=== = Introduction to

tttttttttttt

= === Introduction to

== IBM Data Processing Systems

—— aov— -
"

Student Text

Preface

All IBM Data Processing Systems, regardless of size, type, or basic use, have
certain common fundamental concepts and operational principles. This
manual presents these concepts and principles as an aid in developing a basic
knowledge of computers. The manual is designed for use in training programs
where a basic knowledge of computers is the end objective or is a prerequisite
to the detailed study of a particular IBM system.

Each section is organized to present a logical association of related concepts
and operational principles. The sections may be used in a progressive se-
quence to develop a concept of the computer system, or they may be used
independently as reference material. The subject matter has been generalized
and refers to actual machines and systems as little as possible. Specific
systems are mentioned only to illustrate a general principle, not to compare
one system with another.

Throughout this manual you will be reading about data processing concepts
and devices supported by IBM. Such specifics as memory requirements,
device capacities and speeds, and special features will be discussed. However,
because of the dynamic nature of data processing, where changes and im-
provements are being made at a very rapid pace, the reader is advised to refer
to the IBM Systems Reference Library and other IBM publications for the
most current information.

Preface i

Fifth Edition -- June 1977, Reprinted July 1978,

This edition is a major revision of and obsoletes all previous editions of GC20-1684.
It is intended as a partial update of the previous edition (GC20-1684-3) incorporating
numerous changes that have occurred since publication of that edition.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality. Address comments concerning the contents of this publication
to IBM Corporation, DPD Education Development - Publishing/Media Support, Education Center,

South Road, Poughkeepsie, New York 12602.

© Copyright International Business Machines Corporation 1960, 1967, 1977

Contents

StOrage. e e e e e
Inputand OutputDeviceso vvr v,
Console. . . . v i e e e
System/3. . . . e e e e e
System 3 e
IBMS100 . .ot e

Section 2: Data Representation
Computer Data Representation.
Binary States i
Binary Number System.
ComputerCodesuvivermenn..
CodeChecking00t enen
Standard BCD InterchangeCode
Six-Bit Alphameric Code (Binary Coded Decimal System). . . .

Eight-Bit Alphameric Code (Extended Binary Coded

Decimal Interchange Code-EBCDIC)
Eight-Bit Alphameric Code (ASCII-8)
Computer Number Systems and Conversion.
Binary System. e
Hexadecimal System v v v v v i i v i v
IntegerConversioncoviinnn..
HexadecimaltoDecimal
Decimal to Hexadecimal
Hexadecimal to Binary and Binary to Hexadecimal.
DecimaltoBinary.
BinarytoDecimal.
FractionConversion

Usage of Hexadecimal
Data RecordingMedia
Cards. o e e e,

MagneticTape.o i it it i it e et
Seven-Track Coding on Tape (BCDMode).
Seven-Track Coding on Tape (Binary Mode).
Nine-Track CodingonTapeo vi v ...
CharacterReading
MagneticInk Characters
Optically Read Characters v v v v v v
Visual Qutput v it e e e e

Section 3: StorageDevices
Main Storage. . . . v v v v vt et e e e

Mass StOIage. . v v v v v v ettt e e e e
Storage and Data Processing Methods

.. 1-18

Section 4: Central Processing Unit (CPU). 4-1
Functional Units e . .42
Register i ittt e 4-2
COUNLET & . ittt i ittt ettt ettt ee e 4-5
Adder. L e e e e e 4-5
Machine Cycles v vt it ittt i e ettt e 4-5
InstructionCycle i i, 4-6
ExecutionCycle. oo vttt it e e 4-7
Serial and Parallel Operation. 4-8
Fixed - Length and Variable - Length Words. 49
Floating-Point Operation. 4-9
Section 5: Input/OutputDevices. 5-1
ControlUnits ittt ittt e, 5-2
Channels. . .. v v vt s i e i s it et e e 5-3
Validity Checks v v v vt it e et et e et e e i e e ae e 5-4
Indicators, Keysand Switches. 5-4
PunchedCard Devicest vt vinnnenn 5-4
CardReaders oo i it ittt e it i it nnenn 5-4
CardPunches i 5-5
Diskette Input/OutputDevices o v v v v v v v e v v e v .., 5-6
MagneticTape Units0 v v i vt i vt e e e e e 5-8
LoadingTape Units.o i i i vt vt on e v 5-9
Reading From and Writing on MagneticTape 5-10
Checking Magnetic TapeData. 5-11
Tape Records, Interblock Gap and Tapemark. , 5-13
Tape Unit Characteristics 0. 5-14
Maximum and Effective Character Rates. 5-15
Load-Point and End-of-ReelMarkers. 5-15
File Protection PSP 5-16
Direct Access Storage Devices. v v v v v e v v v v v u 5-16
Punched Tape Devices oo v v v v v v v e e e e, 5-17
PaperTapeReader 5-17
PaperTapePunch. 5-18
Printers. i e e e e 5-18
3800 Printing Subsystem. 5-18
ImpactPrinter.ttt 5-21
Character Recognition Input Units. 5-24
Magnetic CharacterReaders. 5-24
Optical Character Readers. v v v v v v v v v e nn o 5-26
COmSOIeS .« v v v v e e e e e e 5-27
GraphicDisplay Units, 5-28
Terminals 0o it e e e e e 5-30
DataBuffering. v i v i ittt e e 5-30
Section 6: Teleprocessing.o v v 6-1
Elements of a Teleprocessing Network. 6-2
Host Processor. . . . v v v v it vt ittt e et i e 6-2
Communications ControlDevicés. 6-2
Modulation/Demodulation Devices., 6-3
Communications Lines.00ouvv.... 6-4
Configurationo i it ittt 6-4
Transmission Direction. 64
8 6-4
TransmissionMode 6-5
COodeS. o v v i e e e e e e e e 6-5
LineDisciplines o i it it et e 6-5
Binary Synchronous Communications 6-5
Synchronous Data Link Control 6-5
Teleprocessing Applications00.... 6-6

Contents 1

Section 7: Stored Program Concepts. 7-1

INSEIUCHIONS .+ v v vt o v v e e et e e e 7-1
Two-Address Instructions v i v 7-2
InstructionsandData.t 7-2
DevelopingaProgram 7-3
System Flowchart.o v i i v i i e 7-5
Program Flowchart oy 7-7
Flowcharting Worksheeto 7-7
Miscellaneous Techniques v v v v v v v v v o v v v 7-9
Flowchartingby Computer oo v v v v v oo 7-11
ReadingData o v v i i v it e i i oo ce s 7-11
Calculating. v v vt v it e e 7-12
Logical Operations v v v v v v v 7-14
COMPATING. « « v v v v v e v v e v n it n e e e e 7-19
Indexing . . « o« v v vt i e e e e 7-20
Linking. . . . v v v v it i i e e s 7-22
Chaining . . v v v v v v e it it e e 7-24
Section 8: Programming Languages and Techniques. 8-1
Program Preparation i 8-1
Types of Programming Languages.o 8-2
SymbolicLanguage. . . . v v v v v it e 8-2
Language Translation. v 8-4
Machine-Oriented Programming Languages 8-5
MacroInstructions v v v v ittt i e e e 8-6
The Macro Instruction Statement. 8-7
The Macro Definition. 8-7
TheMacroLibrary o v v v v it i it e e e s e e s 8-7
Varying the Generated Statements 8-7
(0010) 7 AR S 8-7
FORTRAN ittt et i ettt s e e 8-8
PL/L . e e 8-9
APL. . . e e e e e 8-10
Report Program Generator. v oo v v v e v v cv v o 8-12
Program Checkout vvin e 8-13
Testing Techniques.o o v i v ittt i v 8-13
Storage Printout. oo 8-14
TIACINE . o v v v vt e et ettt e e 8-14
Improved Programming Technologies 8-14
Structured Programming.o oot 8-14
Structured Programming Theoryo o oo oo 8-15
Top-Down Program Development. oo oo v o 8-17
Chief Programmer Teams« oo v v v v v v v v oo 8-18
5 00 8-18
Structured Walk-Throughs. oo v v v v v oo v 8-21
InSpections. . .« v v v v v v e e 8-22
Section 9: Programming Systems. 9-1
Input/Output Control Systems 9-1
Operating System.o v v e v it v i e vt 9-2
Virtual StOTage . .« v v v v v v i e e e s 9-2
DOS/VS & ot it e e e 9-5
ComponentPrograms. v v v v v vt i e 9-5
Control Programs o v v v v v o it e 9-5
Processing Programso v v v v vt ve i v n e 9-5
DataManagement.« . oo v vttt 9-6
Multiprogramming v v v v vt v e e e e 9-7
Virtual Storage SUpport . . . v v v v v i 9-8
Paging oot i e 9-8
OS/VSL . ittt e e e 9-10
JobManagement i it i 9-10
Task Management.o v v v v v v v oo v o n c it a e 9-11
DataManagement. v v vt et 9-11
Recovery Management« o v v o v v v v oo v oo nn 9-11
Service Ads it e e e e 9-12

2 Contents

GTF (Generalized Trace Facility). 9-12
HMASPZAPPIOZIam. . . o o o v v v oo e ae s oo o ss oo e 9-12
Virtual Storage Supporto 9-12
JES (Job Entry Subsystem) oo i 9-12
Compatibilityo e 9-13
Other Features v v« vt v v vt n ot v o vn oo enon 9-13
Shared DASD (Direct Access Storage Device). 9-13
SMF (System Management Facilities) 9-13
Checkpoint/Restart.ot 9-13
MCS (Multiple Console Support)« v o v v v v 9-14
Time-Slicing Facility v 9-14
OS/VS2 ittt e e e 9-14
JobManagementot 9-14
Multiple Console Support-MCS 9-14
SystemLog .« o v v vt ot 9-15
Hardcopy LOg. .« « v v e v i i i e e e 9-15
Checkpoint/Restart. . . . v v v v v v v v v e i ve v 9-15
System Management Facilities-SMF. 9-15
OtherFeatures . . . v . v v v v v v v e v vt v ime e n s ans 9-16
SystemIntegrity ii e 9-16
Time Sharing Option-TSOo 9-16
Virtual Machine Facility/370 (VM/370) 9-18
Elementsof VM/370 o ottt i oo 9-18
Virtual Machine Operating Systems. 9-19
VM/370 Applications. e 9-19
Programmingo v v v v v v v v i o v oo v e nnneas 9-19
OpPerations. « « v v v v v v v e e e e 9-20
Interactive Use oo vttt 9-21
AccessMethods v v v vt i v it e e e 9-22
Sequential Access Method -SAM 9-23
Basic Direct Access Method-BDAM 9-23
Indexed Sequential Access Method -ISAM 9-23
Virtual Storage Access Method - VSAM 9-24
Alternate Indexes. v v v v v v v i e e e 9-25
Relative Record DataSet 9-25
GetPrevious. . . v v v v v v e 9-25
Telecommunications Access Methods 9-25
Basic Telecommunications Access Methods - BTAM 9-26
Virtual Telecommunications Access Method - VTAM 9-26
Telecommunications Access Methods- TCAM 9-28
Section 10: Data Security and Integrity. 10-1
Backup Facilities i 10-2
DataControls ot t v vt it e e 10-3
InputControls. . . . v v v v vt vttt e e 10-3
Processing Controls. v v v v v vttt e 104
RecordCount.o v v vt it it e e eena e 104
Limit Check or ReasonablenessCheck 10-5
TapeandDisk Labels. 10-5
HousekeepingCheck i 10-6
Sequence Check. . . v v v v v v v vt i i e e 10-6
Qutput Controls. . . v v v v v v v vttt e e 10-6
ControlTotal it i it i it ean 10-6
Console Error Messages. v v v v v v v v v vt o i oo an 10-7
Checkpointand Restart 10-7
Procedural Controls. v i vttt v i 10-7
Separation of Responsibility. 10-7
Resolving Exceptions. oo v vt i i v i i i e nnn 109
Overriding Programmed Controls 109
ProgrammingControls v o v it e 109
Establishing Programming Controls. 10-10
Operations Control Groups v v v v v v v v v v n 10-11
Controlling Programs.« . v v v i v v i e o 10-11
Network Security. . . .« v v v v v v v vt it v e e e e 10-12
Terminal Security. ot i i i e 10-13
System Controls and Procedures 10-13
Index

Section 1:

Introduction

Technological advance in data processing is both dynamic and extensive. The
ways in which data processing systems can be used seem almost boundless.
Each new application demonstrates how such systems can be used to help
man enlarge his capabilities.

Data processing systems ordinarily consist of a combination of programs and
physical equipment designed to handle business or scientific data at electronic
speeds with self-checking accuracy. The physical equipment (Figure 1-1)
consists of various units, including input, storage, processing and output
devices. Figure 1-2 pictures a teleprocessing, (telecommunications plus data
processing) system applied to airline reservation activities.

Machines are devised by men for a purpose. In the case of data processing
machines, the purpose can be expressed simply: they offer man a means to
increase his productivity.

They do this in two ways. First, they enable man to increase his output per
hour and the quality of his output (this is true whether it be in research,
production, problem solving, or the distribution of goods and services).
Second, they increase productivity by encouraging careful and intelligent
planning.

Figure 1-1 IBM System/370 Model 168 Data Processing System

Data processing machines came into being primarily to meet the increased
need for information under increasingly complex conditions.

As a manufacturing economy developed during the 19th century, it became
clear that expanded markets would require mass production techniques.
Machinery was introduced to increase productivity. It became possible to
turn out more and more goods with less human-effort.

During the last quarter century, further changes have taken place. Science
has moved into the forefront of human activity. Research has grown to a
multibillion-dollar-a-year undertaking.” New technology has provided a new
impetus for corporate growth. Service industries have multiplied. Patterns of

Introduction to IBM Data Processing Systems 1-1

Section 1: Introduction

consumer spending have changed.

As these changes gained force, they manifested themselves in many ways.
Informational needs greatly increased. Data assumed new importance.
Clerical tasks multiplied. It seemed that paper handling alone would over-
whelm all productive activities, for clerical mechanization had not kept pace
with production line developments in the factory.

3
Flight =
Scheduling 577“3’
¢ I Instant Record Retrieval
Real Time

Reservations Progress Checks

Figure 1-2 Data Processing System Application

Great opportunities and challenges lie ahead. An example of what can be
done is the development a few years ago of magnetic character sensing for the
banking industry. The estimated 30 billion checks that circulate annually in
the United States present a staggering task in data handling for banks. Each
check drawn on a bank must be handled at least six times before it is can-
celled and returned. Even when business machines were introduced to handle

1-2 Introduction to IBM Data Processing Systems

Section 1: Introduction

part of this chore, operators were needed to transfer data from the checks to a
form in which the data could be used by the machines.

Magnetic character sensing, developed by computer manufacturers in cooper-
ation with the American Bankers Association (ABA), permits data to be read
directly by both man and machine (Figure 1-3). By agreement among com-
puter manufacturers, check printers, and the ABA, such banking documents
as checks, deposit slips, and debit and credit memos can be printed in magnet-
ic ink. Printed information about the bank of origin, depositor’s account
number, and other essential data can be read directly by the machine. Only
the specific amount of each check or deposit slip need be recorded on the
document in magnetic print, and this need be done only once by an operator
to process the document through its entire routine.

Figure 1-3 Magnetic Character Sensing - IBM 1419 Magnetic Character Reader

In addition to the growing need for mechanization of clerical routines and
management procedures, there is the tremendously expanded need for data
processing to match the new rate of technological growth and scientific
research. The demands for information are enormous. Data processing
systems are increasingly relied upon for information to assist in running
enterprises, administering institutions, directing research, and planning future
activities. To this end, data processing centers are, increasingly, offering
time-sharing services to their users. The users can enter problems to be
solved, requests for information, and data to be processed - all from remote
terminals located either on site or possibly thousands of miles away. The
automatic reservation systems for airlines and motels are examples of the
long-distance entries in intracompany time sharing.

Introduction to IBM Data Processing Systems 1-3

Section 1: Introduction

14

Data Processing in the
Past

Two other areas of remarkable advances are image processing and audio
response. The processing of the Mariner IV pictures transmitted from the
planet Mars to Earth was an example of image processing.

Rapid microfilm scanning was combined with automatic interpretation of dark
and light spots into 1’s and 0’s for computer storage. These pictures were
then displayed on viewers’ screens.

Although it is possible, experimentally, to dictate or speak directly to a binary
recording device that will compute from the dictation, the converse is being
done daily at the New York Stock Exchange. There, the latest stock prices
are quoted on request, by a recorded voice. The message is selected and
assembled from spoken words previously stored in the computer.

Regardless of the product or problem, the nature of the enterprise or institu-
tion, wherever there is need for information upon which human judgments
can be based, there may also exist a need for a data processing system.

Although data processing systems are tools of astonishing versatility, the
automatic processing of data is so recent that its biggest period of growth can
be traced within the last 40 years.

Punched cards were introduced during the census of 1890, but the data
processing industry, as recently as 1937, amounted to little more than a
fledgling.

World War II caused a swift change of pace in data processing developments.
Much of the momentum came from the urgent demands of science. In air-
craft design and ordnance development, new and prodigious requirements for
data were encountered. As work got under way on the atomic bomb, scien-
tists found themselves suddenly faced with new dimensions in calculation

Both here and abroad, the first two large-scale computers were developed in
university laboratories. The earliest, the ENIAC, came from the University of
Pennsylvania; Europe’s first, the EDSAC, came from the laboratories of
Cambridge University in England.

In these machines, the switching and control functions, once entrusted to
relays, were handled by vacuum tubes. Thus, the relatively slow movements
of switches in electromechanical computers were replaced by the swift motion
of electrons. By this changeover, it became possible to increase the speed of
calculation and perform computations 1000 times as fast as before.

Almost concurrently with the use of electronics came another major develop-
ment that was to widen the capabilities of data processing systems and expand
their opportunities for application. This advance is embodied in what is called
a stored program computer. At the start, machine instructions were program-
med on interchangeable control panels, cards, or paper tapes. Detailed
instructions had to be wired in or read into the machine as the work pro-
gressed. Data put into the computer was processed according to the instruc-
tions contained in these preset devices. Only in a limited way could the
computer depart from the fixed sequence of its program.

It soon became apparent that these programming techniques inhibited the
performance of the computer. To give the computer greater latitude in
working problems without operator assistance, scientists proposed that the

Introduction to IBM Data Processing Systems

Section 1: Introduction

computer store its program in a high-speed internal memory or storage unit.
Thus, the computer would have immediate access to instructions as rapidly as
it called for them. With an internal storage system, the computer could
process a program in much the same way that it processed data. It could even
be made to modify its own instructions as dictated by developing stages of
work.

The earliest computer to incorporate this feature was completed in 1948.
Later computers extended the principle until it became possible for a comput-
er to generate a considerable part of its own instructions.

Because the computer is capable of making simple decisions, and because it is
capable of modifying instructions, the user is relieved of a vast amount of
costly and repetitive programming.

Concurrently with the development of stored programs for computers, telep-
rocessing was being born, although it was not known by that name for more
than a decade. In 1940, the U.S. Air Corps voiced a need for a machine to
automatically punch IBM cards with the data received over telegraph lines in
the form of punched paper tape To answer this need, IBM produced a tape-
controlled card punch and a card-controlled tape punch. During the last two
years of World War II, 4 to 5 million cards per month were transmitted from
point to point by telegraph.

The next major advance in teleprocessing was the introduction of the IBM
Data Transceiver (1954) to provide direct card-to-card transmission over
voice grade (telephone) channels, as well as microwave, short-wave radio,
and telegraph channels.

The early 1950s saw the introduction of medium and large scale data process-
ing systems, specifically designed to take over the burdensome clerical chores
that beset so many growing companies.

Though essentially similar to previous computers in the way they processed
data, these new business systems differed substantially in various parts of
their makeup. In scientific research, most problems call for relatively few
items to be subjected to intensive machine processing. In business operations,
the reverse is more often true. Here the need is for machines that accommo-
date vast numbers of items, while the processing, by comparison, is ordinarily
quite simple.

Modifications in these new business systems were addressed to the twin
problems of input and output.

Early computers had used punched cards and paper tapes for the input of
information. Then a method was developed for storing information as
magnetized spots on magnetic tape. This new technique provided input speed
50 to 75 times that of cards and brought improvement in input, output, and
storage. More recent advances in magnetic tape technology have greatly
increased the original input/output rate.

After the Korean War, man’s need seemed to be constantly one jump ahead
of the computer’s ability to handle the logical and arithmetic labors of his
reasoning. The demand quickened especially in such fields as nuclear physics
and space technology, where work on the H-bomb and ballistic missiles

Introduction to IBM Data Processing Systems 1-5

Section 1:

Introduction

presented problems that put a severe strain on the capacities of existing
machines. Still more speed was needed.

A substitute for earlier storage devices appeared in the early 1950s - the
magnetic core, which is a small ring of ferromagnetic material. When strungon a
complex of fine wires (Figure 1-4), magnetic cores can be made up into a
high-speed internal storage system. An array of cores - some magnetized in
one direction, some in the other - represents items of information. Items in a
core storage can be located and made ready for processing in a few millionths
of a second.

i

Figure 1-4 Magnetic Core Plane

Almost at the same time, other engineers developed magnetic drum storage.
Access to information stored on the drum was substantially slower than with
the core system, but storage capacity was substantially increased, and access
was still faster than with magnetic tape.

Other conditions peculiar to business led to still more developments. A major
one is a system that overcomes a problem - batching -often encountered in
data processing. For example, magnetic tapes store information sequentially,
and the user must accumulate information in batches before putting it on
tape. Otherwise, the computer would be prohibitively costly and time con-
suming. But when this limitation is applied to business practice, it means that
each item of information can be only as current as the batch in which it is
bundled for delivery to the computer. In ordinary operations, hours and
sometimes days may elapse between batches.

Because of the sequential nature of tapes, the limitation is compounded when
the user calls for the retrieval of a piece of information. The computer is
forced to search through a long reel of information for the piece. Access is
slow; time may be lost.

Batching and searching requirements frequently present serious drawbacks,
even in scientific work. In business, the difficulty becomes much more acute,
especially in accounting procedures.

Inline data processing was provided in the mid-50s with the introduction of
random (direct) access storage units. These allow direct access to the desired

1-6 Introduction to IBM Data Processing Systems

Section 1: Introduction

data record addressed, thus reducing the processing time required in sequen-
tial processing. The first direct access storage units consisted essentially of a
stack of magnetically coated, rotating disks, each disk containing data tracks.
Information can be recorded on, or retrieved from, the data tracks without
regard to the sequential order of recorded data.

Meanwhile, continuing developments in electronics and solid state physics led
to still newer and better components.

In some switching functions, the vacuum tube was replaced by a smaller
semiconductor diode that has the advantage of demanding less power. A
further advance came when tiny transistors were introduced in place of
vacuum tubes in the computer. Not only can these transistors be packed into
smaller units (Figure 1-5), but they have greater reliability. The changeover
to transistors was accomplished, creating what has frequently been referred to
as the "'Second Generation'' of computers.

The next technological advance miniaturized and refined components of the
Second Generation. This, when done, led to a concept known as Solid Logic
Technology. The use of these components (Figure 1-5) ushered in the "Third
Generation'' of computers.

Figure 1-5 Second and Third Generation Computer Components

Introduction to IBM Data Processing Systems 1-7

Section 1: Introduction

Data Processing at Present

1-8

Data Processing in the
Future

The Data Processing
System

A significant advance in input/output technique is the development of the
various types of graphic displays. These are similar in appearance to televi-
sion sets, but the "picture' is computer output in the form of printed charac-
ters or graphic designs specified by the program and data. In some cases, the
user can change the output display by using a light pen to "erase" a charac-
ter (or part of a line) from the display screen. Then, by using the light pen or
the associated keyboards, or both, he can alter the displayed information.
More and more frequently, display and other devices are used to enter data
into the computer from remote locations by means of communications lines
(usually telephone lines) connecting the devices known as terminals with the
computer. When multiple terminals are connected to the computer, concur-
rent usage of the computer for problem solving and program development on
an interactive basis often increases substantially.

Along with other advances in computer technology, computer data storage
capacity has increased immensely. This has led to the development of large
on-line interrelated collections of data referred to as data bases. Many large
centralized data bases utilizing remote terminals have evolved in recent years.
Such systems of large networks have integrated widely scattered business
operations. This has occurred since, in general, information can be communi-
cated and processed more accurately and with less cost by network-integrated
processing systems.

More recently, data communications systems with processing and disk storage
capabilities have been developed. These systems located at sites remote from
the central (host) computer are capable of processing much of the input data
locally. Data that has been deemed necessary or desirable for processing or
maintenance at the central site is transmitted to the host computer. This is
often referred to as distributed function.

Computers of the future, as well as programs, will probably be quite different
from those of today. Storage and processing units will be drastically reduced
in physical size, yet speed and capacity will be greatly increased.

Research scientists have already advanced to still further stages in design.
Some are studying magnetic bubbles on a chip for use as secondary storage in
the computer. Others are considering electron beam techniques for main
storage.

As always, the objective is to develop a better, more versatile, more useful
computer - one that will work faster, store more information, require less
power, occupy less space, and cost less. Computers of the future will inevi-
tably introduce changes in the way we work, in the way we learn, and even in
the way we provide for our armed defense.

Data processing is a series of planned actions and operations upon informa-
tion to achieve a desired result. The procedures and devices used constitute a
data processing system (Figure 1-6). The devices may vary: all operations
may be done by machine, or the devices may be only pencil and paper. The
procedures, however, remain basically the same.

Introduction to IBM Data Processing Systems

'

Section 1: Introduction

Bookkeeping System— Pencil and Paper

USRS

Accounting with Key=-Driven Machines

=4] I}

Punched Card Accour'wing

= I

Data Processing System

Figure 1-6 Data Processing Systems

There are many types of IBM data processing systems. These vary in size,
complexity, speed, cost, levels of programming systems, and application. But,
regardless of the information to be processed or the equipment used, all data
processing involves at least three basic considerations:

1. The source data or input entering the system
2. The orderly, planned processing within the system
3. The end result or output from the system

Input may consist of any type of data: commercial, scientific, statistical,
engineering, and so on (Figure 1-7).

BRAILLE

Figure 1-7 Sources of Data

Processing is carried out in a preestablished sequence of instructions that are
followed automatically by the computer (Figure 1-8). The plan of processing

Introduction to IBM Data Processing Systems 1-9

Section 1:

Introduction

Stored Programs

is always of human origin. By calculation, sorting, analysis, or other opera-
tions, the computer arrives at results that may be used for further processing
or recorded as reports or sets of data.

Output

Input Rewults

Data

Calculate
Edit
Select

Figure 1-8 Data Processing by Computer

Each data processing system is designed to perform a specific number and
type of operations. It is directed to perform each operation by an instruction.
The instruction defines a basic operation to be performed and identifies the
data, device, or mechanism needed to carry out the operation. The entire
series of instructions required to complete a given procedure is known as a
program.

For example, the computer may have the operation of multiplication built into
its circuits in much the same way that the ability to add is built into a simple
desk adding machine. There must be some means of directing the computer
to perform multiplication, just as the adding machine is directed by depressing
keys. There must also be a way to instruct the computer where in storage it
can find the factors to muitiply.

Further, the comparatively simple operation of multiplication implies other
activity that must precede and follow the calculation. Assume that the
multiplicand and the multiplier are read into storage by an input device. This
device must previously have had access to the record or records from which
these factors are to be supplied. Once the calculation is performed, the
product must be returned to storage at a specified location, from which it may
be written out by an output device.

Any calculation, therefore, involves reading, locating factors in storage,
perhaps adjusting the result, returning the result to storage, and writing out
the completed result. Even the simplest portion of a procedure involves a
number of planned steps that must be spelled out to the computer if the
procedure is to be accomplished.

An entire procedure is composed of these individual steps grouped in a
sequence that directs the computer to produce a desired result. Thus, a
complex problem must first be reduced to a series of basic machine operations
before it can be solved. Each of these operations is coded as one instruction
or a series of instructions, in a form that can be interpreted by the computer,
and is placed in the main storage unit as a portion of a stored program.

1-10 Introduction to IBM Data Processing Systems

Section 1: Introduction

The possible variations of a stored program provide the data processing
system with almost unlimited flexibility. A computer can be applied to a great
number of different procedures simply by reading in or loading the proper
program into storage. Any of the standard input devices can be used for this
purpose, because instructions can be coded into machine language just as data
can.

The stored program is accessible to the machine, providing the computer with
the ability to alter the program in response to conditions ericountered during
an operation. Consequently, the program selects alternatives within the
framework of the anticipated conditions.

A brief introduction to various types of programs and systems operations
follows. All of the terms are discussed in greater detail later in the manual.

To make possible the teleprocessing networks and the orderly operation of
many types of input/output devices that may be on-line with a computer,
control programs have been developed by IBM and users of IBM computers.
Control programs are also known as monitor programs or supervisory pro-
grams and they act as traffic directors for all the other programs. The others,
called processing programs or problem programs, solve a problem or carry out
a particular operation or process on a set of data and later relinquish control
of the computer to the control program. Multiple levels of control programs
are possible. However, each higher level control program considers the next
level control program as a problem program. The control program may be
constructed to allow the computer to handle random inquiries from remote
terminals, switch from one problem program within the computer to another,
control external equipment or do whatever the application calls for.

The concept of maintaining optimum computer usage by interleaving and
interspersing processing programs under the direction of control programs
gives rise to the use of two terms - time sharing and multiprogramming.

Briefly, time sharing may be thought of as the cooperative use of a central
computer by more than one user (company, division or branch of a company,
institution, or government agency). Each user receives a share of the time
available, with the result that many jobs are being performed within a con-
gruent time (either simultaneously or seemingly simultaneously). This service
may be achieved by interspersing programs rapidly on one computer system,
by multiprogramming (described later), or by using two computers that are
joined to permit the sharing of each other’s facilities (multiprocessing).

Multiprogramming is usually thought of as a system of control programs and
computer equipment that permits many processing or operating programs of
one or more users to go on concurrently. This is accomplished by interleaving
the programs with each other in their use of the central processing unit,
storage, and input/output devices. To do this, the control programs and
equipment must be able to identify the point at which a problem program that
is being executed must "wait" for the completion of some event. At that
poitit, the control program begins another processing task that is ready to be
executed. When that is done, the control program must be able to go on to
something else or go back to the former (unfinished) program, if it is ready to
continue. Since many programs may be in stages of partial completion,

Introduction to IBM Data Processing Systems 1-11

Section 1:

Introduction

Functional Units

successful multiprogramming usually requires scheduling levels of priority for
the different tasks.

Time sharing, multiprogramming, and multiprocessing are closely linked, and
may be combined in many ways. While one user has the computer on a time
sharing basis, his problem may involve several different tasks that can be
interleaved by a computer and programming system that provides for multi-
programming. It is also perfectly possible for teleprocessing messages to be
coming in and going out of certain types of computers at the same time that
process (problem) programs are being run. These are but two examples of
possible combinations of time sharing and multiprogramming,.

Data processing systems can be divided into four types of functional units:
central processing unit, storage, input devices, and output devices.

Figure 1-9 Central Processing Unit and Console

Central Processing Unit

The central processing unit (Figure 1-9) is the controlling center of the entire
data processing system. It can be divided into two parts:

1. The arithmetic/logical unit;
2. The control section

The arithmetic/logical unit performs such operations as addition, subtraction,
multiplication, division, shifting, moving, comparing, and storing. It also has a
logical capability to test various conditions encountered during processing and
to take action accordingly.

The control section directs and coordinates the entire computer system. Its
functions involve controlling the inpet/output units and the arithmetic/logical
operation of the central processing unit, and transferring data to and from
storage, within given design limits. This section directs the system according
to the procedure originated by its human operators and programmers.

1-12 Introduction to IBM Data Processing Systems

Section 1: Introduction

Storage

Storage is somewhat like an electronic filing cabinet, completely indexed and
instantaneously accessible to the computer.

All data must be placed in storage before it can be processed by the comput-
er. Information is read into storage by an input unit and is then available for
internal processing. Each position or section of storage has a specific location
called an address, so that the stored data can be readily located by the com-
puter as needed.

The computer may rearrange data in storage by sorting or combining different
types of information received from a number of input units. The computer
may also take the original data from storage, calculate new information, and
place the result back in storage.

The size or capacity of storage determines the amount of information that can
be held within the system at any one time. In some computers, storage
capacity is measured in millions of digits or characters (bytes), providing
space to retain entire files of information. In other systems, storage is smaller,
and data is held only while being processed. Consequently, the capacity and
design of storage affect the method in which data is handled by the system.

In System/370, main storage is thought of as consisting of the following:

main data storage, (also referred to as real storage), which may vary in size

from 65,536 to over eight million characters of programs and other data;

control storage, which often contains special built-in microprograms to assist

the computer in carrying out its own operations; and local storage, consisting

of high-speed working areas (registers) for floating-point arithmetic, fixed--
point arithmetic, and other types of processing.

In addition, much more storage is provided by the direct access storage
devices described in a later section. These direct access devices and the tape
units provide what is sometimes called secondary storage or auxiliary storage.

Storage is designed in such a way that information can be put there in many
forms - as complete records, portions of records, digits, symbols, characters,
code patterns, signals, and so on. However, capacity is usually stated in
characters, meaning letters of the alphabet, digits, and special symbols of
accounting, scientific notation, and report writing. In System/370, the word
byte is used instead of "character". It is possible to pack two numeric digits
into the same storage space that is required for letters of the alphabet, special
characters, and the other symbols usually referred to as characters.

Input and Output Devices

The data processing system requires, as a necessary part of its information-
handling ability, features that can enter data into the system and record data
from the system. These functions are performed by input/output devices
(Figure 1-10) linked directly to the system.

Input devices read or sense coded data that is recorded on a prescribed
medium and make this information available to the computer. Data for input
is recorded in cards and paper tape as punched holes, on magnetic tape as
magnetized spots along the length of the tape, on paper documents as charac-
ters or line drawings created with the light pen and associated keyboards, etc.

Introduction to IBM Data Processing Systems 1-13

Section 1: Introduction

The method of recording data for machine use and the characteristics of each
medium are discussed in later sections.

Output devices record or write information from the computer on cards,
paper tape, and magnetic tape; they print information on paper; generate
signals from transmission over teleprocessing networks; produce graphic
displays, microfilm images, and take other specialized forms. The number and
type of input/output devices connected directly to the computer depend on
the design of the system and its application.

1-14 Introduction to IBM Data Processing Systems

Section 1: Introduction

1BM 3277 Display Station.

IBM 2540 Card Read Punch

-

IBM 3330 Disk Storage Drive
IBM 3420 Magnetic Tape Unit

IBM 3653 Point of Sale Terminal

1BM 3793 Display Printer

Figure 1-10 Input/Output Devices

Introduction to IBM Data Processing Systems 1-15

Section 1:

Introduction

Console

The console (Figure 1-11) is an input/output device that provides external
control of the data processing system. Keys turn power on or off, start or
stop operation, and control various devices in the system. Data may be
entered directly by manually depressing keys. Lights are provided so that
data on the system may be displayed visually.

Figure 1-11 IBM System/370 Model 168 with IBM 3066 System Console

On some systems, a console printer (and/or display screen) and keyboard
provide limited output or input. The input/output device may print or display
messages, signaling the end of processing or an error condition. It may also
print or display totals or other information that enables the operator to
monitor and supervise operation, or it may give instructions to the operator.
On the other hand, it may be used to key in meaningful information (such as
altering instructions) to a data processing system that is programmed to
respond to such messages.

A remote console (Figure 1-12) may offer increased efficiency and flexibility
by providing duplicate operator controls at a station removed from the
processing unit.

1-16 Introduction to IBM Data Processing Systems

Section 1: Introduction

Figure 1-12 IBM 3056 Remote System Console

System/3 IBM System/3 (Figure 1-13) is a low-cost, general-purpose system for
commercial data processing and interactive problem solving. The system
offers integrated card processing, stored-program capability, calculating and
logic capabilities, and the flexibility of disk storage. In addition, local and
binary synchronous communications adapters are available for attaching a
wide variety of teleprocessing devices. System/3, which is primarily for small
business, extends the use of stored-program data processing to the small data
processing user.

Processor (main) storage ranges in capacity from 8,192 bytes to 262,144
bytes. All models of System/3 can communicate with System/370 over
appropriate communications lines.

Figure 1-13 IBM System/3 Model 15

Introduction to IBM Data Processing Systems 1-17

Section 1:

Introduction

System 32

IBM System/32 (Figure 1-14) is a desk-size, operator-controlled, general-
purpose computing system, designed for use as a data processing tool in a
wide variety of industries. It is composed of the IBM 5320 System Unit,
which features keyboard data entry and disk processing. Components of the
5320 include a keyboard, a processing unit, disk storage, a display screen, a
diskette drive, and a printing unit.

Processor storage ranges in capacity from 16,384 bytes to 32,768 bytes.
With appropriate attachments, System/32 can communicate with
System/370.

IBM 5100

Figure 1-14 IBM System/32

The IBM 5100 Portable Computer (Figure 1-15) provides the scientist or
engineer with personal, local computing using an interactive high-level lan-
guage, either APL or BASIC. With maximum memory in the machine, the
user has an active workspace of approximately 60K bytes; and with one or
two tape cassettes, an additional 200K or 400K bytes are at his disposal.

In addition to the standard keyboard, character screen, and tape cassette unit,
the 5100 has available as optional equipment a second tape cassette unit, a
printer, a communications adapter, and a serial input/output (SIO) adapter.
The communications adapter enables the 5100 to be used as a terminal in
conjunction with large, interactive systems. The SIO adapter provides for the
attachment and local control of devices with a communications feature.

1-18 Introduction to IBM Data Processing Systems

Section 1: Introduction

Figure 1-15 IBM 5100 Portable Computer

Introduction to IBM Data Processing Systems 1-19

Section 2:

Data Representation

Symbols convey information; the symbol itself is not the information but
merely represents it. The printed characters on this page are symbols that
convey one meaning to some persons, a different meaning to others, and no
meaning to those who do not know their significance (Figure 2-1).

&
i3
f

Figure 2-1 Symbols for Communication

Presenting data to the computer system is similar in many ways to communi-
cating with another person by letter. The intelligence to be conveyed must be
reduced to a set of symbols. In the English language, these are the familiar
letters of the alphabet, numbers and punctuation. The symbols are recorded
on paper in a prescribed sequence and transported to another person who
reads and interprets them.

Similarly, communication with the computer system requires that data be
reduced to a set of symbols that can be read and interpreted by data process-
ing machines. The symbols differ from those commonly used by people,
because the information to be represented must conform to the design and
operation of the machine. The choice of these symbols (and their meaning) is
a matter of convention on the part of the designers. The important fact is
that information can be represented by symbols, which become a language for
the communication between people and machines.

Information to be used with the computer systems can be in the form of
punched cards, paper tape, magnetic tape, direct access storage devices
(DASD), magnetic ink characters, optically recognizable characters, microfilm
and display screen images, communication network signals, etc. The list is
growing larger each year. Some are pictured in Figure 2-2.

Introduction to IBM Data Processing Systems 2-1

Section 2: Data Representation

T it e

T
nununnMIuULRUENUEERENEEREREEREEENRRIENRNNY
NUNIIBBHRBEBINNNENNEREDENLINENENENINNINY
AL T
T T TR L L L AT S T P P L T

ORI N R R R O R

MR

80-Column Card

Paper Tape

96-Column Card

Magnetic Tape

YOUR NATIONAL BANK .3
O e N Yok, N vaiZ
wr ACAEL L lan
b £ "I%‘_ —4‘;&“", oouArs
2345

90 07 10~098 73 2 :00BL 2R 70w

10 2/00000056 70/

Universal Product Code Symbot Magnetic Ink Characters

MUNICIPAL WATER WORKS
Net

° | Account Gross Lagt Day To
AL45332 | e 01 | 45 %8 430 k-

DISCOUNT TEAMS. 10 DAYS

€ D JONES
745 CHESTNUT ST
ANYTOUN USA

Optically Readable Characters

Direct Access Storage Device

Figure 2-2 Data Recording Media

Data is represented on the punched card by the presence of small holes in
specific locations of the card. In a similar manner, small circular holes along a
paper tape represent data. On magnetic tape or on DASD, the symbols are
small magnetized areas, called spots or bits, arranged in specific patterns.
Magnetic ink characters are printed on paper. The shape of the characters
and the magnetic properties of the ink permit the printed data to be read by
both man and machine. The shape of the optical characters, together with the
contrast with the background paper, permits optical characters to be read by
the machine and by people.

Each medium requires a code or specific arrangement of symbols to represent
data. These codes are described later in this section.

An input device of the computer system is a machine designed to sense or
read information from one of the recording media. In the reading process,
recorded data is converted to, or symbolized in, electronic form; the data can
then be used by the machine for data processing operations.

2-2 Introduction to IBM Data Processing Systems

Section 2: Data Representation

An output device is a machine that receives information from the computer
system and records it on the designated output medium.

All input/output devices cannot be used directly with all computer systems.
However, data recorded on one medium can be transcribed to another medi-
um for use with a different system. For example, data on cards or paper tape
can be transcribed onto magnetic tape. Conversely, data on magentic tape
can be converted to cards, paper tape, printed reports, or plotted graphs.

As there is communication between people and machines, there is also com-
munication from one machine to another (Figure 2-3). This intercommunica-
tion may be the direct exchange of data (in electronic form) over wires,
cables, or radio waves, or recorded output of one machine or system to be
used as input to another machine or system.

2540 Card
Read Punch

3277 Data Entry
& Display Station

3420
Test Drive

7770 Audio
Response Unit

. Disk Storage
2740 Keyboard,

Printer 3203 Printer

Figure 2-3 Machine-to-Machine Communication

Computer Data Not only must there be a method of representing data on cards, on paper
Representation tape, on magnetic tape, and in magnetic ink characters, but there must also be
a method of representing data within a machine.

In the computer, data is represented by many electronic components: transis-
tors, magnetic cores, wires, and so on. The storage and flow of data through

Introduction to IBM Data Processing Systems ~ 2-3

Section 2: Data Representation

2-4

Binary States

these devices are represented as electronic signals or indications. The pres-
ence or absence of these signals in specific circuitry is the method of repre-
senting data, much as the presence of holes in a card represents data.

