is:

NumAttr = 1 (CGA)
Codepoint
Base attributes background colour

foreground colour
(blink and intensify are
not supported)

NumAttr = 3 (Extended)
Codepoint
Base attributes background colour

foreground colour
(blink and intensify are
not supported)

Extended attrs underscore
reverse video
background opacity
character set 0,1,2 or 3

Spare byte for application use

Width,Depth
Specify the size of the presentation space required
in character cell units. Note:
The presentation space size (Width * Depth *

(NumAttr + 1)) must not exceed 32k.

PreslL var (type hpvs)
The variable in which the presentation space han­
dle is returned to the application, which must be
passed on all subsequent Vio,Advanced Vio calls
for this presentation space.

Returns:

0 Error
1 OK

Note that this is a 16-bit handle, unlike other
Presentation Manager handles.

359

Windows Presentation Manager Reference

VioDeleteSymbolSet (PresH,Rsvd,Number)

Delete a Symbol Set

Parameters:

PresH (type hpvs)
The presentation space handle returned to the
application by VioCreatePS.

Rsvd Reserved (must be 0).

Number

Returns:

0 Error
1 OK

The number (1,2 or 3) of the loadable symbol set
to be freed.

VioDestroyPS (PresH)

Destroy the Advanced Vio presentation space.

Parameters:

PresH (type hpvs)
The presentation space handle returned to the
application by VioCreatePS.

Returns:

0 Error
1 OK

VioGetDeviceCellSize (PresH, Wid th,Heigh t)

Get current device cell size

Parameters:

360

PresH (type hpvs)
The presentation space handle returned to the
application by VioCreatePS.

Height, Width
The current device cell height and width in pels.

Returns:

0 Error
1 OK

VioGetOrg (PresH,Column,Row)

Get Origin

Parameters:

Advanced Via Interface

PresH (type hpvs)
The presentation space handle returned to the
application by VioCreatePS.

Row,Column

Returns:

0 Error
1 OK

Identifies the cell currently mapped to the top left
hand corner of the window (first is zero).

VioLoadSymbolSet (PresH,Rsvd,Number,Name,Length,DataAddr)

Load a Symbol Set definition from a specified application
data area. This is the Vio equivalent of GpiLoadSymbolSet.
See the section, "Character Functions" in the chapter,
"Graphics Programming Interface" for more details.

Parameters:

PresH (type h pvs)
The presentation space handle returned to the
application by VioCreatePS.

Rsvd Reserved (must be 0).

Number

Name

The number (1,2 or 3) of the loadable symbol set
being defined.

An 8 character name which may be used to
describe the symbol set, for interchange for exam­
ple.

Length Specifies the length of the data. This should be the
same as the length field at the start of the data.

DataAddr

Returns:

0 Error
1 OK

Specifies the start address of the data area which
contains the symbol set definition. Only row
loaded image symbol set definitions are supported
for Advanced Vio. The definition should match
the character cell size.

VioQueryPSFormats (Reserved,QueryFormats)

Query supported Advanced Vio presentation space formats.

Parameters:

361

Windows Presentation Manager Reference

Reserved
Reserved (must be zero).

Query Formats

Returns:

0 Error
1 OK

A structure into which a list of presel).tation space
formats supported by Presentation Manager is
returned.

VioQuerySymbolSets · (PresH,Length,DataAddr)

Query the base symbol set plus all loaded symbol sets. This
is the Vio equivalent of GpiQuerySymbolSets. See the sec­
tion, "Character Functions" in the chapter, "Graphics Pro­
gramming Interface" for more details.

Parameters:

PresH (type h pvs)
The presentation space handle returned to the
application by VioCreatePS.

Length The length of the data buff er provided.

DataAddr

Returns:

0 Error
1 OK

The address of a data buff er in which to return the
information.

VioSetDeviceCellSize (PresH, Width,Height)

Set the device cell size

Parameters:

362

PresH (type h pvs)
The presentation space handle returned to the
application by VioCreatePS.

Height, Width
The required device cell height and width in pels.

Returns:

0 Error
1 OK

Advanced Vio Interface

VioSetOrg (PresH, Column ,Row)

Set Origin

Parameters:

PresH (type h pvs)
The presentation space handle returned to the
application by VioCreatePS.

Row,Column

Returns:

0 Error
1 OK

Identifies the cell to be map.r,ed to the top left
hand corner of the window l first is zero).

VioShowPS (PresH, Offset, Width ,Depth)

Update the display with the Advanced Vio presentation
space for a rectangle

Parameters:

PresH (type hpvs)
The presentation space handle returned to the
application by VioCreatePS.

Offset Identifies the cell of the top left hand corner of the
rectangle which has been updated since the last
VioShowPS. The top left cell is offset 0.

Width,Depth

Returns:

0 Error
1 OK

Defines the dimensions of the rectangle in charac­
ter cell units.

363

Chapter 10
Standard Application Support

10.1 Support of DOS VIO .. , KBD .. and MOU .. calls 367
10.1.1 Default window and presentation space 367
10.1.1.1 Default window creation 367
10.1.1.2 Default window characteristics 368
10.1.1.3 Default presentation space 368
10.1.2 VIO calls 368
10.1.3 KBD calls 369
10.1.3.1 Restricted Function KBD calls 369
10.1.3.2 Invalid KBD calls 369
10.1.4 MOU calls 370
10.1.4.1 Restricted Function MOU calls 370
10.1.4.2 Invalid MOU calls 371
10.1.5 Other Presentation l\1anager calls 372

365

Standard Application Support

10.1 Support of DOS VIO .. , KBD .. and MOU ..
calls

Applications that are written to make use of a subset of the DOS VIO,
KBD, and MOU api calls may be run in the Presentation Manager screen
group. Appendix B describes the limitations that must be followed if an
application is to be run in the Presentation Manager screen group. This
section describes the support for those applications that follow those limi­
tations.

The objective of this support is to allow a significant proportion of DOS
applications to run without modification in a window of the Presentation
Manager screen group. That is, those applications should be able to run in
a Presentation Manager window, but they will not have to make any calls
except the DOS VIO, KBD, and MOU calls.

Such an application must be identified to Presentation Manager at instal­
lation time. Failure to do so will result in an error code being returned if a
DOS VIO, KBD or MOU call is executed in an application.

The calls supported are those specified in DOS level 1.1 specification with
the restrictions as noted below.

10.1.1 Default window and presentation space

A default window and presentation space will be created for the applica­
tion. The effect of this will be that an environment will be created for
applications that will allow them to run as if they were in their own screen
group.

More details follow.

10.1.1.1 Default window creation

A default window will be created when a DOS VIO, KBD or MOU applica­
tion is loaded. One default window is created for each of these applica­
tions. This window will be shared for every process of the application.
However, two separate applications will each receive their own default
window. This mirrors the situation that would pertain if each application
were to be run in its own screen group.

367

Windows Presentation Ma.na.ger Reference

10.1.1.2 Default window characteristics

The default window will have the following characteristics

The window will have normal borders

The window will have a title bar

The window will be sizeable by the user interface

The window will be moveable by the user interface

The window will be maximisable

If the window requires scrolling it will contain scroll bars

The window will initially occupy the minimum of:

The entire screen

The space required to allow an 80 x 25 character client area

10.1.1.3 Default presentation space

A default presentation space will be created at the same time as the
default window. This presentation space will be associated with the
default window. The presentation space will have the following charac­
teristics:

The size will be 80*25

The format will be CGA format

The size of the presentation space will alter to reflect any valid settings of
the number of rows specified in VioSetMode.

10.1.2 VIO calls

Any VIO call from the application that specifies a zero handle will be
directed to the default presentation space and window. The VIOGETBUF
call will return the address of the default presentation space, and this is in
the same format as the DOS logical video buffer. See the section, "DOS
Base Vio - Functional Desription", for the restrictions on Vio calls.

The application may also issue the following extended VIO calls to the
default window.

368

VioGetOrg

VioSetOrg

Standard Application Support

VioQueryPSFormats

VioQuerySymbolSets

VioShowPS

If it does so, however, it will be unable to run in its own screen group, or
in a system without Presentation Manager

10.1.3 KBD calls

The application may issue KBD calls to a default keyboard. A default
keyboard will exist for each application. All processes in an application
will share the same default keyboard. Logical keyboards are not sup­
ported by Presentation Manager.

10.1.3.1 Restricted Function KBD calls

The following KBD calls have a modified effect when directed to the
default window.

KbdSetStatus
Only Binary/ ASCII, Turnaround character and Echo state
may be modified with this call. All other functions are no­
oped.

KbdGetStatus
The data returned by this call is as follows:

Word 0: length=5

Word 1: Echo & input mode as per DOS

Word 2: Turnaround character as per DOS

Word 3: Interim character flags always 0

Word 4: Shift state as per last character enqueued into
keyboard buffer.

10.1.3.2 Invalid KBD calls

The following KBD calls must not be issued by an application. An error
code will be returned if any calls are issued.

KbdRegister
Register keyboard subsystem

369

Windows Presentation Ma.na.ger Reference

KbdDeRegister
Deregister keyboard subsystem

10.1.4 MOU calls

The application may issue MOU calls. A MOU call will receive input from
the locator when the default window is the input window.

10.1.4.1 Restricted Function MOU calls

The following MOU calls have a modified effect when directed to the
default window.

Mou Open

Mou Close

The handle returned by MouOpen will be unique for the
application, not the screen group as in base DOS. This han­
dle must be used in future MOU calls.

This call closes the locator device for the current application.
After this call the handle is invalid.

MouSetPtrShape
The MOU support is limited to text mode emulation, and
application defined pointers for these modes will not be
displayed by Presentation Manager. The Presentation
Manager system default pointer will be displayed in the
default window in this case. The pointer shape therefore has
no meaning to Presentation Manager but will be returned by
a subsequent MouGetPtrShape call.

MouGetPtrShape
This call will work the same as in base DOS with the limita­
tion that the pointer shape is always the text pointer as
defined by the MouSetPtrShape call for the application.

MouGetPtrPos

370

This call will return the position of the Presentation
Manager pointer (in character units) when the pointer is
within the default window. If the pointer is not in the
default window at the time the call is made, an error will be
returned.

MouGetScaleFact
This call will always return the current scaling factor as set
by Presentation Manager, namely a row and column scaling
factor of 1 character.

Standard Application Support

MouGetDevStatus
This call will always return a word of 0.

MouSetPtrPos
This call will set the pointer position. If the pointer position
is being set to a position that would not be visible, or if the
vio window is not the active window, then the pointer posi­
tion is not set and an error is returned. Otherwise, the
pointer is moved to the relevant point on the screen.

MouDrawPtr
The Presentation Manager system pointer will always be
displayed by Presentation Manager when the pointer is
within the default window. Presentation Manager treats this
call as a noop, and returns a zero return code.

MouRemovePtr
Collision avoidance is provided automatically by Presenta­
tion Manager and application control is redundant. The
pointer will always be on the screen (if a mouse is attached
to the system), and the application is unable to remove it
with this call. Presentation Manager treats this call as a
noop, and returns a zero return code.

MouSetScaleFact
Applications are not able to change the scaling factor within
the Presentation Manager screen group. Presentation
Manager treats this call as a noop, and returns a zero return
code.

MouSetHotKey
Presentation Manager will always return ERROR­
MOUSECANT-RESET to this call.

10.1.4.2 Invalid MOU calls

The following MOU calls are invalid when directed to the default window.

MouRegister
Register a mouse subsystem

MouDeRegister
Deregister a mouse subsystem

371

Windows Presentation Manager Reference

10.1.5 Other Presentation Manager calls

No other Presentation Manager api calls are allowed to the default win­
dow or presentation space.

However, other Presentation Manager calls may be made within the appli­
cation to other windows, presentation spaces, etc .. In order to use the
other Presentation Manager functions, the application will have to create
an additional input queue for the use of these other functions.

372

Chapter 11
Spooler lnterf ace

11.1 The Spooler 375
11.1.1 Introduction 375
11.1.2 Overview 375
11.1.3 Spooler and Printer Configuration 378
11.1.3.1 Spooler Installation 378
11.1.3.2 Logical Device Address 379
11.1.3.3 Queue Processors 379
11.1.3.4 Printer Device Drivers 379
11.1.3.5 Printers 380
11.1.4 Spool File Datatype Format 381
11.1.4.1 Predefined Datatypes 381
11.1.4.2 User Datatypes 382
11.1.5 Application Printing 382
11.1.5.1 How an Application Prints 383
11.1.5.2 Printing Using Banding 384
11.1.5.3 Aborting a Print Operation 384
11.1.5.4 Errors During Printing 385
11.1.6 Device Driver - Part I 385
11.1.6.1 Application Query Support 385
11.1.6.2 Spool File Creation 385
11.1.6.3 Presentation Manager Supplied Device Drivers 386
11.1.6.4 User Device Drivers 386
11.1.6.5 Device Driver Functions 386
11.1.7 User Interface 386
11.1.7.1 Function 386
11.1.7.1.1 Hold Queue 387

373

11.1.7.1.2 Release Queue 387
11.1.7.1.3 Print Job Next 387
11.1.7.1.4 Print Job Now 387
11.1.7.1.5 Cancel Job 387
11.1.7.1.6 Restart Job 388
11.1.7.1.7 Repeat Job 388
11.1.7.1.8 Hold Job 388
11.1.7.1.9 Release Job 388
11.1.7.1.10 Redirect Job 388
11.1.8 Queue Manager 388
11.1.8.1 Job Selection 389
11.1.8.2 Print Job Generation Functions 389
11.1.9 Queue Processor 394
11.1.9.1 How a Queue Processor Prints 394
11.1.9.2 Queue Processor Functions 395
11.1.9.3 Presentation :Manager Supplied Queue Processors 399
11.1.9.3.1 PRINT 399
11.1.R3.2 PLOT 401
11.1.9.4 User Queue Processors 402
11.1.10 Device Driver - Part II 402
11.Ll0.1 Presentation :Manager Supplied Device Drivers 403
11.1.10.2 User Device Drivers 403
11.1.10.3 Device Driver Functions 403
11.1.11 DOS Device Drivers 403
11.1.12 Message Interface 403
11.1.13 Message Functions 403
11.1.14 DOS SPOOL and PRINT Commands 404
11.1.14.1 Device Driver Register 405
11.1.14.2 Device Driver Register Functions 405
11.1.14.3 DOS Monitor Chain 406
11.1.15 Spooler Not Installed 407

374

Spooler Interface

11.1 The Spooler

11.1.1 Introduction

The Spooler intercepts data going to printer Device Drivers, and writes it
to disk. The data is then printed when it is complete, and the required
printer is free. This prevents the printer output from different sources
being intermixed. Note: The generic term print is used to describe both
printing on a printer device and plotting on a plotter device. Similarly,
printer refers to either a printer device or a plotter device. The printer
device class is used to determine the device type (eg raster printer, vector
plotter).

11.1.2 Overview

375

Windows Presentation Manager Reference

+---------+
:user I/F i<+

(10) +---------% : (11)
+----------------------------+ I
: (3) : +---%
: +-------------------+ I :
: : v v v

+------+(1)+-+ +-------+ +-+
!Appl :-->i i i i
: : <->: : : :
+------% (9) : : I I

IA (2) +--------+ (3) I IAI (6) +--------+
IP -->!Printer :--> *******I (4)+-----+(5) iPl-->IPrinter :-+
I I <-> 100-I I *LPTl *--->:Print:--> I I I 100-II I
I (9)+--------% *******I iQueuel : I +--------%
: : Wroe I I I I
I +----------> Queue I +-----% I I (15) I
I I (17) +->,Manager I I I I
+-% : : +-------% +-% :

+----------% (14): :
+---------+ +---------+ I I
:oos :oos :-% (16) +--------+ (7):
IPRINT I SPOOL l<---------------100 !<---------%
I Command 1 I Command I < + I Register I
+---------% +---------% : +--------%

I I
I I
I I
I I

I
I
I
I
I
I
I
I
I
I

: (13) : +------------------------------------%
I I
I I
I I
I I

I
I

v
: (18) +-------+

+------+ +-------------->IDOS i
:oos :---------------->:Printer:
!Appl I (12) :oo I
+------% +-------%

: (8)
v

+--------+
IPrinter I
+--------%

Figure 11.1 Spooler Logical Data Flow

The Presentation Manager Spooler replaces the DOS Spooler, and is
installed automatically.

An overview of the data flow for a printer class device is shown in The
data flow is as follows:

376

1. This flow is the normal Presentation Manager API to the printer.

The application program opens a printer DC, the data is then writ­
ten (eg using GPI function), and the DC is then closed.

2. The data may be passed to part I of the Presentation Manager
Printer Device Driver. This would depend upon the format of the
spool file to be created.

Spooler Interface

3. The data is passed to the Spooler Queue Manager, which creates a
print job. There is a queue of print jobs per logical device address
leg "LPTl ").

A print job is created for each StartDoc/EndDoc escape sent to the
printer DC.

4. This fl.ow is the top of a queue going to its Spooler Queue Proces­
sor. A spool file is read by the processor, and is deleted by the
Queue Manager when the processor has finished.

Presentation Manager provides two processors: PRINT (for raster
printer class devices) and PLOT (for vector plotter class devices).
User processors can also be defined to the Spooler, and the Presen­
tation Manager ones can be replaced. This is done via the Control
Panel (see the section, "Control Panel" in Chapter 3).

5. This fl.ow is the Spooler Queue Processor using the normal API to
write to a printer.

A Spooler Queue Processor performs whatever operations are
appropriate for its queue. In the case of the Presentation Manager
PLOT Processor, reverse clipping is performed if requested and the
datatype is suitable, before the data is passed to the APL This is
because vector plotter class Device Drivers do not do this, unlike
raster printer class Device Drivers.

6. This fl.ow is to Part II of the Spooler Printer Device Driver for the
required printer.

User Device Drivers can also be defined to the Spooler, and the
Presentation Manager ones can be replaced. This is done via the
Control Panel (see the section, "Control Panel" in Chapter 3).

7. This fl.ow is to the DOS Device Driver.

8. The DOS Device Driver sends data to the printer via the hardware
adapter.

The main fl.ow is now complete. The following covers miscellane­
ous fl.ow:

9. Data can fl.ow between a Presentation Manager Printer Device
Driver and an application for various reasons, for example, the
application can query a Device Driver (eg for banding, plotter pen
allocation).

10. An application can write directly to a spool file, bypassing the
Presentation Manager Device Driver Part I. This would be done if,
for example, an application wished to write to the printer using a
device dependent printer datastream.

