Microsoft.
Operating
System /2

Windows Presentation Manager
Reference

Volume 2 |

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de-
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser’s personal use.

o Copyright Microsoft Corporation, 1987

Microsoft, the Microsoft logo, MS-DOS, and MS are registered trademarks of
Microsoft Corporation.

Document Number 07-01-87-002
Part Number 00249

Contents

10

11

12

13

14

Input Functions 1

Device Contexts 47

Graphics Programming Interface 71

Metafile Support 327
Advanced Vio Interface = 347
Standard Application Support
Spooler Interface 373
Printing Interface 409
General Functions 427

Multi-Process and
Multi-Thread Applications

365

467

iii

Figures

Figure 5.1
Figure 5.2
Figure 7.1
Figure 11.1
Figure 12.1

iv

Right-handed Button Arrangement 30
Left-handed Button Arrangement 30
Presentation Manager Pipeline 149
Spooler Logical Data Flow 376
PicPrint Paper Panel 422

Preface

The Microsoft Operating System/2 Windows Presentation Manager Refer-
ence, Volumes 1, 2, and 3, is derived from the latest draft of the functional
specification of the Windows Presentation Manager. Although this docu-
mentation does not represent the final Windows Presentation Manager
specification, it does provide a reasonable preview of the functionality you
can expect from the final product.

This documentation is preliminary in nature. The application program
interface and other features of the Windows Presentation Manager
described in this document are subject to change. It is strongly recom-
mended that the documentation be read for informational purposes only.

Chapter 5
Input Functions

5.1 Input functions 3

5.1.1 Message Manager Architecture 3
5.1.1.1 Mouse and Keyboard Input 4
5.1.1.2 Synchronized Input 4

5.1.1.3 Input caveats 6

0.1.2 Message manager functions 7
5.1.2.1 Data structures 7

5.1.2.2 Functions 7

5.1.2.3 WinDefWindowProc default behaviors
5.1.2.4 Keyboard Input messages 18
5.1.2.5 Keyboard functions 26

5.1.2.6 Mouse Input 28 :
5.1.2.7 Mouse Capture functions 30
5.1.2.8 Mouse Tracking functions. 36
5.1.2.9 WM_SEMN MESSAGES. 40
5.1.2.10 Low level input functions = 42
5.1.3 Window Timers 43

5.1.3.1 Window Timer Architecture 43
5.1.3.2 Timer Routines 44

5.1.3.3 Timer Messages 45

18

Input Functions

5.1 Input functions

5.1.1 Message Manager Architecture

Every window in the system has a procedure associated with it called the
Window Procedure. Communication with windows is done with "window
messages”, which are sent to the window proc of a window.

The arguments to the window proc make up a window message. There are
four parts to a window msg, which correspond to the 4 arguments of a
window procedure:

HWND hwnd
UINT msg
ULONG 1Paraml
ULONG 1lParam2

Handle of window receiving the message

msg ID identifying the message

ULONG parameter (content depends on message ID)
ULONG parameter (content depends on message ID)

A window message also has a ULONG return value.

The message ID defines the message. The contents of IParaml and
IParam2, and whether or not a return value is required, depend on the
semantics of the message as defined by the message ID.

The names of the predefined message IDs begin with "WM_". There are
two ways that you can define your own messages: you can either use an
integer constant within a certain range, or you can use the atom manager
functions to define a window message whose value is unique across all win-
dows in the system. The atom manager need only be used when the same
message must be understood by more than one application. For sending
private messages within an application, you can use any integer constant
in the range WM_USER to 0x7fff. Values 0x8000 thru Oxbfff are reserved
for use by the system.

The IParam?2 parameter often contains more than one piece of informa-
tion. For example, the high-order word may contain an x coordinate, and
the low-order word a y coordinate. The HIUINT() and LOUINTY() utility
macros can be used to extract the high- and low-order words of [Param2.
The HIUCHAR() and LOUCHAR() utility macros can also be used with
HIUINT() and LOUINTY() to access any of the bytes. Casting can also be
used.

An application may send window messages to any window in the system.
If the message is being sent to a window owned by the current thread,
then the window proc is called as a subroutine, which is very fast. If the
message is being sent to a window of another application or thread,
Presentation Manager essentially switches to the appropriate
process/thread context and then calls the window procedure. The message
1s not placed in a queue.

Windows Presentation Manager Reference

Application threads can control whether or not messages may be received
from another thread. Inter-app messages may be received by an thread
only in the following circumstances:

* When WinGetMsg, WinPeekMsg, or WinWaitMsg is called

* When sending a message to another app

* When calling a certain set of Presentation Manager routines
(such as those that implicitly send messages to other apps)

Note: In order to send messages to a window of another thread, the send-
ing thread MUST have allocated a queue.

5.1.1.1 Mouse and Keyboard Input

Presentation Manager supports user input from both the keyboard or a
mouse pointer. A one, two, or three button mouse is supported.

Mouse input is normally directed at the window underneath the mouse
cursor. However, an application may direct all mouse input to a particu-
lar window (regardless of whether the mouse cursor is in the window) by
setting the mouse capture window.

Keyboard input is directed at the keyboard focus. Only one window in the
system may be the keyboard focus.

5.1.1.2 Synchronized Input

In Presentation Manager, an input event may not be processed until all
previous input has been processed. This is because the destination of an
input event, i.e., which application and window the input is intended for,
cannot be known until all preceding input has been processed.

For example: A user wants to type a command in one window, use the
mouse to activate another window by clicking in it, and then type a com-
mand in that window. The routing of the second command to the second
window depends on what happens as a result of the processing of the
mouse click. Since an application process the mouse click, it may or may
not choose to activate the window.

To see how this all works, it’s useful to understand how input events are
handled and routed by the system:

Input Functions

ommmm e +
| Keyboard & |
| Mouse Input |
e +
1
1
|
1
v
o +

Input Router

| !
1 |
H ! Window Timer,
! (Keyboard Focus !
I 1
i i
1 1

Window Repaint,

Mouse Capture) WinPostMsg () Input

e e + B ittt +
! ! i i |
1 1 I 1 1
1 1 [i i
1 1 1 I i
1 1 i i 1
Frm e ————— + Frmm e ——— + : ! }
: : ! : :
| O)i (-=mme + : !
P ! i i
Lo #emmmomonoo- I + :
[1 i 1
L | | '
i i et +
| 1 1 [
I 1 1 J 1
v Vv vV V v Vv
o - + B + Fmmmmm e +
| App Queue | | App Queue | | App Queue |
Hrmmmm e ——— + e + o +
1 1 1
] I 1
] I 1
| I 1
I v \' v
+i ——————————— + [P + Fmmmm e +
i\ Appl | | App 2 | | App 3 |
Fmmm———————— + Hmmm + tmm—————— +

queue with WinGetMsg() or WmPeekMsg(in the form of a QMSG data
structure, one message at a time. A QMSG structure contains a window
message, which includes the window handle that the input message is
intended for.

From an application’s point of view, all 1n2ut is read from the application

Before being posted to a particular application queue, all input is first
placed in a single queue, called the System Queue. The System Queue is
quite large; it’s large enough to store 60 or so keypresses and mouse clicks.
Only raw, untranslated keyboard input is placed in the system queue.

When an application calls WinGetMsg() or WinPeekMsg(), the next avail-
able message in the application queue is read and returned to the applica-
tion. If there are no messages in the application queue, the system queue
is checked for any available input. If an input message is available in the
system queue, then the Input Router determines which window and

‘Windows Presentation Manager Reference

application the input is destined for. Keyboard messages are posted to the
application queue associated with the keyboard focus window. Mouse
messages are posted to the queue associated with the mouse capture win-
dow or to the window underneath the mouse cursor.

The message is then read out of the queue, and returned to the applica-
tion.

All of the above processing (except for posting input to the system queue)
is performed by WinGetMsg() or WinPeekMsg(). If, during the input rout-
ing process, it is determined that the next input event is not intended for
the current thread, WinGetMsg() will suspend the current thread, Win-
PeekMsg() will return FALSE, and the message will be made available to
the destination application.

An application may not examine messages in the system queue until the
previous message has been processed. A message has not been processed
until the application that read the previous message finishes processing the
n}essage and calls WinGetMsg() or WinPeekMsg() again for the next item
of input.

Notice that in the diagram above, other queued messages such as timers,
WM_PAINT messages, and messages directly posted with PostMsg() are
not placed in the system queue. These messages are thus not synchronized

between applications: for instance, two applications may process a
WM_TIMER message at the same time.

5.1.1.3 Input caveats

Mouse button or key down transitions are not placed in the system queue
if there is no room for the subsequent up transition. This ensures that
applications depending on the state of keys or mouse buttons always accu-
rately reflect the state of the hardware.

WM_MOUSEMOVE messages are handled in a special way: they are not
actually queued to prevent overflowing the queue. They are coalesced so
that applications receive WM_MOUSEMOVE messages only as fast as
they can process them

Autorepeated WM_ CHAR keydown messages are coalesced: Consecutive
messages are coalesced into a single message, with a repeat count that
reflects the number of keydown messages that occured. In this way, appli-
cations do not receive these messages faster than they can be processed.

The WinGetMsg() or WinPeekMsg() filter parameters can be used to selec-
tively examine mouse or keyboard input. This also allows keyboard and
mouse input to be processed in a different order than it occured.

Input Functions

Messages are not processed until the app processing the previous message
calls WmGetMsg(s) or WinPeekMsg() again.

5.1.2 Message manager functions

5.1.2.1 Data structures
Queue message structure:

typedef struct {
HWND hwnd;
UINT msg:
ULONG 1lParaml;
ULONG 1Param2:
ULONG time;
POINT pt;

} QMSG:

Message queue handle:

typedef HANDLE HMQ:

5.1.2.2 Functions

WinSendMsg

Format
ULONG WinSendMsg(hwnd, msg, 1lParaml, lParam2)
HWND hwnd;
UINT message:
ULONG 1lParaml;
ULONG 1Param2:

Description

This function sends a message to a window. The
four parameters, hwnd, msg, |Paraml1, and
IParam2 comprise the message being sent. These
parameters are passed to the window procedure of
the receiving window. The return value is the long
value returned by the receiving window’s window
proc.

Notes ~ WinSendMsg does not return until the message has
been processed. If the window receiving the mes-
sage belongs to the same thread, the window func-
tion is called immediately, as a subroutine. If the
window is of another thread or process,

Windows Presentation Manager Reference

Presentation Manager switches to the appropriate
thread and calls the appropriate window function,
passing the message to the window function. The
message is not placed in the destination thread’s
queue.

WinTimeoutSendMsg

Format

BOOL WinTimoutSendMsg(hwnd, msg, 1lParaml, lParam2,
lplResult, dtTimeout)

HWND hwnd;

UINT message:

ULONG 1Paraml;

ULONG lParam2;

ULONG FAR *lplResult;

ULONG dtTimeout;

Description
Same as WinSendMsg, except that Win-
TimeoutSendMsg is used when sending inter-
thread messages. WinTimeoutSendMsg waits up to
dtTimeout milliseconds for the receiving thread to
reply to the message; if a timeout occurs before the
message 1is replied to, WinTimeoutSendMsg returns
FALSE and *lplResult is set to OL. If no timeout
occurs, then WinTimeOutSendMsg returns TRUE,
and the message return value is returned in
xIplResult.

WinBroadcastMsg

Format

BOOL WinBroadcastMsg(hwnd, msg, lParaml, lParam2,
fSend)

HWND hwnd:

UINT message:

ULONG 1Paraml:

ULONG 1Param2:

BOOL fSend

Description
This function sends or posts a message to all top
level windows in the system. The hwnd, msg,
IParam1, and IParam?2 parameters make up the
message sent or posted. The message 1s sent if
fSend 1s TRUE, posted if FALSE. Returns TRUE
if all windows were successfully sent or posted to,

FALSE otherwise.

Input Functions

See "WinPostMsg"

WinDefWindowProc

Format

ULONG WinDefWindowProc (hwnd, msg, lParaml,
1Param2)

HWND hwnd;

UINT message:;

ULONG 1Paraml;

ULONG 1lParam2;

Description

This function provides default processing for any
window messages that a given application chooses
not to process. WinDefWindowProc is generally
called in the default case of the window message
switch statement, with the parameters passed to
the window procedure.

The table below describes the default behavior of
messages handled by WinDefWindowProc().

WinlnSendMsg

Format

BOOL WinInSendMsg (hab)
HAB hab:

Description

Notes

This function is used to determine whether or not
the current thread is processing a message sent by
another thread, and if so, whether or not the mes-
sage was initiated by the activate thread or not.
The "active thread" is the thread associated with
the current active window.

Returns TRUE if the current thread is processing a
message sent by another thread, FALSE otherwise.

See also the WinlsThreadActive function.

WinInSendMsg typically is used by applications to
determine how to proceed with errors when the
window that is processing the message is not the
active window. For example, if the active window
uses WinSendMsg to send a request for informa-
tion to another window, the other window cannot
become active until it returns control from the
WinSendMsg call. The only method an inactive

Windows Presentation Manager Reference

window has to inform the user of an error is to
create a message box.

WinCreateMsgQueue

Format

HMQ WinCreateMsgQueue (hab, cMsgs)
HAB hab:
INT cMsgs:

Description

Creates a thread queue for a thread with cMsgs
entries. Returns a queue handle if successful,
NULL otherwise. If cMsgs is 0, then the default
queue size is assumed.

Notes In order to use most Presentation Manager func-
tions, you must call WinCreateMsgQueue.
WinDestroyMsgQueue
Format
BOOL WinDestroyMsgQueue (hmq)
HMQ hng:;
Description
Destroys the specified thread queue. Returns
TRUE if successful, FALSE otherwise.
Notes ~ WinDestroyMsgQueue() must be called before kil-
ling a thread or terminating an application.
WinGetMsg
Format
BOOL WinGetMsg(hab, lpQmsg, hwndFilter, msgFilterFi
msgFilterLast) ;
HAB hab:
LPOMSG 1pQmsg:
HWND hwndFilter:
UINT msgFilterFirst, msgFilterlast;
Description

10

WinGetMsg() get a queue message from the thread
queue and returns the message in *lpQmsg.
WinGetMsg() does not return until a message is
available.

WinGetMsg() returns FALSE if a WM_ QUIT

Notes.

Input Functions

message is returned, TRUE otherwise. The return
value of WinGetMsg() is generally used to deter-
mine when to terminate the application’s main
loop and exit the program.

Normally, WinGetMsg() is called with hwndFilter
== NULL and msgFilterFirst and msgFilterLast

= 0. In this case, all messages associated with
the current queue are returned, in the order that
they were posted. Msgs for windows of other
queues are never returned.

If hwndFilter is not NULL, only messages intended
for hwndFilter or its children are returned.

If msgFilterFirst and msgFilterLast are non-zero,
only messages whose IDs fall in between msgFilter-
First and msgFilterLast are returned. If msgFilter-
First is greater than msgFilterLast, all messages
except those that fall between msgFilterLast and
msglilterFirst are returned.

By using filtering, messages may be processed in a
different order than exist in the queue. Messages
that do not match the filter are left in the queue.
Filtering is typically used for rearranging the
priority of messages by filtering first for higher
priority messages followed by lower priority mes-
sages, and in situations where it is inconvenient to
deal with certain messages. For example, when a
mouse down message is received, filtering can be
used to wait for the mouse up message without
having to worry about recieving other messages.

You must be careful when using filtering with
WinGetMsg() to ensure that the message filter will
be eventually satisfied so WinGetMsg() will return.
For example, calling WinGetMsg() with msgFilter-
Min and msgFilterMax equal to CHAR and
with hwndFilter set to a window handle that does
not have the input focus will prevent WinGetMsg()
from returning.

Note that WinGetMsg calls WinTranslateAccel()
for keyboard keystrokes. Thus any keystrokes
which are used as accelerator keys get translated
into WM_ COMMAND or WM_SYSCOMMAND
messages before WinGetMsg returns and are never
seen by the application. See the section on Com-
mand Key Accelerators for more information.

11

Windows Presentation Manager Reference

WinPeekMsg
Format
BOOL WinPeekMsg (hab, lpQmsg, hwndFilter,
msgFilterFirst, msgFilterlLast, rgf):
HAB hab:
LPQMSG 1pQmsg:
HWND hwndFilter:
UINT msgFilterFirst, msgFilterLast;
UINT rgf:
Description
WmPeekMsg(%\/I: identical to WinGetMsg() except
that WinPeekMsg() returns TRUE if a message
was returned, FALSE if none were available. The
rgf parameter controls whether the returned mes-
sage is removed from the queue. This parameter is
specified with a combination of the following flags
ORed together:
WinPeekMsg() Flags
PM_REMOVE
Remove message from queue
PM_NOREMOVE
Leave message in queue
The message filter parameters (hwndFilter, msgFil-
terFirst, ms FllterLast) are the same as for
WinGetMsg
WinWaitMsg
Format
void WinWaitMsg(hab, msgFilterFirst, msgFilterLast)
UINT msgFilterFirst, msgFilterLast:
Description
This function is called to wait until another mes-
sage fitting the specified filter parameters is posted
to the current message queue.
WinQueryMsgPos
Format

12

void WinQueryMsgPos (hab, lppt)
HAB hab;

Input Functions

LPPOINT lppt:

Description
This function returns the mouse position, in screen
coordinates, when when the last message obtained
from the current message queue was posted. The
mouse position is the same as that in the pt field of
the QMSG structure.

Notes To obtain the current position of the mouse cursor
instead of the position when the last message
occurred, use the WinQueryCursorPos() function.

WinQueryMsgTime

Format

ULONG WinQueryMsgTime (hab)
HAB hab:

Description
This function returns the message time for the last
message retrieved by WinGetMsg() or Win-
PeekMsg() from the current message queue. The
message time is the time in milliseconds when the
message was posted. The time value is the same as
that in the time field of the QMSG structure.

Notes You cannot assume that time values are always
increasing. Since the time value is the number of
milliseconds since the system was booted, it is pos-
sible that the value may wrap around to start
again at zero. To accurately calculate time delays
between messages, subtract the time of the second
message from the time of the first.

WinPostMsg

Format

BOOL WinPostMsg(hab, hwnd, msg, lParaml, 1lParam2)
HWND hwnd;

UINT msg;

ULONG 1Paraml:

ULONG 1Param2:

HAB hab:

Description . .
This function posts a message in a window’s
thread queue. Returns TRUE if successful, FALSE

if the queue was full or otherwise unsuccessful.

13

‘Windows Presentation Manager Reference

The four parameters are placed into the queue as
part of a QMSG structure. The QMSG time and
pt fields are derived from the system time and

mouse position at the time WinPostMsg was
called.

This function can be used to post messages to any
window in the system. The message is posted into
the queue associated with the specified window.

If hwnd is NULL, the message is posted into
current message queue. When the message is
obtained by WinGetMsg() or WinPeekMsg(), the
hwnd field will be NULL.

WinPostQueueMsg
Format
BOOL WinPostQueueMsg(hmqg, msg, l1Paraml, lParam2)
HMQ hmqg:
UINT msg:;

ULONG 1Paraml;
ULONG 1Param2:;

Description
This function posts a message to a message queue.
Returns TRUE if successful, FALSE if the queue
was full or otherwise unsuccessful.

The last three parameters are placed into the
queue as part of a QMSG structure. The QMSG
hwnd field is set to NULL, and the QMSG time and
pt fields are derived from the system time and
mouse position at the time WinPostMsg was
called.

This function can be used to post messages to any
queue in the system.

WinDispatchMsg
Format
ULONG WinDispatchMsg(hab, lpQmsg)
HAB hab:
LPQMSG 1pQmsg:
Description

This function dispatches the message pointed to by
lpQmsg on to the window procedure of the window
specified by IpQmsg- >hwnd. WinDispatchMsg() is

14

Input Functions

essentially equivalent to:

WinSendMsg (1pQmsg->hwnd,
lpQmsg->msg, lpQmsg->1Paraml,
1lpQmsg->1Param2) ;

Notes The other two fields of the QMSG structure, pt
and time, may be obtained by a window procedure
with the WinGetMsgPos() and WinGetMsgTime()
functions.

WinGetQueueStatus

Format

ULONG WinGetQueueStatus (hab)
HAB hab:

Description
This function returns a code indicating the status
of the message queue associated with the current
queue. The hi word of the return value contains
bits that indicate what kinds of messages are
currently in the queue. The lo word of the return
value contains bits that indicate what kinds of
messages have been added to the queue since the
last call to WinGetQueueStatus().

Each word of the return value contains a combina-
tion of the flags shown in the table below.

WinGetQueueState() Flags

QS—-CHAR
A WM_CHAR mesage is available.

QS_MOUSE
A WM_MOUSEMOVE or mouse button

transition message is available.

QS—-MOUSEMOVE
A WM_MOUSEMOVE message is avail-
able.

QS_TIMER
A WM_TIMER or WM_SYSTIMER

message is available.

QS-PAINT
A WM_PAINT message is available.

QS—-SEM1
A WM_SEMI message is available.

15

Windows Presentation Manager Reference

QS-SEM2
A WM_SEM2 message is available.

QS—-SEM3
A WM_SEMS3 message is available.

QS_SEM4
A WM_SEM4 message is available.

QS_POSTMSG
A posted message other than those listed
above is available.

QS—SENDMSG
A message has been sent by another
application to a window associated with
the current queue. In order to receive
the message, WinGetMsg() or Win-
PeekMsg() should be called.

The low word of the return value (status since last
time WinGetQueueMsg() called) will not contain
QS_ bits that do not also exist in the hi word. In
other words, if there are no messages in the queue,
the low word of the return value is 0.

Note This function is very fast. It is typically used
inside loops to determine whether WinGetMsg() or
WinPeekMsg() should be called to process input.

WinSetMsglnterest

Format

VOID WinSetMsglInterest (hWnd, msg_class, control)
HWND hWnd;

UINT msg_class:;

INT control;

Description

WinSetMsglnterest is used by an application to
indicate the messages that the window hwnd wants
to process. It also indicates that any other mes-
sages sent to the window will be processed by the
application in a default manner. This means that
the application will route all

msg— class specifies either a single message ID (e.g.
WM_SHOW) or the ID of a Group of messages. A
message group is a logical combination of a
number of message IDs which can be used to facili-
tate bulk enablement/disablement of messages.
Group IDs are as follows:

16

Input Functions

Message Group IDs.
SMI_ ALL

All messages are included in this group.

TBD many other groupings of messages are
yet to be identified.

The Control parameter indicates whether the
application is interested or not interested in receiv-
ing the specified messages, by setting the following
values:

SMI_INTEREST
indicates interest in the messages.

SMI_ NOINTEREST

indicates not interested in the messages.

The default state after window creation is deter-
mined by the options setting used for the Winlni-
tialise call. For Presentation Manager, the default
is as if interest in all messages had been notified to
the system. Thus all messages will be sent to the
application for either processing or passing to the
default window procedure.

Note that in fact, Presentation Manager treats this
call as a NO-OP. All messages are always given to
the application. However, other systems imple-
menting this function will make use of this func-
tion to offer potential performance gains and so
portable applications should use this function.

Each use of the function is then incremental - i.e.
the call adds to or subtracts from the previous set
of messages.

For example, the call

WinSetMsgInterest (hwnd, SMI_ALL, SMI_INTEREST)

gives the application total control of all the mes-
sages which the system generates.

Indicating which messages the application intends
to process itself offers the system the opportunity
to optimise processing of those messages which the
application 1s not going to process directly.

Note however, that if an application is to be
ported between different systems, it must not
depend upon the receipt of messages not supported
by one of the systems. Conversely, the application

17

‘Windows Presentation Manager Reference

should expect that any system has the potential to
generate messages not present on other systems. It
is important that the application pass on any such
messages to the default window procedure. It is
guaranteed that the default processing of such
messages will be acceptable in terms of User Inter-
face Standards on all systems.

5.1.2.3 WinDefWindowProc default behaviors

Below is a list of the messages processed by WinDefWindowProc() and the
default actions taken.

MsgID Action taken by WinDefWindowProc()

WM_SETWINDOWPARAMS
Sets caption text, if text is specified.

WM_GETWINDOWPARAMS
Gets caption text, if text is specified.

WM_ CANCELMODE

Cancels any internal mode loop (scrolling, size/ move track-
ing, etc)

WM_PAINT
Calls WinBeginPaint/EndPaint

WM_ QUERYENDSESSION
Returns TRUE

WM_SYSCOMMAND

Standard processing of system commands (size/move track-
ing, etc)

WM_ACTIVATE

If activating, sets focus to hwnd.
WM_ SHOWWINDOW
WM_DOSUSPEND

5.1.2.4 Keyboard Input messages

18

Input Functions

5.1.2.4.1 Keyboard input

Keyboard input is obtained in the form of messages received via
WinGetMsg.

A WM_ CHAR message is delivered for each keydown and keyup for all
keys on the keyboard. Translation of the scan code received from the key-
board is done by the WinGetMsg call that receives the keystroke.

WinGetMsg does not send a message for every typamatic repeat from the
keyboard; it may buffer typamatic repeats into one or more messages. nt
Each message contains a count, which is the number of typamatic repeats
that have occurred since the first keydown, or since the last wingetmsg
call. This count will begin at one for the first keydown.

Keyboard data along with mouse data is buffered asynchronously into the
Presentation Manager system queue. Keyboard data is removed from the
system queue w hen the application that owns the input focus calls
WinGetMsg or WinPeekMsg. Only one keyboard event is dequeued at a
time.

Translation occurs when the event is dequeued. The message obtained
from WinGetMsg contains three separate fields that represent the key
pressed: the hardware dependent scan code, the virtual key code and the
codepoint or dead key. These are discussed below:

e The virtual key (VKEY) concept is that there should be a virtual
key code for each "word" (eg esc or F1) on the keytops of the key-
board. Consistency requires that most applications should use the
PC set of virtual keys built in to Presentation Manager, but appli-
cations with special requirements can define their own virtual key
sets. An example of valid use of this capability is mainframe appli-
cations accessed via a terminal emulator. These use words such as
clear, PA1, etc in contrast to PC applications which use esc, home
ete.

e The code point (CKEY) concept is that there should be a code
point value for every key on the keyboard with a symbol on it.
The code points can be either ASCII or EBCDIC and are country
dependent. Effectively, each code point corresponds to a unique
"glyph" that can appear on the screen.

e Some keys with words on them (eg Enter) generate both a virtual
key value and a code point. This is because the key does need to
be treated as a function key in some applications, but also has a
defined ASCII code point associated with it which some applica-
tions may prefer to use.

e For CKEY values that correspond to dead keys (e.g. umlaut)
WinGetMsg will identify these CKEYs with a special flag in the
WM_ CHAR message. It is the application’s responsibility to echo
the dead key in the appropriate manner (i.e. without advancing the

19

Windows Presentation Manager Reference

cursor). If the next CKEY after the dead key is a valid dead key
combination, then another flag will be set in the WM_ CHAR mes-
sage to identify the composite character. Again it is the
application’s responsibility to echo the character appropriately.
There are three situations the application must deal with:

— valid dead key combination should replace the dead key display
with the new composite character

— invalid dead key combination Sexcept the space character)
should leave the dead key displayed, advance the cursor and

display the new CKEY, followed by a beep.

— dead key followed by a space should leave the dead key
displayed and advance the cursor.

The valid set of dead keys and their combinations with other keys
is defined for each supported code page.

5.1.2.4.2 Keystroke Translation

Presentation Manager keystroke translation provides full flexibility in
remapping, support of country specific keyboard layouts, and support of
EBCDIC and ASCII code pages. This is achieved by the use of three types
of table which are described below:

20

The key to VKEY table (VKeyXLateTbl). This table generates vir-
tual key codes based on the key pressed and the shift state.
Presentation Manager supplies a two tables of this type covering
the PC VKEY set for the two physically different keyboards. These
tables cover all languages and keyboard layouts.

The key to Universal Glyph List UGL? table(GlyphXLateTbl).
(The UGL is a list of all (non-DBCS) glyphs that can be generated
by a Presentation Manager application using standard Presenta-
tion Manager facilities. All glyphs for all supported languages, plus
the APL glyphs, are included in the UGL.) The key to UGL table is
always used in conjunction with the UGL to CKEY table described
below. It is uniquely defined by the layout of the keytops. Presen-
tation Manager supplies tables of this type corresponding to all
supported keyboards.

- The UGL to CKEY table (CharXLateTbl). This table is used in
conjunction with the previous one. Presentation Managersupplies
a table of this type for each supported code page. Also included in
this table is the dead key table, which defines the valid dead keys
for each code page and the valid dead key combinations.

Input Functions

5.1.2.4.8 API Calls

The API calls allow the application to control the translation process that
generates the virtual key and character code values that are in the

WM_ CHAR message. The translation process consists of the following
steps:

e Apply scan code/keyboard state to VKeyXLateTbhl. Result is a vir-
tual key.

e Apply scan code/keyboard state to GlyphXLateTbl. Result is a
glyph code.

e Apply the glyph code to CharXLateTbl. Result is a character code,
with appropriate dead key bits set.