Computers function in binary states; this means that the computer compo-
nents can indicate only two possible states or conditions. For example, the
ordinary light bulb operates in a binary mode, that is, it is either on or off.
Likewise, within the computer, transistors are maintained either conducting or
nonconducting; magnetic materials are magnetized in one direction or in an
opposite direction; and specific voltage potentials are present or absent
(Figure 2-4). The binary states of operation of the components are signals to
the computer, as the presence or absence of light from an electric light bulb
can be a signal to a person.

"Q" Stat "1" State
MAGNETIC CO

LECTRICAL PULSES

Figure 2-4 Binary Components

Representing data within the computer is accomplished by assigning or
associating a specific value to a binary indication or group of binary indica-
tions. For example, a device to represent decimal values could be designed
with four electric light bulbs and switches to turn each bulb on or off (Figure
2-5).

Off On Off On Off On Off On

Figure 2-5 Representing Decimal Data with Binary Components

The bulbs are assigned decimal values of 1, 2, 4, and 8. When a light is on, it
represents the decimal value associated with it. When a light is off, the
decimal value is not considered. With such an arrangement, the single deci-

Introduction to IBM Data Processing Systems

Binary Number System

Section 2: Data Representation

mal value represented by the four bulbs will be the numeric sum indicated by
the lighted bulbs. :

Decimal values 0 through 15 can be represented. The numeric value 0 is
represented by all lights off; the value 15, by all lights on; 9, by having the 8
and 1 lights on and the 4 and 2 lights off; 5, by the 1 and 4 lights on and the 8
and 2 lights off; and so on.

The value assigned to each bulb or indicator in the example could have been
something other than the values used. This change would involve assigning
new values and determining a new scheme of operation. In a computer, the
values assigned to a specific number of binary indications become the code or
language for representing data.

Because binary indications represent data within a computer, a binary method
of notation is used to illustrate these indications. The binary system of
notation uses only two symbols, zero (0) and one (1), to represent specific
values. In any one position of binary notation, the 0 represents the absence
of a related or assigned value, and the 1 represents the presence of a related
or assigned value. For example, to illustrate the indications of the light bulb
in Figure 2-5, the following binary notation would be used: 0101.

The binary notations 0 and 1 are commonly called bits. Properly, they are
called 0 bit and 1 bit. Occasionally, however, they are loosely spoken of as
no bit (0 bit) and bit (1 bit). For example, the binary notation 0101 of
Figure 2-5 would be described as having a 1 bit in the 1 and 4 bit positions
and a 0 bit in the 2 and 8 bit positions.

In some computers, the values associated with the binary notation are related
directly to the binary system. This system is not used in all computers, but
the method of representing values using this numbering system is useful in
learning the general concept of data representation.

The common decimal number system uses ten symbols or digits to represent
numeric values, and the place value of the digits signifies units, tens, hun-
dreds, thousands, and so on. The binary or base-two number system uses
only two symbols or digits: 0 and 1. The position value of the bit symbols (0
or 1) is based on the progression of powers of 2; the units position of a binary
number has the value of 1; the next position, a value of 2; the next, 4; the
next, 8; the next, 16; and so on (Figure 2-6).

Figure 2-6 Place Value of Binary Numbers

In pure binary notation, the binary digits or bits indicate whether the corre-
sponding power of 2 is absent or present in each position of the number. The
1 bit represents the presence of the value, and the 0 bit represents the ab-
sence of the value. The place value of the digits does not signify units, tens,
hundreds, or thousands, as in the decimal system; instead, the place value
signifies units, twos, fours, eights, sixteens, and so on. Using this system, the

quantity 12, for example is expressed with the symbols 1100, meaning
(1x2% y+(1x22)+(0x2!)+(0x2°), or (1x8) + (1x4) + (0x2) + (0x1).

Introduction to IBM Data Processing Systems 2-5

Section 2: Data Representation

Computer Codes

Code Checking

Figure 2-7 shows the binary representation of the decimal values O through
16.

:| Place Valuve

16]8]4]2]1

Decimal
S! Value-

sEs
il

oot
saEEgEEN
suaE-esEn

FEEEEEE

|

s
BzEssE

—_—

—
XY

L

14

15

e mE

L

Figure 2-7 Binary Representation of Decimal Values 0-16

Note that the decimal digits O through 9 are expressed by four binary digits.
The system of coding or expressing decimal digits in an equivalent binary
value is known as binary coded decimal (BCD). For example, the decimal
value 265,498 would appear in binary coded decimal form as shown in Figure
2-8. This is also known as packed decimal digits.

Decimal Digits

Binary Value
|Place Value BE

|654|9|8

SAEE B ENSHEERRRERETY

Figure 2-8 Binary Coded Decimal Representation of Decimal Number 265,498

The method used to represent (symbolize) data is known as a code or a
system. In the computer, the code relates data to a fixed number of binary
indications (symbols). For example, a code used to represent numeric and
alphabetic characters may use eight positions of binary indication. By the
proper arrangement of the binary indications (0 bit, 1 bit), all characters can
be represented by a different combination of bits.

Some computer codes in use are six-bit alphameric (alphabetic, numeric, and
special symbol) code, eight-bit alphameric code, two-out-of-five count code,
seven-bit alphameric code, and six-bit (packed) numeric code.

Most computer codes are self-checking; that is, they are provided with a
built-in method of checking the validity of the coded information. This code
checking occurs automatically within the machine as the data processing
operations are carried out. The method of validity checking is part of the
design of the code.

Introduction to IBM Data Processing Systems

Six-Bit Alphameric Code
(Binary Coded Decimal
System)

Section 2: Data Representation

In some codes, each unit or character of data is represented by a specific
number of bit positions that must always contain an even number of 1 bits.
Different characters are made up of different combinations of 1 bits, but the
number of 1 bits in any valid character is always even. With this code system,
a character with an odd number of 1 bits is detected, and an error is indicated.
Likewise, a code may be used in which all characters must have an odd
number of 1 bits; an error is indicated when characters with an even number
of 1 bits are detected.

This type of checking is known as a parity check. Codes that use an even
number of 1 bits are said to have even parity. Codes that use an odd number
of bits are said to have odd parity.

In other codes, the number of 1 bits present in each unit of data is fixed. For
example, a code may use eight bit positions to code all characters, but exactly
four 1 bits will be present in each character. Characters having more or fewer
than four 1 bits cause an error indication. This system of checking is known
as a fixed-count check and is often used for data transmission in teleprocess-
ing networks.

In this code, all characters - numeric, alphabetic, and special - are represented
(coded) using six positions of binary notation (plus a parity bit position).
These positions are divided into three groups: one check position, two zone
positions, and four numeric positions (Figure 2-9).

l Check
Bit

Zone Bits | Numeric Bits

Figure 2-9 Bit Positions, Six-Bit Alphameric Code

The four numeric positions are assigned decimal values of 8, 4, 2, and 1, and
represent, in binary coded decimal form, the numeric digits O through 9
(Figure 2-10). Note that O is represented as 1010, actually the binary num-
ber for 10. The B and A zone bits are not present (00) when the numeric
digits 0 through 9 are represented.

Figure 2-10 Numeric Bit Configurations, Decimal Digits 0-9, Six-Bit Alphameric Code

Introduction to IBM Data Processing Systems 2-7

Section 2: Data Representation

Standard BCD Interchange

2-3

Code

Combinations of zone and numeric bits represent alphabetic and special
characters. The B and A bits provide for four possible bit combinations: 10,
01, 11, and 00.

The C position, known as the check bit is used for code checking only.
Because the six-bit alphameric code is usually an even parity code, the total
number of bits used to represent a character must have an even number of 1
bits, or the character is considered invalid. A 1 bit is added to a character
when the sum of the zone and numeric bits used to represent the character is
odd. If the number of bits in a character is even without the C bit, the C bit
isa0.

To provide compatibility of data for interchangeability among various com-
puter systems, the standard BCD interchange code has been developed. This
coding structure consists basically of 64 different characters. Figure 2-11
shows the BCD standard interchange code used on older IBM data processing
systems and seven-track IBM tape units.

Introduction to IBM Data Processing Systems

Section 2: Data Representation

CHARACTER CARD CODE [BCD CODE (Core Storage)
Report: Program
Low—> b No Punches [
. 1238 B|A]|s 2]
[x]) 1248 cle|als |4
[12.5.8 BlAls j4 1
< 12.6-8 s |a]s]4]2
& 12.7-8 c{sf[afs|4]2]
& + 12 cls[a
[} 11-3.8 cl|si |8 2 |
. 1148 B 8 |4
1 1158 cls 8 |4 1
5 1-68 cls 8 |42
N 1178 [8 |4f2][
- 11 B
/ 0-1 [A 1
, 0-3-8 C Als 21
% (- | o048 Afls |4
~ 0-5-8 c Als |4 1
\ 0-68 c Als |4a]2
A 078 Als a2
[2.8 A
= 38 8 2|1
| @ [48 C 8 |4
s 5.8 8 |4 1
> 68 8|42
A4 78 C 8]4]2|
? 12.0 cislAa]s 2
w A 121 B A 1
% B 122 BiA 2
§ c 123 cl[s]a 2 [
D 124 B[A 4
2 E 125 cls A 4 1
F 126 cls|a 412
é G 127 ’ B|A 4120
o H 128 slA]s
] 129 cisfa]s 1
! 110 B 8 2
J 14 cls 1
K N2 cls 2
L 13 B 2)1
M 114 c|s 4
N 15 B 4 1
o 11-6 [4|2
P ny clis 4f2]
Q 18 cls 8
R 1.9 [8 1
% 0-2.8 Als 2
s 02 [A 2
T 03 A 2|
1 04 c A 4
v [¥] A 4 1
w 06 A 42
X 07 C A 4]2]
Y 08 [Als
[09 Als 1
[]) [8 2
1 1 1
2 2 2
3 3 c 2]
4 4 4
5 5 C 4 1
6 6 [4]2
7 7 4121
! 8 8 8
migh> [9] [8]

NOTE: Tape moy use even parity.

Figure 2-11 Standard BCD Interchange Code

Shown are the collating sequence (ascending sequence), graphics, card code,
and BCD code for each of the 64 different bit combinations. The C bit, used
for parity checking purposes, is dependent upon the specific computer design
using the standard BCD interchange code. If the system uses odd parity, a C

Introduction to IBM Data Processing Systems 2-9

Section 2: Data Representation

bit will be automatically placed in each C position of a character that contains
an even number of bits. Conversely, a system using even parity will have a C
bit placed in each C position of a character that contains an odd number of
bits.

Five of the standard BCD bit combinations print out as two different charac-
ters (called graphics), depending upon the type set used in the printer. The
two variations are called graphic subset 1 and graphic subset 2. (Figure 2-12).

Graphic Subset 1 Graphic Subset 2
BCD Code Print Arrangement A Print Arrangement H
8-2-1 # =
8-4 @
A-8-4 % (
B-A & +
B-A-8-4 o)

Figure 2-12 Graphic Subsets 1 and 2

Graphic subset 1 is used primarily for computer report writing and most
commercial uses, while graphic subset 2 is used for such programming lan-
guages as FORTRAN and COBOL, and meets general requirements for
mathematical symbolism. Figure 2-13 indicates the preferred standardized
terminology for special characters.

SYMBOL NAME SYMBOL NAME
¢ Cent Sign > Greater-than Sign
. Period, Decimal Point ? Question Mark
< Less-than Sign : Colon
{ Left Parenthesis # Number Sign
+ Plus Sign @ At Sign
| Logical OR ’ Prime, Apostrophe
& Ampersand = Equal Sign
! Exclamation Point " Quotation Mark
$ Dollar Sign H Chair
* Asterisk L Fork
) Right Parenthesis J Hook
H Semicolon | Vertical Line

T Logical NOT ' Accent Grave
- Minus Sign, Hyphen ~ Tilde

/ Slash { Opening Brace
, Comma } Closing Brace
% Percent \ Reverse Slant
_ Underscore

Figure 2-13 Special Graphic Characters

2-10 Introduction to IBM Data Processing Systems

Eight-Bit Alphameric Code
(Extended Binary Coded
Decimal Interchange Code
- EBCDIC)

Section 2: Data Representation

This code (Figure 2-14) uses eight binary positions for each character format,
plus a position for parity checking. By using eight bit positions, 256 different
characters can be coded. This code permits, for instance, the coding of
uppercase and lowercase alphabetic characters, a much wider range of special
characters, and many control characters that are meaningful to certain
input/output devices. At present, many bit patterns have no assigned func-
tion (control or graphic). They are reserved for future assignment. EBCDIC
is the principal alphameric coding scheme for future assignment. EBCDIC is
the principal alphameric coding scheme for System/360 and System/370.
The internal coding structure of System/3 and System 32 is EBCDIC.

Introduction to IBM Data Processing Systems 2-11

Section 2: Data Representation

Bit Bit Bit Bit
EBCDIC Configuration ASCI{-8 EBCDIC Configuration ASCII-8 EBCDIC Configuration ASCI|-8 EBCDIC Configuration ASCII-8
NUL 00000000 NUL 0100 0101 E 1000 1010 1100 1111
SOH 0000 0001 JOH 0100 0110 F 1000 1011 } 1101 0000
STX 00000010 STX 01000111 G 1000 1100 J 1101 0001
ETX 00000011 ETX 0100 1000 H 1000 1101 K 1101 0010
PF 00000100 EOT 0100 1001 [1000 1110 L 1101 0011
HT 00000101 ENQ ¢ 0100 1010 J 1000 1111 M 1101 0100
Lc 00000110 ACK . 0100 1011 K N 1101 0101
DEL 00000111 BEL < 0100 1100 L] 1001 0000 o} 1101 0110
GE 0000 1000 BS (0100 1101 M i 1001 0001 P 1101 0111
RLF 0000 1001 HT + 0100 1110 N k 1001 0010 Q 1101 1000
SMM 0000 1010 LF | 0100 1111 o] :n :83: 8%(‘) R 1101 1001
vT 0000 1011 VT 1101 1010
FF 00001100 FF N P n 1001 0101 1101 1011
CR 00001101 CR 0101 0001 Q ° 10010110 1101 1100
o 00001110 SO 0101 0010 R p 1001 0111 1101 1101
o 0000 1111 SI 0101 0011 S q 1001 1000 1101 1110
0101 0100 T r 1001 1001 1101 1111
DLE 0001 0000 DLE 0101 0101 U 1001 1010
DCY 0001 0001 DC1 0101 0110 v 1001 1011 1110 0000
DC2 0001 0010 DC2 0101 0111 w 1001 1100 1110 0001
TM(DC3) 0001 0011 DC3 0101 1000 X 1001 1101 S 1110 0010
RES 00010100 DC4 0101 1001 Y 1001 1110 T 1110 0011
NL 00010101 NAK ! 0101 1010 4 100t 1111 U 1110 0100
BS 00010110 SYN $ 0101 1011 l 1010 0000 v 1110 0101
I 00010111 ETB ‘ 0101 1100 N - 1010 0007 w 11100110
CAN 0001 1000 CAN) 0101 1101] 101 (1)0 X 11100111
EM 00011001 EM ; 0101 1110 - s 181833” Y 1110 1000
cc 0001 1010 SUB - 0101 1111 - t 1010 0100 z 1110 1001
cu1 0001 1011 ESC B 0110 0000 N y 10100101 1110 1010
IFS 0001 1100 FS ; 0110 0001 . " 10100110 1110 1011
1GS 0001 1101 Gs 01100010 b . 10100111 d 1110 1100
IRS 0001 1110 RS 01100011 . 1010 1000 1110 1101
1US 0001 1111 uUS M 1110 1110
0110 0100 d p 1010 1001 11101111
DS 00100000 SPACE 0110 0101 e 1010 1010
SOS 0010 0001 | 01100110 f 1010 1011 0 1111 0000
FS 00100010 01100111 g 1010 1100 1 1111 0001
00100011 # 0110 1000 h 1010 1101 2 1111 0010
BYP 00100100 $ 0110 1001 i 1010 1110 3 1111 0011
LF 0010 0101 % l 0110 1010 i 1010 1111 P 1111 0100
ETB 00100110 & , 0110 1011 K 101
ESC 00100111 ° % 0110 1100 | 1011 0000 2 131:31?0
00101000 | _ 01101101 m 1011 0001 7 11110111
00101001) > 0110 1110 n 10110010 8 1111 1000
sM 00101010 * ’ 010N o oot 9 1111 1001
cu2 ot0 1011 * 0111 0000) 1011 0101 LVM 1111010
00101100 - ! 1011 8“0 1111 1011
ENQ 0010 1101 - gmgg% ! 10110111 1111 1100
ACK 00101110 - 0111 0011) 1011 1000 1111 1101
BEL ooto 1111/ 0111 0100 t 1011 1001 nn "}‘1’
00110000 0O 01110101 u 1011 1010 EO nnn
0011 0001 1 01110110 v 1011 1011
SYN 0011 0010 2 01110111 w 1011 1100
0011 0011 3 0111 1000 X 1011 1101
PN 0011 0100 4 N 0111 1001 \ 1011 1110
RS 00110101 & # 0111 1010 ? 1011 1111
uc 00110110 6 0111 1011
EOT 00110111 7 e 0111 1100 | { 11000000
00111000 8 01111101 } A 1100 0001
00111001 9 = 01111110 ~ 8 11000010
00111010 - - 01111111 DEL ¢ 11000011
00111011 : D 1100 0100
cus3 0011 1100 < 1000 0000 E 1100 0101
pea 0011 1101 = a 1000 0001 F 1100 0110
NAK 00111110 > b 1000 0010 G 1100 0111
SuB 0011 1111 ? c 1000 0011 H 1100 1000
d 1000 0100) 1100 1001
SPACE 01000000 @ e 1000 0101 1100 1010
01000001 A f 1000 0110 1100 1011
01000010 B g 1000 0111 5 1100 1100
01000011 C h 1000 1000 1100 1101
0100 0100 D i 1000 1001 T 1100 1110

Figure 2-14 Configurations, Extended Binary Coded Decimal Interchange Code (EBCDIC)

2-12 Introduction to- IBM Data Processing Systems

Eight-Bit Alphameric Code
(ASCII-8)

Computer Number
Systems and Conversion

Binary System

Hexadecimal System

Section 2: Data Representation

The American National Standard Code for Information Interchange (ASCII)
is a seven-bit code developed through the cooperation of users of equipment
of communications and data processing industries, in an attempt to simplify
and standardize machine-to-machine and system-to-system communication.
ASCII offers 128 possible characters. Because the System/360 and
System/370 have an eight-bit character capacity (with 256 possible charac-
ters), an eight-bit representation of ASCII referred to as ASCII-8 was pro-
posed and was made available on System/360. This eight-bit code has since
been rejected and is not available on System/370.

Computers using the binary system of data representation are typified by the
IBM System/370.

For these systems, the basic unit of information is a byte. Four bytes consti-
tute a word consisting of 32 consecutive bit positions of information which
are interpreted as a unit, much as a character or a digit in other systems.

The bit sections within the word have a place significance related to the
binary number system. That is, the place position of a bit in the word deter-
mines the value of the bit. In the binary number system, the decimal values of
the places (from right to left) are 1, 2, 4, 8, 16, 32, 64, and so on as shown in
Figure 2-6.

Although the place values of the bits of a word are always those of the binary
number system, they can be interpreted or processed in such a way as to
represent other than a binary number. For example, a 32-bit word (Figure
2-15) can be interpreted as one 32-place binary number, as an eight-digit
hexadecimal (base 16) number, as four alphameric characters (which may be
alphabetic or numeric), or as any predetermined representation established by
the programmer.

— 3,799,762,129 Decimal
- # D J—s1 Alphameric
Esfe 2sfe 7ofe Brfe Cole- 4 5fe- Dale- 19| Hexadecimal

11100010011110111100010011010001 Bit Configuration (Binary)

Figure 2-15 The 32 Bit Word

It is apparent that binary numbers require several times as many positions as
decimal numbers to display the equivalent number. In talking and writing,
these binary numbers are bulky. A long string of ones and zeros cannot be
effectively transmitted from one individual to another. Some shorthand
method is necessary. The hexadecimal number system fills this need. Be-
cause of its simple relationship to binary, numbers can be converted from one
system to another by inspection. The base or radix of the hexadecimal system
is 16. This means that six more symbols are required than in the decimal
system. The symbols used are: 0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D, E, and
F. It takes four bits to count to F (15) in a computer. Figure 2-16 shows
how it is done.

Introduction to IBM Data Processing Systems 2-13

Section 2: Data Representation

DECIMAL HEXADECIMAL BINARY SYSTEM
SYSTEM SYSTEM 8 4 2 1 Bitvalues

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

1" B 1011

12 Cc 1100

13 D 1101

14 E 1110

15 F 1111

Figure 2-16 Relationship Among Decimal, Hexadecimal, and Binary Systems

Remember that the internal circuitry of the computer understands only binary
ones and zeros. The hexadecimal system is used to provide a shorthand
method of reading and writing binary numbers. In the hexadecimal system,
the base number is 16. The digits of the number represent the coefficients of
the ascending powers of 16. Consider the hexadecimal (hex) number:

173=(1X 162) + (7 X 167) + (3 X 169)

=256+112+3
= 371 (decimal)
Similarly:
Hex 173
3 units = 3
7 sixteens =112

1 twa hundred fifty-sixes = 256

By remembering what a number represents in the hexadecimal system, the
number can be converted to its decimal equivalent by the method shown
above. As the numbers get bigger, this method becomes more difficult to use.

The following section provides detailed methods for converting from one
system to another with and without the use of reference tables.

Integer Conversion
Hexadecimal to Decimal

Suppose we have a hexadecimal number such as A4B5. How do we convert it
to a decimal-system number? First, think of the rightmost. (low-order)
position as position 1, the next position to the left as position 2, the next
position to the left as position 3, and the left-most position as position 4.
Looking at Figure 2-17, note that:

2-14 Introduction to IBM Data Processing Systems

5 in hex (hexadecimal) position 1 equals

B in hex position 2 equals
4 in hex position 3 equals
A in hex position 4 equals

The sum is the decimal value of A4BS.

Section 2: Data Representation

5

176
1,024
40,960
42,165

Without the use of the table, the rule is as follows: Continuously multiply by
16, and add the next hexadecimal digit (using decimal arithmetic).

A 4
10
x 16

160
+ 4

164
x 16

2624
+ 1l

B

72635
x 16

42160

5

+ 5 -
42165

The high-order digit is multiplied by 16, and the next-lower-order digit is
added to the result. The resultant answer is then multiplied by 16, and the
next-lower-order digit is added to the result. When the low-order digit has

been added to the answer, the process ends.

Decimal to Hexadecimal

Reversing the procedure, to convert the decimal number 16,428 to hex, look
up in Figure 2-17 the next smaller number than 16,428. Note the hex equiva-
lent and position number. Subtract the decimal value of that hex digit from
16,428, and look up the remainder in Figure 2-17. The process works as

follows:

Find the hex equivalent of decimal
4 in hex position 4 equals

Remainder

0 in position 3 equals
Remainder

2 in position 2 equals
Remainder

C in position 1 equals

Therefore, 402C is the hex eduivalent of 16,428.

16,428
16,384

44
0

44
32

12
12

Without tables, continuously divide the decimal number (using
decimal arithmetic) by 16, and develop the hexadecimal number

from the remainders of each step of the division.

Introduction to IBM Data Processing Sysiems 2-15

Section 2: Data Representation

2-16

16 |16428
16 11026
16 164
16 14
o

Remainder 12 (C)

Remainder 2
Remainder 0 =402C
Remainder 4

We first divide the original number to be converted by 16. The remainder of
this division becomes the low-order digit of the conversion (12 which is
expressed as C). We then divide the quotient (received from the first divi-
sion) by 16. Again the remainder becomes a part of the answer (next-higher
order, 2). This process is continued until the quotient is zero. In the follow-
ing examples, where multiplication or division is used, detailed explanations
will not be used because the proceedings are similar.

Hexadecimal to Binary and Binary to Hexadecimal

Rule: Express the number in binary groups of four starting at the assumed

binary point.
Example:

Hex to Binary

Binary to Hex

4 0 2 Cc 100000000101100
0100 0000 0010 1100 0100 0000 0010 1100
= 100000000101100 4 0 2 C
=402C

Decimal to Binary

Rule: Divide the decimal number by 2, and develop the binary number from

the remainders.

Example: Convert 149 to its binary equivalent

2 149
2 |74
2 (372
2 18
2 |9
2 |4
2 |2
2
0

Binary to Decimal

Remainder 1
Remainder O
Remainder 1
Remainder O
Remainder 1 = 1001 0101
Remainder 0
Remainder 0
Remainder 1

Rule: Continuously multiply by 2, and add the next binary digit.

Example: Convert 1001 0101 to its decimal equivalent.

Introduction to IBM Data Processing Systems

Fraction Conversion

Section 2: Data Representation

10010101
2

x

l l
NNION
—_—

+
o »
4

N
WIN

t

|

OR 1001 0101

x
N ©

=1(27)+0(25)+0(25) + 1 (2%) +

-
(o]

f

|

0(2%)+1(22) +0(2") +1 (20)

X
ey
N

W
[=>]

=128+16+4 +1

|

=149

|><
ST w
PN IR

X |+
~
M-bT

+
B
T‘m

-
D
(]

Decimal to Hexadecimal

To convert from decimal to hex, find the next lower decimal value and its hex
equivalent in Figure 2-18. Subtract the found decimal value from the desired
decimal value, and use this to locate the next hex equivalent. Repeat this
procedure for the number of positions required.

Example: Convert .13 decimal to hex.

Introduction to IBM Data Processing Systems 2-17

Section 2: Data Representation

Decimal number to convert .1300 to . Hex

Next-lower decimal number .1250 equals 2
Remainder .0050 0000

Next-lower decimal number ~ .0039 0625 .01
Remainder .0010 9375 0000

Next-lower decimal number .0009 7656 2500 .004
Remainder .0001 1718 7500

Next-lower decimal number .0001 0681 1523 4375 .0007

.13 decimal approximately equals hex .2147

In the absence of convenient tables, multiply by 16 (using decimal arithme-
tic), and develop the hexadecimal number from the carry:

.1300
x 16

2 .0800
x 16

1 .2800
x 16

4 .4800
x 16

7 .6800
.2147 hex

Hexadecimal to Decimal

To convert from hex fractions to decimal fractions, use Figure 2-18 to find
the sum of the decimal equivalents for each position of the fraction.

Example Convert .ABC hex to decimal

.A hex in position 1 equals .6250

.0B hex in position 2 equals .0429 6875

.00C hex in position 3 equals .0029 2968 7500
.ABC hex equals decimal .6708 9843 7500

2-18 Introduction to IBM Data Processing Systems

Section2: Data Representation

H H H H H H H H
E E E E E E E E
X DEC X DEC X X DEC | X DEC| X DEC| XDEC | X DEC
0 0}0 0|0 o| o0 0|0 0{o0 0|0 ojo o0
1 268,435,456 | 1 16,777,216 | 1 1048576 1 65536 1 4,096 1 256 | 1 161 1 1
2 536,870,912 | 2 33,554,432 2 2,097,152| 2 131,072|2 8,19212 b12]2 32]2 2
3 805,306,368 | 3 50,331,648 | 3 3,145,728 | 3 196,608 | 3 12,288|3 768|3 48| 3 3
4 1,073,741,824 | 4 67,108,864 | 4 4,194,304 | 4 262,144} 4 16384 |4 1024|4 64|4 4
5 1,342,177,280| 5 83,886,080 | 5 5,242,880| 5 327,680| 5 20,4805 1,280(5 80|65 5
6 1,610,612,736 | 6 100,663,296 | 6 6,291,456| 6 393,216 |6 24576 |6 15366 96(6 6
7 1,879,048,192 | 7 117,440,512} 7 7,340,032} 7 458,752 | 7 28,672| 7 1,792 7 1127 7
8 2,147,483,648 | 8 134,217,728 | 8 8,388,608 | 8 524,288 | 8 32,768 {8 2,048 |8 128|8 8
9 2,415,919,104 | 9 150,994,944 | 9 9,437,184 | 9 589,824 |9 36,864 |9 23049 144 |9 9
A 2,684,354,560 | A 167,772,160 | A 10,485,760 | A 655,360 | A 40,960 | A 2560 | A 160 | A 10
B 2,952,790,016 | B 184,549,376 | B 11,534,336 | B 720,896 | B 45,056 | B 2816 {B 176 | B 11
C 3,221,225,472 | C 201,326,592 | C 12,682,912 | C 786,432 | C 49,152 |C 3,072|C 192 |C 12
D 3,489,660,928 | D 218,103,808 | D 13,631,488 | D 851,968 | D 53,248 |D 3,328 | D 208 |D 13
E 3,758,006,384 | E 234,881,024 | E 14,680,064 | E 917,604 | E 57,344 | E 3,684 [E 224 |E 14
H . F 4,026,531,840 | F 251,658,240 | F 15,728,640 | F 983,040 | F 61440 |F 3,840 | F 240} F 15
exadecimal
Positions 8 7 6 5 4 3 2 1
Figure 2-17 Hexadecimal-Decimal Integer Conversion Table
H 0123] H 456 7 H 01 2 3 H 4 5 6 7
E E E E
X DEC X DECIMAL X DECIMAL X DECIMAL EQUIVALENT
.0 .0000{.00 .0000 000OC | .000 .0000 0000 0000 |.0000 .0000 0000 0000 0000
.1 .0625 |.01 .0039 0625 | .00t .0002 4414 0625 |.0001 .0000 1525 8789 0625
.2 .1250(.02 .0078 1250 | .002 .0004 8828 1250 |.0002 .0000 3051 7578 1250
3 .1875 (.03 .0117 1875 | .003 .0007 3242 1875 |.0003 .0000 4577 6367 1875
.4 .2500].04 .0156 2500 | .004 .0009 7656 2500 |.0004 .0000 6103 5156 2500
5 .3125 .06 .0195 3125 | .005 .0012 2070 3125 |.0005 .0000 7629 3945 3125
.6 .3750 (.06 .0234 3750 | .006 .0014 6484 3750 | .0006 .0000 9155 2734 3750
.7 .4375 .07 .0273 4375 | .007 .0017 0898 4375 | .0007 .0001 0681 1523 4375
.8 .5000 (.08 .0312 5000 |.008 .0019 5312 5000 {.0008 .0001 2207 0312 5000
.9 .56625 (.09 .0351 5625 |.009 .0021 9726 5625 |.0009 .:0001 3732 9101 5625
A 6250 |.0A .0390 6250 | .00A .0024 4140 6250 | .000A .0001 5258 7890 6250
.B .6875 1.0B .0429 6875 |.00B .0026 8554 6875 |.000B .0001 6784 6679 6875
.C .7500 {.0C .0468 7500 |.00C .0029 2968 7500 |.000C .0001 8310 5468 7500
.D .8125|.0D .0507 8125 |.00D .0031 7382 8125 |.000D ,0001 9836 4257 8125
.E .8750 |.0E .0546 8750 |.00E .0034 1796 8750 |.000E .0002 1362 3046 8750
Hexadecimal{.F .9375 |.0F .0585 9375 | .00F .0036 6210 9375 | .000F .0002 2888 1835 9375
Positions 1 2 3 4
Figure 2-18 Hexadecimal-Decimal Fraction Conversion Table
Without tables, express as powers of 16, and add.
ABC=10 (167") + 11 (162) + 12 (167)
=10/16 + 11/256 + 12/4096
= 2748/4096
=.6708984375
Introduction to IBM Data Processing Systems 2-19

Section 2: Data Representation

2-20

Usage of Hexadecimal

Hexadecimal to Binary and Binary to Hexadecimal
Rule: The same rule applies for fractions as for whole numbers.

Example:

A B Cc .101010111100
.1010 1011 1100 .1010 1011 1100
A B c

Binary to Decimal
Rule: The same rule applies as for whole numbers.

Example:

.001001100010
= e 1) 1@ w12
=1/8+ 1/64 +1/128 + 1/2048
= 3056/2048
=.1489 plus
or.149

Since System/370 has eight bits (plus a parity bit) in each byte of its storage,
each byte can be thought of as being two hexadecimal-system digits; for
example:

Decimal 248
Binary 1111 1000
Hexadecimal F 8

Remember that the hexadecimal system is simply a shorthand notation used
to express the bit patterns within a computer such as System/370. Thus, it is
also related to the other code structures defined previously. In extended
binary coded decimal interchange code (EBCDIC), this eight-bit character
(called F8 in hexadecimal) would be an 8; it could have other meanings in
other codes. But regardless of the code meaning, it is expressed as F8 in the
hexadecimal system.

Introduction to IBM Data Processing Systems

Data Recording Media

Cards

Section 2: Data Representation

The 80-column punched card is one of the most successful media for commu-
nication with machines. Information is recorded as small rectangular holes
punched in specific locations in a standard size card (Figure 2-19). Informa-
tion, represented (coded) by the presence or absence of holes in specific
locations, can be read or sensed as the card is moved through a card-reading
machine, '

Reading or sensing the card is basically a process of automatically converting
data, recorded as holes, to an electronic impulse and thereby entering the data
into the machine. Cards are used both for entering the data into the machine
and for recording or punching information from a machine. Thus the card is
not only a means of transferring data from some original source to a machine,
but also is a common medium for the exchange of information between
machines. '

80-column cards provide twelve punching positions in each column. The
twelve punching positions form twelve horizontal rows across the card. One
or more punches in a single column represents a character. The number of
columns used depends on the amount of data to be represented.

The card is often called a unit record because the data is restricted to the 80
columns, and the card is read or punched as a unit of information. The actual
data on the card, however, may consist of part of a record, one record, or
more than one record. If more than 80 columns are needed to contain the
data of a record, two or more cards may be used. Continuity between the
cards of one record may be established by punching identifying information in
designated columns of each card.

Information punched in cards is read or interpreted by a machine called a
card reader andisrecorded (punched) inacard by amachine calleda card punch.
Data is transcribed from source documents to punched cards by manually
operated card punch machines.

The 80-Column Card Code

The standard card code uses the twelve possible punching positions of a
vertical column on a card to represent a numeric, alphabetic, or special
character (Figure 2-19). The twelve hole positions are divided into two areas,
numeric and zone. The first nine hole positions from the bottom edge of the
card are the numeric hole positions and have an assigned value of 9, 8, 7, 6, 5,
4, 3, 2, and 1, respectively. The remaining three positions, 0, 11, and 12 are
the zone positions. (The 0 position is considered to be both a numeric and a
zone position).

Introduction to IBM Data Processing Systems ~ 2-21

Section 2: Data Representation

SPECIAL
DIGITS LETTERS CHARACTERS
N A

C N e N ~—
PRINTED PRINTED

s — [~ 0123456789 RECDEFGHI JK LMNOPQF‘.STU\'HI’(YZ 8- (BM DATA PROCESSING] D200} g oy 1he 26

PRINTING

PRINTING
CARD PUINCH !". . l ” P 'L muni Mnmiat DATE CARD PUNCH
“
S mopavivr.
) ‘)82] m 1

w .

: 0
“
1

060)
2l1a 1 1 JIE]
f11
222 PpYRf2222 2 222222!21222.222222222222..122222222222
31133 11} EEEER 1111) J112RX] | $93333333333333333303323303333333333333133
44!043 32 4444444IIII YRR EXR R X XX A4 400000040 4404404000400040004040
:ﬁzms s5555SHppppslss555ssMphEpasssl F 555 555555555555555555555555'555.5555555.55
11111]3] sfssccecccRpppeccecHpppececlps §666666666066606666666H6666666566[66[5666
11711111" UYARRERARE] | 111111- 17111 IRRRRRRRARRARRRREAREE RARRERRREN RRRIIRIIRIIR]
s0ss00000psjssansssnse [llllllllIll!llI'I.lllllllllllllllllllllll!.lllllllljljll

9999999998 !599ll!!!!!!!!!’!!!!Ol'!!!!l! 999l98lll!ﬁ!!!!!9!890'!9999.930'!!0!!!!

BRANADIBNVIAAANTABAHLOUSETEDNT

carocowmn [|]
DESIGNATION [—1—* “

IIXEE]

-
—r—
—= &

CARD COLUMN HURNTNNNIRAUBKTNONINDINE

|- t234ss1sonnluliunsnnnnnan
DESIGNATION .)
A re——
CARD y
COWMN CcarD

Figure 2-19 IBM 80 Column Punched Card, Standard Hole Pattern

The numeric characters 0 through 9 are represented by a single hole in a
vertical column For example, 0 is represented by a single hole in the 0 zone
position of the column.

The alphabetic characters are represented by two holes in a single vertical
column, one numeric hole and one zone hole. The alphabetic characters A
through I use the twelve zone hole and a numeric hole 1 through 9, respec-
tively. The alphabetic characters J through R use the 11 hole and a numeric
hole 1 through 9, respectively. The alphabetic characters S through Z use the
0 zone hole and a numeric hole 2 through 9, respectively.

The standard special characters $ * % and so on, are represented by one,
two, or three holes in a column of the card and consist of hole patterns not
used to represent numeric or alphabetic characters.

System/3 Card

The System/3 card is approximately one-third the size of the 80-column card,
yet can hold up to 20 per cent more information. The unique size of the
System/3 card permits the use of newer card-handling techniques which have
resulted in smaller, simpler equipment.

As shown in Figure 2-20, the 96-column card has two sections. The lower
section of the card is the punch area, while the upper section of the card is the
print area.

2-22 Introduction to IBM Data Processing Systems

Section 2: Data Representation

/ TOM @123456789) } Print Line 1
123456709100 II' 131 1S 16 17 18 18 30 21 22 23 24 28 26 27 282230 2
ABCDEFGH 1 JKLMNOPQRSTUVWXYZ } Print Line 2 .
33 34 33 36 37 30 38 40 4t 42 .43 4445 36 47 48 49 30 51 32 5) 54 35 56 57 S8 59 60 61 62 €3 €4 Pr'nt
OWNS=/ 0=t _115=RCO)IEXTI"() e } print Line 3 (Area
B 6566!'7.!.9107072117‘757.777.7’“.‘llb’l‘l!“l}ll.!’@!l’2'3"\}”
Zone }Print Line 4
PO’tlon’ A B 37 98 99 100 101 102 103 104 105 106 107 -o.c xg MO I N2 3 T4 1S M6 117 118 1 120 121 122 129 124 125 126 127 128 s
8 A . ° A
. 4 2 [X3 oooo.. ha Tier 1
Digit 2 o0 X oo 2
tion 1 1
Portion 2 8““‘“‘x‘33331‘3382|9zognauxzos:l8:osnua
1 Aeesecccce XXX XXX A
: oooo.. oooo.‘ o-oo.. : }Tlﬂfz Punch
2 ee (X) (X LX) (X (X 2 Area
19" 1
BJJJ‘:S‘lﬁ1032§§13§4551782g3§g§5§a5733930‘!“.!"B
A e0e oo 0eeee oee o oo &
seeve ©® 000000000 00000000000 8 }TierS
a0 o oo 0 o0 00 occcee 4
2 o e ®0 o oc000e 0 000 o o oo 2
1‘5%‘78.9’0%8717‘*7‘77707’.{‘.‘lleanlblfﬁaaa”a"’S!l1
\ 13n 3700)

Figure 2-20 IBM 96-Column Punched Card

The system reads the punched holes in the punch area to determine what
information is on the card. To make reading easier for you, the data recorder
can print at the top of the card the information punched at the bottom.

The positions in the print area (print lines 1-3) are numbered from 1-96 to
correspond with the columns in the punch area. Figure 2-20 shows how
information may be represented on a card as punched holes and as printed
characters. The name, TOM, was punched in columns 11, 12 and 13 of the
punch area and printed in the corresponding positions of the print area.

As you can see in Figure 2-20, the data which was punched in tier 1 was
printed on print line 1. Similarly, tier 2 corresponds to print line 2 and tier 3
to print line 3. Print line 4 (positions 97-128) does not have a corresponding
tier but may be used for printing. :

Representation of Information For every character of information that is
keyed, a particular combination of holes is punched into a column. Using the
six punch positions of a column, it is possible to form 64 different punch
combinations.

Because 64 different punch combinations can be formed, it is possible to
represent 64 different characters: A-Z, 0-9, and 28 special characters, such as
the comma, dollar sign, period, and the blank.

Zone and Digit Portions of a Column 1.ook at a column of punch positionsin
Figure 2-20. The B and A punch positions are called the zone portion. The
8,4, 2, and 1 positions are referred to as the digit portion.

Digits are usually represented by one or more holes in the digit portion of a
column (Figure 2-20). The number 1 consists of a hole in the 1 punch
position. Likewise, a hole in the 2 punch position would represent a 2.
Because there is no 3 punch position, a 3 is represented by holes made in both
the 1 and the 2 punch positions (1 plus 2 equals 3). Notice that the digit 0 is

Introduction to IBM Data Processing Systems 2-23

Section 2: Data Representation

represented not by a digit punch, but by a single punch in the A position.
This is the one exception.

Alphabetic characters are represented by a combination of punches made in
the digit (8, 4, 2, 1) and zone (B, A) portions of a column, as showin in
Figure 2-20.

Special characters are represented by a combination of punches in the digit
and/or zone portions of a column. Figure 2-20 shows the punch combina-
tions associated with each character.

There is no need to memorize the punch combinations. The appropriate holes
are automatically punched by pressing the keys on the data recorder.

Paper Tape Punched paper tape serves much the same purpose as punched cards. Devel-
oped for transmitting telegraph messages over wires, paper tape is used for
data processing communication as well. For long-distance transmission,
machines convert data from cards and keyboard strokes to paper tape, send
the information over telephone or telegraph wires to produce a duplicate
paper tape at the other end of the wire, and reconvert the information to
punched cards for later processing.

Data is recorded as a special arrangement of punched holes, precisely ar-
ranged along the length of a paper tape (Figure 2-21 and 2-22). Paper tape is
a continuous recording medium, as compared to cards, which are fixed in
length. Thus, paper tape can be used to record data in records of any length,
limited only by the capacity of the storage medium into which the data is to
be placed or from which the data is received.