11. This is a user interface to the Spooler queues. This enables a user
to query and manipulate the queues.

The following applies to the replacement of the DOS Spooler:

377

Windows Presentation Manager Reference

12. This fl.ow is the normal DOS API to the printer.

The application issues a DosOpen for the printer, followed by 'n'
Dos Writes/Dosloctls, followed by a DosClose.

When the DosOpen is issued, an Open Ioctl is sent to the DOS
printer Device Driver, followed by an Activate Font Ioctl.

13. This fl.ow is from the printer Device Driver to the DOS Spooler
emulation.

14. This fl.ow is to the Queue Manager as described in A print job is
created for each DosOpen/DosClose.

15. This fl.ow is the Presentation Manager Printer Device Driver Part II
registering and deregistering itself as writing directly to the DOS
device.

16. This fl.ow is the SPOOL command querying whether data should be
spooled or written back to the DOS Device Driver.

17. This fl.ow is the PRINT command switches causing one or more
jobs on a spooler queue to be cancelled.

18. This fl.ow is the PRINT command printing a file, and is similar to.

The Spooler includes support for print devices connected via the DOS
Async Device Driver (COMn), and the Presentation Manager supplied
IEEE DOS Device Driver. Note that for technical reasons, the DOS
Spooler does not spool data destined for COMn devices, only LPTn dev­
ices; and since the Presentation Manager Spooler emulates the DOS
Spooler, the same restriction applies. Thus if a DOS application sends
data to COMl directly, it could be interleaved with output from the
Presentation Manager Spooler or another DOS application. Data from a
Presentation Manager application destined for COMl would of course be
spooled.

11.1.3 Spooler and Printer Configuration

The user can tailor the Spooler using the Control Panel (see the section,
"Control Panel" in Chapter 3). This section outlines the tasks to be per­
formed to install and setup the Spooler, and connect a printer.

11.1.3.1 Spooler Installation

For the Spooler the following is specified:

378

• Spooler
If install is specified, Presentation Manager runs with the Spooler
installed.

If noinstall is specified, Presentation Manager runs without the

Spooler Interface

Spooler installed. See the section, "Spooler Not Installed", for
further information on the data flow if the Spooler is not installed.

11.1.3.2 Logical Device Address

For each device queue (eg "LPTl "), the following is specified:

• Default Spooler Queue Processor Name

This is used if a name is not supplied by the application (the initial
default is PRINT).

• Alternative Device

This is optional, but ifspecified causes all data directed to this
device to be sent to the alternative device.

• Spool Directory

The drive letter and name of the Spool directory (C: \SPOOL is the
initial default).

• SPOOL Command

This is only applicable to devices supported by the DOS SPOOL
command (see the section, "DOS SPOOL and PRINT Commands").

If execute is specified, then the user does not have to execute the
SPOOL command, since it is done automatically using the
appropriate options specified for this device (eg spool directory).

If noexecute is specified, then execution of the SPOOL command is
left to the user.

11.1.3.3 Queue Processors

A processor file can be added or deleted.

The following is specified:

• Any processor dependent options

11.1.3.4 Printer Device Drivers

A Presentation Manager Printer Device Driver file can be added or deleted.

The following is specified:

• Default datatype

Datatype format of the spool file if not specified by the application.
What datatypes are available depends upon the Device Driver (see

379

Windows Presentation Manager Reference

the section, "Spool File Data Format").

• Any Device Driver options

Note: When a Device Driver is specified for a printer (see the section,
"Printers"), the Device Driver needs to obtain Device Driver/printer
related data.

11.1.3.5 Printers

Printers may be added or deleted. The following is specified for each
printer:

• Spooler Printer Device Driver to be used.

• Device Driver/Printer information

This must include:

• Forms Code

User specified forms code (upto 24 characters), with informa­
tion on the size of the form and any user /hard clip limits.

The user must also specify which one is installed.

• Paper Orientation,

Whether the paper is to be treated as landscape or portrait.

• Device Dependent Data

This depends upon the device (eg plotter pen color allocation).

• Printer address

This is optional, and if not specified the printer cannot be used.
Addresses are LPTl-3, COMl-8, IEEEl-14, PRN=LPTl and
AUX=COMl.

For an IEEE connected device, the physical address must also be
specified for the logical address IEEEn.

• User name for printer. This is for reference by applications who
may wish to present the user with a user specified name.

The following global information is also specified:

380

• Default Printer

A printer may be specified as the default. This is for reference by
applications to determine which printer to use, if they do not wish
to present the user with a list of printers available.

Spooler Interface

11.1.4 Spool File Datatype Format

The format of a spool file is known as its datatype, and each datatype is
identified by a datatype name.

Each call to a Processor will be from the main thread of a DOS process,
except for the Query and Control functions. Being invoked in this manner
overcomes some of the reentrancy problems for the Processor. A Processor
can start other DOS threads or processes if it wishes.

11.1.4.1 Predefined Datatypes

The current predefined datatype names and formats are as follows:

• Q-STD

The spool file created is in a format which is printer and Device
Driver independent.

• Q-ESC

The spool file created is in a format which is printer independent,
but Device Driver dependent.

This datatype is a general mechanism for Part I of a Spooler Device
Driver to communicate to Part II. The actual format is identified
by an Escape Number, and there is a number for a predefined for­
mat, called Journal. It is also possible to have user defined for­
mats, with user defined Escape Numbers.

• Q-RAW

The spool file created is in a format which is printer dependent: a
printer data.stream.

In general, the format defined by the datatype name Q- STD should be
used, although there are times when one of the others would be more suit­
able. A list of points which influence the choice of datatype follows:

1. Printer and Device Driver Independence.

The more independent a datatype is, the greater the chance of the
achievement of visual fidelity ifa spool file is rerouted to another
type of printer. Thus with Q-STD, visual fidelity can normally be
achieved. However, with Q-ESC and Q-RAW it is unlikely to
occur.

2. Disk Space

In general, Q- STD requires least disk space, and Q- RAW most.
It would not be unusual for a picture which takes up lOK bytes
when in Q- STD format to take up lOOK when in Q- RAW format.

381

Windows Presentation Manager Reference

3. Spooler Queue Processor

It is only practical for a Spooler Queue Processor to analyse a spool
file with Q... STD datatype. In particular, the Presentation
Manager supplied PLOT Queue Processor only performs reverse
clipping on Q... STD.

4. Performance and Program Size

The time taken to format a spool file is in general less for a printer
dependent format then for an independent format. Thus Q...RAW
is quicker to format than Q.... ESC, which is slightly quicker than
Q....STD.

Similarly, the program to format datatype Q....RAW is much
smaller than that required for Q... ESC, which in turn is smaller
than that for Q....STD.

5. Optimised Banding

The only datatype which is suitable for optimised banding is
Q....ESC (see the section, "Printing Using Banding").

All Presentation Manager supplied Spooler Queue Processors and Printer
Device Drivers support these types.

11.1.4.2 User Datatypes

User datatypes can have any name. They are not supported by the
Presentation Manager supplied Spooler Queue Processors and Printer Dev­
ice Drivers.

They can be generated and processed as follows:

1. A user Printer Device Driver can generate a spool file in a user for­
mat. The file must be processed by a user Queue Processor which
understands the format, and possibly the user Printer Device
Driver - Part II, would also need to understand the format.

2. An application can create a spool file directly in a user format.
The file must be processed by a user Queue Processor which under­
stoods the format, and possibly the User Printer Device Driver -
Part II, would also need to understand the format.

11.1.5 Application Printing

382

Spooler Interface

11.1.5.1 How an Application Prints

An application can print using the following methods:

1. An application can write to a printer using the normal API (eg the
GPI for graphics) as follows:

1. A printer DC is created by the DevOpenDc function, specifying
queued output (see the chapter, "Device Contexts").

The Presentation Manager initialisation file can be queried to
find such information as which printers are attached, the driver
and device name for each printer, which Spooler Queue Proces­
sors are installed (see the section, "The Initialization File").

2. Output is delimited by the StartDoc and EndDoc escape codes,
using the DevEscape function. In addition, each new page is
begun with a NewFrame escape code (EndDoc causes a new
page). All data in a StartDoc/EndDoc is printed together.

3. The data is written to the printer using the API:

1. A PS is associated with the printer DC.

2. Data is drawn into the PS (eg a draw chain or a play
metafile could be performed for a GPI P~).

3. The PS is disassociated from the printer DC.

4. The Printer DC is closed by the DevCloseDc function.

This method is particularly suitable for graphics.

2. An application can write to the spool queue direct (for subsequent
printing) by using Spooler Queue Manager function calls as follows:

1. A Queue Manager open is performed.

2. Output is delimited by the Queue Manager StartDoc and
EndDoc escape functions calls (EndDoc causes a new page).

3. The data is written using the Queue Manager Write function
call.

4. A Spooler Queue Manager close is performed.

This method is particularly suitable for alpha, or where an applica­
tion 'knows' the printer datastream and wishes to produce the
datastream itself.

3. An application can write to a printer using the normal DOS API (ie
DosOpen, Dos Write and DosClose). This method is particularly
suitable for alpha.

Note: It could take some time to spool or print. So for an application to
be 'well-behaved', it should print on a separate thread from its input pro­
cessing. See the chapter, "How to Write a Presentation Manager Applica­
tion", for details on 'well behaved' applications.

383

Windows Presentation Manager Reference

11.1.5.2 Printing Using Banding

Banding is a technique in which an image or picture is printed by dividing
it into several bands (also known as "swathes" or "slices") and each band
is sent to the printer separately. This reduces tha amount of memory
needed to hold a picture before it is sent to the printer, since it is not
necessary to hold the entire picture in memory. Banding can be used with
any printer that has a banding capability (eg a raster class printer).

An application does not have to do anything to ensure that banding is
used, since it is automatically used if the printer has banding capability.

An application can optimise banding if it is producing a spool file of data­
type Q-ESC, the format (as indicated by the Escape Number) supports it
(Journal format is suitable), the Device Driver supports it and the data is
not going to be formatted m some way by the Spooler Queue Processor.
This optimisation is done by sending only the data applicable to a particu­
lar band (eg a title line could well apply only to the first horizontal band).

To print using optimised banding, the following should be done:

1. A printer DC is opened, with a datatype of Q- ESC.

2. Use the DevQueryDeviceCaps function to ensure that banding sup­
port is provided by the Device Driver.

3. Use the DevEscape function with the NextBand escape code to
retrieve the coordinates of a band, which will be a rectangle.

Coordinates are in device units, and all subsequent calls (eg GPI)
are clipped to this rectangle.

4. If the coordinates give an empty rectangle, then the end of the
banding operation has been reached. In this case, close the printer
DC.

5. Use the GpiConvert function to translate from device to world
units.

6. Use GPI and other functions to draw in the band.

7. Repeat steps to, as necessary.

8. Close the printer DC.

11.1.5.3 Aborting a Print Operation

The DevEscape function with the AbortDoc escape code can be used to
abort a print operation (see the chapter, "Device Contexts").

384

Spooler Interface

11.1.5.4 Errors During Printing

If any errors occur during the actual printing process, they are normally
reported to the user (eg if a Device Driver encounters an error, such as 'out
of paper', it reports it to the user for resolving, and recovers from it if pos­
sible). However, if an error occurs when generating a spool file, it is not
reported to the user - a bad return code is returned to the application and
it is left to the application to handle it (eg it could report it to the user
and then try again if requested).

11.1.6 Device Driver - Part I

The purpose of this section of a Device Driver is to support queries from
the application, and to assist the application API in the production of a
spool file.

11.1.6.1 Application Query Support

The application can query the driver to obtain information on the capabil­
ities of the printer. This is done via the DevQueryCaps and similar func­
tion calls (see the chapter, "Device Contexts").

11.1.6.2 Spool File Creation

Logically the spool file is created by the Device Driver. However, the
amount of involvement of the Device Driver in the creation of the spool file
depends upon the datatype of the file to be produced.

For the predefined datatypes, processing is as follows:

• Q....STD
This independent format only uses the Device Driver to handle
Queries. Thus a Device Driver just has to be able to handle any
Queries and return the result, to support this datatype.

The Device Driver creates the spool file by getting Presentation
Manager to generate it.

• Q....ESC
The Device Driver is very much involved in this since this format is
to be interpreted by Part II of the Device Driver: the spool file con­
sists of essentially an Escape for Part II of the Device Driver. Thus
the Device Driver has to be able to produce device driver dependent
data, and handle any Escapes or Queries, to support this datatype.

The Device Driver creates the spool file, although assistance is
available from Presentation Manager to produce the Journal

385

Windows Presentation Ma.na.ger Reference

format.

• Q-RAW

The Device Driver is very much involved in this since the data is
esssentially a printer datastream. Thus the Device Driver has to be
able to produce a printer datastream for its printer, and handle
any Escapes or Queries, to support this datatype.

The Device Driver creates the spool file.

User datatypes are essentially generated by the Device Driver, so the Dev­
ice Driver is fully involved.

11.1.6.3 Presentation Manager Supplied Device Drivers

Device Drivers are supplied for a wide range of printers. They only sup­
port the Presentation Manager defined datatypes.

11.1.6.4 User Device Drivers

For general use, a user Device Driver should support at least the Presenta­
tion Manager datatypes q_ STD and q_ RAW.

For information on how to produce a user Device Driver see the chapter,
"Device Driver Interface".

11.1.6.5 Device Driver Functions

For a detailed description of the function calls see the chapter, "Device
Driver Interface".

11.1. 7 User Interface

A user interface is provide to manage the queues and the print jobs.

11.1.7.1 Function

When invoked, a list of the queues is displayed, with summary informa­
tion, such as the number of print jobs in each queue. This list may be
scrolled, and various operations may be performed on a queue.

The jobs in each queue are displayed in priority order {for details on when
a job may be printed, see the section, "Job Selection"). The jobs in the
queue may be scrolled, and various operations performed on the jobs,
which may affect a job's priority. Against each job, information such as

386

Spooler Interface

its state (eg hold), and the relevant data passed on the Open function call
(eg comment) is displayed.

11.1. 7.1.1 Hold Queue

The selected queue is placed into the hold state. No jobs are printed from
a held queue, any currently printing jobs are allowed to complete.

This function cannot be used if the queue is already held.

In general, a user should hold a queue for a particular printer before
changing the forms, with the new installed forms being specified via the
Control Panel.

11.1. 7.1.2 Release Queue

The selected queue is changed from the held state into the active (or
empty) state. This function can be used only if the queue is in the held
state.

11.1. 7.1.3 Print Job Next

This function operates on a single specified job. That job is moved from
its current position in its queue to the top of the same queue, unless
already printing. The job will become the next job printed when the tar­
get printer becomes free, subject to the selection rules (see the section,
"Job Selection").

A job in the Held state will be released by this function.

11.1. 7.L/. Print Job Now

This function is essentially the same as Print Job Next. The only
difference is that, after the specified job has been moved to the top of the
its queue, any other job currently printing on the target printer is then
cancelled

11.1. 7.1.5 Cancel Job

The selected job is removed from the queue. If any of the selected jobs is
being printed, then the printing operation is interrupted.

387

Windows Presentation Manager Reference

11.1. 7.1.6 Restart Job

The selected job, which must be the job currently printing, is interrupted
and is then restarted from the beginning.

11.1. 7.1. 7 Repeat Job

The selected job is duplicated and is placed onto the queue as if it had just
been created as a completely new job.

If the original job is held then the repeated job will also be held.

11.1. 7.1.8 Hold Job

The selected job or jobs are placed into a hold state. In this state, a job
will not be selected for printing when it reaches the top of the queue. If
the job is being printed, the print is paused.

This function cannot be used when a job is already in the hold state.

11.1. 7.1.9 Release Job

The selected job or jobs are placed into the Ready to Print state.

The function can be used only if the selected job or jobs are in the held
state.

11.1. 7.1.10 Redirect Job

This function can be used to change the queue of a specified job.

If the selected job is being printed, the print is first aborted and then the
job redirected.

11.1.8 Queue Manager

The purpose of the Spooler Queue Manager is to look after the queues,
creating new spool files and print jobs when necessary, and invoking
Spooler Queue Processors to process them.

388

Spooler Interface

11.1.8.1 Job Selection

A job's initial position in a queue depends upon its priority: it is put in
front of all jobs with a lower priority, but after all jobs with an equal or
greater priority. This priority may change in response to requests issued
by the user (eg Print Job Next). When a job gets printed depends upon
the selection algorithm, which is outlined below:

1. Find the jobs with the highest priority in the queue for the device,
which have the correct forms code (ie the forms installed in the
printer (see the section, "Printers") matches that required by the
job, or the job has no forms code) and are not held.

2. If there is more than one such job, choose the one which is nearest
to the head of the queue.

11.1.8.2 Print Job Generation Functions

SplQmOpen

HSPL SplQmOpen(token, length, data)
LPSZ token;
LONG length;
LPBUF data;

This function corresponds to the DevOpenDC function: it
opens the Spooler Queue Manager for generating a print job.

Parameters:

token

length

data

A string containing a token (nickname) which
identifies Spooler information held in the
PRESSERV.INI file. This information is the same
as that which may be pointed to by data; any that
is obtained in this way overrides the information
obtained using token.

If token is specified as *"", then no device informa­
tion is taken from PRESSERV.INI. Presentation
Manager Release 1 requires*"" to be specified.

The length of data supplied. This may be shorter
than the full list if omitted items are irrelevant or
supplied from token or elsewhere.

A parameter block containing:

struct DOPDATA
LPSZ driver_name;
LPBUF driver_data;
LPSZ log_addr;
LPSZ data_type;

389

Windows Presentation Manager Reference

3go

LPSZ comment;
LPSZ proc_name;
LPSZ proc_params;
LPSZ spl_params;
LPSZ network_params;

driver_ name
A string containing the name of the Dev­
ice Driver (eg "EPSON"). This informa­
tion must always be supplied if it is not
available from token.

driver- data

log_addr

Data which is to be passed directly to
the Device Driver. Whether or not any of
this is required depends upon the Device
Driver, though the information may
alternatively have been specified via
DevSetEnvironment.

The data consists of the following:

struct DRIVDATA
LONG length;
LONG version;
SZ device_name;
LPBUF general_data;

length The length of the whole
driver_ data structure.

version The version number of the
data. Version numbers are
defined by particular Device
Drivers.

device_ name
A string in a 32-byte field,
identifying the particular dev­
ice (model number etc). Again,
valid values are defined by
Device Drivers.

generaL data
Data as defined by the Device
Driver.