The Presentation Manager keyboard driver is a dynlink library, that con-
tains all of the system provided versions of the above tables as resource
segments. There are three API calls for accessing these tables, as well as
translation tables defined as resources in the application’s executable
image:

WinLoadVKeyXLateTbl (idModule, keyboard) => hXLate
WinLoadGlyphXlLateTbl (idModule, keyboard, country) => hXLate
WinLoadCharXLateTbl (idModule, codepage) => hXLate

where all three return a handle to a translation table, whose format is
defined below. The idModule parameter, returned by the DOS DosLoad-
Module call, is either -1 for accessing the tales in the Presentation
Manager keyboard driver, O for accessing tables in the application’s exe-
cutable image or a module handle of some other dynlink module.

In order to allow an application to dynamically create a translation table
in memory at runtime, another API call is provided that takes a far
pointer to a translation table in memory and returns a translation table
handle that can be used in the remaining API calls.

WinCreateXLateTbl (hab, 1lpXLateTbl) => hXLate

along with the following API call to destroy the handle created with Win-
CreateXLateTbl:

WinDestroyXLateTbl (hXLate)
Associated with each message queue are handles for the three translation
tables needed by the translation process. The following API calls allow an

application to override any or all of these translation tables.

WinSetVKeyXLateTbl (hab, hXLate) => hOldVKeyXLate
WinSetGlyphXLateTbl (hab, hXLate) => hOldGlyphXLate
WinSetCharXLateTbl (hab, hXLate) => hOldCharXLate

21

Windows Presentation Manager Reference

The WinGetMsg function will use these three translation table handles to
call the KeyTranslate function, which is a private API exported by the
Presentation Manager keyboard driver for use by the WinGetMsg func-
tion. This API looks like:

KeyTranslate(1lpMsg, scan, fBreak, hVKeyXLate,
hGlyphXLate, hCharXLate)

and will fill in the passed message structure with the appropriate informa-
tion. Internally the KeyTranslate function will maintain the current
up/down/toggle state of each scan code and any pending dead key. This
function assumes that it will see ALL key transitions.

5.1.2.4.4 PC Virtual Keys

Presentation Manager supplies as part of the toolkit INCLUDE files
defining the PC VKEY set.

The PC VKEY set is shown in the table below.

— VK_F1
— VK_F2
— VK_F3
— VK_F4
— VK_F5
— VK_F6
— VK_F7
— VK_F8
— VK_F9
— VK_F10
— VK_F11
— VK_F12
— VK_F13
— VK_F14
— VK_F15
— VK_F16
— VK_F17
— VK_F18

* * *

*

*

*

N N AN N AN AN S S
*x
N e N N N N N N

*

22

VK_F19
VK_F20
VK_F21
VK_F22
VK_F23
VK_F24

*

*

VK_PAI1 (+)
VK_PA2 (*)
VK_PA3 (+)

VK_ SHIFT (+)
VK_CONTROL (4
VK_ ALT (+)
VK_ALTGRAF (4) (¥)

VK_BACKSPACE (+)

VK_TAB (+)
VK_BACKTAB (+)
VK_ENTER

VK_ CLEAR (%)
VK_CAPSLOCK (+)
VK_NUMLOCK (+)

VK_SCRLOCK (+)
VK_ESCAPE (4

VK_UP (+)
VK_DOWN (+)
VK_LEFT (+)
VK_RIGHT (+)
VK_HOME (+)
VK_END (+

)
VK_PAGEUP (+)

Input Functions

23

Windows Presentation Manager Reference

— VK_PAGEDOWN (+4)

— VK_INSERT (+)

— VK_DELETE (4

— VK_PRINTSCREEN ()

— VK_COPYTOPRINTER (+)

— VK_BREAK (+)

— VK_SYSREQ (+)

— VK_HELP (+)

— VK_SELECTORLIGHTPENATTN (*)

— VK_BUTTONI1 (=)
— VK_BUTTON2 (=)
— VK_BUTTON3 (=)

Note that the keys marked with a * will not be generated by all key-
boards. Applications using them should provide an alternative.

Note that keys marked with = are never generated with WM_ CHAR mes-
sages, but can be used with WinQueryKeyState() to query the state of the
mouse buttons.

WM_CHAR
Format
WM_CHAR
LOUCHAR (LOUINT (1Paraml)) : UCHAR brgf:
HIUCHAR (LOUINT (1Paraml)): UCHAR scancode:
HIUINT (1Paraml) : UINT cRepeat:
LOUINT (1Param2) : UINT ch;
HIUINT (1Param2) : UINT vk;
Returns: BOOL fProcessed:
Description

The WM_ CHAR messages is posted as the result of keyboard events. ch
contains the character value Sfranslated according to.the current
codepage) resulting from the keyboard event. vk contains the virtual key
code, if there is one, otherwise 0. cRepeat contains the repeat count. scan-
code contains the hardware scancode for the key that was pressed.

The low order byte of IParam1 contains a combination of the values shown

below. The KC_ constants are defined as ULONG constants so they may
be ANDed directly with IParam1 to test the flags in brgf.

24

Input Functions

Code Meaning

KC_CHAR

The character value is valid. (Otherwise, the character field con-
tains 0.

KC_SCANCODE i
The scan code is valid. Otherwise, the scan code field contains
0. Generally, all WM_ CHAR messages generated from actual
user input have KC_SCANCODE set. However, if the message
was generated by an application that has issued the Win-
SetHook() function to filter keystrokes, or has been posted to the
application queue, this bit may not be set.

KC_VIRTUALKEY
The virtual key value is valid. Otherwise, the virtual key field
contains 0.

KC_KEYUP

The event was a key up transition. (Otherwise, it was a down
transition).

KC_PREVDOWN

The virtual key was previously down. (Otherwise, it was previ-
ously up.)

KC_DEADKEY
means that the char. code is a dead key. Application responsible

for displaying the glyph for the dead key without advancing the
CUrsor.

KC_COMPOSITE

means that the char. code was formed by combining the current
key with the previous dead key.

KC_INVALIDCOMP
means that the char. code was not a valid combination with the
preceeding dead key. Application responsible for advancing the
cursor past the dead key glyph and then if the current character
is NOT a space, beeping the speaker and displaying the new
char. code.

The application window procedure should return TRUE if it processes a
particular WM_ CHAR message, FALSE otherwise.

Notes Virtual keys are not defined for keys ’A’ - ’Z’, ’a’ - 'z’, ’0’ - ’9’, or
"special” keys. They are only defined for basic keys that w1ll probably be
country dependent.

25

Windows Presentation Manager Reference

5.1.2.5 Keyboard functions
WinGetFocus
Format
HWND WinGetFocus (hab, fLock)
HAB hab;
BOOL fLock;
Description
This function returns the focus window, or NULL
if there is no focus window. If fLock is TRUE, the
window is returned locked, otherwise it is returned
unlocked.
WinSetFocus
Format
HWND WinSetFocus (hab, hwnd)
HWND hwnd:
HAB hab:;
Description

26

This function sets the input focus to hwnd.
Returns the handle of the window that previously
had the focus, or NULL if no window had the
focus. If hwnd is NULL, then no window has the
input focus. Returns an unlocked window handle.
When WinSetFocus() is called, the following events
take place:

1. A WM_SETFOCUS message with fFocus ==
FALSE is sent to the current focus window,
unless it is NULL.

2. A WM_ACTIVATE message is sent with fAc-
tive == FALSE to the current active window,
unless it is NULL, or the active window is not
changing.

3. If a new application is being made the active
application, then a WM_ ACTIVATETHREAD
message with fActive == FALSE is sent to the
the current active application.

4. The new focus window, active window, and
active application are established.

Notes.

Input Functions

5. If a new application is being made the active
application, then a WM_ACTIVATETHREAD
message with fActive == TRUE is sent to the
the new active application.

6. The top level window associated with the new
focus window is sent a WM_ACTIVATE with
fActive == TRUE, and fSetFocus = FALSE,
but only if this window is different than the
current active window.

7. The new focus window is sent a
WM_SETFOCUS message.

During the processing of a WinSetFocus() call, if
WinGetActiveWindow or WinGetFocus() are
called, the old active and focus windows are
returned until the new ones have been established.
In other words, even though WM_SETFOCUS

(f alsez) and WM_ ACTIVATE(false) messages may
have been sent to the old windows, those old win-
dows are considered to be active and have the
focus (until the system establishes the new active
and focus windows).

If WinSetFocus() is called during WM_ACTIVATE
or WM_ACTIVATETHREAD message processing,
a WM_SETFOCUS message with ffocus ==
iIf‘ALSE is NOT sent, since no window has the

ocus.

WM_SETFOCUS

Format \

WM_SETFOCUS
1lParaml: HWND hwndFocus
lParam2: BOOL fFocus

Description

This message is sent by SetFocus() to the window
receiving or losing the input focus. hwndFocus is
the window that previously had the input focus,
which is NULL if no window previously had the
focus. If fFocus==FALSE, the window is losing
the focus, and hwndFocus is the window handle of

the window that will be receiving the input focus
(which may be NULL).

The WM_SETFOCUS message is sent before Set-
Focus() returns.

Except in the case of the WM_ ACTIVATE

27

‘Windows Presentation Manager Reference

message with fActive == TRUE, an application
processing WM_SETFOCUS, WM_ACTIVATE,
or WM_ ACTIVATETHREAD should not change
the focus window or active window. If it does,
focus and active window must be restored before
the application returns from processing the mes-
sage. For this reason, any dialog boxes or windows
brought up during WM_SETFOCUS,
WM_ACTIVATE or WM_ ACTIVATETHREAD

processing should be system modal.

WinGetKeyState

5.1.2.6

Format

INT WinGetKeyState (hab, vk)
HAB hab;
INT vk;

Description

Notes

The WinGetKeyState() function is used to deter-
mine whether a virtual key is up, down, or toggled.
vk may be one of the VK_ values shown in the
table above.

The 0x8000 bit is set (less than 0) if the key is
down, otherwise the key is up. If the 0x0001 bit is
set, then the key is toggled. A key is toggled if it
has been pressed an odd number of times since the
system was started. '

This function returns the state of the key at the
time that the last message obtained from the
queue was posted. See GetPhysKeyState().

WinGetKeyState() can be used to obtain the state
of the mouse buttons with the VK_BUTTONI,
VK_BUTTON2, and VK_BUTTONS virtual key
codes.

Mouse Input

There are two forms of mouse input: mouse button transitions and mouse
pointer movement. Three mouse buttons are supported. These are known
as mouse buttons 1, 2 and 3. Only button 1 is supported for a single-
button mouse, buttons 1 and 2 for a two-button mouse. Button double
clicks are supported as well: if a mouse button goes down within a certain
amount of time and within a certain screen area from the last time the
button went down, a doubleclick down message is posted.

28

Input Functions

The mouse buttons have virtual key codes assigned to them, though a
WM_ CHAR message is not posted when a transition occurs. These codes
are shown in the table below. As with other virtual keys, it is possible to
poll the state of any of the mouse buttons with the WinGetKeyState()
function, using the mouse button virtual keycodes.

The WM_MOUSEFIRST and WM_MOUSELAST constant values can be
used with WinGetMsg() and WinPeekMsg() to filter for all mouse input

only. These values do not imply the separate existence of messages
WM_MOUSEFIRST and WM_MOUSELAST!

5.1.2.6.1 Mouse Usage and Mouse Button Assignments

Presentation Manager recommends certain standardised usage of mouse
buttons and also provides support for mouse button assignment for left

and right handed users, as follows:
1. All programs should support use of a mouse.
2. Button assignments for mouse support are:
1. Button 1: Select button

2. Button 2 (if available): Application defined. If scroll lock is
implemented and button 2 1s available, scroll lock should be
assigned to button 2.

3. Button 3 (if available): Reserved for system use

3. On a two button device, simultaneous pressing of both emulates
button three

4. The user must be allowed the option of using a right- or left-
handed mouse.

1. Right-handed: Buttons numbered left-to-right as illustrated in
the following figure:

e il 4+ o meemmeem e mee e 4+ Hmmmmmmmemme e
===t ===t +--=+ ===t F=-—t - +-=-=+
| [| | (. | | | |
lr1 1271131 1] 1 2] g | 1] | 2|
| [1 | | || | | | | |
+---] +---] +---] +---] +---] +---] +--—]

B i] e ke] e itk
3-Button 2-Button 2-Button

29

Windows Presentation Manager Reference

Figure 5.1 Right-handed Button Arrangement

2. Left-handed: Buttons numbered right-to-left as illustrated in

5. The following button techniques are supported:
1.

3.

the following figure:

+-==F ==t o=t
| | |
|31 121 11]
| |1 1]
+===] #---] +---]
3-Button

I e
| I |
21 | 1]
| []
+---] +---]
2-Button

- +---+
| | |
| 2| | 1]
| | I |
*---1 +---]
2-Button

Figure 5.2 Left-handed Button Arrangement

"Press and release” on the same item or in the same space (e.g.

you can press and release in "white space”). An intervening
move off the item then back on while the button is held pressed
is OK. If the button is then released it is treated the same as
pressing and releasing while staying on the item.

Press and release is also called "clicking".

"Press and release twice”, which is accomplished by performing

a press and release within a prescribed (short) time period.

Press and release twice is also called "double clicking".

"Press and hold," where an action continues while the button is

held and ceases when the button is released.

" 6. On one button devices the functions available from buttons 2 and
3 are performed from the keyboard using their assigned keys.

5.1.2.7 Mouse Capture functions

Normally an application only gets mouse input when the mouse cursor is
over one of its windows. The mouse capture functions allow an application
to track the mouse and get all the mouse input no matter where the mouse
cursor goes. Applications for this are usually for dragging ’objects’ on the
screen, capturing the mouse once the mouse button goes down, releasing

once the

30

button goes up.

Input Functions

WinSetCapture

Format

HWND WinSetCapture (hab, hwnd)
HWND hwnd:
HAB hab:

Description

Notes

WinSetCapture() assigns the mouse capture to
hwnd. If hwnd 1s NULL, then the mouse capture is
released. Returns the window handle of the win-
dow that previously captured the mouse, or NULL
if no capture was set.

With the mouse capture set to a window, all mouse
input is directed to that window, regardless of
whether the mouse is over that window.

When WinSetCapture(hab, NULL) is called to
release the mouse capture, a WM_MOUSEMOVE
message is posted regardless of whether the mouse
pointer has actually moved. This is to ensure that
the window underneath the mouse at that time has
a chance to change the mouse cursor shape, etc.

V\{inSetCapture() returns an unlocked window han-
dle.

WM_ CANCELMODE

Format

WM_CANCELMODE
1Paraml:
1lParam2:
Returns:

Description

This message is sent when a dialog box or message
box is posted to the window with the mouse cap-
ture to terminate any modeloops that may be in
effect.

WinGetCapture

Format

HWND WinGetCapture (hab, fLock)
HAB hab:
BOOL fLock:

31

Windows Presentation Manager Reference

32

This function returns the window handle that has
the mouse capture. If fLock is TRUE, the window
handle returned is locked, and
WinUnlockWindow(hwnd) must be called at some
point. If fLock is FALSE, the window handle
returned is unlocked.

WM_MOUSEMOVE

Format

WM_MOUSEMOVE
LOUINT (1Paraml) : INT xMouse;:
HIUINT (1Paraml) : INT yMouse;

1Param2: UINT wHitTest:
Returns: BOOL fProcessed;
Description

The WM_MOUSEMOVE message is posted when
the mouse pointer moves. IParaml contains the
position of the mouse in window coordinates, rela-
tive to the bottom left corner of the window:
LOUINT(lParaml) has the X coordinate, and
HIUINT(IParam1) has the Y coordinate.

LOUI {‘lﬁ’aram2) contains the result of the
WM_HITTEST message, or 0 if a mouse capture is
currently in progress. The window proc should
return TRUE if it processes the message, FALSE
otherwise.

WM_BUTTON1DOWN

Format

WM_BUTTON1DOWN

LOUINT (1Paraml) : INT xMouse;
HIUINT (1Paraml): INT yMouse;
1Param2: UINT wHitTest:
Returns: BOOL fProcessed:;

WM_BUTTON1UP

Format

WM_BUTTON1UP

LOUINT (1Paraml) : INT xMouse:
HIUINT (1Paraml): INT yMouse:;
1Param2: UINT wHitTest:
Returns: BOOL fProcessed;

Input Functions

WM_BUTTON1DBLCLK
Format
WM_BUTTOND1BLCLK
LOUINT (1Paraml) : INT xMouse:
HIUINT (1Paraml) : INT yMouse;
1Param2: UINT wHitTest:;
Returns: BOOL fProcessed;
WM. BUTTON2DOWN
Format
WM_BUTTON2DOWN
LOUINT (1Paraml) : INT xMouse;
HIUINT (1Paraml) : INT yMouse;
lParam2: UINT wHitTest;
Returns: BOOL fProcessed:;
WM_BUTTON1UP
Format
WM_BUTTON1UP
LOUINT (1Paraml) : INT xMouse:
HIUINT (1Paraml) : INT yMouse:
1Param2: UINT wHitTest;
Returns: BOOL fProcessed:
WM_BUTTONI1DBLCLK
Format
WM_BUTTON1DBLCLK
LOUINT (1Paraml) : INT xMouse:
HIUINT (1Paraml) : INT yMouse:;
lParam2: UINT wHitTest:
Returns: BOOL fProcessed:;
WM_BUTTON3DOWN
Format
WM_BUTTON3DOWN
LOUINT (1Paraml) : INT xMouse;
HIUINT (1Paraml) : INT yMouse;
1Param2: UINT wHitTest:

33

Windows Presentation Manager Reference

34

Returns: BOOL fProcessed:
WM_BUTTON1UP
Format
WM_BUTTON1UP
LOUINT (1Paraml) : INT xMouse:
HIUINT (1Paraml) : INT yMouse:
1Param2: UINT wHitTest;
Returns: BOOL fProcessed;
WM_BUTTONI1DBLCLK
Format
WM_BUTTON1DBLCLK
LOUINT (1Paraml) : INT xMouse:
HIUINT (1Paraml): INT yMouse:
1Param2: UINT wHitTest:;
Returns: BOOL fProcessed;
Description

The mouse transition messages above are posted
when either of the three mouse buttons go up or
down. IParaml contains the position of the mouse
in window coordinates, relative to the top left
corner of the window: LOUINT(IParam1) has the X
coordinate, and HIUINT(IParam1) has the Y coor-
dinate. LOUINT(IParam2) contains the result of
the WM_HITTEST message, or 0 if a mouse cap-
ture is currently in progress. The window proc
should return TRUE if 1t processes the message,
FALSE otherwise.

Normally, WM_ BUTTON?UP and
WM_BUTTON?DOWN messages are posted when
mouse buttons go up or down. However, a
WM_BUTTON?DBLCLK message will be posted
in in place of a WM_ BUTTON?DOWN if the fol-
lowing conditions are met:

1. The button down occured within a certain
amount of time since the last button down
(typically 1/4 second).

2. Both button downs occured in the same win-
dow, and within a certain distance from each
other (typically an area roughly the size of two
characters).

Input Functions

WM_HITTEST
Format
WM_HITTEST
1Paraml: POINT ptMouse;
1Param2: OL
Returns: UINT wHitTest;
Description

This message is sent to a window by
WinGet/PeekMsg() when determining whether or
not the message is in fact destined for the window.
The application may return one of the following
values:

Value. Meaning

0: The message should be processed as nor-
mal: i.e., a WM_BUTTONx* or
WM_MOUSEMOVE message should be
posted to the window.

HT_TRANSPARENT:
The part of the window underneath the
mouse cursor is "transparent”; hit-
testing should continue on windows
underneath this window, as if this win-
dow did not exist.

HT_DISCARD:
The message should be discarded: no
message should be posted to the applica-
tion.

HT_ERROR:
Like HT_DISCARD, except that if the
message is a button down message , an
alarm will sound.

WinDefWindowProc() handles this message by
returning HT_ ERROR if the window is disabled,
and O otherwise.

Notice that it is the handling of this message
which determines whether or not a disabled win-
dow may process mouse clicks.

ptMouse is in window coordinates.

35

‘Windows Presentation Manager Reference

5.1.2.8 Mouse Tracking functions.

Functions are provided for tracking mouse movements with a rectangle on
the screen, as follows.

WinTrackRect
Format
BOOL WinTrackRect (hwnd, hps, 1lpti)
HWND hwnd:;
HPS hps:
TRACKINFO 1pti:;
Description

This is a general purpose mouse tracking routine.
WinTrackRectﬂ) draws a rectangle at a specified
location and allows the user to position the entire
rectangle or size a specific side or corner smaller or
larger. The resultant rectangle is then returned to
the application, which can use this new informa-
tion for size and position data. For example, the
window manager interface for moving and sizing
windows via the wide sizing borders simply calls

WinTrackRect().

WinTrackRect() allows the caller to control such
limiting values as:

e A maximum and minimum tracking size
e An absolute tracking position limits

e The tracking rectangle side widths
[]

A restriction of tracking rectangle movements
to a pre-defined positional grid.

WinTrackRect() is called with a long pointer that
points to a TRACKINFO structure:

typedef struct tagTRACKINEOC {
int cx:
int cy:
int cxCGrid:
int cyGrid:;
RECT rcTrack:
RECT rcBoundary:
POINT ptMinTrack:
POINT ptMaxTrack:
WORD rgf:

} TRACKINEO:

If the passed hps is NULL, hwnd is used to calcu-
late an hps for tracking (hwnd is assumed to be the

36

Input Functions

window the tracking is taking place in). Iptiis a
long pointer to a structure called TRACKINFO. In
this structure, rcTrack is the start rectangle. It is
modified as the rectangle is tracked, holding the
new tracking position on exit.

cx is the width of the left and right tracking sides,
cy is the height of the top and bottom tracking
sides. cxGrid and cyGrid define a positional grid
that all tracking movements will be bound to.
rcBoundary is an absolute bounding rectangle that
the tracking rectangle cannot extend completely
out of (there are two kinds of boundary detection
with rcBoundary, defined by the flag
TF_LIMITBOUNDARY).

ptMinTrack defines the minimum x and y tracking
sizes , and ptMaxTrack defines the maximum
tracking sizes. rgf is a bit array of tracking flags
specifying what tracking operation should take
place. TRUE is returned if tracking was success-
ful, FALSE returned if tracking is canceled, or if
the mouse was already captured when Win-
TrackRect() is called. Only one tracking rectangle
may be in use at one time.

If the passed hps is NULL, then the hps will calcu-
lated with the assumption that the window is not a
WS_ CLIPCHILDREN window. In other words,
when the drag rectangle appears, it will not be
clipped by any children within the window. If a
window is a WS_ CLIPCHILDREN window, and
the application wants the drag rectangle to be
clipped, it must explicitly pass an hps.

The tracking flags may be or’ed together. They
are:

TF-LEFT
Track the left side of the rectangle.

TF_-TOP
Track the top side of the rectangle.

TF-RIGHT
Track the right side of the rectangle.

TF-BOTTOM
Track the bottom side of the rectangle.

TF_-MOVE
Track all sides of the rectangle.

37

Windows Presentation Manager Reference

38

TF_KEYBOARD
Tracking starts with keyboard interface.

TF_GRID
Restrict tracking to a grid defined by
exGrid and cyGrid.

TF_STANDARD
¢x, cy, ¢xGrid, cyGrid are all multiples of
cxBorder and cyBorder.

TF_LIMITBOUNDARY
Make sure the tracking never extends
past rcBoundry. The defualt behavior is
to make sure a minimum part of the
tracking tracking rectangle is always
within rcBoundary. This minimum size is
defined by cx and cy.

If the TF_KEYBOARD flag is included, the mouse
pointer is positioned to the center of the tracking
rectangle. Otherwise the mouse pointer is not
moved from its current position. At this point
there is an established delta between the mouse
position and the part of the tracking rect it moves,
and this value is kept constant.

While moving or sizing with the keyboard inter-
face, the mouse pointer is repositioned along with
the tracking rectangle’s new size or position.

While tracking, these keys are active:

ENTER Accepts the new position or size.

LEFT Moves the mouse pointer and tracking
rectangle left.

UP Moves the mouse pointer and tracking
rectangle up.

RIGHT Moves the mouse pointer and tracking
rectangle right.

DOWN Moves the mouse pointer and tracking
rectangle down.

ESCAPE

Cancels the current tracking operation.

The mouse and the keyboard interface are inter-
mixable. The caller doesn’t have to include the
TF_KEYBOARD flag to be able to use the key-
board interface; this simply initializes the position
of the mouse pointer.

Notes

Input Functions

The tracking rectangle is usually logically "on top"
of objects it track s, so that the user can see the
old size and position while tracking the new.
Because of this, it is conceivable that a window
"below" the tracking rectangle can update while
part of the tracking rectangle is "above" it.

Since the tracking rectangle is drawn in exclusive-
or mode, no window may draw below the tracking
rectangle (and thereby obliterate it) without first
notifying the tracking code, because undesirable
chunks of tracking rectangle may be left behind. If
the window doing the drawing is clipped out from
the window the tracking is occuring in, there is no
problem.

To catch the general case where a window process-
ing a WM_PAINT message might draw over the
tracking rectangle, Windows treats the tracking
rectangle as a system wide resource. Only one may
be in use at any one time. If the currently updating
window has a chance of drawing on the tracking
rectangle, Windows will remove the tracking rec-
tangle while that window and its children update,
and then replace it. This is specifically done inside
of WinBeginPaint() / WinEndPaint(). If the track-
ing rectangle overlaps, it will be removed in Win-
BeginPaint(). In WinEndPaint() all children will be
updated via WinUpdateWindow() before the track-
ing rectangle is redrawn.

WinTrackRect(ihas a modal loop within its func-
tion. The loop has a WH_MSGFILTER hook and
hook code, MSGF_ TRACK. Refer to the Hook

documentation for an explanation of this hook
type.

There are several cases that windows update their images as a result of
some message other than a WM_PAINT. For this reason, an interface has
be en provided for application.use, to preserve the integrity of the tracking

rectangle image:

WinShowTrackRect

Format

INT WinShowTrackRect (hwnd, fShow)
HWND hwnd:
BOOL fShow:

39

Windows Presentation Manager Reference

Description

hwnd is the window handle passed in to Win-
TrackRec\%), the window the tracking is taking
place in. WinShowTrackRect() manages a show
count. When a hide request is made (fShow is
FALSE), this count is decremented. When a show
request 1s made (fShow is TRUE), this count is
incremented. When the count makes a transition
from O to -1, the rectangle is hidden. When the
count makes a transition from -1 to O, the rectan-
gle is shown.

If rectangle tracking, the application should call
this routine to hide the rectangle if there’s possi-
bility of corrupting the track rectangle while draw-
ing, showing it afterward. Since rcTrack in the
TRACKINFO structure is updating continously,
the application can examine the current tracking
rectangle coordinates to determine whether tem-
porary hiding is necessary .

The only case where an application needs to call
WinShowTrackRect is in the case of asynchronous
drawing. If an application is drawing on one
thread, and issuing WinTrackRect on another,
undesirable pieces of tracking rectangle may be left
behind. The drawing thread is therefore responsi-
ble for issuing WinShowTrackRect when tracking
may be in progress. The application should pro-
vide for communication between the two threads
to ensure that if the one thread is tracking the
drawing thread will issue WinShowTrackRect.
This could be done using a semaphore, for exam-
ple.

5.1.2.9 WM_SEMN MESSAGES.

WM_ SEMn messages are designed to facilitate the operation of applica-
tions that have other non Presentation Manager threads which:

1. Require to wait on external non Presentation Manager events

2. Require to signal the main Presentation Manager thread in the app

There are four semaphore messages.

WM_SEM1

1Paraml:
1Param2:
Returns:

40

ULONG lrgfAccumBits

Input Functions

WM_SEM2

1Paraml: ULONG 1rgfAccumBits
1Param2: OL

Returns: OL

WM_SEM3

1Paraml: ULONG lrgfAccumBits
1Param2: OL

Returns: OL

WM_SEM4

1Paraml: ULONG lrgfAccumBits
1Param2: OL

Returns: OL

The messages shown above are a special set of 4 messages that are similar
to standard messages except that if more than one is posted before
WinGetMsg() or WinPeekMsg() is called, the messages are coalesced into a
single message.

The value of the QMSG hwnd, pt, and time fields have the values that
correspond to the most recent posting. This means that the message is
always directed at the last window it was posted to. WinPostQueueMsg()
and WinBroadcastMsg() may also be used to post semaphore messages.

The values of all of the IParam1 fields of all semaphore messages posted
since the last call to WinGetMsg() or WinPeekMsg() are coalesced by
ORing them together. Thus there are 32 bits per semaphore message that
may be set individually by different postings, and are cleared only by a call
to WinGetMsg() or WinPeekMsg().

The semaphore messages are prioritized in relation to other types of mes-
sages as follows:

Highest: WM_SEM1
Any message in the queue not listed here
. WM_SEM2
WM_TIMER
WM_SEM3
WM_PAINT
Lowest: WM_SEM4

The value of IParam?2 is always OL.