Data punched in paper tape is read or interpreted by a paper tape reader and
recorded by a paper tape punch.

TF ‘l sP —cuerwoon S2a
AB Hil JK LMNOPQRSTUVWXYZ0123456789¢v-,/8%,.0%%=#cacaaoa DHa
EL =

X—eoeoeo o0 [] ® ®

0o—e [X J [X (X] []

CHECK—e® ° oe ° 0o o olo

g—e [X) o0 [X J 0000 000000000 0O
EEEEEREEEREN R XN NN N N N N BN N NN NN J ' E R XK N N N N N NN J e 00000 COEOSOSEOSOSDS ®e0 0O
4—0 0000 000 0000 o000 000 o000 0O
2—0 00 [X] (1] [X J [X J (X} [X [X] [X X] o000 [
100 © © @ 00 © © &6 & © © & & O O o o o o 000 [J 0000 ®

Figure 2-21 Paper Tape, Eight-Channel Code

Eight-Channel Code (Hole Pattern)

Data is recorded (punched) and read as holes located in eight parallel chan-
nels along the length of the paper tape. One column of the eight possible
punching positions (one for each channel) across the width of the tape is used
to code numeric, alphabetic, special, and function characters. Figure 2-21
shows a section of paper tape with the eight channels and several coded
characters.

The lower four channels of the tape (excluding the feed holes) are labeled 1,
2, 4, and 8 and are used to record numeric characters. The numeric charac-
ters O through 9 are represented as a punch or punches in these four positions.

2-24 Introduction to IBM Data Processing Systems

CDEFGHI JKLMNOPQRSTUVWXYZ

Section 2: Data Representation

The sum of the position values indicates the numeric value of the character.
For example, a hole in channel 1 is used to represent a numeric 1: a combina-
tion of a 1 and a 2 punch represents a numeric 3.

The X and O channels are similar to the zone punches in 96-column punched
cards. These channels are used in combination with the numeric channels to
record alphabetic and special characters. The coding for the alphabetic and
special characters is shown in Figure 2-21.

To check that each character is recorded correctly, each column of the tape is
punched with an odd number of holes. A check hole must be present in the
check channel for any column whose basic code (X, 0, 8, 4, 2, 1) consists of
an even number of holes.

A punch in the EL (end-of-line) channel is a special function character used
to mark the end of a record on the tape. The tape feed code consists of
punches in the X, O, 8, 4, 2, and 1 channels, and is used to indicate blank
character positions. The paper tape reader automatically skips over the areas
of tape punched with the tape feed code.

2—
3_—.
5—-

[2 1 Rl
[
[
[

000 ¢0® | LETTERS
[d

. .
w o, g w“.“-
gy 3 1%y
P-4
&35 e 3 8 9014 57 2 6 %05
e © o o000 1—[eee oo o0 e o o o000
oo ooe ° —lee @ o oeoo e0e eoo °
06 00000000 0 00 " EEEEEEEEEENEEREN N NN NN N NN N N NN N J
o, 0 00 ce e, 3— o ‘0o o0 © 00 00 © 00 00 o
° i—|e o000 00 o0 oee o o o °
o o eoec00 s—|e @ o0 00 000 o o0e00

Figure 2-22 Paper Tape, Five-Channel Code

Five-Channel Code (Hole pattern)

Data is recorded (punched) and read as holes in five paraliel channels along
the length of the paper tape. One column of the five possible punching
positions (one of each channel) across the width of the tape is used to code
numeric, alphabetic, special, and function characters. Figure 2-22 shows a
section of paper tape with the five channels and several coded characters.

Because there are only 32 possible combinations of punches, using the five
punching positions, a shift system is used to double the number of available
codes. When the letters (LTRS) code punch precedes a section of tape, the
characters that follow are interpreted as alphabetic characters (Figure 2-22).
When the figures (FIGS) code punch precedes a section of tape, the coded
punches are interpreted as numeric or special characters.

Ten of the 32 characters are used for coding both the alphabetic character P,
Q,W,E, R, T,Y, U, I, and O and the decimal digits O through 9, respectively.
Interpretation depends on the shift code, LTRS or FIGS, preceding these
characters. Likewise, the code for special characters is identical to that of
other alphabetic characters. The actual alphabetic code that is equivalent to a
given special character code varies, depending on customer requirements.

The function characters - space, carriage return (CR), and line feed (LF) -
are the same in either LTRS or FIGS shift. The space code is used to indicate

Introduction to IBM Data Processing Systems 2-25

Section 2: Data Representation

2-26

Magnetic Tape

the absence of data on tape. The actual function of the CR and LF charac-
ters depends on the machine with which they are used.

A disadvantage of this code is evident in data communications. The shift
characters increase the lengths of messages. For intermixed alphabetic and
numeric data, this increase can be significant.

Magnetic tape is one of the principal input/output recording media for
computer systems. It is also used extensively for compact storage or large
files of data.

Magnetic tape units offer high-speed entry of data into the computer system,
as well as efficient, extremely fast recording of processed data from the
system. Highly reliable input/output data rates of up to 2.5 million numeric
characters per second are possible.

The magnetic tape unit functions as both an input unit and an output unit for
the computer system. It moves the magnetic tape across a read/write head
and accomplishes the actual reading and writing of information on the tape.

Information is recorded on magnetic tape as magnetized spots called bits.
The recording can be retained indefinitely, or the recorded information can be
automatically erased and the tape reused many times with continued high
reliability.

So that tape can be easily handled and processed, it is wound on individual
reels or in dust-resistant cartridges. Tape on the individual reels is 1/2 inch
wide and is supplied in lengths of up to 2400 feet per reel.

Several features built into the IBM 3420 magnetic tape unit ensure reliability
and ease of operation. An automatic reel latch mechanically seats the file reel
in position and pneumatically locks it on the hub for tape movement. With
automatic threading and cartridge loading, tape mounting and demounting
times are significantly reduced. Optical tachometers, built into the drive,
sense small variations in the speed of the capstan and the tape, and generate
corrective signals. This precise control is one of the keys to the 3420’s fast
read access and rewind times. (Rewinding of a full 2,400 foot reel takes only
45 seconds).

Tape wear and contamination are minimized by extensive use of air bearings
and surface treatments. The path that the tape takes through the drive, from
reel to reel, allows the recording side of the tape to touch only two surfaces
during read/write operations: the tape cleaner and the read/write head.
Additionally, the cleaning mechanism provided on certain models removes
loose contaminants from the tape and protects the read/write head from tape
media contamination during high-speed rewind and tape loading and unload-
ing.

Data is recorded in parallel channels or tracks along the length of the length
of the tape.

The tracks across the width of the tape provide one row of data. The spacing
between the vertical rows is automatically generated during the writing
operation and varies, depending on the character density used for recording.
Character densities as high as 6250 characters per inch are available.

Introduction to IBM Data Processing Systems

Numeric

Figure 2-23

0123456789

Section 2: Data Representation

A longer space is automatically generated between blocks of records on the
tape; this space is called the interblock gap (formally called interrecord gap).

The IBM 3400 series tape units usually have a nine-track read/write head. A
seven-track read/write head is available as an option. The nine-track heads
read or write information in nine tracks along the length of the tape. With the
single-density feature, certain models operate at 1,600 bytes per inch. With
the dual-density feature, operations are at both 800 and 1,600 bytes per inch
for these models and at 1,600 and 6,250 bytes per inch for other models.
Each byte consists of eight data bits and a parity bit. Each byte may repre-
sent two packed decimal digits, eight binary digits, or one special or alphamer-
ic character.

Packed mode is limited to recording decimal numbers, but it offers the advan-
tage of recording two numbers in a single tape row, effectively doubling the
reading and writing speed for numeric data on certain data processing sys-
tems.

The seven-track feature is intended for compatibility with tapes written on
older tape drives. Data for IBM computers may be coded on seven-track
magnetic tape in two modes, binary coded decimal (BCD) or binary. The
code used depends on the computer that originates the data.

Seven-Track Coding on Tape (BCD Mode)

Letters of the alphabet, decimal numbers, and special characters may be
recorded on magnetic tape using the binary coded decimal code (Figure
2-23).

IJKLMNOPQRSTUVWXYZ & .0-8*/ o #@

Magnetic Tape, Seven-Track, Seven-Bit Alphameric Code

Seven-Track Coding on Tape (Binary Mode)

Some computer systems record data on magnetic tape in binary notation
(Figure 2-24).

Introduction to IBM Data Processing Systems ~ 2-27

Section 2: Data Representation

1112 1718 23 24 29 30

35
[301001]301110|111010|00011Tﬁ01010|1111TL|

~\ | L

Check Bits—{ 1 0 1 0 0
s 60 12l 180 241 30!
o 0 1 0o 0 1
1 1 1 0 1 1
Data bits— 0 1 0 1 0 1
0 1 1] 0
s n0 170 2l 200 asl

Figure 2-24 Magnetic Tape, Seven-Track, Binary Recording

As in BCD recording, the C track is used to verify accuracy of tape reading
and writing. With binary tape, however, each row of bits must contain an odd
number of 1 bits.

The longitudinal parity check in binary mode is similar to that for BCD mode;
the total number of bits in each horizontal track of a record block must be
even.

Nine-Track Coding on Tape

The nine-track magnetic tape for Series 3400 tape units accepts the
System/370 central processing unit coding, shown in Figure 2-25, as
System/370 Eight-Bit Code. It adds an odd-parity bit, however, and the
order of the bits in the character (byte) row is rearranged as shown in Figure
2-26.

2-28 Introduction to IBM Data Processing Systems

Section2: Data Representation

Hexa- Graphic & Con- Punched System/360 Hexe Graphic & Con- Punched System /360 Hexs- Graphic & Con- Punched System/360
deci- | Mnemnonic trol Symbols Card 8-Bit deci- | Mnemonic trol Symbols Card 8-Bit deci- | Mnemonic trol Symbols Card 8-Bit
mal BCDIC EBCDI Code Code mal BCDIC EBCDIC| Code Code mal BCDIC EBCDIC| Code Code

s6 [0 121169 0101 0110 AB 111-0-3-8 1010 1011
00 NuL 120-1-8-9 0000 0000 571X 12:179 | 01010141 AC 11-04-8 1010 1100
01 SOH 1219 0000 0001 s8 L 121189 0101 1000
STX 12-2:9 0000 0010 AD 11-0-5-8 1010 1104
02 9 ¢ 1118 0101 1001 oy
12-3:9 0000 0011 AE 11-06-8 1010 1110
03 ETX SA A ! 1128 o101 1010 AF 11078 1010 1111
04 | SPM PE 1249 0000 0100 B |s [s 1138 0101 1011 B0 1211018 | 10110000
05 | BALR HT 0000 0101 sc | ™ . . 1148 0101 1100 B 121101 1011 0001
06 | BCTR LC 0000 0110 D | D)) 11-58 0101 1101 87 RIS 10110010
o7 -| BCR DEL 0000 0111 SE | AL ; 1168 oto1 1o B3 12-11-0-3 1011 0011
08 | SSK 0000 1000 SF | SL A ha 1178 0101 1111 84 12'1) 1011 0100
0 | ISk 0000 1001 60 | STD - - 1 0110 0000 -11-04
61 / / o1 0110 0001 Bs 121108 1011 0101
0A | sve SMM 0000 1010 62 11029 0110 0010 B6 12:11-06 10110110
0B vT 12-3-89 0000 1011
: : 4-8-9 0000 1100 63 11039 01100011 87 12-11:0-7 o1t o111
o (EBC:DK' Y FF 124.89 0000 1101 64 11-0-4-9 01100100 B8 12-11-0-8 1011 1000
6D | (EBCDIC -) CR 12:5-89 0000 1110 65 11059 0110010} B9 121109 1011 1001
OF so 12:6-89 P 11069 01100110 BA 1211028 | 10111010
oF Hi 12.7-8-9 0000 1111 61 | MXD 11079 01100111 BB 12:11-0-3-8 1011 1011
10 [LPR DLE 12-11-1-8.9 0001 0000 68 [LD 11089 0110 1000 BC 12-11-04-8 1011 1100
11| LNR DCI 11-1-9 0001 0001 | 6 | 018 0110 1001 BD 12:11-0-5-8 1011 1101
12 | LTR DC2 11-29 0001 0010 | 6A | AD 12-0 01101010 BE 12-11-06-8 1011 1110
13| LCR ™ 11-39 0001 0011 68 | sD . . 0348 0110 1011 BI 1211078 | 1011 1111
14 [NR RES 114-9 0001 0100 6C | MD % L] 048 01101100 co ? 120 1100 0000
15 | CLR NL 11-59 0001 0101 6D | DD Y _— 05-8 0110 1101 c1 A A 12-1 1100 0001
16 | OR BS 1169 0001 0110 6E | AW N > 068 01101110 c2 B B 122 1100 0010
17 | XR L 1179 0001 0111 gg ?:E ?27-'5‘ o g: :?w c c c 123 1100 0011
18 | LR CAN 11-89 . 0001 1000 n 1201019 | o111 0001 C4 D D 124 11000100 |
- cs E E -
19 [CR EM 11-1-89 0001 1001 7 1311029 1 01110010 & v v :gi ::%gm
1A | AR cc 11-2-8.9 0001 1010 7 1211039 | 01110011 P G G 127 11000111
1B | SR cul 11-3-89 0001 1011 " 12-1104-9 | 01110100 cs H H 12.8 1100 1000
IC | MR IS 11489 0001 1100 15 12:11-0-59 | 01110101 pos N A 129 1100 1001
iD | DR IGS 11-5-8-9 0001 1101 76 1211-069 | 01110110 = Yy e
IE | ALR IRS 11-6-8-9 0001 1110 7) 12211079 1 01110111 cB 120389 1100 1011
789 0001 1111 78 | LE 1211089 | 01111000
IF | SLR 1us 11-78 2 | ce cc 120489 1100 1100
! 110-1-89 0010 0000 ¢ 18 ot 1001
10 | LPDR DS A | AE b P 28 o111 1010 cD 12:0-5-89 1100 1101
21 | LNDR 508 0-1-9 0010 0001 78 | SE #a # 38 01111011 CE 120689 11001110
22 | LTDR Fs 029 0010 0010 7C | ME) @ a8 0111 1100 CF 120789 | 1001111
23 | LCDR 039 00100011 D | DE : . 58 0111 1101 DO ! 11-0 1101 0000
24 | HDR BYP 04-9 0010 0100 7% | au > = 68 01111110 D1 | MVN [] 114 1101 0001
15 | LRDR LF 0-5-9 0010 0101 7" | su v 78 oL D2 | MvC K K -2 1101 0010
6 | MXR ETB 069 00100110 D3 | MVZ L L 11 1101 0011
ss 12:01-8 1000 0000
17 MXDR ESC 079 00100111 :(I‘ M a 12-0-1 1000 0001 D4 [NC M M 11-4 1101 0100
8 [LDR . 0-8-9 0010 1000 82 | Lesw b 1202 1000 0010 ps |cLc N N 1-$ 1101 0101
19 | CcDR 0-1-8-9 0010 1001 83 | (Disgnose) c 1203 1000 0011 D6 | OC o o 1146 1101 0110
1A | ADR SM 0-2:89 0010 1010 84 | WRD d 1204 1000 0100 D7 | XC 3 3 117 1101 0111
B | SDR cu? 0389 0010 1011 35 T RbD p pre 1600 101 D8 Q Q 118 1101 1000 _|
1IC_| MPR 0489 0010 1100 s6 | BXn p 1206 1000 0110 D9 R R (119 1101 1001
D | DDR FNQ 0-5-89 0010 1101 87 | BXLE . 1207 1000 0111 g: :z: :-i-a-: ::gl :ouly
2E | AWR ACK 06-89 00101110 88 | SRL h 12:08 1000 1000 Fel |:.n4 s ”0: ‘(l)‘l’o
IF | SWR BEL 0-7.89 0010 1111 89 | sLL i 12:09 1000 1001 -
DD | TRT 1211-5-89 | 1101 1101
30 | LPER 12-11-0-1-8-9| 0011 0000 8A | SRA 12028 1000 1010 DE TEb 3 1211689 | 110t 1110
31 | LNER 19 0011 0ool 88 | SLA 12038 1000 1011 OF | EOMK (3) 1211789 | 1101 1111
31 [LTER SYN 29 00110010 8C | SRDL 12:04-8 1000 1100 e | [028 1110 0000
33 | LCER 39 0011 0011 8D | SLDL 12058 1000 1101 1 11019 1110 0001
34 | HER PN 49 00110100 8F | SRDA 12068 1000 1110 2 s s 02 11100010
3s | LRER RS 59 00110101 81" | SLDA 12078 1000 1111 1) T = e 1100011]
36 | AXR uc 69 00110110 90 | ST™ 1211-18 1001 0000 £ v) o4 1110 0100
kY SXR EOT 79 00110111 9 ™] 12-10-1 ":010001 ES v v 05 1110 0101
3 | LER 89 0011 1000 92 [Mvi k 12112 ::‘:‘ "":‘l’ E6 w w 06 11100110
39 | CER 189 0011 1001 93 ;S ! '2":3 ”0: °°00 E7 X X 07 11100111
3A | AER 289 0011 1010 94 1 m 12 oot 01 8 Y Y 08 1110 1000
8 | SFR cu3 3.89 0011 1011 95 CL1 n 12-11-8 1001 0101 E9 z z 09 1110 1004
3C | MER DCa | 489 00111100 ol ° e Lo EA 110289 | 11101010
3D | DER NAK $-89 0011 1101 N s EB 11-0-3-8:9 1o1on
3E | AUR 689 0011 1110 98 |iM q L 1001 1000 EC 110489 | 11101100
3F | suR sup | 789 0011 1111 99 ' 12-11-9 1001 1001 ED 110589 1110 N0l
' 9A 121128 | 1001 1010 EE noss9 | 1ot
40 | s sP no punches 0100 0000 9% 12-11-38 1001 1011 EF 110-7-89 o1
@ {LA 12019 0100 0001 o | si0 12:114-8 1001 1100 Fo o ° ° 1111 0000
42 | sTC 12029 0100 0010 9 | TIO 12:11-5-8 | 1001 1101 F1 | mvo \ \) 1111 0001
8 e 12039 01000011 9F | HIO 121168 | 10011110
-11-6- F2 | PACK 2 2 2 1111 0010
44 | Ex 12.049 0100 0100 .
9 | TCH 121178 1001 1111 F3 | Unek 3 3 3 11110011
4 | BAL 12059 0100 010} .
A0 11-0-1-8 1010 0000 Fe . . . 1111 0100
4 | BcT 12069 0100 01 10 i
Al 11-0-1 1610 0001 Fs s s M 1111 o101
a1 | 8C 12079 01000111 H o2 10100010 ; !
48 | L4 12089 0100 1000 L1 S - Fé 6 6 6 11110110
49 |cH 1218 0100 1001 Al t 1103 10100011 F7 1 7 7 1110111
A [An P] 12-28 0100 1010 Ad u 11-04 10100100 F8 [zAP (3) |8 8 8 1111 1000
4B | SH . 12:3-8 0100 1011 AS v 1105 1010 0101 F9 [CP (D) |9 9 9 1111 1001
4C | MH a) < 1248 0100 1100 A6 w 11-06 10100110 FA |AP (D) 12-11-0-2-8-9] 1111 1010
4D ({ 12:5-8 0100 1101 A7 X 11-0-7 10100111 FB Sp 3 12-11-0-3-8-9 11111011
4E_} CVD < * 1268 . 01001110 A8 y 1108 1010 1000 FC |MP (3) 12-11-04-89] 1111 1100
“F | cvB ¥ / 1278 0100 1111 A9 1 1109 1010 1001 D [DP (3) | 12-11-0-5-8:9] 11111101
50 | sT &t & 12 0101 0000 AA 11-0-2-8 1010 1010 FE i 12:11-06-89] 11111110
st 124119 0101 0001 FF [12.11:0-7-89) 1111 0111
52 12:11-29 0101 0010 -
3 12:11-39 0101 0011
s4 [N 12-1149 . 01010100
ss | CL 12-11-5-9 0101 0101
Figure 2-25 IBM System/370 Eight-Bit Code
Introduction to IBM Data Processing Systems 2-29

Section 2: Data Representation

2-30

Character Reading

9 8 7 6 5 4 3 2 1 Track Number

4 6 0 1 2 C 3 7 5§ Reference Edge of Tape

C B A 8 4 2 1 Seven-track BCD

cC 0 1 2 3 4 5 6 7 Nine-track EBCDIC

Same as 8, 4, 2, 1 bits of BCD code

Reverse of A and B bits of BCD code

EBCDIC BCD
00 A-1 00 Numeric
01 J-R 10 J-R
10 S-z 01 S-Z
11 Numeric 11 A-1

11 Uppercase alpha and numeric
10 Lowercase alpha

01 Special character

00 No characters assigned

Figure 2-26 Comparison of Seven-Track and Nine-Track Alphabetic Code

The 4-7 recording positions of nine-track tape parallel the function of the 8,
4, 2, 1 bit positions of seven-track tape. The 2 and 3 recording positions are
the exact reverse of the A and B bit positions of seven-track. Positions 0 and
1 are the two additional recording channels that group the characters into one
of four classifications: uppercase alpha and numeric, lowercase alpha, special
characters, and no assigned character. Note that the actual channels on
nine-track tape do not run in 0-7 sequence.

Magnetic Ink Characters

Another method of representing data on paper media for machine processing
is with magnetic ink characters - a language readable by both man and ma-
chine. Magnetic ink characters are printed on paper, as in Figure 2-27. The
shape of the characters permits easy visual interpretation; the special magnet-
ic ink allows reading or interpretation by machine.

Introduction to IBM Data Processing Systems

Section 2: Data Representation

Enter partial

1A payment baiow MUNICIPAL WATER WORKS
Ne. YOUR NATIONAL BANK o © 0 " Account ‘?ross AN.OA Lnat Dﬁ' To
o s e + |_Nymbe ount mount
Now York, N.Y. (o), vo___ ‘ moun '
RL4S332 St 0L 45 98 4 30 b-

PAY 1O ™

oot OF sf‘c&

¥—VQ&9 “/; \‘0\‘3
.} _%%_ 2 :;Qz_g P DOLLARS

A. B. Dzroai
Ma ITOR

s we wmwe -

DISCOUNT TERMS . 10 DAYS

ve @e se 2o ue me -

bae we @s e se ve se us me -o

e ®s ®e <o os Ge 22 we we -»

SYMBOL NUMBER

:
H
:
'\ nv E. Derositon 3 3] Present Previous Consumption
1 . . . | Reading Reading oy. _ E D JONES
. arcipt!. ¢ ¢ 745 CHESTNUT ST
: ;| 3ossess |2awqmis | 8a? ANYTOUN USA
[i0210=0987z 2 200828708, LT zl.foooooosmofl s : _

o T T moeee e L : PLEASE RETURN THIS WITH YOUR PAYMENT

ROUTING TRANSIT NUMBER CONTROL : ; ;

dable Ch

. Magnetic Ink Characters

Figure 2-27 Magnetically and Optically Readable Characters

The printing (inscribing) of magnetic ink characters on the paper documents
is done by machine. The paper documents may be random size paper or cards
ranging from 2 3/4 inches to 3 2/3 inches wide, from 6 inches to 8 3/4
inches long, and from .003 inch to .007 inch thick.

The IBM 1260 Electronic Inscriber, in addition to performing the normal
proving functions related to banking procedures, inscribes documents. After
inscription, the IBM 1419 Magnetic Character Reader reads the inscribed
information from the documents and converts it to a machine language. At
this point, the information enters directly into an IBM data processing system.
The 1419 can sort the documents as well.

Optically Read Characters

Another method of representing data on paper documents for input to a data
processing system uses optically readable characters (Figures 2-27).

The IBM 1287 Optical Reader can read typed and machine-printed alphamer-
ic data and hand-printed numbers, letters, and marks from cut-form docu-
ments having a variety of formats, orientations, types of data and field
lengths. The data of source documents can be organized in fixed or variable-
length fields, in columns or rows, and can be read in any sequence. Just as
easily, the 1287 can also read numeric data and special symbols from journal
rolls, such as cash-register and adding-machine tapes.

The IBM 3881 Optical Mark Reader reads penciled and machine-printed
marks on a variety of document sizes, weights, and formats. It can be easily
adjusted so as to read data from forms ranging in size from 3-by-3-inch bill
stubs to 9-by-12-inch sets. When equipped with the BCD feature, the 3881
can read turnaround documents, which are forms printed by line printers as
output from a data processing system, distributed for action, then returned to
be read as input to the system.

The IBM 3666 Checkout Scanner is an optical recognition device designed to
read the Universal Product Code symbols (Figure 2-28) on items as they are
pulled across the scanner slot in the checkstand in a supermarket. Item
symbols are read at a rate of up to 100 inches per second as they are moved

Introduction to IBM Data Processing Systems ~ 2-31

Section 2: Data Representation

2-32

Visual Output

across the scanner window. The scanner improves checker productivity and
accuracy, and provides automatic recording of item movement data.

1234576789 003190

11-Digit Symbol 7-Digit Symbol

Figure 2-28 Universal Product Code Symbols

Visual display units in several sizes, capacities, speeds, and capabilities to
handle complexities of information permit the user of a computing system to
see, on a cathode ray tube, graphic reports that would take many times longer
to produce by normal printing methods. The use of a visual display unit as a
system operator console is a typical application. Another is the retrieval and
presentation of a client’s account record during a telephone inquiry. It is
possible to update the record immediately (by using an entry keyboard) and
return the corrected data to storage.

The display units present (on the cathode ray tube screen) tables, graphs,
charts, and alphameric letters and figures. The IBM 2250 Display Unit has a
display area containing over one million points that can be addressed by X
and Y coordinates. It can display 52 lines of 74 characters each - all on a
twelve-inch-square area. Figure 2-29 shows an example of a display on the
2250.

Introduction to IBM Data Processing Systems

Section 2: Data Representation

vmcouvﬁf TORRIE AIRLINES FLIGHTS
QMK»EATTLE

y
/|
PORTL AND

‘ NN - \ T () ¢ - o Y - -
£ MQE NF N s T IN < 5 {} B o:j ON
AW AP oI

Mﬁbro

Figure 2-29 1BM 2250 Screen Contents. A Display Including Absolute Vector Graphics, Point Plotting, and Two Sizes of Alphabetic
Characters.

The 2840 Control Unit, connected to the 2250, accepts and stores data from
the computer at up to 500,000 characters per second. As many as 60,000
characters, or lines, can be displayed per second. Horizontal and vertical lines
may be drawn by specifying only the end points of the lines; in addition, a
special feature enables lines to be drawn at any angle. Points may be dis-
played as fast as 16.8 microseconds (millionths of a second) per point.

Visual output utilizing a display unit capable of displaying alphameric charac-
ters has become common for situations not requiring hard copy reports or
cards as output. One model of the IBM 3277 Display Station displays up to
1,920 characters in 24 lines of up to 80 characters per line (Figure 2-30).
The standard character set includes 36 alphameric and 27 special characters.
A feature is available, however, that expands the character set to include
upper and lower case alphabetic characters, additional graphics and special
characters, and the full 133 character APL character set. (APL is a program-
ming language described in a later section).

The 3277 can be attached to an IBM 3272 Control Unit connected locally
(directly to a channel of a System/370). The 3272 provides local data
transfer rates of up to 650,000 characters per second.

Introduction to IBM Data Processing Systems ~ 2-33

Section 2: Data Representation

The 3272 and the 3277 are components of the IBM 3270 Information Dis-

play System. Additional information about the 3270 appears in another
section.

IEPRTIETA. PICFIT PICTIRE -~ 131N

$ OUSS NCIN PRGN REONRE WY A PAZ TR
BT DPONE BN TR A8

APLETICS

GRS 5 AMNITION

FISHING TRORE

ELECTRICH,

HOUSERARES

STES
N
TS

SUILDERS" WRmAGRE

enbobwdo

%8
=
¥
2
b
”
1%
]

8

e

-5,

Figure 2-30 IBM 3277 Screen Display

2-34 Introduction to IBM Data Processing Systems

Section 3:
Storage Devices
Several types of IBM storage are presently available: semiconductor, magnetic

disk, and mass storage (Figures 3-1 and 3-8). Sometimes magnetic tape is
thought of as storage rather than as an input/output medium.

IBM 3340 Disk Storage

IBM 3330 Disk Storage

Figure 3-1 IBM Storage Devices

Introduction to IBM Data Processing Systems 3-1

Section 3: Storage Devices

Information can be placed into, held in, or removed from computer storage as
needed. The information can be:

1. Instructions to direct the central processing unit
2. Data (input, in-process, or output)

3. Reference data associated with processing (tables, code charts, constant
factors, and so on).

Storage is classified as main or auxiliary, as in System/370 (Figure 3-2).
Main storage is sometimes called memory. It can consist of core storage, but
in today’s larger systems such as System/370, it is usually made up of semi-
conductor integrated circuits.

Auxiliary refers to all other storage and is of two types:

1. Direct access. Disk and mass storage devices in which records can be
accessed without having to read from the beginning of a file to find
them.

2. Sequential. Tape units where reels must be read from the beginning in
order to read or write a desired record.

Main storage accepts data from an input unit, exchanges data with and
supplies instructions to the central processing unit, and can furnish data to an
output unit. All data to be processed by any system must pass through main
storage. This unit must therefore have capacity to retain a usable amount of
data and the necessary instructions for processing.

Input Output
Device Device
MAIN STORAGE | |
Dui: Input Instructions Results
P fo be d Quantity 1. Add R to be
rocesse Cost 2. Subtract ecorded
Other Data 3. Divide
4. Compare
Table A Output
123=12.06 Cost per Piece
124=12.14 Number in Stock
125=13.01

AUXILIARY STORAGE

Table A Table B
123=12.06 | | Square Other
124=12.14 | | Roots Programs Processing
125=13.01 Unit

Figure 3-2 Schematic, Main, and Auxiliary Storage

3-2 Introduction to IBM Data Processing Systems

Section 3: Storage Devices

Applications can require additional storage. If so, the capacity of main
storage is augmented by an auxiliary storage unit. All information to and
from auxiliary storage must be routed through main storage.

Storage is arranged somewhat like a group of numbered mail boxes in a post
office (Figure 3-3).

0} 0] 0] o ol O
Q@D [ED | T | & @ [
']|__]L111|1|ﬁLﬂ_l:
0] 0] o 0] 0] 0}
D Q@D | @D |G | G |G| |
o I I e I O o N Y s O s O s I Y o Y O Y
0] 0] 0] 0] O] 0]
D@@@@g
e 1 O s o O s 1 e Y o N e O
O] 0] o o o 0]
O |ADED @ | C&GD [@& @& ¢
—l___ll_:||___]lllll‘l—

Figure 3-3 Post Office Mail Boxes

Each box is identified and located by its number. In the same way, storage is
divided into locations, each with an assigned address. Each location holds a
specific unit of data. Depending on the system, the unit of data may be a
character, a digit, an entire record, or a word. To insert or remove data at a
location, the address must be known, either to the programmer or to a control
program (explained later).

When information enters a location, it replaces the previous contents of that
location. However, when information is taken from a location, the contents
remain unaltered. Thus, once located in storage, the same data may be used
many times. In effect, a duplicate of the information is made available for
processing.

The computer requires some time to locate and transfer information to or
from storage. This is called access time. Storage units are available whose
access time is so brief that it is measured in billionths of a second. To appre-
ciate such a minute interval of time, consider a spaceship of the future travel-
ing at 100,000 miles per hour. In one-millionth of a second, the spaceship
would travel about 1 3/4 inches, in a nanosecond (one-billionth of a second),
it would travel about one-thousandth of 1 3/4 inches.

Because so many references must be made to storage in all data processing
operations, the access speed has a direct bearing on the efficiency of the
entire system.

For example, semiconductor main storage is the most expensive storage
device in terms of cost per storage location. However, main storage also
provides the fastest access time; thus, it may be the most economical in terms

Introduction to IBM Data Processing Systems 3-3

Section 3: Storage Devices

34

Main Storage

of cost per machine calculation. Disk storage offers the advantages of lower
direct cost to offset slower speed. Disk devices also offer the advantage of
capacity in billions of digits. The largest storage system is the IBM 3850
Mass Storage System which has a capacity of 472 billion eight-bit characters.

The main storage of most computers, such as System/370, consists of micro-
miniature integrated circuits which are designed to store data in addressable
locations called bit cells. Electrical devices--such as transistors-- in each bit
cell are capable of being in one of two states: on or off. The two states are
used, therefore, to represent O or 1, plus or minus, yes or no, etc. This is the
basis of the computer’s binary system of storing information.

Since any specified location of storage must be instantly accessible (called
random access), the bits are arranged so that any combination of ones (1s)
and zeros (0s) representing a character can be electronically written into or
read back from main memory when needed. Other electronic circuits are used
to locate the desired bit cell as an x-y intersection on an imaginary grid
covering all of the main storage. Thus any memory bit can be addressed (or
accessed) in a few nanoseconds.

In a complicated manufacturing process, the electronic memory circuits are
built into a single chip of semiconductor material. They are termed
monolithic--derived from the Greek words denoting a 'single stone'--because
the electrical components are formed within a single chip of silicon. Transis-
tors, diodes, resistors and capacitors can all be produced within such a mono-
lithic structure.

Large numbers of electrical éomponents on a single silicon chip are connected
to create integrated electronic circuits by applying a thin metal filn to the top
of the chip to provide contacts to the components and interconnections
between them. A typical IBM semiconductor chip measures about one-sixth
of an inch per side and contains 2,048 bit cells formed by almost two meters
of aluminum "wire" connecting over 14,000 electrical devices.

Due principally to the miniaturization of the bit cells made possible by semi-
conductor technology, main storage is usually found in the same box as the
central processing unit. In contrast, auxiliary storage is located in separate
boxes which are cabled to the central processor. Since electronic signals
travel at the constant speed of light, shrinking the size of the main memory
devices and locating them very close to the processor allows the computer to
operate at extremely fast speeds.

It is beyond the scope of this book to fully explain semiconductor storage.
There are innumerable ways to design the bit cell circuitry and many varia-
tions in the monolithic manufacturing processes. In all semiconductor main
storage, however, the basic principle is to use tiny integrated electronic
circuits to store zeros (0s) and ones (1s), resulting in binary codes which can
represent any data required by the computer.

Introduction to IBM Data Processing Systems

Magnetic Disk Storage

Section 3: Storage Devices

Disk storage provides IBM data processing systems with the ability to record
and retrieve stored data sequentially or randomly (directly). It permits
immediate access to specific areas of information without the need to examine
sequentially all recorded data. Magnetic tape operations do not have this
ability; tape searching must start at the beginning of the tape reel and contin-
ue sequentially through all records until the desired information area is found.

For an example of the application of direct access operations, as compared to
sequential operations, consider the search for a word in a large unabridged
dictionary. If the contents of the dictionary were stored on magnetic tape, the
complete dictionary could be machine-read in about two minutes. A wide
range of individual words would require an average of one minute to be found
and read by the magnetic tape sequential method of searching. Using the
dictionary, a human being would average about 1/5 of a minute per word,
simply because he would limit his search for each word to an appropriate
portion of the whole dictionary. That is, he would immediately go to a
specific letter rather than start at the beginning of the dictionary and check
each entry. This concept of limiting a search to a small section of the whole
would permit direct access storage to perform the dictionary word search in a
few thousandths of a second.

The high-speed access to data storage locations provided by direct access data
processing permits the user to maintain up-to-date files and to make frequent
direct reference to the stored data.

The magnetic disk is a thin metal disk coated on both sides with magnetic
recording material. Disks are mounted on a vertical shaft; they are slightly
separated from one another to provide space for the movement of read/write
assemblies. The shaft revolves, spinning the disk (Figure 3-4).

Data is stored as magnetized spots in concentric tracks on each surface of the
disk. Some units have 808 tracks on each surface. The tracks are accessible
for reading and writing by positioning the read/write heads between the
spinning disks.

The IBM 3336 Disk Pack is a high-speed, removable, interchangeable disk
storage unit for the 3330 Disk Storage Unit. Due to its compact size, it is
easy to move and handle. It can be interchanged between all modules of the
same 3330 model, making communications between many different systems
possible. The disk pack offers unlimited storage capacity. Because of the
ease of removal and interchange of 3336s, storage capacity to be used in
combination with any system is virtually unlimited. A pack consists of eleven
disks, with data recording on 19 surfaces.

The magnetic disk data surface can be used repetitively. Each time new
information is recorded and stored on a track, the old information is erased.
The recorded data may be read as often as desired; data remains until written
over.

The access mechanisms containing the read-write heads of a 3330 disk drive
move in unison. Hence, without moving the access mechanisms, each read-
write head has access to a particular track on its associated surface. The
totality of all tracks of a disk that are accessible without motion of the access
_mechanisms is referred to as a cylinder. Therefore, a cylinder has 19 tracks.

Introduction to IBM Data Processing Systems ~ 3-5

Section 3: Storage Devices

Up to 13,030 bytes on each track, available under each of the ten access
mechanisms (Figure 3-4), provide 247,570 bytes per cylinder. Data transmis-
sion is at the rate of 806,000 bytes per second. Minimum access time is 10
milliseconds; average is 30 milliseconds; maximum is 55 milliseconds.

Standard functions provided include:

Rotational Position Sensing, which increases channel availability by releasing
the channel during most of record search time.

Multiple Requesting, which permits up to eight channel command sequences
(one per disk drive) to be active in the storage facility, thereby permitting
maximum use of the facility and contributing to improved response to I/0O

requests.

IFigure 3-4 A Disk Storage Drive Showing Mounted Disk Pack and Access Arms

Command Retry, which enhances error recovery by permitting the channel and
control unit to retry operations without CPU program intervention.

Extensive Error Detection and Correction Capabilities, which enhance data
integrity and reliability.

A 3330 may have one or two independent modules, each storing up to 200.
million 8-bit bytes. Up to four 3330’s may be connected to a control unit.
With eight removable and interchangeable 3336’s per control unit, a total of
1.6 billion bytes of on-line storage and virtually unlimited off-line storage are
provided.

3-6 Introduction to IBM Data Processing Systems

Section 3: Storage Devices

Another type of disk storage is the 2305 FHSF (Fixed Head Storage Facility)
shown in Figure 3-5. The 2305 Fixed Head Storage modules physically
consist of non-removable rotating media and multiple element recording
heads. The recording media consist of six 14-inch oxide coated disks revolv-
ing in an environmentally controlled air system.

The 2305 Model 1 has 384 addressable tracks, each with two read/write
heads and a maximum capacity of 14,136 bytes per track (or 5.4 million
bytes).

The 2305 Model 2 has 768 tracks, each with its own read/write head, and a
maximum capacity of 14,660 bytes per track (or 11.2 million bytes).

Figure 3-5 IBM 2305 Fixed Head Storage Facility

The 2305 features a high data transfer rate (3 million bytes per second for the
smaller but faster Model 1 and 1.5 million bytes per second for the Model 2).
Any record location can be accessed in an average of 2.5 and 5.0 milliseconds
and within a maximum of 5.1 and 10.2 milliseconds for Models 1 and 2
respectively.

In order to increase data reliability without sacrificing the flexibility of earlier
disk drives having removable disk packs, the IBM 3348 Data Module (Figure
3-6) was developed for use in IBM 3340 Disk Storage Drives (Figure 3-7).
The recording medium is a sealed assembly (removable from the 3340) that
contains magnetic disks, access arms, read/write heads, and spindle. Com-
bining these components into a sealed integrated unit results in greater data
reliability than that of earlier IBM disk drives, because read/write head
alignment differences between drives are eliminated and also because the
clean-air environment guards against airborne contamination.

Introduction to IBM Data Processing Systems 3-7

Section 3: Storage Devices

Figure 3-6 IBM 3348 Data Module

Figure 3-7 IBM 3340 Direct Access Storage Facility and IBM 3350 Direct Access Storage

Several models of the IBM 3348 Data Module are available ranging in size
from 34.9 million bytes to 69.9 million bytes. One model having a total
capacity of 69.9 million bytes has .5 million bytes accessible by fixed heads
with zero seek time.

With the continued increase in the use of data communications and the
significantly larger disk storage capacities available, a growing number of
users, particularly those with large installations, rarely if ever change many of
their disk packs. For all practical purposes, once they mount a disk pack
containing application data, it remains online for as long as they plan to use it.

With non-removable disks, improved direct access storage performance at
lower costs can be achieved. One such device is the IBM 3350 Direct Access
Storage (Figure 3-7). The 3350 is a high-performance, large capacity subsys-
tem that uses a fixed (sealed) storage medium, containing disks, spindle,
access arms, and read/write heads. Each drive provides high-density storage
for a maximum of 317.5 million bytes of data. Up to 8 drives may be con-
nected to a controller yielding a total capacity of 2.54 billion bytes of on-line
storage per controller.

Data transmission rates for the 3340 and 3350 are 885,000 and 1,198,000
bytes per second respectively. The average access time required is 25 millise-
conds except for the fixed head portion of certain models (which portion has

3-8 Introduction to IBM Data Processing Systems

Section 3: Storage Devices

zero seek time). For the 3340, the average rotational delay time is 10.1
milliseconds while that for the 3350 is 8.4 milliseconds.

Mass Storage Low-cost mass storage for as many as 472 billion bytes (the equivalent of
4,760 disk packs - 3336 Model 1 - or 2,360 Model 11 disk packs) under the
control of a System/370 is provided by the IBM 3850 Mass Storage System
(Figure 3-8). All of this data is accessible without manual intervention and at
sharply reduced costs per megabyte transferred when compared to disk
storage costs. The 3850 combines many of the advantages of tape and disk
systems. Direct access device utilization is improved because only active data
occupies direct access device space.

Figure 3-8 IBM 3851 Mass Storage Facility

Data under control of the 3850 Mass Storage System is stored on data car-
tridges. These data cartridges are stored in cartridge storage cells (Figure
3-9) within the 3850. When data is requested by System/370, it is transfer-
red by the mass storage system from the cartridges to 3330 disk storage drives
in a process called staging. Once data has been staged, it behaves the same
way as any other data resident on a 3330 drive in terms of organization and
accessing. After the data has been updated, it is destaged back onto the data
cartridge.