The logical address of the output device
(eg "LPTl"). This is optional, since the
Spooler will provide a default if

Spooler Interface

necessary.

data_ type

comment

This defines the type of data which is to
be queued, as follows:

• q_ STD - standard format

• q_ ESC - escape format

• q_ RAW - raw format

Note that a Device Driver may define
other datatypes. This information must
be supplied if it is not available from
token.

A natural language description of the
file. This may, for example, be displayed
by the Spooler to the end user. It is
optional.

proc_name
The name of the queue processor. This
will normally be defaulted.

proc_ params
A parameter string for the queue proces­
sor, and is optional.

spLparams
A parameter string for the Spooler,
which is optional. This has the following
options, which must be separated by one
or more blanks:

• FORM f

Specifies a forms code 'f'. This must
be a valid forms c9de for the printer
(see the section, "Printers").

If not specified, then the data is
printed on the forms in use when this
print job is ready to be printed.

• PRTY=n

Specifies a priority in the range 0-99,
with 99 being the highest. If not
specified, then a priority of 50 is
used.

network_ params
A parameter string for networking,
which is optional. In general an

3Ul

Windows Presentation Ma.na.ger Reference

Returns:

0 Error

application would leave it to the Net­
work Program to specify this parameter,
since it is only applicable if the logical
address has been rerouted.

This data will be ignored in Presentation
Manager Version 1.

!=0 Spooler handle

SplQmStartDoc

392

BOOL SplQmStartDoc(hspl, docname)
HSPL hspl;
LPSZ docname;

This function corresponds to the StartDoc escape function: it
specifies that a new print job is starting.

Parameters:

hspl Spooler handle.

docname

Returns:

0 Error
1 OK

SplQmWrite

Document name. This may be displayed by the
Spooler to the end user.

BOOL SplQmWrite(hspl, length, data)
HSPL hspl;
LONG length;
LPBUF data;

Write a buffer to the spool file for the print job.

Parameters:

hspl

length

data

Returns:

0 Error
1 OK

Spooler handle.

Length of data.

Buffer of data to write to the spool file.

Spooler Interface

SplQmEndDoc

LONG SplQmEndDoc(hspl)
HSPL hspl;

This function corresponds to the StartDoc escape function: it
ends a print job, and returns its id, which is a unique
number to identify the job.

Parameters:

hspl Spooler handle.

0 Error
!=0 Jobid (1-65535)

SplQmClose

BOOL SplQmClose(hspl)
HSPL hspl;

This function corresponds to the DevClose function: it closes
the Spooler Queue Manager.

Parameters:

hspl Spooler handle.

Returns:

0 Error
1 OK

SplQmAbort

BOOL SplQmAbort(hspl)
HSPL hspl;

This function aborts the generation of the spool file(s). It
automatically closes the Spooler Queue Manager (see
SplQmClose).

Parameters:

hspl Spooler handle.

Returns:

0 Error
1 OK

Note: If SplQmStartDoc or SplQmEndDoc are not specified correctly (eg
one is missing), then sensible defaults are assumed.

393

Windows Presentation Manager Reference

11.1.9 Queue Processor

A Spooler Queue Processor takes a spool file, and prints it. There is a pro­
cessor for each queue, with two being supplied with Presentation Manager:
PRINT and PLOT. In addition, user processors may be used.

11.1.9.1 How a Queue Processor Prints

A processor is called by the Spooler Queue Manager, and is passed such
information as the processor parameters, plus the data to print.

How a processor writes to a printer depends upon the datatype as follows:

1. Q-STD

394

This data is written using the API in a manner similar to that used
by an application (see the section, "Application Printing"):

1. A printer DC is created by the DevOpenDc function (see the
chapter, "Device Contexts"), with a request for direct output.

2. Output is delimited by the StartDoc and EndDoc escape codes,
using the DevEscape call.

3. The data is written to the printer using the Presentation
Manager APL The processor can perform any operation it
wishes on the data before sending it to the API leg the Presen­
tation Manager Plot Class Processor performs reverse clipping
if requested). In particular, the Presentation Manager GPI
function are available, including metafile support (eg a GPI PS
is associated with the DC, and data is drawn to the PS using
GPI and/or metafile functions).

The data is in metafile format. Thus MetPlayMetaFile (see the
chapter, "Metafile Support") could be used to 'print' the data.
Alternatively, the metafile could be analysed and 'printed'
using the GPI.

4. The Printer DC is closed by the DevCloseDc call.

2. Q-ESC

This data is written using the DevEscape function call:

1. A printer DC is created by the DevOpenDc function (see the
chapter, "Device Contexts"), with a request for direct output.

2. Output is framed by the StartDoc and EndDoc escape codes,
using the DevEscape call.

3. The data is written to the printer using the DevEscape function
call. The data is broken into .blocks of a convient size to be
handled by the processor, and each block is written using the
Escape number specified for the spool file.

Spooler Interface

4. The Printer DC is closed by the DevCloseDc call.

3. Q-RAW

This data is written using the DevEscape function call:

1. A printer DC is created by the DevOpenDc function (see the
chapter, "Device Contexts"), with a request for direct output.

2. Output is framed by the StartDoc and EndDoc escape codes,
using the DevEscape call.

3. The data is written to the printer using the DevEscape function
call. The data is broken into blocks of a convient size to be
handled by the processor, and each block is written using the
RawData option.

4. The Printer DC is closed by the DevCloseDc call.

4. User Datatype

This is very much datatype dependent. The processor can perform
any type of processing it wishes to on the data before outputing it.
It can send the data to the printer using any of the methods
described for the datatypes. It could even requeue it, or throw it
away.

If required, a Queue Processor can issue messages via the the section,
"Message Interface".

If a Queue Processor needs to create temporary files on disk, it should in
general create a temporary subdirectory off the spool directory for the dev­
ice address, and create the files in there.

11.1.9.2 Queue Processor Functions

The interface provided by a Spooler Queue Processor is as follows:

SplQpOpen

HPROC SplQpOpen(length, data)
LONG length;
LPBUF data;

Open the processor.

Parameters:

length The length of data supplied. This may be shorter
than the full list if omitted items are irrelevant.

data A long pointer to a parameter block containing:

struct QPDATA

395

Windows Presentation Manager Reference

396

LPSZ driver_name;
LPBUF driver_data;
LPSZ log_addr;
LPSZ data_type;
LPSZ comment;
LPSZ proc_params;

driver_ name
A string containing the name of the Dev­
ice Driver (eg "EPSON").

driver_ data

log_addr

Data which is to be passed directly to
the Device Driver. Whether or not any of
this is required depends upon the Device
Driver, though the information may
alternatively have been specified via
DevSetEnvironment.

The data consists of the following:

struct DRIVDATA
LONG length;
LONG version;
SZ device_name;
LPBUF general_data;

length The length of the whole
driver_ data structure.

version The version number of the
data. Version numbers are
defined by particular Device
Drivers.

device_ name (SZ)
A string in a 32-byte field,
identifying the particular dev­
ice (model number etc). Again,
valid values are defined by
Device Drivers.

generaL data
Data as defined by the Device
Driver.

The logical address of the output device
(eg "LPTl ").

Spooler Interface

data- type
This defines the type of data which is to
be processed, as follows:

comment

• Q.... STD - standard format

• Q.... ESC - escape format

• Q.... RAW - raw format

Note that a Device Driver may define
other datatypes.

A natural language description of the
file. This may, for example, be displayed
by the Spooler to the end user. It is
optional.

proc_ params
A parameter string for the queue proces­
sor, and is optional.

Returns:

0 Error
!=0 Queue Processor handle

SplQpPrint

BOOL SplQpPrint(hproc, filename)
HPROC hproc;
LPSZ filename;
LONG lastfile;

Process and print the spool file. The Processor assumes that
printing starts on a new page, and issues a form feed after
printing a file.

Parameters:

hproc

filename

Returns:

0 Error
1 OK

SplQpClose

The processor handle.

Name of file containing data to be processed.

BOOL SplQpClose(hproc)
HPROC hproc:

Close the processor.

Parameters:

397

Windows Presentation Manager Reference

hproc

Returns:

0 Error
1 OK

SplQpControl

The processor handle.

LONG SplQpControl(hproc, code)
HPROC hproc;
LONG code;

This function controls the Queue Processor.

Parameters:

hproc

code

Returns:

0 Error
1 OK

SplQpQueryDt

The processor handle.

The control code.

1-ABORT
The print is aborted. The Queue Proces­
sor is automatically closed.

2-PAUSE
The print is paused.

3- CONTINUE
A paused print is continued.

BOOL SplQpQueryDt(length, count, array)
LONG length;

3U8

LONG •count;
LPSZ array[•count];

This function returns a list of the datatypes supported.

Parameters:

length The maximum length of a datatype name.

*Count The maximum number of datatypes that can be
returned. On return, this is updated to the
number actually returned.

array[*count]
An array, which on return contains the datatypes
supported. The length of each array element is
length, and each ASCIIZ datatype name is

Spooler Interface

Returns:

0 Error
1 OK

SplQpinstall

truncated to length length, if necessary.

BOOL SplQpinstall(hwnd)
HWND hwnd;

This function performs any installation work that is
required. It is called by the Control Panel (see the section,
"Control Panel" in Chapter 3) when the Queue Processor is
installed. The processor then holds a conversation with the
user to obtain any processor dependent options. These are
then stored in the PRESSERV.INI file.

Parameters:

hwnd (HWND)
Window handle.

Returns:

0 Error
1 OK

11.1.9.3 Presentation Manager Supplied Queue Processors

Two Queue Processors are supplied (PRINT and PLOT), which support
the predefined datatypes (Q-STD, Q_ESC, Q-RAW).

11.1.9.3.1 PRINT

This processor is aimed at raster printers, although it could be used with
vector plotters. PLOT (see the section, "PLOT") should be used with
plotters if plotting function such as reverse clipping is required. It sends
data to the printer without performing any operations on it, or making
any changes. Parameter

The ASCIIZ processor parameter string takes the following options:

1. COP=n

Print 'n' copies (n is an integer greater than zero).

Default is 1. Note: The forms used in the printer must be the same
for all copies: the forms in the printer for the first page of the first
copy must not be changed until the last page of the last copy has
been printed. If this is not followed, the output may be incorrect.

399

Windows Presentation Manager Reference

2. The following options only apply if the datatype is Q- STD:

1. COL=M/C.

Produce mono output (M) (no background, black foreground),
or color (C) output.

Default is M.

2. MAP=N/A
The colors are printed in a normal way, where background
default is white and neutral white is black (N); or asis, where
background default is black and neutral white is white (A).
Default is N. Note: If color is requested on a mono printer, the
Device Driver will, as expected, only produce mono output.
Which means that a red line on a blue background would not
be seen, since both would have been printed as black. Thus,
the mono option does in general produce a better result in this
sort of configuration, since any background is removed.

3. ARE=C/w,d,l,t

The output area size is the area within the clip limits (C), or is
given as the width (w), depth (d), offset from the left (1), and
offset from the top (t). The units are in terms of a percentage
of the size of the paper.

Default is C.

4. ORl=L/P

The orientation is landscape (L) or portrait (P).

Default is portrait.

5. FIT=S/l,t

The output is fitted to the output area by scaling to fit (S) (ie
the output is scaled until the larger of height or width just fits
within the output area), or is fitted as real size, with the centre
of the output area mapping on to a point in the output which is
offset from the left (1) and offset from the top (t) of the total
output. The units are in terms of a percentage of the size of
the output.

Thus if real size is required and the output area is one quarter
of the total output, then printing in the bottom quarter could
be obtained by specifying land t as 75.

Default is S.

The options must be separated by one or more blanks as in the following
example of the parameter string:

COP=2 FIT=S@

400

Spooler Interface

where @ is hex zero.

Any errors detected in the parameter are ignored, and the default value
for an option is used if an option is not supplied or is in error. Restrict£ons

The following restrictions apply when the datatype is Q- STD:

1. Any GPI restrictions, such as scaling of image (see the chapter,
"Graphics Programming Interface").

2. Any metafile restrictions (see the chapter, "Metafiie Support").

11.1.9.3.2 PLOT

This processor is aimed at vector plotters, although it could be used with
raster printers. The difference between this processor and PRINT (see the
section, "PRINT") is that this processor can perform reverse clipping on
spool files of datatype Q-STD (this is automatic with raster printers), and
runs slower because of the general extra processing involved. Reverse clip­
ping is not normally performed by Presentation Manager vector plotter
Device Drivers because of the complexity of the operation.

This processor also performs a color sort so that if the device driver does
not support a pen sort, the user is not continually being told to change
pens. Parameter

The ASCIIZ processor parameter string takes the following options:

1. COP=n

See the section, "PRINT".

2. The following options only apply if the datatype is Q-STD:

1. MOD=D/H/F.

The plotter mode is draft, where hidden lines are shown and fill
patterns and shading are not plotted (D); or hidden, where
areas are filled but hidden lines are still £lotted (H); or full,
where full reverse clipping is performed lf).
Default is D.

2. CHA=N/D/A

The plotter characters used are none, where the typefaces
defined in the output are used (N); or default, where the plotter
character set is used to plot characters that use the default
typeface (D); or all, where the plotter character set is used to
plot all characters (A).

Default is A.

401

Windows Presentation Manager Reference

3. ARE=C/w,d,l,t

See the section, "PRINT".

4. ORI=L/P

See the section, "PRINT".

5. FIT=S/1,t

See the section, "PRINT".

The options must be separated by one or more blanks as in the following
example of the parameter string:

COP=2 FIT=S@

where @ is hex zero.

Any errors detected in the parameter are ignored, and the default value
for an option is used if an option is not supplied or is in error. Restrictions

The following is not supported when the datatype is Q- STD:

1. Image.

2. Any restrictions imposed by the conversion program Piclchg (see
the chapter, "Printing Interface") when converting from metafile
format to PIF.

11.1.9.4 User Queue Processors

For general use, a user queue processor should support the predefined
datatypes (Q-STD, Q-ESC, Q-RAW). For further details see the sec­
tion, "How a Queue Processor Prints".

11.1.10 Device Driver - Part II

The purpose of this section of a Device Driver is to output to the printer,
via the appropriate DOS Device Driver.

A Device Driver can direct the user when necessary. For example, if out­
put is to a plotter device, the application does not have to concern itself
with the color mapping of pens: the application uses the normal GPI say,
and specifies color using GPI functions and a color table. The Device
Driver then maps these colors to the physical pens, which may mean that
more than one carousel is needed (this mapping is performed when the
plotter is installed). In this case, the Device Driver puts up a message
directing the user to perform the change using the "Message Interface".

402

Spooler Interface

11.1.10.1 Presentation Manager Supplied Device Drivers

Device Drivers are supplied for a wide range of printers.

11.1.10.2 User Device Drivers

For information on how to produce a user Device Driver see the chapter,
"Device Driver Interface".

11.1.10.3 Device Driver Functions

For a detailed description of the function calls see the chapter, "Device
Driver Interface".

11.1.11 DOS Device Drivers

The DOS Printer and Async Device Drivers are used unchanged. In addi­
tion, an IEEE Device Driver is supplied with Presentation Manager, and it
is used with IEEE plotters.

11.1.12 Message Interface

The Spooler has a Message Interface to centralise the displaying of mes­
sages.

This must be used by any part of the Spooler that wishes to output a mes­
sage (eg Queue Processors, Device Drivers). For example, by Device
Drivers to display user prompts, such as change plotter pens.

11.1.13 Message Functions

SplMessageBox

UINT SplMessageBox(log_addr, err_info, err_data,
text, caption, style)

LPSZ log_addr;
UINT err _info;
UINT err_data;
LPSZ text;
LPSZ caption;
UINT style;

This function creates and displays a message box, and waits
for the user response. The parameters are based upon those
of WinMessageBox (see the section, "Message Boxes"), a
fuller description.

403

Windows Presentation Manager Reference

Parameters:

log_addr

err_ info

err_ data

text

caption

style

Returns:

The loe:ical address of the output device (eg
"LPTl'l'').

Error information, defined as follows:

One of the following bits must be set:

BitO - Spooler Queue Processor error
Bit1 - Presentation Manager Device Driver error
Bit 7 - Other

One of the following bits must be set:

Bi"t 8 - Information
Bit 9 - Warning
Bit 10 - Error (recoverable error)
Bit11 - Severe (unrecoverable error)

Error data, defined as follows:

One of the following bits must be set:

Bit 0 - Printer jam (eg offline, no power)
Bit 1 - Form change required
Bit2 - Cartridge change required
Bi"t 3 - Pen change required
Bit 4 - Data error (eg file missing)
Bit 5 - Unexpected DOS error
Bit 15 - Other

A string containing the texL.

A string containing the caption.

A bit array specifying the contents and function of
the message box.

A value which indicates the user's response.

11.1.14 DOS SPOOL andPRlNT Commands

The Presentation Manager Spooler P-rovides SPOOL and PRINT com­
mands compatible with the MS OS/2 Spooler.

The Spooler switches on the PRINT command operate on the Presentation
Manager spooler queue for the device specified (or LPTl if no device was
specified).

404

Spooler Interface

If spooling of data generated by the PRINT command or by applications
which write directly to a DOS Device Driver is required, then the SPOOL
command should be invoked. Such data may be interleaved with other
such data and with data from the Presentation Manager spooler if SPOOL
is not invoked.

It is possible to setup the Presentation Manager Spooler so the the DOS
SPOOL command is automatically executed. See the section, "Spooler
and Printer Configuration".

11.1.14.1 Device Driver Register

The purpose of the Device Driver register component is to track which
Presentation Manager Device Driver part II (if any) is writing directly to
each DOS device. Each Device Driver part I1 (DD-II) should register itself
before opening a device and should deregister itself after the device has
been closed.

The SPOOL command will detect data which is being written directly by a
DD-II to a device against which the DD-II is registered and will write this
data to the DOS device rather than spooling it.

The registration is by process. Each device has at most one process which
is registered against it at any instant.

11.1.14.2 Device Driver Register Functions

SplDdrReg

BOOL SplDdrReg(dev)
LPSZ dev;

This function registers the invoking process against the dev­
ice. Any data which is subsequently written to the device by
that process will not be spooled.

Parameters:

dev Device name (eg "LPTl")

Returns:

0 Error
1 OK

SplDdrDeReg

BOOL SplDdrDeReg(dev)
LPSZ dev;

This function deregisters the invoking process against the

405

Windows Presentation Ma.na.ger Reference

device. Any data which is subsequently written to the device
by that process will be spooled if the SPOOL command is
active for that device.