Semaphore message that are sent via WinSendMsg() are sent exactly like
any other message.

The difference between the WM_SEM messages and user registered mes-
sages are the following:

41

Windows Presentation Manager Reference

1. WM_SEMn messages OR together bits, the others accumulate
messages in the queue

2. WM_SEMn messages have more control over priority
WM_SEMn messages will not overflow the queue

5.1.2.10 Low level input functions

The following functions aren’t typically used by applications. They are
typically used by computer-based-training programs, journalling pro-
grams, and other system-level applications.

42

WinGetPhysKeyState

Format

INT WinGetPhysKeyState (hab, vk)
HAB hab:
INT vk;

Description
WinGetPhysKeyState() returns information about
the asynchronous (interrupt level) state of the vir-
tual key indicated by vk.

The 0x8000 bit is set (less than 0) if the key is
down, clear if up. The 0x0001 bit is set if the key
has gone down since the last time WinGetPhys-
KeyState() was called, clear if not. This bit is
cleared by a call to WinGetPhysKeyState().

Notes This function returns the physical state of the key;
it is not synchronized to the processing of input.

See WinGetKeyState().
WinEnablePhysInput
Format
BOOL WinEnablePhysInput (hab, fEnableInput)
HAB hab;
BOOL fEnablelInput:;
Description

Used to disable queueing of hardware mouse and
keyboard events. If fEnablelnput is TRUE, mouse
and keyboard input are queued as usual. If fEna-
bleInput is FALSE, mouse and keyboard input are
disabled. Returns TRUE if input was previously
enabled, FALSE otherwise.

Input Functions

5.1.2.10.1 Keyboard State Table

The keyboard state table is a 256 byte table which defines the state of
each key the last time a key message a message obtained from the queue
was posted. It is indexed by virtual key value. For any virtual key, the
0x80 bit in the corresponding table entry is set if the key is down, O if the
key is up. The 0x01 bit is set if the key is toggled (pressed an odd number
of timesg, 0 otherwise.

typedef UCHAR KeyStateTable{256};

WinSetKeyboardStateTable

Format
void WinSetKeyboardStateTable (hab, lpKeyStateTable,
fSet)
HAB hab;
UCHAR far *lpKeyStateTable:
BOOL fSet:
Description

Used to get or set the keyboard state table. If fSet
is TRUE, sets the keyboard state to *lpbStateT-
able; if fSet is FALSE, copies the system keyboard
state to xIpbStateTable. This function does not
change the physical state the keyboard; it changes
the state returned by WinGetKeyState(), not
WinGetPhysKeyState().

Notes To set the state of a single key, first get the key-
board state, modify the returned state table, then
set the state using the modified tabel.

5.1.3 Window Timers

5.1.3.1 Window Timer Architecture

The window timer functions allow you to cause a message to be posted
automatically after a certain amount of time has elapsed.

A timer is identified by a window handle and an ID value. The ID value is
a word value specified by the programmer, unless the window handle was
specified as NULL. In this case, the ID value is a unique value calculated
automatically when the timer is created. Additionally, the timers created
by the caret routines and scroll bar routines are given the special ID values
of IDCARETTIMER and IDSCROLLBARTIMER respectively. Any win-
dows that may have carets or scroll bars in it must pass any WM_ TIMER
messages with these IDs to WinDefWindowProc().

43

‘Windows Presentation Manager Reference

A timer can be set to time out in anywhere from 1 to 65536 milliseconds.
A timeout value of 0 will cause timers to time out as fast as possible; gen-
erally, this is about 1/18th of a second.

When timers time out, a WM_TIMER message is posted to indicate that
the timer has gone off. A timer repeatedly posts WM_ TIMER messages
until it is stopped.

WM_TIMER messages are not actually placed in the message queue.
Instead, when WinGetMsg() or WinPeekMsg() is called and there are no
other messages in the queue, all started timers are examined to determine
if any have timed out. If so, a WM_TIMER message is returned.
WinGetMsg() and WinPeekMsg() check for available timer message before
checking for possible WM_PAINT messages.

Timer messages can never fill up a message queue.

2. Timer messages are produced only as often as WinGetMsg() or
WinPeekMsg() is called.

3. Timer messages have a lower priority than other queued messages.
4. Timer messages have a higher priority than WM_PAINT messages.
If more than one timer times out since the last time WinGetMsg() or Win-

PeekMsg() was called, the order that the timer messages are received is
indeterminate.

If the timer is not associated with a particular window (hwnd == NULL),
then WinGetMsg() and WinPeekMsg() will return a TIMER queue
message with hwnd == NULL.

There is a maximum number of timers that can be started in the system.

To determine the remaining number of timers that may be started, use the
WinGetSysValue() function.

5.1.3.2 Timer Routines

WinStartTimer

Format
UINT WinStartTimer (hab, hwnd, idTimer, dtTimeout)
HWND hwnd:
UINT idTimer:
UINT dtTimeout;
HAB hab;

Description

This function creates a timer identified by hwnd
and idTimer, set to go off every dtTimeout

44

Input Functions

milliseconds.

A dtTimeout value of 0 will cause the timer to

time out as fast as possible; generally, this is about
1/18th of a second.

When a timer times out, a WM_TIMER message is
posted.

If hwnd is not NULL, then WinStartTimer returns
1 (TRUE) if successful, 0 (FALSE) otherwise.

If hwnd is NULL, then the idTimer parameter is
ignored, and WinStartTimer returns a unique
non-zero ID value that identifies the timer. The
timer message is posted in the queue associated
with the current thread, with the hwnd field ==
NULL. Returns O if unsuccessful.

A second call to WinStartTimer() for a timer that
already exists will reset the existing timer.

WinStopTimer
Format
BOOL WinStopTimer (hwnd, idTimer)
HWND hwnd;
UINT idTimer:
HAB hab;
Description

This function stops the timer identified by hwnd
and idTimer. Returns TRUE if successful, FALSE
if the timer didn’t exist.

After WinStopTimer() is called, no further mes-
sages are received from the stopped timer, even if
it has gone off since the last call to WinGetMsg().

5.1.3.3 Timer Messages

WM_TIMER

Format

WM_TIMER

(LOUINT) 1Paraml: UINT idTimer
1lParam2: OL

Returns: OL

45

‘Windows Presentation Manager Reference

Description
This message is posted when the timer indicated
by idTimer times out. 1Paraml contains the ID of
the timer that timed out.

This message is always queued. WM_TIMER
messages are treated specially by WinGetMsg()
and WinPeekMsg() in a number of ways:

e Timers are processed only by calling
WinGetMsg() or WinPeekMsg().

e A timer posts only one WM_TIMER at a time.

¢ WM_TIMER messages have a lower priority
than other queued messages.

¢ WM_TIMER messages have a higher priority
than WM_PAINT messages.

46

Chapter 6
Device Contexts

6.1 Device Contexts 49
6.1.1 Device Context Functions

49

47

Device Contexts

6.1 Device Contexts

A Device Context is the means of writing data to an output device. It is
both the device driver, and the physical device (if any) itself.

There are four types of output device, as follows:

e Screen Device Context, used to write to a window on the screen.

e Memory Device Context, into which a bitmap may be selected to be
drawn into.

o Metafile Device Context, used to generated a metafile.

e Other device Device Context, used to communicate with a printer,
plotter, etc.

A variant on the last of the above types is an ’information’ Device Con-
text, used only for querying. A common use for this type of Device Context
is for querying information such as font metrics for a particular printer, in
order to mimic on the screen the spacing etc of the output data, as it
would appear on that printer.

Having created a Device Context, the application can associate it with a
presentation space. Drawing into this presentation space then causes out-
put to the associated Device Context.

In some cases, direct output to the Device Context is required, and the
DevEscape function is provided for this purpose.

6.1.1 Device Context Functions

DevOpenDC

HDC DevOpenDC (hab, type, token, length, data)
HAB hab:

LONG type:

LPSZ token:;

LONG length;

LPBUF data;

Creates an output Device Context of a specified type.

The data passed depends upon the type of Device Context
being created. It provides information such as the driver
name, and may also provide data with which the Device Con-
text is to be initialised.

Parameters:

49

‘Windows Presentation Manager Reference

50

hab
type

token

length

data

The anchor block handle

The type of Device Context to be created, as fol-
lows:

1- OD_DISPLAY

- The screen device.

2 - OD_- QUEUED
A device such as a printer or plotter, for
which output is to be queued by the
spooler.

5 - OD_DIRECT
A device such as a printer or plotter.
Output is not queued by the spooler.

6 - OD_INFO
As OD_DIRECT, but will only be used
to retrieve information (for example,
font metrics). Drawing can be performed
to a presentation space associated with
such a Device Context, but no output
medium will be updated.

7 - OD_METAFILE
The Device Context will be used to write
a metafile. The graphics field defines the
area of interest within the picture in the
metafile (see the section, “Transform
Functions” in the chapter, “Graphics
Programming Interface”).

8 - OD_MEMORY
A Device Context which will be used to
contain a bitmap.

A string which identifies device information, held
in the PRESSERV.INI file. This information is the
same as that which may be pointed to by data; any
that is obtained from data overrides the informa-
tion obtained by using token.

If token is specified as *"" then no device informa-
tion is taken from PRESSERV.INI. Presentation
Manager Release 1 will require *"" to be specified.

The length of data supplied. This may be shorter
than the full list if omitted items are irrelevant or
supplied from token or elsewhere.

A long pointer to a parameter block containing:-

struct DOPDATA
LPSZ driver_name:

Device Contexts

LPBUF driver_data;
LPSZ log_addr:

LPSZ data_type:
LPSZ comment:;

LPSZ proc_name;
LPSZ proc_params;
LPSZ spl_params:
LPSZ network_params;

driver— name
A string containing the name of the dev-
ice driver (eg "EPSON"). This informa-
tion must always be supplied if it is not
available from token.

driver_data
Data which is to be passed directly to
the device driver. Whether or not any of
this is required depends upon the device
driver, though the information may
alternatively have been specified via
DevSetEnvironment.

The data consists of the following:-

struct DRIVDATA
LONG length:
LONG version;
SZ device_name:
ULONG general_data:

.
’

length The length of the whole
driver— data structure.

version The version number of the
data. Version numbers are
defined by particular device
drivers.

device— name
A string in a 32-byte field,
identifying the particular dev-
ice (model number etc). Again,
valid values are defined by dev-
ice drivers.

géneral_ data
Data as defined by the device
driver.

If the device type is
OD_MEMORY, this is a

51

Windows Presentation Manager Reference

52

log— addr

handle to a Device Context
(type HDC), which is compati-
ble with bitmaps which are to
be used with this Device Con-
text. If this is not supplied or
is null, compatibility with the
screen is assumed.

For other device types, the
type of general- data will be
defined by the device driver.

The logical address of the output device
(eg "LPT1").
e For a OD_DIRECT device, this is

required if it is not available from
token.

e For a OD_QUEUED device, this is
optional, since the spooler will pro-
vide a default if necessary.

data_type

comment

e For a OD_ QUEUED device,
data_ type defines the type of data
which is to be queued, as follows:

e Q_STD - standard format
e Q_ESC - escape format
e Q_RAW - raw format

Note that a device driver may define
other data types. For a full descrip-
tion see the chapter, “The Spooler”.
If data_ type is not specified for a
OD_ QUEUED device, the default is
supplied by the device driver.

In the above case, data— type information
is defaulted if not specified.

For any other device type, data_ type is
ignored.

A natural language description of the
file. This may, for example, be displayed
for a OD_ QUEUED device by the
spooler to the end user. For a
OD_METAFILE, it is a descriptive
record of up to 253 bytes which is

Device Contexts

returned on GpiPlayMetaFile. It is
optional for any device.

proc_name
The name of the queue processor. This
is only relevant for a OD_ QUEUED dev-
ice, and will normally be defaulted.

proc— params
A parameter string for the queue proces-
sor. This is only relevant for a

OD- QUEUED device, and is optional.

spl— params
A parameter string for the Spooler,
which is optional. This has the following
options, which must be separated by one
or more blanks:

e FORM=f

Specifies a forms code f’. This must
be a valid forms code for the printer
(see the section, “Printers” in the
chapter, “The Spooler”).

If not specified, then the data is
printed on the forms in use when this
print job is ready to be printed.

e PRTY=n

Specifies a priority in the range 0-99,
with 99 being the highest. If not
specified, then a priority of 50 is
used.

network_ params
network parameters. This is only
relevant for a OD_ QUEUED device, and
will be defaulted by the spooler if not
supplied.

Returns:

0 Error
!=0 Device context handle

Principal errors:

GPIERR_INVALID_LENGTH
GPIERR_TOKEN_NOT_ASTERISK
Others TBD

DevCloseDC
HME DevCloseDC (hdc)

53

Windows Presentation Manager Reference

HDC hdc:
This closes the specified Device Context.

It is an error if the Device Context is currently associated
with a presentation space. It is also an error if the Device
Context was created with WinCreateWindowDC (ie this is a
screen Device Context or a micro-PS).

Parameters:

hdec Specifies the handle for the Device Context
Returns:

0 Error
1 OK (not metafile device context)
!=0 Metafile handle (metafile device context)

Principal errors:

DevPostDeviceModes

SHORT DevPostDeviceModes (hab,driver_data,driver_name,
device_name, log_addr)

HAB hab;

LPBUF driver_data:

LPSZ driver_name:;

SZ device_name:

LPSZ log_addr;

This function causes a device driver to post a dialog box that
allows the user to set options for the device, for example
resolution, font cartridges etc.

The application can call the function first with a NULL data
pointer to find out how much storage is needed for the data
area. Having allocated the storage, the application then
calls the function a second time for the data to be filled in.

The returned data can then be passed on DevOpenDC as
driver— data.

Parameters:

hab The anchor block handle

driver—data) _
A long pointer to a data area, which on return will
contain device data as defined by the driver.

If this pointer is passed as NULL, then the size in
bytes which the data area should be is returned.

The format of the data is the same as that defined

54

Device Contexts

for driver— data for DevOpenDC.

driver—name
A string containing the name of the device driver

device—name
A string in a 32-byte field, identifying the particu-
lar device (model number etc). Valid names are
defined by device drivers.

log— addr

The logical address of the output device (eg
"LPT1").

Returns:

date pointer was NULL:-

-1 Error

0 No settable options

>0 Size in bytes required for data area
data pointer was not NULL:-

-1 Error

0 No device modes

1 OK

Principal errors:
(TBD)
DevEscape

LONG DevEscape (hdc, code, in_count, in_data,
out_count, out_data)

HDC hdc: '

‘LONG code:;

LONG in_count:;

LPBUF in_data;

LONG #*out_count:;

LPBUF out_data:;

This function allows applications to access facilities of a dev-
ice which are not otherwise available through the API.
Escape calls are in general sent to the device driver and must
be understood by it.

The effects of Escape will be metafiled.
Parameters:

hdc The handle of the Device Context

code Specifies the escape function to be performed. The
following are currently defied:-

e 1- QueryEscSupport

55

Windows Presentation Manager Reference

e 2- StartDoc

e 3-EndDoc

o 4- NewFrame

e 5- NextBand

e 6- AbortDoc

e 7 - DraftMode

e 8- GetScalingFactor
e 9- FlushOutput

e 10- RawData

Devices can define additional escape functions,
using code values > 32767.

in— count
The number of bytes of data pointd to by in_ data.

in—data
The input data structure required for this escape.

*out—. count
The number of bytes of data pointed to by
out— data.

out—data
A buffer which will receive the output from this
escape. If out_ data is null, no data is returned.

Returns:

-1 Error
0 Escape not implemented for specified code
1 0K

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

The following descriptions give the specific syntax and meaning of each
DevEscape call.

QueryEscapeSupport

LONG DevEscape (hdc, QueryEscapeSupport, in_count, in_data,
out_count, out_data)

HDC hdc:

LONG in_count;

LPBUF in_data:

LONG *out_count:

LPBUF out_data:

56

StartDoc

Device Contexts

This function finds out whether a particular escape function
is implemented by the device driver. The return value gives
the result.

Parameters:

hde The handle of the Device Context

FlushOutput
Specifies the escape function to be performed.

in— count
The number of bytes pointed to by in_ data.

in—data
Pointer to an escape code value specifying the
escape function to be checked.

*out— count
Not used, and can be set to zero.

out—data
Not used, and can be set to null.

Returns:

-1 Error

0 Escape not implemented for this code
1 0K

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

LONG DevEscape (hdc, StartDoc, in_count, in_data,
out_count, out_data)

HDC hdc:

LONG in_count:

LPBUF in_data;

LONG *out_count;

LPBUF out_data;

This function allows an application to specify that a new
print job is starting and that all subsequent NewFrame calls
should be spooled under the same job, until an EndDoc call
occurs.

This ensures that documents longer than one page are not
interspersed with other jobs.

Parameters:

hdc The handle of the Device Context

57

Windows Presentation Manager Reference

StartDoc
Specifies the escape function to be performed.

in—count

Specifies the number of characters in the string
pointed to by in_ data.

in—data

Pointer to an ASCIIZ string, specifying the name
of the document.

*out— count :
Not used, and can be set to zero.

out—data
Not used, and can be set to null.

Returns:

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

EndDoc

LONG DevEscape (hdc, EndDoc, in_count, in_data,
out_count, out_data)

HDC hdc:

LONG in_count;

LPBUF in_data;

LONG #*out_count;

LPBUF out_data;

This function ends a print job started by StartDoc.

Parameters:

hde The handle of the Device Context
EndDoc Specifies the escape function to be performed.

in—count
Not used, and can be set to zero.

in—data
Not used, and can be set to null.

*out— count
Not used, and can be set to zero.

out—data
Not used, and can be set to null.

Returns:

58

Device Contexts

-1 Error

0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
NewFrame

LONG DevEscape (hdc, NewFrame, in_count, in_data,
out_count, out_data)

HDC hdc:

LONG in_count:

LPBUF in_data:

LONG #out_count;

LPBUE out_data;

This function allows an application to specify that it has
finished writing to a page. It is similar to- GpiE'rase process-
ing for a Screen DC, and causes a reset of the attributes (eg
color, mix). This escape is usually used with a printer device
to advance to a new page.

Parameters:

hdc The handle of the Device Context

NewFrame
Specifies the escape function to be performed.

in— count
Not used, and can be set to zero.

in—data
Not used, and can be set to null.

*out— count
Not used, and can be set to zero.

out—data
Not used, and can be set to null.

Returns:

-1 Error

0 Escape not implemented for this code
1 OK

Principal errors:
GPIERR_INVALID_DC_HANDLE
NextBand

LONG DevEscape (hdc, NextBand, in_count, in_data,
out_count, out_data)

HDC hdc:

LONG in_count:

59

‘Windows Presentation Manager Reference

60

LPBUF in_data;
LONG *out_count:
LPBUF out_data:;

This function allows an application to specify that it has
finished writing to a band. The coordinates of the next band
are returned. This is used by applications that handle band-
ing themselves (see the section, “Printing Using Banding” in
the chapter, “The Spooler”).

Parameters:

hde The handle of the Device Context

NextBand
Specifies the escape function to be performed.

in— count
Not used, and can be set to zero.

in—data
Not used, and can be set to null.

*out.. count
Specifies the number of bytes of data pointed to by
out— data. On return, this is updated to the
number of bytes actually returned.

out—data
The address of a buffer which will receive the out-
put from this escape. A structure is returned, con-
taining the device coordinates of the next band,
which is a rectangle. The format of the structure
is:

struct BANDRECT
LONG xleft;
LONG ytop:
LONG xright:;
LONG ybottom:

’

xleft The x coordinate of the upper left corner
of the rectangular band.

ytop The y coordinate of the upper left corner
of the rectangular band.

xright The x coordinate of the lower right
corner of the rectangular band.

ybottom)
The y coordinate of the lower right
corner of the rectangular band.

An empty rectangle (ie xleft > xright, ytop <

Device Contexts

ybottom) marks the end of the banding operation.
Returns:

-1 Error

0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

AbortDoc

LONG DevEscape (hdc, AbortDoc, in_count, in_data,
out_count, out_data)

HDC hdc;

LONG in_count:;

LPBUF in_data;

LONG #*out_count:

LPBUF out_data;

This function aborts the current job, erasing everything the
application has written to the device since the last EndDoc.

Parameters:

hdc The handle of the Device Context

AbortDoc
Specifies the escape function to be performed.

in—count
Not used, and can be set to zero.

in—data -
Not used, and can be set to null.

*out— count
Not used, and can be set to zero.

out_data
Not used, and can be set to null.

Returns:

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:
GPIERR_INVALID_LENGTH
DraftMode

LONG DevEscape (hdc, DraftMode, in_count, in_data,
out_count, out_data)
HDC hdc:

61

Windows Presentation Manager Reference

LONG in_count:
LPBUF in_data:
LONG *out_count;
LPBUF out_data:

This function turns draft mode on or off. Turning it on
instructs the device driver to print faster and with lower
quality, if necessary. The draft mode can only be changed at
page boundaries (eg after a NewFrame).

Parameters:

hdec The handle of the Device Context
DraftMode

Specifies the escape function to be performed.

in_ count

Specifies the number of bytes pointed to by
in_ data.

in_data
A long pointer to a SHORT integer value specify-
ing the mode: 1 for draft mode on, O for off.

*out— count
Not used, and can be set to zero.

out—data
Not used, and can be set to null.

Returns:

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

Note: The default is draft mode off.
GetScalingFactor

LONG DevEscape (hdc, GetScalingFactor, .in_count, in_data,
out_count, out_data)

HDC hdc:

LONG in_count;

LPBUF in_data:

LONG *out_count;

LPBUF out_data:

This function retrieves the scaling factors for the x and y
axes of a printing device. For each scaling factor, an
exponent of two 1s put in out— data. Thus, the value 3 is
used if the scaling factor is 8.

62

Device Contexts

Scaling factors are used by devices that cannot support
graphics at the same resolution as the device resolution.

Parameters:

hdec The handle of the Device Context

GetScalingFactor
Specifies the escape function to be performed.

in—count
Not used, and can be set to zero.

in—data
Not used, and can be set to null.

*out— count
Specifies the number of bytes of data pointed to by
out_ data. On return, this is updated to the
number of bytes actually returned.

out—data
The address of a buffer which will receive the out-
put from this escape. A structure is returned, con-
taining the scaling factors for the x and y axes.
The format of the structure is:

struct SFACTORS
LONG x:
LONG vy

.
.

X The x scaling factor, as an exponent of
two.

y The y scaling factor, as an exponent of
two.

Returns:

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

DevFlushOutput

LONG DevEscape (hdc., FlushOutput, in_count, in_data,
out_count, out_data)

HDC hdc:;

LONG in_count:

LPBUF in_data:;

LONG #*out_count:

63

Windows Presentation Manager Reference

LPBUF out_data:

This function flushes any output in the device’s buffer.
Parameters:

hde The handle of the Device Context

FlushOutput
Specifies the escape function to be performed.

in—count
Not used, and can be set to zero.

in—data
Not used, and can be set to null.

*out— count
Not used, and can be set to zero.

out—data
Not used, and can be set to null.

Returns:

-1 Error

0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_LENGTH
DevRawData

LONG DevEscape (hdc, RawData, in_count, in_data,
out_count, out_data)

HDC hdc:;

LONG in_count:

LPBUF in_data;

LONG *out_count;

LPBUF out_data;

This function allows an application to send data direct to a
device driver. For example, in the case of a printer device
driver, this could be a printer data stream.

Parameters:

hde The handle of the Device Context

RawData
Specifies the escape function to be performed.

in— count
The number of bytes pointed to by in_ data.

64

Device Contexts

in_data
Pointer to the raw data. to be checked.

*out— count
Not used, and can be set to zero.

out—data
Not used, and can be set to null.

Returns:

-1 Error
0 Escape not implemented for this code
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_LENGTH

DevQueryHardcopyCaps

LONG DevQueryHardcopyCaps (hdc, start, count, info)
HDC hdc:

LONG start:

LONG count:

LPBUF hcinfobuf;

This function returns information about the hardcopy capa-
bilities of the device.

hdc Specifies the handle for the DC.

start Specifies which form code number the query is to
start from. Used with count.

count Specifies the number of forms the query is to be on.
Thus if there are 5 form codes defined and start is
2, then if count is 3, a query is performed for form
codes 2, 3 and 4, and the result returned in the
buffer pointed to by info.

If this value is zero, the number of form codes
defined is returned. If non-zero (ie greater than
zero), the number of form codes information was
returned for is returned.

info Pointer to a buffer containing the results of the
query. The result consists of count copies of the
following structure:

struct HCINEO
CHAR formname[32]:;
LONG xwidth;
LONG vyheight:
LONG xleftclip:
LONG ybottomclip:
LONG xrightclip:

65

Windows Presentation Manager Reference

66

LONG ytopclip:
LONG xpels;
LONG ypels:;

’

formname
The ASCIIZ name of the form.

xwidth The width (left to right) in millimeters.

yheight The height (top to bottom) in millime-
ters.

xleftelip
The left clip limit in millimeters.

ybottomelip
The bottom clip limit in millimeters.

xrightclip
The right clip limit in millimeters.

ytopeclip
The top clip limit in millimeters.

xpels Number of pels between left and right
clip limits.

ypels Number of pels between bottom and top
clip limits.

Note: start and count can be used together to

enumerate all available form codes without having

to allocate a buffer large enough to hold informa-

tion on them all.

Returns:
-1 Error
>=0 Ifcount == O, number of forms available
>=0 Ifcount '= O, number of forms returned

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_ARRAY_COUNT

DevQueryCaps

BOOL DevQueryCaps (hdc, element_no, count, array)
HDC hdc;

LONG element_no:;

LONG count;

LONG array[]:

This function returns information about the capabilities of
the device.

Device Contexts

Parameters:

hdec Specifies the handle for the Device Context

element_no
Gives the index number of the first item of infor-
mation to be returned in array. The first element
is number 1.

count Gives the number of items of information to be
returned in array

array|count]
An array of count elements in which characteristics
information is to be returned. The first item
returned is set into the first element of the array,
the second into the next, and so on.

The following element numbers are defined:-

1 Device family (values as for type on
DevOpenDC
2 Device input/output capability

1 - Dummy device

2 - Device supports output

8 - Device supports input

4 - Device supports output and input

3 Technology

0 - Unknown (eg metafile)
1 - Vector plotter

2 - Raster display

8 - Raster printer

4 Raster camera

Driver version

5 Default page depth gfor a full-screen
maximized window for displays) in
display points. (For a plotter, a display
point is defined as the smallest possible
displacement of the pen, and can be
smaller than a pen width.)

6 Default page width §for a full-screen
maximized window for displays) in
display points

7 Default page depth gfor a full-screen
maximized window for displays) in char-

acter rows

67

Windows Presentation Manager Reference

68

10

11

12

13

14

15

16
17

18

19

Default page width §for a full-screen
maximized window for displays) in char-
acter columns

Vertical resolution of device in display
points per meter for displays, plotter
units per meter for plotters.

Horizontal resolution of device in display
points per meter for displays, plotter
units per meter for plotters.

Default character-box height in display
points.

Default character box width in display
points.

Default small character box height in
display points (this is zero if there is only
one character box size)

Default small character box width in
display points (this is zero if there is only
one character box size)

Number of distinct colors supported at
the same time, including background
(grayscales count as distinct colors). If
loadable color tables are supported, this
is the number of entries in the device
color table.

For plotters, the returned value is the
number of pens plus 1 (for the back-
ground).

Number of color planes

Number of adjacent color bits for each
pel (within one plane)

Loadable color table support:

Bit0 - 1 if RGB color table can be loaded,
with a minimum support of 8 bits e
red, green and blue

Bitl1 - 1 if color table with other than 8 b.
for each primary can be loaded

The number of mouse or tablet buttons
that are available to the application pro-
gram. A returned value of O indicates
that there are no mouse or tablet but-
tons available.

20

21

22

23

Device Contexts

Foreground mix support

1 - OR

2 - Overpaint

4 - Underpaint

8 - Exclusive-OR

16 - Leave alone

32 - AND

64 - Mixes 7 thru 17

The value returned is the sum of the
values appropriate to the mixes sup-
ported. A device capable of supporting
OR must, as a minimum, return 1 + 2 +
16 = 19, signifying support for the man-
datory mixes OR, overpaint, and leave-
alone.

Note that these numbers correspond to
the decimal representation of a bit string
that is seven bits long, with each bit set
to 1 if the appropriate mode is sup-
ported.

Background mix support

1 - OR

2 - Overpaint

4 - Underpaint
8 - Exclusive-OR
16 - Leave alone

The value returned is the sum of the
values appropriate to the mixes sup-
ported. A device OR must, as a
minimum, return 2 + 16 = 18, signifying
support for the mandatory background
mixes overpaint, and leave-alone.

Note that these numbers correspond to
the decimal representation of a bit string
that is five bits long, with each bit set to
1 if the appropriate mode is supported.