Introduction to IBM Data Processing Systems 3-9

Section 3: Storage Devices

Figure 3-9 IBM 3850 Cell Structure

The data cartridge (Figure 3-10) is a plastic cylinder approximately 4 inches
long and 2 inches in diameter. It contains a spool of magnetic tape approxi-
mately 3 inches wide and 770 inches long. This spool is removed from the
cartridge when it is loaded into a data recording device. Data is written on
the magnetic tape in the form of 3336 Disk Pack (Model 1) images. Two
cartridges equal the capacity of one 3336 Disk Pack (Model 1). A pair of
cartridges is called a mass storage volume.

Figure 3-10 Data Cartridges

Since all cartridges under control of the mass storage system are physically
resident within the 3851 Mass Storage Facility, floor space required for
storage can be greatly reduced.

Two accessors and their associated accessor controls move data cartridges
from one location to another within the mass storage facility. Locations can
be a storage cell, a data recording device, or the cartridge access station.

3-10 Introduction to IBM Data Processing Systems

Section 3: Storage Devices

The cartridge access station permits manual entry and/or removal of data
cartridges into and/or out of the mass storage facility.

Storage capacity ranges from 706 cartridges to 4,720 cartridges. From two to
eight data recording devices are available.

Storage and Data IBM data processing systems use two methods of data handling - sequential
Processing Methods or batch processing and inline or direct access processing (see Figure 3-11).
The application requirements determine which method is needed.

In either case, all data pertaining to a single application is maintained in files
(often called data sets).

In sequential processing, these files are stored outside the computer - usually
on magnetic tape - and they can be arranged in a predetermined sequence.
The data may concern inventory, accounts receivable, accounts payable,
payroll, and the like. Each file (data set) is made up of records, each contain-
ing information required to describe completely a single item. The sequence
may be by item number, name, account number, or man number, but all files
pertaining to a single application must be in the same sequence.

/L BATCH
—] PROCESSING
Current
Transaction a8
Status) DIRECT ACCESS
Information PROCESSING
Process (Current Status
%\Changed Status Ihformation Transaction Informa
tion
Process < — Status
Status Process & A\ Informa
Information ”\tion
Process Changed Status InFormuHoD I?\ffaotruso
m
ton
&
Results Status
Information
Changed Status lnformufiorD

Figure 3-11 Batch and Direct Access Processing

In many cases, processing involves not only performing calculation on some
parts of each record to arrive at balances, amounts, or earnings, but also
involves adding, changing, or deleting records as new transactions occur.
However, before transactions can be applied against the main or master file,
they must also be arranged in the same sequence as the master file. For this
reason, they are accumulated in convenient groups or batches.

Introduction to IBM Data Processing Systems 3-11

Section 3: Storage Devices

The two files (data sets), master and transaction, now become input to the
data processing system. One record or a small group of records (also called a
block) is read into storage at a time. These are processed, and the result is
written as output. When magnetic tape files are used, the output records with
the updated results of current processing must be recorded on a separate tape,
producing a new master that will be used as input the next time the job is to
be done. The next group of records is read in, and the process is repeated.
The series of repetitive operations continues under the direction of program
instructions, record by record, until the input files are exhausted. The results
form a revised master file, updated according to the current transactions. The
new master file is in the same sequence as the original files.

Other output may also be produced as a by-product of the processing. This
output may be records of delinquent accounts, bank orders, earnings state-
ments, payroll checks, and so on. In every case, however, the sequence of all
output remains the same as the sequence of the incoming data.

With sequential processing, the information in storage is transient. Conse-
quently, the storage unit needs only enough capacity for program instructions,
plus the largest element of data to be processed.

When direct access processing is used, transactions affecting the contents of
the file (data set) are fed to the computer directly, as they occur. In this case,
the computer locates the corresponding record or data in storage and adjusts
this master record accordingly. Accounts or balances are constantly main-
tained and are available as output when needed. Transactions are not
batched, and they need not be sorted before processing.

3-12 Introduction to IBM Data Processing Systems

Section 4:

Central Processing Unit (CPU)

The central processing unit controls and supervises the entire computer
system and performs the actual arithmetic and logical operations on data.
From a functional viewpoint, the CPU consists of two sections - control and
arithmetic/logical (Figure 4-1).

|
Control C kY Arithmetic |

]
P.
Section CI-TO Logical Section
1
: i

D

Figure 4-1 Central Processing Unit in the Data Processing System

The control section directs and coordinates all operations called for by
instructions. This involves control of input/output devices, entry or removal
of information from storage, and routing of information between storage and
the arithmetic/logical section. Through the action of the control section,
automatic, integrated operation of the entire computer system is achieved.

In many ways, the control section can be compared to a telephone exchange.
All possible data transfer paths e}lready exist, just as there are connecting lines
between all telephones seiviced by a central exchange (Figure 4-2).

The telephone exchange has a means of controlling instruments that carry
sound pulses from one phone to another, ring the phones, connect and dis-
connect circuits, and so on. The path of conversation between one telephone

- and another is set up by appropriate controls in the exchange itself. In the

computer, execution of an instruction involves opening and closing many
paths or gates for a given opération. Some functions of the control section
are to start or stop an input/output unit, to turn a signal device on or off, to
rewind a tape reel, or to direct a process of calculation. In some System/370
models, a part of this section consists of a control device called read-only
storage that contains circuits for performing operations designated by the
operation codes. It also houses the emulator circuits that the user may select
to make his System/370 perform programming instructions written for other
computers.

The arithmetic/logical section contains the circuitry to perform arithmetic
and logical operations. . The former portion calculates, shifts numbers, sets
the algebraic sign of results, rounds, compares, and so on. The latter portion
carries out the decision-making operations to change the sequence of instruc-
tion execution.

Introduction to IBM Data Processing Systems 4-1

Section 4: Central Processing Unit (CPU)

4-2

Functional Units

Register

Figure 4-2 Telephone Exchange System

A register is a device capable of receiving information, holding it, and trans-
ferring it as directed by control circuits. The electronic.components used may
be magnetic cores or transistors.

Registers may be named according to their function: an accumulator accumu-
lates results; a multiplier-quotient holds either multiplier or quotient; a storage
register contains information taken from or being sent to storage; an address
register holds the address of a storage location or device; and an instruction
register contains the instruction being executed (Figure 4-3). System/370
has general purpose registers, which are used for several functions, including
storage addresses, index addresses, and data that is to be processed logically
or arithmetically.

Introduction to IBM Data Processing Systems

Section 4: Central Processing Unit (CPU)

! Storage

Storage
Register

Address
Register Register

Figure 4-3 Register Nomenclature and Function

Registers differ in size, capacity, and use. In some cases, extra positions
detect possible overflow conditions during an arithmetic operation. For
example, if two eleven-digit numbers are added, it is possible that the result is
a twelve-digit answer (Figure 4-4).

Register A

Register B

Register C .
4

Overflow Position

Figure 4-4 Overflow Condition Resulting from Addition

In this figure, register A holds one factor, and register B holds the other
factor. The two factors are combined, and the result is placed in register C,
where an overflow condition is indicated by the presence of data in the
overflow position. The contents of other registers can be shifted right or left
within the register and in some cases, even between registers. Figure 4-5
shows shifting of register contents three positions to the right. Positions
vacated are filled with zeros, and numbers shifted beyond register capacity
are lost.

Introduction to IBM Data Processing Systems 4-3

Section 4: Central Processing Unit (CPU)

Register A 5 3

Shifting in a single register

I 1
F 1

Register A Register B

23

Shifting in double registers

Figure 4-5 Types of Computer Register Shifting

In other instances, a register holds data while associated circuits analyze the
data. For example, an instruction can be placed in a register, and associated
circuits can determine the operation to be performed and locate the data to be
used. Data within specific registers may also be checked for validity.

The more important registers of a system, particularly those involved in
normal data flow and storage addressing, may have small lights associated
with them. These lights are located on certain machine consoles (Figure 4-6)
for visual indication of register contents and various program conditions.

Figure 4-6 Typical System Console (System/370 Model 148)

44 Introduction to IBM Data Processing Systems

Counter

Adder

Machine Cycles

Section 4: Central Processing Unit (CPU)

The counter is closely related to a register, and may perform some of the
same functions. Its contents can be increased or decreased. The action of a
counter is related to its design and use within the computer system. Like the
register, it may also have visual indicators on the system console.

The adder receives data from two or more sources, performs addition, and
sends the result to a receiving register or accumulator. Figure 4-7 shows two
positions of an adder circuit, with input from registers A and B. The sum is
developed in the adder. A carry from any position is sent to the next-higher-
order position. The final sum goes to the corresponding positions of the
receiving register.

Register A Register B

A
A B
Y 4
Adder | Adder

Carry
to Next &ij Sum
Higher ¢ Sum Y
Order Adder R

Position

Receiving Register

Figure 4-7 Adders in a Computer System

All computer operations take place in fixed intervals of time. These intervals
are measured by regular pulses emitted from an electronic clock at frequen-
cies as high as 17.2 million per second. A fixed number of pulses determines
the time of each basic machine cycle.

In computer usage, time references are stated in such terms as milliseconds,
microseconds, and nanoseconds. These terms may convey no meaning unless
it is realized just how short an interval a millisecond is. For example, the
blink of an eye takes about one-tenth of a second or 100 milliseconds!

The following table establishes some additional terms and abbreviations:

.1 =1/10 second

=100 milliseconds
.001 =1/1,000 second

=1 millisecond (ms)
.000001 =1,/1,000,000 second

=1 microsecond (y sec)
.000000001 =1/1,000,000,000 second

=1 nanosecond (ns)

Within a machine cycle, the computer can perform a specific machine opera-
tion. The number of operations required to execute a single instruction

Introduction to IBM Data Processing Systems 4-5

Section 4: Central Processing Unit (CPU)

4-6

Instruction Cycle

depends on the instruction. Various machine operations are thus combined to
execute each instruction.

Instructions usually consist of at least two parts, an operation and an operand.
The operation tells the machine which function to perform: read, write, add,
subtract, and so on. The operand can be the address of data or an instruction
in main storage, the address of data or programs in secondary storage, or the
address of an input/output unit. It can also specify a control function, such
as shifting a quantity in a register, or backspacing and rewinding a reel of
tape. In System/370, most instructions contain two operands.

To receive, interpret, and execute instructions, the central processing unit
must operate in a prescribed sequence, which is determined by the specific
instruction and is carried out during a fixed interval of timed pulses.

The first machine cycle required to execute an instruction is called an
instruction cycle. The time for this cycle isinstructionorI-time. During I-time:

1. The instruction is taken from a main storage location and brought
to the central processing unit.

2. The operation part is decoded in an instruction register. This tells
the machine what operation is to be performed.

3. The operand is placed in an address register. This tells the ma-
chine what factors are to be used in the operation.

4. The location of the next instruction to be executed is determined.

At the beginning of a program, an instruction counter is set to the address of
the first program instruction. This instruction is brought from storage, and,
while it is being executed, the instruction counter automatically advances
(steps) to the location corresponding to the space occupied by the next
stored instruction. If each instruction occupies one storage position, the
counter steps one; if an instruction occupies five positions, the counter steps
five. By the time one instruction is executed, the counter has located the next
instruction in program sequence. The stepping action of the counter is
automatic. In other words, when the computer is directed to a series of
instructions, it executes them one after another until instructed to do other-
wise. o

Assume that an instruction is given to add the contents of storage location 2
to the contents of a general purpose register that will be used as an accumula-
tor register. Figure 4-8 shows the main registers involved and the information
flow lines.

Introduction to IBM Data Processing Systems

Execution Cycle

Section 4: Central Processing Unit (CPU)

Storage <

ADD 0002 (complete instruction)

‘

/ \
(operation part) ADD <————l—> 0002 (address part)

Operation Decoders | Instruction Counter

Figure 4-8 Computer I-Cycle Flow Lines

I-time begins when the instruction counter transfers the location of the
instruction to the address register. This instruction is selected from storage
and placed in a storage register. From the storage register, the operation part
is routed to the instruction register and the operand to the address register.
Operation decoders then condition proper circuit paths to perform the in-
struction.

Execution of instructions does not necessarily have to proceed sequentially.
Certain instructions alter the process of sequential execution unconditionally.
In this case, an instruction brought from storage indicates that the next
sequential instruction is not to be executed but that one located in another
position is next. The normal stepping of the instruction counter can also be
reset back to the beginning of the program so that the entire program can be
repeated for another incoming group of data.

This branching (transfer) to alternative instructions may also be conditional.
The computer can be directed to examine some indicating device and then
branch if the indicator is on or off. Such an instruction could say, in effect,
"look at the sign of the quantity in the accumulator; if the sign is minus, take
the next instruction from location 5000; if the sign is plus, proceed to the next
instruction in sequence." The instruction counter is set according to one of
the two possible storage locations (5000 or the location of the next instruc-
tion in sequence). The logical path followed by the computer (that is, the
precise sequence of instructions executed) may be controlled either by uncon-
ditional branching or by a series of conditional tests applied at various points.
However, the arrangement of instructions in storage is not normally altered.

I-time is usually followed by one or more machine cycles that occur during
execution for E-time. The number of execution cycles required depends on
the instruction to be executed. Figure 4-9 shows the data flow following
I-time illustrated by Figure 4-8.

The E-cycle starts by removing from storage the information located at the
address (0002) indicated by the address register. This information is placed
in the storage register. In this case, one of the factors to be added is placed in
the adders together with the number from the accumulator. The contents of

Introduction to IBM Data Processing Systems 4-7

Section 4: Central Processing Unit (CPU)

4-8

Serial and Parallel
Operation

the storage register and the accumulator are combined in the adders, and the
sum is returned to the accumulator.

The address register may contain information other than the storage location
of data. It can indicate the address of an input/output device or a control
function to be performed. The operation part of the instruction tells the
computer how to interpret this information.

(Get the number located at 0002)

Storage

57328031221 (number at location 0002)

jr

Figure 4-9 Computer E-Cycle Following an I-Cycle

Computers and portions of computers are classified as either serial or as
parallel, depending on the method used to perform arithmetic. Essentially, all
arithmetic is performed by addition.

In a serial computer, numbers to be added are considered one position at a
time (unit, ten, hundred, etc.), in the same way that addition is done with
paper and pencil. Whenever a carry is developed, it is retained temporarily
and then added to the sum of the next-higher-order position.

The time required for serial operation depends on the number of digits in the
factors to be added. Serial addition is shown in Figure 4-10.

1st Step 2nd Step | 3rd Step | 4th Step

Addend 1234 1234 1234 1234
Augend | 2459 | 59 | 2459 | 2459
Carry 1 1

Sum 3 93 693 3693

Figure 4-10 Serial Addition

In a parallel computer, addition is performed on complete data words. The
words are combined in one operation, including carries. Any two data words,
regardless of the magnitude of the numbers contained in the words can be
added in the same time. Figure 4-11 shows parallel addition.

Introduction to IBM Data Processing Systems

Fixed-Length and
Variable-Length Words

Floating-Point Operation

Section 4: Central Processing Unit (CPU)

00564213
Numbers being added 00000824
Carry 1
Final Result 00565037

Figure 4-11 Parallel Addition

Data can be addressed and processed by a computer system using either
fixed-length and variable-length words.

In operations using fixed-length words, information is handled and addressed
in units or words containing a predetermined number of positions. The size
of a word is designed into the system, and it normally corresponds to the
smallest unit of information that can be addressed for processing in the
central processing unit. Records, fields, characters, or factors are all manipu-
lated in parallel as words; registers, counters, accumulators, and storage are
designed to accommodate a standard word.

In operations using variable-length words, data handling circuitry is designed
to process information serially as single characters. Records, fields, or factors
may be of any practical length within the capacity of the storage unit. In-
formation is available by character instead of by word.

Operation within a given data processing system may be entirely fixed-length,
entirely variable, or a combination.

Mathematicians and scientists use logarithms to simplify mathematical manip-
ulations of very large numbers and very small fractions. Similarly, in comput-
ers having the capability, floating-point instructions are used to perform
calculations on operands with a wide range of magnitude and to yield results
scaled to preserve precision.

All central processing units that handle floating-point arithmetic do it by
converting numbers (integers, fractions, or improper fractions) into the
exponential form on the right-hand side of the equation. For example:

N = be x f where:

N = number

b = numbering system base (such as 2 for binary system,
10 for decimal system, 16 for hexadecimal system)

e = exponent (power to which the numbering system base
is raisea to make the expression equal to N - the
same as the characteristic of a logarithm)

f = fraction (similar to the mantissa in a logarithm)

The base used depends on the internal numbering system. For System/370, it
is 16.

The range of exponents that can be used depends on the space allowed and
on whether a position in the computer is allocated to contain a sign (+ or -)
for the exponent. The space allotment is seven bits without sign in
System/370. The bits within the field can represent numbers from 0 through
127.

Introduction to IBM Data Processing Systems ~ 4-9

Section 4: Central Processing Unit (CPU)

4-10

When no sign position is allowed for an exponent, a value in the center of the
total range of possible exponents is chosen to represent the exponent 0.
Positive exponents are added to this "middle" value; negative exponents are
subtracted from it. This "scaled exponent" is called a characteristic (and
therefore differs from the characteristic of a logarithm). In System/370, the
characteristic is formed by adding 64 to the actual exponent. The range of
the exponent is thus -64 through +63. This technique produces a characteris-
tic in excess-64 notation. The range covered by the magnitude of a normal-
ized floating-point number is therefore approximately from 7.2 x 1075 down
through 5.4 x 10-. Both positive and negative quantities have a true frac-
tion, the sign being indicated by the sign bit. The number is positive or
negative, depending on whether the sign bit is zero or one, respectively.

The range of fractions in computers using fixed-length words is determined by
the space remaining in the word (or words), allocated to express the floating
point number after the exponent and sign have been provided for. In
System/370, floating point data occupies a fixed-length form which may be
either a four-byte (short) format, an eight-byte (long) format, or a 16-byte
(extended) format. Therefore, the fraction field may have up to 6, up to 14,
or up to 30 hexadecimal digits (24, 56, or 120 bits) depending upon whether
one, two, or four 32-bit words are to be used in carrying out the precision of
the fraction.

Floating-point is so called because, using the exponent x fraction method of
expressing a number, we can vary the exponent and then "float" the hexade-
cimal point (in hexadecimal computers) correspondingly and still not change
the value of the number (Figure 4-12).

Hexadecimal Digit Values
Integer - Fraction
— r*"-;w
© © 9 3
e _ SS3
37= 1x 37 =16° «x 25
37= 16x 37/16 =16" «x 2.5
37= 256x 37/256 =162 x 25
37 = 4096 x 37/4096 = 16° x . 0265
37=1/16x 592 =16" x 250 .

Figure 4-12 Different Floating-Point Expressions of the Same Value

When the point falls just to the left of the high-order significant digit (in
hexadecimal) of the fraction, the floating-point expression is called

normalized. A quantity can be represented with the greatest precision by a
floating-point number of given fraction length when that number is normal-
ized. When numbers are initially entered into the central processing unit of a
computer as floating-point numbers, they take this normalized form. As
arithmetic operations are performed on them, the points may float to the right

Introduction to IBM Data Processing Systems

Section 4: Central Processing Unit (CPU)

or to the left as the computer seeks to get all the numbers involved in the
operation into the same power of 16 (this is similar to changing fractions with
different denominators into fractions with a common denominator in order to
add them). The numbers then become decidedly unnormalized. Eventually,
however, the computer normalizes the final result. Of course, since normali-
zation applies to hexadecimal digits, the three high-order bits of the fraction
of a normalized number may be zero. It is also obvious that a number with a
zero fraction cannot be normalized.

Converting a decimal number (assume the number 149.25) into a single
floating-point word, as used in System/370, is done as follows:

1.

Separate the number into the integer and the fraction;
149.25 = 149 plus 0.25

Convert the decimal integer to hexadecimal;
(see Figure 2-—17)..14910 = 9516

Convert the decimal fraction to hexadecimal;
(see Figure 2—18)0.2510 =04,

Combine the two and express in normalized form (as a fraction times an
exponent to the base 16);

= 2
95.4, = (0.954 X 162),

Since 64 is the midpoint of the characteristic range, add the exponent
(2) to 64 to get the characteristic:
64+ 2 =66 = 1000010

Convert the fraction to binary, and group it hexadecimally;
.95416 =.1001 0101 0100

The floating-point word for decimal 149.25 (hexadecimal 95.4) appears
as

Sign®* Characteristic

0 100 0010

Fraction

1001 0101 0100 0000 0000 0000

*Zero (0) is used, since the value of 149.25 is positive.

Introduction to IBM Data Processing Systems 4-11

Section 5:

Input/Output Devices

An input/output unit is a device for putting in or getting out data from
storage (Figure 5-1).

< Device '

Input Device Input Device
Control Unit Control Unit
Central Main
Processing Storage
Unit
Output Device
Control Unit
Device
Device Device

Figute 5-1 Input/Output Units in the Data Processing System.
Usually, device operation is initiated by a program instruction that generates a

command to an input/output channel. A control unit decodes the command
and effects operation of the device.

Introduction to IBM Data Processing Systems ~ 5-1

Section 5: Input/Output Devices

5-2

Control Units

Some control units control a particular type of device, such as disk drives; for
example, the IBM 3830 storage control units can control the 3330, 3333,
3340, 3344, and 3350 disk drives. Others control different input/output
devices; for example, the IBM 3272 control units can control the 3277 display
stations and the 3284, 3286 and 3288 printers.

Input devices sense or read data from cards, magnetic tape, paper, magnetic
ink characters inscribed on paper documents, images on 35mm microfilm, or
remote terminals via communication lines. The data is made available to the
main storage of the system for processing. Output devices record or write
information from main storage on cards, magnetic tape, and paper tape,
prepare printed copy, produce microfilm images, make graphic displays, or
transmit information over a teleprocessing network.

Reading takes place as the input medium physically moves through an input
device. Information is sensed or read and is converted to a code used within
the computer system. The information is then transmitted to main storage.

Writing involves transferring data from primary storage to an output device.
The computer code is made compatible with the output medium.

Most input/output devices are automatic; once started, they continue to
operate as directed by the stored program until the entire file is processed.
Instructions in the program select the required device, direct it to read or to
write, and indicate the storage location into which data will be entered or
from which data will be taken.

Some I/0O devices are used for manual entry, and no medium for recording
data is involved. Instead, data is entered directly into storage using a key-
board or switches. Locally, these devices may be a console keyboard, local
terminals (such as the IBM 2740s), or display terminals. Remotely, many
types of teleprocessing terminals may be used. Instead of a recording medi-
um, these terminals may require some amount of internal storage for holding
(and perhaps analyzing) signals until a short message is completed, or until
the terminals are polled (requested to transmit) and selected for data transfer.

The type of information buffering required to coordinate the operations of the
input/output device with the central processing unit (sometimes through
transmission hookups) is one of the functions of the control unit. Other
common functions are checking, coding, and decoding. If several similar
devices are operating through one control unit, two principal functions are (1)
determining priority of servicing, and (2) signaling device identification when
requesting service for the input devices.

Conversely, on the way out, the control unit directs the data to the addressed
output unit.

In some data processing systems, the traffic routing function of the control
unit is referred to as orders. In such systems, the orders, as written by the
programmer, consist solely of the address of the input/output device that the
control unit must prepare to read or to write. In System/370, orders are part
of a control command, relayed through a channel to the input/ output control
unit; they instruct the control unit to have a device perform a specified
auxiliary operation - one that doesn’t move data, such as rewind or seek.

Introduction to IBM Data Processing Systems

Channels

Section 5: Input/OQutput Devices

Whereas the control unit is either included under the cover of an input/output
device or located very close to a group of such devices, the channel (or
channels) is contained within the central processing unit or is a separate piece
of equipment near the CPU. The channel relieves the CPU of the burden of
communicating directly with I/O devices and permits data processing to
proceed concurrently with 1/0 operations. It might be thought of as the
computer’s control unit for one or more input/output control units. It is
almost a separate, small CPU devoted exclusively to managing the
input/output control units and devices assigned to it. After the channel has
once been activated by an initializing instruction from a program being
executed in the CPU, it carries out one or more commands that are similar to
a section (subroutine) of a program, but the important difference is that of
overlapping operations. The program in the CPU can be continuing with
other jobs while the channel is carrying out its own program of bringing data
into or out of the main storage. Sometimes it is interleaving input and output
in a seemingly simultaneous fashion, working with several input/output
control units at once, and maintaining the proper destinations for the mes-
sages - whether they be storage allocation (for input) or control unit and
device (for output).

The steps in a program in the CPU are called instructions; the steps in a
program for a channel are called commands. Each command has an operation
code that tells the channel what to do (for instance: read, write, control,
sense, etc); if it is a command that involves a data transfer, the command also
has an address telling where to get or where to put the data in the storage
system of the computer; if it is a control command that does not involve a
data transfer, either it contains the order to be passed on to the control unit,
or (in some computer systems) it contains the address of a location in storage
where the order is located.

Just as the CPU is freeto continue with its programonceit has given an
instruction to start a channel on its independent program of commands, so a
channel is free to step through other commands (probably starting or termi-
nating some other input/output transfer of data) as soon as it has commanded
the control unit what to do and given it an order specifying the particular
device. Thus, a channel is an intermediary input/output device that is con-
stantly juggling the various input/output operations to make the most effi-
cient use of time, not only by overlapping different input and output but by
doing so without tying up the CPU..

As soon as a particular input/output transaction is completed, the device
control unit signals the channel, which, in turn, signals the CPU with an
interrupt, meaning: "My particular job is done. As soon as convenient, use
the data I have given you (if it was an input operation) and give me another
comand."

This idea of automatic interrupts (built into the design of the data processing
system components), combined with carefully preprogrammed commands to
the channels and orders to the control units, leads to a far greater total
amount of data handling per unit of time (sometimes described as throughput)
than used to be possible.

Introduction to IBM Data Processing Systems ~ 5-3

Section 5: Input/Output Devices

5-4

Validity Checks

Indicators, Keys, and
Switches

Punched Card Devices

Card Readers

All data transferred between the input/output units and storage is automati-
cally checked for validity. First, data is checked before being sent by the input
device and checked when received by the output device. Second, certain data
checks are also made within the central processing unit as it receives or sends
data; for example, if a 5 is entered instead of a 4, this error cannot be detect-
ed by this means. However, if the indicated number of character is represent-
ed or coded incorrectly on the medium or within the machine, this is automat-
ically detected.

All input/output units have indicator lights as well as operating keys and
switches. (Figure 5-2). The indicator lights show the status of a unit: on, off,
ready, selected, and so on. The operating keys and switches are used primari-
ly to start and to stop operations manually. The specific functions and use of
the indicators, keys and switches are described in the IBM manuals for
particular machines and systems.

Figure 5-2 Operator Panel

Card reading devices introduce IBM punched card data into the computer
system. The card reader moves or feeds cards past a reading unit that con-
verts the data on the card into an electronic form. Two types of reading units
are used: reading brushes or photoelectric cells.

In the brush type reader, cards are mechanically moved from a card hopper,
through the card feed unit, and under reading brushes. The reading brushes
electrically sense the presence or absence of holes in each column of the card
(Figure 5-3).

Introduction to IBM Data Processing Systems

Card Punches

Section 5: Input/QOutput Devices

Read
Hopper
2"*‘?‘“""‘ Read Check
tat'°| n Station
RP3 R2 R1 Read Station

Figure 5-3 Read Feed

This electric sensing converts the information of the card to electrical impul-
ses that can be detected by the card reader circuitry and stored as data. After
cards are read, they are moved from the card feed unit and placed in the card
stacker in the same sequence in which they were fed into the reader. Some
readers have two sets of reading brushes. As a check on the validity of the
reading process, each card can be read twice as it moves through the card
feed unit.

The photoelectric type of card reader performs the same functions as the
brush type; the difference is in the method of sensing the holes. Photoelectric
cells are activated by the presence of light. As the punched card is passed
over a light source in the card reader, light passing through the punched holes
activates photoelectric cells, one cell for each column of the card.

Card reading speeds vary from about 12 cards to 1200 cards a minute,
depending on the type of card reader.

Output from the computing system is recorded in cards by a card punching
device.The card punch automatically moves blank cards, one at a time, from
the card hdpper, under a punching mechanism that punches data received
from storage (Figure 5-4). After the card is punched, it is moved to a check-
ing station, where the data is read and checked with the information received
at the punching station. The card is then moved to the stacker.

Card punching speeds vary from about 12 to 500 cards per minute, depending
on the type of card punch.

Introduction to IBM Data Processing Systems 5-5

Section 5: Input/Output Devices

Punch Punch Punch Check
Station Station Station

”ll

Blank Station
(PFR brushes -
installed here) P1 P2 RP3

Figure 5-4 Punch Feed

Diskette Input/Output The IBM 3540 Diskette Input/Output Unit (Figure 5-5) is an efficient and
Devices economical data entry and output device for System/370. There is no con-
tention for devices between data entry and processing programs. Designed
around the IBM diskette (Figure 5-6), the 3540 reads up to 3,600 diskette
records per minute and writes up to 2,200 records per minute.

Figure 5-5 IBM 3540 Diskette Input/Output Unit

5-6 Introduction to IBM Data Processing Systems

Section 5: Input/Output Devices

Figure 5-6 IBM Diskette

The diskette is a single magnetic disk, sealed in a plastic jacket about 8 inches
square. It weighs less than 2 ounces, is reusable, is interchangeable with other
diskette units, and can be easily corrected and updated.

The diskette can store as many as 1,898 128-character records, equivalent to
as many characters as can be put on 3,036 80-column cards.

The 3540 is available with one or two diskette drives. Each drive has a
separate hopper and a separate stacker holding up to 20 diskettes. Under
program control, diskettes are automatically fed, one at a time, from the
hopper and mounted on the drive spindle for a read or write operation. At
the end of the operation, the diskette is automatically removed from the
spindle and stacked, thus permitting uninterrupted processing. Diskettes are
called and removed by the program while the unit is operating. Because each
diskette goes through label checking before the reading of data, data integrity
is assured.

Introduction to IBM Data Processing Systems 5-7

Section 5: Input/Output Devices

5-8

Magnetic Tape Units

Increasing internal speeds of computers demand high-speed input and output
devices so that system operations are not held back waiting for input or by an
inability to get processed data out of the computer. Magnetic tape units, with
their dual capability of input and output, have provided continued increases in
the speed of data transmission to and from the computer and, at the same
time have provided increased data storage capacity per reel of tape. At one
time, in order to facilitate data entry from punched cards as well as the
preparation of reports and punched card output, dedicated card-to-tape,
tape-to-print, and tape-to-card devices were used. Such devices were no
longer required when IBM computers with multiprogramming capabilities
became available.

Magnetic tapes are frequently used to transport large volumes of data. For
example, many companies submit income tax information to the federal
government by means of magnetic tapes.

Magnetic tapes have been and are still being used extensively for the off-line
storage of large volumes of data especially inactive files.

All magnetic tape units are basically similar in operation, but design improve-
ments have brought about functional differences, increased tape applications,

Figure 5-7 Tape Reel Cartridge Operation

Introduction to IBM Data Processing Systems

Loading Tape Units

Section 5: Input/Output Devices

The IBM 3400 series units transport tape past the recording head in a contin-
uous movement and at a constant speed. The tape is always in motion during
reading and writing. Tape moves at 12.5, 25, 50, 75, 125, or 200 inches per
second, depending on the tape unit.

A full reel of 1/2 inch wide tape holds 2400 feet of tape, weighs about four
pounds, and can contain data equivalent to about 1.8 million fully punched
cards.

Loading of tape cartridges is accomplished automatically after the dust-
resistant cartrige is placed in the drive by the operator (Figure 5-7). Before
operation, the tape is automatically threaded by the tape unit (Figure 5-8).

Ree! Stop Capstan

‘Drive m o~
Capstan

Read/Write Head []
Tape Assembly

During reading or writing on all tape drives, tape is trans-
ferred from the file reel, past the read/write head, to the
machine reel. During backspacing or rewinding, tape move-
ment is from the machine reel to the file reel,

Figure 5-8 Tape Feed Schematic

During operation, tape moves from the file reel through one vacuum column
across the read/write head, through the other vacuum column to the machine
reel. The loop in each vacuum column acts as a buffer to prevent high-speed
starts and stops from breaking the tape. Vertical vacuum columns are used in
some units; horizontal columns are used in the incremental and variable-speed
machines.

Vacuum-actuated switches in the columns control magnetic clutches that
permit the two reels to rotate independently. The file reel feeds tape when
the loop reaches a minimum reserve length in the near vacuum column, and
the machine reel winds tape when the loop reaches a point near the bottom of
the other vacuum column.

Introduction to IBM Data Processing Systems 5-9

Section 5: Input/Output Devices

Reading From and Writing

5-10

on Magnetic Tape

Tape may be rewound or backspaced to the beginning of the reel. Rewind
speeds are as high as 640 inches per second.

The magnetic tape unit reads or writes data as tape moves past the read/write
head. Two types of heads have been used in IBM magnetic tape units, but
the general principles of writing and reading tape are the same for both types
(see Figure 5-9).

Gap Plcsfig Base
Mag:eﬂc
R/W Head Oxide

.Il i Read/Write Coils<"1:i’-‘>
‘#)‘/ iy 3

A. One-Gap Read/Write Head

B. Two-Gap Read/Write Head

In the one-gap read/write head, reading and writing take place at the
same gap. In the two-gap head, writing occurs at one gap, and reading
occurs at the other. The two-gap head.offers advantages discussed in
the tape validity-checking sections.

Figure 5-9 Magnetic Tape Unit Read/Write Head

Writing on magnetic tape is destructive; that is, as new information is written,
old information is destroyed. Reading is nondestructive; the same informa-
tion can be read again and again.

Information is written on tape by magnetizing areas in parallel tracks along
the length of the tape.

There is one write coil in the write head for each recording track. Electrical
current flowing through the coils magnetizes the iron oxide coating of the
moving tape and erases previously written information (see Figure 5-10).

Introduction to IBM Data Processing Systems

Pl N

BTrack o m /.__>. sls-»ml\
ATack g f NIN-»SIS*NI\\
8 Track _,.‘_).SISoNlN ———-»-’
4 Track —_— S—»NIN-——————)/
0123456789 /ABCDEFGHIJKLMNOP
Check¢ C [Tuw 1 iglar 1 11 o)
Zoned B [/ DI
Al { T EEEEE \
8\ ! \ 1 1
.| 4 1IN XK Lt
N
umene 2 L] UL) 11
1) v b v a1y

New data is written on magnetic tape by changing the direction of
current flow and magnetic polarity from north (N) to south (S) in

some of the write coils. This causes a change in the affected tracks.

The coded pattern of 0 and 1 bits accross the width of the tape rep-

resents data received from the computer,

A. Magnetic recording of seven-track BCD code on tabe

Figure 5-10 Data Recording on Magnetic Tape

Section 5: Input/Qutput Devices

Track No.
Bit values
Iollll!.?l’ ABCMNOXYZ Le88 -/ % 123A8C
9 ‘ R N G N
8 e ey, i
7 ERRERRRRRAOR CRRRNRRAN
3A I
6 IR RN R AR R (RNRRREEAY
5 RIRRRRRERNE 1 [‘.
4 (R AR | B
3 B INIRARRARN] I I
? (11l
2 Prrafnr vy

1

*The P bit position produces odd parity.

Nine-track {EBCDIC) and seven-track tape data format
comparison

In incremental tape units, the tape actually is motionless during writing, but
the size of the recorded bits is almost the same as in the other tape units. Data
generated on the incremental and variable-speed tape units is usable on other
tape units adapted to seven-track data.

Checking Magnetic Tape
Data

Data recorded on magnetic tape must be accurate so that errors are not sent
through the system. Data is therefore checked to ensure that valid characters

are recorded and to verify that the recorded bits are of effective magnetic

strength.

Two methods of recording are used on IBM magnetic tape. The phase
encoding method is used on newer IBM tape units; other magnetic tape units
use the Non-Return-to-Zero-IBM (NRZI) method (see Figure 5-11).

Introduction to IBM Data Processing Systems

5-11

Section 5: Input/Output Devices

Bit Pattern
0o 0 0 1 1 10 1 0 1 1 0
NRZI
Phase
Encoding

In the NRZI method of recording, a change in magnetic flux is
interpreted as a 1 bit; lack of a fiux change is interpreted as a O bit.
The phase-encoded method of recording results in a continuous
wave pattern, even when a record contains all zeros,

Figure 5-11 Comparison of NRZI and Phase-Encodeq Bit Patterns

The NRZI method of data recoding is very reliable, but it has given way to
the phase encoding method because of the increased densities of recording

possible on the newer units. .

The tape error detection system used on NRZI tapes uses the principle of
simple parity checking. With this system, it is possible to detect virtually all

tape reading and writing errors (Figure 5-12).

TAPE
REEL ER’R?)R
CHARACTER CODE CHECK ,
EACH CHARACTER SIGNAL
‘ =
1
c(TR TN 1
8) iss 1
:‘ np LONG ITUDINAL
4 ' | [| REcorD cHECK
.2 LR All characters
T in block
e TFTTIHIT .

LONGITUDINAL
CHECK CHARACTER

Information read from tape is checked two ways. A character code

check’ (vertical check) is made on each column. of information to

ensure that an even number of bits exists for each character read.
If an odd number of bits is detected for any character or column of

bits, an error is indicated, unless the computer operates in odd par-

ity. A longitudinal record check is made by developing an odd or
even indication of the number of bits read in each of the seven bit
tracks of the record, including the bits of the check character. {f any

bit track of the record block indicates an odd number of bits after
it is read, an error is indicated, unless odd parity is required by
system design.

Figure 5-12 Seven-Track Validity Checks, BCD Mode, Even Parity

Simple parity checking indicates the error, but not the kind of error. Similar
double-bit errors in two characters of a record could conceivably cancel each
other and indicate correct parity. However, this coincidence is extremely
rare.

5-12 lntrodu_ction to IBM Data Processing Systems

Tape Records, Interblock
Gap and Tapemark

Section 5: Input/Output Devices

With certain models of the 3400 series, errors on a single track or combina-
tions of two tracks simultaneously are corrected in flight without impairing
tape performance. Errors may be corrected in all nine tracks of a single data
block providing they occur in combinations of no more than two tracks at a
time. As a result, most corrections are made without interrupting processing.

Tape units with two-gap heads provide increased checking while writing.
Tape being written passes first over the write gap (to record data) and then
over the read gap; the information that has been written is automatically read
and checked.

When an error occurs during the writing operations, it is detected at the read
gap, and an error indication is made. Programming must test the indicator
and take an appropriate corrective action. The machine does not stop with
the error section of tape positioned over the read gap; tape motion continues
past the end of the record block. Then the machine may be instructed to
backspace the tape and rewrite, again checking for an error.

Records on tape are not restricted to any fixed length of characters, fields,
words, or blocks. Records may be any practical size within the limits of
internal storage capacity.

Blocks of records, including blocks consisting of a single record, are separated
on tape by an interblock gap, a section of blank tape varying in length from
about .3 inch for 6250 bpi (bits per inch) tapes to about .75 inch for seven-
track tapes. During writing, the gap is automatically produced at the end of
each block of records. During reading, the block begins with the first charac-
ter sensed after a gap and continues without interruption until the next gap is
reached. The interblock gap also allows time for starting and stopping the
tape between record blocks.

A tapemark (a special character represented in hexadecimal as 7F; see Figure
2-25) indicates the end of a file of records (see Figure 5-13). Most comput-
ers write and read tapemarks.

Introduction to IBM Data Processing Systems 5-13

Section 5: Input/Output Devices

Tape Unit Characteristics

One One
lock _.| Block -I
Record =y
|10ne _.I |‘_Oned_.|
ecord Recor
I‘—————One Block —»1

Record | Record | Record { Record 2

|-(— Four Records —,.l

On magnetic tape, a single unit or block of information is marked by
an interblock gap before and after data. A record block may contain
one record or several,

Record

Tapemark

2 e

The interblock gap followed by a unique character record is used to
mark the end of a file of information. The unique character, a
tapemark, is generated in response to an instruction and is written
on the tape following the last record of the file,

I‘—End-of-FiIe Gap —v-l

—Tape Motion —»

Tapemark

Figure 5-13 End-of-Block and End-of-File Indications on Tape

Among tape units, the major performance considerations are the speed at
which tape is moved across the read/write head and the recording density of
information on tape. These two factors determine important characteristics
of character rate, tape access time (sometimes called gap time), and character
time. Some other differences among tape units involve the length of the
" interblock gap, the extent and method of checking the validity of recorded
data, and provisions for protecting recorded data. Figure 5-14 shows the

major differences among tape units.

5-14 Introduction to IBM Data Processing Systems

~Section 5: Input/Output Devices

" " Nominal
Nominal Data Rates (kilobytes/sec) Nominal Nominal lnfer;’l:::r:-Gap Rewind | Rewind
Tape Read Interblock Gap Time Time and
Magnetic Tape Unit at at at 800 bpi |at 1,600 Speed Access (inch) (ms) (sec) [Unload
200 bpi | 556 bpi (7- or bpi at (inches/ | Time* (2,400'| Time
(7-track | (7-track 9-track { (9-track 6,250 sec) (ms) 7- 9- |at 6,250 7- 9~ |at6,250| reel) |(2,400'
Number Model NRZI} NRZI) NRZI) PE) bpi track | track bpi track | track bpi reef)
3410/3411 1 .= -- -- 20 -- 12.5 15 - 0.6 -- -- 48 - - 180
2 -- -- 20 40 -- 25 12 -- 0.6 -- -- 24 -- -- 180
3 - -- 40 80 -- 50 6 -- 0.6 - -- 12 -- -~ 120
3420 3 -- 4.7 60 120 -- 75 4 0.75 0.6 -- 10 8 - 60 66
4 -- -- -- 120 470 75 2.3 -- 0.6 0.3 -- 8 4 60 66
5 - 69.5 100 200 -- 125 2.9 0.75 0.6 -- 6 4.8 -- 60 66
6 -- -- -- 200 780 125 1.6 - 0.6 0.3 -- 4.8 2.4 60 66
7 -- 111.2 160 320 -- 200 2 0.75 0.6 -- 3.75 3 - 45 51
8 -- - -- 320 1,250 200 1.1 - 0.6 0.3 -- 3 1.5 45 51

* The read access time is the interval of time from the beginning of a forward read, when the tape is not at load point, until the first data byte
is read after the tape is brought up to speed from a stopped state. The times given for 3420 Models 4, 6, and 8 are for 6,250-bpi operation.
Note: bpi =bytes per inch.