Parameters:

dev Device name (eg "LPTl")

Returns:

0 Error
1 OK

SplDdrQuery

LONG SplDdrQuery(dev, pid)
LPSZ dev;
UINT pid;

This function queries if a specified process is registered
against a specified device.

Parameters:

dev Device name (eg "LPTl ").

pid Process id.

Returns:

0 Error
1 Registered
2 Not registered

11.1.14.3 DOS Monitor Chain

The Presentation Manager Spooler SPOOL command uses a DOS Printer
Device Driver monitor to intercept print data from DOS applications. Any
monitors in the chain before the Spooler will see the data twice: once when
it first arrives and once when it is written by the Presentation Manager
Device Driver. Any monitors after the Spooler will see the data once:
when it is written by the Presentation Manager Device Driver.

Any monitor before the Spooler should do one of the following:

406

1. Be prepared to see the data twice.

2. Use Device Driver Register (see the section, "Device Driver Regis­
ter") to pick out the second time (eg it could ignore the data the
second time).

3. Install itself after the Spooler, so it only sees the data once.

Spooler Interface

11.1.15 Spooler Not Installed

If the Spooler is not installed, the API described in the section, "Print Job
Generation Functions", is not available, and gives a bad return code. So
an application cannot create a Presentation Manager spool file, either
directly or indirectly via a Printer DC.

If an application opens a printer DC, it is treated as a direct output
request instead of queued. The application is logically treated as if it is a
Spooler Queue Processor (see), and its API calls flow to Part II of the
Spooler Printer Device Driver, which in turn sends data to the DOS Device
Driver.

407

Chapter 12
Printing Interface

12.1 Picture Interchange, Printing and Support 411
12.1.1 Introduction 411
12.1.2 Conventions 411
12.1.2.1 Print, Printing and Printers 411
12.1.2.2 Initial Values for Panels 411
12.1.3 Picture File Formats 411
12.1.4 Picture Interchange 412
12.1.4.1 User Interface 412
12.1.4.2 Line Command 413
12.1.4.3 Application Functions 413
12.1.4.4 Function Summary 414
12.1.4.5 Conversion Restrictions 414
12.1.5 Displaying Pictures 415
12.1.5.1 User Interface 415
12.1.5.2 Line Command 417
12.1.6 Printing Pictures 417
12.1.6.1 User Interface 417
12.1.6.2
12.1.6.3
12.1.7
12.1.7.1
12.1.7.2

Line Command 424
Application Functions 425

Naming Conventions and Other Standards
Subdirectories 425
Search Order 426

12.1.7.3 Filename Extensions 426

425

409

Printing Interface

12.1 Picture Interchange, Printing and Sup­
port

12.1.1 Introduction

This section describes the various operations (such as printing), that can
be performed on pictures via the Presentation Manager User Interface
Shell and utilities.

12.1.2 Conventions

12.1.2.1 Print, Printing and Printers

The generic term print is used to describe both printing on a printer device
and plotting on a plotter device. Similarly, printer refers to either a
printer device or a plotter device. This convention is used by the Presen­
tation Manager Spooler (see the chapter, "Spooler Interface").

12.1.2.2 Initial Values for Panels

Most of the utilities have input panels of various types (eg menu). Each
time a panel is displayed, it is initialised to the settings it had last time,
with initial defaults for the first time through. The settings are remem­
bered across IPLs.

Any exceptions to this are given in the panel description.

12.1.3 Picture File Formats

A picture can be defined as a sequence of functions which enable it to be
redrawn, and such functions can be stored in a file (a picture file).

A metafile is one type of picture file that can define a picture. Such a file
can be exchanged between Presentation Manager applications. An API is
available to create and manipulate metafiles (see the chapter, "Metafile
Support").

In addition to the metafile format, there are other formats which can
define a picture. In particular, the interchange format Picture Inter­
change Format (PIF), which is used to interchange with non­
Presentation Manager applications (see the sections, "Picture Inter­
change" and "Interchange").

411

Windows Presentation Manager Reference

12.1.4 Picture Interchange

Metafiles can be exchanged between Presentation Manager applications.
However, metafiles cannot be used for interchange with non-Presentation
Manager products and applications: metafile is an exchange format, not an
interchange format. However, if such a product wishes to interchange pic­
tures, it would support an interchange format.

Presentation Manager provides a utility PICICHG to convert a metafile
into an interchange file and vice-versa.

This utility can be invoked from the Presentation Manager User Interface
Shell, as a line command, and by an application using the APL

12.1.4.1 User Interface

PICICHG is invoked from Start-A-Program.

Processing is as follows:

1. A menu bar is displayed with the following options:

• File

• Exit

These options are selected as necessary.

2. The usual select/action, escape and help options are available as
appropriate for a menu or panel type, unless stated otherwise.

12.L/ .. 1.1 File

Selecting this gives a pull down menu with the following options:

• Select Files

• Convert Files

Select Files

This allows the file or files to be selected for conversion.

A scrollable list of files for the default drive and current directory is
displayed. Any number of files can be selected from those listed. It is also
possible to change directories, although files can only be selected from one
directory at a time: changing directories loses any selected files.

412

Printing Interface

The type of file (ie metafile, PIF) is derived from the filename extension,
provided it is a valid default (see the section, "Naming Conventions and
Other Standards"). Otherwise it is assummed to be a metafile. Convert
Files

This allows the conversion to be performed: a metafile is converted to a
PIF , and vice versa.

The destination directory is that of the source, the filename of the destina­
tion file is that of its source, with the filename extension being that of the
the destination type (eg .PIF).

In addition, any resources defi~itions (eg symbol sets) which are imbedded
in the PIF file are made external. The filename used is based on that of
the destination filename (two digits are added to the end of the name, with
the name being truncated if necessary), with the appropriate filename
extension (see the section, "Naming Conventions and Other Standards"),
and with the destination directory is the appropriate one for the resource.

12.1.4.1.2 Exit

This causes the utility to terminate.

12.1.4.2 Line Command

The format of the line command is:

PICICHG ((d:) (path)filename(.ext))

where:

1. The file specified is the source file.

Names of files, etc are as for the section, "User Interface".

If no parameters are sf.ecified, the User Interface is entered (see the sec­
tion, "User Interface" .

12.1.4.3 Application Functions

The API provided is as follows:

PI CI CHG

BOOL PICICHG (filenamel, filename2, type)
LPSZ filenamel;

413

Windows Presentation Manager Reference

LPSZ filename2;
LONG type;

This converts a metafile into an interchange file (and vice­
versa), according to the type of conversion required.

Parameters:

filenamel

filename2

An ASCIIZ string giving the name of the source
file.

An ASCIIZ string giving the name of the destina­
tion file.

type Specifies the type of conversion:

Returns:

0 Error
1 OK

1. Metafile to PIF

2. PIF to metafile

12.1.4.4 Function Summary

12.Lj.4.1 Metafile to PIF

Note: This utility only supports metafiles which have met the interchange
conversion restrictions (see the section, "Presentation Manager Restric­
tions" in the chapter "Metafile Support").

12.1.4.4.2 PIF to Metafile

Full PIF is supported.

12.1.4.5 Conversion Restrictions

This section describes restrictions which may affect visual fidelity. For full
details of the orders, and other information, see the chapter, "Metafile
Support".

An application that produces metafiles which are usually going to be con­
verted to another format, should restrict itself to the functions and orders
that can be converted to that format.

414

Printing Interface

12.Lf.5.1 Metafile to PIF

1. Fonts

It may be possible to use the default character set with a character
string, otherwise not supported.

2. Regions

Not supported.

3. Bitmaps

Not supported.

4. Flood Fill

Not supported.

5. Clip Area

Not supported.

6. Color Table

Not supported.

7. Minor restrictions which still have to be defined.

12.1.4.s.2 PIF to Metafile

None.

12.1.5 Displaying Pictures

Presentation Manager provides the utility PICSHOW to display a picture
file. ·

This utility can be invoked from the Presentation Manager User Interface
Shell, and as a line command. No direct API is provided, since an applica­
tion can use the metafile replay functions (see the chapter, "Metafile Sup­
port") to display a picture.

12.1.5.1 User Interface

PICSHOW is invoked from Start-A-Program.

Processing is as follows:

1. A menu bar is displayed with the following options:

415

Windows Presentation Manager Reference

• File

• Exit

These options are selected as necessary.

2. The usual select/action, escape and help options are available as
appropriate for a menu or panel type, unless stated otherwise.

12.1.5.1.1 File

Selecting this gives a pull down menu with the following options:

• Select Files

• Show Files

Select Fi"les

This allows the file or files to be selected for displaying.

A scrollable list of files for the default drive and current directory is
displayed. Any number of files can be selected from those listed. It is also
possible to change directories, although files can only be selected from one
directory at a time: changing directories loses any selected files.

The type of file (ie metafile, PIF, piclist) is derived from the filename
extension, provided it is a valid default (see the section, "Naming Conven­
tions and Other Standards"). Otherwise it is assummed to be a metafile.

Note: If the file is a PIF file, it is converted to a metafile before being
displayed. Show Files

This allows the files to be displayed.

The type of display is prompted for, which can be Automatic or Interactive

For interactive, some form of input (eg a keystroke) is required before the
next picture is displayed.

For automatic, the next picture is displayed after a time delay. The time,
in seconds, is set before processing starts

12.1.5.1.2 Exit

This causes the utility to terminate.

416

Printing Interface

The initial default is a 10 second time delay for automatic processing.

12.1.5.2 Line Command

The format of the line command is:

PICSHOW ((d:) (path)filename(.ext) (options))

where:

1. The file specified is the source file.

2. options can be one or mqre of the following:

• /PIF, /MET or /PCL

• /An
This specifies automatic processing, with n seconds interval (10
seconds is the default). If this is not specified, interactive pro­
cessing is used.

If no parameters are sf.ecified, the User Interface is entered (see the sec­
tion, "User Interface" .

12.1.6 Printing Pictures

Presentation Manager provides the utility PicPrint to print a picture file.

This utility can be invoked from the Presentation Manager User Interface
Shell, as a line command, and by an application using the APL

12.1.6.1 User Interface

PicPrint is invoked either from Start-A-Program, or in response to the
Print option being selected from the File Cabinet.

Processing is as follows:

1. A menu bar is displayed with the following options:

• File

• Control

• Exit

These options are selected as necessary.

417

Windows Presentation Manager Reference

2. The usual select/action, escape and help options are available as
appropriate for a menu or panel type, unless stated otherwise.

12.1.6.1.1 File

Selecting this gives a pull down menu with the following options:

• Select Files

• Print

• Change Printer

Select Files

This allows the file or files to be selected for printing.

A scrollable list of files for the default drive and current directory is
displayed. Any number of files can be selected from those listed. It is also
possible to change directories, although files can only be selected from one
directory at a time: changing directories loses any selected files.

The type of file (ie metafile, PIF) is derived from the filename extension,
provided it is a valid default (see the section, "Naming Conventions and
Other Standards"). Otherwise it is assummed to be a metafile. Note: If
the file is a PIF file, it is converted to a metafile before being printed.
Print

This allows the files to be printed.

The number of copies is prompted for, the default is 1. Change Printer

This allows the printer to be changed.

A list of available printers is displayed (user name, see the section,
"Spooler and Printer Configuration" in Chapter 11). Any printer from the
scrollable list can be selected. The default is the current default printer as
specified by the Control Pa.nel.

12.1.6.1.2 Control

Selecting this gives a pull down menu with the following options:

• Options

• Paper

This option provides User Feedback.

418

Printing Interface

• Area

This option provides User Feedback.

• Picture

This option provides User Feedback.

When printing a picture, it is not necessary to use the whole area of the
paper. In particular, a printer class device cannot actually print to the
left and right edges of continuous fanfold paper: there is a border. Simi­
larly, a plotter class device cannot actually plot to the edge of the paper:
there is always a border at the edge of the paper.

The inside edges of the border are know as the Clip Limits. The size of
this border depends upon the type of device.

Some of the options result in a menu being displayed in the top right
corner, with User Feedback being provided by the Paper Representation,
which is displayed in the left half twhich shows the picture as it will
appear on the paper), and the Output Values, which is displayed in the
bottom right (which show tlle:size and position of the Output Area).
shows an example of this. '

For the Paper Representation, a rectangle representing the paper is shown,
with a shaded area depicting the border for the current device and paper
size. The output area is shown as a rectangle within the paper. If a list of
source pictures has been selected, the picture corresponding to the first file
in the list may be optionally displayed on the paper. If there is no such
picture, it is harder to use some of the options, since there is no feedback
of the affect on an actual picture. The picture should only be taken as a
guide to what will be printed, it will not necessarily match the printed pic­
ture.

For the Output Values, a set of integers is displayed which are defined as a
percentage of the size of the paper. Values are given for width, depth,
offset from left, and offset from top. Width and de12~h lie in the range 1%
to 100%, and the offsets lie in the range 0% to 100%. In addition, the
sum of width and offset from left is less than or equal to 100%, as is the
sum of depth and offset from top.

The Paper Representation and the Output Values are updated to reflect
the option that has been selected, and they can also both be updated
directly for certain options. Options

This allows device dependent options to be defined.

If the destination class is printer, then the following groups of options
appear:

410

Windows Presentation Manager Reference

1. Color Use

• Mono

The picture is printed in black and white. Any background is
not printed, and all the nonwhite colors are printed black.

• Color

The picture is printed so that the colors of the printed picture
are as close as possible to the definition in the file. It may also
be necessary to specify the asis (see) option to get accurate
results. The result depends upon how many colors are avail­
able on the printer being used.

2. Color Mapping

• Asis

The colors in the picture are printed so that any background
default is black, and any neutral white objects remain white.

• Normal

The colors are printed in the normal way: any background
default is white, and neutral white objects become black.

If the destination class is plotter, then the following groups of options
appear:

420

1. Plot Mode

This allows selection of the mode of plotting to be used:

• Draft Plot

Hidden lines are shown and fill patterns and shading are not
plotted.

• No Reverse Clipping

Areas are filled but hidden line are still plotted.

• Full Plot

The fuller the plot, the longer it takes to format the picture for
plotting.

2. Character Definitions

This defines the use of plotter characters:

• All From Plotter

The plotter uses its own character set to plot all text charac­
ters in your picture, whatever the typefaces defined in the pic­
ture.

Paper

Printing Interface

• Default from plotter

The plotter uses its own character set to plot only characters
that use the default typeface. Other typefaces will be plotted
normally.

• None From Plotter

The typefaces defined in the picture will be used for the plot.

If the picture does contain characters in this typeface, plotting
will be quicker. However the characters in the finished picture
will look a little different from those in the original picture.

Using plotter typefaces reduces the time it takes to format the pic­
ture for plotting.

This allows the paper (ie forms code) to be defined (see).

There is a scrollable list of permissible forms codes for the device to choose
from. The default is the current installed one, as defined by the Control
Panel. If a different forms code is selected (eg cursor moved over a forms
code and button clicked), the User Feedback is updated to reflect it. The
Select option terminates the selection, with the selected forms code being
the new forms code; and the Cancel option terminates the selection, with
the selected forms code being the one applicable when this option was
entered.

Changing the paper size could affect the Output Area. If the paper size is
changed, and the Output Area still fits within it, the Output Area is cen­
tered within the paper. If the Output Area no longer fits within the paper,
it is reset to its clip limits for the paper.

+---+--------------------+--------+--------------------------+---+----
! s I iPicPrint I I I I u I
+---'--------------------·--------'---------------------+----'---·---
1 File Control eXit 1 Fl=Help
!---'-----------­•+--------------------------- +----------+------------+-------------

! !Paper Selectl
0 +----------·------------'------------

-!- Select required paper size:
I \ +-----------------+--

IA4 IAI +-----------
IAS +- ! I Select I
!Headed A4 l*I %----------+ 1

I +-! +-----------
1 IVI IEsc=Cancel I
%-----------------'-+ %----------+

+----------"""'
I Fl=Help I
%----------+

.%--------------------------+ %------------------------------------+
I +-------------------------------------

421

Windows Presentation Manager Reference

I I Left Margin 0 Top Margin 0 11
I I Width 50 Depth 50 I I
I %------------------------------------+I
%--+

Figure 12.1 PicPrint Paper Panel

The final layout may not be identical to this figure. Area

This allows the Output Area to be manipulated, which clips the picture.

There are two groups of options to choose from:

1. Position Area

This has the following options:

• Rotate Area

This is a toggle. The plotting area is repositioned by being
rotated through 90 degrees: from portrait to landscape in a
clockwise direction, and from landscape to portrait in an anti­
clockwise direction.

If the action is not possible, because the area would not fit in
its new position, a message is displayed.

• Centre Area

This centres the Output Area on the paper.

2. Clip Area

422

This has the following options:

• User Values
If this is selected, the currently defined Output Values (which
show size and position) displayed are used. They can be
updated via the keyboard.

• Move Area

This option allows movement of the Output Area by position­
ing the cursor (via the pointer device) on the area rectangle,
and dragging the box to its new position.

Only applicable if the area is smaller than the paper.

• Rubber-band

This area allows rubber-banding of the Output Area: using the
cursor (via the pointer device), an edge can be moved in one
direction, thus making the area bigger or smaller. The area
cannot be made bigger than the paper.

Printing Interface

• Scale

Selecting this allows scaling of the Output Area, using the cur­
sor (via the mouse). The aspect ratio relative to the paper is
kept. The area cannot be made bigger than the paper.

• Scale to Paper

This makes the Output Area fill the paper. The selected area is
centred within the paper.

• Scale to Device

This defines an Output Area that fills the paper excluding the
border at the edge of the paper.

Note: There is no cancel option (a return option is used to return), and so
any operation remains in affect, unless undone by another operation.
Pz'cture

This allows the picture repesentation to be manipulated.

There are two groups of options to choose from:

1. Picture Control

This has the following options:

• Display

This is a toggle, and this option controls whether the picture
should be drawn or not.

• Rotate

This is a toggle, and this option rotates the representation of
the paper on the screen by 90 degrees: from portrait to
landscape in a clockwise direction, and from landscape to por­
trait in an anti-clockwise direction.

2. Scaling

This has the following options:

• Scale to Fit

The picture, if there is one, is scaled uniformly so that the logi­
cal page containing the picture just fits inside the plotting area.

• Real Size - View Paper

This option displays the picture at its real size, within the Out­
put Area, on the paper.