Number of symbol sets which may be
loaded for Vio

Whether the client area of Vio windows
should be byte-aligned:-

0 - Must be byte-aligned
1 - More efficient if byte-aligned,
but not required
2 - Does not matter whether byte-aligned

69

Windows Presentation Manager Reference

24 Number of bitmap formats supported by
device

25 Device raster operations capability
Bit 0 - 1 if GpiBitBlt supported
Bit1 - 1 if this device supports banding
Bit2 - 1 if GpiBitBlt with scaling supported
Bit3 - 1 if GpiFloodFill supported
Bit4 - 1 if GpiSetPel supported

26 Default marker box width in pels

27 Default marker box depth in pels

28 Number of device specific fonts

29 Graphics drawing subset supported

30 Graphics architecture version number
supported

31 Graphics vector drawing subset sup-
ported

32 Device windowing support

Bit0 - 1 if Device supports windowing
Other bits are reserved zero.
33 Additional graphics support
Bit0 - 1 if Device supports geometric line t
Other bits are reserved zero.
Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_DC_HANDLE
GPIERR_INVALID_ARRAY_COUNT
GPIERR_INVALID_ELEMENT_NUMBER

70

Chapter 7

Graphics Programming Interface

7.1 Graphics Programming Interface (GPI) 75
7.1.1 GPI Invocation Mechanism 75

7.1.2 GPI Presentation Spaces 75

7.1.2.1 Relationship to Device Contexts 75
7.1.2.2 Normal PS and Micro-PS 76

7.1.3 Stored and Non-Stored Graphics OQutput 78
7.1.3.1 Stored Graphics Output 79

7.1.3.2 Non-Stored Graphics Output 80
7.1.3.3 Selection of Stored or Non-Stored 80
7.1.4 Segment Attributes 81

7.1.5 Primitive Attributes 83

7.1.6 GpiPutData 83

7.1.7 Co-ordinate Spaces 84

7.1.8 Fonts and Symbol Sets 85

7.1.9 Color 86

7.1.10 Dynamic Segments 87

7.1.10.1 Errors and Return Codes 88

7.1.10.2 Errors 88

7.1.11 Control Functions 89

7.1.12 Drawing Functions 98

7.1.13 Correlation and Boundary Determination Func-
tions 112

7.1.13.1 Correlation 112

7.1.13.2 Boundary Determination 112

7.1.13.3 Functions 112

7.1.13.4 Pick Aperture and Tag Functions 114

71

7.1.13.5 Correlation Data Functions 116
7.1.13.6 Bounds Data Functions 125

7.1.14 Segment Manipulation Functions 126
7.1.14.1 Whole Segment Functions 126

7.1.14.2 Segment Content Manipulation Functions
(Indirect) 136

7.1.15 Transform Functions 147

7.1.15.1 Co-ordinate Spaces 147

7.1.15.2 Transforms 150

7.1.15.3 Clipping 151

7.1.15.4 Defaults and Examples 152

7.1.15.5 Modelling Transform Functions 154
7.1.15.6 Viewing Transforms 165

7.1.15.7 Device Transform 171

7.1.15.8 Clipping 173

7.1.15.9 Conversion Function 179

7.1.16 General Attribute Functions 181
7.1.16.1 Methods for Setting Attributes 181
7.1.16.2 Default and Current Attributes 182
7.1.16.3 Attribute Mode 182

7.1.16.4 Save and Restore Attributes 182
7.1.16.5 Attribute Queries 182

7.1.16.6 Attribute Mode Functions 183
7.1.16.7 Attribute Strip Setting Functions 185
7.1.17 Color and Mix Functions 191

7.1.17.1 Resources and Default Functions 191
7.1.17.2 Attribute Setting Functions 199
7.1.18 Line Functions 204

7.1.18.1 Resources and Defaults Functions 205
7.1.18.2 Attribute Setting Functions 208
7.1.18.3 Primitive Functions 217

72

7.1.18.4 Visibility Functions 223

7.1.19 Arc Functions 224

7.1.19.1 Attribute Setting Functions 224
7.1.19.2 Primitive Functions 226

7.1.20 Area Functions 233

7.1.20.1 Resources and Defaults Functions 235
7.1.20.2 Attribute Setting Functions 236
7.1.20.3 Primitive Functions 240

7.1.21 Character Functions 242

7.1.21.1 Font Selection 244

7.1.21.2 Fonts Which are Supplied with Presentation

Manager 245

7.1.21.3 Resources and Defaults Functions 246
7.1.21.4 Attribute Setting Functions 262
7.1.21.5 Primitive Functions 277

7.1.22 Marker Functions 281

7.1.22.1 Attribute Setting Functions 281
7.1.22.2 Primitive Functions 285

7.1.23 Image Functions 286

7.1.23.1 Primitive Functions 287

7.1.24 Miscellaneous Functions 288

7.1.25 Bitmap Support 294

7.1.25.1 Bitmap Operations 294

7.1.25.2 Standard Bitmap Formats 296
7.1.25.3 Bitmap Info Tables 296

7.1.25.4 Bitmap Example 297

7.1.25.5 Uses for bitmaps 297

7.1.25.6 Creation and Selection Funtions 298
7.1.25.7 Operations on Raw Bitmaps 303
7.1.25.8 Operations through Presentation Spaces
7.1.26 Region Support 312

306

73

7.1.26.1 Region Operations 312

7.1.26.2 Uses for regions 313

7.1.26.3 GRECT and GPOINT structures 313
7.1.26.4 Region Functions 313

7.1.26.5 Clipping Region Functions 320
7.1.26.6 Drawing Functions 325

74

Graphics Programming Interface

7.1 Graphics Programming Interface (GPI)

The GPI provides the function for drawing graphics elements on output
devices, including displays, printers, plotters, etc.

7.1.1 GPI Invocation Mechanism

The method of invoking the GPI functions from DOS protected mode
applications is via a set of FAR function calls, linked to the calling code by
means of the DOS dynamic link mechanism. The form of the invocations
and the parameters passed follow the DOS conventions. Function calls are
made directly from the application program to the system functions via
the dynamic link mechanism. The invocation mechanism and the handling
of return codes is similar to that for other DOS function calls, providing a
language-independent interface.

Parameters passed across the API are in Intel format (except where other-
wise stated in the API description). Integer values are passed as 32-bit
integers in Intel format (again except where otherwise indicated). This
includes all co-ordinate values, and transform elements, which are all
currently in fixed format only. (In the Presentation Manager, all integer
values passed across the API must be within the range -32768 to +32767
(signedg) or 0 to 65535 (unsigned), except where the description states that
the value is treated as 2 bytes integer + 2 bytes fractional, ie 65536
represents 1.0.)

7.1.2 GPI Presentation Spaces

7.1.2.1 Relationship to Device Contexts

GPI functions operate on GPI presentation spaces. An application may
have multiple GPI presentation spaces, each associated with a different
Device Context (see the chapter “Device Contexts”).

GpiCreatePS will create a GPI presentation space and return a GPI handle
which is then used to identify that particular GPI presentation space in
any subsequent GPI function call. Similarly, each Device Context has a
handle which identifies it uniquely. A GPI presentation space is associated
with a particular Device Context using GpiAssociate, which requires both
the GPI presentation space handle and the Device Context handle to be
passed as parameters.

A GPI presentation space consists of the following (where they have been
defined):-

75

Windows Presentation Manager Reference

Segment store

Definition of symbol sets and fonts
Definition of line-type sets
Various controls, eg draw controls
Logical color table

Viewing pipeline, down to and including the page and page window

These objects will be retained by the presentation space if it is re-
associated with a new Device Context. Thus it is possible to generate and
display a picture while the presentation space is associated with a screen
Device Context, and then to reassociate the presentation space with a Dev-
ice Context for a printer or metafile, and redraw it.

In many cases this will produce a good copy of the picture on the new dev-
ice. There are, however, some potential problem areas:-

If the devices have markedly different resolution, and ’raster’ type
operations have been used, for example:-

e BitBlt, flood fill, set pel

e Image

e Image symbol sets or fonts

e Region drawing or clipping

If more colors have been used than are available on the new device

If a loadable color table has been used, and the new device has no
facility for loading color tables

If the drawing area for the new device is less, and the picture
(page) was laid out in metric units

If the aspect ratios (y/x pel spacing) for the two devices are
different, and the picture (page) was laid out in pels

If fonts or symbol sets have been used which are unavailable on the
new device

7.1.2.2 Normal PS and Micro-PS

A Gpi presentation space can be defined (at creation) to be one of two

types:-

76

Normal PS
Micro-PS

Graphics Programming Interface

A normal PS is one for which the full range of Gpi functions, as defined in
the following sections, is available. A micro-PS supports only a subset of
these functions, but in cases where the subset is adequate, provides
reduced storage overhead and enhanced performance (the latter especially
at association time).

7.1.2.2.1 Normal PS

A normal PS will be used where frequent re-association is not required, or
where there is a need for one or more of the functions disallowed in a
micro-PS. It is recommended that a normal PS be chosen unless there is a
specific reason for requiring a micro-PS.

7.1.2.2.2 Micro-PS

Micro-PS’s are suitable for cases where relatively simple drawing is needed
to a large number of windows (for example, to implement controls such as
button boxes), and where it is undesirable for storage reasons for each win-
dow to have a permanently-associated presentation space, yet the execu-
tion overhead of frequent associations is also unacceptable.

A micro-PS may not be re-associated with a new Device Context. When it
is created, the Device Context with which it is to be associated is specified,
and this may not be changed. If, therefore, a picture is to be copied to a
metafile, although a micro-PS may be used for this purpose, it will not be
the same one as that which was used to draw the picture on the screen.

A micro-PS may be associated with any kind of Device Context. For
screen devices, a micro-PS will usually be used in conjunction with a

cached DC.
The following Gpi functions are invalid to a micro-PS:-

e GpiAssociate (no re- association may be performed)
e Storing of segments (see GpiSetDrawingMode)

e Segment manipulation functions (see the section “Segment Mani-
pulation Functions”)

o Passing a buffer of function orders (GpiPutData)

e Segment drawing (GpiDrawChain etc)

e Setting 'push’ attribute mode (see GpiSetAttrMode)
o GpiQCallSegment, GpiPop

e QGpiSetTag, GpiQueryTag

77

Windows Presentation Manager Reference

e Structured correlation (eg GpiCorrelateChain) gcorrelation on indi-
vidual primitives is allowed by setting the correlate flag in GpiSet-
DrawControl)

e GpiSetSegmentOrigin, GpiQuerySegmentOrigin

o GpiSetSegmentTransform

Also, less error checking is performed for a micro-PS.

Note that a micro-PS does support loading of symbol sets, logical font
definitions, logical color tables, and line type definitions.

7.1.3 Stored and Non-Stored Graphics Output

In the Presentation Manager GPI, graphic primitives and attributes may
be

e stored in a segment (’store’ mode)
e drawn immediately ("draw’ mode)

e both (’draw-and-store’ mode)

depending upon the current Drawing Mode (and also on other factors; see
GpiSetDrawingMode).

In each case, graphics primitives may be passed across the API either as
individual functions such as GpiPolyLine, or as a buffer of orders using

GpiPutData.

With immediate drawing, the graphic primitive(s) are drawn on the
display surface immediately and the system ’forgets’ about the primitive(s)
once they are drawn. ‘

In stored mode, the drawing primitives are stored in one or more seg-_
ments, but not drawn until later (segment drawing requests can be ini-
tiated with GpiDrawChain, GpiDrawSegment or GpiDrawFrom).

The composite mode of draw-and-store is provided where the picture prim-
itives are to be drawn as they are passed across the API, but where seg-
ments are also to be built for later drawing.

Stored Graphics is good for building complex pictures, for handling graph-
ics databases and for drawing pictures that are drawn many times with
only few modifications. It is also useful in relieving the application of the
burden of redrawing windows itself if a windowing operation occurs, since
the GPI system can handle this.

78

Graphics Programming Interface

Non-stored Graphics is good for fast drawing of relatively simple pictures,
or where the application wishes to maintain its own graphics database.

In the Functional Descriptions which follow, each function which will
cause a drawing order to be constructed and placed in the current segment
includes a statement to that effect. Typically these include primitive func-
tions, and attribute functions which change the value of a modal attribute
within the picture.

In SAA there will be 2 storage modes, store and non-store. All primitives
will be required to be in segments, although unnamed segments (ie ones
with an identifier of zero) will be allowed.

In store mode primitives will be placed in segment store and retained,
while in non-store mode they will only be kept until they are drawn. Once
a non-store segment has been drawn 1ts contents may be deleted, but the
current attributes will be retained, as will the fact that a segment is open,
so it will not be necessary for the application to re-open a segment or reset
the attributes.

The distinction between the two modes will only affect chained segments
unchained segments will be retained but not drawn (until they are calledﬁ
regardless of the mode selected.

Draw-and-store mode (see GpiSetDrawingMode) is not part of SAA.

7.1.3.1 Stored Graphics Output

Stored Graphics Output functions enable primitives to be stored in Graph-
ics Segments until such time as the segment is destroyed or its contents
are overwritten with new data. Each stored segment has a unique name
and a set of properties (visible, pickable, dynamic etc.) in addition to its
graphics primitives. Segments may be chained together in a required order
and can be called from other segments (and from non-stored primitives).
The GPI enables drawing, correlation and boundary computation to be
performed on an individual segment, part of the segment chain or the
whole chain. In addition, operations such as pan and zoom can be accom-
plished by manipulating the GPI transforms. Special GPI functions are
provided to assist the application with rapid removal and redrawing, in
exclusive-OR mode, of ’dynamic’ segments.

An application using stored segments may leave the default window pro-

cedure to redraw its window from the segments if a system windowing
operation occurs.

79

‘Windows Presentation Manager Reference

7.1.3.2 Non-Stored Graphics Output

Non-stored graphics output functions allow primitives to be drawn
without first creating a segment to contain them. These are termed non-
stored primitives, in contrast to stored primitives which are held in long-
lived segments in the segment store.

Non-stored primitives are drawn immediately and do not occupy storage
once drawn, in contrast to stored primitives. An application using non-
stored primitives must redraw its window if a system windowing operation
occurs gif stored primitives are used, the window contents can be con-
structed from the segments).

Non-stored primitives are either executed directly from application func-
tion calls or from buffers of graphics drawing orders. Non-stored segments
allow segment properties to be specified for groups of non-stored primi-
tives and allow construction of sections of picture in advance (they can,
for example be written to a metafile - see the chapter “Metafile Support”).

A non-stored segment is started by issuing GpiOpenSegment when the
current drawing mode is set to Draw, after which individual primitive
functions or GpiPutData may be issued repeatedly. One may also be
started (with a default name of zero) by issuing individual primitive func-
tions or GpiPutData outside a segment. In either case, the current attri-
butes are set to default values. In the former case, relevant segment attri-
butes may be changed with GpiSetSegmentAttrs; in the latter case they
may I)lot be changed from their initial default values (see GpiOpenSeg-
ment).

7.1.3.3 Selection of Stored or Non-Stored

The following summarises the ways in which an application may choose to
specify stored or non-stored.

Drawing Mode = Store Drawing Mode = Draw
GpiOpenSegment GpiOpenSegment (NS)
GpiLine (S) GpilLine (NS)
GpiPutData (S) GpiPutData (NS)
GpiCloseSegment GpiCloseSegment
GpiLine (NS) GpiLine (NS)
GpiPutData (NS) GpiPutData (NS)

80

In the above,

Graphics Programming Interface

S) indicates that the primitives and attributes are stored in

a segment without being drawn at this time (they can be drawn later

using, for example, GpiDraw), and (NS) that they are non-stored (drawn
and discarded).

In draw-and-store mode, the following occurs:-

o Within a segment bracket: the primitive is drawn immediately, and
stored in the current segment.

e Outside a segment bracket: the primitive is drawn immediately,
and discarded.

7.1.4 Segment Attributes

’Attributes’ in this document normally refers to primitive attributes, for
example what color should lines be drawn in. Segment attributes are quite
different from these.

The following is a list of segment attributes:-

Detectability

Visibility

Chained

Dynamic

This can be used to determine whether a correlation function
can be performed on the primitives within the segment. For
correlation on stored segments see GpiCorrelateChain.
Correlation on primitives as they are passed across the API
is controlled by the correlate flag on draw controls (see
GpiSetDrawControls).

Controls whether or not the primitives are to be drawn on
the output medium.

Controls whether or not the segment is a root segment to be
included in the segment drawing chain. In draw or draw-
and-store modes a chained segment will be drawn as it is
passed across the API, an unchained segment will not.

Unchained segments can only be used if called from another
segment.

Controls whether or the segment is to be dynamic, that is,
drawn using exclusive-OR, so that it may readily be erased
by redrawing it. For more information, see the section
“Dynamic Segments”.

Only stored segments can be dynamic.

81

‘Windows Presentation Manager Reference

Fast chaining
Controls whether or not, for a chained segment, the system
can assume that all primitive attributes need not be reset to
default values before execution of the segment.

Propagate detectability
Controls whether or not the value of the detectability attri-
bute for a segment should be propagated (forced) to all seg-
ments beneath it in the hierarchy.

Propagate visibility
Controls whether or not the value of the visibility attribute
for a segment should be propagated (forced) to all segments
beneath it in the hierarchy.

Each of these attributes has a default value, which may be changed by
GpiSetInitialSegmentAttrs. This is the set which a newly opened segment
will be given (except that a non-stored segment will never be flagged as
’dynamic’). Subsequently, a stored segment’s attributes may be changed
by GpiSetSegmentAttrs.

For primitives outside segments, there is a fixed set of attributes which
can never be changed.

Both sets of values are given in the following table.

SEGMENT DEFAULT INITIAL OUTSIDE SEGMENTS
ATTRIBUTE (UNCHANGEABLE)
SWM Detectability Not detectable Detectable
SWM Visibility Visible Visible
M Highlighting Not highlit Not highlit
SWM Chained Chained Chained
M Contains prolog No prolog No prolog
WM Dynamic Not dynamic Not dynamic
WM Fast chaining Fast chaining Fast chaining
WM Propagate detectability Propagate Propagate
WM Propagate visibility Propagate Propagate

— S - Defined for the SAA portable subset
— W - Defined for general Presentation Manager applications

— M- Defined for a ’compatible’ PS for the GCP migration bindings’
use

82

Graphics Programming Interface

7.1.5 Primitive Attributes
There are five groups of primitives. These are

e Line and arc primitives
e Character primitives

e Marker primitives

e Area primitives

e Image primitives

Each group has a set of current primitive attributes, which control how
these primitives are drawn. For example, lines and arcs have attributes
which include line color, line width, line style, etc.

Primitive attributes are set on a modal basis. Once set, the value applies
until that attribute is set to a new value, or reset to its default value (this
is the value which it starts with when, for example, the presentation space
is first created).

Attributes are reset to their default values at the start of a new segment,
whether stored or non-stored (though see ’fast chaining’, in the section
“Segment Attributes”), and at certain other times.

Note that the default values of attributes are fixed, and may not be
changed by the application.

7.1.6 GpiPutData

The address and length of a buffer of orders are passed as parameters.
The orders are stored and/or drawn onto the output device and the opera-
tion is executed synchronously and may not be paused or stopped.

The current attributes may be updated by orders in the buffer.

So that the application need not parse its buffers in advance, the last order
in the buffer may be incomplete. In this case, no drawing process check is
raised (as would be the case with an incomplete order in a stored segment).
The return code indicates that an incomplete order has been found and a
returned parameter contains the offset of the order within the buffer.

The application may then add this partial order to the start of the next
buffer before it invokes GpiPutData again.

The result is the same as if the application had parsed the data and had

split the data into buffers at order boundaries. However, the application
need not understand the format of orders.

83

Windows Presentation Manager Reference

This is particularly useful for applications dealing with externally-
generated graphics data, such as a host datastream application.

7.1.7 Co-ordinate Spaces

A presentation space typically uses application-convenient co-ordinates.
The drawing process must eventually generate device co-ordinates, and it
will usually be efficient for it to make the transition from application co-
ordinates to device co-ordinates in a single step. Notionally, however,
there are additional intermediate co-ordinate spaces. The levels of co-
ordinate spaces are as follows:-

1. Application convenient units. For graphics, these are World Co-
ordinates, and are the units which are used at the API for primi-
tives such as line, arcs etc. For VIO, application convenient units
are character cells.

2. (Graphics only) Model Space, which is arrived at by applying the
model transforms to World Co-ordinates. This can be thought of
as the space in which the picture is constructed, after applying
individual transforms for, say, the four wheels of a car.

3. (Graphics only) Page. This can be thought of as the space in which
the complete picture, including any subpicturing, is built up.

4. Device co-ordinates. These are the co-ordinates natural to the dev-
ice, eg pels on a raster display.

Between each of these levels there is a transform. For graphics, the model
transform goes from World Co-ordinates to Model Space, the Window-
Viewport transform from Model Space to the Page, and the device
transform from the Page to device co-ordinates.

For VIO, there is a single transform from character cells to device co-
ordinates.

The application can specify various units for the Page, which cause
transforms to be defaulted which will be helpful for some commonly-
required cases.

Functions are provided to convert a co-ordinate value between any one
space and another.

By default, Gpi spaces are defined so that y increases upwards, and x
increases to the right. Transformations may, however, be set by the pro-
gram to produce other effects. With VIO co-ordinates, the row number
increases downwards.

84

Graphics Programming Interface

Further details of the graphics model and viewing transforms will be found
in the section “Transform Functions”.

7.1.8 Fonts and Symbol Sets

Gpi describes the use of symbol sets for three purposes:-

e For drawing character strings
e For drawing markers

e For area shading patterns

Fonts carry much more descriptive information than symbol sets, such as
the facename, the font family, the weight, whether it is italic, etc etc, and
also several items of dimensional information. This gives the system a
much better opportunity to synthesize new fonts, from the definitions at
its disposal, according to application requirements.

Fonts and symbol sets may be loaded to a GPI presentation space. Fonts
are loaded from files, and symbol sets from application storage. For sym-
bol sets an 8-character name is supplied by the application, and this is
held by the system as the equivalent of the font facename.

Although the definitions are loaded to the GPI presentation space, they
may be suitable only for certain devices (for example, devices with widely
different resolutions will require different definitions for a raster 12-point
font). It may therefore be necessary to replace them if the presentation
space is associated with a new Device Context.

Both image (raster) and vector formats are supported. Proportional spac-
ing and kerning (the latter for fonts only) are also supported.

In addition to any symbol sets / fonts loaded by the application, the sys-
tem has others permanently loaded and available for use.

Before invoking any kind of draw operation which will require the use of a
symbol set or font, the application must issue a select function, passing a
list of the required attributes for the symbol set / font, and the local id
(lcid) by which it will refer to it later. At this point the system tries to
match the required attributes with the definitions available to it, and
either selects for use one of the sets of definitions, or synthesizes a new set
based on one of the ones available. Synthesis includes scaling image
definitions, converting normal weight to bold, italicising, etc.

In scanning the definitions available, the system assigns weights for each
attribute mismatch between the requirements and the available
definitions. If the application wishes to ensure that a particular set of
definitions is selected, it can match its requirements exactly to the attri-
butes of that set - which can be found by a query.

85

‘Windows Presentation Manager Reference

7.1.9 Color

An application may load a logical color table. This identifies the color

indices which the application intends to use, and an RGB representation of

the colour it would like for each index. In this case the system will

translate the color index, as each primitive is drawn, to the index which

Zlvill. give the closest approximation to the required color on the current
evice.

Normally the index will be an index into the table. An option is provided,
however, to allow an application to use RGB values as the color ’index’.

There is a default color table, which defines the colors required for color
indices O through 7. This will be used for any index within this range,
where no logical color table has been defined (or one has, but the index
used is outside the range of the one defined).

The logical color table facility is provided to help applications to achieve
the best color results on different devices. The logical color table is
retained in the presentation space, so that a new translation will be per-
formed automatically if the presentation space is associated with a Device
Context for a different device. It is also transmitted in a metafile.

The function of loading a physical color table to the device (if it supports
this) is a different operation E]see the Escape function), and is one which
should not normally be performed by an application to a shared device (eg
the screen).

A function is, however, provided for an application to request that the
physical color table be updated so as to give the best possible match to its
logical color table. Since this might mean that other applications would if
visible take on a strange appearance, this function should only be used
when an application has been maximised, A corresponding function is pro-
vided, which should be issued when the application ceases to be maxim-
ised, to cause the default physical palette to be reset.

Note that index translation means that the indices generated by certain
mix modes (eg OR) will depend on the translation, so applications should
only use such mixes with caution if they depend upon the resulting color
to be a specific shade. '

See the section “Color and Mix Functions” for more details on color.

86

Graphics Programming Interface

7.1.10 Dynamic Segments

If you want to be able to move or change part of the picture very quickly
(for example, when dragging part of it with the mouse), then the dynamic
segment attribute may be useful. Dynamic segments are always drawn in
exclusive-OR mode, whatever GpiSetMix functions they contain. This
means that, while some visual fidelity may be sacrificed, they can be erased
completely from the display simply by redrawing them, providing, of
course, that no non-dynamic drawing has taken place in the meantime to
the same area of the window.

Having set up a dynamic segment (preferably at the start of the segment
chain), it can be drawn by one of two techniques:-

1. By setting the ’draw dynamics’ draw control and issuing, for exam-
ple, a GpiDrawChain, in which case the dynamic segment(s) will be
drawn after the non-dynamic segments, or

2. GpiDrawDynamics, which just draws the dynamic segment(s).
To make a change to a dynamic segment,

1. Issue GpiRemoveDynamics, which removes the image of the seg-
ment from the display.

2. Change the segment(s), for example with GpiSetSeg-
mentTransform, or by using the editing functions.

3. Issue GpiDrawDynamics to replace the image of the segment on the
display.

If there is more than one dynamic segment visible, but not all are to be
changed, the name range on GpiRemoveDynamics may be used to ensure
that only the required one(s) are removed. The subsequent Gpi-
DrawDynamics will automatically only replace the same range.

A GpiDrawDynamics function initiated on another thread can be inter-
rupted by setting the ’stop draw’ condition (see GpiSetStopDraw). This
can be done if a new mouse position is detected, in order to respond more
rapidly to the new position. In this case, GpiRemoveDynamics will know
just how much of the dynamic segment(s) need to be ’drawn’ in order to
erase them.

Dynamic segments may be used even if the rest of the picture is non-
stored, providing the application ensures that no non-dynamic drawing
occurs over any dynamic segments which are currently visible.

If a presentation space is to be dissociated from a screen Device Context
into which dynamic segments have been drawn, the dynamic segments
should first be removed. If they are not removed, then after any subse-
quent re-association, they will no longer be removable by

87

Windows Presentation Manager Reference

GpiRemoveDynamics.

7.1.10.1 Errors and Return Codes
A return code is returned for each GPI function.

If this indicates that an error has occurred, then the application may

determine the value of the error code by invoking the WinGetLastError
function.

The error strategy for the GPI is as follows:-

1. Sufficient validation to avoid a malfunction will always be per-
formed.

2. For environmeng/objects/ resources e.g. SymbolSets, Fonts, Bit-
maps, Regions, Segments full error checking (as defined for that
function) 1s performed.

3. For segment drawing, and drawing primitives and primitive attri-
butes in draw mode, error checking is permissive i.e. it is optional
whether an invalid value is defaulted or produces the specified
error. Essential context checking will, however, be performed.

4. When storing in segment store or metafiling, full checking is per-
formed and all defined errors will be raised.

7.1.10.2 Errors

The following errors are valid on many GPI calls, and are not detailed
under individual calls.

GPIERR- GPI-BUSY
All functions with hgpi-as a parameter (except stop draw).

GPIERR-MATRIX_ OVERFLOW

All functions that may result in matrix computation.

GPIERR_ INSUFFIENT_MEMORY

All functions that result in memory allocation.

GPIERR_INVALID_ GPI_HANDLE
All functions with hgpi as a parameter.

GPIERR-_INVALID_ COORDINATE
All functions with coordinates as parameters.

GPIERR—DOS_ERROR (unexpected DOS error)
All functions that directly or indirectly issue DOS calls.

88

Graphics Programming Interface

Drawing Process Check Errors
All functions that perform segment drawing/correlation

Metafile recording errors
All functions that perform metafile recording.

7.1.11 Control Functions

GpiCreatePS

HPS GpiCreatePS (hdc, width, height, options)
HANDLE hdc:

LONG width;

LONG height:

ULONG options:

Creates a GPI presentation space and returns the GPI han-
dle. An initial association of the new presentation space
with a Device Context may also be performed (this is manda-
tory for a micro-PS).

The GPI handle returned is used on subsequent GPI calls to
identify the particular GPI presentation space required.

This call also specifies the size and units of the page in which
the picture will be created. See the section “Transform
Functions” for more information.

There are two types of Gpi presentation spaces: micro-PS,
and normal. Only a restricted subset of functions is allowed
to a micro-PS; the storage and execution overheads are, how-
ever, reduced. For more details, see the chapter, “Graphics
Programming Interface”.