Figure 5-14 Characteristics of IBM 3400 Series Magnetic Tape Units

Maximum and Effective Because an interblock gap is placed between each record or block of records
Character Rates on tape, the total time required to read a record must include time to space
over the gap; this is called access time to the data. Access time is given
(Figure 5-14) for each tape unit on the basis of tape speed and length of
interblock gap. Access time must be considered when determining the actual
or effective character rate of a tape unit.

Load-Point and - Magnetic tape must have some blank space at the beginning and end of the
End-of-Reel Markers reel to allow threading through the feed mechanism of the tape unit. Mark-
ers, called reflective strips, are placed on the tape to enable the magnetic tape
unit to sense the beginning and the end of the usable portion of tape. Photo-
electric cells in the tape units sense the markers as either the load-point
marker (where reading or writing is to begin) or the end-of-reel marker
(where writing is to stop). The tape unit does not recognize the end-of-reel
marker when reading tape; a tapemark, written on the tape, signals an end-of-
reel condition (see Figure 5-15).

Introduction to IBM Data Processing Systems 5-15

Section 5: Input/Output Devices

5-16

File Protection

Direct Access Storage
Devices

End-of-Reel

Photocell

Load-Point

and Tape -

Break Photocell Load-Point
Marker

End-of-Reel

Marker \

Tape Cleaner -{_c;gﬁt Break

Tape markers are small pieces of transparent plastic with a thin
vapor-deposited film of aluminum on one side. Pressure-sensitive
adhesive covers the aluminum film. The markers are fastened
manually to the base (uncoated) side of the tape. New reels of
IBM tape have the markers in position. Photocells in the tape
unit sense the markers as they pass; broken tape is also detected.

Figure 5-15 Photosensing Markers

Because writing automatically destroys any previous information on the tape,
there is a way to prevent accidental erasure of information. A plastic ring
(see Figure 5-16) that fits into a round groove on the tape reel must be
removed when tapes are to be saved for further reference. Without this ring

the tape can only be read and cannot be written on.

On noncartridge tape, the file protection device is a plastic ring that
fitsinto around groove molded in the tape reel. When the ring is in
place, either reading or writing can occur. When the ring isremoved,
writing is suppressed and only reading can take place; thus, the file
is protected from accidental erasure.

Figure 5-16 File Protection Devices

These have been discussed in the section entitled ''Storage Devices"
er, DASD’s may be thought of as input/output devices.

Introduction to IBM Data Processing Systems

. Howev-

Punched Tape Devices
Paper Tape Reader

Section 5: Input/Qutput Devices

The paper tape reader shown in Figure 5-17 reads data represented as
punched holes in five, six, seven, or eight-channel paper tape at a rate of up to
1000 characters per second. As it moves or feeds the tape past a reading unit,
the presence or absence of holes in the tape is sensed and converted to
electronic impulses that are used as data by the computer system. Accuracy
of reading is determined by making a parity check (where characters are
written with parity, as in eight-channel code). The speed of reading, from
150 to 1000 characters per second, depends on the type of reader and the
lengths of the records.

Figure 5-17 IBM 2671 Paper Tape Reader and 2822 Paper Tape Reader Control

For faster paper tape input to the system, the data to be converted may be
written on magnetic tape is an off-line operation at 150 paper tape characters
per second (Figure 5-18). The recorded tape may then be placed on a mag-
netic tape unit and read into the computer system at the much higher magnet-
ic tape input rates (see table in Figure 5-14).

Introduction to IBM Data Processing Systems 5-17

Section 5: Input/Output Devices

Paper Tape Punch

Printers

3800 Printing Subsystem

CONVERTER

OUTPUT

Figure 5-18 Data Conversion - Paper Tape to Magnetic Tape

Data from the computer system is recorded as punched holes in paper tape by
an automatic tape punch. Data received from main storage is converted to a
tape code and punched in blank tape as the tape is moved through a punching
mechanism. Accuracy of data recorded is verified by a parity check for each
character (eight-channel code, for instance). Tape is punched at a density of
ten characters to the inch and at rates of 15 and 150 characters per second.

IBM printing devices provide a permanent visual record of data from the
computer system. Speeds of printing vary from 15.5 to 68,136 characters per
second.

As an output unit, the printer receives data, symbolized in electronic form,
from the computer system. The electronic symbols enter appropriate circuity
and cause printing elements to be actuated. All printing devices have a paper
transport that automatically moves the paper as printing progresses.

The major printing devices consist of the electrophotographic printer,
chain/train/belt printer, serial wire matrix printer, and the typewriter.

The fastest and most versatile IBM printer is the IBM 3800 Printing Subsys-
tem (Figure 5-19). The IBM 3800 is a high-speed, nonimpact printer that
produces characters on paper through electrophotographic and laser technolo-

gy.

5-18 Introduction to IBM Data Processing Systems

Section 5: Input/Output Devices

Figure 5-19 1BM 3800 Printing Subsystems

Features of the 3800 include:

1.
2.

Continuous forms input, transport, and stacking mechanism.
52K byte storage for page buffering and control of printer operations.

Eighteen different character sets, including four special underscored
sets, and 10-, 12-, and 15-pitch (characters per inch) sets, all of which
may be printed separately or any combination of up to four may be
mixed on a line. (Print line maximums are 136 positions at 10 charac-
ters per inch (cpi), 163 positions at 12 cpi, and 204 positions at 15 cpi).

Writable character generation storage organized into two 64-character
writable generation modules to hold 128 characters. (An additional
increment of 127 Writable Character Generation Storage Positions is
optional. This represents up to 255 graphics online with no throughput
loss).

The electrophotographic process, which includes the following:

a. A continually revolving drum on which a charged photoconductive
surface is selectively discharged by a low-power laser to produce
images of the printed data.

b. A developer station where black toner is attracted to the images.

¢. A transfer station where the toner is transferred to the paper
forms.

d. A fuser station to fuse the toner into the paper.

e. A cleaning station to remove any residual toner from the drum
after the page has been printed.

f. A charge station to prepare the photoconductor.

Introduction to IBM Data Processing Systems 5-19

Section 5: Input/Output Devices

6. A forms overlay station to expose the drum with form images or other
fixed data.

In operation, data to be printed is moved from the CPU to the 3800 a line at
a time, is translated into graphic code using a set of translate tables, and is
stored in the page buffer. When the page buffer contains a full page, the code
is used, through interaction with character generation storage, to modulate the
laser in exposing the revolving drum. Exposure is by horizontal line scanning,
similar to the way a cathode-ray gun scans a TV screen to produce a picture.
The image is developed with toner, transferred to paper, and fused. The
photoconductor surface of the drum is cleaned and reconditioned after each
exposure. Finished copies are refolded and stacked in the continuous forms
stacker, complete with job separation marking (optional). Figure 5-20 is a
schematic diagram of the 3800 printing mechanism.

° Fuser Station

——— ° Transfer
\ Station Cleaning Station

Photoconductor on

% Drum Surface
/ Drum
-|— o D Charge Station

Toner & g

T rirnme’

purster © pt'\O“a“

Stacke’

Form Stacker

Splicing
Station

® N\

Photoconductor Supply

Developer
Staavtionp and Takeup Rolls
- /7
l | 7 \’\ Forms
’ @ Overlay

Ve Station

%—I— - -CPF Laser

Mirror \ Modulator

Figure 5-20 Path of Paper Forms Through the IBM 3800 Printing Subsystem

5-20

Graphic character modification allows user- or IBM-designed characters to
take the place of an equal number of standard characters in character-
generation storage. Line spacing is 6, 8, or 12 lines per inch and can be
intermixed within a page. -

The 3800 uses single-ply, edge-punched, perforated, and stacked continuous
forms in any combination of five lengths and ten widths (common-use sizes).
Preprinted forms may be used, or the form image can be printed simultane-
ously with text by the use of a forms overlay negative, by character format-
ting, or by any combination of these to suit the application.

Introduction to IBM Data Processing Systems

Impact Printer

Section 5: Input/Output Devices

The forms overlay negative, bearing the image of the form, is installed by the
operator prior to printing. The image from the overlay negative may then be
printed on any number of copies, starting with the first. Forims overlay may
also be used for printing pictorial line art, or halftones, on copies.

The character formatting method uses a character set working under program
control to create a line image.

Copy modification allows printing of predefined data on specified copies of
the page of a data set. The data may be legends, column headings, or other
information; or it may be blanks to eliminate the printing of data. The modifi-
cation may vary from copy to copy.

The overall effect of forms overlay, character formatting, and copy modifica-
tion is functionally equivalent to the use of conventional numbered, pread-
dressed, multiple-part forms with standard features such as legends, spot
carbons, short plies, and printed blockout areas.

The maximum printing speeds of the IBM 3800 depend upon the number of
lines per inch printed and the length of the forms used. With 3-1/2 inch
forms and six lines per inch, up to 7,890 lines per minute can be printed. This
increases to 20,040 lines per minute for 11 inch forms and 12 lines per inch.

A forms burster-trimmer-stacker that bursts printed output into individual
sheets with the right and left carrier strips trimmed off is available as an
optional feature. Jobs and/or single copies are separated by offsetting one
job or copy from another in the stacker, and are ready for distribution without
postprinting delays.

Prior to the availability of the IBM 3800, the fastest IBM printers were
various models of line printers utilizing the train/chain technique.

The train printer is an electromechanical line printer using engraved type.
Alphabetic, numeric, and special characters are assembled in a train (Figure
5-21). As the train travels horizontally, each character is printed as it is
positioned opposite a magnetically actuated hammer that presses the paper
against one piece of type in the moving train. Up to 132 positions may be
printed on one line, at speeds of up to 2000 lines per minute. The print train
can be easily changed to provide a choice of print fonts.

Introduction to IBM Data Processing Systems 5-21

Section 5: Input/Output Devices

Cartridge - Plate Asssmbly

Figure 5-21 Print Train

On a belt printer, the character set is contained on a continuously rotating
metal belt. As the belt rotates, a comparison is made between the character
in front of each hammer and the character that is to print in that position.
When the desired character is in position to print, the hammer for that posi-
tion is fired to force the paper and ribbon against the character face to print
the character.

Interchangeable train cartridges or print belts are available for System/370
line printers. Usually, the universal character set (UCS}, which enables a
user, with a customized print train, to obtain maximum printer efficiency, is
standard. On certain printers, if needed, a user can have an expanded charac-
ter set (up to 254 different characters on any one train) that is capable of
using any of the 256 EBCDIC codes, except null or blank (hex 00 and 400).

A user can customize a print train by having only those characters, symbols,
etc., necessary for a particular job. (IBM currently has a variety of print
trains available that meet most needs). The user then assigns a code to
represent each character on the train. The codes are entered into a buffer
(located in the control unit) in the positions that the characters appear on the
print train. When the user is printing, the printer prints the character that
corresponds to the code in the buffer position.

Similarly, for belt printers, interchangeable belts are available. For example,
the IBM 3776 console printers utilize 48-, 64-, and 94-character sets. (With
the 48- or 64-character set belt, the 3776 will convert the 26 lowercase
alphabetic characters to uppercase characters and print them).

Typically, the printing speed of these printes will vary depending upon the
sizes of the character sets. For example, the IBM 3776 Model 2 can print at a
maximum speed of 400 lines per minute using the 48-character set, 300 lines
per minute using the 64-character set, and 230 lines per minute using the
94-character set.

5.22 Introduction to IBM Data Processing Systems

Section 5: Input/Output Devices

In the serial wire matrix printer printed characters are formed in a dot pattern
by pushing a vertical set of wires forward to contact an inked ribbon as the
print mechanism moves across the print line. The number of dots used to
form the characters depends upon the number of wires in the vertical arrange-
ment. For example, the eight print wires available on the IBM 3774 console
printer form characters in a 7 x 8 dot pattern. Figure 5-22 shows some
characters formed by a 7 x 9 dot pattern.

{
i
}
|
}
|
!
|

i I

T T

) [| A

——————t—
i i

o b

|1

Figure 5-22 Examples of Monocase Characters Formed with 7 x 9 Dot Pattern

Some serial wire matrix printers such as the IBM 3774 offer bidirectional
printing. This eliminates the mechanical delay encountered in moving the
print mechanism back to the beginning of the print line after each line is
printed, as is commonly done on most serial printers.

The typewriter that is used as an output device (Figure 5-23) is similar to the
one used manually. The major difference is that control of the typewriter and
the printing occurs automatically as directed by the stored program. Printing
speed is about 600 characters per minute; spacing and carriage return are
automatic. With the 3210 printer keyboard (using the "golf ball" printer),
printing speed is 900 characters per minutes.

Introduction to IBM Data Processing Systems 5-23

Section 5: Input/Output Devices

Character Recognition

5-24

Input Units

Magnetic Character
Readers

Figure 5-23 1BM 3210 Console Printer Keyboard

With the advent of high speed automatic data processing systems, there came
a realization that wide use could be made of input units capable of reading
data that could also be read by people. The processing of over 30 billion
checks yearly and the inestimable volume of other notices - insurance billings,
magazine subscription renewals, invoices, manufacturing routing slips, utility
bills, and so on - could be greatly speeded by the use of man-machine recog-
nizable characters. Two systems that accomplish this are magnetic character
readers and optical character readers.

As a specialized means of input to computer systems, IBM magnetic character
readers provide banks with a time-saving method of reading and processing
large volumes of daily transactions. These machines read card and paper
documents inscribed with the E13B type font approved by the American
Bankers Association. A second important labor-saving feature of the magnet-
ic character readers is their ability to sort the magnetically inscribed docu-
ments in off-line operations (See Figure 5-24).

Introduction to IBM Data Processing Systems

Section 5: Input/Output Devices

O+ 23 L5678 9

Amaunt Symbol
(M

Transit Symbol

Numbers

m o
Dash Symbol

ne
“On-Us"” Symbol

Figure 5-24 Magnetic Character Reader and Magnetic Ink Characters

The reader examines the shape of each magnetic ink character passing under
the read head, and ten data channels send signals to an electronic storage
device called the character matrix. The matrix has a storage location for each
of 70 character segments, and, as documents pass under the read head, lack
of any appreciable signal from a character area segment causes the machine to
store a 0 bit in that storage location. The presence of a significant signal
(indicating that magnetic ink is under the reading gap) causes the machine to
store a 1 bit in the specified storage location. The bit structure entering the
matrix is also displayed in the character matrix lights of the indicator panel.

After the entire character area has passed under the read head and all seg-
ments have been read, a pattern of the character shape is in the characer
matrix as a configuration of 0 bits and 1 bits (see Figure 5-25). To verify the
accuracy of processed data, the reader automatically checks each character as
it is being read.

Introduction to IBM Data Processing Systems 5-25

Section 5: Input/Output Devices

Optical Character Readers

11T IT111] T1I1T | I'T114

IREEE 1111

11 1113

T

T

T

TTTT

FEITT

1
|

11

jRER

||

Folded Character
Pattern in Matrix

11111

T]
1]

-

Each magnetic character passing the read head in the reader is sensed Shifted in Matrix
and examined. The reader looks for key recognition shapes and

characteristics. |f the character is slightly out of position as it passes

under the read head, the signals sent to the matrix form what is

called a folded character. The reader automatically unfolds the

pattern by shifting it vertically to check for recognition.

1T

Character Pattern

Figure 5-25 Matrix Patterns of E13B Characters

An exhaustive study of the 14 characters shown in Figure 5-25 has deter-
mined that thousands of O bit and 1 bit configurations can be considered
acceptable patterns for each character, even when portions of the character
are missing. All other patterns are considered invalid.

When the machine determines that a character is valid, the reader stores the
character in another storage location called the character register. The
character remains there until it is no longer needed for processing. If the
machine determines that the pattern is invalid, the recognition circuits provide
the machine with an error signal.

The optical character reader reads uppercase letters, numbers, and certain
special characters from printed paper documents and introduces the data into
a computer system. Transcribing of source data to cards or tape is eliminated,
and the time between receipt of source documents and their entry into the
data processing system is greatly reduced.

The principal operating action of the optical character reader is provided by a
rotating drum that transports documents from a hopper past an optical
scanning station. The scanner consists of a powerful light source and a lens
system that distinguishes between black and white patterns of reflected light.
These light patterns are read as a number of small dots and are converted into
electrical impulses to develop a character pattern. When the pattern of the
optically read character matches a character pattern in the reader’s character
recognition circuits, the character is recorded and transferred into the com-
puter system for processing. The read and recognition operation is automatic
and takes place at split-second speeds.

5-26 Introduction to IBM Data Processing Systems

Consoles

Section 5: Input/Output Devices

Optical readers can perform an additional operation known as mark-reading,
the reading of ordinary pen or pencil markings. The mark, when placed in a
specified location on the source document, represents specific information.
This feature has many important applications, such as recording of partial
payments directly on a customer’s bill and immediate processing of payment,
recording of meter reading cards at the customer’s utility meter, and so on.

The IBM 3886 Optical Character Reader (Figure 5-26), uses several new
technologies that make it a compact and highly reliable modular device. A
powerful microprogrammed recognition and control processor performs
machine-control and character-recognition functions, enabling the 3886 to
perform sophisticated data and blank editing as well as output record format-
ing.

Figure 5-26 I1BM 3886 Optical Character Reader

The console of a data processing system (Figure 5-27) is used by the operator
to control the system and monitor its operation. Depending upon the data
processing system installed, different controls and displays such as a full
keyboard, special purpose keys, switches, display lights, one or two CRT
displays, audible tone signals, and so on, may be available to the operator to:

1. Start and stop the computation.

2. Manually enter and extract (or display) information from internal
storage.

3. Determine the status of internal electronic switches.

4. Determine the contents of certain internal registers.

Introduction to IBM Data Processing Systems 5-27

Section 5: Input/Output Devices

5-28

Graphic Display Units

5. Alter the mode of operation so that, when an unusual condition occurs,
the computer will either stop or indicate the condition and proceed.

6. Change the selection of input/output devices.

7. Reset certain types of computers when error conditions cause them to
halt.

8. Otherwise interact with the system, for example, by presenting an
attention signal.

Figure 5-27 Console - IBM System/370 Model 168

In some data processing systems, the main console is connected only to the
central pocessing unit and may be augmented by separate consoles that are
used for engineering functions and for additional input/output control.

More and more frequently, in data processing systems, terminals are used for
data entry as well as for a visual display of records in main or secondary
storage, as called for by an operator. Display stations of the IBM 3270
Information Display System (Figure 5-28) are commonly used. The IBM
3270 is a family of display products that can be tailored to meet the needs of
all alphameric display applications. It offers improved response times and
transaction rates based on increased transmission and operator efficiency. In
addition, the 3270 display system is easy to operate and well suited to an
office environment.

Introduction to IBM Data Processing Systems

Section 5: Input/Output Devices

Figure 5-28 IBM 3270 Information Display System

The 3270 display system can be a standalone unit, a small cluster, or a large
cluster (of up to 32 units), can include 480-character display stations or large
capacity 1,920 character display stations or both, can also include printers 40
or 66 characters per second), and can be attached locally (directly to the
channel of a System/370) or remotely.

The 3270 system offers typewriter, data entry, and operator console key-
boards and a selector pen. It provides local data transfer rates of up to
650,000 characters per second and remote line speeds of up to 7200 bits per
second. The 3270 system includes data security enhancement features, such
as keylock and operator identification card reader, and the ability to enter
data without displaying it.

Another display unit is the IBM 2250, described under "Visual Output" in the
section entitled '"Data Representation'.

Introduction to IBM Data Processing Systems ~ 5-29

Section 5: Input/Output Devices

5-30

Terminals

Data Buffering

IBM currently offers three classes of terminals used in teleprocessing opera-
tions. Because of the way they receive and transmit messages, they are called
start/stop terminals, binary synchronous communication (BSC) terminals,
and synchronous data link control (SDLC) terminals. Numerous terminals
are available under each of these classes and include such devices as
typewriter-like keyboards, printers, card readers, card punches, displays,
magnetic tape terminals, etc.

The most conspicuous part of a teleprocessing operation is the use of data
transmission facilities. These facilities are obtainable from communication
common carriers or may be a privately owned or leased transmission medium.

The start/stop terminals include the IBM 1050, 1030, 1060, 2740, 2741,
2260, and 2265. The operation of these terminals is based upon asynchronous
transmission (in which each information character is individually synchron-
ized by a start character). In this type of transmission, each group of code
elements corresponding to a character signal is preceded by a start signal,
which serves to prepare the receiving mechanism for the reception and
registration of a character. In addition, each character is followed by a stop
signal, which serves to bring the receiving mechanism to rest in preparation
for the reception of the next character. Transmission rates for start/stop
terminals are within the 8 to 66 characters per second range.

The second classification of terminals is the binary synchronous communica-
tions (BSC) terminals. Greater flexibility of operation and substantially
increased transmission speeds are provided by these classes of terminals.
Included in the BSC terminals are the 2770, 2710, 2790, 1130, 1800, etc.
The transmission speeds available in BSC operations are from 150 characters
per second to 28,800 characters (or 57,600 packed decimal digits) per sec-
ond.

Synchronous data link controls (SDLC) is a more sophisticated line discipline
than BSC. SDLC offers a fixed format for transmissions which eliminates
many of the control characters required for BSC transmission. SDLC termi-
nals and communications systems include the 3270, 3600, 3650, 3767, 3770,
and the 3790.

All data processing procedures involve input, processing, and output. Each
phase takes a specific amount of time. The usefulness of a computer is often
directly related to the speed at which it can complete a given procedure. Any
operation that does not use the central processing unit to full capacity pre-
vents the entire system from operating at maximum efficiency. Ideally, the
configuration and speed of the various input/output devices should be so
arranged that the CPU is always kept busy with useful work.

The efficiency of any system can be increased to the degree in which input,
output, and internal data-handling operations can be.overlapped or allowed to
occur simultaneously.

Input is divided into specific units or logical associations of data that enter
storage under control of the program. A number of output results may be
developed from a single input, or conversely, several inputs can be combined
to form one output result. Figure 5-29a shows the basic time relationship

Introduction to IBM Data Processing Systems

Section 5: Input/Output Devices

between input, processing, and output with no overlap of operations. In this
type of data flow, processing is suspended during reading or writing opera-
tions. Inefficiency is obvious, because much of the available time of the
central processing unit is wasted.

Input 2

a Input /

Compute ———tm
Output

/

b Input - A
Compute ——pm :
Output ’
Output 1 Output 3
| |
C Input /

Compute ——p-
Output

Figure 5-29 Data Buffering

Figure 5-29b shows a possible time relation between input/output and
computing when a buffered system is used. Data is first collected in an
external unit called a buffer. When summoned by the program, the contents
of the buffer are transferred to the main storage unit. The transfer takes only
a fraction of the time that would be required to read the data directly from an
input device. Also, while data is being assembled in the buffer, internal
manipulation or computing can occur in the computer. Likewise processed
data from main storage can be placed in the buffer at high speed. The output
device is then directed to write out the contents of the buffer. While writing
occurs, the central processing unit is free to continue with other work.

If several buffered devices are connected to the system, reading, writing, and
computing can occur simultaneously (Figures 5-29¢).

Introduction to IBM Data Processing Systems 5-31

Section 5: Input/Output Devices

Further development of the buffering concept has led to the use of main
storage as the primary buffer. Data is collected from, or sent to, the
input/output devices in words or in fixed groups of characters. Transmission
of words is interspersed automatically with computation, but the time required
for the transmission of single words is relatively insignificant. The effect is
that of overlapping internal processing with both reading and writing. The
principal advantage here is that the size or length of the data handled is
restricted only by the practical limits of main storage. When external buffers
are used, the amount of data handled at any time is limited to the capacity of
the buffer. Overlapping operations up to this point have demonstrated a
principle of synchronous operation; that is, the action of the input/output
devices is made to occur at fixed points in the program and in a sequence
established by the programmer.

In some computers, design features allow for automatic interruption of
processing by the input/output devices; synchronous operation is not re-
quired. The input or output device signals the central processing unit when it
is ready to read or to write. The central processing unit responds to these
signals and either accepts the data as input or transmits the required informa-
tion as output. In real-time teleprocessing systems, this type of input/output
is likely to be nonsequential and unpredictable.

The problem arises of how to fill in the gaps in central processing unit time.
The answer is to somehow queue the various tasks and programs to step in
and, without interfering with one another, to use the otherwise idle time. This
is the basis for multiprogramming, a subject described in more detail under
"Programming Systems'".

5-32 Introduction to IBM Data Processing Systems

Section 6:

Teleprocessing

Teleprocessing is the processing of data that is received from or sent to remote
locations by way of communications facilities.

A teleprocessing network consists of a number of communications lines
(communications facilities) connecting a central data processing system with
remote teleprocessing devices (Figure 6-1). Such devices can be terminals,
control units, or other data processing systems. In this overview, any machine
or group of machines capable of generating and/or receiving signals transmit-
ted over communications lines will be referred to as a terminal or terminals.
Thus, terminals may be data processing systems, communications systems
such as the IBM 3270 Information Display System, or a single unit such as the
IBM 2740 Communication Terminal.

As an example of how a teleprocessing network functions, a clerk in an
insurance company’s branch office receives a telephone call asking for in-
formation about an insured’s account. Asking the caller to hold the line, the
clerk enters the information request into a terminal, and the tequest is sent
over a communications line to the System/370 at the insurance company’s
main office. When the request reaches the computer, several things happen.
The computer interrupts processing whatever job it is working on and saves
all necessary data and instructions so that it can resume processing the job at
the exact point of interruption. As the information is received over the
communications lines, the communications module in the control program
converts the data into machine language, stores it in a buffer area, and checks
to see that it was transmitted correctly.

The nature of the request may dictate that a number of operations be per-
formed. To process the request, the teleprocessing program directs the
System/370 to examine the appropriate policy file and bring the insured’s
record from storage. The program then searches the record for the informa-
tion requested and sends it over the communications lines to the clerk who
originated the request. The clerk reads the information as it is displayed or
typed out at his terminal and relays the information to the policyholder or
adjuster waiting on the telephone.

At the main office, the control program has returned the System/370 to its
status prior to the interruption, and the computer has resumed processing. As
a result of the telephone inquiry, the clerk in the branch office may update the
insured’s record and transmit this information to the System/370 at the main
office at a later time.

Introduction to IBM Data Processing Systems 6-1

Section 6: Teleprocessing

L1

2701 Data Adapter Communications
Magnetic or ""/Conrrol Devices
Tape 3704 or 3705 Communications
Controller

—
i . éysfom'/ 370
Disk Przr:er:sing Unit i Console \
| Host P
|

Modulation/Demodulation
Devices

Eodem

Terminal Terminal Terminal Terminal Terminal Terminal

Figure 6-1 A Teleprocessing Network

Elements ofa The elements of a teleprocessing network (Figure 6-1) consist of a host
Teleprocessing Network processor (central data processing system), communications control devices,
modulation/demodulation devices (modems), communications lines, other
terminals, and programming systems. Three of these elements, the communi-
cations control devices, modems, and communications lines, constitute a data

link (Figure 6-2).

Host Processor System/370 is designed so that it can serve as the host processor in a telepro-
cessing network. Requirements for the host processor include multiprogram-
ming capability, adequate storage capacity, storage protection, adequate
speed for the applications required, and, for planning purposes, the potential
for expanding storage capacity and speed.

The host processor for a teleprocessing network must be able to handle
random and unscheduled input, as well as serialized and scheduled input.

Communications Control Communications control devices are hardware components that link the
Devices communications lines to the host processor. These devices can be external to
the processor, such as the IBM 3704 or 3705 Communications Controller, or
they can be a part of the processor of a System/370, such as the integrated
communications adapter feature. When control devices are external units,
they can be classified as data transmission multiplexers.

6-2 Introduction to IBM Data Processing Systems

Section 6: Teleprocessing

The transfer of data requires noninformation transmissions for setting up,
controlling, checking, and terminating information exchange. These noninfor-
mation exchanges constitute data link control. Communications control
devices handle data link control; thus, functions of these devices include:

. Synchronization (getting the receiver in step with the transmitter)

. Identifying the sender and receiver

. Delimiting the beginning and ending of information (code translation)

. Error detection and recovery

In order for a host processor to send data over communications lines, the data
must be converted (serialized) to a serial stream of binary digits. Likewise,
when the host processor receives data from a remote terminal, this data must
be reconverted (deserialized) into machine language for processing (Figure
6-2). Control devices perform this function.

Serial=by -bit
(Data Tink transmission)

Serial~by —character
Yecoding

Serial~by ~character
Input =0 Encéing e Transfer Transfer Output
(A)) A) (1) (A) 4] (A) (1)
1 1 S) S I e A —fe— 1 —»f o—I L 1 1 1
o _ T T onl ' U B H B I 1
SR IR} SUUDR oy PV b M
0 ! 2 | | | 2 0 1
Al 0 1 ____[—-‘_ 3 ’ | I 3—___[_—I_ 0 1 Al
o o . 76543210 , 76543210 |, 0 0
0 0 —_—5 | | | 5 0 0
I First Last |
0 0 _— I | 6 0 0
y S I I , _ﬂ_l—l_] ,
N “ v -/ — J

Serialize

/—{ulamd Carrier
I

Modem

Deserialize

’/ |

Control |
Device |

Process

Printer

Output

1
l
|

| Control
Process | Device
|
! Communications
]I Line
r|= Data Link

Figure 6-2 Data Conversion for Data Transmission

Modulation/Demodulation

Devices

After data which is to be transmitted is serialized by the control device, the
binary signals must be converted to audio-frequency signals (modulated) for

transmission over communications lines and reconverted (demodulated) at the
other end. A modulation/demodulation device or modem performs this
function. One modem is required at each end of a data link (Figure 6-2).

Data sets and line adapters have the same function as a modem.

Introduction to IBM Data Processing Systems 6-3

Section 6: Teleprocessing

6-4

Communications Lines

Depending upon the type of communications lines and modem equipment,
transmission of data can be voice grade (permits transmission of both data
and human voice) or subvoice-grade (transmission of data only). A modem
can be an integral part of a control device or terminal, or it can be an external
unit.

Communications lines are classified according to configuration, transmission
direction, type, and transmission mode.
Configuration
Two basic communications line configurations are:
« Point-to-point (connects two terminals).

+ Multipoint (connects multiple terminals). In a multipoint configuration,
one terminal must always be designated as the primary (control) termi-
nal, and all others are secondary (tributary) terminals.

Transmission Direction

A communications line that transmits data in either direction, but not simulta-
neously, is called half-duplex. A line that transmits in both directions at the
same time is called duplex or full duplex (Figure 6-3).

Primary Secondary
Station T T Station
1
A | B
¢
A. Duplex Data Link (Point=to=Point or Multipoint)
(Both stations "listen” while they are “talking” to each other)
Primary Secondary
Station Station
A B
(A “tatks" while B "fistens")
A B
(A "listens" while B "talks")
B, Half-Duplex Data Link (Point-to~-Point)

Figure 6-3 Communications Lines Configurations

Type

Basically, two types of communications lines are available: switched and
nonswitched.

Switched lines (also called dial) connect terminals by means of common carrier
exchange equipment. Dialing establishes a connection, which is maintained
only while data is being transmitted. Switched lines are half-duplex only.

Nonswitched lines are available for use at any time, and dialing is not required to
make a connection. Nonswitched lines may be either leased or private lines.
Leased lines are leased from a commurications common carrier and are
usually telephone or telegraph lines. Private lines are privately owned and

Introduction to IBM Data Processing Systems

Line Disciplines

Section 6: Teleprocessing

may be supplied by the teleprocessing network owner or by a communications
equipment company.

Duplex transmission requires leased or private lines (nonswitched).
Transmission Mode

Communications lines can transmit in asynchronous mode (also called serial
start-stop mode) or synchronous mode.

Asynchronous transmission requires the use of start and stop bits to designate the
beginning and ending of transmission. '

Synchronous transmission is transmission in which the sending and receiving
terminals are operating continuously at substantially the same frequency: the
receiving terminal on a communications line operates in step with the trans-
mitting terminal through the recognition of a specific bit pattern (sync pat-
tern) at the beginning of each transmission. Synchronous mode, therefore,
eliminates the need for start and stop bits and permits continuous uninterrupt-
ed transmission, increasing transmission speed and reducing turnaround time.

Codes

A variety of codes can be used to represent data characters when transmitting
over communications lines. Two of the most commonly used are ASCII
(American National Standard Code for Information Interchange) and
EBCDIC (Extended Binary Coded Decimal Interchange Code).

A line discipline provides a set of rules for the orderly transfer of data from
one location to another using communications facilities. Two line disciplines
currently used are binary synchronous communications (BSC) and synchro-
nous data link control (SDLC).

Binary Synchronous Communications

Binary synchronous communications (BSC) procedure provides for synchro-
nous transmission of binary-coded data. BSC expands transmission capability
in a teleprocessing network through its ability to accommodate three different
transmission codes and a broad range of medium-and high-speed equipment.
BSC offers intermix capabilities which allow different types of BSC terminals
to communicate with the host processor (functioning as the control terminal)
on a nonswitched multipoint network, or with the host processor (functioning
as the central terminal) over a switched point-to-point network. Also avail-
able with BSC is a transparency feature which permits greater versatility in
the range of coded data that can be transmitted. This versatility is achieved
because all data including the normally restricted data link line control charac-
ters, is treated as specific "bit patterns" (data only) when transmitted in
transparent mode. Thus, unrestricted coding of data is permitted for trans-
parent mode operation. This is particularly useful for transmitting binary
data, floating point numbers, packed decimal data, and so on.

Synchronous Data Link Control

Synchronous data link control (SDLC), a more sophisticated line discipline
than BSC, provides for the efficient management of synchronous data trans-
mission between buffered terminals using centralized control over communi-
cations lines.

Introduction to IBM Data Processing Systems 6-5

Section 6: Teleprocessing

6-6

Teleprocessing
Applications

SDLC can transmit over duplex or half-duplex, switched or nonswitched lines.
Whereas SDLC configurations may be point-to-point, multipoint, or multi-
multipoint (Figure 6-4), BSC uses point-to-point or multipoint configurations.
Also, SDLC will accommodate any code while BSC accommodates three
codes.

SDLC offers a fixed format for transmission which eliminates many of the
control characters required for BSC transmission. When using SDLC, mes-
sage delimiting is not required, error checking is automatic, previous transmis-
sions can be confirmed at the same time that additional data is being transmit-
ted, and any type of data, coded or noncoded, can be transmitted.

SDLC allows terminals with different characteristics to share a single commu-
nications line. Thus hard-copy (printer) terminals and video-display terminals
can share the same communications lines.

Prima Secondary
Sklf'lo?\/ T T Station
l T
A | 8
&
A. Duplex Data Link (Point-to-Point or Multipoint)
(Both stations "“listen" while they are “talking" to each other)
Primary Secondary
Station Station
A]]

(A “talks" while B "listens")

A = B l
(A “listens" while B "talks")

B. Half-Duplex Data Link (Point-to-Point)

Primary Secondaries
Station (half-duplex)

A B

{Control, Duplex)

+
L
1
|
|
\

I —

Figure 6-4 Data Link Configurations

The types of applications which are provided by a teleprocessing network are
many and varied. Some of the most widely used applications include:

Introduction to IBM Data Processing Systems

Section 6: Teleprocessing

Data Entry. Entry of data from a remote terminal into a host processor
via a communications link by a remote terminal.

Record Update. Alteration, deletion, or addition of data contained on
existing data files stored at the host processor site via a communications
link from a remote terminal.

Remote Job Entry. Entry of logic functions from a remote terminal to
be executed at the host processor location via a communications link.

Message Switching. The ability to relay a message from one remote
terminal to one or more remote terminals via a host processor and a
series of communications links.

Time Sharing. The allocation of host processor resources so that many
remote terminals may execute programs concurrently and may interact
with the programs during execution.

Data Acquisition And Process Control. A high-speed data acquisition
system is designed to maintain constant communication with a process
for such purposes as:

1. Determining whether the process is operating within acceptable
limits.

2. Providing records for accounting or management decisions.
3. Providing a record of data obtained during a research experiment.

A process control system usually incorporates data acquisition facilities
and has the additional capability of using the acquired data as a basis for
supervising and controlling the process.

Introduction te IBM Data Processing Systems 6-7

Section 7:

Stored Program Concepts

Instructions

After data is transcribed to an input medium, the computer system can take
over the complete processing and the preparation of results. However, the
procedural steps that are to take place within the computer system must be
defined precisely in terms of operations that the system can perform. Each
step must be written as an instruction to the computer.

A series of instructions pertaining to an entire procedure is called a program.

In modern data processing systems, the program is stored internally, and the
system has access to the instructions at electronic speeds. Such programs are
called stored programs.

The computer is directed to perform each of its operations by an instruction -
a unit of specific information located in main storage. This information is
interpreted by the central processing unit as an operation to be performed.

If data is involved, the instruction directs the computer to the data. If some
device is to be controlled - a magnetic tape unit, for example - the instruction
specifies the device and the required operations.

Instructions may change the condition of an indicator; they may shift data
from one location in storage to another; they may cause a tape unit to rewind;
or they may change the contents of a counter. Some instructions arbitrarily,
or as a result of some machine or data indication, can specify the storage
location of the next instruction. In this way, it is possible to alter the se-
quence in which any instruction or block of instructions is followed.

An instruction (Figure 7-1) usually consists of at least two parts:

1. An operation part that designates read, write, add, subtract, compare,
move data, and so on.

2. At least one operand to designate the location(s) of the information to
be used for the specified operation.

Operation Operand(S)
Start 1/O Channel 1, Device 191
Read One Record into Storage Positions 1000 - 1050
Zero & Add Quantity in Storage Location 1004 into
Storage Location 2000
Subtract Quantity in Storage Location 1005 from
~ Contents of Register 10
Branch To Instruction in Storage Location 5004

Figure 7-1 Instructions

During an instruction cycle, an instruction is selected from storage and
analyzed by the central processing unit. The operation part indicates the
operation to be performed. This information is coded to have a special
meaning for the computer. For example, in a System/370 the hexadecimal
representation "'SA" is for a register add, ''59" is for a compare, and "'5C" is

Introduction to IBM Data Processing Systems 7-1

Section 7: Stored Program Concepts

for a multiply. Other computers use different coding and numbers of charac-
ters or positions to define an operation.

The operand further defines or augments the function of the operation. For
example, to perform arithmetic, the storage locations of the factors involved
are indicated. For input or output devices, the unit to be used is specified.
For reading or writing, the area of storage for input or output records is
indicated or fixed by machine design.

Because all instructions use the same storage media as data, they must be
represented in the same form of coding. In System/370, instructions may be
any of three lengths: half-word (two bytes), whole word (four bytes), and
word-and-a-half (six bytes), depending upon specific instruction operand
requirements.

In general, no particular areas of storage are reserved for the instructions
only. In most instances, they are grouped together and placed, in ascending
sequential locations, in the normal order in which they are to be executed by
the computer. However, the order of execution may be varied by special
instruction, by recognition of a predetermined condition of data or devices
within the system, by unpredictable interruptions from outside the system
(teleprocessing input), by hardware conditions that require servicing from
special set of programs, or by other programs that require unusual priority.

The normal sequence of computer operation in a complete program is as
follows: The computer locates the first instruction either by looking in a
predetermined location of storage assigned for this purpose or by manual
reset. This first instruction is executed. The computer then locates the next
instruction and executes it. This process continues automatically, instruction
by instruction, until the program is completed or until the computer is in-
structed to stop execution of this program.

Two-Address Instructions In computers, such as the System/370, instructions have two address por-
tions. Depending on the function of the instruction, the two addresses can,
for example, indicate a device to be used and the data to be operated on, or
two factors of data to be processed. An output unit to be used could be
indicated by one address, and the storage location from which information is
to be written could be indicated by the other address. In arithmetic opera-
tions, the two addresses could specify two related factors of data, such as
multiplier and multiplicand, divisor and dividend, or addend and augend.

Instructions and Data The only distinction between instructions and data in main storage lies in the
time they are brought into the central processing unit. If information is
brought in during an instruction cycle, it is interpreted as an instruction; if
brought in during any other type of cycle, it is considered to be data.

The computer can operate upon its own instructions, if those instructions are
supplied as data. The computer can also be programmed to alter its own
instructions according to conditions encountered during the handling of a
procedure. It is this ability to process instructions that provides the almost
unlimited flexibility and the so-called logical ability of the stored program
system.

72 Introduction to IBM Data Processing Systems

Developing a Program

Section 7: Stored Program Concepts

In recent years, newer program development techniques have been developed.
Some of these Improved Programming Technologies are intended to supple-
ment or to replace the "traditional" methods described in this section. A
brief overview of several of these techniques appears later in this publication.

To develop a program, the programmer must know (1) the number of differ-
ent operations (and their functions) available in the system with which he has
to work; (2) the procedure itself, which must be translated, step by step, into
computer instructions; (3) the requirements to be met by the result of proc-
essing.

The first step in program preparation is a complete analysis of the application
to be programmed, including existing and proposed procedures. This analysis
is normally accomplished by developing flowcharts and block diagrams,
because most data processing applications involve a large number of alterna-
tives, choices, and exceptions.

It is difficult to state these possibilities verbally. Thus, the systems analyst
finds use for many types of pictorial representations, including form layouts,
control panel diagrams, manpower planning charts, and so on. The two
representations to be discussed here are the system flowchart and the program
flowchart.

The outstanding value of a flowchart is that it shows a lot at a glance. It
graphically represents organized procedures and data flow so that broad
essentials and many details, along with their relationships, are readily appar-
ent. Such sequences and interrelationships are hard to extract from detailed
paragraphs of text - and, for the program, next to impossible to determine
without supporting documentation. In flowcharting, symbols and words
support each other; identifications and descriptions, which may be obscure in
text, take on more significance when placed in diagrammed sequence. The
communication is further improved by consistent use of meaningful symbols.
Figure 7-2 reproduces the IBM template envelope.