• Real Size - Position Picture

This option shows the Output Area relative to the picture on
the logical page containing the real size picture. By moving the

423

Windows Presentation Manager Reference

area box over the picture, by using the curso and pointer dev­
ice, a different part of the picture can be selected.

While in this mode, a panel appears with a return option which
has to be selected to terminate this mode and return to the
options with View Paper selected.

Note: There is no cancel option (a return option is used to return), and so
any operation remains in affect, unless undone by another operation.

12.1.6.1.3 Exit

This causes the utility to terminate.

The initial defaults for a printer class device is a mono print, with normal
mapping, on the default paper size for the printer. The print is scaled to
fit within the clip limits and the paper orientation is upright.

The initial defaults for a plotter class device is that a full plot is carried
out, paper coloured objects are not plotted, and the plotter character set
is not used, on the default paper size for the plotter. The plot is scaled to
fit within the clip limits and the paper orientation is upright.

12.1.6.2 Line Command

The format of the line command is:

PicPrint ((d:) (path)filename(.ext) (options))

where:

1. The file specified is the source file.

2. options can be the following:

l. /P
This causes the file to be printed, using any options as defined
by the User Interface (see the section, "User Interface").

If this option is not specified, then the User Interface (see the
section, "User Interface") is entered, with the specified file
being selected.

If no parameters are specified, the User Interface is entered (see the sec­
tion, "User Interface").

424

Printing Interface

12.1.6.3 Application Functions

The API provided is as follows:

PicPrint

BOOL PicPrint (filename, type)
LPSZ filename;
LONG type;

This prints a metafile using the current destination and
appearance options.

Parameters:

filename
An ASCIIZ string giving the name of the metafile.

type The type of file:

Returns:

0 Error
1 OK

1. Metafile

2. PIF

12.1. 7 Naming Conventions and Other Standards

12.1.7 .1 Subdirectories

The subdirectories to be used can be defined via the Control Panel (see the
section "Control Panel") and are held in the Presentation Manager initiali­
sation file (see the section, "The Initialization File"), which can also be
queried by an application. If a subdirectory has not been defined, the fol­
lowing are used:

• \METRES

Metafile resources

• xxx.S:MB

Symbol set

• xxx.LIN

Line type table

• xxx.COL

Color table

425

Windows Presentation Manager Reference

• xxx.FNT

Font

• \PIFRES

PIF resources:

• xxx.SMB

Symbol set

• xxx.LIN

Line type table

12.1.7.2 Search Order

Drive searches are as follows:

1. Default drive.

2. Drives in DOS drive letter order.

12.1.7.3 Filename Extensions

Default filename extensions are as follows:

• .11ET - metafile

• .PIF - PIF file

• .SMB - symbol set

• .LIN - line type table

• .FNT- font

• .COL - color table

• .PCL - piclist file

426

Chapter 13
General Functions

13.1 General functions 429
Program Initialization

Program Termination.
Heap Manager 431
Atom Manager 444
File Functions 453

429
430

13.1.1
13.1.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.1.6
13.1.6.1

Presentation Manager API Error Reporting
General DOS Related Support Functions

Catch and throw 462

458
462

427

Genera.I Functions

13.1 General functions

13.1.1 Program Initialization

Presentation Manager applications are constructed just like any other
application for the target system. The only difference is that the appli­
cation contains calls upon one or more of the Presentation Manager func­
tions. An important function is the Winlnitialize function, as it must be
called prior to another Presentation Manager N function. Equally impor­
tant is the value returned by the Winlnitialize function. This value, called
the "anchor block" handle, or "hab", must be passed as the first parame­
ter to all other Presentation Manager functions that do not themselves
take a handle parameter of any other handle type.

typedef UINT HAB;

Winlni tialize

Format

HAB Wininitialise (options)
HAB hab;
INT options;

Purpose This function initializes an application thread for
making Presentation Manager system calls. It
returns an anchor block handle that is passed as
the first parameter to many Presentation Manager
system calls, and thus must be the first Presenta­
tion Manager system call made by an application
thread. Returns NULL if the application thread
could not be initialized.

options parameter controls a number of options
which affect the whole of the application thread in
relation to Presentation Manager functions.

options can take the following values:

NULL implies default operation of the call.
This is the only value supported by
Presentation Manager.

Wl\.LDISABLE
indicates that at window creation all
messages are to be handled by the
default window process. ie. The applica­
tion will not receive any messages - see
the WinSet:Msglnterest call for further
details. If this is not specified, the

429

Windows Presentation Manager Reference

default state when a window is created is
that all messages are enabled.

13.1.1.1 Program Termination.

Just as there is a call to Initialise the Presentation Manager API, there is a
call to Terminate use of the APL However, there is also a message, the
WM_ QUIT message, which is used to indicate to the main loop of the pro­
gram that it is time to terminate.

430

Format

WM_ QUIT
lparaml: OL
lparam2: OL

Description
This message is posted to terminate the applica­
tion. It causes WinGetMsg() to return FALSE,
rather than TRUE as for all other messages.

Format

Purpose

An application's main loop typically is:

while (WinGetMsg(••.)) WinDispatchMsg;

/* application termination code */

The loop continues forever until a WM_QUIT
message is returned by WinGetMsg(). Applications
that call WinPeekMsg() rather than WinGetMSG()
should test explicitly for WM_ QUIT.

Typically, the WM_QUIT message is posted by
the application when the application quit com­
mand is selected from the Action Bar.

void WinTerminate(hab)
HAB hab

This function terminates an application thread's
use of the Presentation Manager the program-
ming interface. This function deallocates all
Presentation Manager resources allocated to the
thread concerned and any subsequent calls to

General Functions

Presentation Manager functions by the thread will
fail.

hab is the anchor block handle returned by the
Winlnitialize function.

It is good practice to issue this call prior to termi­
nation of the program. However, if it is not issued,
all Presentation Manager resources allocated to the
thread get deallocated when the program ter­
minates - whether normally or abnormally - by
Presentation Manager code executed as part of the
Exit List processing.

13.1.2 Heap Manager

This section describes the functions for creating, destroying and reorganiz­
ing heaps; for allocating, reallocating and freeing memory objects within a
heap; and for accessing the base address of a heap.

There are the following heap management functions:

WinCreateHeap

WinDestroy Heap

WinAvailMem

WinAllocMem

WinReallocMem

WinFreeMem

WinLockHeap

Win UnlockHeap

A heap is a segment that contains other memory objects allocated and
freed using the functions defined in this module.

A heap handle is a 32 bit quantity that uniquely identifies a heap, the seg­
ment that contains the heap and the offset within the segment of the
beginning of the heap. The interpretation of the heap handle is implemen­
tation dependent.

A heap has the following properties:

• it is a segment allocated by DOS, either by default because it is the
application's or dynlink package's automatic data segment or it
was explicitly allocated with DosAllocSeg.

431

Windows Presentation Manager Reference

• it may not be larger than 64k bytes.

• all pointers to memory objects within a heap are 16 bit offsets from
the start of that segment. All memory objects are aligned on a
ULONG boundary. This means that the contents of the low order
2 bits of a returned pointer are up for grabs for use by the caller.
WinAllocMem sets the bits to zero. WinReallocMem and Win­
FreeMem ignore the bits, but preserve them in the returned value.

432

• the heap manager does not remember the size of a memory object
allocated within a heap. It is up to the caller to remember the size
and specify it whenever reallocating or freeing a heap memory
object. The heap manager always rounds a size parameter up to
the next multiple of 4 (ULONG alignment); thus the caller does not
need to be concerned with the size of any extra space allocated to
meet the alignment constraints.

• the contents of memory allocated with the heap manager is
undefined (i.e. it does not explicitly set it to all zeros). A debug­
ging version of the heap manager may explicitly set it to all ones in
order to help find places where uninitialized memory is used as a
pointer or segment address (i.e. DS: FFFF and FFFF: xxxx will
typically generate a GP fault).

• when allocating or reallocating a memory object within a heap,
DosReallocSeg may be called to expand the segment in order to
satisfy the request. The amount of growth is bounded below by
the size of the request and bounded above by the minimum growth
amount, which is a parameter to the WinCreateHeap function.

• the heap manager maintains an array of free lists indexed by size.
This allows the allocator to find a free block quickly. Since the
array occupies memory, there is a method for setting the size of the
array when the heap is created. The minimum and default size of
the array is one entry, called the non-dedicated free list. This
entry is the head of a linked list of free blocks, in some undefined
order. Additional entries in the free list array are called dedicated
free lists. The WinCreateHeap function allows the caller to specify
the minimum and maximum object sizes that are to have their own
dedicated free lists. Allocating and freeing objects within these
minimum and maximum sizes that have their own free list is very
quick, as no search is required if there is already a free block of the
requested size. A linear search of the non-dedicated free list is per­
formed only if a block of the requested size can't be found on a
dedicated free list,

• there is a function provided that returns the size of the largest free
block within a heap. It has the option of reorganizing the heap in
order to attempt to make a free block that is larger than a
specified amount.

General Functions

• there is no overhead for allocated or free memory objects except for
that imposed by the ULONG alignment (maximum of 4 bytes,
average of 2 bytes). The only other overhead imposed by the heap
manager is the size of the heap control block, which contains the
free list array and a few other control words.

• if a zero size object is allocated, it will occupy a minimum of 4
bytes in order to have a unique address to return to the caller.

• the shareability of a heap depends upon the shareability of the seg­
ment containing the heap. Heaps contained within an
application's data segment are private to that application. Heaps
contained within a dynlink package's data segment are either
private to each process (instance data segment) or shared across all
processes (global data segment). Segments explicitly allocated
with DOSALLOCSEG are share or private depending upon the set­
ting of the sharelnd parameter to DOSALLOCSEG. Segments allo­
cated by WinCreateHeap are allocated shareable. It should be
noted that shared segments are not allowed to shrink, which means
that heaps within a shared segment will also not be able to shrink.

• the heap manager makes no attempt to provide mutual exclusion
between multiple threads of execution attempting to call the heap
manager with the same heap handle. It is the caller's responsibility
to insure that this does not occur.

There is a special type of heap, called a moveable heap, that allows the
memory objects within the heap to move in order to reclaim fragmented
heap space. All heaps are moveable in the sense that the segment that con­
tains a heap can move due to the selector -> physical address mapping
provided by the 286 protected mode. Moveable heaps have the following
properties:

• the moveable heap attribute is specified at the time the heap is
created and lasts until the heap is destroyed.

• allocated objects in a moveable heap have two extra words reserved
at the beginning of each object: a handle word and a size word.
The offset value returned by WinAllocMem and WinReallocMem is
the offset of the first reserved word, the handle word.

• the size word is initialized to the exact size specified on the WinAl­
locMem call and does not include the 4 bytes allocated for the
reserved words or any bytes allocated to meet the ULONG align­
ment constraints.

• the handle word is initialized to zero when an object is allocated. If
it is set to a non-zero value by the caller, then the value must be a
16 bit offset within the segment containing the heap. This offset
points to a word, called the handle value word. The low order bit
of the handle word must always be zero, as it is used to identify
free blocks. This allows the compaction algorithm in WinAvailMem
to do a linear scan of the objects in the heap.

433

Windows Presentation Manager Reference

• the WinReallocMem and WinAvailMem functions will feel free to
move blocks that have a non-zero handle word. Allocated objects
whose handle word is zero will be considered fixed and will not
move.

• whenever an object with a non-zero handle word moves, the handle
value word is updated by the delta amount of the move. By adding
a delta instead of storing the new address of the object, it minim­
izes the constraints upon the type of address in the handle value
word. For example, the caller may store the address of the first
byte after the two reserved words in the handle value word, in
order to hide the reserved words from code that accesses the
memory object.

• it is the callers responsibility to reserve space for the handle value
words. If that space is within a heap memory object, it is hoped
that it is a fixed memory object (i.e. its handle word is zero). Oth­
erwise incorrect results will occur.

• the size parameter to the WinReallocMem and WinFreeMem func­
tions is ignored for objects in a moveable heap, as the value of the
size word is used instead.

• objects within a moveable heap can move whenever the WinAvail­
Mem function is called. Since this function is also called by WinAl­
locMem and WinReallocMem objects can also move when these
functions are called as well.

It is important to note why there is a heap manager in the Presentation
Manager API when MS OS/2 already provides the Memory Sub-Allocation
Package (MSP). MSP has three major drawbacks that make it unsuitable
for Presentation Manager applications:

434

1. It requires that the heap always be at the beginning of a segment,
which means that it can't be used to allocate memory out of the
space reserved at the end of an application's automatic data seg­
ment by the HEAPSIZE keyword in the application's .DEF file.
The same is true for the automatic data segment associated with a
dynlink package.

2. The implementation of MSP is inefficient as it does not maintain
dedicated free lists, and thus is required to do a linear search of its
non-dedicated free list whenever a memory object is allocated.
Since the free list is kept in address sorted order, the cost of the
search can vary. In fact the cost of a free can also vary. Granted
this in an implementation restriction, but adding dedicated free
lists requires two API changes to support the concept well: ability
to control the number of dedicated free lists and an API call to
coalesce free blocks, since it can't be done when a memory object is
freed as MSP does.

General Functions

3. It does not provide any mechanism for supporting moveable
objects within a heap.

Format

HHEAP WinCreateHeap(segHeapBase, cbHeap, cbGrow,
cbMinDed, cbMaxDed, fOptions)

UINT segHeapBase
UINT cbHeap
UINT cbGrow
UINT cbMinDed
UINT cbMaxDed
UINT fOptions

Purpose This function creates a heap that can used for local
memory management.

Parameters
~~~~~~~~~~~~~~~~~~~~-

Parameter 
Significance 

segHeapBase 
An unsigned integer value that specifies 
the segment address of the segment to 
contain the local heap. 

cbHeap An unsigned integer value that specifies 
the initial size of the heap, in bytes. 

cbGrow An unsigned integer value that specifies 
the minimum number of bytes to grow 
the heap by if the heap is too small to 
satisfy a memory allocation request. 

cbMinDed 
An unsigned integer value that specifies 
the minimum number of dedicated free 
lists. 

cbMaxDed 
An unsigned integer value that specifies 
the minimum number of dedicated free 
lists. 

rgfOptions 
An unsigned integer value that specifies 
optional characteristics for the heap. 
Currently the only option supported is 
the IDLMOVEABLE option. 

435 



Windows Presentation Ma.nager Reference 

436 

Return Value 
The return value, a heap handle, is nonzero if the 
heap is initialized. Otherwise, it is zero. This 
heap handle must be passed as the first parameter 
to all the remaining heap functions. 

This function creates a heap that can used for heap alloca­
tion using the remaining functions in this module. The first 
two parameters specify the segment to contain the heap and 
the size of the heap, in bytes. There are three possible types 
of segments that can contain a heap: 

1. an application's automatic data segment. 

2. a dynlink package's automatic data segment. 

3. a segment allocated with DosAllocSeg (Public or shared) 

In order to accomodate these various targets for heaps, all 
four possible combinations of the two parameters are used to 
discriminate between the various options. The combinations 
and their meaning are: 

segHeap/cbHeap 

0/0 

selector /!=0 

Meaning 

Caller is an application that wants 
the heap located at the end of its 
automatic data segment. The size 
of the heap was specified with the 
HEAPSIZE keyword in the . 
application's .DEF file to the linker. 
This function extracts the heap size 
parameter from the local infoseg 
and uses that many bytes at the end 
of the caller's automatic data seg­
ment. No reallocation of the data 
segment occurs, as the DOS loader 
already reserved the space at the 
end of the data segment, after the 
static data was loaded from the 
.EXE file. 

Caller is a dynlink package that 
wants a heap placed at the end of 
its automatic data segment. The 
cbHeap parameter must be less than 
or equal to the HEAPSIZE value 
from the .DEF file that was passed 
to the dynlink package's initializa­
tion entry point in the ex register. 
Otherwise this function may pro­
duce incorrect results. 



selector/O 

0/!=0 

General Functions 

Caller is either an application or 
dynlink package that has explicitly 
allocated a segment with DosAl­
locSeg and wants to put a heap in 
that segment. The heap is placed 
at the beginning of the segment and 
the size of the se~ment (determined 
using DosSizeSegJ is the size of the 
heap. 

Caller is either an application or 
dynlink package that wants a heap 
of a specific size in a separate seg­
ment, but does not want to be both­
ered with calling DosAllocSeg. See 
the WinLockHeap function for 
accessing the base of the segment 
implicitly allocated by Win­
CreateHeap when called with this 
combination of parameters. 

The return value is a handle to a heap that must be passed 
as the first parameter to all the remaining functions in this 
module. If the return value is zero, then no heap was 
created, either because of lack of memoriin the last case, an 
invalid selector in the 2nd and 3rd case and no HEAPSIZE 
parameter in the first case. 

The remaining four parameters are used to control how the 
remaining functions in this module behave. 

The cbGrow parameter determines the minimum number of 
bytes the WinAllocMem and WinReallocMem functions will 
grow the segment containing the heap if the heap must be 
grown in order to satisfy a request for memory. If zero is 
specified for this parameter, then the default value will be 
512 bytes. 

The cbMinDed and cbMaxDed parameters determine which 
memory object sizes for the heap will have their own free 
list. Objects within this size range will incur minimal over­
head on an allocate if there is a free block of the requested 
size on a dedicated free list. The default value of these 
parameters is 0, which means that no size will have a dedi­
cated free list and all sizes will be on the non-dedicated free 
list. Allocation requests that cannot be satisfied with a free 
block from a dedicated free list will do a linear search of the 
non-dedicated free list until the first free block large enought 
to satisfy the request is found. The cost of each dedicated 
free list is an additional word (2 bytes) in the heap control 
block. Since only sizes that are a multiple of 4 are allowed, 
the number of freelists will be ((cbMaxDed+3) & -3) -
(cbMinDed & -3). 

437 



Windows Presentation Manager Reference 

438 

The fOptions parameter contains flags that define various 
options. Currently the following options are defined: 

HM-MOVEABLE 

Format 

this bit specifies that the created heap should sup­
port moveable objects. This causes DosAllocMem 
to reserve an additional two words at the begin­
ning of each allocated object. 

HANDLE WinDestroyHeap(hHeap) 
HHEAP hHeap; 

Purpose This function destroys a heap that was previously 
created with the WinCreateHeap function. If Win­
CreateHeap called DosAllocSeg to allocate space 
for the heap, then WinDestroyHeap will call Dos­
FreeSeg to free the allocated segment. Otherwise, 
WinDestroyHeap only frees the passed heap han­
dle. 

The return value of this function is zero if it is suc­
cessful. Otherwise the return value is the passed 
heap handle. Possible reason for failure is an 
invalid heap handle. This function does not care if 
there are allocated memory objects within the 
heap. 

This function makes no attempt to insure that the 
hHeap being destroyed is not reused by a later call 
to WinCreateHeap. 

Parameters 
~~~~~~~~~~~~~~~~~~~~ 

Parameter
Significance

hHeap The handle to a heap. This handle must
have been returned from a previous call
to WinCreateHeap. If this parameter is
null then this function is noop.