A Gpi presentation space may be specified to be in implicit
draw mode. In this mode, the drawing mode (see GpiSet-
DrawingMode) is controlled automatically by the system,
which attempts to keep the device up to date with the con-
tents of the presentation space, without the application hav-
ing to issue explicit Draw functions. For more details, see the
chapter, “Graphics Programming Interface”.

Parameters:

hde The handle of a Device Context with which the
new presentation space is to be associated, if the
associate flag is set. If this flag is not set, hdc must
be the anchor block handle; in this case no initial
association is performed. For a micro-PS, associate
must be set, and Adc must refer to a Device Con-
text.

89

Windows Presentation Manager Reference

90

width,height
Give the size of the page

This contains 32 bits (with bit O the least
significant), in standard Intel format.

options

The bits have the following meanings:-

(Bits 0-1) Reserved

Must be B’00’.

(Bits 2-7) Units

Indicates the units for the page size. Pos-
sible values are

PU_ISOTROPIC (B’000001’)
Arbitrary units, with the origin
at the bottom left.

PU_PELS (B’000010’)

Pel co-ordinates, with the ori-
gin at the bottom left.

PU_LOWMETRIC (B’000011 ’{1
Units of 0.1 mm, with the ori-
gin at the bottom left.

PU_HIMETRIC (fB’OOOlOO’)
Units of 0.01 mm, with the ori-
gin at the bottom left.

PU_LOENGLISH (B’000101’)
Units of 0.01 in, with the ori-
gin at the bottom left.

PU_HIENGLISH (B’000110’)
Units of 0.001 in, with the ori-
gin at the bottom left.

PU_TWIPS (B’000111’)
Units of 1/1440 in, with the
origin at the bottom left.

Other values are reserved.

(Bits 8-11) format

Indicates options to be used when storing
co-ordinate values internally in the seg-
ment store.

For most functions, the format is not
directly visible to an application. It is,
however, visible during editing (eg Gpi-
QueryElement). The format will also
have an effect on the amount of storage
required for segment store.

Graphics Programming Interface

format is one of the following:-

GPIF_DEFAULT (B’0000’)
Default local format (as
GPIF_SHORT for Presenta-
tion Manager)

GPIF_SHORT (B’0010’)
2-byte integers
GPIF_LONG (B’0011’)
4-byte integers
Other values are reserved.
(Bit 12) type
Indicates the type of Gpi presentation

space required. Note that associate must
also be set if type is set):-

GPIT_NORMAL gB’O’)
Normal PS

GPIT_MICRO (B’1’)
Micro-PS

(Bit 13) mode
Indicates whether the Gpi presentation
space is to operate in implicit draw mode
or not, as follows:-

GPIM_NORMAL (B’0)
Normal mode

GPIM_IMPLICIT_DRAW (B’1’)

Implicit draw mode

(Bit 14) associate
Indicates whether an implicit association
is required between the Gpi presentation
space and a specified Device Context:-

GPIA_NOASSOC (B'0’)

No association is required

GPIA_ASSOC (B’1’)
Association with hdc required

All other bits are reserved and must be B’0’.

Returns:

0 Error
!=0 The new Gpi handle

Principal errors:

91

Windows Presentation Manager Reference

92

GPIERR_INVALID_PS_DIMENSION
GPIERR_WIDTH_OR_DEPTH_TOO_BIG
GPIERR_INVALID_OR_INCOMPAT_OPTIONS

GpiQueryPS

ULONG GpiQueryPS (hgpi, width, height)
HPS hgpi:

LONG width:

LONG height;

Returns the page parameters, as specified on GpiCreatePS.
See GpiCreatePS for details.

Note: bit 16 (associate) of options is reserved on Gpi-
QueryPS, and is not necessarily the same as was specified
when the presentation space was created.

Parameters:

hgpi Specifies the handle of the GPI presentation space.

*width,xheight
Variables in which the width and height of the
page are returned.

Returns:

0 Error
>0 Options (see GpiCreatePS for details)

Principal errors:

GpiDestroyPS

BOOL GpiDestroyPS (hgpi)
HPS hgpi:;

Destroys the presentation space for the GPI identified by the
specified handle. - All resources owned by this presentation
space are released, and any subsequent calls to the GPI using
this handle will be rejected.

Parameters:

hgpi Specifies the handle of the GPI presentation space.

Returns:

0 Error
1 OK

Principal errors:

Graphics Programming Interface

GpiResetPS ‘
BOOL GpiResetPS (hgpi, options)
HPS hgpi:

ULONG options:
This resets the GPI presentation space.

Three levels of reset are provided. These are, in increasing
order of power:-

e The equivalent of a segment boundary,

e As if the presentation space had just been created, but
without deleting any resources,

e As if the presentation space had just been created.
More details are provided below.

Note that none of these options causes any drawing or eras-
ure to take place on the device. GpiErase may be used to
accomplish this. Nor is any association between the specified
presentation space and a Device Context affected.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

options Flags which control the extent of the reset, as
follows:-

GRES_ATTRS (bit 0
Set to B’1’ (or forced) will cause the
equivalent of a root segment boundary.
The following will occur:-

o Current attributes are reset to
default values.

e Current model transform is reset to
unity.
e Current position is set to (0,0).

e Any open clip, stroke, area, defaults,
or element brackets are terminated.

e Any currently open segment is
closed.

o The current clip area and viewing
limits are reset to no clipping.

GRES_SEGMENTS (bit 1)
Set to B’1’ (or forced) will force
GRES_ATTRS, and also:-

93

Windows Presentation Manager Reference

94

e Any stored segments are deleted.

o Initial segment attributes are reset to
their initial values

o Default viewing transform, window,
viewport, page window and graphics
field are reset to the default values

e Drawing mode, draw controls, edit
mode, and attribute mode are reset
to default values

e Kerning enablement is reset to
default values

e Bounds and correlate data are reset

e The currently selected clip region, if
any, is deselected
GRES_ALL (bit 2

Set to B)l’ will force GRES_ ATTRS and
GRES_SEGMENTS, and also:-

e Delete any logical fonts, symbol sets,
lcids for bitmaps, and linetype sets.

o Reset any loaded logical color table
to default.

Other flags are reserved. An application wishing to
reset to the initial state may protect against any
future flags being defined by setting GRES_ ALL.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_RESET_OPTIONS
GpiSavePS

LONG GpiSavePS (hgpi)
HPS hgpi:

Saves various features of the presentation space on a LIFO
stack for the specified presentation space. This stack is
different from that which is used for saving attribute values
(see the section, “General Attribute Functions”), and

GpiSavePS and GpiRestorePS may be used with a micro-PS
as well as a normal PS.

The presentation space itself is unchanged.

The following are saved:-

Graphics Programming Interface

e Current attributes

e Current transforms and clip window and clip area
e Current position

o Reference to selected clip region

o Any loaded logical color table

e References to any loaded logical fonts

o References to any loaded symbol sets

o References to any loaded line type set

e References to the regions created on the associated Dev-
ice Context

The following are not saved:-
e Default attributes
e The visible region

Note that the actual resources which are referenced in a
saved PS (eg clip region, logical fonts, symbol sets, line type
set, references to reglons) are not copled by GpiSavePS; only
references to them are copied. They should not therefore be
changed.

This function is valid in an open segment bracket, and also
within an open element bracket. If it occurs within an open
area, clip area, or strokes bracket, then the corresponding
GpiRestorePS should take place before the bracket is closed.

Parameters:

hgpi Specifies the handle of the GPI presentation space.

Returns:

0 Error
>1 The identifier for the saved presentatlon space.
This may be used on a subsequent GpiRestorePS.

Principal errors:
GpiRestorePS
BOOL GpiRestorePS (hgpi, psid)
HPS hgpi;
LONG psid;

Restores the state of the presentation space to that which
existed at the time the corresponding GpiSavePS was issued.

It is possible to restore to a saved presentation space which

95

Windows Presentation Manager Reference

96

was not the one most recently saved. In this case, any which

are skipped over on

the stack are discarded.

It is an error to issue this function in an open segment

bracket.

This function is valid in an open segment bracket, and also
within an open element bracket. If it occurs within an open
area, clip area, or strokes bracket, then the corresponding
GpiSavePS should have taken place earlier in the same

bracket.

Parameters:

hgpi Specifies the handle of the GPI presentation space.

psid Identifies which saved presentation space is to be

restored:-

psid > 1

psid =1

psid =0

psid < 0

psid must be the identifier of a saved
presentation space on the stack. It is an
error if it does not exist.

All (any) entries on the stack are deleted.
The presentation space is unchanged.

Is an error. (This might have resulted
from an erroneous GpiSavePS.)

The absolute value of psid indicates how
many saved presentation spaces back on
the stack is required. Thus -7 means that
the most recently saved one is to be
restored. It is an error if the absolute
value is larger than the number of
entries on the stack. space is returned.

This may be used on a subsequent
GpiRestorePS.

If an error is returned, the stack is unchanged, as
is the current presentation space.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_ID

Graphics Programming Interface

GpiAssociate

BOOL GpiAssociate (hgpi, hdc)
HPS hgpi:
HANDLE hdc;

Associate a GPI presentation space with a Device Context.
Any type of Device Context may be used. Subsequent stored
or non-stored drawing functions direct output to this Device
Context.

If a null handle is supplied for the Device Context, the
presentation space is just dissociated from the currently
associated Device Context.

If, however, the Device Context handle is not null, then it is
an error if either the presentation space is currently associ-

ated with another Device Context, or the Device Context is

currently associated with another presentation space.

The processing described for GRES_ ATTRS (see
GpiResetPS) is performed on the presentation space. In addi-
tion, bounds and correlate data are destroyed, and any
selected clip region is lost.

Any dynamic segments left drawn on the device will not be
subsequently removable by GpiRemoveDynamics.

Parameters:

hgpi Specifies the handle of the GPI presentation space.
This must be a normal PS.

hde Specifies the handle of the display context. If null,
a dissociation occurs.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_PS_ALREADY_ASSOCIATED
GPIERR_DC_ALREADY_ASSOCIATED

GpiErrorSegmentData
LONG GpiErrorSegmentData (hgpi, name, context)
HPS hgpi:
LONG +*name:;
LONG #*context:

A function that returns information about the last error that
occurred during a segment drawing operation.

The information returned is the segment name, the context,

97

Windows Presentation Manager Reference

and the byte offset or element number, depending upon the
context.

The byte offset is returned for the following contexts:-
e The error occurred within the data of a GpiPutData, or
e The error occurred within the data of a GpiElement.

Otherwise (segment context), the element number is
returned.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

xname A variable in which the segment name is to be
returned.

*context
A variable in which the context of the error is
returned:-

GPIE_ SEGMENT (0)
The error occurred while processing the
contents of a stored segment

GPIE_ ELEMENT (1)
The error occurred while processing the
contents of a GpiElement

GPIE_DATA (2)
The error occurred while processing the
contents of a GpiPutData

Returns:

-1 Error
>=0 Position. This is either the byte offset or the element
number, depending uponcontezt (see above).

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

7.1.12 Drawing Functions

GpiErase

BOOL GpiErase (hgpi)
HPS hgpi:

Clears the output display of the Device Context associated
with the specified GPI presentation space, to the zero color

98

Graphics Programming Interface

index value.

This operation is independent of the settings of the draw
controls (see GpiSetDrawControl), and also of any applica-
tion clipping which may be in force.

If this function is followed by primitives or attributes,
without first opening a segment, then the processing will be
as described for GpiCloseSegment.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

Returns:

0 Error
1 OK

Principal errors:

GpiSetDrawControl

BOOL GpiSetDrawControl (hgpi, control, value)
HPS hgpi:

LONG control;

LONG value:

This function sets various options for subsequent GpiDraw...
and GpiDrawDynamics drawing operations.

The default values are off for all controls other than Display,
which is on.

It is an error to issue this function in any of the following
cases:-

e Inside an open segment

e Outside an open segment, but inside one of the
following:-

e Area bracket
Strokes bracket
Element bracket
e Clip area bracket

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

99

Windows Presentation Manager Reference

100

control

value

Returns:

0 Error
1 OK

Specifies which drawing control is to be changed,
as follows:-

1 - Erase before draw

Before GpiDrawChain, GpiDrawFrom, or
GpiDrawSegment, perform an implicit
GpiErase operation.

2 - Display ()

Allow drawing to take place on the out-
put medium.

If this flag is off, then except for Gpi-
Erase, no output operations appear on
the output medium. This includes raster
operations, drawing primtives, GpiDraw
operations, etc.

3 - Accumulate boundary data (*)

During any output operations except
GpiErase, accumulate the bounding rec-
tangle of the drawing. See the section,
“Correlation and Boundary Determina-
tion Functions”.

4 - Draw dynamic segments

Perform an implicit GpiRemoveDynam-
ics before GpiDrawChain, Gpi-
DrawFrom, or GpiDrawSegment, and an
implicit GpiDrawDynamics afterwards.

5 - Correlate (*)

When GpiPutData, GpiElement, or indi-
vidual drawing primitives are passed
across the API, perform a correlation
operation on them, and set a return code
if a hit occurs.

Controls identified by (*) above are the only ones
relevant to a micro-PS. Any other control settings
will be ignored for a micro-PS.

Specifies the required value of the drawing
control:-

0 Off
1 On

Graphics Programming Interface

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_SEG_CONTEXT_ERROR
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR
GPIERR_STROKES_CONTEXT_ERROR
GPIERR_INVALID_DRAW_CONTROL
GPIERR_INVALID_DRAW_VALUE

GpiQueryDrawControl

LONG GpiQueryDrawControl (hgpi, control)
HPS hgpi:
LONG control;

This returns a drawing control set by GpiSetDrawControl.
Parameters:

hgpi Specifies the handle for the GPI presentation
space.

control identifies the control whose value is to be returned,
as follows:-

1 Erase before draw

2 Display

8 Accumulate boundary data
4 Draw dynamic segments

5 Correlate

Returns:

-1 Error
>=0 Value of the control. See GpiSetDrawControl for details.

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_DRAW_CONTROL

GpiDrawChain

BOOL GpiDrawChain (hgpi)
HPS hgpi:

Draws the picture chain.

The drawing operation is controlled by the functions set by
the draw controls (see GpiSetDrawControl), except for the
correlate control.

If there is not a segment open at the time of the draw, then
at the completion of the draw, processing equivalent to that
described for GpiCloseSegment will be performed. If, how-
ever, a segment is already open at the time of the draw, then
GpiCloseSegment processing will not be performed at the

101

‘Windows Presentation Manager Reference

102

completion of the draw. In this case, if the open segment is
the last in the chain (and no dynamic segments had to be
drawn), then attributes etc will be in the correct state to
continue drawing in any drawing mode.

It is an error to issue this function while any of the following
brackets is open:-

e Area bracket

Clip area bracket
Strokes bracket
o FElement bracket

Any such error will be detected prior to performing any erase
required by the setting of the ’erase before draw’ draw con-
trol (see GpiSetDrawControl).

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR
GPIERR_STROKES_CONTEXT_ERROR
GPIERR_STOP_DRAW_OCCURRED (warning)

GPIERR_AREA DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEFN_NOT_COMPLETE (at segment end)

Note that for a ’compatible’ PS, the return value is SHORT,
and can be 0 or 1, as above, and also 2 which means
"correlate hit(s)’.

GpiDrawFrom

BOOL GpiDrawErom (hgpi, namel, name2)
HPS hgpi:

LONG namel;

LONG name2:

Draws a section of the picture chain.

Drawing starts at the segment identified by namel and
includes all chained and called segments up to, and includ-
ing, the segment identified by name2.

Graphics Programming Interface

The drawing operation is controlled by the functions set by
the draw controls (see GpiSetDrawControl), except for the
correlate control.

If there is not a segment open at the time of the draw, then
at the completion of the draw, processing equivalent to that
described for GpiCloseSegment will be performed. If, how-
ever, a segment is already open at the time of the draw, then
GpiCloseSegment processing will not be performed at the
completion of the draw. In this case, if the open segment is
the last one drawn (and no dynamic segments had to be
drawn), then attributes etc will be in the correct state to
continue drawing in any drawing mode.

It is an error to issue this function while any of the following
brackets is open:-

e Area bracket

e Clip area bracket
e Strokes bracket
e Element bracket

If the 'from’ segment does not exist, or is not in the segment
chain, an error is raised. If the ’to’ segment does not exist, or
is not in the chain, or is chained before the ’from’ segment,
no error is raised, and processing continues to the end of the
chain.

Any errors will be detected prior to performing any erase
requireed by the setting of the ’erase before draw’ draw con-
trol (see GpiSetDrawControl).

Parameters:

hgpi Specifies the handle for the GPI presentation

space.
namel Specifies the first segment to be drawn. It must be
> 0.
name2 Specifies the last segment to be drawn. It must be
> 0.
Returns:
0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR

103

Windows Presentation Manager Reference

104

GPIERR_STROKES_CONTEXT_ERROR
GPIERR_STOP_DRAW_OCCURRED (warning)
GPIERR_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEFN_NOT_COMPLETE (at segment end)
GPIERR_NAMED_SEG_DOES_NOT_EXIST (I.E. NAME1)
GPIERR_NAMED_SEG_NOT_CHAINED (I.E. NAME1)
GPIERR_INVALID_SEG_ID (I.E. NAME1l or NAME2)

Note that for a ’compatible’ PS, the return value is SHORT,
and can be 0 or 1, as above, and also 2 which means
"correlate hit(s)’.

GpiDrawSegment

BOOL GpiDrawSegment (hgpi, name)
HPS hgpi:

Draws the specified segment.

The drawing operation is controlled by the functions set by
the draw controls (see GpiSetDrawControl), except for the
correlate control.

If there is not a segment open at the time of the draw, then
at the completion of the draw, processing equivalent to that
described for GpiCloseSegment will be performed. If, how-
ever, a segment is already open at the time of the draw, then
GpiCloseSegment processing will not be performed at the
completion of the draw. In this case, if the open segment is
the last one drawn (and no dynamic segments had to be
drawn), then attributes etc will be in the correct state to
continue drawing in any drawing mode.

It is an error to issue this function while any of the following
brackets is open:-

e Area bracket

e Clip area bracket
e Strokes bracket
e Element bracket

If the from’ segment does not exist, or is not in the segment
chain, an error 1s raised. If the ’to’ segment does not exist, or
is not in the chain, or is chained before the ’from’ segment,
nlcl) error is raised, and processing continues to the end of the
chain.

Any errors will be detected prior to performing any erase
requireed by the setting of the ’erase before draw’ draw con-
trol (see GpiSetDrawControl).

Parameters:

Graphics Programming Interface

hgpi Specifies the handle for the GPI presentation
space.

name Specifies the segment that is to be drawn. It must
be > 0.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR
GPIERR_STROKES_CONTEXT_ERROR
GPIERR_STOP_DRAW_OCCURRED (warning)
GPIERR_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEEN_NOT_COMPLETE (at segment end)
GPIERR_NAMED_SEG_DOES_NOT_EXIST
GPIERR_INVALID_SEG_ID (I.E. NAME)

Note that for a ’compatible’ PS, the return value is SHORT,
and can be 0 or 1, as above, and also 2 which means
"correlate hit(s)’.

GpiSetStopDraw

BOOL GpiSetStopDraw (hgpi, value)
HPS hgpi;

This either sets or clears the 'stop draw’ condition. While
this condition exists, if one of the following operations is
either started or already in progress (initiated from another
thread), to the specified GPI presentation space, then it is
terminated.

The operations are:-
— GpiDrawChain
— GpiDrawFrom

— GpiDrawSegment
— GpiDrawDynamics
— GpiPutData

— GpiPlayMetaFile

The stopped operation will terminate with an error return
code.

This function allows an application to set up and control an
asynchronous thread, on which long drawing operations may
be done. At the point at which the controlling thread

105

Windows Presentation Manager Reference

106

realises it wishes to stop a draw, it sets the ’stop draw’ con-
dition, and clears it after it has received an acknowledgment
from the drawing thread.

The ’stop draw’ condition has no effect on any other func-
tions.

(Any operation other than GpiSetStopDraw, directed at a
presentation space which is currently in use, will give an
error return code, except for a presentation space in implicit
draw mode.)

Note that if this function is issued when an asynchronous
draw to a metafile is taking place, an unusable metafile will
result.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

value The required value of the attribute, as follows:-

0 Clear the 'stop draw' condition
1 Set the 'stop draw' condition

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_VALUE

GpiQueryStopDraw

LONG GpiQueryStopDraw (hgpi)
HPS hgpi:;

This returns an indication of whether the ’stop draw’ condi-
tion currently exists. See GpiSetStopDraw for details.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

Returns:

-1 Error
0 No 'stop draw' condition currently exists.
1 The 'stop draw' condition does currently exist.

Principal errors:

GPIERR_INVALID_MI CROPS_EUNCTI ON

Graphics Programming Interface

GpiRemoveDynamics

BOOL GpiRemoveDynamics (hgpi, namel, name2)
HPS hgpi:;

LONG namel;

LONG name2;

Removes those parts of the displayed image that were drawn
from the dynamic segments in a section of the picture chain.
This includes any parts that were drawn by calls from these

dynamic segments.

The section of the picture chain is identified by the name of
the first and last segments in the section. If namel and
name? have the same value, GpiRemoveDynamics erases only
the parts drawn from the named segment and by calls from
that segment.

GpiRemoveDynamics usually indicates (1) that a dynamic
segment is about to be updated; and (2) that, having com-
pleted the update, GpiDrawDynamics will be called to
redraw the dynamic segments.

If a temporary re-association is to be done, GpiRemo-
veDynamics should be issued to remove the dynamic seg-
ments from the display before the first dissociation.

If this function is followed by primitives or attributes,
without first opening a segment, then the processing will be
as described for GpiCloseSegment.

If the from’ segment does not exist, or is not in the segment
chain, no action is taken. If the 'to’ segment does not exist,
or is not in the chain, or is chained before the 'from’ seg-
ment, no error is raised, and processing continues to the end
of the chain.

Parameters:

hgpi The handle of the GPI presentation space.

namel The name of the first segment in the section. It
must be > 0.

name2 The last segment in the section. It must be > 0.
Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR

107

‘Windows Presentation Manager Reference

108

GPIERR_STROKES_CONTEXT_ERROR

GPIERR_AREA DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEEN_NOT_COMPLETE (at segment end)
GPIERR_INVALID_SEG_ID (I.E. NAMEl or NAME2)
GPIERR_INVALID_METAFILE_FUNCTION (warning)

GpiDrawDynamics

BOOL GpiDrawDynamics (hgpi)
HPS hgpi:;

Redraws the dynamic segments in, or called from, the pic-
ture chain. If there is no range set by a previous GpiRemo-
veDynamics all dynamic segments are redrawn. However, if
GpiRemoveDynamics specified a range in the picture chain,
the redraw is restricted to the dynamic segments that are in,
or)called from, the selected range. (See GpiRemoveDynam-
ics

Note that the redraw is controlled by the functions set by
previous calls to GpiSetDrawControl.

Note that the ’stop draw’ condition can be set (from another
thread) while GpiDrawDynamics is in progress. This is useful
in responding to a new position by setting this condition,

and then clearing it and redrawing at the new position.

If erase was specified in the most recent call to GpiSet-
DrawControl, the presentation space is erased before the
redraw.

If this function is followed by primitives or attributes,
without first opening a segment, then the processing will be
as described for GpiCloseSegment.

Parameters:

hgpi Specifies the handle for the GPI presentation
space.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_STOP_DRAW_OCCURRED (warning)
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR
GPIERR_STROKES_CONTEXT_ERROR
GPIERR_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA_ DEEN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEEN_NOT_COMPLETE (at segment end)

Graphics Programming Interface

GPIERR_INVALID_METAFILE_FUNCTION (warning)
GpiSetDrawingMode

BOOL GpiSetDrawingMode (hgpi, mode)
HPS hgpi:
LONG mode:;

This sets the Drawing Mode to control how subsequent indi-
vidual drawing order and GpiPutData requests are handled.
The orders may be drawn immediately in non-stored mode,
and/or stored in the current segment.

Note that any drawing orders which occur outside a segment
(ie outside a GpiOpenSegment - GpiCloseSegment bracket
are treated as non-stored. Conversely, any segments whic
are not chained are always stored. The following table sum-
marizes the possibilities:-

]

[}

! Drawing

! Mode j=m—————————_——————————_————
]]

! iChained |Unchained !Outside

! |Segment | Segment |Segment
[y A U S S
iDrawAndStore |DrawAndStore |Store |Draw

| |

[| T T T T T s T T T s e e T e e T
|Store |Store |Store |Draw
lecmm e ——- e g U M g g O
]]

iDraw \Draw |Store |Draw

The actual drawing mode (referred to when describing other
Gpi functions) therefore depends upon the mode as set by
GpiSetDrawingMode, in conjunction with the type of seg-
ment, as in the table.

It is an error to attempt to set the drawing mode within a
segment bracket, and also, outside a segment bracket, in a

e Area bracket

e Strokes bracket

o Clip area bracket

o Element bracket

The default Drawing Mode is Draw (non-stored).

This function is invalid for a presentation space operating in
implicit draw mode (see GpiCreatePS).

Parameters:

109

Windows Presentation Manager Reference

110

hgpi Specifies the handle for the GPI presentation
space.

mode Specifies the mode to be used for subsequent draw-
ing functions, as follows:-

1 Draw (non-stored)
2 Store
8 Draw-and-store

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_IMPLICIT DRAW_FUNCTION
GPIERR_SEG_CONTEXT_ERROR
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_AREA_CONTEXT_ERROR
GPIERR_CLIP_AREA_CONTEXT_ERROR
GPIERR_STROKES_CONTEXT_ERROR
GPIERR_INVALID_DRAWING_MODE

GpiQueryDrawingMode

LONG GpiQueryDrawingMode (hgpi)
HPS hgpi;

This returns the Drawing Mode.
Parameters:

hgpi Specifies the handle for the GPI presentation
space.

Returns:

0 Error
>0 Drawing mode. See GpiSetDrawingMode for details.

Principal errors:

GpiPutData

SHORT GpiPutData (hgpi, control, length, data)
HPS hgpi:

LONG control:

LONG xlength;

LPBUF data;

Passes a buffer of orders which are either to be added to the
current segment, and/or drawn without storing them in a
segment, depending upon the current drawing mode (see
GpiSetDrawingMode), and whether or not the primitives are

Graphics Programming Interface

within a segment.

If there is an incomplete order at the end of the buffer, then
#length is updated to point to the start of the incomplete
order. The application can then concatenate this partial
order in front of the next buffer.

This function is valid within an element bracket (see GpiBe-
ginElement). It may contain GpiBeginElement and GpiEn-
dElement orders, so long as these are in the correct sequence
with respect to the currently opened segment in segment
store.

Note that no co-ordinate conversion is performed by this
function. The application must ensure that the co-ordinates
within the buffer are in the correct format for the presenta-
tion space.

This function is invalid if the editing mode (see GpiSetEdit-
Mode) is set to replace, and also in insert mode if the element
pointer (see the section, “Segment Content Manipulation
Functions (indirect)”) is not pointing to the last element.

For a ’compatible’ presentation space, GpiPutData is only
supported in replace mode.

Parameters:

hgpi The handle for the GPI presentation space.

control Gives the co-ordinate type and format used in the
data. This must be

5 Self-identifying

xlength A variable which the application sets to the length
of order data pointed to by data. On return, if an
incomplete order occurred, it is updated to the
offset of the start of the incomplete order.

*length must not be greater than 63K.
data Specifies the starting address of the order data.
Returns:

0 Error
1 0K
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_MICROPS_EUNCTION
GPIERR_INVALID_LENGTH
GPIERR_DATA_TOO_LONG
GPIERR_INVALID_ORDER
GPIERR_INVALID_EDIT_MODE

111

Windows Presentation Manager Reference

| GPIERR_INVALID_ELEMENT_POINTER

7.1.13 Correlation and Boundary Determination
Functions

7.1.13.1 Correlation

A correlation operation is where the application specifies a rectangle, nor-
mally a small one centered about the point that the operator was pointing
to on the screen, and asks which, if any, primitives cause information to be
displayed that rectangle.

The primitives are subject to clipping by GpiSetViewingLimits, and by
GpiSetGraphicsField, but not by any lower level clipping arising from dev-
ice considerations, such as the limits of the screen window.

For stored segments, correlation is performed independently of drawing.
Non-stored primitives may optionally be correlated at the same time as
drawing (and/or boundary determination).

Only non-dynamic segments, with the defectable, attribute, can be corre-
lated upon. This includes both stored and non-stored segments. Primi-
tives outside segments may also be correlated upon.

7.1.13.2 Boundary Determination

Boundary determination is an operation carried out by the system, which
tells the application the smallest bounding rectangle of the primitives or
segments drawn. This information is useful to an application in deciding
which segments need to be redrawn to heal any particular part of the
display.

The primitives are not subject to any clipping. The information is
returned in Model Space co-ordinates.

Dynamic segments are not included in boundary determination.