The template provides basically for two kinds of flowcharts - system and
program. This distinction is not new. A system flowchart shows the flow of
data through all parts of a data processing system. A program flowchart
shows what takes place within a particular program in a data processing
system.

Introduction to IBM Data Processing Systems ~ 7-3

Section 7: Stored Program Concepts

Symbols related to SYSTEMS

Input/output function in
card medium (all varieties):

‘ PUNCHED CARD

Other specific media:

FLOWCHARTING TEMPLATE

Yr Card Deck

‘ “ CardFile ——]
(s0)

A collection of related
punched-card records,

(50}

RM X2 -1 M
FO 0-8020-1 U/M 010 A collection of

punched cards.

Symbols on this envelope—reflecting additions and changes—conform to
the International Organization for Standardization (ISO) Draft
Recommendation on Flowchart Symbols for information Processing, and
are consistent with the fewer symbols adopted by the U,S,A, Standards

TRANSMITTAL TAPE

Institute (USASI), 15O usages beyond USASI specifications are
identified (1SO). 1BM usages beyond ISO specifications are three
symbols—offpage connector, transmittal tape, keying—identified IBM.

* C 1 c, oy (
shapes provnded by cutouts in the template,

ded by a star) are those drawn by adding to or combining

*
Magnaetic
Tape

Proof- or-adding
machine tape,
or other batch-
control info.

™

Input/output using

An operation using a

ONLINE H —
On this avwalope, symbols are in three groups: (1) basic symbols; (2) processing and STORAGE ;"oy ki:d of °:°';?: :‘:y’:: r‘iver:' d:‘v ice KEYING
ymbols related to p 1g; (3) input/output, communication fink, nlp':gdrum gdisk vo‘:if inw 'c ""g’
and procaumg symbols velated to systems, ’ ’ * ying, typing.
; BASIC Symbols Other specific media for .
: input/output functions: * Core % Magnetic
Any processing function; Additional descriptive Drum
defined opemﬁon(s) clarification, comment. ¢ "
PROCESS causing change in value, = 0—————— - * A:':::::o“ (150} (50 o)
form, or location of (Dotted line extends to
ion, symbols as appropriate.)’
MERGE
General i/o function; CONNECTOR; Exit to, or entry &t Ofine
information available for from, another part of chart, (150) ws0) X s Collate Storage
INPUT/QUTPUT, processing (input), or ©
rocardmg of processed Special OFFPAGE CONNECTOR Combining two or Storing
ion (output). for entry to or exit from a page, more sets of items offline,
into one set. 150) V' % Sort regardiess
of
e I inki ; _— Removal of one Merging with Arranging a recorded
ARROWHEADS un.d Flowlines: In linking symbéls, or more specific extracting; set of items medium.
these show operations sequence and dataflow sats of Ttems forming two o info
direction. Arrowheads required if path on any from a set more “9“ of items vence
linkage is not left-to-right or top-to-bottom. —_— * from two of seq .

Flowlines can cross,
meaning they have no
logical interrelation.

+. X

150)

at junction point

{f four flowlines are colinear

Two incoming flowlines
can join an outgoing
line at junction point. (150)

Three incomi'ng flowlines can join an outgoing line E‘: | >< X

in pairs, one pair requires opposing arrowheads,

: Symbols related to PROGRAMMING

A decision or switching~
type operation that
determines which of a
number of altemative
paths followed,

DECISION ~

Instruction modification

to change program—

set a switch, modify PREPARATION
an index register,

initialize a routine,

One or more named
* operations or program steps
Predefined specified in a subroutine

4
vocess or another set of
'Kl N

A terminal point in a flowchart—
start, stop, halt, delay,

or interrupt; may show
exit from a closed
subroutine .

RMIN,
INTERRUPT

Parallel Mode (1SO):

v
IIVT

Bagmmng or end of two or more
operations (note examples
of arrowhead detail),

NAVA2
—

BASIC Symbols (shown at top) also are used in program flowcharting and in
systeins flowcharting (see other side of envelope).

Figure 7-2 Program and System Flowchart Symbols

74

Introduction to IBM Data Processing Systems

other sets,

(150)

Information display by
online indicators,

video devices, console
printers, plotters, etc.

switch saﬂings

hbut

Information input by
online keyboards,
MANUAL INPUT

Any offline process
{at **human speed’’)
without

mechanical aid,

Offline performance on
equipment not under
direct control of central

processing unit.

AUXILIARY
OPERATION

COMMUNICATION LINK: Funcﬁon of transmitting

‘4%\’\—6

f jon by a fon link,
(Vertical, horizontal, or diagonal, with
arrowheads for clcmy, bidirectional flow
shown by two opposing arrowheads.)

BASIC Symbols (shown on other side of envelope) also are used in systems flowcharting.

Your IBM representative can give intormat

arting with the IBM S

stem/ 3

ion ahaut computerized

Flowchart Program

System Flowchart

Section 7: Stored Program Concepts

A system flowchart represents an application in which data provided by
source media is converted to final media. The emphasis is on the media
involved and the work stations through which they pass. In a program flow-
chart, on the other hand, emphasis is on computer decisions and processing;
the chart provides a picture of the problem solution, the program logic used
for coding, and the processing sequences.

Because a fundamental program flowchart evolves from a system flowchart,
the former inherently has more detail than the latter. Beyond that, a program
flowchart is quite explicit, frequently "exploding' into a series of subsidiary
flowcharts to an extremely high level of detail.

System flowcharts are likely to be simpler, less "formalized" and easier to
draw than program flowcharts; they are also more flexible. A greater choice
of symbols is available, as well as more latitude in their use. Examples of the
symbols, conventions, and techniques used in a typical system flowchart are
shown, with comments, in Figure 7-3.

Introduction to IBM Data Processing Systems 7-5

Section 7: Stored Program Concepts

Remote Orders

Bill of Lading . Misc, Trans,
F
Packing Slip, O'r""?ua"'"‘"’ {Returns, & Stock Status
Etc. Rejects, Inquiry
L Etc.)
Select Proper Prepare
Record & Enter Recsipts Stock Prepare Misc.
New Data Withdrawals Transactions
Prepare Withdrawals Misc,
Inventory Transactions
RUN §1 RUN O1
Invalid / Determine &
Transacti gpdmte Master Update Stock
Notice St°: Stock File Status and Prepare
atus Ship. fnstructions

1
At End | Stock Status
Of Day's | & Ship. Instr.
Transactions | ~__/—
|
RUN P1 L‘ 7
Select ltems Below
Merge (Receiving Pr ion Level i 3: svndk'
Cards Determine Order T e t's
Qty. and Date ransactions
RUN P2] RUN S2
Group Orders Analyze Usage
By Commodity and Status
Class '
RUN P3
eceiving
File Select Vendor & Vendor Stock Stat.
Prepare Purchase File -and Usage

Report

; ; Orders

Review and

A typical system-flowchart description of an inventory-control application, this chart uses specific symbols for certain processing functions
and input/output. The application involves a multiple-warehouse system: items are stocked in a central warehouse for distribution to remote
warehouses; all customer orders are received by remotely-located warehouses and transmitted by teletype (communication-link symbol) to
the central data-processing installation. The system provides four major groups of operations:

Updating stock status {run S1], based on actual transactions.

-

Response to inquiries {run 01] from auxiliary warehouses and central warehouse.

N

Reorder analysis [runs P1, P2, P3], including purchase-order preparation.

w

Weekly analysis reports [run S2] to show slow-moving items, major changes in usage rates, behind-schedule deliveries, economic lot
sizes, etc.

H

Figure 7-3 Flowchart for an Inventory Control System

7-6 Introduction to IBM Data Processing Systems

Program Flowchart

Flowcharting Worksheet

Section 7: Stored Program Concepts

Certain aspects of program flowcharts deserve emphasis by themselves,
because they are so specialized and so thoroughly integrated into both the
routine and the creative phases of programming. To the programmer, a
program flowchart is a kind of all-purpose tool. It is the "blueprint” of a
program. In program development, the programmer uses flowcharting in and
through every part of his task: to marshal and organize his facts on paper; to
outline problems, logic, and solutions; to deal systematically with the problem
as a whole. He uses flowcharting to build, step by step, his own reference
documentation and reminders.

In the development stage of a program, a flowchart serves as a means of
experimenting with various approaches - laying out the logic. The program-
mer starts with symbols representing major functions of a proposed program.
He develops the overall logic by combining blocks to depict input/output
functions, steps for identification and selection of records, and decision
functions.

Once the programmer has tentatively established mainline logic, he usually
extracts large segments and describes them in more detail on subsidiary
charts. This is like drawing a set of increasingly detailed maps - starting with
a general, all-inclusive map, then exploding sections of it on succeeding maps,
each map showing greater detail. The technique is called modular program
flowcharting. For thorough documentation on this basis, a typical, file
maintenance routine could possibly require as many as 80 flowcharts.

When the programmer is satisfied that the procedure is sound, he uses the
flowchart as his guide for coding. Sometimes, at this stage, program logic may
have to be modified to agree with machine logic, and a chart may have to be
redrawn and reverified. Modifications are even more likely during testing,
installation, and future operation.

Because most program flowcharts are so detailed, it is a great advantage that
they be drawn in a consistent, well organized format. Such "formalization" is
best done on a regular form designed for that purpose. The IBM flowcharting
worksheet form (GX20-8021) is shown in Figure 7-4 with a typical chart
superimposed on it.

The 11 x 16 1/2" worksheet can be used for all kinds of flowcharts, but it is
particularly useful in program flowcharting.

Essentially what the worksheet provides is an arrangement of 50 blocks with
alphabetic and numeric coordinates. Ten horizontal rows are lettered from
the top (A) to the bottom (K). Five-vertical rows are numbered from left to
right - 1 through 5. These coordinates prove helpful in documenting and
cross-referencing.

The worksheet has guidelines for the 50 positions, and crosslines indicating
the horizontal and vertical centers of each position. These are simply aids for
squaring up flow-lines, centering symbols in each position, and maintaining
uniform spacing between symbols. The result is a neatly arranged, compact
chart, but not too crowded. The worksheet itself is printed in light-blue ink so
that its guidelines will disappear during photographic copying.

Introduction to IBM Data Processing Systems 77

Section 7: Stored Program Concepts

EM Flawcharting Workehest PriNTED (1 u.0h,

Progrommer: /. S M TH Program No.: —32 ' Date: b-($
Chart 1D: 4A_ Chort Nome: . EAMTLKE Rl — Progrom Nome: DALY UPDATE Pogs:_ﬁ___ﬂ
A= —— o A2— 4 — = ~A3— 4 ——— A4+ ——o [As—+-==
H 1 1 i i | | i

| | | | 1 I | |
+ + 4 . { START * + 4 + +
! I i i i i i | i
L d [| I S L__...._...J [P
Bl — = —n 82—+ ——- rég3—14+ ——7 r—B4—+———= 85— +——q
| | 1
; | | ! I
| o | | !
L.__.’._.__l L [N .
rCl—+———

1

1

4

!

| I I ——

REPLACE ¢
0N HAND WiTH
TRANS, @TY
H2 == —— rH3—F ——=— - He ———— HS — = ——=—
i L . rC::
|
: + + t H 3 HALT
' 1
| 1 | i 1 | |
Lo d L e (I | [
—Jl —4 = — 2= 4 — —— - +——x 4 —+—— 8 — 4+ ——
REPLACE EXTEND ! ! ! i !
JTRANS. @TY L PRICE AND 1 + + + +
wird @OH ApD T© ¥rD |] ! ! !
I SALEs PP | I L |
L2
~Kl =4 — — K-+ —— K3—+—— FKa—+ — = rKs—+— =
L e i | i | : i
SEE TRANS
+ + + + + + + -+
9 48-K¢ f || R&ECORD ! | : \ ! : :
E— lasiditie b e (N £ P |
£3

oy peaep 3 g prog—ool

Figure 7-4 First Sheet of a Sample Program Flowchart for an Updating Run of Inventory Records

7-8 Introduction to IBM Data Processing Systems

Miscellaneous Techniques

Section 7: Stored Program Concepts

A few of the more detailed techniques in the drawing of program flowcharts
are described briefly and illustrated:

Cross-referencing relates the program flowchart to source language programs
(described later). One way is to locate an instruction either by its label or by
the page and line number of the coding sheet on which it appears. The
cross-reference can be placed above the upper left corner of a symbol, as
shown in Figure 7-5.

Run AF

Output
Labels

Present
?

Figure 7-5 Example of Cross-Referencing

Composite symbols are a defined group. Although more than thirty symbols are
described on the template envelope (Figure 7-2), about one-third fewer
symbols are provided as cutouts in the template. The additional symbols are
those drawn by adding to or by combining shapes appearing as template
cutouts; these composite symbols are identified underneath the cutouts, their
names are preceded by a star, and the symbols themselves are shown on the
envelope. For example, merge is shown by an inverted triangle, by adding a
horizontal stripe, the composite symbol signifies off-line storage.

Sort needs the addition of a horizontal line at its midpoint to conform to the
International Standards Association’s standard. Consequently, it is shown on
the template as a starred composite symbol.

Where a more detailed flowchart of the program unit exists, the predefined
process symbol (Figure 7-6) is used to indicate this.

Predefined
Process

Figure 7-6 Predefined Process Symbol

Decision Technigues may be shown in several ways. See examples in Figure 7-7.
These decisions will determine which action is to be performed next by the
program (see branch operation).

Introduction to IBM Data Processing Systems 7-9

Section 7: Stored Program Concepts

Two lines
to other
symbols

A single line
which then
branches into
the
appropriate
number

of lines

Gross

Compared to

$4200

HI/EQ

Table
Lookup

N

4 Other

Figure 7-7 Examples of Decision Techniques

An example of a typical program flowchart is shown in Figure 7-4
(superimposed on the flowcharting worksheet form referred to earlier). The
program flowchart, for a daily updating run of master inventory records, is
based on the system flowchart. The system flowchart (Figure 7-8) indicates
that the updating is from adjustments, receipts, orders, and issues for the day;
in addition, a shortage-and-reorder listing is prepared. The system requires

no additions or deletions involving the master file.

Master
Inventory

Adjustments

Run 3B

Daily
Update

Update
Master
Inventory

Shortage
and Reorder

Listing

End-of-Job and
Error Messages

Figure 7-8 System Flowchart

7-10 Introduction to IBM Data Processing Systems

Flowcharting by Computer

Reading Data

Section 7: Stored Program Concepts

All of the foregoing has dealt with manual flowcharting - drawing the charts
by hand. Much progress has been made, however, on the running of flow-
charts on a computer. An IBM flowchart program for the IBM System/370
enables the computer to print out, from detailed instructions, a complete
flowchart - including machine versions of the same symbols usually drawn by
hand.

Mechanized flowcharting is particulary helpful in programming, where modifi-
cations of a program often require time-consuming redrawing of charts. With
this program, flowcharts manually drawn in a prescribed manner (and coded)
can be produced automatically; once produced, they can be modified and
rerun with a minimum of time and effort. The flowcharting worksheet in
Figure 7-4 ties in nicely with this implementation: the 50-position grid
provided by the worksheet lends itself readily to mechanization.

All data entering the computer system must first be read by an input device
and routed to main storage. Each input device is assigned a number to serve
as its address in the same way that each storage position is also assigned a
location address.

A data processing procedure is normally concerned with entire files (called
data sets, in Operating System (OS) - described in a later section) of records on
one or more of the input media. These files are either fed into the input
device, where the computer has access to them, or read directly from a
secondary storage unit. To read a record from a file, one or more instructions
in a program activate the input device and place the record in main storage.

At this point, it must be determined exactly where in storage the incoming
record is to be placed, and an instruction must direct the machine to send it to
this predetermined locations. Also, in the plan of manipulation, it is necessary
to know at all times where to find information as needed in the successive
stages of processing.

These considerations involve the allocation of storage space for specific
purposes in a logical and convenient manner. For example, particular fields
or quantities may be used for computation. The instructions to be used later
must specify the location in storage where the information from each record
can be found.

When a data processing system includes an operating system of programs to
take care of placement of incoming records and fetching of stored records as
needed, the problem programmer is not concerned with the location details.

The reading operation performs the following distinct functions;

1. The input device is selected and made ready before actual reading
begins. The device chosen is the one that has access to the proper file
records as determined by the programmer. This device is selected by
specifying its assigned code number or address.

2. The read instruction causes the previously selected unit to carry out the
transfer of a record to the storage of the computer. The record is placed
in a particular storage area reserved for this purpose and is then avail-
able for further processing. A number of input areas may be assigned to

Introduction to IBM Data Processing Systems 7-11

Section 7: Stored Program Concepts

handle several related records at once (for example, a master record and
its corresponding transaction detail).

3. The order of read instructions in the program determines the sequence
in which the files are read. Other instructions later compare records
from separate files to determine the relationship of detail to master,
detail to detail, and so on.

4. The number of records to be placed in storage at one time depends on
the construction of the files, the type and length of records being han-
dled, and the available storage capacity.

Calculating Once data has been read into the computer system and placed in known
locations of storage, calculation can begin. Each computer is capable of
performing addition, subtraction, multiplication, and division, either as built-
in operations or under program control. For most commercial applications,
these operations are adequate. Even in many of the more advanced scientific
procedures, the most complex equations can be reduced to steps of elementa-
ry arithmetic. However, many specialized operations can be performed by
some systems to make the solving of mathematical problems easier.

In every operation of simple arithmetic, at least two factors are involved:
multiplier and multiplicand, divisor and dividend, and so on. These factors
are operated on by the arithmetic unit of the machine to produce a result,
such as a product or a quotient. In every calculation, therefore, at least two
storage locations are needed. One quantity is usually in main storage, the
other in a register. In System/370, both quantities may be in registers.

A calculation can be started by placing one factor in the register and at the
same time clearing this unit of any previous factors or results that may be
contained there. The address part of the instruction specifies the storage
location of the first factor; the register is implied by the operation. In some
computers, more than one register is available for calculation. In this case,
the address must also specify the register to be used.

When one of the factors is properly placed in a suitable register, the actual
calculation is executed by an instruction whose operation part specifies the
arithmetic to be performed and whose operand is the location of the second
factor. The computer acts upon two factors, one in the register and the other
in storage, and produces a result in either place, as directed. In System/370,
using certain instructions, both factors may be in storage with the result of the
calculation replacing one of the factors.

The result may be moved to a storage area, as a field in some record. A field
is a related arrangement of characters or digits to represent a quantity,
amount, name, identity, and so on.

Any practical number of calculations can take place on many factors in a
single series of instructions. That is, a factor may be placed in a register and
multiplied, and several other factors may be added to or subtracted from the
product. Division can then be executed, and other operations of adding and
subtracting can proceed using this quotient. Intermediate results can be
stored at any time.

7-12 Introduction to IBM Data Processing Systems

Section 7: Stored Program Concepts

For example, a field containing employee hours worked can be placed in a
register and multiplied by hourly rate to produce earnings. Piece work and
bonus amounts may then be added to develop a total regular earnings
amount, which is stored in the pay record. Total regular earnings may then be
divided by hours to produce an average hourly rate. This rate is multiplied by
1.5 overtime hours to produce overtime earnings. Total gross pay is then
calculated and stored. Taxes are computed using the calculated gross pay;
other payroll data is accumulated using the amounts as they are calculated.
Intermediate results of tax amounts and deductions, and, finally, net pay are
all stored in the pay record.

Operations of shifting and rounding the ‘contents of the register are also
provided to adjust, lengthen, or shorten results. With these operations,
decimal values may be handled and directions for placing of the decimal point
may be given to the computer.

All calculations must take into account the algebraic sign of factors in storage
or associated registers. Consequently, the computer system is equipped with
some provision to store and recognize the sign of a factor.

If records are made up of fixed words of data, one position of the word is
designated as a sign position and automatically accompanies the word. Regis-
ters also include either a special sign position of storage or a sign indicator
that is available to the programmer. In this way, the sign of results can be
determined, together with the effect, after calculations. The computer follows
the rules of algebra in all basic arithmetic calculations.

The size of words, quantities, and values depends upon the design of each
particular system. The exact rules governing the placement of factors, size of
results, etc., vary somewhat from system to system. In all cases where a result
is expected to exceed the capacity of the register, the programmer must
arrange his data to produce partial results and then combine these for totals.
Other operations of scaling may be executed so that very large or small values
and fractions may be handled conveniently. Computers designed primarily
for mathematical applications generally include a series of specialized arith-
metic operations for this purpose. (See "Floating-Point Operation".)

Calculation is carried out in all computer systems at much higher rates of
speed than input or output, because reading and writing require the use of
mechanical devices and the movement of documents, while calculation is
performed electronically. In many commercial applications, calculation is
relatively simple, and the overall interleaving of the system is usually gov-
erned by the speed of the input/output units. In mathematical applications,
the situation is reversed; calculation is complex and involved, and high calcu-
lating speeds are essential. The design of any particular system must achieve
a realistic balance between calculating and record-handling ability.

Introduction to IBM Data Processing Systems 7-13

Section 7: Stored Program Concepts

Logical Operations The sequence in which a stored program computer follows its instructions is
determined in one of two ways: either it finds the instructions in consecutive
storage locations, or the instruction operand also designates the location of
each following instruction. If instructions could be followed sequentially only
in a fixed pattern, a program would follow only a single path of operation
without any possibility of dealing with exceptions to the procedure and
without any ability to choose alternatives on the basis of special conditions
encountered in processing data. Further, without some way of resetting the
computer to repeat a given series of instructions, it would be necessary to
have a complete program for each record in a file.

Consider the program illustrated by the flowchart in Figure 7-9.

Read
Record

Compute
A+B=T

Write
Record

Figure 7-9 Program Flowchart A + B=T

These instructions taken alone compute T for only one record. But, by
returning to the first instruction, any number of records can be processed,
repeating the same program as a loop. For this purpose, another instruction is
given to return to the first instruction (Figure 7-10). Once this program is
initiated, it will continue to run until there are no more records to process.
Program loops are common, and they can be terminated in many ways.

7-14 Introduction to IBM Data Processing Systems

Section 7: Stored Program Concepts

(Start)
A

Read
Record

Compute
A+B=T

Loop

Write
Record

Figure 7-10 Program Loop

For example, the computer may be instructed to examine T each time it is
computed and to go to a certain routine when the value of T becomes nega-
tive (Figure 7-11).

‘ Start ’

Record

Figure 7-11 Conditional Transfer

In this case, the instruction becomes a conditional transfer or branch. The
program is repeated only if some predetermined condition has been satisfied.
The computer may also be instructed to execute the program for ten records
and then go to a certain routine (Figure 7-12).

Introduction to IBM Data Processing Systems 7-15

Section 7: Stored Program Concepts

Set Counter
to 10

Read
Record

Compute
T

Write
Record

Subtract'?”
from
counter

Not 0

\;

i

Operator
Intervention

Figure 7-12 Record Count Conditional Transfer

It is assumed that the constants 10 and 1 are in the computer and that 1 is
subtracted from 10 each time the loop is completed. After ten times around,
a zero will be found in the location that contained 10. A transfer or branch
then terminates the loop.

The conditional transfer or branch operation may be used to cause a special
purpose subroutine to be executed outside the normal or straight-line path of
the program. This subroutine is executed only when a predetermined excep-
tion or condition is noted by the machine.

One common example of the subroutine is checking the accuracy of records
as they are read from, or written on, magnetic tape. As each record enters or
leaves the central processing unit, a read/write error indicator is examined. If
the indicator has been turned on, the computer is instructed to enter a sub-
routine of instructions that attempt to correct the error. The program logic
for such an operation - the reading only - is shown in Figure 7-13. A similar
loop would also be included for writing.

7-16 Introduction to IBM Data Processing Systems

Section 7: Stored Program Concepts

(Stert ,

Read
Record

Check

Error

Record

OK

\

Set Error
Counter to
10

Compute

Write .
Record

y

Subtract 1
from Counter

Backspace
One Record

Is
Counter
0?

Figure 7-13 Read Error Loop

When a reading error is detected, a branch is effected to the error subroutine.
A counter is reset to the quantity 10 to count the number of times a reread
will be attempted. The tape is backspaced over the error, and a second read
instruction is given. Another check is made to determine whether this opera-
tion is correct. If it is, a transfer returns to the main program, where comput-
ing continues.

If the error persists, 1 is subtracted from the counter, and the counter is tested
for 0. The error loop is again entered and a second reread and check are
executed. The machine can reread ten times. If the error is not corrected, the
program transfers to another routine, where it goes through some sort of
procedure to log the error record and then return to read in and process the
next record. With IBM 3420 nine-track tape, however, the cyclic redundancy
character feature corrects single-track tape errors automatically, thus elimi-
nating the need for this type of program, in many instances. Also,
input/output control systems and operating systems (programming systems
supplied by IBM) are available for most data processing systems, eliminating
the need for the problem program to include this type of checking.

Introduction to IBM Data Processing Systems 7-17

Section 7: Stored Program Concepts

A program can also be arranged so that the machine can recognize one or
more types of records as they are processed from a single file. The method of
computation can be varied according to the type of record in storage. This
procedure is common when a number of types or classes of transactions are
processed against a single master file (for example, in an application of file
maintenance).

Assume that a file (data set) of master stock status records contains quantities
that reflect the number of parts available for manufacturing planning. The
records also have considerable other information pertaining to the status of
inventory, but for purposes of illustration, this example is concerned only with
those fields used to show availability.

These fields are:

Quantity in stock
Quantity on order
Quantity available

Transactions that affect the status of the parts availability originate daily.
These transactions are punched in cards with an identifying digit code for
each type of activity.

Codes are as follows:

Code 1 Receipts

Code 2 Orders

Code 3 Withdrawals

Code 4 Adjustments plus
Code 5 Adjustments minus

As each transaction is placed in storage, it is analyzed by code to determine
the class to which it belongs (Figure 7-14). A branch instruction then trans-
fers to the proper program subroutine to calculate availability and to adjust
the corresponding master record. Reading and writing of the adjusted master
record are not shown in the flow hart.

7-18 Introduction to IBM Data Processing Systems

Comparing

Section 7: Stored Program Concepts

l Transactions |]]]

y
Recelpt Orders Withdrawal | | Adjust + Adjust -
= On Order| {* On Order| | ~ Stock + Stock = Stock
+ Stock _ +Available | | - Available | | +Avallable| | - Available
Y
Continue
Program

Figure 7-14 Branching by Code

The ability of the computer to make limited decisions on the basis of pro-
grammed logic is substantially extended by operations of comparing. Such
operations enable the computer to determine whether two data fields in
storage match, or whether one is lower or higher than the other. The basis of
comparison is set according to some predetermined sequence built into the
circuitry.

The sequence may be considered to be a normal filing order of records of all
types. For example, the familiar ascending sequence of the digits 0-9 assumes
that the digit 9 is the highest digit of the series. In the same manner, the letter
Z is assumed to be the highest letter of the alphabet. To the computer,
therefore, as in any file, the number 162 is higher in sequence than the
number 159, and the name Jones is lower than the name Smith. Special
characters, such as /@%*, or-, may also be included, because all computer
data has a value that can be compared with any other value. This is known as
the collating sequence.

Comparing operations are used to program the sequence checking of files,
sorting procedures, or the rearrangement of records in some desired order.
The comparison of an identifying field in one record with that of another
enables the computer to handle a number of associated files in one processing
procedure, provided that all files are in sequence by this common field.

One or both fields are placed in a storage register(s). The compare instruc-
tion then compares the first field against the second. (The second field, in
System/370, may be in a second register; in other systems, it is in a main
storage location). The results of comparison are registered as high, low, or
equal, by indicators or triggers that may then be interrogated to determine

Introduction to IBM Data Processing Systems 7-19

Section 7: Stored Program Concepts

their condition. If the indicator is on, a branch (transfer) instruction transfers
the machine to a subroutine that will continue processing according to the
result of the comparison.

Figure 7-15 shows a typical program arrangement for sequence checking a
single file of records. All records in the file are assumed to be in ascending
sequence by account number.

(Start)

\
Read
Record
Write Account No.
Record to
Register

Low
Store Out of

Compute Account Sequence
Number Routine

Figure 7-15 Sequence Checking

An input area is set aside in storage, where records are received, one at'a
time, from an input unit. A second area is also reserved in storage to store
the account number from the preceding record. The purpose of this area is to
allow comparison of the account number of the incoming record with the
corresponding field of the previous record.

If the file is in ascending sequence, the incoming record should always be
higher than the record that preceded it. When duplicate records are encoun-
tered, the incoming record is equal to the preceding one. If any incoming
record is lower than the previous record, it is recognized as an out-of-
sequence condition, and the program transfers to a subroutine to take correc-
tive action. After each high comparison, the account field is placed in stor-
age, where it may be compared with the next record.

Indexing In most computers, the address operand(s) of an instruction can be modified
by adding or subtracting variable quantities contained in one or more special
purpose counters. The counter may be called an index register when it is set
aside specifically for this purpose, or it may be a predetermined location in
main storage called an index word. A computer may have several index
registers or a number of storage locations for index words.

7-20 Introduction to IBM Data Processing Systems

Section 7: Stored Program Concepts

Computers with an indexing feature use an instruction format that allows a
particular register or word to be specified as a part of the instruction operand.

Assume that 50 quantities are placed in ascending word positions of storage
from locations 1001 -to 1050 inclusive and that these quantities are to be
added to the contents of a register. Without indexing or some other means of
address modification, it is necessary to repeat an add instruction 50 times with
the address of each instruction incremented by 1, as ADD 1001, ADD 1002,
ADD 1003, and so on.

With indexing, the add instruction can be written as ADD 1000, with the
address incremented by an index register containing the quantity 1. The
address remains 1000, but the computer calculates an effective address of
1000 plus 1, or 1001. When the add instruction is executed, the contents of
the index register are also incremented by 1, giving a total of 2. When the
same add instruction is reexecuted and is again incremented by the contents
of the same index register, the effective address os 1000 plus 2, or 1002. If a
program loop is formed to repeat this process, the effective address of the add
instruction is stepped up 1 each time it is executed (as the index register is
stepped up). When the index register equals 51, all 50 quantities will have
been added, and the loop is terminated. The computer has consequently
performed 50 operations using the same instructions.

Figure 7-16 is a flowchart of the index loop . The first instruction places the
quantity 1 in index register 4. An add instruction, with an address 1000 also
specifies as part of its operand a designation that the given address is to be
modified by the quantity contained in index register 4.

Set Index
Register. 4
to 1

>
o

\

ADD 1000
(Modified
by IR 4)

A

dd 1
=50 IfglR 4 ar?)—>—50——-
\te\st fg
50

Continue
Processing

Figure 7-16 Index Loop

The next instruction is branch on index, which means increase the contents of
the index register by a quantity contained in another register - in this case, the
quantity is 1; if the contents of the index register are less than or equal to 50,
branch to repeat the add instruction; if the contents of the index register
exceed 50, continue to the next instruction in the program.,

The indexing feature greatly simplifies programming of repetitious calcula-
tions or other operations and reduces the required number of instructions.

Introduction to IBM Data Processing Systems 7-21

Section 7: Stored Program Concepts

In System/370, the method used to address storage is known as base dis-
placement addressing. A general register is used as a base register for this pur-
pose. An operand of an instruction referencing a storage address does not
contain the actual storage address. Instead, it contdins a reference to the base
register and a displacement value such that the sum of the contents of the
base register and the displacement value equals the storage address. Further-
more, any instruction that makes reference to an index register will have its
storage address modified each time the instruction is executed by adding the
index value to the base displacement value. The base, displacement and index
values are left unchanged as a result of executing the instruction.

Linking Up to now, we have discussed conditional branches (transfers). In more
modern computers, it is usually possible to link, with one instruction, to a
subroutine so that the program can come back to its point of departure from
the main program after finishing with the subroutine, and not have to store,
unload, reload, and perform other housekeeping jobs. By using indirect
addressing in the linking procedure, a programmer can independently write
many subroutines; the link instruction then causes the computer to insert the
desired effective return address in the appropriate instruction of the subrout-
ine each time the subroutine is entered. We might imagine each of these
subroutines as a data set (comparable to a book in a library with disk storage
acting as a revolving bookcase, Figure 7-17). The exact linking method
differs from computer to computer; a simplified procedure is outlined below.

PROGRAM PROGRAM
g D
Programs l
on Disk Storage Link to A
Link to A PROGRAM
E
~
PROGRAM Al
c N
Link to A Link to A

Figure 7-17 Modular Programs with Linking

Suppose that many different types of reports are to be printed at a remote
(ASCII programmable) IBM 3770 Data Communication System and that the
computer is also polling other remote terminals for input. Assume also that as
soon as the internal processing of the information for each of these types of
output reports is completed, the information is stored on disk files in standard
EBCDIC format. Each time a message is taken from a disk file, it must be
translated into ASCII code format. The program sequence might be:

7-22 Introduct’ ~ to IBM Data Processing Systems

Section 7: Stored Program Concepts

INSTRUCTION NUMBER
1000 Link to: Read message 1 from disk
1001 Link to: ASCII translation routine
1002 Link to: Process input from line 1, if any
1003 Link to: Write message 1 to 3770 on line 2
1004 Link to: Process input from line 3, if any
1005 Link to: Read message 2 from disk
1006 Link to: ASCII translation routine
1007 Link to: Process input from line 4, if any
1008 Link to: Write message 2 to 3770 on line 2.

In this case, the first time the program links to the ASCII translation routine,
either the programmer puts the address 1002 as the return address or the
computer does it automatically for him. The second time, the return address
is 1007. In step 1002, the program links to a routine to test for a certain
condition. This means that the subroutine ends with another subroutine. If
there is no input from line 1, as the result of some indicator being tested, the
program branches to pick up the indirect address (stored previously by either
the programmer’s program or the computer). If there is input from line 1, the
last instruction of the subroutine will have to have the indirect address that
points the way back to 1003.

Factors in today’s computers that make this type of programming indispensa-
ble are internal interrupt systems that permit processing to continue until
some type of input/output activity is ready to start, or that permit a second
program to be processed while a first one is waiting for an error condition to
be rectified or an I/O operation to take place, and external interrupt systems
that permit teleprocessing interrupts from remote terminals.

It is easy to see, from the simplified programming example described above,
and from Figure 7-17, that programs that are subject to interrupts must
consist of short subroutines with a hierarchy of linking, and, if the computer
itself does not insert the return address in the "linked to' subroutine, the
programs must build tables of indirect addresses.

Depending upon the design of the computer, more or less of this linking
procedure can be done automatically. The programmer must store the su-
broutines and call for them when the computer does not do it automatically.

Interrupts that can occur as the result of a normal anticipated computer
function, such as an interval timer tirning out or the completion of an I/0
operation, can cause an automatic link to an address that is in a fixed location
in main storage. Other types of links that cannot be anticipated by machine
design require that the program itself do the linking and maintenance of the
indirect addresses.

Introduction to IBM Data Processing Systems 7-23

Section 7: Stored Program Concepts

Chaining Chaining has several possible connotations in present-day IBM computers. In
general purpose computers, such as System/370, chaining refers to 1/0
channel program-linking of commands or data addresses as command
chaining or data chaining. Linking described a system for keeping track of
the return addresses at the end of a program subroutine; chaining, on the
other hand, is a similar technique of programming for a "subroutine" of
input/output channel commands to be carried out, independently of CPU
activity. This can take place in a computer system that permits the program-
mer to include, as part of one command, the address of the next command
that the channel is to execute when it finishes its current input/output opera-
tion. The next command may be either to start a different input/output
operation or to transfer data to or from a different location in main storage.

Another concept of chaining is one that exists in computers designed especial-
ly for communication control. Here, chaining is a system of automatic block
allocation, whereby incoming data from each line is automatically stored
wherever main storage space is available, with the computer automatically
inserting the address of each new block assigned to a message in the last two
characters of the previously assigned block, wherever it may be. On output
messages, chaining is not quite so automatic. The program inserts the address
of each new block (of 32 characters) in the last two characters of the previous
block. This type of chaining eliminates the need for allocating ahead of time
a static amount of storage space for each line, space that may either be
insufficient or go to waste because of inactivity. Chaining, in this sense, is an
efficient form of data buffering discussed earlier under "Input/Output De-
vices'".

7-24 Introduction to IBM Data Processing Systems

Section 8:

Programming Languages and Techniques

Program Preparation

The capability of computers is expanding at a fantastic rate, and the technolo-
gy of utilization and control is advancing at an equal pace. These improve-
ments in techniques are as vitally important as the design of the data process-
ing system itself. To a large extent, the future of computers depends not only
on increases in speed, logical ability, and storage capacity, but also on the
efficient use of these facilities as they are made available.

Programming languages and techniques have been developed by IBM and

others to meet both present and future requirements of computer application.

A computer program represents much more than a set of detailed instructions.
It is the outcome of a programmer’s applied knowledge of the problem and
the operation of the computer system.

Problem definition, analysis, and program flowcharting (see preceding sec-
tion) are the first steps in program preparation. They are usually carried out
independently of the computer and the programming system.

Some or all of the following must be considered to prepare even the simplest
program (without the aid of preprogrammed input/output and monitoring
support, which will be discussed later):

1. Allocation of storage locations to data, instructions, and related inform-
ation.

Conversion of original data to an input medium.
Availability of reference data, such as tables, files, or constant factors.

Requirements for accuracy, and methods of checking and auditing.

A

Ability to restart the system in case of unscheduled interruptions or
error conditions.

6. Automatic monitoring of the system to ascertain that the required input
and output devices are connected and available for operation.

7. Housekeeping procedures that preset indicators, switches, and registers;
that type or display operator messages; and that check file labels.

8. Format of output data with provisions, if required, for later conversion
to cards, printed reports, or displayed reports.

9. Availability of program routines that have been used and tested in other
procedures and that may be used to advantage in the current procedure.

10. Conversion from the decimal number system to binary and from binary
to decimal, plus whatever other conversions are necessary to the internal
numbering system of the computer and codes used in input and output.

11. Editing of data with provision to record exceptions that cannot be
processed.

Introduction to IBM Data Processing Systems 8-1

Section 8: Programming Languages and Techniques

Types of Programming The computer executes instructions that are presented to it in machine
Languages language. In System/370, machine language instructions are in binary in
several formats. Even with the use of hexadecimal equivalents, writing
(coding) a program in machine language is extremely difficult, costly, and
time consuming. Furthermore, such a program is likely to contain numerous
errors. Subsequent corrections may be practically impossible to make without
introducing other errors. Instead of coding a program in machine language,
the programmer writes the program in one of many languages that are more
easily understood by the programmer and are more convenient means of
specifying the problem. Since the expressions of the particular language
cannot be executed directly by the computer, the expressions are translated
into machine language by the computer using previously written language
translator programs for the specific language. Depending upon the functions
provided by these programs, they are referred to as assemblers, compilers, or
interpreters.

Symbolic Language Symbolic languages permit the programmer to write convenient equivalents
of machine instructions using symbols (called mnemonics) to represent them.
Symbolic instruction representations include the following: A for add, S for
subtract, D for divide, ST for store, B for branch, and so on.

The first languages resulted in a one-for-one translation. That is, each in-
struction written in the programming language was translated into a single
machine language instruction. For example;

A REG1, 184

where REG1 is one of the 16 general purpose registers in S/370, would
produce the IBM S/370 machine language instruction:

01011010000100000000000010111000

Later, macro instructions were developed. That is, single programmer
language instructions could be used to produce a whole series of machine
instructions. This development greatly increased the power of programming
languages.

The translation feature of the machine language program is perhaps the most
important feature, but not the only one. The computer instructions needed to
produce a given result must be executed in a given sequence. If an addition is
to be performed, one of the values involved must be in an accumulator before
the add instruction itself is executed. This is normally accomplished with an
operation called L, "Load". After this operation is executed, the add opera-
tion may be executed. The two-instruction sequence is shown in both a
machine language and a symbolic language in Figure 8-1.

Machine Symbolic
010110000001000000000001 10000000 L REG1, 384
0101101000C1000000000001 10001000 A REG1, 392

Figure 8-1 Machine and Symbolic Codes

8-2 Introduction to IBM Data Processing Systems

Section 8: Programming Languages and Techniques

Each final machine language instruction must be assigned a particular location
in main storage. For example, if the L instruction is to be assigned a location
of 1000 (its precise location in main storage), and the add instruction is to
immediately follow it, the location of the add instruction must be 1004 (since
the load instruction is a four-byte instruction). Therefore, the location of
each instruction must be known precisely. It is, in effect, the ''name" of the
instruction. If an additional instruction is to be inserted in a program of many
instructions, every instruction from the point of insertion must have its
previously assigned location changed. Since most programs undergo changing
or updating, instruction location assignment becomes a tedious but necessary
part of programming. The solution, of course, is to have the translating
program do the actual assignment of instruction locations in addition to its
translating function. The programmer need simply tell the translating pro-
gram the desired location of the first instruction, and succeeding instructions
are assigned sequentially ascending locations.

The advantage of expressing a problem in symbolic language over machine
language should now be evident. This symbolism may be carried one step
further by using symbolic data addresses as well as symbolic operation codes.
The translating program can then be designed to translate and assign these
symbols to actual main storage locations. Using the same instructions as
before, assume that the two values to be added are expressed as values A and
B. Of course, in both methods the values must have been previously placed in
main storage, but the problem can now be stated as in Figure 8-2.

Instruction
Operation Part Address Part
L REG1, A
A REG1,B

Figure 8-2 Symbolic Operations and Addresses

If we now were to tell the translating/assigning program that we want the
first instruction placed at main storage location 1000, the program shown in
Figure 8-3 would result. (For better understanding, the program is expressed
with symbolic operation codes and decimal addresses and locations, instead of
machine language).

Introduction to IBM Data Processing Systems 8-3

Section 8: Programming Languages and Techniques

84

Language Translation

Instruction Instruction
Location
Operation Part Address Part
1000 L REG1, 4000
1004 A REG1, 4004
4000 Value of A
4004 Value of B

Figure 8-3 Assigned Addresses and Locations

The translating/assigning program is called a translator or assembler. In
normal operation, the translator is loaded into the computer system’s main
storage. Next, the instructions (prepared by the programmer to accomplish a
particular job, as coded in his language) are entered into the computer. The
computer than translates the programmer’s instructions into machine language
instructions, which use the order and logic set up by the programmer. The
translated machine instructions are placed in main storage and form the actual
program.