Return Value
The return value, a heap handle, is NULL if the
function succeeded. Otherwise this function
returns the hHeap parameter. This allows the fol­
lowing idiom for destroying a heap and invalidat­
ing the variable that contains the heap handle:

Format

General Functions

HANDLE hHeap;

hHeap = WinCreateHeap(...);

hHeap = WinDestroyHeap(hHeap);

char * WinAllocMem(hHeap, wBytes)
HHEAP hHeap;
UINT cb;

Purpose This function allocates a memory object in the
heap specified by the first parameter and of the
size specified in the second parameter. It returns
the 16 bit offset from the start of the segment con­
taining the heap, of the allocated memory object.
The low order two bits of the returned pointer are
always zero. It returns NULL if it is unable to allo­
cate the memory object, either because an invalid
heap handle was specified or there was not enough
room in the heap for an object of the specified size
and it was unable to grow the segment containing
the heap by an amount large enough to satisfy the
request.

If the passed heap was created with the
HM_ MOVEABLE option, then the value of the cb
parameter will be remembered in the second
reserved word of the allocated block. The returned
address will be the address of the first reserved
word.

The allocation algorithm first looks in the dedi­
cated free lists, starting with the one whose size is
>= the requested size. It proceeds looking in the
dedicated free lists, until either it finds the smal­
lest block >=the requested size or it exhausts the
dedicated free lists. If no block is found on the
dedicated free lists, then it does a linear search of
the non-dedicated free list for the first block that
satisfies the request (it may not be the smallest
free block that would satisfy the request, as that is
implementation dependent on how the non­
dedicated free list is ordered). Dedicated free lists
are ordered on a LIFO basis.

If the free block found is larger than needed to
satisfy the request, the extra space is added to the

439

Windows Presentation Manager Reference

440

appropriate free list.

If no free block is found, then this function next
attempts to get the space by calling WinAvail­
Mem. If that does not generate a free block big
enough, it then attempts to grow the segment by
the maximum of the size of the request and the
minumum growth parameter specified on the Win­
CreateHeap call. If that fails, then this function
returns NULL.

Parameters

Parameter
Significance

hHeap A handle to a heap, This handle must
have been returned by a previous call to
the WinCreateHeap function.

ch An unsigned short integer value specify­
ing the total number of bytes to allocate.

Return Value

WinReallocMem

Format

The return value is a short pointer to the allocated
memory block if the function is successful. Other­
wise, it is NULL. The short pointer is relative to
the beginning of the segment that contains the
heap.

char * WinReallocMem(hHeap, pMem, wOldBytes,
wNewBytes)

HHEAP hHeap;
char *pMem;
UINT cbOld;
UINT cbNew;

Purpose This function is used to grow or shrink a memory
object allocated with WinAllocMem. The caller
must specify both the old size of the memory
object and the new size. If the new size is larger
than the old size then this function calls WinAlloc­
Mem to allocate the new, larger object, copies
cbOld bytes from the old object to the new, frees
the old and returns a pointer to the new object (i.e.
it will never grow an object in place).

The return value of this function is a 16 bit offset
from the start of the segment containing the heap,

General Functions

of the reallocated memory object. It returns NULL
if it is unable to reallocate the memory object,
either because an invalid heap handle was
specified; there was not enough room in the heap
to grow the object to the specified size; or the
pMem parameter pointed to memory outside of the
bounds of the passed heap.

The low order two bits of pMem are ignored,
except they are preserved in the return value of
this function, even if the memory object is moved
as a result of growing. Except for the two low bits,
the value of the pMem parameter must have been
returned by either the WinAllocMem function or a
previous call to WinReallocMem.

If the passed heap was created with the
HM._ MOVEABLE option, then the value of the
cbOld parameter is ignored and the value in the
size word of the allocated object is used instead.
When this function is done, the size word will con­
tain the value of the cbNew parameter. If this
function had to move the object in order to satisfy
the request, then the handle value word will be
updated by adding to it the delta amount of the
move, in bytes. The returned address will be the
address of the first reserved word.

Parameter

Parameter
Significance

hHeap A handle to a heap, This handle must
have been returned by a previous call to
the WinCreateHeap function.

pMem A handle to the memory block to be real­
located.

wOldBytes
An unsigned short integer value specify­
ing the old size of the memory block.

wNewBytes
An unsigned short integer value specify­
ing the new size of the memory block.

Return Value
The return value is a short pointer to the reallo­
cated memory block if the function is successful.
Otherwise, it is NULL. The short pointer is rela­
tive to the beginning of the segment that contains
the heap.

441

Windows Presentation Manager Reference

442

Format

The return value may be different from the pMem
parameter, if the block was grown in size and
could not be done in place.

char * WinFreeMem(hHeap, pMem, wBytes)
HHE.AP hHeap;
char *pMem;
UINT cbMem;

Purpose This function is used to free a memory object allo­
cated with WinAllocMem. It returns NULL if suc­
cessful, otherwise it returns the pMem parameter.
It can fail either because of an invalid heap handle
or an invalid pMem parameter that points outside
of the bounds of the heap.

Except for the two low bits, which are ignored, the
value of the pMem parameter must have been
returned by either the WinAllocMem or WinReal­
locMem function.

If the passed heap was created with the
HM_MOVEABLE option, then the value of the
cbMem parameter is ignored and the value of the
size word in the allocated object is used instead. If
the handle word is non-zero then the contents of
the handle value word are set to zero after the
object has been freed.

This functions either inserts the passed memory
object at the head of the dedicated free list of the
given size, or if there is no dedicated free list for
that size, it inserts the object into the non­
dedicated free list (sort order is implementation
specific and undefined).

This function does NOT attempt to coalesce the
block being freed with other free blocks. Use the
WinAvailMem function to force free blocks to be
coalesced.

Parameters
;_;_~~~~~~~~~~~~~~~~~~~-

Parameter
Significance

hHeap A handle to a heap, This handle must
have been returned by a previous call to
the WinCreateHeap function.

General Functions

pMem A pointer to the memory block to be
freed. It must have been returned by a
previous call to WinAllocMem or \Vin­
ReallocMem

cbMem The size of the memory to freed. It must
match the allocated size of the block.

Return Value

Format

The return value is NULL if the function is suc­
cessful. Otherwise, it is equal to pMem.

LPCH WinLockHeap(hHeap)
HHEAP hHeap;

Purpose When allocation memory out of an application
data segment, the short pointers returned are
directly useable as offsets relative to DS. When
allocating memory out of other segments, the short
pointers returned must be dereferenced relative to
the beginning of the segment containing the heap.
This function returns the address of the beginning
of the segment that contains the specified heap.

Parameters
~~~~~~~~~~~~~~~~~~~~ 

Parameter 
Significance 

hHeap A handle to a heap, This handle must 
have been returned by a previous call to 
the WinCreateHeap function. 

Return Value 
This function returns a far pointer to the begin­
ning of the segment that contains the passed heap. 

Note In the MS-DOS environment, this function locks 
the segment containing the heap. 

Format 

BOOL WinUnlockHeap(hHeap) 
HHEAP hHeap; 

443 



Windows Presentation Manager Reference 

Purpose This function is the converse of the WinLockHeap 
function and marks when the application is done 
using the segment value returned by WinLock­
Heap. Under DOS, this function does nothing. 
Under MS-DOS it decrements the lock count asso­
ciated with the moveable segment that contains 
the heap. 

Parameters 

Parameter 
Significance 

hHeap A handle to a local heap, This handle 
must have been returned by a previous 
call to the WinCreateHeap function. 

Return Value 
This function returns TRUE if the segment is still 
locked and that another call to this function can 
be made. It returned FALSE if the segment is now 
unlocked. 

13.1.3 Atom Manager 

This section describes the functions used for creating and destroying atom 
tables; for adding, finding and deleting atoms within an atom table; and 
for accessing the string name and usage count associated with an atom. 

There are the following functions: 

WinCreateAtomTable 
WinDestroyAtomTable 
WinAddAtom 
WinfindAtom 
WinDeleteAtom 
WinQueryAtomName 
WinQueryAtomLength 
WinQueryAtomUsage 

The atom manager provides a mechnism for converting a string (atom 
name) into a 16 bit word (atom) that may be used as a constant to 
represent the string in various application and system data structures. By 
converting strings to atoms once, you can save space when the same string 
must be kept in various data structures. It saves time when comparing for 
a particular string, as you only need to convert the search string to an 
atom once, then run over your data structures doing word compares with 
the atoms stored in the data structures. 

444 



General Functions 

The atom manager uses an atom table to hold the strings associated with 
atoms along with the control structures needed to prol>e the table to see if 
a string is already there. Atom tables have the following properties: 

• maximum length of an atom name is 255 characters. A zero length 
string is not a valid atom name. 

• when searching for an atom name in an atom table, case is 
significant and the entire string must match (i.e. no substring 
matching is performed). The search is performed using a hash 
table. Collisions are resolved using chaining. 

• the maximum amount of data that can be stored in an atom table 
is 64k bytes. This includes any control data needed by the atom 
manager to manage the atom table (see below). 

• the maximum number of strings atoms allowed is 16k. The values 
of string atoms can range from OxCOOO to OxFFFF 

• associated with each string atom is a usage count that is incre­
mented each time the atom is "added" to the table and decre­
mented each time the atom is "deleted" from the table. This 
allows multiple users of the same atom string to coexist without 
destroy each other's atoms. 

• this implementation of the atom manager has 6 bytes of overhead 
per string atom (not including the string itself); plus 2 bytes of 
overhead for each bucket in the hash table; plus 16 bytes of over­
head for the atom table itself. 

There is a special kind of atom called an integer atom that has its own set 
of properties: 

• integer atoms can range from OxOOOl to OxBFFF. The range of 
integer atoms is disjoint from the range of string atoms and thus 
the two types of atoms can be intermixed without fear of collisions. 

• the string representation of an integer atom is "#ddddd" where 
the "ddddd" are decimal digits. Leading zeros are ignored. These 
strings must always be specified in the system code page (850 on a 
PC). 

• there is no usage count or storage overhead associated with an 
integer atom. 

• integer atoms are useful for predefined system constants exported 
by a dynlink package, since they behave exactly like atoms except 
that they have no overhead. A good example of where integer 
atoms are used is in the predefined Presentation Manager window 
classes. Application defined window class names are strings that 
are converted into atoms for the purpose of detecting if the same 
class name is being defined more than once. Thus the predefined 
window classes implemented by Presentation Manager also need to 
be expressable as atoms. Making them integer atoms allows the 

445 



Windows Pre5enta.tion Manager Reference 

atoms to be expressed as compile time constants in the Presenta­
tion Manager header file; the application can reference these classes 
and create windows with them without having to have a string 
constant in their data segment; there is no runtime overhead in the 
Presentation Manager system for remembering these atoms. 

Both types of atoms can be specified via a single far pointer that can be 
interpreted in one of four ways. 

1. lpString - > "string" ; string atom name 

2. lpString-> "#ddddd" ; integer atom specified as a string 

3. lpString-> "!",atom ; integer or string atom passed indirectly 

; integer or string atom passed directly 4. lpString = FFFF:atom 

Note that these representations put a constraint on the first character. 
Namely that if it matches with the pound sign ( #) or exclamation mark 
(!)in the system code page (850 on a PC) then the remainder of the string 
will be treated specially. 

WinCreateAtomTable 

446 

Format 

HATOMTBL WinCreateAtomTable(cbinitial, cBuckets) 
UINT cb!nitial; 

UINT cBuckets 

Purpose This function creates an empty atom table of the 
specified size. 

This function should be called before any other 
atom manager function. 

Parameters 
~~~~~~~~~~~~~~~~~~~~ 

Parameter
Significance

cblnitial
An unsigned short integer value specify­
ing the initial number of bytes to be ini­
tially reserved for the atom table. This
size is a lower bound on the amount of
memory reserved. The amount of
memory actually used by an atom table
will depend upon the actual number of
atoms stored in the table. If this param­
eter is zero then the size of the atom
table will be the minimum size needed to
store the atom hash table.

cBuckets

Genera.I Functions

An unsigned short integer value specify­
ing the size of the hash table used to
access the atoms. If this value is zero,
then the default value used will be 37. A
prime number gives the best results.

Return Value
The return value, a HANDLE value, is NULL if the
function failed. Otherwise it is a handle to the
atom table, which must be passed as a parameter
to the remaining atom manager functions.

WinDestroy Atom Table

Format

HATOMTBL WinDestroyAtomTable(hAtomTbl)
HATOMTBL hAtomTbl;

Purpose This function destroys an atom table created by
WinCreateAtomTable.

This function makes no attempt to insure that the
handle to the atom table is not reused by a later
call to WinCreateAtomTable.

Parameters

Parameter
Significance

hAtomTbl

Return Value

A handle to an atom table. This handle
must have been returned from a previous
call to WinCreateAtomTable. If this
parameter is null then this function is
no-op.

The return value, an atom table handle, is NULL if
the function succeeded. Otherwise this function
returns the hAtomTable parameter. This allows
the following idiom for destroying an atom table
and invalidating the variable that contains the
atom table handle:

HATOMTBL hAT;

hAT = WinCreateAtomTable(...);

hAT = WinDestroyAtomTable(hAT);

447

Windows Presentation Manager Reference

WinAddAtom

Format

Purpose

ATOM WinAddAtom(hAtomTbl, lpszAtomName)
HATOMTBL hAtomTbl;
LPCH lpszAtomName;

This function adds an atom name (pointed to by
lpszAtomName) to an atom table (given by
hAtomTbl) . If the atom name is already in the
atom table, then it just increments the usage count
associated with the atom. Otherwise adds the
atom to the table and initializes its usage count to
one. In either case this function returns the atom
that represents the passed atom name. It returns
zero if an invalid atom table or atom name was
specified.

If the lpszAtomName parameter points to a string
of the form "#ddddd' then this function converts
the ASCII decimal digits into a 16 bit integer and
if it is a valid integer atom returns that atom,
without actually modifying the atom table.

If the lpszAtomName parameter points to an exc­
lamation mark("!") then the word following that
character is assumed to be an atom. If it is an
integer atom, it is returned. If it is not an integer
atom AND it is a valid atom for the given atom
table (i.e. it has an atom name and usage count
associated with it) then the usage count is incre­
mented and the atom is returned. Otherwise zero
is returned.

If the high order word of the lpszAtomName
parameter is OxFFFF then the low order word is
treated as an atom and processed in the same
manner as the atom described in the previous
paragraph.

Parameters

448

~~~~~~~~~~~~~~~~~~~~-

Parameter 
Significance 

hAtomTbl 
A handle to an atom table. This handle 
must have been returned from a previous 
call to WinCreateAtomTable. 



General Functions 

lpszAtomName 
A long pointer to the character string to 
be added to the table. The string must 
be an null-terminated ASCII string. If 
the string begins with a "#" character, 
then the ASCII digits that follow are 
converted into an inte~er atom. If the 
string begins with a"!' character, then 
the next two bytes are intepreted as an 
atom. 

If the high order word of this parameter 
is -1 then the low order word is an atom. 
If it is an integer atom, then that atom is 
returned. Otherwise the reference count 
associated with that atom is incre­
mented. 

Return Value 
The return value, a unsigned short integer value, is 
the atom that is associated with the passed string. 
Otherwise, it is NULL. 

Notes The atom values returned by WinAddAtom are in 
the range COOO to FFFF (hexadecimal). The range 
0001 to BFFF (hexadecimal) is reserved for integer 
atoms. 

Format 

ATOM WinFindAtom(hAtomTbl, lpszAtomName) 
HATOMTBL hAtomTbl; 
LPCH lpszAtomName; 

Purpose This function is identical to the WinAddAtom 
function with two exceptions: 

- if the atom name is not found in the table, it is 
NOT added to the table and zero is returned as the 
value of this function. 

- if the atom name is found in the table, the usage 
count is NOT incremented. 

Since integer atoms do not have a usage count and 
do not actually occupy memory in the atom table, 
this function IS identical to WinAddAtom with 
respect to integer atoms. 

449 



Windows Presentation Manager Reference 

450 

Parameters 

Parameter 
Significance 

hAtomTbl 
A handle to an atom table. This handle 
must have been returned from a previous 
call to WinCreateAtomTable. 

lpszAtomName 
A long pointer to the character string to 
be added to the table. The string must 
be an null-terminated ASCII string. If 
the string begins with a "#" character, 
then the ASCII digits that follow are 
converted into an inte~er atom. If the 
string begins with a"!' character, then 
the next two bytes are intepreted as an 
atom and that atom is returned. 

If the high order word of this parameter 
is -1 then the low order word is an atom 
and that atom is returned. 

Result The return value, a unsigned short integer value, is 
the atom associated with the given string. It is 
NULL if the string is not in the table. 

Format 

UINT WinDeleteAtom(hAtomTbl, atom) 
HATOMTBL hAtomTbl; -
ATOM atom; 

Purpose If the passed atom is an integer atom, zero is 
returned. If it is not an integer atom AND it is a 
valid atom for the given atom table (i.e. it has an 
atom name and usage count associated with it) 
then the usage count is decremented and zero is 
returned. If the usage count has been decremented 
to zero then the atom name and usage count are 
removed from the atom table. If either the atom 
table or atom are invalid, the atom is returned. 

Returning zero to indicate success allows the use of 
the idiom described with WinDestroyAtomTable. 

Parameters 
~~~~~~~~~~~~~~~~~~~~-


Parameter
Significance

hAtomTbl

General Functions

A handle to an atom table. This handle
must have been returned from a previous
call to WinCreateAtomTable.

atom An unsigned short integer value specify­
ing the atom to be deleted.

Return Value
The return value, a unsigned short integer value, is
NULL if the function is successful. It is equal to
atom if the function failed and the atom has not
been deleted.