7.1.13.3 Functions

A correlation operation may be performed by one of the following
methods, depending upon whether the picture is first stored, or not:-

e For an already stored picture:-

e Issue one of the GpiCorrelate functions

112

Graphics Programming Interface

Inspect the data returned in the parameters

This method of correlation will only correlate on segments with a
nonzero identifier &and not called for a segment with a zero identifier),

and on primitives

or which the current tag is nonzero.

e For a non-stored picture (draw mode), or while creating a picture in
draw-and-store mode:-

Set the 'correlate’ flag (see GpiSetDrawControl)
Set the pick aperture (see GpiSetPickAperture)

Issue a series of GpiPutData functions or pass individual primitives
across the APL.

Inspect the return code as each GpiPutData or primitive is passed.

This method of correlation is still performed even if the segment id is
zero, and /or the primitive tag is currently zero.

A boundary determination operation may be performed as follows:-

e For an already stored picture:-

Set the ’accumulate boundary data’ flag (see GpiSetDrawControl)
Issue one of the GpiDraw functions

Inspect the resulting boundary data (see GpiQueryBoundaryData)

e For a non-stored picture (draw mode), or while creating a picture in
draw-and-store mode:-

Set the 'accumulate boundary data’ flag (see GpiSetDrawControl)
Set the pick aperture (see GpiSetPickAperture)

Issue a series of GpiPutData functions or pass individual primitives
across the APIL.

Inspect the resulting boundary data (see GpiQueryBoundaryData)

Note that in the non-stored case (with either GpiPutData or individual
primitives), a hit on the perimeter of an area will be returned before a hit
on the area interior, which occurs on the GpiEndArea function.

For correlation on geometric thick lines, a hit may be recorded on the
nominal width of the strokes as they are passed, and then correlation is
performed on the whole (set of) strokes at End Strokes time, in a similar
manner to areas.

113

Windows Presentation Manager Reference

7.1.13.4 Pick Aperture and Tag Functions

GpiSetPickAperture

BOOL GpiSetPickAperture (hgpi, options, x, y, w, h)
HPS hgpi:;

LONG x;

LONG vy

LONG w:

LONG h;:

Sets the position and size of the pick aperture, in Model Space,
for subsequent non-stored correlation operations. The dimen-
sions of the pick aperture are inclusive.

Parameters:

hgpi The handle for the GPI presentation space.

options Specifies how the values wand k are to be interpreted,
as follows:-

0- PICKAP_DEFAULT the default,
same as PICKAP_SCALED

1- PICKAP_SCALED the width and height
are set to w and h,
respectively, multiplied by their
default values.

2 - PICKAP- RECT the width and height
are set to w and h

respectively
X,y The coordinates of the center of the window.
w,h Depend upon the setting of options, as described

above.

In the case of PICKAP_SCALED (only), the binary
point is considered to be between the second and third
bytes; thus 65536 represents the value unity.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_CENTRE_OUTSIDE_PAGE (i.e. x, y)
GPIERR_WINDOW_LIMITS_OUTSIDE_PAGE (W H TOO LARGE)
GPIERR_INVALID_PICK_APERTURE_DIMENSION

GpiQueryPickAperture
BOOL GpiQueryPickAperture (hgpi, x, y, w, h)

HPS hgpi:
LONG *x;

114

Graphics Programming Interface

LONG =xy:
LONG #*w;
LONG #h;

This returns the position and size of the pick window, in Model
Space co-ordinates.

(For a compatible presentation space, they are in GPS co-
ordinates.)

Parameters:

hgpi The handle for the GPI presentation space.
*X, %y Set to the coordinates of the center of the aperture.

*w,xh Set to the width and height of the aperture on the x
and y axes, respectively.

Returns:

0 Error
1 OK

Principal errors:

GpiSetTag

BOOL GpiSetTag (hgpi, tag)
HPS hgpi:
LONG tag;

Sets the primitive tag to the specified value.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con-
structed and placed into the current segment.

This function can be modified to push the old value onto the seg-
ment call stack before setting to the new value (see GpiSetAt-
trMode).

Parameters:

hgpi The handle for the GPI presentation space.
tag The new value for the tag.
Returns:

0 Error
1 OK

Principal errors:
GPIERR_INVALID_MICROPS_FUNCTION
Note: Setting the tag to 0 is a special case. Graphics primitives

115

‘Windows Presentation Manager Reference

cannot be picked if they are assigned a tag of 0.
GpiQueryTag

BOOL GpiQueryTag (hgpi, tag)

HPS hgpi:

LONG =*tag;

Sets the current or default primitive tag. This function is
invalid in store mode or implicit draw mode.

Parameters:

hgpi The handle for the GPI presentation space.
*xtag A variable in which the tag value is returned.
Returns:

0 Error
1 OK

Principal errors:

CGPIERR_INVALID_MICROPS_FUNCTION

7.1.13.5 Correlation Data Functions

GpiCorrelateChain

SHORT GpiCorrelateChain (hgpi, ctype., x, y. atype,
cl, spec_array, c2, depth, seg_array,
tag_array, num_hits)

HPS hgpi:;

LONG ctype:

LONG x:

LONG vy

LONG atype:

LONG c1:

LONG spec_array[]:

LONG c2:

LONG depth;

LONG seg_array([]:

LONG tag_array([]:

LONG num_hits;

Performs a correlate operation on the stored segment chain, and
returns data for each tagged primitive that intersects the
specified aperture. The data returned for each "hit" (or correla-
tion) consists of a set of segment and tag pairs, starting with the
correlated one, then the one which called that segment, repeated
until the root segment (which was not called by another seg-
ment) is reached.

Only primitives with a nonzero tag (see GpiSetTag) in segments

116

Graphics Programming Interface

with a nonzero identifier are correlated using this call. Primi-
tives in segments called (to any depth in the hierarchy) from a
segment zero are ineligible for correlation.

The depth value specifies the number of sets of segment and tag
pairs to be returned for each hit. If the root segment is reached
before depth values, the remaining values are set to zero. If more
than depth values are available, only that number are returned.

The draw controls (see GpiSetDrawControl) are ignored by this
function.

If this function is followed by primitives or attributes, without
first opening a segment, then the processing will be as described
for GpiCloseSegment.

Parameters:

hgpi The handle for the GPI presentation space.

ctype The type of segments on which correlation is to be
performed:-

0 - PICKSEL_ VISIBLE
Only visible and detectable segments, with
nonzero identifiers, are correlated.

1 - PICKSEL— ALL
All segments with nonzero identifiers are
correlated, regardless of the detectability
and visibility attributes of the segments.

X,y The co-ordinates of the position of the center of the
aperture in Model Space

atype The type of aperture to be used:-
0 - PICKAP_DEFAULT
The default; same as 1.

1 - PICKAP_SCALED
Scaled pick aperture

The spec— array parameter must contain a
single element, which is a uniform scaling
aperture that i1s applied to the device’s
default pick aperture. In this case the
binary point of the spec— array parameter is
considered to be between the second and
third bytes; thus 65536 represents the value
unity.

2 - PICKAP_RECT
Rectangular aperture

117

Windows Presentation Manager Reference

118

cl

The spec— array parameter must contain two
Model Space values, giving the width and
height (respectivelys of a rectangular aper-
ture. The center of the rectangle is posi-
tioned at the point given by the values in the
z and y parameters.

The number of elements in the spec— array parameter

spec—array|cl]

c2

depth

An array of numbers as defined by the atype parameter

The maximum number of hits which can be returned
in the seg— array and tag— array parameters

The number of segment and tag pairs to be returned
for each hit

seg— array[c2|[depth]

n array of segment identifiers. For each hit, a set of
depth values are returned.

tag_array[c2|[depth]

n array of primitive tags. For each hit, a set of depth
values are returned.

snum- hit¥

A variable in which the number of hits in the
seg— array and tag— array parameters is returned.

A ’hit’ is an instance of a segment identifier and tag
pair for which the primitives lie completely or partially
within the specified aperture. Two different primitives
in the same segment might have the same tag, and
would therefore produce the same hit. This is counted
as a single hit; the hit is only recorded once in the

seg— array and tag— array that are returned. The

num— hits parameter, therefore, returns this distinct
number of hits.

The tables seg— array and tag— array are set to the hits
that are found, up to the maximum defined in the c2
parameter. Corresponding sets of elements form the
’hit’ pairs. The number returned in num— hits therefore
contains the number of sets of depth pairs set if the c2
parameter is greater than the number of hits detected.
The number of elements set in the seg— array and

tag— array parameters is the number returned in

num— hits multiplied by the depth.

If the same value is returned in the num_ hits parame-
ter as is specified in the c2 parameter, there may be
yet more hits that cannot be returned in seg— array
and tag— array. If all hits are important, specify arrays
that are large enough to contain the maximum number

Graphics Programming Interface

of hits that are expected.
Returns:

0 Error
1 0K
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

GPIERR_AREA DEEN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEEFN_NOT_COMPLETE (at segment end)

GpiCorrelateFrom

SHORT GpiCorrelateFrom (hgpi., namel, name2, ctype,
X, Y, atype, cl, spec_array, c2, depth,
seg_array, tag_array, num_hits)

HPS hgpi:

LONG namel;

LONG name2;

LONG ctype:;

LONG x:

LONG vy

LONG atype;

LONG c1:

LONG spec_array([]:

LONG c2;

LONG depth:

LONG seg_array([]:

LONG tag_array[]:

LONG num_hits:

Performs a correlate operation on a section of the stored seg-
ment chain, starting at the segment identified by namel, and
including chained and called segments up to, and including, the
segment identified by name?2.

Data is returned for each tagged primitive that intersects the
specified aperture. The data returned for each "hit" (or correla-
tion) consists of a set of segment and tag pairs, starting with the
correlated one, then the one which called that segment, repeated
until the root segment (which was not called by another seg-
ment) is reached.

Only primitives with a nonzero tag (see GpiSetTag) in segments
with a nonzero identifier are correlated using this call. Primi-
tives in segments called (to any depth in the hierarchy) from a
segment zero are ineligible for correlation.

The depth value specifies the number of sets of segment and tag
pairs to be returned for each hit. If the root segment is reached
before depth values, the remaining values are set to zero. If more
than depth values are available, only that number are returned.

119

Windows Presentation Manager Reference

120

The draw controls (see GpiSetDrawControl) are ignored by this

function.

If this function is followed by primitives or attributes, without
first opening a segment, then the processing will be as described
for GpiCloseSegment.

If the ’from’ segment does not exist, or is not in the segment
chain, an error is raised. If the 'to’ segment does not exist, or is
not in the chain, or is chained before the 'from’ segment, no
error is raised, and processing continues to the end of the chain.

Parameters:
hgpi The handle for the GPI presentation space.
namel Specifies the first segment to be correlated. It must be
> 0.
name2 Specifies the last segment to be correlated. It must be
> 0.
ctype The type of segments on which correlation is to be
performed:-
0 - PICKSEL- VISIBLE
Only visible and detectable segments, with
nonzero identifiers, are correlated.
1 - PICKSEL_ALL
All segments with nonzero identifiers are
correlated, regardless of the detectability
and visibility attributes of the segments.
X,y The co-ordinates of the position of the center of the
aperture in Model Space
atype The type of aperture to be used:-

0 - PICKAP_DEFAULT
The default; same as 1.

1 - PICKAP_SCALED
Scaled pick aperture

The spec— array parameter must contain a
single element, which is a uniform scaling
aperture that 1s applied to the device’s
default pick aperture. In this case the
binary point of the spec— array parameter is
considered to be between the second and
third bytes; thus 65536 represents the value
unity.

cl

Graphics Programming Interface

2 - PICKAP_RECT
Rectangular aperture

The spec— array parameter must contain two
Model Space values, giving the width and
height respectively§ of a rectangular aper-
ture. The center of the rectangle is posi-
tioned at the point given by the values in the
z and y parameters.

The number of elements in the spec— array parameter

spec—array|cl]

c2

depth

An array of numbers as defined by the atype parameter

The maximum number of hits which can be returned
in the seg— array and tag— array parameters

The number of segment and tag pairs to be returned
for each hit

seg— array[c2][depth]

An array of segment identifiers. For each hit, a set of
depth values are returned.

tag—array[c2][depth]

n array of primitive tags. For each hit, a set of depth
values are returned.

*num-_ hits

A variable in which the number of hits in the
seg— array and tag— array parameters is returned.

A ’hit’ is an instance of a segment identifier and tag
pair for which the primitives lie completely or partially
within the specified aperture. Two different primitives
in the same segment might have the same tag, and
would therefore produce the same hit. This is counted
as a single hit; the hit is only recorded once in the

seg— array and tag— array that are returned. The

num— hits parameter, therefore, returns this distinct
number of hits.

The tables seg— array and tag— array are set to the hits
that are found, up to the maximum defined in the c2
parameter. Corresponding sets of elements form the
’hit’ pairs. The number returned in num— hits therefore
contains the number of sets of depth pairs set if the c2
parameter is greater than the number of hits detected.
The number of elements set in the seg— array and

tag— array parameters is the number returned in

num— hits multiplied by the depth.

If the same value is returned in the num_ hits parame-
ter as is specified in the ¢2 parameter, there may be

121

Windows Presentation Manager Reference

yet more hits that cannot be returned in seg— array
and tag— array. If all hits are important, specify arrays
that are large enough to contain the maximum number
of hits that are expected.

Returns:

0 Error
1 0K
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_NAMED_SEG_DOES_NOT_EXIST (I.E. NAME1l)
GPIERR_NAMED_SEG_NOT_CHAINED (I.E. NAME1l)
GPIERR_INVALID_SEG_ID (I.E. NAMEl or NAME2)
GPIERR_AREA_DEEN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEEN_NOT_COMPLETE (at segment end)

GpiCorrelateSegment

122

SHORT GpiCorrelateSegment (hgpi, name, ctype,
X, Yy, atype, cl, spec_array, c2, depth,
seg_array, tag_array, num_hits)

LONG spec_array([]:
LONG c2;

LONG depth:;

LONG seg_array[]:
LONG tag_array[]:
LONG num_hits;

Performs a correlate operation on the specified segment.

Data is returned for each tagged primitive that intersects the
specified aperture. The data returned for each "hit" (or correla-
tion) consists of a set of segment and tag pairs, starting with the
correlated one, then the one which called that segment, repeated
until the root segment (which was not called by another seg-
ment) is reached.

The root segment name must be non-zero.

The depth value specifies the number of sets of segment and tag
pairs to be returned for each hit. If the root segment is reached
before depth values, the remaining values are set to zero. If more
than depth values are available, only that number are returned.

The draw controls (see GpiSetDrawControl) are ignored by this
function.

Graphics Programming Interface

If this function is followed by primitives or attributes, without
first opening a segment, then the processing will be as described

for GpiCloseSegment.
Parameters:
hgpi The handle for the GPI presentation space.
name Specifies the root segment to be correlated. It must be
> 0.
ctype The type of segments on which correlation is to be
performed:-
0 - PICKSEL- VISIBLE
Only visible and detectable segments, with
nonzero identifiers, are correlated.
1 - PICKSEL- ALL
All segments with nonzero identifiers are
correlated, regardless of the detectability
and visibility attributes of the segments.
X,y The co-ordinates of the position of the center of the
aperture in Model Space
atype The type of aperture to be used:-

0 - PICKAP_DEFAULT
The default; same as 1.

1 - PICKAP_SCALED
Scaled pick aperture

The spec— array parameter must contain a
single element, which is a uniform scaling
aperture that 1s applied to the device’s
default pick aperture. In this case the
binary point of the spec— array parameter is
considered to be between the second and
third bytes; thus 65536 represents the value
unity.

2 - PICKAP_RECT
Rectangular aperture

The spec— array parameter must contain two
Model Space values, giving the width and
height respectivelyS of a rectangular aper-
ture. The center of the rectangle is posi-
tioned at the point given by the values in the
z and y parameters.

123

Windows Presentation Manager Reference

124

cl

The number of elements in the spec— array parameter

spec—array|cl]

c2

depth

An array of numbers as defined by the atype parameter

The maximum number of hits which can be returned
in the seg— array and tag— array parameters

The number of segment and tag pairs to be returned
for each hit

seg— array|c2][depth]

An array of segment identifiers. For each hit, a set of
depth values are returned.

tag— array[c2|[depth]

n array of primitive tags. For each hit, a set of depth
values are returned.

*num- hits

Returns:

0 Error
1 OK
2 Corre

A variable in which the number of hits in the
seg— array and fag— array parameters is returned.

A ’hit’ is an instance of a segment identifier and tag
pair for which the primitives lie completely or partially
within the specified aperture. Two different primitives
ih the same segment might have the same tag, and
would therefore produce the same hit. This is counted
as a single hit; the hit is only recorded once in the

seg— array and tag— array that are returned. The

num_ hits parameter, therefore, returns this distinct
number of hits.

The tables seg— array and tag— array are set to the hits
that are found, up to the maximum defined in the c2
parameter. Corresponding sets of elements form the
’hit’ pairs. The number returned in num— hits therefore
contains the number of sets of depth pairs set if the c2
parameter is greater than the number of hits detected.
The number of elements set in the seg— array and

tag— array parameters is the number returned in

num— hits multiplied by the depth.

If the same value is returned in the num_ hits parame-
ter as is specified in the c2 parameter, there may be
yet more hits that cannot be returned in seg— array
and tag— array. If all hits are important, specify arrays
that are large enough to contain the maximum number
of hits that are expected.

late hit(s)

Graphics Programming Interface

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_NAMED_SEG_DOES_NOT_EXIST
GPIERR_INVALID_SEG_ID (I.E. NAME)
GPIERR_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE (at segment end)
GPIERR_STROKES_DEFN_NOT_COMPLETE (at segment end)

7.1.13.6 Bounds Data Functions

GpiResetBoundaryData

BOOL GpiResetBoundaryData (hgpi)
HPS hgpi;

Resets the boundary data to null.

This function is only necessary for draw mode boundary deter-
mination. Note that bounds data is not reset at the start of a
segment.

Bounds data is automatically reset before any Draw function.
Parameters:

hgpi The handle for the GPI presentation space.
Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GpiQueryBoundaryData

BOOL GpiQueryBoundaryData (hgpi, boundary)

HPS hgpi:

CGRECT boundary:

Returns the boundary data that was set upon completion of the
last boundary calculation. Boundary data is returned as the
coordinates in model space.

Parameters:

hgpi The handle for the GPI presentation space. resides.

boundary '
A rectangle structure in which the boundary data is
returned.

The data contains the following fields:

125

Windows Presentation Manager Reference

Xmin lowest x value found

ymin lowest y value found

Xmax highest x value found

ymax highest y value found
Returns:

0 Error
1 OK

Principal errors:
GPIERR_INVALID_MICROPS_FUNCTION

7.1.14 Segment Manipulation Functions

Segment manipulation functions fall into three classes:-

1.

Those which operate on whole segments

2. Those which manipulate the contents of a segment indirectly

None of the functions described in these sections are allowed to a micro-

PS.

7.1.14.1 Whole Segment Functions

GpiOpenSegment

126

BOOL GpiOpenSegment (hgpi, name)
HPS hgpi:;
LONG name:;

Opens a segment.

If the current drawing mode is store or draw-and-store (see
GpiSetDrawingMode), the following occurs:-

e If a non-zero name is given, then if a segment with the
specified name does not already exist, a new stored segment
is created. If one does already exist, 1t is re-opened in store
mode, but is an error in draw-and-store mode.

e If a name of zero is given, then a new stored segment is
created, regardless of whether or not one with a zero name
already exists. There can be more than one segment with a
name of zero, but such segments can never subsequently be
referenced by name. Once created, they will continue to
exist until all segments are deleted. It is an error to attempt
to open a segment zero with either the dynamic, or the not

Graphics Programming Interface

chained segment atrributes.

If the current drawing mode is draw, a new non-stored segment
is started. No check will be made against any possible stored
segment names. The current attributes will be set to default
values (subject to the fast chaining segment attribute - see
below).

The initial attributes of the segment are as set by GpiSetlnitial-
SegmentAttrs (which see for default values). The attributes may
subsequently be changed with GpiSetSegmentAttrs (except for a
segment with a name of zero). It is an error to attempt to open
a new segment in draw or draw-and-store mode, with the
dynamac segment attribute.

GpiOpenSegment causes a segment bracket to be started. While
the bracket is in effect, any primitive and attribute functions are
considered to be part of the segment, and will be stored in it if
the drawing mode is Store or Draw-and-store. The bracket will
be terminated by a GpiCloseSegment. It is an error if GpiOpen-
Segment is issued when a segment is already open.

The following occurs when drawing of a chained segment is
started (either as it is passed across the API in draw or draw-
and-store mode, or as 1t is found during a GpiDraw operation),
unless the segment has the fast chaining attribute:-

e Current attributes are reset to default values
e Current model transform is reset to unity
e Current position is set to (0,0)

e The current clip area and viewing limits are reset to no clip-
ping

e The current window/viewport transform is reset to unity

If the segment has the fast chaining attribute, the system may

choose whether or not to perform these operations. It is the

application’s responsibility to ensure that either choice will pro-
duce the same results.

Parameters:

hgpi The handle of the GPI presentation space.

name The segment name. Negative names should not be
used.

Returns:

0 Error
1 OK

Principal errors:

127

Windows Presentation Manager Reference

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (I.E. NAME)
GPIERR_GRAPHICS_SEG_IS_CURRENT (I.E. OPEN)
GPIERR_AREA_DEFN_NOT_COMPLETE
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE
GPIERR_STROKES_DEEN_NOT_COMPLETE

GpiCloseSegment

128

BOOL GpiCloseSegment (hgpi)
HPS hgpi;

Closes the current segment.

Any subsequent primitives, not preceded by a GpiOpenSegment
function, will not be stored, irrespective of the current drawing
mode.

If any of the following brackets is currently open:-
o Area

e Clip area

e Strokes

then it will be aborted.

In draw or draw-and-store mode a warning will be given, but the
close processing will continue. In store mode, no warning will be
given. If a stored segment with one of these unended brackets is
subsequently drawn, an error will be raised.

If an element bracket is open when a segment is closed, then the
element bracket is first closed automatically.

If this function is followed by primitives or attributes, without
first opening a segment, then the following may or may not have
been reset to their default values:-

e Current attribute values

e Current model transform

e Current position

e The current clip area and viewing limits

Any such quantity may only be assumed to contain its default
value if it 1s known either that it has not been changed from it,
or that last time it was changed, it was set to its default value.

The current window/viewport transform, however, is guaranteed
to be reset to unity tor primitives outside segments.

Parameters:

hgpi The handle of the GPI presentation space.
Returns:

Graphics Programming Interface

0 Error
1 OK

Principal errors:

GPIERR_INVALID_ MICROPS_FUNCTION
GPIERR_NO_CURRENT_GRAPHICS_SEG
GPIERR_AREA_DEFN_NOT_COMPLETE (warning)
GPIERR_CLIP_AREA_DEFN_NOT_COMPLETE (warning)
GPIERR_STROKES_DEFN_NOT_COMPLETE (warning)

GpiDeleteSegment
BOOL GpiDeleteSegment (hgpi, name)
HPS hgpi;
LONG name:
Deletes the specified segment.

If the segment is open when it is deleted, there will be no open
segment after this function.

If the segment is in the picture chain, it is removed from the
chain.

Parameters:

hgpi The handle of the GPI presentation space.

name The name of the segment to be deleted. It must be >
0.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (I.E. NAME)
GPIERR_SEG_UNKNOWN

GpiDeleteSegments

BOOL GpiDeleteSegments (hgpi, namel, name2)
HPS hgpi:;

LONG namel:

LONG name2:

Deletes all segments in the given name range. Note that namel
and name2 can have the same value; in this case, only the named
segment is destroyed. If namel is greater than name2 then only
the segment with namel is destroyed.

If one of the segments deleted is the currently open segment,
there will be no open segment after this function.

If any of the segments are in the picture chain, they are removed
from the chain.

129

Windows Presentation Manager Reference

Parameters:

hgpi The handle of the GPI presentation space.
namel The first name in the range. It must be > 0.
name2 The last name in the range. It must be > 0.
Returns:

0 Error
1 0K

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (I.E. NAMEl or NAME2)
GPIERR_SEG_UNKNOWN

GpiQuerySegmentNames

130

LONG GpiQuerySegmentNames (hgpi, namel, name2, n, names)
HPS hgpi:

LONG namel:

LONG name2;

LONG n;

LONG names[]:

This returns the names of all segments that exist with names in
a specified name range. Non-stored segment names will not be
included. If namel is the same as or greater than name?2 then
the search will terminate after querying only the segment with
namel.

Parameters:

hgpi The handle of the GPI presentation space.
namel The first name in the range. It must be > 0.
name2 The last name in the range. It must be > 0.

n The maximum number of names to be returned in
names.

names|n]
An array in which the required names are returned.

Returns:

-1 Error
>=0 Number of names returned

Principal errors:

GPIERR_INVALID_MICROPS_EUNCTION
GPIERR_INVALID_SEG_ID (I.E. NAME1l or NAMEZ)
GPIERR_INVALID_ARRAY_ COUNT

Graphics Programming Interface

GpiSetInitialSegmentAttrs

BOOL GpiSetInitialSegmentAttrs (hgpi, attribute, value)
HPS hgpi:

LONG attribute;

LONG value:

This function sets a segment attribute which is to be assumed by
subsequent segments when they are initially created (ie when
GpiOpenSegment is issued, and the segment does not already
exist). See the section, “Segment Attributes”, for an explana-
tion of segment attributes, including default settings.

Parameters:

hgpi The handle of the GPI presentation space.

attribute

Specifies which segment attribute is to be changed, as
follows:-

1 Detectability

2 Visibility

3 Highlighting

6 Chained

7 Contains prolog

8 Dynamic

9 Fast chaining

10 Propagate detectability
11 Propagate visibility

value The required value of the attribute, as follows:-

0 Off/no
1 On/yes

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ATTR_CODE
GPIERR_INVALID_SEG_ATTR

GpiQuerylnitialSegmentAttrs
LONG GpiQueryInitialSegmentAttrs (hgpi, attribute)
HPS hgpi:;
LONG attribute;
This function returns an initial segment attribute.

Parameters:

131

‘Windows Presentation Manager Reference

hgpi The handle of the GPI presentation space.

attribute

Specifies which initial segment attribute is to be
returned, as follows:-

1 Detectability

2 Visibility

8 Highlighting

6 Chained

7 Contains prolog

8 Dynamic

9 Fast chaining

10 Propagate detectability
11 Propagate visibility

Returns:

-1 Error

>=0 Attribute value, as follows:-
0 Off/no
1 On/yes

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ATTR_CODE

GpiSetSegmentAttrs

BOOL GpiSetSegmentAttrs (hgpi, name, attribute, value)
HPS hgpi: '

LONG name;

LONG attribute:

LONG value;

This function sets a segment attribute for the specified segment.
The segment may be any stored segment.

If the name is that of the currently open segment
e In store mode this is valid

e In draw-and-store mode, the stored segment is updated, but
there is no change to the immediate drawing

e In draw mode, it is invalid

Parameters:

hgpi The handle of the GPI presentation space.

name The name of the segment whose attribute is to be
updated. It must be > 0.

attribute

Specifies which segment attribute is to be changed, as
follows:-

132

Graphics Programming Interface

1 Detectability

2 Visibility

&8 Highlighting

6 Chained

7 Contains prolog

8 Dynamic

9 Fast chaining

10 Propagate detectability
11 Propagate visibility

value The required value of the attribute, as follows:-

0 Off/no
1 On/yes
Returns:
0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION

GPIERR_INVALID_SEG_ID (NAME)

GPIERR_SEG_UNKNOWN

GPIERR_INVALID_SEG_ATTR_CODE

GPIERR_INVALID_SEG_ATTR

GPIERR_NOT_IN_STORE_MODE (CAN'T CHANGE ATTRS OF CURR SEG)

GpiQuerySegmentAttrs

LONG GpiQuerySegmentAttrs (hgpi, name, attribute)
HPS hgpi:

LONG name:

LONG attribute:;

This function returns a segment attribute for the specified seg-
ment. The segment may be any stored segment (including the
currently open one if stored).

Parameters:

hgpi The handle of the GPI presentation space.

name The name of the segment whose attribute is to be
returned. It must be > 0.

attribute

Specifies which segment attribute is to be returned, as
follows:-

1 Detectability

2 Visibility

8 Highlighting

6 Chained

7 Contains prolog
8 Dynamic

9 Fast chaining

133

Windows Presentation Manager Reference

10 Propagate detectability
11 Propagate visibility

Returns:

-1 Error

>=0 Attribute value, as follows:-
0 Off/no
1 On/yes

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN
GPIERR_INVALID_SEG_ATTR_CODE

GpiSetSegmentPriority

BOOL GpiSetSegmentPriority (hgpi, name, ref_name, order)
HPS hgpi:

LONG name;

LONG ref_name:

LONG order:

This function changes the order of the specified segment within
the segment chain.

In the stored segment model, the application may redraw the
picture by drawing the segment chain (see GpiDrawChain). This
causes the segments in the chain to be processed from beginning
to end, so that if segments overlap, later ones will be drawn on
top (assuming a default mix mode) of earlier ones, and will
therefore appear to have higher priority. Changing the position
of the segment in the chain therefore has the effect of changing
its priority to the end user.