A programming language can be thought of in two parts: (1) the language
itself, with associated rules of grammar, and (2) a machine language program
(the translator), whose main function is to translate the language of the
programmer into machine language.

The input to a translator is called the source program. This is written by the
programmer in the language of the programming system (processor language).
and states the requirements of the problem and the method of solution.
Before the programmer writes his source program, he must have completely
analyzed and defined the problem.

The output from the processor is the object program (or object module), the
translation of the source program from the programmer’s language to the
language of the computer system on which the program will be used.

In some systems the object program may be executed. In others, the object
program is not in executable format but must be processed by a program
called the Linkage Editor which will produce a load program (or load mo-
dule) which is an executable program. Subroutines (standard programs used
with many problems), together with tables and other constant factors, may
also be required within the computer to support the execution of the problem.
Depending upon the processing mode, the input or data source may have to
be made available before execution can begin.

After the problem is executed (solved) by the computer, the result (output)
may be recorded on magnetic tape or disk for later printing or viewing on a
display terminal. Results also may be printed directly from the computer.

Introduction to IBM Data Processing Systems

Machine-Oriented
Programming Languages

Section 8: Programming Languages and Techniques

A proven object program may be used time after time, with varying problem
data, to produce periodic results (such as production type programs of payroll
or inventory) or to produce different results to assist the designer seeking an
optimum design (such as the best wing airfoil or the most efficient placement
of steam pipes within a boiler), considering all variables for each application.

In a machine-oriented programming language, the programmer uses symbolic
codes or names to designate operations that the computer is to perform.
Symbols are also used to designate the location in main storage of data used
with the operations. The translator then assembles the symbolic codes and
translates them into machine language instructions with actual machine
storage locations.

The System/370 Assembler Language is an example of a machine-oriented
language. The programmer uses coding sheets (Figure 8-4) to write each
instruction that the computer must perform. Each line of coding will be
punched into one card. The vertical columns on the form correspond to card
columns.

IBM 1BM System/360 Assembler Coding Form
PROGRAM IDROGA— PUNCHING GRAPHIC PAGE M_:qr‘
PROGRAMMER T I JONES (NSTRUCTIONS PUNCH TR GRS N
1 o s w0 » O » s o © s 50 R
PRoGA._ | s7ART @ | ! i RN AT
BEGIN | | | |BALR | 11,4 i !) EEREE 1T
L |uszng ey 2a | HERER HEEERE N RERRE
e T eeard T T oA Resrs|reR 2 AEENAREn
] R A A YW SRR EEEREN NN
I SLA NN REEE L JTHIS HAS E\FFECT] 0F MULTIPLYING
L ' WDATA#EL | WNOTE RELATIVE ADORESISING | | ||
L s | B,RESsweT | i R
l ' L ¢, BrML ' cag [1 ; | i) RN
B ; AR RERE N R e SRR
L llevy | 6y2ed] i __|CoNVERT TO| PECIMAL || | | .
. : oJ | ‘ END OF Jo : : B
DATA Dc F'25 7 L : i .
L) 115’1 , ; i |
cond |1 | e Frig’| . . L SEREERS
ESVULT S N : L
TNL Fr127] . B RN
TN2, : F 787 : , :
DEC s X |
END E£GI M i]

Figure 8-4 A Program to Illustrate Assembler Language Concepts

Space is provided on the form for program identification and instructions to
keypunch operators. None of this information is punched into a card.

Introduction to IBM Data Processing Systems 8-5

Section 8: Programming Languages and Techniques

8-6

Macro Instructions

The body of the form is composed of two fields: the statement field (columns
1 through 71), and the identification-sequence field (columns 73 through 80).

Statements consist of from one to four entries in the statement field. From
left to right, they are: name (eight characters), operation (five characters),
operand and/or comments (56 characters).

The name entry is a symbol created by the programmer to identify a state-
ment. A name entry is optional. It must consist of eight characters or fewer,
and be entered with the first character appearing in column 1. No blanks may
appear in the symbol.

The operation entry is the mnemonic operation code specifying the machine
operation or assembler functions desired. An operation entry is mandatory.
If there is no name entry, the operation entry may be placed anywhere to the
right of column 1; if there is a name entry, at least one blank column must
separate name from operation. (The same '"free-form' rules apply to the
other entries - that is, at least one blank must separate them, and they must
be in the order described above, but otherwise they are not restricted in
location.) To be able to see and comprehend easily what there is in the way
of a program, it is best to follow the field column designations on the coding
sheet and start the operation in column 10.

Operand entries are the coding specifying and describing data to be acted
upon by the instruction, by indicating such things as storage locations, storage
area lengths, or types of data. Depending on the needs of the instruction, one
or more operands may be written. The operands must be separated by
commas, and no blanks may occur between the operands and the commas
that separate them. Operands of machine instructions generally represent
such things as storage locations, general registers, immediate data, or constant
values. Operands of assembler instructions provide the information needed
by the assembler program to perform the designated operation.

Comments entries are descriptive items of information about the program,
usually something to remind the programmer of (or direct another program-
mer to) the purpose of the program step (or related sequence of steps). An
entire line may be used for a comment by placing an asterisk in column 1.
Extensive comments may be written by placing an asterisk at the beginning of
each line.

There are many more conventions to the System/370 assembler language, but
knowing this much about the makeup of the four types of entries should
provide a basic understanding of the principles of coding.

The next step to increasing the effectiveness of a machine-oriented language
involves enlarging the functions of the translator.

The macro language provides the programmer with a convenient way to write
a definition that can be used to generate a desired sequence of assembler
language statements. Most macros are supplied by IBM. However, any user
may develop his own to satisfy a special requirement.

The definition is written only once, and a single statement, the macro instruc-
tion statement, is written each time a programmer wants to generate the
desired sequence of assembler language statements. This facility simplifies

Introduction to IBM Data Processing Systems

T he Macro Instruction
Statement

The Macro Definition

The Macro Library

Varying the Generated
Statements

coBOL

Section 8: Programming Languages and Techniques

the coding of programs, reduces the chance of committing programming
errors, and ensures that standard sequences of assembler language statements
are used to accomplish desired functions.

A macro instruction statement (usually referred to simply as macro instruc-
tion) is a source program statement that can produce a variable number of
machine instructions. Macros, just like assembler language statements, are
source program statements that are processed by the assembler.

The assembler generates a sequence of assembler language statements for
each occurrence of the same macro instruction. The generated statements are
then processed like any other assembler language statement.

Before a macro instruction can be assembled, a macro definition must be
available to the assembler. A macro definition is a set of statements that
provide the assembler with (1) the mnemonic operation code and the format
of the macro instruction, and (2) the sequence of statements that the assem-
bler generates when the macro instruction appears in the source program.

The same macro definition may be made available to more than one source
program by placing the macro definition in the macro library. The macro
library is a collection of macro definitions that can be used by all the assem-
bler language programs in an installation.

Each time a macro instruction appears in the source program, it is replaced by
the same sequence of assembler language statements, unless one or more
conditional assembly instructions appear in the macro definition. Conditional
assembly instructions are used to vary the number and format of the generat-
ed statement.

Each problem-oriented language has its own method of writing macros. Some
seem to be almost like writing plain English sentences. Problem-oriented
languages include COBOL, FORTRAN, PL/I, APL, RPG, and BASIC. They
are called problem-oriented because they are tailored to the problem rather
than to any particular machine.

With COBOL (Common Business-Oriented Language), the translator still
must produce a machine language program before a problem can be solved.
However, the language written by a COBOL programmer bears little resem-
blance to machine language, and the problem programmer has little direct
concern with the method by which the COBOL language program is translat-
ed into machine language.

A simple example will best illustrate the basic principles of the problem-
oriented type of programming system. Assume we wish to increase the value
of an item called INCOME by the value of an item called DIVIDENDS. The
COBOL language allows us to specify the addition by writing the following
sentence:.

ADD DIVIDENDS TO INCOME.

Before the COBOL translator can interpret this sentence, however, it must be
given certain information. For example, the programmer will have to write
the names DIVIDENDS and INCOME in a special part of the program, called

Introduction to IBM Data Processing Systems 8-7

Section 8: Programming Languages and Techniques

8-8

FORTRAN

the data division, where facts about the data represented by those names
(such as maximum size, how the data is expressed, etc.) are stated.

When the translator encounters the sentence, it has access to certain informa-
tion that will aid it in translating the sentence. In addition, it will be able to
obtain certain information "built into' the translator itself. (Note, however,
that the exact procedure will vary from machine to machine and that, in any
case, the problem programmer is not directly concerned with the details.)

First, the translator examines the word ADD. It consults a special list of
words that have clearly defined meanings in the COBOL language. This list
is a part of the translator. If ADD is one of these words, the translator
interprets it to mean that it must insert into the object program the machine
instruction (or instructions) necessary to perform an addition.

The translator then examines the word DIVIDENDS. Since it can obtain
certain information about DIVIDENDS, it will know where and how this
information is to be stored in the computer, and it will insert into the object
program the instructions needed to locate and obtain the data.

When the translator encouters the word TO, it again consults the special word
list. In this case, it finds that TO directs it to the value of INCOME, which is
to be increased as a result of the addition.

The translator must now examine the word INCOME. Again it has access to
certain information about this word, and, as a result, it is able to place in the
object program the instructions necessary in locating and using INCOME
data.

We have indicated that the programmer placed a period (.) after the word
INCOME, just as he or she would in terminating an English language sen-
tence. The effect of the period on the COBOL translator is quite similar. It
tells the translator that it has reached the last word to which the verb ADD
applies. ‘

The previously described steps are performed by the translator in creating the
object program. They might not always be performed in exactly this way or
in the same sequence, because machines vary and because each translator is
adapted to a particular machine. However, regardless of the machine, the
same COBOL language sentence produces machine instructions that cause
the object program to add together the values DIVIDENDS and INCOME.

The FORTRAN (Formula Translation) language is very similar in concept to
COBOL. One of the main differences is in the language the programmer uses
to express the source program. Where business English is used by COBOL,
mathematical language is used with FORTRAN. The effect of the COBOL
sentence

ADD DIVIDENDS TO INCOME.
could be achieved by the FORTRAN statement
INCOME = DIVIDENDS + INCOME

However, FORTRAN translators for some machines might insist that the
words be abbreviated to something like:

INCO = DIV + INCO

Introduction to IBM Data Processing Systems

PL/I

Section 8: Programming Languages and Techniques

This would depend on the individual machine FORTRAN translator. The
statement, in effect, tells the translator to insert the necessary instructions
into the object program to make the INCOME data location equal to the
DIVIDEND data added to the present INCOME data. Note that the comput-
er is not merely instructed to find the value of INCOME, but is also told
where to put the result of the addition after it is performed. If the original
INCOME field (in core storage) contained 10000, and the DIVIDEND field
contained 15, the original INCOME field would be replaced by 10015 after
the operation had been executed.

If this result is not desired, the programmer could change the statement to:
INCOME1 = DIVIDENDS + INCOME

With this change, a new INCOME]1 data field would be generated in main
storage, the result of the addition would be placed there, and the original
INCOME field would remain unchanged.

The System/370 is able to handle problems from both the scientific and the
business fields with equal facility. Neither FORTRAN (science-oriented) nor
COBOL (business-oriented) allow access to the full capability of such a
system as System/370.

Also, with the development of more and more decision-making, forecasting,
and teleprocessing uses for computers, the business programmer requires
frequent changes to his or her programs and a wider scope of computations.
The scientific programmer, on the other hand, is faced with the task of
handling problems with masses of data, with a wider variety of input/output
requirements. The differences between scientific and business programming
are thus becoming less distinct. PL/I has been developed to meet the need
for a broad-base language that may be used for both business and scientific
applications. Some general characteristics and features of the language are
summarized in the example in Figure 8-5.

In PL/I as in FORTRAN, addition (or other arithmetic operations) can be
specified by the standard oeprators +,-,/,*,and **, For example, INCOME
= DIVIDENDS + INCOME; PL/I differs from FORTRAN only in the
presence of the semicolon (;) which ends a statement, and in that this state-
ment can be written in free form, as found convenient by the programmer.
Addition can also be indicated by a statement which looks more like COBOL
such as:

SUM=ADD(DIVIDENDS, INCOME, 8,2);

This will put the result of adding DIVIDENDS to INCOME into an address
named SUM which has an 8-position field, including two positions to the right
of the decimal point.

ADD, DIVIDE, MULTIPLY, ATAN, COMPLEX, ERF, INDEX, MAX,
MIN, ROUND, SUM, TAN, are a few of the built-in functions available to
the PL/I programmer to operate on individual data items, on arrays (vectors
or matrices), or on structures (tables) of data items. The keywords of PL/I
are not reserved words, and program text may be written in free form. For
example, the program (called PROCEDURE in PL/I) on lines 1-8 in Figure
8-5 is the same as that on lines 9-12.

Introduction to IBM Data Processing Systems 8.9

Section 8: Programming Languages and Techniques

GET
Mort. No.,
Old Bal.,
Payment
Int. Rate

Calculate
Interest Chg.

Calculate
Amount of
Principal Paid

Calculate
Balance
of Loan

PUT
Mort. No., Oid
Bal., Int. Chg.
Amount of
Prin. Pd.

x=2y/12

a=b-x

C=2Z-

Keywords such as PAGE, SKIP, LINE, COLUMN, PAGE SIZE, LINE
SIZE, make it possible to specify the format of printed output in as much
detail as desired.

+

MWMM(M,IMMH..;“ [T O PSS P
FENT FTTE FUEws

M_LLLLLL_EEA!&LLBMMTE/NL..Q TR PN PRI U FUUTE PP v
it pesala PAYNPALDE PAYM-CHARGES |\ oyt conipinalinbiaslonnbiatian
et eeiponos iy BAUANGE 5 ORAL-PRINPALDS. oo looacfiostsaag ool

AMMWWMJW
MLTOM.\'1....1“.‘1...”...Al.“‘l,.A.l....n.ul““l....l.“.l.

M VTS FEUUS TV FUUTE TN PEUDE PO UUREN PRUTE FUTEE FUETS IS S
AN e N S P DU PR DTN PR TS FUTWE SUUT FTWES e Liaas

L Pl AP

wurn;an-

1 BILLING:PROCEDURE OPTIONS (MAIN);NEXTCARD:GET DATA (MORNO OBAL, PAYM,
RATE);CHARGE=OBAL*RATE/12; mmmm-mm-cmon,m

if OBAL-PRINPAID;PUT DATA (MORNO, OBAL, CHARGE, PRINPAID,

{2. BALANCE) ;GO TO NEXTCARD;END BILLING;

n|_BOB.:PROCEPUAE, OPT.LONS (MALML; JITMAS, 15 A COMNENTIS (o yiiiitiisifiind
4_‘_,_._4[!‘5&_;&&_‘1&,3,% ST T U FUUIN U
L = 12; SN TN TS P FTTO PR e

!A.“I....i....l.JA.gl.“l.;;;'LA_LLLLLJ_J_._L‘_u_LLLu_L}_A_u_LlJ_L.u_
[FSTEIEIN <. 7. HEVIN PP ST FETTS PRI TR PR PRI PR TR SRR PRSI
W PUT DATA CABNAG)S i Uit e L
LI Y. T B S FEGSY PRTTE FUWEY FITTE FUTTE FUTTE FURTE PR FETES WS EETes S
'_.MD_MR;._LL“_LLA LLPAM+MMWM S TS DTN P BT P

4L1llllAll N Y I PR VS SV IS il P T P TS PR TS PP TS PSSR e

L TS TS PN T PUDWE ST v NS T WS R T T Preews
nmmmmmwmm'w&mm..m;..m R
: PUT NM&@TAWM;‘“M. T PO P ST
P TV FETTY FUUTE PO PP BT DETTE FUDI FRUTE DI U FETEe RTE SR FETEE I
'PTTTE PUEY DI T DU TS DT DTS ST DI DT e e e
Lawasbeanala } Liasadaaaads 1uA14J“4L“41A_Lu4ML‘._A+.4_._..u_L‘_A_LL
aaad il 1 1 sadesa e lacaad 2l Liaasdaaaada 1 il wdl s daa

Figure 8-5 Flowchart and Coding in PL/T of Part of Mortgage Processing

APL

APL (A Programming Language) is a highly sophisticated problem-oriented
language, having a large number of symbolic built-in functions (primitive
functions) and operators that render it possible to write complicated programs
within a simple syntax in a concise form. (In other languages, functions such
as matrix inversion and output formatting are library routines, but in APL
they are part of the primitive function set).

APL uses a special character set as shown in Figure 8-6. (Several APL

8-10 Introduction to IBM Data Processing Systems

Section 8: Programming Languages and Techniques

characters such as [1 require overstriking). In System/370, most APL charac-
ters are assigned otherwise unused EBCDIC values.

There are several methods of executing programs written in a high-level
language. The most widely used is to compile the programs into machine
language. Another is to translate the programs into some intermediate form
and then execute that form interpretively. (The intermediate form is not in
machine language or object code. During execution of the program, each
statement is interpreted, translated into machine instructions, and executed
prior to proceeding to the next statement).

In many high-level languages, a compromise has been made between making
the language easy to use and enabling it to be compiled. In APL, this com-
promise has not been made. APL is designed to be both powerful and easy to
use: consequently APL programs are executed by interpreters, as it is difficult
and perhaps impossible to compile APL into conventional machine language
instructions.

In all APL systems, processing takes place in a piece of memory called a
workspace, which contains APL programs, data, and control information, as
well as some unused space. The user may further save those work spaces in a
disk library and recall them at will, in this way giving to each user a flexible
and easy procedure for building and using his/her application packages. Each
user can have a library of many workspaces, but only one can be active at a
time. When APL execution begins, the user is provided with a clear works-
pace - one containing some control information but no programs or data. The
user can enter programs into the clear workspace, or replace it by loading a
workspace from the user’s library. When the system is ready for input, the
user can type an APL command, define or edit an APL. function, or type an
APL statement. Statements, which are executed immediately, may initiate
extensive calculations by calling previously defined APL functions.

< =LZI> 2 v] Al -:-j
4 | 5 6 7 L 9 | O | b%s

g

|
L}:.JJ

Figure 8-6 Typical APL Keyboard

The APL program shown in Figure 8-7 was entered interactively at a termi-
nal. The examples shown were entered immediately thereafter.

Introduction to IBM Data Processing Systems 8-11

Section 8: Programming Languages and Techniques

8-12

Report Program
Generator

VAVERAGE
(1] 'ENTER NUMBERS'
(21 X<
£3l] 'THE AVERAGE IS ';+/X3pX
(4] v
AVERAGE
ENTER NUMBERS
O:)
2 4 6 8

THE AVERAGE IS S

AVERAGE
" ENTER NUMBERS
O:

1 23 4567 8 9 10 11 12 13 14 15
THE AVERAGE IS 8

AVERAGE
ENTER NUMBERS
0.

115

THE AVERAGE IS 8

Figure 8-7 A Simple APL Program and Examples Using the Program

The Report Program Generator (RPG) language is a problem-oriented
language. It is a very simple way of adapting an application to a computer.
The file definition and input/output control considerations normally required
of the programmer by other programming languages are reduced to the filling
out of simplified control forms.

The input format specifications form is used to:
1. Specify the file or files to be read into the system.
2. Identify the different types of records contained in each file.
3. Describe the location of the data fields in each record.

The output format specifications form is used to:

1. Specify the kind of output files to be produced, printed reports, summa-
ry cards, etc.

2. Specify the location of the data fields of the reports or records.
3. Specify any headings or totals for printed reports.

4. Specify any editing or zero suppression needed for the printed reports or
records.

Introduction to IBM Data Processing Systems

Program Checkout

Testing Techniques

Section 8: Programming Languages and Techniques

The file description form provides additional information regarding the
input/output files, such as specifying the input/output units used by the
program and other features associated with input/output control.

The calculations form is the heart of the logic of the program. For calcula-
tion, RPG is a three-address language.

We can perform a mathematical operation (like add) on two addresses and
store the result in a third address, all in the same statement.

The calculations form is divided into three categories, as follows:
1. Time to do the calculations.
2. Kind of calculations to be performed.
3. Tests to be made on the results.

Depending upon which programming system is used, there are 22-27 different
operation codes. They include add, subtract, multiply, divide, table lookup,
compare, move, branch, test zone, exit to a subroutine, etc.

After successful translation of a source program, and then linkage editing in
some systems, the next step in program preparation is to check the resultant
machine language program by running it with test data. This is done to make
sure that the program does not have logical errors and that it is capable of
producing a right answer when using test data. Two results are possible. The
first - and, hopefully, the only - result is that the problem (for which the
program was written) can now be executed with real data. The second result
- the test run does not function properly - may occur because of many things.
The most frequent cause is that the source program has been improperly or
incompletely stated.

Mistakes by the programmer are more difficult to avoid than might be expect-
ed. It is, in fact, a rare program that works correctly the first time it is tried
with test data. In most cases, many test runs must be made before most or,
hopefully, all mistakes are found and corrected. The translator itself finds
most of the obvious mistakes during the translation run. Such things as
calling for a storage location by a name when that name has not been defined,
attempting to perform fixed-point arithmetic on floating-point data (or the
reverse), lack of defined alternative paths on testing operations, and card-
punching errors of all kinds are detected and noted during the translation run.

Computer mistakes are rare and usually obvious. Built-in detection circuits
will normally reflect the kind of mistake the computer has made by turning on
an indicator and stopping the computer. Detection and classification of the
mistakes a programmer can make are, however, many times more complex.

As previously stated, a computer program may be expressed in machine,
symbolic, or one of the problem-oriented languages, such as PL/I, FOR-
TRAN, or COBOL.

Many techniques exist to assist the programmer during the checkout phase of
his work. Each has its own advantages and disadvantages. The one to be
used for a particular problem will depend upon the programmer’s thoughts as

Introduction to IBM Data Processing Systems 8-13

Section 8: Programming Languages and Techniques

Storage Printout

Tracing

Iimproved Programming
Technologies

Structured Programming

to what area of the program is in error and how extensive the error is. Two
common techniques are storage printout and tracing.

This type of utility program (routine) is helpful because practically the entire
contents of storage, plus the contents of working computer registers and the
condition of indicators and switches, may be presented in printed form.
Normally, the register contents and the condition of indicators and switches
are printed first. The contents of storage are then printed. Each line of
printing representing storage begins with the starting location of that line
expressed in hexadecimal and/or mnemonic format. The print (dump)
routine sometimes has provisions for dumping one or more selected blocks of
storage instead of all of it.

If visually checking a storage printout fails to reveal the program difficulty, a
technique called tracing may be used. The trace technique usually involves an
interpretive routine and, therefore, executes a number of instructions for each
program instruction being traced. The printout received while tracing normal-
ly includes the location of the instruction being executed, the instruction
being executed, and the contents of the working registers after the instruction
has been executed. The printing of each instruction execution in a program
would result in excessive machine time and should be used only when all
other methods fail to reveal the program trouble.

The basic tracing technique may be revised so that only the contents of
selected storage locations are printed when program execution reaches a
specified point in the program. With this variation, a snapshot is obtained of
a particular part of the program under particular conditions. For example, the
trace and resultant printout may be specified to occur only when the program
executes a transfer instruction. A whole series of snapshots then result
showing the execution path through the program. Only the instructions that
altered the normal execution path are recorded to show the exception paths
the program has executed.

Until several years ago, improvements in program development techniques did
not keep pace with the significant improvements in hardware technology.
Increased hardware speed and capacity, configuration flexibility, and pro-
gramming system capability led to increased complexity of the application
systems developed. The volume of completed programs used for production
purposes in user installations increased along with the continued need to
modify (and often correct) such programs. (This is usually referred to as
program maintenance). With larger portions of the data processing department
budget being devoted to programming and with "maintenance" requiring an
increasing fraction of the programming budget, considerable efforts have
been made to increase programmer productivity resulting in the development
of the Improved Programming Technologies described below.

Traditionally, individual programmers have applied their own sets of rules to
the construction of the logic of their programs. Starting with this logic struc-
ture, as one encounters additional combinations of conditions to be met,
programmers add them as afterthoughts rather than revising the logic of the
program.

8-14 Introduction to IBM Data Processing Systems

Section 8: Programming Languages and Techniques

The resultant code tends to contain alarge number of GO TO statements, and
its logic may not be easy to follow. During subsequent unit and integration
testing, disintegration of the programmer’s original structure occurs as new
constraints and conditions are imposed upon it. This leads to more GO TO
statements, more labels, and a final program whose logic may be completely
obscured. Reading and testing such programs is difficult The degree of
confidence in their quality or correctness tends to be low. And, of course,
such programs tend to be difficult to maintain and modify.

Research by computer scientists and mathematicians indicates that an alterna-
tive method of programming, known as structured programming, can help
solve these problems. This technique involves coding programs using a
limited number of control logic structures to form highly structured units of
code that are more readable and, therefore, more easily tested, maintained,
and modified.

Structured Programming Theory

Structured programming is based on a mathematically proven structure
theorem which states that any program can be written using only the three
control logic structures illustrated in Figure 8-8.

« Sequence of two or more operations (MOVE, ADD....)

« Conditional branch to one of two operations and return (the IF p
THEN C ELSE D of Figure 8-8)

+ Repetition of an operation while a condition is true (the DO E WHILE
q of Figure 8-8)

Any program may be developed by the appropriate iteration and nesting of
these three basic structures. Each of the three structures has only one entry
and one exit. A program consisting solely of these structures is a proper
program; that is, a program with one entry and one exit. It always proceeds
from the beginning to the end without arbitrary branching. The logic is easier
to follow, permitting functions to be isolated, understood, and tested. Proving
the logical correctness of structured code becomes feasible.

Introduction to IBM Data Processing Systems 8-15

Section 8: Programming Languages and Techniques

Sequence of two operations > A . B .
C
IFTHENELSE: Conditional branch to one of
two operations and return
D
E
DOWHILE: Operation repeated while a condition is true q >
s d

Figure 8-8 The Three Elemental Logic Structures of Structured Programming

Extensions to the three basic logic structures are permitted only when they
retain the one-entry, one-exit property. An example of such an extension is
the DOUNTIL structure (Figure 8-9) that provides for the execution of the
function F until a condition is true.

DOUNTIL: Operation repeated until a condition is true e

Figure 8-9 The DOUNTIL Structure

8-16 Introduction to IBM Data Processing Systems

Section 8: Programming Languages and Techniques

Top-Down Program Traditional software development has often been approached as a bottom-up
Development procedure, where the lowest level units are coded first, unit tested (the testing
of each unit such as a module individually), and made ready for integration.
Data definitions and interfaces between units tend to be simultaneously
defined by each of the programmers, including those working on the lowest
levels of code, and are often inconsistent. During integration, definitions and
interface problems are recognized. Integration is delayed while the data
definitions and interfaces are correctly defined and the units are reworked and
unit tested to accommodate the changes. It is often difficult to isolate a
problem during the traditional integration cycle because of the difficulty in
identifying which of the many units combined during integration is the source
of the problem. The resultant program, because of last-minute redesign,
coding, and testing, is often lacking in quality. Superfluous code in the form
of driver programs is needed to perform the unit testing and lower levels of
integration testing. Management control is often ineffective during much of
the traditional development cycle because there may be no coherent, visible
product until final integration.

Top-down program development is designed to reduce these problems by
reordering the sequence in which units of code are written. A program unit is
coded only after the unit that invokes it has been coded and tested. There-
fore, top-down program development both assumes and is patterned after a
program structure of hierarchical form as illustrated in Figure 8-10.

Job
Control
Language
l
Linkage
Editor
Statements
Main
O oy
I
[1
@] unite Unit J
[: | [| 1
‘ ® c F K N
® D £ G H L M 0 P

Figure: 8-10 A Hierarchical Program Structure

Introduction to IBM Data Processing Systems 8-17

Section 8: Programming Languages and Techniques

Chief Programmer Teams

8-18

HIPO

The chief programmer team is an organizational technique designed to coordi-
nate the efforts of programming specialists while retaining the responsiveness
and integrity of design expected of a skilled individual. A chief programmer
team is a small group under the direction of a senior level programmer called
the chief programmer. The team normally consists of three to five program-
mers, and other specialists as appropriate. A chief programmer team repre-
sents an opportunity to improve both the manageability and the productivity
of programming by moving the program development process from private art
to public practice through organizational techniques. These techniques
include:

« Restructuring the work of program development into specialized jobs

« Recognizing the need for technical expertise in the leadership of the
team effort

« Recognizing the need for leadership in the training and career develop-
ment of the team’s personnel.

» Defining relationships among specialists

+ Using disciplines to help team members communicate effectively with
one another.

« Working effectively with a developing, always visible, project

The chief programmer is responsible for program design of the system, and is
vested with complete technical responsiblity for the project. The chief writes
the mainline routines, the critical code, and the operating system interfaces.
The chief defines the modules to be coded by other team members and is
responsible for specifying the interfaces between modules and for the data
definitions. The chief reviews code written by other team members, oversees
the testing and integration of all code, informs management of the project
status, and arranges for additional team members when necessary.

Application function is often documented in prose toward the end of a
project. This creates a two-fold problem: (1) descriptions of functions may
be incomplete because of the difficuity of extracting functions from the bit
manipulation performed by the programs, and (2) prose descriptions of
functions are often voluminous, ambiguous, and difficult to relate systemati-
cally to the program modules performing the function. Hierarchy plus Input-
Process-Output (HIPO) helps solve these problems by providing the program-
mer with a graphic technique for documenting function from the beginning,
before programming starts and while the function is clear in the designer’s
mind. HIPO also reduces the amount and ambiguity of the prose required to
document function and provides a systematic means of identifying all the
functions to be performed and the modules that perform them.

In describing the functions to be performed, HIPO diagrams progress from a
generalized functional description to greater levels of detail. The functions
themselves are described in terms of the process that occurs, coupled with the
necessary input and resultant output. Such diagrams are a logical means of
representing functions identified in a top-down design effort. Specifically, a

Introduction to IBM Data Processing Systems

Section 8: Programming Languages and Techniques

typical HIPO package consists of a hierarchy chart, or diagrammatic visual
table of contents, one or more overview diagrams, and detail diagrams.

The visual table of contents (see Figure 8-11) identifies all the overview and
detail diagrams in the package, shows their hierarchical relationships, and
permits the reader to locate quickly a particular level of information or a
specific diagram.

Calculate
pay
1
Calculate Calculate
gross pay net pay
6
Accumulate Determine Calculate Calculate Write checks
hours worked pay rate gross pay deductions for net pay
3 @ 5 7 8

Figure 8-11 Sample HIPO Visual Table of Contents

The overview and detail diagrams describe functions graphically. Each
diagram consists of three parts: (1) input - the input to the function (files,
records, fields, control blocks, etc.), (2) process - the process steps that
support the function being described, and (3) output - the output of the
process (files, records, control blocks, etc.).

The overview diagram describes one or more functions in general; the detail
diagrams expand on this description. Figures 8-12 and 8-13 illustrate an
overview diagram and a detail diagram, respectively.

Introduction to IBM Data Processing Systems 8-19

Section 8: Programming Languages and Techniques

8-20

@Caiculate Gross Pay

INPUT PROCESS OQUTPUT
payroll 1. Accumulate Payroll
job record h(’u":;d master

worl
(Diagram #3)
2. Find correct
Payroll > pay rate for >t Gross
master type of work pay file
(Diagram #4)
3. Calculate

Pay rate gross pay Error

table (Diagram #5) message

Figure 8-12 Sample HIPO Overview Diagram

In addition to the input, process, and output sections, each detail diagram may
include an extended description section, keyed by number to the process
section. This section can be used to describe each numbered process in more
detail and point to the program modules in which the process is implemented
and to the modules calling the process (see Figure 8-13.) An extended
description section can also be used in an overview diagram to further de-
scribe each process and point to detail diagrams in which the numbered
processes are further expanded.

Introduction to IBM Data Processing Systems

Structured
Walk-Throughs

Section 8: Programming Languages and Techniques

Determine Pay Rate
INPUT Start PROCESS ouTPUT ”
- 1 For invalid employee Employee no.
Payroll number: error
master - issue error message messages
— bypass job records
iob records r ge error
o — bypass job records messages
i Updated
3 Check for special payroll payroll
conditions master
Pay rate /
tagle >' 4 Find correct pay rate >
Payroll job
5 Update master-and put records
rate in job records with rate
b Diagram 5
Extended Description Routine Label
1. The program checks for valid employee number. {ODNA DETR

If valid, job records for that number are bypassed
and an error message is printed.

2. A check is made for correct type of work. If invalid,
bypass job records & print error message.

3. Special conditions such as overtime, shift pay,
vacation pay, or holiday pay are checked to
help determine correct rate.

4. The master record, job records, & pay rate table
are all referenced to determine correct pay rate.

5. When alt conditions are checked, payroll job records
are rewritten with proper rate, payroll master updated.

Figure 8-13 Sample HIPO Detail Diagram

Sometimes program errors result from the lack of experience of the designer
or programmer (developer). Probably, more often, they result from the lack
of perspective of the developer, who has been too close to a program for too
long and finds it difficult to see any errors in it. In fairness to the program-
mer, what is needed is an objective check on a program’s overall logic and
completeness by someone who has not been immersed in its details. It is
important to detect and remove errors as early in the cycle as possible, when
the cost of correcting them is lowest and their impact is smallest. The struc-
tured walk-through is designed to detect and remove errors as early as possi-
ble in the cycle in a problem solving and non-fault-finding atmosphere in
which everyone, and especially the developer, is eager to find any errors in
the work product being reviewed.

Introduction to IBM Data Précessing Systems 8-21

Section 8: Programming Languages and Techniques

8-22

Inspections

A structured walk-through is a review of a developer’s work (program design,
code, documentation, etc.) by fellow project members invited by the develop-
er. It is conducted by the developer without the manager’s presence. Such
reviews help the developer find errors earlier in the development cycle. In
addition, they give reviewers an opportunity to learn new approaches and
techniques. Structured walk-throughs also help the participants communicate
the characteristics of their work to one another.

Inspections are similar to structured walk-throughs but provide additional
advantages. In brief, inspections are a more formal, disciplined form of
review through which program developers can improve their development
skills and become more confident of their ability to meet schedule commit-
ments.

Checklists are used by developers during the inspection meetings to assure
that as many errors as possible are discovered prior to test runs. Exit criteria
are established which are used to judge whether a function or segment is of
high enough quality for work to commence on the next phase of its develop-
ment. Data is accumulated regarding the amount of time consumed in the
inspection process and the value of early discovery of errors, so that the value
of inspections can be quantified. Moderators, who are responsible for con-
ducting the inspections efficiently, are specially trained and do not moderate
inspections of materials developed by themselves or their own development
teams.

Introduction to IBM Data Processing Systems

Section 9:

Programming Systems

Input/Output Control
Systems

In the early computing systems, the relatively slow I/O operations and the
much faster data processing operations of the CPU could not be performed at
the same time. Therefore, the CPU was idle much of the time waiting for the
completion of data transfers between I/O devices and main storage. To
reduce this idle time, computing systems were soon developed that could
perform input, output and data processing operations all at the same time,
This represented a significant improvement in the performance of computing
systems as described above under the heading of Data Buffering. However,
to take advantage of the improvement, the programmer had to make sure that
the I/O operations were synchronized with the processing of data; otherwise,
the CPU might attempt to process input data before it arrived in main storage
or destroy output data before it was transferred to an output device. There-
fore, input/output control systems were developed to automatically synchron-
ize 1/0 operations with data processing.

An input/output control system (IOCS) consisted of an interrelated group of
programs that was loaded into main storage along with the processing pro-
grams. Using such a system, a programmer merely had to issue a "READ"
instruction to obtain the next block of data from an input device or a
"WRITE" instruction to send a block of data to an output device. The
input/output control system picked up and interpreted the instruction and
then initiated and controlled the necessary transfer of data to or from main
storage. In the meantime, the CPU could continue processing data.

If each block of input data contained more than one record the programmer
merely issued a "GET" instruction to get the next record in sequence. The
input/output control system automatically controlled the transfer and storage
of data blocks and parcelled out records one at a time from the blocks as they
were requested by the processing program. Similarly, to transfer an output
record, the programmer merely issued a "PUT" instruction. The
input/output control system then picked up and consolidated records into a
block before transferring the block to an output device.

Input/output control systems assisted programmers in other significant ways.
For example, if an error was detected during the input/output operation, the
system automatically retried the operation and attempted to recover from the
error condition. It also checked labels at the beginning of magnetic tape reels
to ensure, among other things, that the correct reel was mounted on the right
tape unit. Input/output control systems, as a whole, represented an impor-
tant step in the evolution of operating systems.

Although input/output control systems helped improve the efficiency of
computer usage, continued increases in the volume of data processing jobs
and significant increases in computer processing speeds helped focus attention
on several other areas requiring improvement. One of these areas involved
the wasted time between computer jobs. Often, the computer would be idle
while the instructions for processing the next job would be read by the
operator, while the operator would mount several tape reels, while the opera-
tor would place punched cards in the card reader, and so on. For installations

Introduction to IBM Data Processing Systems 9-1

Section 9: Programming Systems

9-2

Operating Systems

Virtual Storage

having many small jobs, this set-up time was especially wasteful.

Another area of concern related to the mix of the jobs themselves. Certain
programs may require an enormous number of calculations with very little
input and/or output. Such programs tend to make maximum utilization of the
CPU while the I/0 resources are hardly used. These programs have often
been called computer-bound programs or number crunchers. On the other
hand, other programs may require an enormous amount of 1/0 activity with
very little computation. Such programs tend to underutilize the CPU allowing
it to remain idle (in a wait state) most of the time. Such programs have often
been called I/O-bound or high 1/O programs. It seemed quite reasonable
that if some way could be found to interweave the low 1/0 programs with the
high 1/0 programs, significantly better computer utilization would result.
Conceivably, it should be possible for more than two programs to reside in
the computer at the same time although the CPU would only be processing
one at a time for short intervals depending upon 1/0 needs. However, in
order to accomplish this even with two programs, some means had to exist to
supervise the process including preventing one program from destroying
another. Another frequently underutilized (but comparatively expensive)
resource was the main memory of the computer since many programs would
require relatively small portions of memory. (Frequently, however, in the
same installation, the main memory size would serve as a constraint for other
applications).

Various hardware and software solutions have evolved to help solve these
problems. Such items as the operating systems, multiprogramming, and
virtual storage have enabled users to make more efficient utilization of their
computer systems.

A program, or set of programs, that directs a computing system to perform
such operations as managing computer resources, scheduling and supervising
work and operating and controlling mechanical devices is called an operating
system. An operating system is really a system application of a computing
system in the form of organized collections of programs and data. Like other
system applications it is designed to handle complex activities, but it differs in
the kind of activity it supports. Most other system applications support
specialized activities outside of the data processing installation, such as
banking, process control, or missile design. An operating system is designed
to support the activities of the data processing installation itself. In short, an
operating system is an application of a computing system in the form of
program and data resources, that is specifically designed for use in creating
and controlling the performance of other applications. Its prime objective is
to improve the performance of a data processing system and increase facility
-- the ease with which the system can be used.

Brief descriptions of the various operating systems supplied by IBM for
System/370 appear later in this section.

The rapid growth in the number and types of data processing applications has
led to an increasing demand for freedom in designing applications without
being functionally constrained by the physical characteristics -- system
architecture, 1/0 device types, and CPU space -- of a particular computer
system.

Introduction to IBM Data Processing Systems

Section 9: Programming Systems

While System/360 operating systems already allowed the programmer a
certain degree of device independence, the need for making programs fit into
the available real storage still existed. Since available real storage was usually
divided into at least three partitions (or regions), this often required overiay
techniques to make the program fit into a partition or region. Structuring
these overlays added to the complexity of solving a problem. With the
increased use of high-level languages, multiprogramming, expanded system
control programs, and applications that require relatively larger amounts of
real storage (teleprocessing, data base, etc.), the need for more real storage
space and a more dynamic use of it is still growing.

To meet this need, the System 370 models provide significantly more real
storage capacity than the comparable System/360 models. The availability of
more storage though, did not relieve all the constraints associated with this
storage. It did not eliminate the waste of storage resources through, for
example, dormant code, as might be the case with an inactive or low activity
teleprocessing network, or through storage fragmentation as a result of
programs running in bigger partitions than required for their execution. The
system had no means of dynamically utilizing the fragments of free storage
space. Consider also the following situations:

1. An application is designed to operate in a SOK real storage area, which
is adequate to handle current processing needs and provides room for
some expansion. Some time after the application is installed, mainte-
nance changes and the addition of new function cause one of the pro-
grams in the application to require 51K and another to require 52K.
Installation of the next real storage increment cannot be justified on the
basis of these two programs, so time must be spent restructuring the
programs to fit within 50K.

2. An existing application has programs with an overlay structure. The
volume of transactions processed by these programs has doubled. Addi-
tional processor storage is installed. However, the overlay programs
cannot automatically use the additional storage. Therefore, reworking
of the overlay structure programs is required to make them non-overlay
and, thereby, achieve the better performance desired.

3. A simple, low-volume, terminal-oriented inquiry program that will
operate for three hours a day is to be installed. If the program is written
without any overlay structure, it will require 60K of real storage to
handle all the various types of inquiries. However, because of a low
inquiry rate, only 8K to 12K of the total program is active at any given
time. The inquiry program is designed to operate in 12K with a dynamic
overlay structure in order to justify its operational cost.

4. A series of new applications are to be installed that require additional
compute speed and twice the amount of real storage available on the
existing system. The new application programs have been designed and
are being tested on the currently installed system until the new one is
delivered. However, because many of the new application programs
have storage design points that are larger than those of existing applica-
tions, testing has to be limited to those times when the required amount
of real storage can be made available. Although another smaller scale
model is also installed that has time available for program testing, it

Introduction to IBM Data Processing Systems 9-3

Section 9:‘ Programming Systems

cannot be used because it does not have the amount of real storage
required by the new application programs.