WinQueryAtomName

Format

int WinQueryAtomName(hAtomTbl, atom, lpszBuffer,
cchBufferMax)

HATOMTBL hAtomTbl:
ATOM atom:
LPCH lpszBuffer:
UINT cchBufferMax:

Purpose This function returns the atom name associated
with the passed atom. For integer atoms, the for­
mat of the string is "#ddddd" where the "ddddd"
are decimal digits in the system code page (850 on
a PC). No leading zeros are generated so the length
can range from 3 to 7 characters. The lpszBuffer
parameter points to where to return the atom
name. The cchBufferMax parameter specifies the
maximum number of characters that can be stored
in the buffer (including the terminating null byte).

The return value of this function is the actual
number of characters stored in the buffer (not
including the terminating zero byte). If the atom
table or atom is invalid then this function returns
zero.

Parameters
~~~~~~~~~~~~~~~~~~~~-

Parameter 
Significance 

hAtomTbl 
A handle to an atom table. This handle 
must have been returned from a previous 

461 



Windows Presentation Ma.na.ger Reference 

call to WinCreateAtomTable. 

atom An unsigned short integer value identify­
ing the character string to be retrieved. 

lpszBuffer 
A far pointer to the buffer to receive the 
character string. 

cchBufferMax 

Return Value 

An unsigned short integer value specify­
ing the maximum size, in bytes, of the 
buffer. 

The return value is an unsigned short integer value 
specifying the actual number of bytes copied to the 
buffer. It is 0 if the specified atom is not valid. 

Win Query AtomLength 

Format 

452 

int WinQueryAtomLength(hAtomTbl, atom) 
HATOMTBL hAtomTbl; 
ATOM atom; 

Purpose This function returns the length of the atom name 
associated with the passed atom. For integer 
atoms, the length is always 6. If the atom table or 
atom is invalid then this function returns zero. 

The purpose of this function is to allow an applica­
tion to determine how big a buff er to passed to the 
WinQueryAtomName function. The returned 
length does not include the terminating null byte 
for a zero terminated string. 

Parameters 
~~~~~~~~~~~~~~~~~~~~ 

Parameter
Significance

hAtomTbl
A handle to an atom table. This handle
must have been returned from a previous
call to WinCreateAtomTable.

atom An unsigned short integer value identify­
ing the atom whose length is to be
returned.

General Functions

Return Value
The return value is a short integer value that is the
length of the string associated with atom. It is 0 if
the specified atom is not valid. Integer atoms
always return a length of 5.

Win Query Atom Usage

Format

UINT WinQueryAtomUsage(hAtomTbl, atom)
HATOMTBL hAtomTbl;
ATOM atom;

Purpose This functions returns the usage count associated
with the passed atom. For integer atoms it returns
OxFFFF. If the atom table or atom is invalid then
this function returns zero.

Parameters

Parameter
Significance

hAtomTbl
A handle to an atom table. This handle
must have been returned from a previous
call to WinCreateAtomTable.

atom An unsigned short integer value identify­
ing the atom whose usage count is to be
returned.

Return Value
The return value is an unsigned short integer value
that is reference count of the atom. It is 0 if the
specified atom is not valid. It is OxFFFF for
integer atoms.

13.1.4 File Functions

This section describes functions used for creating and opening files. There
are the following functions:

WinOpenFile
WinGetTempDrive
WinGetTempFilename

453

Windows Presentation Manager Reference

454

Format

int WinOpenFile(lpFileName, lpReOpenBuff, wStyle)

Purpose This function creates, opens, reopens, or deletes a
file.

Parameters

Parameter
Signifigance

lpFileName
A long pointer to a null-terminated char­
acter string specifying the name of the
file to be opened. The string must consist
of characters from the ANSI character
set.

lpReOpenBuff
A long pointer to a data st:rncture having
OFSTRUCT type. The structure receives
information about the file when the file is
first opened, and is used in subsequent
WinOpenFile calls to refer to the open
file.

wStyle An unsigned short integer value specify­
ing the action to take. It can be combi­
nations of the following:

OpenFile Styles
Value

OF-READ
Opens the file for reading only.

OF-WRITE
Opens the file for writing only.

OF-READWRITE
Opens the file for reading and
writing.

OF-CREATE
Creates the file if it does not
already exist.

OF-REOPEN
Opens the file using informa­
tion in the reopen buffer.

General Functions

OF-EXIST
Creates or opens the file, then
closes it. Used to test for file
existence.

OF-PARSE
Fills the OFSTRUCT structure
but carries out no other action.

OF-PROMPT
Displays a dialog box that
prompts the user for permis­
sion to create a file if the
requested file does not exist.

OF-CANCEL
Adds a Cancel button to the
OF - PROMPT dialog box.
Pressing the Cancel button
directs WinOpenFile to return
a file-not-found error.

OF-VERIFY
Verifies that the date and time
of the file are the same as when
it was previously opened. Use­
ful as an extra check for read­
only files.

OF-DELETE
Deletes the file.

These styles can be combined using the logical OR
operator.

Return Value
The return value is a DOS file handle if the func­
tion is successful. Otherwise, it is -1.

Notes To close the file after use, use the DosClose system
call.

If the file name does not contain a drive or path
specification and it is not found in the current
directory, then this function will search all of the
directories in the PATH environment variable and
open the first one that is found, returning the full
path name in the open buff structure.

The OF_ CREATE flag always directs WinOpen­
File to create a new file. If the file already exists,
it is truncated to zero length.

455

Windows Presentation Manager Reference

456

Format

UCHAR WinGetTempDrive(cDriveLetter)

Purpose This function takes a drive letter or zero and
returns a letter specifying the optimal drive for a
temporary file. The optimal drive is the disk drive
that can provide the best access time during disk
operations with a temporary file.

The function returns the drive letter of a hard disk
if the system has one. Otherwise, if cDriveLetter is
zero, it returns the drive letter of the current disk,
or if cDriveLetter is a letter, it returns the letter of
that drive or one that exists.

Parameters
~~~~~~~~~~~~~~~~~~~~-

Parameter 
Significance 

cDriveLetter 
A byte integer value specifying a disk 
drive letter, for example, A for disk drive 
A. 

Return Value 
The return value is a byte integer value specifying 
the optimal disk drive for temporary files. 

WinGetTempFileName 

Format 

int WinGetTempFileName(cDriveLetter, lpPrefixStrin 
lpTempFileName) 

Purpose This function creates a temporary filename with 
the following form: 

<drive>:\<path>\-<prefix><uuuu>.TMP 

where drive is the drive letter specified by 
cDriveLetter, path is the pathname of the tem­
porary file (either the root directory of the 
specified drive or the directory specified in the 
TE:MP environment variable), prefix is all letters 
(up to the first three) of the string pointed to by 
lpPrefixString, and uuuu is a hexadecimal 
representation of the number specified by wUnique. 



General Functions 

Parameters 

Parameter 
Significance 

cDriveLetter 
A byte integer specifying the suggested 
drive for the temporary filename. If 
cDriveLetter is 0, the default drive is 
used. 

lpPrefixString 
A long pointer to a null-terminated 
string to be used as the temporary 
filename prefix. If this string begins with 
a drive letter and/or a path specification, 
then they will override the defaults that 
would have been chosen by this function. 

wUnique 
An unsigned short integer. 

lpTempFileName 

Return Value 

A long pointer to a buffer where the tem­
porary filename is stored. It must be 
large enough to hold the largest legal 
path name. 

The return value, a short integer value, is the 
unique numeric value used in the temporary 
filename. If a nonzero value was given for the 
wUnique parameter, nUniqueNumber is the same 
number. 

Notes WinGetTempFileName uses the suggested drive 
letter for creating the temporary filename except in 
the following cases: 

1. 

2. 

If a hard disk is present, WinGetTemp­
FileName always uses the drive letter of the 
first hard disk. 

If a TE1\1P environment variable is defined and 
its value begins with a drive letter, that drive 
letter is used. 

If the TF- FORCED RIVE bit of cDriveLetter is 
set, the above exceptions do not apply. The tem­
porary filename will always be created in the 
current directory of the drive specified by 

457 



Windows Presentation Manager Reference 

cDriveLetter, regardless of the presence of a hard 
disk or the TE:MP environment variable. 

If wUnique is zero, WinGetTempFileName 
attempts to form a unique number based on the 
current system time. If a file with the resulting 
filename already exists, the number is increased by 
one and the test for existence is repeated. This 
process continues until a unique filename is found; 
WinGetTempFileName then creates a file by that 
name and closes it. 

No attempt is made to create and open the file 
when wUnique is nonzero. 

13.1.5 Presentation Manager API Error Reporting 

If any application thread is to make a Presentation Manager call, it must 
call the Winlnitialise function. This initialises a Presentation Manager 
instance and returns an anchor block. Any Presentation Manager errors 
that the application encounters after this initialisation are stored in the 
anchor block. The application may query the error codes with the WinGet­
LastError or WinSetLastError calls. 

Note that a successful Presentation Manager call does NOT clear the error 
code. If the application requires to know whether a specific call was suc­
cessful, it should set the error code to zero with the SetLastError call 
before making the api call in question. 

Note also that the application may both query and then zero the error 
code with the SetLastError function. 

In multiple thread programmes where there are multiple anchor blocks, 
errors are always stored in the anchor block created by the Winlnitialise 
call of the thread making the Presentation Manager call. Thus, whe calling 
Query /SetLastError, the application is responsible for specifying the 
correct anchor block handle for the thread making the call. 

If an error occurs on api call, then the value of any returned parameter 
except the function value (which may be inspected to determine whether 
an error occurred), is undefined. 

Win GetLastError 

Format 

458 

UINT WinGetLastError(hab) 
HAB hab; 



General Functions 

Purpose This function returns the error code that was set 
either by a last Presentation Manager call which 
failed in some way or by a call to the WinSet­
LastError function, whichever occurred last. It 
also zeros the current error code. 

Parameters 

Parameter 
Significance 

hab The anchor block handle of the thread 
making the call - this is the value 
returned by the Winlnitialize function. 

Return Value 

WinGetErrorlnfo 

Format 

The return value is an unsigned short integer value 
that is the last error code. 

LPERRINFO WinGetErrorlnfo( hab) 
HAB hab; 

Description 
This function returns a long pointer to a block 
containing information about the previous error 
code for the current thread. It returns NULL if 
there is no error information available. The for­
mat of the block is defined by the ERRINFO struc­
ture. 

typedef struct tagERRINFO { 
WORD cbFixedErrlnfo; 
ERRORID idError; 
WORD cLevels; 
WORD prgLevel; 
WORD pBinaryData; 

} ERRINFO; 

typedef ERRINFO far *LPERRINFO; 

The fields have the following contents: 

c bFixedErr Info 
number of bytes of fixed data at the 
beginning of the error information block 
(currently 12). If this field is different 
from sizeof( ERRINFO ) then obviously 
your code is running on a version of the 
system that supports less or more than 

459 



Windows Presentation Manager Reference 

460 

the system you compiled for. 

idError error ID associated with the error (will 
match the last non- zero value returned 
by WinGetLastError). 

pBinaryData 
is a 16 bit offset to implementation 
dependendant data. On the PC imple­
mentation, this field points to a 16 bit 
OS/2 error code that is related to this 
Presentation Manager error. 

cLevels number of levels of detail. It is the 
number of entries in the array of words 
pointed to by the following field. This 
field is never zero (i.e. there is always at 
least one level of detail). 

prgLevel 
is a 16 bit offset to an array of 16 bit 
offsets to null terminate strings. Each 
string is a printable message that offers 
varying levels of information. The first 
level is the least amount of detail and 
the remaining levels off er more and more 
detail. 

The first level of detail is always an error 
message string, in the following format: 

xxxnnnnns message text 

where 
xxx is predefined product identifier 
nnnnn is the message number 
s is the message severity letter 

W = Warning 
E = Error 
S = Severe 
U = Unrecoverable 

and the contents of message text is 
determined by the format options, for­
mat string and insert parameters passed 
to WinSetErrorlnfo function. If there is 
no format string for the error code, then 
it will default to "*** unknown error 
code***". 

The remaining detail levels are optional 
and implementation dependent. The PC 
implementation will store the register 
contents at the time of the error in the 
second level of detail. The third level of 



General Functions 

detail will contains a call backtrace from 
the point of the error. 

The strings are all terminated by a zero 
byte. All lines are terminated with the 
carriage return, linefeed character 
sequence. 

Effects: This function allocates a single private segment to 
contain the ERRINFO block. All of the long 
pointer to string fields are pointers to memory 
within that segment. 

Warnings: 

WinFreeErrorlnfo 

Format 

The memory allocated by this function is not freed 
until the returned pointer is passed to the Win­
FreeErrorlnfo API call. 

Like WinGetLastError, WinGetErrorlnfo will 
release any saved error information after format­
ting the error message. If two calls are made to 
WinGetErrorlnfo, without any intervening calls, 
the second call will return NULL, since the saved 
error information was consumed by the first call. 

VOID WinFreeErrorinfo( hab, lpErrorinfo ) 
HAB hab; 
LPERRINFO lpErrorinfo; 

Description. 
This function frees the memory occupied by the 
passed error information block. he previous error 
code for the current thread. It returns NULL 

The 32 bit values taken and returned by WinGetLastError and WinSetEr­
rorlnfo are defined as follows: 

typedef ULONG ERRORID; 

#define MAKEERRORID( sev, errc) (ERRORID) (MAKEULONG( (sev), (errc) ) 

The reason the severity is separate from the error code is because it allows 
the same error code to have two different severity levels, based on context. 
For example, an invalid parent Window handle passed to WinCreateWin-
dow is a severe error, but an invalid Window handle passed to WinDes-
troyWindow is just an error. Another advantage of keeping them separate 
is that most applications will not look at the severity code. This allows 
them to write the following code sequence, taking advantage of the 

461 



Windows Presentation Manager Reference 

efficiences of 16 bit compares: 

UINT errCode; 

if (! (p = WinAllocMem( hHeap, 24 ))) { 
errCode = (UINT)WinGetLastError( hab ); 
if (errCode == WINERR_HEAP_OUT_OF_MEMORY) { 
} 
else 
if (errCode == WINERR_HEAP_MAX_SIZE_REACHED) { 
} 
else { 
} 
} 

13.1.6 General DOS Related Support Functions 

This section describes various DOS related support functions. 

There are the following functions: 

• WinCatch 

• WinThrow 

• WinQueryVersion 

• WinReportError 

13.1.6.1 Catch and throw 

WinCatch and WinThrow are functions that allow an application to 
remember a point in the call stack hierarchy and then return to that point 
from a point lower down in the hierarchy. This is typically useful for deal­
ing with error conditions. For example: 

CATCHBUF AllocCatchBuf; 

procl () { 

} 

462 

int errorCode; 

if (errorCode = WinCatch( &AllocCatchBuf )) { 
/* cleanup, possibly display error message, etc. */ 
return; 
} 

proc2( ... ); /*Call another procedure*/ 



Genera.I Functions 

proc2 () { 
PMEM p; 

} 

if (! (p = WinAllocMem( 0, 12 ))) { 
Win'I'hrow( &AllocCatchBuf, (WORD)WinGetLastError( hab )); 
/* Win'I'hrow does not return */ 
} 

In the above example, if Win Catch and Win Throw were not used, the 
error condition detected in proc2 would have to be passed back to procl 
via the return code value of proc2. This function becomes more valuable 
~ the number of levels of procedure call between the catch and throw 
mcreases. 

Note also that it is the responsibility of the routine that receives the catch 
to free up any resources that had been allocated between the issuance of 
the catch and the throw. 

Win Catch 

Format 

int WinCatch(lpCatchBuf) 

Purpose This function catches the current execution 
environment and copies it to the buffer referenced 
by lpCatchBuf. The buff er can then be used by the 
WinThrow function to restore the execution 
environment later. The execution environment 
includes the state of all system registers and the 
instruction counter. 

Parameters 
~~~~~~~~~~~~~~~~~~~~~ 

Parameter
Significance

lpCatchBuf
A long pointer to a buffer having
CATCHBUF type.

Return Value
The return value is a short integer value, is zero if
the environment is copied to the buffer.

463

Windows Presentation Manager Reference

464

Format

void WinThrow(lpCatchBuf, nThrowBack)

Purpose This function restores the execution environment
to the values saved in the buffer referenced by
lpCatchBuf. Execution then continues in the Win­
Catch function that copied the environment to
lpCatchBuf. The nThrowBack parameter is passed
as the return value to the WinCatch function. It
can be any nonzero integer value.

Parameters

Parameter
Significance

lpCatchBuf
A long pointer to a buffer having
CATCHBUF type.

nThrowBack
A short integer to be returned by the
WinCatch function.

Return Value
None.

Format

WORD WinQueryVersion(hab)
HAB hab;

Purpose This function returns the current version identifier
of Presentation Manager.

Return Value
The return value is an unsigned short integer value
specifying the major and minor version number of
Presentation Manager. The high-order byte is the
minor version (revision) number; the low-order
byte is the major version number.

WinReportError
~~~~~~~~~~~~~~~~~~~~~~~~-

Format 

WinReportError(hCurrent, errCode, bFatal, 
lpDebugStr ing) 



General Functions 

Purpose This function is used to report a potentially fatal 
problem to the user. It will display the error code 
and string and read a response from the user. 

Parameters 
~~~~~~~~~~~~~~~~~~~~ 

Parameter
Significance

hCurrent
The value return by the Wininitialize
function.

errCode An unsigned short integer that is the
error code to display.

bFatal A boolean value that is true if the error
is a fatal one and false otherwise.

lpDebugString

Return Value

A long pointer to a character string.
The string must be a null-terminated
ASCII string.

This function has no return value. It does NOT
return if the bFatal parameter is TRUE.

465

Chapter 14
Multi-Process and
Multi-Thread Applications

14.1 Rules and Guidelines for Complex Applications. 469
14.1.1 Queueless Processing Threads. 469
14.1.2 Multi-process and multi-thread applications 473

467

Multi-Process and Multi-Thread Applications

14.1 Rules and Guidelines for Complex Appli­
cations.

Complex applications are defined as those applications which use the
Presentation Manager API along with other advanced features of DOS
such as multi processing. The following sections define rules that such
applications must follow and also some guidelines that should make it
easier to program such applications.

14.1.1 Queueless Processing Threads.

It is possible for a process thread which has not allocated a Presentation
Manager Input Queue to use many of the functions of the Presentation
Manager APL However, it cannot use all of the functions. In general
terms, functions which SEND messages or access the Input Queue can not
be used by a thread without a queue.

The functions that CANbe used by a thread with no queue include:

• Heap Manager functions

• Atom Manager functions

• System Information functions

• Resource functions

• DOS Related Support functions.