Parameters:

hgpi The handle of the GPI presentation space.

name The name of the segment whose priority is to be
updated. It must be >=0.

ref_name
The name of a reference segment. This is the one
which the segment specified by name is to be posi-
tioned either immediately before or immediately after:

If ref_ name is 0, then name will be positioned either
first or last in the chain, depending upon the value of
order. ‘

ref— name must be > 0.

order The position required for name relative to ref_ name,
as follows:-

134

Graphics Programming Interface

-Ingme is to be lower priority thanref_ name
(ifref-name =0 thenname is to
be thehighest priority segment)

Iname is to be higher priority thanref name
(ifref-name =0 thenname is to
be thelowest priority segment)

Returns:

0 Error
1 0K

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_INVALID_REFSEG_ID (REF_NAME)
GPIERR_SEG_ID_UNKNOWN
GPIERR_REFSEG_ID_UNKNOWN
GPIERR_GRAPHICS_SEG_IS_CURRENT (I.E. OPEN)
GPIERR_ORDERING_PARAMETER_INVALID
GPIERR_SEG_AND_REFSEG_ARE_SAME
GPIERR_SEG_NOT_CHAINED
GPIERR_REFSEG_NOT_CHAINED

GpiQuerySegmentPriority

LONG GpiQuerySegmentPriority (hgpi, ref_name, order)
HPS hgpi:;

LONG ref_name;

LONG order:

This function returns the identifier of the named segment which
is before or after the specified segment. The segment which is
before the specfied segment is considered to have a lower priority
than the specified segment; the segment which is after the
specfied segment is considered to have a higher priority than the
specified segment.

Parameters:

hgpi The handle of the GPI presentation space.

ref_name
The name of the reference segment.

If ref_name is 0, then the identifier of either the first
or the last segment in the chain will be returned,
depending upon the value of order.

ref— name must be >=0.

order Shows whether the segment immediately before or
after ref_ name is required, as follows:-

-1 Return the next segment withlower priority
thanref- name
(ifref-name =0 then the segment with the

1356

‘Windows Presentation Manager Reference

lowest priority is required)
1 Return the next segment withhigher priority
thanref_ name
(ifref-name =0 then the segment with the
highest priority is required)
Returns:

-1 Error

>=0 Name of the segment immediately before or after
ref-name (or first or last in the chain) .0 is
returned if there is not one

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_REFSEG_ID (REF_NAME)
GPIERR_REFSEG_ID_UNKNOWN
GPIERR_ORDERING_PARAMETER_INVALID
GPIERR_REFERENCE_SEG_NOT_CHAINED

7.1.14.2 Segment Content Manipulation Functions (Indirect)

Elements

A segment is constructed by means of API calls. Typically these are calls
to cause certain primitives to be drawn (eg GpiLine) or to set attributes

(eg GpiSetColor). Each such API function generates one element of the
segment.

The currently open segment has an element pointer, which points to a par-
ticular element in the segment. When a stored segment is first opened, the
element pointer is set to zero (empty segment?. It is incremented each
time a call causes an element (a single API call) to be placed in the seg-
ment. When a segment is re-opened, the element pointer will be set to
zero, ie before the first element. In this position, if an element is inserted,
it will be the first element in the segment. Essentially each element is put
into the segment at the place indicated by the element pointer.

Segment zero cannot be edited.

The element pointer for a segment is not remembered if the segment is
closed and subsequently re-opened. Functions requiring an element
pointer are only valid if the currently open segment is stored, and indeed
only if the current drawing mode (see GpiSetDrawingMode) is store.
(They are not valid in draw-and-store mode.)

Associated with each element are a type and description data.

136

Graphics Programming Interface

type is a long integer. For elements generated directly from calls, it is set
to a system-defined value, depending upon the call. For an element gen-
erated via a data buffer (see GpiElement) the application defines the type,
from a specific range of values.

description data is a variable length string. For system-defined element
types this is also system-defined (description data for system-defined ele-
ment types will not be provided in Presentation Manager release 1). For
an element generated by GpiElement the application defines the descrip-
tion.

Two editing modes are provided:-

e Insert mode

In this mode, element generating API calls will insert an element fol-
lowing the element indicated by the element pointer.

e Replace mode

In this mode, element generating API calls will replace the element
indicated by the element pointer. Note that it is an error to replace an
element with the element pointer at zero.

Labels

A function is provided to create a label within a segment. A label is itself
an element, which is inserted into the segment. It may subsequently be
used to reference the point at which it was inserted. For example, the ele-

ment pointer may be set to point to the element defined by a particular
label.

Labels need not be unique within the presentation space. Indeed, they need
not even be unique within a segment, although normally they will be.

The use of labels to set the element pointer may in some circumstances be
faster than setting it to a particular element number.

GpiSetEditMode

BOOL GpiSetEditMode (hgpi, mode)

HPS hgpi:

LONG mode;

Sets the current editing mode for the specified presentation
space.

This determines whether data is to be inserted into a segment,
moving any subsequent elements further along the segment, or
whether each element is to replace the current element.

The editing mode may be changed at any time, and is not an
attribute of a specific segment. It only applies to the storing of

137

Windows Presentation Manager Reference

data within stored segments, though it is not an error to issue
this function in other drawing modes. It is invalid within an ele-
ment bracket. The default editing mode (set by GpiCreatePS or
GpiResetPS) is insert.

Parameters:

hgpi The handle of the GPI presentation space.

mode The mode, as follows:-

1 Insert mode
2 Replace mode

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_EDIT_MODE

GpiQueryEditMode

LONG GCGpiQueryEditMode (hgpi)
HPS hgpi:

Returns the current editing mode (see GpiSetEditMode).
This function may be issued in any drawing mode.
Parameters:

hgpi The handle of the GPI presentation space.
Returns:

0 Error
>0 Current editing mode

Principal errors:
GPIERR_INVALID_MICROPS_FUNCTION

GpiSetElementPointer

138

BOOL GpiSetElementPointer (hgpi, element)
HPS hgpi:;
LONG element:;

Sets the element pointer, within the current segment, to the ele-
ment number specified.

If the value specified is negative, the element pointer is set to 0.
If the value specified is greater than the number of elements in
the segment, it is set to the last element.

This function is only valid when the drawing function mode is

Graphics Programming Interface

set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.
element The element number required.
Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_ELEMENT_NUMBER
GPIERR_ELEMENT_CONTEXT_ERROR
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG

GpiQueryElementPointer

LONG GpiQueryElementPointer (hgpi)
HPS hgpi:

Returns the current element pointer (see
GpiSetElementPointer).

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress.

Parameters:

hgpi The handle of the GPI presentation space.
Returns:

-1 Error
>=0 Current element pointer

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_ELEMENT_NUMBER
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG

GpiOffsetElementPointer
BOOL GpiOffsetElementPointer (hgpi, offset)
HPS hgpi:
LONG offset;

Sets the element pointer, within the current segment, to the
current value plus the specified offset.

If the resulting value is negative, the element pointer is set to 0.

139

Windows Presentation Manager Reference

If the resulting value is greater than the number of elements in
the segment, it is set to the last element.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.
offset The offset which is to be added to the element pointer.
Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG
GPIERR_ELEMENT_CONTEXT_ERROR

GpiDeleteElement

140

BOOL GpiDeleteElement (hgpi)
HPS hgpi:

Deletes the element indicated by the element pointer. The ele-
ment pointer is set to the element immediately preceding the
deleted element.

If the element pointer has a value of 0 (points logically before
the first element), nothing is deleted and the element pointer is
not changed.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.
Returns:

0 Error
1 0K

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG
GPIERR_ELEMENT_CONTEXT_ERROR

Graphics Programming Interface

GpiDeleteElementRange

BOOL GpiDeleteElementRange (hgpi, elementl, element2)
HPS hgpi:;

LONG elementl:

LONG element2;

Deletes all elements between and including the elements indi-
cated by the specified element numbers.

If either element number is outside the range of the current seg-
ment, it is set to the nearest valid value.

At the conclusion of this function, the element pointer is set to
the element immediately preceding the deleted elements.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.

elementl, element2

The numbers of the first and last elements to be
deleted.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_ELEMENT_NUMBER
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG
GPIERR_ELEMENT_CONTEXT_ERROR

GpiLabel
BOOL Gpilabel (hgpi, label)
HPS hgpi:
LONG 1label:

Generates an element containing the specified label. This has no
effect unless a stored segment is being constructed.

This function is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.

label The required label. No check is made on the value of
label.

141

Windows Presentation Manager Reference

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_ELEMENT_CONTEXT_ERROR

GpiSetElementPointerAtLabel

BOOL GpiSetElementPointerAtLabel (hgpi, label)
HPS hgpi:
LONG 1label:

Sets the element pointer, within the current segment, to the ele-
ment containing the specified label.

The search will start from the next element beyond the one
which the element pointer is currently pointing to. If no
occurrence of the specified label is found between there and the
end of the segment, an error will be generated and the element
pointer left unchanged.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.
label The label required.
Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_LABEL_NOT_FOUND
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG
GPIERR_ELEMENT_CONTEXT_ERROR

GpiDeleteElementsBetweenLabels
BOOL GpiDeleteElementsBetweenLabels (hgpi, labell, label2)
HPS hgpi:
LONG labell;
LONG label2:;

Deletes all elements between but not including the elements
found to contain the indicated labels.

The search for the elements is conducted, separately, in the same

142

Graphics Programming Interface

way as described for GpiSetElementPointerAtLabel. If either
label cannot be found between the current element pointer loca-
tion and the end of the segment, an error is generated and no
deletion occurs.

At the conclusion of this function, the element pointer is set to
the element immediately preceding the deleted elements.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.

labell,label2

The labels marking the bounds of the elements to be
deleted.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_LABEL_NOT_FOUND (LABEL1)
GPIERR_LABEL2_NOT_FOUND (LABELZ2)
GPIERR_NOT_IN_STORE_MODE
GPIERR_NO_CURRENT_GRAPHICS_SEG
GPIERR_ELEMENT_CONTEXT_ERROR

GpiQueryElementType

LONG GpiQueryElementType (hgpi, type., desc_length, desc)
HPS hgpi:

LONG =*type:

LONG *desc_length;

LPBUF desc:

Returns information about the element which the element
pointer currently points to.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.

xtype A variable in which the type of the element is
returned. The type may be system-defined or
application-defined (see GpiElement)

143

Windows Presentation Manager Reference

*xdesc—length
A variable which contains the length of data in the
buffer pointed to by desc. On return, it is updated to
the number of bytes actually stored.

desc A variable in which the description data for the ele-
ment is returned. The description may be system-
defined or application-defined (see GpiElement) Note:
system-defined element data is not supported in the
current version of Presentation Manager.

Returns:

-1 Error

>=0 Size of the data required to hold the
element content. This may be used for a
subsequent GpiQueryElement function.

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_CURRENT_ELEMENT_DOES_NOT_EXIST
GPIERR_NOT_IN_STORE_MODE
GPIERR_INVALID_LENGTH
GPIERR_ELEMENT_CONTEXT_ERROR

GpiQueryElement

144

LONG GpiQueryElement (hgpi, start, length, buffer)
HPS hgpi:

LONG start:

LONG length:

LPBUF buffer:

Returns the element content (or part of the element content) for
the element which the element pointer currently points to.

This function is only valid when the drawing function mode is
set to Store (not Draw-and-store), and a segment bracket is
currently in progress. It is invalid within an element bracket.

Parameters:

hgpi The handle of the GPI presentation space.
start The starting byte offset within the content.
length The maximum length of data which may be returned.

buffer An area of *length bytes in which the element content
data is to be returned.

Returns:

-1 Error
>=0 Actual number of bytes returned

Principal errors:

Graphics Programming Interface

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_START
GPIERR_CURRENT_ELEMENT_DOES_NOT_EXIST
GPIERR_NOT_IN_STORE_MODE
GPIERR_INVALID_LENGTH
GPIERR_ELEMENT_CONTEXT_ERROR

GpiElement

SHORT GpiElement (hgpi, type, desc, length, buffer)
HPS hgpi:

LONG type:

LPSZ desc:

LONG length:

LPBUF buffer:

Specifies a complete element which is to be stored in the current
segment (in Store or Draw-and-store mode). The element will be
drawn in Draw or Draw-and-store mode.

It is an error if the element data contains any begin or end ele-
ment orders. Similarly, GpiElement is invalid within an element
bracket.

Note that no co-ordinate conversion is performed by this func-
tion. The application must ensure that the co-ordinates within
the element are in the correct format for the presentation space.

Parameters:

hgpi The handle of the GPI presentation space.
type The type which is to be associated with the element.

desc A variable length character string which is recorded
with the type

length The length of content data for the element.
This must not be greater than 63K.

buffer A pointer to a buffer of length bytes, which contains
the element content data. The format of the data is
TBD.

Returns:

0 Error
1 OK
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_ELEMENT_TYPE
GPIERR_INVALID_LENGTH
GPIERR_DATA_TOO_LONG
GPIERR_INVALID_ORDER
GPIERR_ELEMENT_CONTEXT_ERROR

145

Windows Presentation Manager Reference

GpiBeginElement

BOOL GpiBeginElement (hgpi, type. desc)
HPS hgpi:;
LONG type:
LPSZ desc;

Specifies the start of an element, which will be stored in the
current segment (in Store or Draw-and-store mode). The ele-
ment will be drawn in Draw or Draw-and-store mode.

The primitives and attributes which are contents of the element
will be passed on subsequent API functions. GpiElement, which
itself generates a complete element is not allowed within an ele-
ment bracket. The element extends up to the next GpiEndEle-
ment function (or GpiCloseSegment, which causes an implicit
GpiEndElement to be generated).

Elements may not be nested.

Parameters:

hgpi The handle of the GPI presentation space.
type The type which is to be associated with the element.

desc A variable length character string which is recorded
with the type

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_ATTEMPT_TO_START_SECOND_ELEMENT
GPIERR_INVALID_ELEMENT_TYPE
GPIERR_ELEMENT_CONTEXT_ERROR

GpiEndElement

146

BOOL GpiEndElement (hgpi)
HPS hgpi;

Terminates an element, which had been started by GpiBeginEle-
ment.

Parameters:

hgpi The handle of the GPI presentation space.
Returns:

0 Error
1 OK

Principal errors:

Graphics Programming Interface

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_END_ELEMENT_IGNORED
GPIERR_ELEMENT_CONTEXT_ERROR

7.1.15 Transform Functions

The four co-ordinate spaces used by GPI were introduced in the section
“Co-ordinate Spaces”. This section defines the functions which specify the
relationships between these spaces.

7.1.15.1 Co-ordinate Spaces

Applications typically work in the following kinds of units:
1. Device units
e Actual pels

e A simple multiple of pels, for extra granularity with scaling
transforms

2. Metrics
Fractions of an inch or of a millimetre or of a printer’s point
3. Fractions of the screen

This is convenient for constructing simple graphics which will look
similar on a range of devices

4. Application convenient units

Anything appropriate to the application, such as grid reference units,
or world-oriented metrics.

A Presentation Manager application may, if it wishes, exercise direct con-
trol over the co-ordinate spaces it uses. Alternatively, it may make use of
certain defaults to give some of the simpler options.

Starting from application co-ordinates, the drawing process must eventu-
ally generate device co-ordinates, and it will usually be efficient for it to
make the transition from application co-ordinates to device co-ordinates in
a single step. Notionally, however, there are additional intermediate co-
ordinate spaces. In the general case these are required to facilitate various
functions which are described below. It must be emphasised, however,
that the defaulting rules mean that applications need not be directly con-
cerned with any spaces which they do not wish to control explicitly.

The levels of co-ordinate spaces are as follows:

147

Windows Presentation Manager Reference

World Co-ordinates

R e o

IWindow-1}

Window / Viewport Transform
and Default Viewing Transform

e ———

+ -—+
1N
[
> P
—_———D k|
10
| |
| m.._
+ ===+ 0 + -—-—+
| 1o |
1 > |
| + =+ 1
1 1
|]
1 + ===+]
| (R 1 1
| o 1 2
| [| [
1 [| 301
| [o] | ,m_
1 | | |
-—D>> X mw. 1 (o]
| 1 Q | .W._
1 [| 1
1 1> 1 e_
| + ===+ 1
! [N}
] [V
1 [a VAN
+ mmm—mm———— -
[)
)]
0]
[aF

(pels,metrics,
isotropic)

-—+
|
| 1
| 1
1 |
I |
| |
1 |
1 1
1 1
| |
1 1
I |
| F mm—mm———————— + ————
| [| 1
1 [| 1
| 1 0 | |
|) | 1
| | m.. | |
| [} I |
| > | W_ | 1
|||||||||||||||| = | |
1 g | | 1
| 19 1 Q | |
1 (o) (B o)} | |
1 “ [] + —————=% |
| n [N | 1 1
| [l 1 | | |
| © ! 1 DX Sttt
| |9 | | | 1
1 B 1 | ! 1
[——F mmm= A mmmmm— i —mmm -
| Q 1 | |
| [§] 1 | |
1 o 1 | 1
1 > 4 e —— e + ===+
-+ Q !
[a) |
1
Q1
[SI]
o |
Q,
1)
O~
on
ol —
i3
D(

148

Graphics Programming Interface

Media Space
(pels)

Figure 7.1 Presentation Manager Pipeline

World Co-ordinate Space

These are application convenient units. They are the units which are
used at the API for primitives such as lines, arcs etc. In store mode,
this is the space in which primitive co-ordinates are stored.

Model Space

Segments and primitives may optionally be subjected to segment and
model transforms. These are used to construct the picture. For exam-
ple, there may be a single segment for drawing a wheel of a locomotive,
which is called several times, once for each wheel, using a different
transform to position it at the correct place - possibly also to scale it.

Model Space is equivalent to World Co-ordinate Space if no segment or
modelling transforms are used.

Page

The page is where the picture is assembled. It may be that the picture
is composed of more than one subpicture. For example, it may be con-
venient to construct a business graph as one subpicture containing the
axes and lines, and another containing the legend. The final picture,
which may include several subpictures, is assembled in the Page.

The size of the Page may be defined in various units. See GpiCreatePS,
and also the section, “Defaults and Examples”.

A window on the Page (the Page Window) defines the maximum area
of the page which may be visible at any time. It also, in conjunction
with the Page Viewport in Device Space, defines the Device Transform.

Device Space

It will be seen that an application can deal directly, right from the top,
in device co-ordinates if it wishes. Some applications, however, will
want to construct pictures in device independent spaces. Device Space
allows the Page above it to be device independent if the application so
wishes. Device Space itself is defined in device units.

149

‘Windows Presentation Manager Reference

Media Space

The picture, or a portion of it, is finally displayed in the window on the
screen (or the paper on a printer, etc). A final transform, which only
supports translation, maps the total picture in Device Space into the
screen window or printer page etc. On a display, this will be used to
ensure, for example, that when the window is moved, the visible con-
tents will not change. This transform is set only by the windowing
system.

Functions are provided to convert a co-ordinate value between any one
space and another.

7.1

.15.2 Transforms

Between each of the above co-ordinate spaces there is a transform. These

are
1.

2.

150

as follows (see):-
Segment and Model transform

These convert from World Co-ordinates to Model Space. They are
typically used during the construction of a picture, for example to
scale up one construct in a picture. A segment transform applies to a
whole segment; a model transform can apply to a group of primitives
within a segment. For stored segments, either transform may be
changed after the segment has been constructed.

One form of model transform is the instance transform which is
specified when a segment is called.

These transforms support rotation.
Viewing Transforms

There are two componenets of the transform from Model Space to the
Page, as follows:-

e Window/Viewport transform

This provides a transform from Model Space to the Page, which
may be used for one or more segments. It may be used to provide a
general transformation (not a rotation) to a part, or all of the pic-
ture. It may not be changed within a segment.

For stored segments, the window/viewport transform is fixed at
the time the segment is created, and may not subsequently be
changed without re-creating the segment.

e Default Viewing Transform

This transform, which is initialised to unity, applies after the
window-viewport transform. There is a single default viewing
transform, which applies across the entire picture. It may be
thought of as an override to the viewport positions and sizes, and
its purpose is to allow scrolling or zooming of the whole picture.

Graphics Programming Interface

3. Device Transform

This specifies how the Page Window is mapped into the Page Viewport
in Device Space. It is a convenient way of changing all of the co-
ordinates of a picture (as, for example, where all co-ordinates represent
a given metric on the screen). This allows a device-independent pic-
ture to be constructed in the Page.

Any non-squareness in the device co-ordinates (pels on a raster device)
is also allowed for here.

4. Windowing System Translation

This takes the notional picture in device space and maps it to the phy-
sical device. Its normal function is to allow for the positioning of the
window on the screen. This transform is set only by the windowing
system.

7.1.15.2.1 Transform Range and Precision

Internally, Presentation Manager will convert all transforms to a matrix
form, as follows:- '

(a b c)
(d e f)
(0 0 1)

so that a point with co-ordinates (x,y) is transformed to the point
(a*x + b*xy + c, d#x + exy + f)
All of the relevant transforms (model, viewing, device, etc) will be con-

catenated together. Intermediate results are held to the same range and
precision as is each constituent transform. This is as follows:-

e For the scaling/rotation elements (a,b,d,e): 32-bit signed values, with a
notional binary point between the second and third bytes (ie 1.0 is
represented as 65536).

e For the translation elements (c,f) 32-bit signed integers.

In order to avoid overflow, the application should ensure that it uses
values which will not cause these ranges to be exceeded, in whatever order
the concatenation is performed.

7.1.15.3 Clipping

Clipping may take place logically at various points in the pipeline:
1. Clip area

This is a shape defined by primitives. The shape may either be rec-
tangular (in which case GpiSetViewingLimits may be used to set it), or

151

Windows Presentation Manager Reference

" more general, in which case GpiBeginClipArea is used to introduce the
primitives required to define the shape.

The default is the whole of space.
2. Graphics field

This is a rectangle specified in the Page. The default is the whole Page.
3. Media window

Data is clipped to the client area of the (media) screen window.
Clipping will take place to the intersection of all three of the above,

transformed to the same space. By default, only the client area of the
media window, and the page size, will be relevant.

In addition to the above, there is also clipping introduced via the clipping
region. This takes place logically in device space, and may be to any irreg-
ular (even disjoint) shape.

7.1.15.4 Defaults and Examples

Before accessing Gpi functions, a presentation space must be created (Gpi-
CreatePS?. This function includes as parameters the specification of a
Page, including its units, and its width and height.

Units are one of the following:-

e Device co-ordinates (pels)

e Metrics (various options, eg 0.1 mm)

e Arbitrary

The origin of the Page co-ordinate system is at the bottom left.

Creating a Page (of width w and height h) also sets the following:-
e A Page Window the same size (and units) as the page.
e A Window in Model Space, of (bottom left to top right):
e (Page units = pels): from (0,0) to (w-1,h-1).
e (Page units = metrics): from (0,0) to (w-1,h-1).
e (Page units = arbitrary): from (0,0) to (w-1,h-1).
. % Graphics Field (clipping limit) of the same size (and units) as the
age.

Creating (or defaulting) a Graphics Field also sets the following:-

152

Graphics Programming Interface

e A Viewport of the same size as the Graphics Field.
The Viewport may be changed subsequently.

The size and units of the Page, and the size and origin of the Page Win-
dow, are part of the presentation space. The Page Viewport is logically not
part of the presentation space. When a presentation space is associated
with a new Device Context, the Page Viewport (in pelss) is computed, tak-

ing into account the pel spacing on the new device, from the following
rules:-

e Page units = pels

The Page Viewport is the same size as the Page Window, with the bot-
tom left corner of the Page Window mapping to the origin of Device
Space

e Page units = metrics

The size of the Page Viewport gives the correct physical size as desig-
nated by the Page Window (depending upon the physical pel spacing),
with the bottom left corner of the Page Window mapping to the origin
of Device Space

e Page units = arbitrary

For any device, there is a default size. In the case of a screen, this is
the maximised window size. For a plotter, it is the accessible size of the
paper. The Page Viewport is constructed such that Page co-ordinates
will give equal x and y spacing. The bottom left corner of the Page
Window maps to the origin of Device Space.

Examples
1. To use only pel co-ordinates:-
e Specify the Page size in pels.

e Viewports may also be laid out in pels. Each time a new viewport
is defined, the window must also be redefined with the same size as
the viewport, but with arbitrary origin.

2. To use only metric co-ordinates:-
e Specify the Page size in the appropriate metrics.

e Viewports may also be laid out in the same metrics. Each time a
new viewport 1s defined, the window must also be redefined with
the same size as the viewport, but with arbitrary origin.

3. To adjust the size of the picture depending upon the size of the client
area on the screen (eg a clock):-

e Specify a Page size in arbitrary units.

163

Windows Presentation Manager Reference

e Respecify the Page Viewport whenever the client area changes.
To scroll the picture in Page units

e Change the default viewing transform, or move the page window.

gThe graphics field clipping boundary may affect the result if the
atter method is used.s)

To scroll the picture in page units, using a combination of BitBlt and

redraw (assuming for simplicity that no model or viewing transforms
are in force):-

e Identify the amount to be scrolled in page units (DeltaP)

e Issue GpiBitBlt, quoting the source and destination rectangles
separated by DeltaP.

e Set up a clipping region for the part of the window to be healed by
redrawing. Use GpiExcludeClipRegion, quoting the rectangle that
was used for the destination on GpiBitBlt.

e Put in a translation component of DeltaP to the default view
transform (GpiSetDefaultView).

e Move the pattern origin by DeltaP.

e Redraw the picture (possibly restrict the primitives passed to those
which the application knows may contribute to the new part.

7.1.15.5 Modelling Transform Functions

GpiSetSegmentOrigin

154

BOOL GpiSetSegmentOrigin (hgpi, name, x, y)
HPS hgpi:

LONG name;

LONG x:

LONG vy:

This sets the origin of the specified segment in world co-
ordinates. This provides a reference point about which model
transformations gsee GpiSetModelTransform), segment transfor-
mations (see GpiSetSegmentTransform), and instance transfor-
mations (see GpiCallSegment), will be performed.

Primitives outside segments always have an effective origin of
(0,0). This cannot be changed.

Parameters:

hgpi The handle of the Gpi presentation space.

name The name of the segment. It must be > 0.

Graphics Programming Interface

X,y The co-ordinates of the segment origin.
Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN

GpiQuerySegmentOrigin

BOOL GpiQuerySegmentOrigin (hgpi, name, x, y)
HPS hgpi:

LONG name;

LONG *x:

LONG xy:

This returns the position of the segment origin of the identified
segment in world co-ordinates.

Parameters:

hgpi The handle of the Gpi presentation space.
name The name of the segment. It must be > 0.

*X, ¥y Variables which are set to the x and y co-ordinates of
the segment origin.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN

GpiSetSegmentTransform

BOOL GpiSetSegmentTransform (hgpi, name, sx, sy,
hx, hy, rx, ry, dx, dy, type)

HPS hgpi:;

LONG name;

LONG sx;

LONG sy:

LONG hx:

LONG hy:

LONG rx;

LONG rvy:

LONG dx:

LONG dy:

LONG type:

155

Windows Presentation Manager Reference

Sets the two-dimensional segment transform which is to apply to
all of the primitives in the specified segment.

This performs the same function as GpiSetSegmentTransform-
Matrix, but specifies the transform as scale, shear, rotation and
displacement components, rather than as a direct matrix.

The parameters specified are effectively combined into a single
transformation matrix in the order scale, shear, rotation, dis-
placement. This matrix is then used to update the existing seg-
ment transformation, depending upon the value of type.

If scaling values greater than unity are given, care must be taken
that the combined effect of this and any other relevant
transforms do not exceed fixed-point implementation limits. See
the section, “I'ransform Range and Precision”.

Segment transformations do not apply to primitives outside seg-
ments.

Parameters:

hgpi The handle for the GPI presentation space.
name The name of the segment. It must be > 0.

SX,Sy A scale transformation in terms of an x-axis scaling (
sz) and a y-axis scaling (sy). The segment origin is
used as a reference point; the axes that are used to
scale are parallel to the x and y axes, and pass through
the segment origin. A scale factor of between 0 and 1
shrinks primitives; a scale factor greater than 1
stretches primitives. A negative scale factor reflects
primitives about the other axis.

The values are each represented as signed 32-bit
values, with the low-order 16 bits taken to be to the
right of the binary point. Specifying scale factors of 1
and 1 (actually, in this representation, 65536 and
65536) does not perform any scaling.

hx,hy A shear transformation in terms of the displacements
which a point on the y-axis makes after shearing. The
axes used for shearing are parallel to the x and y axes,
but pass through the current segment origin. Note
that primitives below the x axis are sheared in the
opposite direction from those above the x axis. Points
on the x axis itself are not moved. hz = a and hy = b
produce an identical effect to hz = -a and hy = -b.

Specifying hz = 0 and hy = I does not perform any
shearing. Specifying hy = 0 is invalid, because it would
produce an infinite shear.