• Graphics (Gpi) functions

Some of the Windowing (Win ...) and Shell (She ...) functions can NOT be
used by a thread with no Input Queue, although many of them can. The
following is a list of the calls that can not be used:

WinBeginPain t

Win CalcFrameRect

Win Check WindowLockCoun t

WinCloseClipbrd

WinCreateCaret

WinCreateCursor

WinCreateDlg

Win CreateFrameCon trols

469

Windows Presentation Manager Reference

470

reateMenu

reateStdWindow

CreateStdWindowlndirect

W nCreateWindow

Win Create Window DC

WinDefWindowProc

WinDestroyCaret

WinDestroyCursor

WinDestroyMsgQueue

WinDestroy Window

WinDismissDlg

WinDispatchMsg

WinDlgBox

WinEmptyClipbrd

WinEnable Window

WinEndPaint

WinEnumClipbrdFmts

WinEnumDlgltem

WinEnum Window

WinExcludeUpdateRgn

WinExitWindows

WinFlash Window

WinFormatFrame

Win GetAccelTable

WinGetCaretlnfo

Win GetClasslnfo

WinGetClipbrdData

WinGetClipbrdFmtlnfo

WinGetClipbrdOwner

WinGetCursorlnfo

WinGetCursorPos

Win GetD lgl temln t

Multi-Process and Multi-Thread Applications

WinGetKeyState

WinGetMsg

WinGetMsgPos

WinGetMsgTime

WinGetPhysKeyState

WinGetQueueStatus

Win GetSeparator

WinGetUpdateRect

WinGetUpdateRgn

Win Get Window

Win Get WindowLockCoun t

Win Get Window Process

Win Get WindowText

WinlndicatePossibleDeath

Winlni tialize

WinlnSendMsg

Winln validateRgn

WinlsThreadActive

WinLoadCursor

WinLoadDlg

WinLoadMen u

WinLockScreen

WinLock VisRgns

WinLock Window

WinMapDlgPoin ts

WinMessageBox

WinOpenClipbrd

WinPeekMsg

WinProcessDlg

WinProcessDlgMsg

WinProcessSysCommand

WinRegister Window Destroy

471

Windows Presentation Ma.na.ger Reference

472

WinReportError

WinRestrictCursor

WinScanToChar

WinScanTo Virtual

WinScrollWindow

WinSendDlgltemMsg

WinSendMsg

WinSetAccelTable

WinSetActive Window

WinSetCapture

WinSetClipbrdData

WinSetClipbrdOwner

WinSetClipbrdViewer

WinSetCursor

WinSetCursorPos

WinSetDlgltemln t

WinSetFocus

WinSetMsgln terest

WinSetMultiple WindowPos

WinSetParen t

WinSetSysModalWindow

WinSet WindowPos

WinSet WindowText

WinShowCaret

WinShowCursor

WinShowWindow

WinStartTimer

WinStopTimer

WinSubclass Window

WinSubstituteStrings

WinTimeoutSendMsg

WinTranslateAccel

Multi-Process and Multi-Thread Applications

WinUnlockWindow

Win Update Window

Win ValidateRect

Win ValidateRgn

Win WaitForHotKey

Win WaitForHungProcess

Win WaitForSGChange

WinWaitMsg

Win WindowFromPoint

14.1.2 Multi-process and multi-thread applications

This section specifies the constraints on an application that makes use of
multiple DOS processes or threads.

The following table is a list of the objects which may be created by a
Presentation Manager application, and it defines whether each object is
accessible to threads or processes that are different to the creating
thread/process. i.e. the table defines whether a handle returned to the
application by Presentation Manager in one process may be used by the
application in another process.

Presentation Manager Another Another
Object Thread Process

Window y (1, 3) y
Dialog boxes
Menu windows
GP! Presentation Space y n
(non cached)
GP! Presentation Space y (2) y (2)
(cached)

AVIO Presentation Space y n
Input queue n (3) n
Device Context y y
Private Window class y n
Public Window class y y
Timer y (4) y
Cursor (or Pointer) y y
Bitmap y y
Font/symbol set y y
Local heap y y/n (5)
Atom Table y y
Region y y
Metafile y y

Notes

473

Windows Presentation Manager Reference

1. Only the thread that created the queue and the window will receive
messages for the window. The windowproc or dialogproc will alway
run in the context of the thread that created the queue and the
window.

2. The thread/process that obtained the ps from the cache may access
it.

3. Winprocessdlgmsg() assumes that all of the dialog items were
created by the thread that is issuing WinProcessdlgmsg().

4. Timer messages are posted only to the queue associated with the
thread that created the timer.

5. Depends on the shareability of the segment in which the heap was
created.

474

Index

AbortDoc escape, 61

BANDRECT structure, 60
BMINFO structure, 296
BMINFOH structure, 296

CHARBUNDLE structure, 187

DevCloseDC, 53
DevEscape,55
DevFlushOutput escape, 63
DevOpenDC, 49
DevPostDeviceModes, 54
DevQueryCaps, 66
DevQueryHardcopyCaps, 65
DevRawData escape, 64
DOPDATA structure, 50, 389
DraftMode escape, 61
DRNDATA structure, 51, 390, 396

EndDoc escape, 58

GetScalingFactor escape, 62
GpiArc, 226
GpiAssociate, 97
GpiBeginArea, 240
GpiBeginClipArea, 173
GpiBeginElement, 146
GpiBeg!nStrokes, 221
GpiBitBlt, 306
GpiBox, 220
GpiCallSegment, 163
GpiCharString, 277
GpiCharStringAt, 277
GpiCharStringPos, 278
GpiCharStringPosAt, 278
GpiCloseSegment, 128
GpiCombineRegion, 315
GpiComment, 288
GpiConvert, 179
GpiCorrelateChain, 116
GpiCorrelateFrom, 119
GpiCorrelateSegment, 122
GpiCreateBitmap, 299
GpiCreateLogColorTable, 191

GpiCreateLogFont, 248
GpiCreatePS, 89
GpiCreateRegion, 313
GpiDDA, 291
GpiDeleteBitmap, 300
GpiDeleteElement, 140
GpiDeleteElementRange, 141
GpiDeleteElementsBetweenLabels, 142
GpiDeleteSegment, 129
GpiDeleteSegments, 129
GpiDeleteSetld, 249
GpiDestroyPS, 92
GpiDestroyRegion, 315
GpiDrawChain, 101
GpiDrawDynamics, 108
GpiDrawFrom, 102
GpiDrawSegment, 104
GpiElement, 145
GpiEnableKerniµg, 257
GpiEndArea, 241
GpiEndClipArea, 175
GpiEndElement, 146
GpiEndProl, 288
GpiEndStrokes, 222
GpiEqualRegion, 316
GpiErase, 98
GpiErrorSegmentData, 97
GpiExcludeClipRectangle, 323
GpiFloodFill, 311
GpiFullArc, 227
GpiGetBitmapBits, 304
Gpilmage, 287
GpilntersectClipRectangle, 323
GpiLabel, 141
GpiLine, 219
GpiLoadBitmap, 298
GpiLoadFonts, 247
GpiLoadLineType, 205
GpiLoadSymbolSet, 246
GpiMarker, 285
GpiMove, 218
GpiNoopl, 289
GpiOffsetClipRegion, 324
GpiOffsetElementPointer, 139
GpiOffsetRegion, 316
GpiOpenSegment, 126
GpiPaintRegion, 325
GpiPartialArc, 228
GpiPolyFillet, 230
GpiPolyFilletSharp, 231

475

Index

GpiPolyLine, 219
GpiPolyMarker, 285
GpiPolySpline, 232
GpiPop, 184
GpiPtlnRegion, 317
GpiPt Visible, 223
GpiPutData, 110
GpiQueryArcParams, 226
GpiQueryAttrMode, 183
GpiQueryAttrs, 189
GpiQueryBackColor, 201
GpiQueryBackMix, 204
GpiQueryBitmapDimension, 302
GpiQueryBitmapHandle, 236
GpiQueryBitmapParameters, 303
GpiQueryBoundaryData, 125
GpiQueryCharAngle, 265
GpiQueryCharBox, 264
GpiQueryCharBreakExtra, 27 4
GpiQueryCharCorr, 260
GpiQueryCharDirection, 267
GpiQueryCharExtra, 272
GpiQueryCharMode, 269
GpiQueryCharSet, 262
GpiQueryCharShear, 266
GpiQueryCharSpacing, 270
GpiQueryClipBox, 322
GpiQueryClipRegion, 322
GpiQueryColor, 200
GpiQueryColorData, 194
GpiQueryColorlndex, 198
GpiQueryCp, 258
GpiQueryCurrentPosition, 218
GpiQueryDDALength, 290
GpiQueryDefCharBox, 261
GpiQueryDeviceBitmapFormats, 303
GpiQueryDrawControl, 101
GpiQueryDrawingMode, 110
GpiQueryEditMode, 138
GpiQueryElement, 144
GpiQueryElementPointer, 139
GpiQueryElementType, 143
GpiQueryFontMetrics, 253
GpiQueryFonts, 252
GpiQueryGraphicsField, 176
GpiQuerylnitialSegmentAttrs, 131
GpiQueryKerning, 257
GpiQueryKerningPairs, 255
GpiQueryKerningTracks, 255
GpiQueryLineEnd, 213
GpiQueryLineJoin, 214
GpiQueryLinePatternSet, 215
GpiQueryLinePatternSymbol, 216
GpiQueryLineType, 210
GpiQueryLineTypes, 207
GpiQueryLineWidth, 211

476

GpiQueryLineWidthGeom, 212
GpiQueryLogColorTable, 195
GpiQueryMarker, 283
GpiQueryMarkerBox, 284
GpiQueryMarkerSet, 282
GpiQueryMix, 202
GpiQueryNearestColor, 197
GpiQueryNumberSetlds, 250
GpiQueryPage Viewport, 173
GpiQueryPageWindow, 172
GpiQueryPattern, 238
GpiQueryPatternRefPoint, 239
GpiQueryPatternSet, 237
GpiQueryPel, 311
GpiQueryPickAperture, 114
GpiQueryPS, 92
GpiQueryRealColors, 196
GpiQueryRegionBox, 318
GpiQueryRegionRects, 319
GpiQueryRGBColor, 198
GpiQuerySegmentAttrs, 133
GpiQuerySegmentNames, 130
GpiQuerySegmentOrigin, 155
GpiQuerySegmentPriority, 135
GpiQuerySegmentTransformMatrix,

160
GpiQuerySetlds, 250
GpiQueryStopDraw, 106
GpiQuerySymbolSetData, 251
GpiQueryTag, 116
GpiQueryTextAlignment, 277
GpiQueryTextBox, 259
GpiQueryTextBreak, 260
GpiQueryViewingLimits, 178
GpiQueryViewport, 168
GpiQueryViewportSize, 179
GpiQueryWidthTable, 256
GpiQueryWindow, 167
GpiRealizeColorTable, 193
GpiRectlnRegion, 317
GpiRectVisible, 223
GpiRemoveDynamics, 107
GpiResetBoundaryData, 125
GpiResetPS, 93
GpiRestorePS, 95
GpiSavePS, 94
GpiSegmentCharacteristics, 289
GpiSelectBitmap, 301
GpiSelectClipRegion, 321
GpiSetArcParams, 224
GpiSetAttrMode, 183
GpiSetAttrs, 185
GpiSetBackColor, 200
GpiSetBackMix, 203
GpiSetBitmapBits, 305
GpiSetBitmapDimension, 302

GpiSetBitmapld, 235
GpiSetCharAngle, 264
GpiSetCharBox, 263
GpiSetCharBreakExtra, 273
GpiSetCharDirection, 267
GpiSetCharExtra, 271
GpiSetCharMode, 268
GpiSetCharSet, 262
GpiSetCharShear, 265
GpiSetCharSpacing, 269
GpiSetColor, 199
GpiSetCp, 258
GpiSetCurrentPosition, 217
GpiSetDefaultView, 169
GpiSetDrawControl, 99
GpiSetDrawingMode, 109
GpiSetEditMode, 137
GpiSetElementPointer, 138
GpiSetElementPointerAtLabel, 142
GpiSetGraphicsField, 176
GpiSetlnitialSegmentAttrs, 131
GpiSetLineEnd, 213
GpiSetLineJoin, 214
GpiSetLinePatternSet, 215
GpiSetLinePatternSymbol, 216
GpiSetLineType, 208
GpiSetLineWidth, 210
GpiSetLineWidthGeom, 211
GpiSetMarker, 282
GpiSetMarkerBox, 283
GpiSetMarkerSet, 281
GpiSetMix, 201
GpiSetModelTransform, 160
GpiSetPageViewport, 172
GpiSetPageWindow, 171
GpiSetPattern, 237
GpiSetPatternRefPoint, 239
GpiSetPatternSet, 236
GpiSetPel, 310
GpiSetPickAperture, 114
GpiSetRegion, 314
GpiSetSegmentAttrs, 132
GpiSetSegmentOrigin, 154
GpiSetSegmentPriority, 134
GpiSetSegmentTransform, 155
GpiSetSegmentTransformMatrix, 158
GpiSetStopDraw, 105
GpiSetTag, 115
GpiSetTextAlignment, 274
GpiSetUniform Window, 166
GpiSetViewingLimits, 177
GpiSet Viewport, 167
GpiSetWindow, 165
GpiUnloadFonts, 248
GpiUnrealizeColorTable, 193
GPOINT type, 313

Index

GRECT type, 313

HAB type, 429
HCINFO structure, 65
HMQ type, 7

IMAGEBUNDLE structure, 188

LINEBUNDLE structure, 186

MARKERBUNDLE structure, 187
MetCopyMetaFile, 336
MetDeleteMetaFile, 344
MetGetMetaFileBits, 344
MetLoadMetaFile, 336
MetPlayMetaFile, 337
MetQueryMetaFileLength, 345
MetSaveMetaFile, 343
MetSetMetaFileBits, 345

NewFrame escape, 59
NextBand escape, 59

PATTERNBUNDLE structure, 188
PICICHG, 413
PicPrint, 425

QMSGtype, 7
QPDATA structure, 395
QueryEscapeSupport escape, 56

SF ACTORS structure, 63
SplDdrDeReg, 405
SplDdrQuery, 406
SplDdrReg, 405
SplMessageBox, 403
SplQmAbort, 393
SplQmClose, 393
SplQmEndDoc, 393
SplQmOpen, 389
SplQmStartDoc, 392
SplQmWrite, 392
SplQpClose, 397
SplQpControl, 398
SplQplnstall, 399
SplQpOpen, 395
SplQpPrint, 397
SplQpQueryDt, 398

477

Index

StartDoc escape, 57

VioAssociate, 357, 358
VioCreatePS, 357, 359
VioDeleteSymbolSet, 357, 360
VioDeRegister, 356
VioDestroyPS, 357, 360
VioEndPopUp, 354
VioGetAnsi, 354
VioGetBuf, 354
VioGetConfig, 354
VioGetCp, 354
VioGetCurPos, 354
VioGetCurType, 354
VioGetDeviceCellSize, 357, 360
VioGetFont, 356
VioGetMode, 354
VioGetOrg, 357, 360
VioGetPhysBuf, 356
VioGetState, 356
VioLoadSymbolSet, 357, 361
VioModeUndo, 356
VioModeWait, 357
VioPopUp, 354
VioPrtSc, 354
VioPrtScToggle, 354
VioQueryPSFormats, 358, 361
VioQuerySymbolSets, 358, 362
VioReadCellStr, 354
VioReadCharStr, 355
VioRegister, 357
VioSavRedrawUndo, 357
VioSavRedrawWait, 357
VioScrLock, 357
VioScrollDn, 355
VioScrollLf, 355
VioScrollRt, 355
VioScrollUp, 355
VioScrUnlock, 357
VioSetAnsi, 355
VioSetCp, 355
VioSetCurPos, 355
VioSetCurType, 355
VioSetDeviceCellSize, 358, 362
VioSetFont, 357
VioSetMode, 355
VioSetOrg, 358, 363
VioSetState, 357
VioShowBuf, 355
VioShowPS, 358, 363
VioWrtCellStr, 355
VioWrtCharStr, 355
VioWrtCharStrAtt, 356
VioWrtNAttr, 356
VioWrtNCell, 356

478

VioWrtNChar, 356
VioWrtTTY, 356

WinAddAtom, 448
WinAllocMem, 439
WinBroadcastMsg, 8
WinCatch, 463
WinCreateAtomTable, 446
WinCreateHeap, 435
WinCreateMsgQueue, 10
WinDefWindowProc, 9
WinDeleteAtom, 450
WinDestroyAtomTable, 447
WinDestroyHeap, 438
WinDestroyMsgQueue, 10
WinDispatchMsg, 14
WinEnablePhyslnput, 42
WinFindAtom, 449
WinFreeErrorlnfo, 461
WinFreeMem, 442
WinGetCapture, 31
WinGetErrorlnfo, 459
WinGetFocus, 26
WinGetKeyState, 28
WinGetLastError, 458
WinGetMsg, 10
WinGetPhysKeyState, 42
WinGetQueueStatus, 15
WinGetTempDrive, 456
WinGetTempFileName, 456
Winlnitialize, 429
WinlnSendMsg, 9
WinLockHeap, 443
WinOpenFile, 454
WinPeekMsg, 12
WinPostMsg, 13
WinPostQueueMsg, 14
WinQueryAtomLength, 452
WinQueryAtomName, 451
WinQueryAtomUsage, 453
WinQueryMsgPos, 12
WinQueryMsgTime, 13
WinQueryVersion, 464
WinReallocMem, 440
WinReportError, 464
WinSendMsg, 7
WinSetCapture, 31
WinSetFocus, 26
WinSetKeyboardStateTable, 43
WinSetMsglnterest, 16_
WinShowTrackRect, 39
WinStartTimer, 44
WinStopTimer, 45
WinTerminate, 430
WinThrow, 463

WinTimeoutSendl\fsg, 8
WinTrackRect, 36
WinUnlockHeap, 443
WinWaitl\fsg, 12
WM_ BUTTONlDBLCLK message, 33,

34
WM_ BUTTONlDOWN message, 32
WM-BUTTONIUP message, 32, 33, 34
WM_ BUTTON2DOWN message, 33
WM_ BUTTON3DOWN message, 33
WM_ CANCELMODE message, 31
WM_ CHAR message, 24
WM_ IDTTEST message, 35
WM_ MOUSEMOVE message, 32
WM_ QUIT message, 430
WM_SEMn,40
WM_ SETFOCUS message, 27
WM_ TIMER message, 45

Index

47g