156

TX,Ty

dx,dy

type

Returns:

0 Error

1 0K

Graphics Programming Interface

A rotation transformation in terms of the displace-
ments which a point on the x-axis makes after rotat-
ing. The axes used for rotating are parallel to the x
and y axes, but pass through the current segment ori-
gin.

Specifying rz = 1 and ry = 0 does not perform any
rotation.

Because two zero values would be ambiguous, specify-
ing rz = 0 and ry = 0 is taken as equivalent to rz = 1
and ry = 0 (no rotation).

Specify a displacement of dz parallel to the x axis, and
dy parallel to the y axis. This transformation does not
use the segment origin.

Specifying dz = 0 and dy = 0 does not perform any
translation.

Specifies how the specified transform should be com-
bined with/replace the existing segment transform.
The new segment transform is computed, and the
result stored back in the segment, replacing the exist-
ing value. The stored segment transform is always
additive with respect to any segment, model, and
instance transforms in calling segments.

0 - New/replace
The existing segment transform is discarded
and replaced by the combined effect of the
specified components.

1 - Additive
The combined effect of the specified com-
ponents is added to the effect of the existing
segment transform, in the order (1) existing
transform, (2) new transform. This option is
most useful for incremental updates to
transforms.

2 - Preemptive
The combined effect of the specified com-
ponents is added to the effect of the existing
segment transform, in the order (1) new
transform, (2) existing transform.

Principal errors:
GPIERR_INVALID_MICROPS_FUNCTION

157

Windows Presentation Manager Reference

GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN
GPIERR_INVALID_TRANSFORM_TYPE
GPIERR_INVALID_TRANSFORM_PARAMETER

GpiSetSegmentTransformMatrix

158

BOOL GpiSetSegmentTransformMatrix (hgpi, name, n,
array, type)

HPS hgpi:

LONG name;

LONG n:

LONG array[]:

LONG type:

Sets the two-dimensional segment transform which is to apply to
all of the primitives in the specified segment.

This performs the same function as GpiSetSegmentTransform,
but specifies the transform as a matrix rather than scale, shear,
rotation and displacement components.

The matrix is used to update the segment transformation,
depending upon the value of type.

The transform is specified as a one-dimensional array of n ele-
ments, being the first n elements of a 3-row by 3-column matrix
ordered by rows. The order of the elements is as follows:-

Matrix Array
(a b c)
(d e £) (a.b,c.d,e, £,0,0,1)
(0 o 1)

The last row, if specified, must be (0,0,1). The transform acts on
the co-ordinates of the primitives in a segment, so that a point
with co-ordinates (x,y) 1s transformed to the point

(axx + b*xy + c, d#x + exy + f)

The initial value of the segment transform is the identity
matrix, as shown below:-

Matrix Array
(1 0 0)
(0 1 0) (1,0,0,0,1,0,0,0,1)
(0 0 1)

If scaling values greater than unity are given, care must be taken
that the combined effect of this and any other relevant
transforms do not exceed fixed-point implementation limits. See
the section, “Transform Range and Precision”.

Segment transformations do not apply to primitives outside seg-
ments.

Parameters:

Graphics Programming Interface

hgpi The handle for the GPI presentation space.
name The name of the segment. It must be > 0.

n The number of elements supplied in array. If nis less
than 9, the elements omitted default to the
corresponding elements of the identity matrix (see
above). Specifying n = 0 means that the identity
matrix is used. Specifying 6 elements means that the
last row is assumed to be (0,0,1).

array[n] The elements of the transformation matrix, in row
order.

The first, second, fourth, and fifth elements (a, b, d
and e in the example above) are specified with an
assumed binary point between the second and third
bytes. Thus a value of 1.0 is represented as 65536.
Other elements are normal signed integers.

The seventh, eight, and ninth elements, if specified,
must be 0, 0, and 1.

type Specifies how the specified transform should be com-
bined with /replace the existing segment transform.
The new segment transform is computed, and the
result stored back in the segment, replacing the exist-
ing value. The stored segment transform is always
additive with respect to any segment, model, and
instance transforms in calling segments.

0 - New/replace
The existing segment transform is discarded
and replaced by the combined effect of the
specified components.

1 - Additive
The combined effect of the specified com-
ponents is added to the effect of the existing
segment transform, in the order (1) existing
transform, (2) new transform. This option 1s
most useful for incremental updates to
transforms.

2 - Preemptive
The combined effect of the specified com-
ponents is added to the effect of the existing
segment transform, in the order (1) new
transform, (2) existing transform.

Returns:

0 Error
1 OK

1569

Windows Presentation Manager Reference

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN
GPIERR_INVALID_TRANSFORM_TYPE
GPIERR_INVALID_TRANSFORM_PARAMETER

GpiQuerySegmentTransformMatrix

BOOL GpiQuerySegmentTransformMatrix (hgpi, name, n, array)
HPS hgpi:;

LONG name;

LONG n;

LONG array([]:

Returns the segment transform of the specified segment. See
GpiSetSegmentTransformMatrix.

Parameters:

hgpi The handle for the GPI presentation space.
name The name of the segment. It must be > 0.

n The number of elements supplied in array. It must be
in the range 0 through 9.

array[n] The array into which the elements of the segment
transform matrix will be returned.

The first, second, fourth, and fifth elements will be
returned with an assumed binary point between the
second and third bytes. Thus a value of 1.0 is
represented as 65536. Other elements are normal
signed integers.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_EUNCTION
GPIERR_INVALID_ARRAY_COUNT
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN

GpiSetModelTransform

BOOL GpiSetModelTransform (hgpi, sx, sy, hx, hy,
rx, ry, dx, dy, type)
HPS hgpi;
LONG sx:
LONG sy:
LONG hx:
LONG hy:
LONG rx:

160

Graphics Programming Interface

LONG ry:
LONG dx;
LONG dy:
LONG type:

Sets the two-dimensional model transform which is to apply to
subsequent primitives in this segment.

The parameters specified are effectively combined into a single
transformation matrix in the order scale, shear, rotation, dis-
placement. This matrix is then used to update the previous
current model transformation, depending upon the value of type.

If scaling values greater than unity are given, care must be taken
that the combined effect of this and any other relevant
transforms do not exceed fixed-point implementation limits. See
the section, “Transform Range and Precision”.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con-
structed and placed into the current segment.

The default model transform is the unity transform, with zero
translation.

The attribute mode (see GpiSetAttrMode) determines whether
or not the push form of the function is generated.

Parameters:

hgpi The handle for the GPI presentation space.

SX,SY A scale transformation in terms of an x-axis scaling (
sz) and a y-axis scaling (sy). The segment origin is
used as a reference point; the axes that are used to
scale are parallel to the x and y axes, and pass through
the segment origin. A scale factor of between O and 1
shrinks primitives; a scale factor greater than 1
stretches primitives. A negative scale factor reflects
primitives about the other axis.

The values are each represented as signed 32-bit
values, with the low-order 16 bits taken to be to the
right of the binary point. Specifying scale factors of 1
and 1 (actually, in this representation, 65536 and
65536) does not perform any scaling.

hx,hy A shear transformation in terms of the displacements
which a point on the y-axis makes after shearing. The
axes used for shearing are parallel to the x and y axes,
but pass through the current segment origin. Note
that primitives below the x axis are sheared in the
opposite direction from those above the x axis. Points
on the x axis itself are not moved. hx = a and hy = b
produce an identical effect to hx = -a and hy = -b.

161

Windows Presentation Manager Reference

162

IX,Ty

dx,dy

type

Returns:

0 Error
1 OK

Specifying hx = 0 and hy = 1 does not perform any
shearing. Specifying hy = 0is invalid, because it would
produce an infinite shear.

A rotation transformation in terms of the displace-
ments which a point on the x-axis makes after rotat-
ing. The axes used for rotating are parallel to the x
and y axes, but pass through the current segment ori-
gin.

Specifying rz = 1 and ry = 0 does not perform any
rotation.

Because two zero values would be ambiguous, specify-
ing rz = 0 and ry = 0 is taken as equivalent to rz = 1
and ry = 0 (no rotation).

Specify a displacement of dx parallel to the x axis, and
dy parallel to the y axis. This transformation does not
use the segment origin.

Specifying dz = 0 and dy = 0 does not perform any
translation.

Specifies how the specified transformation should be
used to modify the existing current model transforma-
tion (the existing transformation is the concatenation,
in the current call context, of the instance, segment
and model transformations, from the root segment
downwards):-

0 - New/replace
The previous model transform is discarded
and replaced by the combined effect of the
specified components.

1 - Additive
The combined effect of the specified com-
ponents is added to the effect of the existing
model transform, in the order %g existing
transform, (2) new transform. This option is
most useful for incremental updates to
transforms.

2 - Preemptive
The combined effect of the specified com-
ponents is added to the effect of the existing
model transform, in the order (1) new
transform, (2) existing transform.

Graphics Programming Interface

Principal errors:

GPIERR_INVALID_TRANSFORM_TYPE
GPIERR_INVALID_TRANSFORM_PARAMETER

GpiCallSegment

SHORT GpiCallSegment (hgpi, name, sx, sy, hx, hy,
rx, ry, dx, dy, type)

HPS hgpi:

LONG name:

LONG sx:

LONG sy:

LONG hx:

LONG hy:

LONG rx:;

LONG ry:

LONG dx:

LONG dy:

LONG type:

Calls the specified segment.

The transformation specified by the parameters is set before cal-
ling the segment, to allow its scale, shear, rotation, and position
to be specified. This transform only applies to the called seg-
ment, and is reset on return, to the transform in operation
before the call was made. If the type parameter specifies the
additive or preemptive option, the transform is combined with
the previous model transform (if any) in force at the time.

The elements of the transformation are processed in the order
scale, shear, rotation, and displacement.

If scaling values greater than unity are given, care must be taken
that the combined effect of this and any other relevant
transforms do not exceed fixed-point implementation limits. See
the section, “Transform Range and Precision”.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con-
structed and placed into the current segment.

Parameters:

hgpi The handle for the GPI presentation space.

name The name of the segment that is to be called. It must
be > 0.

SX,Sy A scale transformation in terms of an x-axis scaling (
sz) and a y-axis scaling (sy). The segment origin is
used as a reference point; the axes that are used to
scale are parallel to the x and y axes, and pass through
the segment origin, A scale factor of between 0 and 1
shrinks primitives; a scale factor greater than 1

163

Windows Presentation Manager Reference

164

hx,hy

TX,Ty

dx,dy

type

stretches primitives. A negative scale factor reflects
primitives about the other axis.

The values are each represented as signed 32-bit
values, with the low-order 16 bits taken to be to the
right of the binary point. Specifying scale factors of 1
and 1 (actually, in this representation, 65536 and
65536) does not perform any scaling.

A shear transformation in terms of the displacements
which a point on the y-axis makes after shearing. The
axes used for shearing are parallel to the x and y axes,
but pass through the current segment origin. Note
that primitives below the x axis are sheared in the
opposite direction from those above the x axis. Points
on the x axis itself are not moved. hz = aand hy = b
produce an identical effect to hx = -a and hy = -b.

Specifying hz = 0 and hy = 1 does not perform any
shearing. Specifying hy = 0 is invalid, because it would
produce an infinite shear.

A rotation transformation in terms of the displace-
ments which a point on the x-axis makes after rotat-
ing. The axes used for rotating are parallel to the x
and y axes, but pass through the current segment ori-

gin.

Specifying rz = 1 and ry = 0 does not perform any
rotation.

Because two zero values would be ambiguous, specify-
ing rz = 0 and ry = 01is taken as equivalent to rz = 1
and ry = 0 (no rotation).

Specify a displacement of dz parallel to the x axis, and
dy parallel to the y axis. This transformation does not
use the segment origin.

Specifying dz = 0 and dy = 0 does not perform any
translation.

Specifies how the specified transformation should be
used to modify the existing current model transforma-
tion (the existing transformation is the concatenation,
in the current call context, of the instance, segment
and model transformations, from the root segment
downwards):-

0 - New/replace
Any existing model transform is discarded
and replaced by the combined effect of the
specified components.

Graphics Programming Interface

1 - Additive
The combined effect of the specified com-
ponents is added to the effect of the existing
model transform, in the order (1) existing
transform, (2) new transform.

2 - Preemptive
The combined effect of the specified com-
ponents is added to the effect of the existing
model transform, in the order (1) new
transform, (2) existing transform.

Returns:

0 Error
1 0K
2 Correlate hit(s)

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_INVALID_SEG_ID (NAME)
GPIERR_SEG_UNKNOWN
GPIERR_SEG_CALL_PRODUCES_RECURSIVE_LOOP
GPIERR_CALLED_SEG_NOT_FOUND
GPIERR_CALLED_SEG_IS_CURRENT
GPIERR_INVALID_TRANSEORM_TYPE
GPIERR_INVALID_TRANSFORM_PARAMETER

7.1.15.6 Viewing Transforms

GpiSetWindow

BOOL GpiSetWindow (hgpi, x1, xr, yb, yt)
HPS hgpi:
LONG x1:
LONG xr:
LONG yb:
LONG yt:

This sets the window, in Model Space, which corresponds to the
viewport (see GpiSetViewport) in the Page. This defines the
viewing transform.

This function is only valid outside segments. It applies, until
changed, to all subsequently opened segments (it has no effect on
primitives outside segments). All graphics primitives in a seg-
ment must have the same window. Once set for a segment, it
can never be altered.

If the mapping of the window to the viewport (including the
effect of any default viewing transform), and subsequently
through the device transform, is such that one x-axis unit does
not map to the same physical distance as one y-axis unit, the

165

Windows Presentation Manager Reference

picture will appear ’squashed’, for example circles at the API
will not appear to be circular.

Parameters:

hgpi The handle of the Gpi presentation space.
xl,xr The left and right boundaries of the window.
yb,yt The bottom and top boundaries of the window.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_GRAPHICS_SEG_IS_CURRENT (I.E. OPEN)
GPIERR_INVALID_WINDOW_SPECIFICATION

GpiSetUniformWindow

166

BOOL GpiSetUniformWindow (hgpi, x1, xr, yb, yt)
HPS hgpi:
LONG x1:
LONG xr:
LONG yb:
LONG yt:

This sets the window, in Model Space, which corresponds to the
viewport (see GpiSetViewport) in the Page. This defines the
viewing transform.

The window is set such that either the x axis spans the entire
width of the viewport and the y axis is within the height of the
viewport, or that the y axis spans the entire height of the
viewport and the x axis is within the width of the viewport.
Thus, unless anisotropy has been deliberately built-in to the dev-
ice transform (as, for example, with Page units of pels, on a dev-
ice with non-square pels), one unit along x in Model Space will
represent the same physical distance as one unit along y. If
either axis is shorter than the width or height of the viewport,
that axis is centred within the viewport.

GpiQueryWindow can subsequently be used to find the actual
window bounds set as a result of this call.

This function is only valid outside segments. It applies, until
changed, to all subsequently opened segments (it has no effect on
primitives outside segments). All graphics primitives in a seg-
ment must have the same window. Once set for a segment, it
can never be altered.

Parameters:

Graphics Programming Interface

hgpi The handle of the Gpi presentation space.
x1,xr The left and right boundaries of the window.
yb,yt The bottom and top boundaries of the window.
Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_GRAPHICS_SEG_IS_CURRENT (I.E. OPEN)
GPIERR_INVALID_WINDOW_SPECIFICATION

GpiQueryWindow
BOOL GpiQueryWindow (hgpi, x1, xr, yb, yt)
HPS hgpi:
LONG #*x1:
LONG #*xr:

LONG *yb:
LONG =*yt;

This returns the current window definition.

Parameters:

hgpi The handle of the Gpi presentation space.

*x],%xr Variables which are set to the x co-ordinates of the left
and right boundaries of the window.

xyb,*yt Variables which are set to the y co-ordinates of the
bottom and top boundaries of the window.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GpiSetViewport

BOOL GpiSetViewport (hgpi, x1, xr, yb, yt)
HPS hgpi;
LONG x1;
LONG xr:
LONG yb:
LONG yt:

This sets the viewport, in the Page, to which the window (see
GpiSetWindow) will be mapped. This defines the viewing
transform. GpiQueryPage can be issued to determine the extent
of the Page.

167

Windows Presentation Manager Reference

A viewport is a subregion of the page. Viewports can be used to
position the parts of a composite picture. The viewport boun-
daries are parallel to those of the page, space, and must be
entirely within the page.

This function is only valid outside segments. It applies, until
changed, to all subsequently opened segments (it has no effect on
primitives outside segments). All graphics primitives in a seg-
ment must have the same viewport. Once set for a segment, it
can never be altered.

Parameters:

hgpi The handle of the Gpi presentation space.

xl,xr The left and right boundaries of the viewport, in page
units.

yb,yt The bottom and top boundaries of the viewport, in
page units.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GPIERR_GRAPHICS_SEG_IS_CURRENT (I.E. OPEN)
GPIERR_UPPER_BOUNDARY_NOT_GREATER_THAN_LOWER
GPIERR_RIGHT_BOUNDARY_NOT_GREATER_THAN_LEET

GpiQueryViewport

168

BOOL GpiQueryViewport (hgpi, x1, xr, yb, yt)
HPS hgpi:
LONG *x1:
LONG #xr;
LONG #*yb:
LONG x*yt:

This returns the current viewport definition.
Parameters:

hgpi The handle of the Gpi presentation space.

*xl *xr Variables which are set to the x co-ordinates of the left
and right boundaries of the viewport.

*yb,*yt Variables which are set to the y co-ordinates of the
bottom and top boundaries of the viewport.

Returns:

0 Error
1 OK

Graphics Programming Interface

Principal errors:

GPIERR_INVALID_MICROPS_FUNCTION
GpiSetDefaultView

BOOL GpiSetDefaultView (hgpi, sx, sy, hx, hy,
rx, ry, dx, dy, type)

HPS hgpi:

LONG sx:

LONG sy:
LONG hx:
LONG hy:
LONG rx:
LONG ry:
LONG dx:
LONG dy:
LONG type:

Sets the two-dimensional default viewing transform which is to
apply to the whole picture.

The parameters specified are effectively combined into a single
transformation matrix in the order scale, shear, rotation, dis-
placement. This matrix is then used to update any previous
default viewing transformation, depending upon the value of

type.
If scaling values greater than unity are given, care must be taken
that the combined effect of this and any other relevant

transforms do not exceed fixed-point implementation limits. See
the section, “Transform Range and Precision”.

Parameters:

hgpi The handle for the GPI presentation space.

SX,Sy A scale transformation in terms of an x-axis scaling (
sz) and a y-axis scaling § sy). The origin of the scale is
the origin of the page. If another scale origin is
required, appropriate translations must be applied
before and after. A scale factor of between 0 and 1
shrinks primitives; a scale factor greater than 1
stretches primitives. A negative scale factor reflects
primitives about the other axis.

The values are each represented as signed 32-bit
values, with the low-order 16 bits taken to be to the
right of the binary point. Specifying scale factors of 1
and 1 (actually, in this representation, 65536 and
65536) does not perform any scaling.

hx,hy A shear transformation in terms of the displacements
which a point on the y-axis makes after shearing. The
axes used for shearing are parallel to the x and y axes,
and pass through the page origin. Note that

169

‘Windows Presentation Manager Reference

170

IX,ry

dx,dy

type

Returns:

0 Error

primitives below the x axis are sheared in the opposite
direction from those above the x axis. Points on the x
axis itself are not moved. hz = a and hy = b produce
an identical effect to hz = -a and hy = -b.

Specifying hx = 0 and hy = 1 does not perform any
shearing. Specifying hy = 0 is invalid, because it would
produce an infinite shear.

A rotation transformation in terms of the displace-
ments which a point on the x-axis makes after rotat-
ing. The axes used for rotating are parallel to the x
and y axes, and pass through the page origin. If
another rotation origin is required, appropriate trans-
lations must be applied before and after.

Specifying rz = 1 and ry = 0 does not perform any
rotation.

Because two zero values would be ambiguous, specify-
ing rz = 0 and ry = 0is taken as equivalent to rz = 1
and ry = 0 (no rotation).

Specify a displacement of dz parallel to the x axis, and
dy parallel to the y axis, in page units.

Specifying dz = 0 and dy = 0 does not perform any
translation.

Specifies how the specified transformation should be
used to modify the existing default viewing transfor-
mation, as follows:-

0 - New/replace
The previous default viewing transform is
discarded and replaced by the combined
effect of the specified components.

1 - Additive
The combined effect of the specified com-
ponents is added to the effect of the existing
default viewing transform, in the order (1)
existing transform, g22 new transform. This
option 1s most useful for incremental
updates to transforms.

2 - Preemptive
The combined effect of the specified com-
ponents is added to the effect of the existing
default viewing transform, in the order (1)
new transform, (2) existing transform.

Graphics Programming Interface

1 OK
Principal errors:

GPIERR_INVALID_TRANSEORM_TYPE
GPIERR_INVALID_TRANSEFORM_PARAMETER

7.1.15.7 Device Transform

GpiSetPageWindow

BOOL GpiSetPageWindow (hgpi, x, y., w, h)
HPS hgpi:

LONG x:

LONG vy

LONG w;

LONG h:

Sets the origin and size of the page window within the page.

The page window defines a window within the page. The corners
of the page window are mapped to the corners of the page
viewport, so the two together define the device transform.

It is not an error for any part of the page window to lie outside
the page.

By default, the page window is coincident with the page.
Parameters:

hgpi The handle for the GPI presentation space.

X,y The origin of the page window in page units. If either
is specified as 7%, the corresponding existing value 1s
unchanged.

w,h The width and height of the page window in page

units. If either is specified as 7, the corresponding
existing value is unchanged. If either is specified as 0,
the corresponding page dimension is used.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_WINDOW_DEPTH_IS_INVALID
GPIERR_WINDOW_WIDTH_IS_INVALID
GPIERR_WINDOW_ROW_IS_INVALID
GPIERR_WINDOW_COLUMN_IS_INVALID

171

Windows Presentation Manager Reference

GpiQueryPageWindow

BOOL GpiQueryPageWindow (hgpi, x, y, w, h)
HPS hgpi:
LONG #*x;
LONG +y:
LONG *w:
LONG #h:

This returns the origin and size of the page window.

Parameters:

hgpi The handle for the GPI presentation space.

*X, ¥y Variables in which the origin of the page window are
returned.

*w,xh Variables in which the width and height of the page
window are returned.

Returns:

0 Error
1 OK

Principal errors:

GpiSetPageViewport

172

BOOL GpiSetPageViewport (hdc, x, y, w, h)
HPS hgpi:

LONG x:

LONG vy:

LONG w:;

LONG h;

Sets the origin and size of the page viewport within device space.

The page window (see GpiSetPageWindow) maps to the page
viewport; together they define the device transform.

When a presentation space is associated with a Device Context,
a default page viewport is set up, as described in the section,
“Defaults and Examples”.

Parameters:

hde The handle for the Device Context

X,y The origin of the page viewport in device units. If
either is specified as ?%, the corresponding existing
value is unchanged.

w,h The width and height of the page viewport in device
units. If either is specified as ?7, the corresponding
existing value is unchanged. If either is specified as 0,

Graphics Programming Interface

the corresponding default dimension is used.
Returns:

0 Error
1 OK

Principal errors:

GPIERR_UPPER_BOUNDARY_NOT GREATER_THAN_LOWER
GPIERR_RIGHT_BOUNDARY_NOT_GREATER_THAN_LEET

GpiQueryPageViewport

BOOL GpiQueryPageViewport (hdc, x, y. w, h)
HPS hgpi:
LONG =*x:
LONG *y:
LONG #*w:
LONG +h;

This returns the origin and size of the page viewport.

Parameters:

hde The handle for the Device Context

*X, Ky Variables in which the origin of the page viewport are
returned.

xw,xh Variables in which the width and height of the page
viewport are returned.

Returns:

0 Error
1 OK

Principal errors:

7.1.15.8 Clipping

GpiBeginClipArea

BOOL GpiBeginClipArea (hgpi, control, mode)
HPS hgpi:

ULONG control:

LONG mode;

This introduces the definition of a clip area, which is terminated
by a GpiEndClipArea function. The primitives between these
cause no drawing to occur, but instead define a clip area. At
GpiEndClipArea, this area is combined, in the manner specified
by mode, with the existing clip area, to form the new clip area,

173

Windows Presentation Manager Reference

- 174

which is used for subsequent clipping.

It is valid for a normal area (GpiBeginArea .. GpiEndArea) to
occur within a clip area definition. If this occurs, the GpiBe-
ginArea and GpiEndArea are effectively ignored, except that,
within the area bracket, closure lines are generated as usual.

The co-ordinates are specified in world co-ordinates. A segment
viewing limits (GpiSetViewingLimits) function causes a rec-
tangular clip area to be set up.

At the start of each root segment, the clip area reverts to the
default (infinite).

A null clip area (as, for example, if there are no primitives
between the GpiBeginClipArea and the GpiEndClipArea), causes
all subsequent drawing to be clipped.

The following are the only Gpi functions allowed to the same
presentation space, within a GpiBeginClipArea - GpiEndCli-
pArea bracket:-

GpiBeginElement (containing only valid function(s))
CpiElement (containing a valid function)
GpiEndElement

GpiSetModelTransform

GpiCallSegment

GpiSetAttrMode

GpiQueryAttrMode

GpiPop (Providing only a valid function is popped)
GpiSetCurrentPosition

GpiQueryCurrentPosition

GpiMove

GpiLine

GpiPolyLine

GpiBox

CpiSetArcParams

GpiQueryArcParams

GpiArc

GpiFullArc

GpiPartialArc

GpiPolySpline

GpiPolyFillet

GpiPolyFilletSharp

GpiSetCharSet, GpiSetCharBox

GpiSetCharAngle, GpiSetCharShear
GpiSetCharDirection, GpiSetCharMode
GpiSetCharSpacing, GpiSetCharExtra, GpiSetCharBreakExtra
CpiSetTextAlignment

GpiCharString, GpiCharStringAt

GpiCharStringPos, GpiCharStringPosAt

GpiCharString(Pos)(At) functions are only valid for characters
drawn with vector symbol sets or outline fonts.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be

Graphics Programming Interface

constructed and placed into the current segment.

Parameters:-

hgpi The handle for the GPI presentation space
control A 4-byte parameter containing flags:-

GPICA_ WINDING
(bit 1) - Set to 'I’B if the clip area is to be
constructed in winding mode. Otherwise it is
constructed in alternate mode.

mode Defines how a new clip area is to be formed from the

combination of the old clip area and the one to be

defined:-

GPICA_UNION (1) - Union of old and
specified areas

GPICA_REPLACE (2) - Specified area replaces
old area

CGPICA_SYMDIFF (4) - Symmetrical difference

of specified and old areas
GPICA_INTERSECTION (6) - Intersection of old and
specified areas

GPICA_DIFEF (7) - 0ld area AND
NOT (specified area)
GPICA_INFINITE (17) - New clip area is infinite,
regardless of specified area
Returns:
0 Error
1 OK

Principal errors:

GPIERR_INVALID_CLIP_AREA_CONTROL
GPIERR_INVALID_MODE
GPIERR_ATTEMPT_TO_START_SECOND_CLIP_AREA

GpiEndClipArea

BOOL GpiEndClipArea (hgpi)

HPS hgpi:

This terminates the definition of a clip area, introduced by a
previous GpiBeginClipArea function.

This function can occur within the picture; for example if it is
issued in store or draw-and-store mode, an order will be con-
structed and placed into the current segment.

Parameters:-

175

Windows Presentation Manager Reference

hgpi The handle for the GPI presentation space
Returns:

0 Error
1 OK

Principal errors:

GPIERR_END_CLIP_AREA_DEFN_IGNORED

GpiSetGraphicsField

BOOL GpiSetGraphicsField (hgpi, x, y. w, h)
HPS hgpi:

LONG x;

LONG vy:

LONG w:

LONG h;

This sets the mandatory clipping limits on the Page.

By default, the graphics field boundaries are coincident with the
page boundaries. This function allows the mandatory clipping
limits to be set to an area less than that of the whole page.

The boundaries are inclusive, ie a point on the boundary is not
clipped.

Parameters:

hgpi The handle for the GPI presentation space.
X,y The origin of the graphics field in page space.

w,h The width and height of the graphics field in page
units.

Returns:

0 Error
1 OK

Principal errors:

GPIERR_INVALID_GRAPHICS_FIELD_ORIGIN
GPIERR_INVALID_GRAPHICS_WIDTH_OR_DEPTH

GpiQueryGraphicsField

176

BOOL GpiQueryGraphicsField (hgpi, x, y, w, h)
HPS hgpi:;
LONG =*x:
LONG =*y:
LONG #*w;
LONG #h;

This returns the dimensions of the graphics field.

Parameters:

Graphics Programming Interface

hgpi The handle for the GPI presentation space.

*X, ¥y Variables in which the origin of the graphics field in
page space are returned.

*w,xh Variables in which the width and height of the graph-
ics field in page units are returned.

Returns:

0 Error
1 OK

Principal errors:

GpiSetViewingLimits

BOOL GpiSetViewingLimits (hgpi, x1, xr, yb, yt)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>