5. A large terminal-oriented application is to be operative during one entire
shift. During times of peak activity, four times more real storage is
required than during low activity periods. Peak activity is experienced
about 20 percent of the time and low activity about 40 percent. The
rest of the time activity ranges from low to peak. Allocation of the peak
activity storage requirement for the entire shift cannot be justified and a
smaller design point is chosen. As a result, a dynamic program structure
must be used, certain desired functions are not included in the program,
and response during peak and near peak activity periods is affected.

In the situations described, real storage is the constraining factor. However,
even if more real storage were added to a system as needed, the system could
not automatically make use of it. Applications would still have to be rede-
signed, and the waste of storage through fragmentation and dormant code
would still exist.

To assist in solving these problems, the System/370 virtual storage concept
offers a means of dynamically and automatically using real storage resources,
storage fragments as well as storage space added to the system at later times.
With virtual storage support, programs are no longer restricted to the address
space available to their partition in real storage. They may exceed this limit to
a certain extent and still get the necessary real storage as it is needed for the
execution of each section of the program.

The time required for any program to execute under any operating system has
always been and still is dependent on such factors as the mix of programs
executing concurrently, their relative priorities, system and application file
placement, and in some cases on the particular data being processed. Under
DOS/VS, for example, program performance is also highly dependent on
such factors as the amount of real storage overcommitment, the storage
reference patterns of the program, and the speed of the paging device. The
performance of each program must be evaluated in the light of at least these
factors. For on-line or real time systems with specific performance or re-
sponse requirements, particular attention must be given to assuring that
adequate resources (real storage, CPU time, channels, disk arms, etc). are
available. In some cases it may be necessary to test the program using the
specific user workload and configuration to verify what system resources are
necessary to give adequate performance.

Further details about virtual storage appear later in this section.

The IBM-supplied programming systems that support the System/370 in-
clude:

« DOS/VS (Disk Operating System/Virtual Storage)
« OS/VS1 (Operating System/ Virtual Storage 1)

» 0S/VS2 (Operating System/ Virtual Storage 2)
SVS (Single Virtual Storage) and MVS (Multiple Virtual Storage)

+ VM/370 (Virtual Machine Facility/370)

9-4 Introduction to IBM Data Processing Systems

DOS/VS

Component Programs

Section 9: Programming Systems

In general, DOS/VS supports the smaller and middle sized models (up to
158). OS/VS1 supports Models 135 to 158. VM/370 supports Model 135
and up. OS/VS2 supports Model 145 and up.

Since these programming systems have evolved from prior systems, variations
exist in the manner in which similar functions have been implemented. Termi-
nology variations also exist. In addition, available functions and facilities are
somewhat different. Brief descriptions of some of these programming sys-
tems appear below.

DOS/VS is a disk-resident comprehensive collection of programs designed to
make full use of the resources of the various models of System/370 that it
supports.

The component programs that make up DOS/VS may be divided into:
1. Control programs
2. Prqcessing programs
3. Data management routines

These programs and routines combine many data processing functions into a
programming package that is designed to make maximum use of a hardware
system and to relieve programmers and operators of a great deal of manual
work.

For execution, the components of DOS/VS are stored on-line (that is, imme-
diately and directly accessible whenever required) in areas on magnetic disk,
called libraries. This allows fast loading of any program or routine into
storage whenever its function is needed.

Control Programs

As their name implies, the control programs control the execution of all
processing programs, IBM-supplied as well as user-written. DOS/VS control
programs comprise the initial program loader, the supervisor, and the job
control program.

The inital program loader is used to start operation with the system. It loads
the supervisor into storage.

The supervisor controls overall system operations and provides general
functions required by the job control program and all processing programs. It
resides in the lowest area of storage, called the supervisor area, throughout
system operation.

The job control program is loaded by the supervisor to initiate the execution
of each new program and to establish which system facilities are to be in-
voked while that program is running.

Processing Programs

Processing programs are classified as all programs whose execution is initiated
by the job control program and controlled by the supervisor. Processing
programs can be divided into the three categories: language translators,
service programs, and application programs.

Introduction to IBM Data Processing Systems 9-§

Section 9: Programming Systems

Language translators translate source programs written in the various program-
ming languages supported by DOS/VS into machine (or object) language.

Service programs assist with the use of the computing system and in the success-
ful execution of problem programs, without contributing directly to the
control of the system or the production of results. Among the most important
service programs are the linkage editor, which converts the output of language
translators into executable object programs; the librarian, which performs
service and maintenance functions for the libraries that are on disk and
contain the programs and routines that make up DOS/VS as well as user-
written programs and control information; POWER/VS, which provides
spooling support for unit record input/output (see description of spooling
functions of JES under OS/VS1 appearing later in this section) and also
offers the remote job entry (RJE) capability (a teleprocessing feature that
allows jobs to be entered simultaneously into the system from up to twenty-
five remote terminals); and emulators. (An emulator is a combination of
programming and special machine features that permits a computing system
to execute programs written for another kind of system. For programs that
were written to run on 1401/1440/1460, 1410/7010, or System/360 Model
20 computers, combinations of machine features and system programming are
provided to allow these programs to run under DOS/VS. Integrated emula-
tion offered with DOS/VS allows the user to emulate a number of non-
DOS/VS programs on the System/370 concurrently with the execution of
normal DOS/VS programs.)

Application programs include user-written and, in some cases, IBM-supplied
commercial and scientific programs.

Data Management

A third important class of components of DOS/VS are its data management
routines. These are available for inclusion in problem programs to relieve the
programmer of the detailed programming associated with the transfer of data
between auxiliary storage and programs as well as the organization of such
data. The services of data management are invoked by all system and user-
written programs whenever they require the execution of input or output
operations.

Data Organization refers to the techniques used in placing records on an auxilia-
ry storage device such as cards, magnetic tape or disk. It involves such
considerations as:

« The choice of storage media best suited to the processing requirements
of the data.

« The sequence of the individual records in the file. For example, the file
could be sorted on one control field or on several, in a prescribed hier-
archy; the file could be in ascending or descending order.

o The length of records. Records in a file can be of a fixed length or of
variable length.

« The blocking factor for the file. This determines how many logical
records constitute a physical record, and is an important factor in stor-
age media utilization and in processing efficiency.

9-6 Introduction to IBM Data Processing Systems

Multiprogramming

Section 9: Programming Systems

» The use of indexes with a file on a direct access device to provide an
efficient means of randomly selecting specific records.

o The use of programmed addressing techniques to determine where a
record is stored on a direct access device and the location from which it
can subsequently be retrieved for processing.

» The type of data additions to an already existing file. It is of major
importance whether many or few data additions and updates are made
to a file, whether additions and updates are made in sequential or ran-
dom order, whether a file is accessed by more than one program in
different partitions, and whether it is a read-only file.

The routines which assist the programmer in transferring records in a particu-
lar data organization format between storage and an I/O device are referred
to as access methods. It is important to understand the relationship between
data organization and access methods. Broadly speaking, how data is organ-
ized and the type of device that it is stored on largely determine the access
methods that can subsequently be used to retrieve it. DOS/VS provides
several methods of data organization. For each of these there is an access
method which allows one or more techniques of file creation and retrieval. A
brief description of several access methods appears later in this section.

DOS/VS allows the user to divide the problem-program area (which consists
of all of real storage not used by the supervisor) into as many as five areas,
called partitions.

Each partition can contain a separate program, which allows concurrent
execution of multiple programs. This is called multiprogramming. Each
program is logically independent, but it takes turns with the other programs in
using the CPU facilities, thus reducing the time that the multiprogramming
system is in the unproductive wait state.

The user specifies the number and size of partitions at system generation
time. (System generation is the creation of an installation-tailored operating
system based on the general system distributed by IBM. The general system
is capable of immediate operation. However, in order to ensure optimum
efficiency, most users generate supervisors that are adjusted to meet the
configuration of their installation.) The number of partitions cannot be
changed during system operation, but the partition sizes can be modified
between jobs or job steps by means of an operator command. The number
and size of partitions, which best meet the needs of an installation, depend
upon such factors as the total amount of storage available, the size and
structural characteristics of the processing programs, their balance among job
streams, and the operating environment. The user may choose to vary the
multiprogramming capability of his system at different intervals during the
day or shift operation.

Introduction to IBM Data Processing Systems ~ 9-7

Section 9: Programming Systems

9.8

Virtual Storage Support

Through a combination of System/370 hardware design and programming
system support, DOS/VS has an address space, called virfual storage, that
starts at zero and can extend to the maximum allowed by the system’s ad-
dressing scheme. A System/370,address consists of 24 bits, providing for up
to 16,777,216 bytes of address space. How much of this address space will
be used in a particular system depends upon a number of factors: the size of
the computer’s real storage, the number of partitions, their size, the size of the
SVA (shared virtual area), and the characteristics of the installation’s pro-
grams and operating environment.

Based on these factors, trade-offs are made to arrive at an optimal virtual
storage size for the requirements of the particular installation. A tailored
system is then generated to this size, which will contain a virtual storage
smaller than the maximum limit of 16,777,216 bytes, and normally larger than
the real storage installed in the system.

That part of the installation’s virtual storage which can be directly equated to
real storage is called the real address area. That part beyond the end of the
real address area, up to the limit of the system’s generated virtual storage, is
the installation’s virtual address area. The relationship can be represented as
shown in Figure 9-1.

Through the availability of the virtual address area, the constraint imposed by
real storage on program size is no longer absolute. The virtual address area,
as well as the real address area, is available for DOS/VS partitions and the
SVA. Since the maximum size of virtual storage is very large, such partitions
and the programs in them can also, theoretically, be of similar magnitude. In
practice there are limitations on these sizes. The user must consider such
factors as the amount of real storage available, the size and structural charac-
teristics of the programs in the virtval address area, and make trade-offs
between program size limitations and the efficiency of program execution.

Paging

DOS/VS must have a means of physically representing and containing the
programs which at any instant are running in the virtual partitions. For this
purpose, the user establishes an area of disk storage that is equivalent in
capacity to the virtual address area allocated to the system. The disk area is
called the page data set and it is used by DOS/VS to contain programs or
parts of programs currently running in virtual mode for which there is no real
storage available.

Introduction to IBM Data Processing Systems

Section 9: Programming Systems

—3

Real
Address
Area

160K

Virtual Storage
of Installation’s
Generated System

Virtual
Address
Area

Figure 9-1 Virtual Storage in a DOS/VS System is Made Up of the Real Address Area and the
Virtual Address Area

A part of real storage has to be kept available to contain programs running in
virtual mode. When the limitations of this real storage prevent all programs
running in virtual mode from being simultaneously present in real storage,
DOS/VS exchanges sections of programs between the page data set and real
storage, as they are required for execution. The program sections are called
pages, each 2K bytes in length. The area of real storage into which the
system loads a page is called a page frame. All the real storage page frames
into which pages from any program running in virtual mode may be brought
for execution make up the page pool. The page pool can dynamically change
in size as the system runs. (For example, if a 40K byte program is running in
real mode in the 54K real address area of a partition, the surplus 14K bytes
can be made available to the page pool.) The pages are not necessarily
contiguous in real storage.

Introduction to IBM Data Processing Systems 9-9

Section 9: Programming Systems

9-10

0s/Vvs1

Job Management

When a program is running in virtual mode, all code required for execution
may not be in real storage. When a program tries to refer to a storage address
within a page which is not in real storage, a page fault occurs. The DOS/VS
supervisor then performs a page in operation, locating the page containing
the required code in the page data set, and bringing it into a page frame in the
page pool. The interrupted program can then continue its execution. If all
page frames are occupied, the system tries to locate a page frame not recently
referenced and makes it available for the incoming page, after first paging out
the contents of that page frame, if necessary.

The purpose of a data processing installation is to do work. OS/VS1 enables
the user to concentrate on this goal by performing many routine, and in some
cases complicated, data processing operations. The programs that perform
these operations are grouped and classified as a system control program.

0S/VS1 is a system control program (SCP) that makes possible the concur-
rent execution of as many as 15 separate jobs within a single computing
system having only one central processor. The system control program of
VS1 has four major functions. They are:

1. Job management - To accept and schedule jobs in a continuous flow.

2. Task management - To supervise, on a sequential or priority basis, each
unit of work to be done.

3. Data management - To simplify storage, retrieval, and maintenance of
all data, regardless of the way it is organized and stored.

4. Recovery management - To reduce the damaging effects that a comput-
er, channel, or I/O device malfunction might otherwise have on a
program in process.

In addition to these management functions, certain programs are included to
complete the family of functions performed by the system control program.
These programs include utilities, a language processor, service programs
(linkage editor and loader), and service aid programs.

Job management, or job scheduling services, performs basic functions in VS1.
These include:

1. Analysis of the input stream: scanning the input data to identify control
statements; interpreting and analyzing the control statements; preparing
the necessary control tables that describe each job to the system.

2. Allocation of I/0O devices: ensuring that all necessary I/O devices are
allocated; ensuring that direct access storage space is allocated as re-
quired; ensuring that the operator has mounted any required tape and
direct access volumes.

3. Overall scheduling: selecting jobs for execution, by class and priority
within a class.

4. Transcription of input data units, and user output from a direct access
device.

5. Communication between the operator and the system.

Introduction to IBM Data Processing Systems

Task Management

Data Management

Recovery Management

Section 9: Programming Systems

6. System restart capabilities

Task management controls the allocation and use of the CPU, virtual storage,
real storage, and programming resources. Task management has seven major
functions or routines. The routines are collectively referred to as the
supervisor:

1. Interruption supervisor analyzes interruptions to determine what super-
visor processing is required.

2. Task supervisor records which tasks are currently in the system, their
status, priorities, the programs they require, and the order in which these
tasks are to be performed.

3. Virtual storage supervisor allocates and frees virtual storage, and records
what use is being made of any portion of virtual storage.

4. Contents supervisor loads programs into virtual storage, and records
what programs are currently in virtual storage and what characteristics
these programs possess.

5. Timer supervisor sets and maintains the timers from information provid-
ed in timer macro instructions.

6. Input/output supervisor controls the reading of data from, and the
writing of data to, physical devices. The I/O supervisor also provides
the necessary translation for channel programs requiring a change from
their virtual to real storage addresses for execution. During this transla-
tion, the I/O supervisor takes into account non-contiguous pages in real
storage and fixes all required pages in real storage for the duration of
the 1/0 operation.

7. Page supervisor allocates and releases real storage space for pages, and
transfers pages between real storage and external page storage.

Data management’s objective is to achieve maximum efficiency in managing
the mass of data associated with the many programs that are processed at an
installation. Data management routines control all operations associated with
input/output devices: allocating space on volumes, channel scheduling,
storing, naming, and cataloging data sets, moving data between real and
auxiliary storage, and handling errors that occur during input/output opera-
tions.

A failure of the system, whether during the development of new programs or
while processing jobs, can result in a loss of productivity. To protect against
or at least to diminish the effects of a failure, RAS (reliability, availability,
and serviceability) facilities interact with the control program. RAS facilities
attempt to retry or bypass machine malfunctions that result in system failure.

Recovery management is a RAS service in VS1 that reduces the damaging
effects that a computer, channel, or I/O device malfunction might otherwise
have on a program in process.

Introduction to IBM Data Processing Systems 9-11

Section 9: Programming Systems

Service Aids

Virtual Storage Support

9-12

JES (Job Entry
Subsystem)

A variety of programs that diagnose system or application program failures is
available with VS1. Service aids that are offered as standard features with
VS1 include:

GTF (Generalized Trace Facility)

GTF is a testing tool that can be used to trace software behavior (system or
problem program).

GTF lets the user single out those programming activities to be traced within
the system, including such things as I/O interrupts for all or specific devices,
all program interrupts or only specific program interrupts, and all or only
specific supervisor call interrupts.

HMASPZAP Program

This service aid is a problem program that allows the user to inspect and
modify data at the time a problem is diagnosed.

The VS1 implementation of virtual storage is quite similar to (but not exactly
the same as) that described above under DOS/VS.

JES is a control-program facility that provides streamlined job processing in
VS1. It spools and schedules primary input and output streams.

JES performs two spooling functions:

1. It reads all primary input streams, including JCL and data, from the
input device, and stores them on a direct access storage device in a
format convenient for later processing by the system and by the user’s
programs.

2. It similarly stores system (and selected user) print and punch output on
a direct access storage device until a convenient time for printing or
punching.

Spooling provides the following advantages:

« Nonsharable devices, generally unit record devices, are used at full rated
speed if enough buffers are available.

« Nonsharable devices are used only for the time required to read, print,
or punch the data.

Without spooling, the device is occupied for the entire time that a job is
reading input or writing output. Thus, the device runs only as fast as the job
can accept or generate data.

If system resources are the objects of contention (for example, buffer assign-
ment), JES schedules the contending activities to assure the highest degree of
system availability. Because data is stored on a direct access storage device,
jobs or their output can be processed in a different order from that in which
they were submitted. This ability to control system work is called job
queuing. Jobs can be scheduled by class, and by priority within class.

Introduction to IBM Data Processing Systems

Compatibility

Other Features

Section 9: Programming Systems

VS1 is upward compatible to VS2. This compatibility includes source pro-
gram code, object program code, job control language, and conventions and
standards.

Integrated emulator programs, used with a compatibility feature, allow object
programs written for one system to be executed on another system with little
or no reprogramming. The compatibility feature consists of hardware and
microprogrammed routines that aid emulation. The emulator programs are
executed as problem programs under the VS1 system control program.

Depending upon the model of System/370, for programs that were written to
run on 1401/1440/1460, 1410/7010, 7070/7074, 7080, 709/7090/70941I,
or System/360 Model 20 computers or under OS/DOS on other System/360
models, combinations of machine features and system programming are
provided to allow these programs to run under VS1.

VS1 offers numerous standard and optional features. Brief descriptions of
several of these appear below:

Shared DASD (Direct Access Storage Device)

The shared DASD option allows one or more direct access devices to be
shared between two or more CPUs when the drives are connected to a
control unit that has a path to each CPU. This feature allows access to the
devices through separate channels connected to separate CPUs.

Systems can share common data and consolidate data when necessary; no
change to existing records, data sets, or volumes is necessary.

SMF (System Management Facilities)

System management facilities (SMF) collects and, optionally, records system,
job management, and data management information on a DASD file. The
information obtained can be used in management information reports that
describe system efficiency, performance, and usage. The SMF records
collects such data as: system configuration, job and job step termination,
CPU wait time, CPU and input/output device usage, temporary and non-
temporary data set usage and status, virtual and real storage usage, status of
removable direct access volumes, and paging statistics.

SMF provides exits to installation-supplied routines that can monitor the
operation of a job or job step and generate the installation’s own SMF re-
cords. The exit routines can cancel jobs, write records to the SMF data set,
open and close user-defined data sets, suppress the writing of certain SMF
records, and enforce installation standards (such as identification of users).

Checkpoint/Restart

The checkpoint/restart facility provides an opportunity to restart a job that
terminates abnormally due to a hardware, programming, or system error. The
restart is permitted either at the beginning of a job or at a checkpoint within a
job step. In either case the restart can be automatic or you can defer it until
the job is resubmitted.

Introduction to IBM Data Processing Systems ~ 9-13

Section 9: Programming Systems

9-14

0S/VvSs2

Job Management

MCS (Multiple Console Support)

MCS enables an installation to use one primary (or master) console and
multiple secondary consoles. These secondary consoles can be dedicated to
one or more system functions such as a tape library, disk library, or telepro-
cessing control. MCS services all consoles concurrently, creating an environ-
ment for operator-system interaction that gives each console the appearance
of being the only console on the system. Each console operator receives only
those messages from the system that are related to the commands that he
enters and to his assigned functions.

Time-Slicing Facility

The time-slicing facility permits each task of a specified priority to have
control of the CPU for a given time. Normally, a task maintains control
either until it is complete, until a higher-priority task becomes ready, or until
it must wait for some event (such as an I/O operation). With time-slicing, a
group of tasks share the CPU, each for the same fixed time. As soon as one
task has used its allotted time, control is passed to the next-ready task in the
time-slice group. (This of course, is contingent on no other task outside of
the time-slice group having a higher priority and being ready for execution.)

When a time-sliced task loses control before the expiration of its time (either
because it must wait or because a higher-priority task acquires the CPU), the
remainder of the time is not saved. When control is returned to the time-slice
group, the next task is dispatched, not the task that lost control.

0S/VS2 is an operating system, upward compatible from OS/VS1. OS/VS2
Release 1 (SVS) makes available a single space of 16 megabytes for programs
and data. In MVS (Release 2 and subsequent releases), each job or time-
sharing user is provided with individual 16 megabyte virtual address space.
The 16 megabytes include the space required for system code and tables.

0S/VS2 supports the System/370 Models 145, 15511, 158, 165ll, 168 and
3033. In addition, MVS supports the 158MP and 168MP systems.

In VS2, virtual storage is organized in 4K byte pages which are loaded from
direct access storage into real storage for execution and written out to direct
access storage when not actively being used, the space they occupy is needed
and an exact copy does not exist on the paging device.

Some of the major facilities provided by job management are multiple console
support, system log, hardcopy log, checkpoint/restart, and system manage-
ment facilities. (Some of these VS2 standard features are optional in VS1. A
feature is considered as standard if it is automatically resident in the system
after system generation). ‘

Multiple Console Support - MCS

Multiple console support (MCS) allows one operating system to use many
operator consoles. Each console in a multiple console configuration is defined
by specifying the operator commands the system will accept from that con-
sole, a console to act as an alternate if a failure occurs and the types of
messages the console will receive. In such a system, one console acts as the
master console and the rest are secondary consoles.

Introduction to IBM Data Processing Systems

Section 9: Programming Systems

System Log

The system log consists of data sets on which the communication between
problem programs, operators, and the system is recorded. It may contain the
following kinds of information:

+ Operating data entered by problem programs using a write-to-log
(WTL) macro instruction.

 Descriptions of unusual events that occurred during a shift.

+ Write-to-operator (WTO) and write-to-operator with reply (WTOR)
messages.

o Accepted replies to WTOR messages

+ Commands issued through operator’s consoles and the input stream, and
commands issued by the operating system.

Hardcopy Log

The hardcopy log is a permanent record of system activity that is mandatory
for systems with an active graphic console or multiple active consoles; for
other systems, the primary console device serves as the hardcopy log. The.
hardcopy log is kept on another, non-graphic, console device or can also be
kept on the system log.

Since multiple console support allows more than one console in a system, an
installation might find it helpful to record all the messages issued by and to a
system. The hardcopy log is a place to collect these messages, and therefore,
an installation can review system activity by reviewing message activity.

Checkpoint/Restart

If a job step is terminated before successful completion, checkpoint/restart
can make it possible to resume execution from the beginning of the step or
from a place within the step. Either way, the restart can be made to occur
automatically when the failure occurs.

The CHKPT macro instruction is coded in the user’s program at a checkpoint
to be taken. A checkpoint is the point at which information about the status
of a job can be recorded so that the job step can be later restarted.

Checkpoint/restart includes a checkpoint routine and several restart routines.

The checkpoint routine gathers and records on a checkpoint data set enough
information about the status of the job step to allow a restart from the place
where the checkpoint is taken.

The restart routines can be invoked when a job step is resubmitted for restart,
or they can be invoked automatically when a failure occurs.

In MVS, restarted jobs are processed by the job entry subsystem, JES, which
returns them to its job execution queue for subsequent initiation based upon
priority and resource availability.

-System Management Facilities - SMF

System Management Facilities (SMF) collect and record system information
similar to that described above under VS1. SMF records in VS2 contain
additional accounting information to reflect new system environmental
characteristics.

Introduction to IBM Data Processing Systems 9-15

Section 9: Programming Systems

9-16

Other Features

The major new or redesigned features available in MVS include:

SRM (System Resources Manager) monitors a wide range of data about the
condition of the system. It analyzes system-wide CPU and I/0 load, moni-
tors storage utilization, and requests that address spaces be swapped into or
out of real storage in an attempt to keep the utilization of each of the resour-
ces within an acceptable range. In addition, SRM monitors the rate of usage
of system resources by individual users, compares this rate to a target usage
specified by the installation, and attempts to maintain this target resource
usage rate by making the appropriate swapping decisions.

MF/1 (System Activity Measurement Facility) collects information about
system activities and produces trace records and reports. MF/1 can monitor
the following classes of system activity: CPU, paging, work load, channel and
I/0 device. The measurement data and the reports produced by MF/1 can
aid in improving system performance, analysis of system trends, and evaluat-
ing future system requirements.

VIO (virtual 1/0) handles temporary data sets in MVS and provides the f ollow-
ing advantages:

. Elimination of some of the usual 1/O device allocation and data man-
agement overhead for temporary data sets.

« Generally, more efficient use of direct access storage space.
« Use of the I/0 balancing capability of the paging mechanism.
System Integrity

System Integrity is the ability of the system to protect itself against unauthorized
user access; that is, an unauthorized program using any system interface
should be unable to:

« Bypass store or fetch protection (read from or write into another user’s
area)

« Bypass password checking (access password protected data for which a
password has not been supplied)

« Obtain control in an authorized state.

(An authorized program in MVS is one that executes in a system key (Key
0-7), in supervisor state, or is authorized via the authorized program facility
(APF). In MVS, all known integrity exposures have been removed.

Time Sharing Option - TSO

An extension which provides OS/VS2 users general purpose time sharing
capability in a compatible OS/VS2 environment. Terminal users share
remote access to the powerful facilities of the OS/VS2 for conversational
interaction -- preparation, syntax checking, execution, updating of programs
and data -- concurrently with normal background OS/VS2 operations. A
comprehensive easy-to-use conversational command language is provided for
the terminal user to communicate with the system. TSO provides conversa-
tional remote access to the OS/VS2 environment for both the experienced

Introduction to IBM Data Processing Systems

Section 9: Programming Systems

professional programmer and the individual with little or no experience with
computers.

Features and advantages of TSO include:

General purpose time sharing capability operating concurrently with
0OS/VS2 background operation within one operating system.

Data sets (and devices, in MVS) can be dynamically allocated in the
time sharing region.

Real storage utilization reflects the actual requirements to execute the
program in the time shared region as compared to a fixed requirement in
OS/MVT.

In SVS, multiple Time Sharing users share a time sharing region and
their active page (working set) are swapped (block paged) to the paging
data sets.

In MVS, each time-sharing user is assigned to an individual virtual
address space.

Time sharing provides an environment for creating and executing
conversational programs.

Programming languages and data management are compatible between
conventional (batch) programs and programs developed at the terminal.
Batch or terminal-developed programs can be stored, retrieved and
executed locally (at the computer center) or from the remote terminal
allowing the use of data sets by time shared or other regions/address
spaces.

The debugging command, TEST, allows system programmers and
assembler language programmers to control the execution of a program,
interrupting it at dynamically specified points.

In MVS, the installation may specify a time interval which establishes a
period that will permit a time-sharing user to reconnect to the system in
the event of a line disconnect. Should the interval lapse prior to the user
reconnecting to the system, then the system will automatically save any
data set which the user was in the process of editing.

TSO offers comprehensive language support for on-line development,
debugging and execution of programs in COBOL, FORTRAN, PL/I,
BASIC, and assembler.

Language facilities available to the terminal user include: compilation,
usually invoked with a single command; linkage editing or loading;
program execution with terminal I/O capabilities for interactive applica-
tion; and interactive debugging, using the data names and labels of the
source program, of a program in execution for rapid program checkout.

Introduction to IBM Data Processing Systems 9-17

Section 9: 'Programming Systems

9-18

Virtual Machine
Facility/370 (VM/370)

Elements of VM /370

VM/370 is a system control program (SCP) that manages a real computing
system so that all of its resources -- CPU, storage, and input/output devices
-- are available to many users at the same time. Each user has at his disposal
the functional equivalent of a real, dedicated computing system. Because this
functional equivalent is simulated for the user by VM/370 and does not really
exist, it is called a virtual machine.

VM/370 is designed for IBM System/370 Models 135, 138, 145, 148, 15511,
158, 16511, 168, and 3033. The real System/370 must have the dynamic
address translation (DAT) feature, a hardware facility that translates virtual
storage addresses to real storage addresses, and the System Timing Facility.
Also, it must operate in extended control mode, a mode in which all the
features of a System/370, including dynamic address translation, are opera-
tional.

VM/370 provides:
« Virtual machines and virtual storage
« The ability to run multiple operating systems concurrently
» A conversational, time-sharing system

« A remote spooling communications subsystem (SCS).

VM/370 has three major elements:

1. The control program (CP), which controls the resources of the real
computer to provide multiple virtual machines. Executing a program on
a virtual machine produces exactly the same output as executing that
program on a real machine.

When a user logs onto VM/370, CP creates a virtual machine for that
user based on information stored in the VM/370 directory. The
VM/370 directory contains one entry for each user identification. Each
entry includes: the password associated with the userid; a description of
the virtual input/output devices associated with this virtual machine; its
normal and maximum virtual storage sizes; the user’s CP command
privilege class(es); and optional virtual machine characteristics, such as
extended control mode.

CP controls the resources of the real computer to provide multiple
virtual machines. CP intercepts, translates, and also schedules all real
input/output operations of the virtual machine. All virtual machines
execute in problem state, and the control program traps and processes
all interrupts and privileged instructions. Only CP executes in supervi-
sor state.

2. The conversational monitor system (CMS) is the major subsystem of
VM/370. Together with the control program of VM/ 370, it provides a
time-sharing system suitable for direct problem solving and program
development. CMS is an operating system that runs only in a VM/370
virtual machine.

Introduction to IBM Data Processing Systems

Virtual Machine Operating
Systems

VM /370 Applications

Section 9: Programming Systems

CMS is a conversational, single-user system. The user’s interface to
CMS is the virtual operator’s console, that is, the terminal used to gain
access to VM/370.

CMS has no multiprogramming capabilities, as it is designed to run in a
VM/370 virtual machine. CP provides the time-sharing environment;
CMS provides the conversational user interface. Using CMS, the user
can write programs to run under CMS or under another virtual machine
operating system.

3. The VM/370 remote spooling communications subsystem (RSCS)
provides the spooling of files between remote stations and virtual ma-
chines at the VM/370 installation. (Remote stations are configurations
of I/0O devices attached to the VM/370 computer by binary synchro-
nous communications (BSC) switched or nonswitched lines.)

The VM/370 computer is the functional center of communications in
the RSCS teleprocessing network. The operator of the RSCS virtual
machine controls the network by issuing RSCS commands at the RSCS
virtual machine console.

The facilities of RSCS are selected and controlled by means of com-
mands and control cards. Connections between geographically remote
locations are made by the operator of the RSCS virtual machine.

Each location in the RSCS network is assigned a location identifier,
which RSCS uses to find a link, or path, to the remote location.

While the control program of VM/370 manages the concurrent execution of
the virtual machines, it is also necessary to have an operating system manag-
ing the work flow within each virtual machine. Because each virtual machine
executes independently of other virtual machines, each one can use a different
operating system or different releases of the same operating system.

CP provides each operating system with virtual device support and virtual
storage. The operating systems themselves execute as though they were
controlling real devices and real storage, but they must not violate any of the
VM/370 restrictions.

VM/370 assists an installation to perform its work more efficiently and
easily. Virtual machine applications aid programmers, operations personnel,
and interactive users.

Programming
Programming is facilitated in the following ways:

1. Programs being developed need not conform to the real storage size of
the real computer.

2. Virtual machines make program testing more flexible. Subject to
available resources, a virtual machine can be made active whenever
needed, thus relaxing normally tight or inflexible testing schedules and
allowing programmers more compilations and tests per day.

3. JCL (job control language) usually is not needed when compiling,
assembling, and/or testing under CMS.

Introduction to IBM Data Processing Systems 9-19

Section 9: Programming Systems

9-20

4, Users can test privileged code in their own virtual machines.

5. Programmers can use debugging aids at their terminal that parallel those’
of an operator at a system console: displaying and storing into the
general or floating-point registers or into virtual storage, instruction
address stopping, and altering the normal flow of execution. Which of
these functions each user is allowed to perform are defined by the
privilege class(es) assigned to that user.

6. CMS simplifies the creation and manipulation of source programs on
disk and allows the user to examine selected portions of program listings
and storage dumps at the user’s terminal.

7. RSCS allows users to transmit files to, and receive files from, users at
other remote locations.

8. The VM/370 data privacy, security, and user-isolation features protect
each user’s data, programs, and disk files from access or destruction by
other users.

9. Many System/360 and System/370 programs can be compiled under
control of CMS; within certain restrictions thesc programs can also be
tested under CMS. DOS assembler language programs can be compiled
under CMS if the installation adds the appropriate DOS macros to the
CMS system. Problem programs using DOS macros can be conversa-
tionally developed under control of CMS; then control of the virtual
machine is passed to DOS, and the programs are compiled and tested.
The user specifies which operating system is to control the user’s virtual
machine by means of the IPL command of CP.

Operations

The virtual machine environment relieves certain problems of scheduling,
updating programs and backup, and expedites production in the following
ways:

1. System generation, updating, and system testing, as well as operating
system conversion and testing, can be done without a dedicated real
machine, concurrently with normal production work. This reduces
errors that might otherwise be caused by using a system that has not
been fully tested, and it also reduces the possibility of abnormal termi-
nations of the system. For example, a program temporary fix (PTF)
applied to a copy of an IBM operating system volume can be tested
concurrently with the production execution of that same operating
system in another virtual machine, provided sufficient direct-access
storage resources are available.

2. VM/370 allows DOS and OS, including virtual storage (VS) versions, to
run concurrently on the same System/370. Multiple copies of the same
operating system can also run concurrently in separate virtual machines.

3. Many types of batch applications can be run, either in an individual
user’s virtual machine or in a virtual machine dedicated to running
batch, with no change to the batch program.

Introduction to-IBM Data Processing Systems

Section 9: Programming Systems

Interactive Use

Two kinds of interactive systems run under VM/370: multiple-access and
single-user.

1.

Multiple-access systems like APL\DOS-360 run in one virtual machine
and directly service many interactive terminals. A user of a multiple-
access system dials the system instead of logging on to connect his/her
terminal with the virtual machine running the multiple-access system
he/she wishes to use. Once the terminal is connected, the user issues
statements in the command language associated with the multiple-access
system only. '

For example, dialing APL could connect the user’s terminal with an
APL\DOS-360 system running in a virtual machine under VM/370.
Once connected, the user communicates only with APL commands and
cannot use any CP commands.

Systems that a single user can run interactively include the conversation-
al monitor system (CMS) and any operating system that can run on a
virtual machine. A time-sharing environment is created when VM/370
creates multiple virtual machines, each controlled by a copy of CMS.
These systems operate concurrently with each other as well as with
other conversational or batch systems. CMS is useful for program
development and problem solving.

The CMS command language provides each user with a wide range of
capabilities at the user’s remote terminal, such as:

. Creating source programs, data, and text files directly on disk.

. Adding, deleting, modifying, rearranging, extracting, or merging
files and/or portions of files.

. Compiling, testing, and debugging some types of OS problem
programs under CMS.

. Creating complete job streams to be passed to batch processing
systems such as DOS or OS for compilation and/or execution.
The resultant output can be printed on a high-speed printer or
directed back to CMS for analysis and correction by the user.

. Submitting jobs to a background CMS batch facility.

. Extending CMS facilities to suit the user’s requirements such as
creating additional commands or developing command procedures.

Introduction to IBM Data Processing Systems ~ 9-21

Section 9: Programming Systems

922

Access Methods

As stated previously, access methods refer to the routines which assist the
programmer in transferring records in a particular data organization format
between storage and an I/O device. Broadly speaking, how data is organized
and the type of device that it is stored on largely determine the access me-
thods that can subsequently be used to retrieve it. Each VS operating system
provides several methods of data organization. For each of these there is an
access method which allows one or more techniques of file creation and
retrieval. In addition, depending upon the operating system and the data
organization, data management programs provide two general techniques
known as access techniques for moving data: the queued technique and the
basic technique. The queued technique offers the maximum amount of
automatic 1/0 facilities. The basic technique places some of the responsibil-
ity for data handling on the programmer, but gives the programmer more
direct control of I/O operations.

Queued Access Technique: When using the queued access technique, you can
concentrate on data processing alone; the data management routines handle
most I/0 considerations. For example, 1/0 is automatically synchronized
with processing. When you issue a GET macro instruction, the desired record
is already in an input buffer, so processing can continue without delay. When
a buffer is empty, the data management routines automatically refill it. The
same principle applies for output records (PUT macro). They are collected in
an output buffer and written when the buffer is full. When operating under a
priority scheduling system, and if output is directed to a system output class
(a class of system output units shared by all jobs), data is first written on a
direct access device. When scheduling permits, the writer transfers the data
to the proper device.

Because the queued access technique brings records into virtual storage
before they are actually needed, the data management programs need a
method of anticipating the user’s demands. Therefore, the queued access
technique can be used to retrieve only records in a sequential order, for
example, records on magnetic tape.

Basic Access Technique provides the READ and WRITE macro instructions for
input and output. These instructions move blocks, not records. As with the
queued access technique, actual transmission to a specified device may be
deferred and done by the writer when working under a priority system and
output is going to a system output class.

Unlike the queued technique, the basic technique does not provide automatic
synchronization of program processing and 1/0. When issuing a READ, you
cannot assume that the record is in virtual storage as you can assume with
GET. You must determine that the 1/O operation has been completed before
attempting to use the desired record. Data management provides macro
instruction facilities to check for successful completion of 1/0 operations and,
if necessary, to wait for their completion.

The basic access methods are used for all data organizations while the queued
access methods apply only to sequential and indexed sequential data sets.
The access method, VSAM, employs a modified basic and queued access
technique and applies to direct and sequential data sets.

Introduction to IBM Data Processing Systems

Sequential Access Method
-SAM

Basic Direct Access
Method - BDAM

Indexed Sequential Access
Method - ISAM

Section 9: Programming Systems

Brief descriptions of several data access methods follow.

Sequential organization means that records physically follow one another in a
sequence usually determined by one or more control fields within each record.
Examples of control fields are name or man-number in a personnel file, or
catalog number or part number in an inventory file.

Sequential organization is still the most widely used method of data organiza-
tion and is supported for all device types except teleprocessing terminals.
Card files, print files, diskette unit files, and magnetic tape files are always
organized sequentially, simply because the physical characteristics of those
devices require the reading or writing of one record after another. Data files
on disk are also frequently organized sequentially, in control number se-
quence.

If required, records are sorted into their prescribed sequence prior to, or as a
part of, creating a sequentially organized file. The Sequential Access Method
(SAM) can create a sequential file from the sorted records presented to it and
subsequently retrieve those records for sequential processing. In addition, by
utilizing certain macros, sequential files on disk or tape may be positioned to
specific physical blocks prior to reading or writing. Records from sequential
disk files may be updated, meaning that each record may be written back onto
its original physical location after having been changed by the program.

Sequential organization and access methods are used for some files in most
data processing installations since the requirements of many applications are
still met by batch processing. It should be noted that even teleprocessing
applications often include a sequential data set such as a time-sequenced log
of transactions received and/or processed.

In the Basic Direct Access Method (BDAM), records within a data set are
organized on direct access volumes in any manner chosen by the programmer.
Storage and retrieval of a record is by actual or relative address within the
data set. This address can be that of the desired record or a starting point
within the data set where a search for the record, based on a key furnished by
the programmer, begins. Addresses are also used by BDAM as a starting
point for searching for available space for new records.

An indexed sequential file is made up of (1) records in logical sequence by
control field (or key) and (2) an index, which is built when the file is created.
The index itself is structured in two or three levels. Each index entry is
composed of the key of a data record, or a lower level index entry, and the
physical address at which the record, or lower level index entry, is located on
the disk. The programmer may process indexed sequential files sequentially
when the definition of the programming application requires this approach, or
process them randomly, retrieving a particular relevant record from the entire
file, if this approach is better adapted to the requirements of the job. Both
retrieval methods are easy from the programmer’s viewpoint:

GET and PUT macro instructions are used to process the file in sequential
order, the user supplying control information for the first record to be proc-
essed. READ and WRITE macro instructions are used to process the file in

Introduction to IBM Data Processing Systems ~ 9-23

Section 9: Programming Systems

9-24

Virtual Storage Access
Method - VSAM

random order, the user supplying control information for each record to be
processed.

ISAM also provides the routines for creating a file from sorted input, building
the index, and adding records to an existing file. For the insertion of records
into an existing file, additional disk space, called overflow area is reserved.
On sequential retrieval of a file that has data in the overflow area, records are
retrieved in logically sequential order.

VSAM is an access method designed to operate with direct access devices and
to support both direct and sequential processing by means of either an index
key (keyed accessing) or by means of relative byte address (addressed access-
ing). Both fixed length and variable length records are supported.

Three types of data sets are provided: key-sequenced data sets, which are
ordered by a key field in the data record, entry-sequenced data sets, which are
ordered by the sequence in which the records were loaded, and relative record
data sets which are ordered by record number. Keyed accessing is used to
access key-sequenced or relative record data sets, and addressed accessing is
used to access both key-sequenced and entry-sequenced data sets. Key-
sequenced and entry-sequenced data sets may be either fixed or variable
length records, relative record data sets are fixed length records only.

VSAM is composed of two major elements; a data organization which mini-
mizes data movement and is suitable for data base applications; and routines
for creating data sets in the VSAM organization, adding and deleting records,
and performing other data management functions.

The data organization of ISAM is based on the physical units of disk cylinder
and disk track, while the data organization of VSAM is based on logical units
called control intervals and control areas. A control interval is the unit of
direct-access storage that is transferred to and from virtual storage. It can
contain one or more records in one or more blocks. A percentage of each
control interval can be free space and some control intervals can be entirely
free space. A control area is a group of control intervals. Thus, VSAM data
organization provides for physical characteristics of the data and the index.

In general, the VSAM user can expect to see performance improvements
relative to OS/VS ISAM and DOS/VS ISAM. Performance gains with
VSAM can become increasingly significant as the number of insertions to the
data set rises. This is due to the elimination of the chained record overflow
concept employed by ISAM. VSAM will effectively maintain its sequential,
non-inserted performance as records are added to the data set. Also, VSAM
requires less time to perform a record insert than does ISAM. These factors,
coupled with the efficient VSAM index structure and with the VSAM perfor-
mance options, offer the potential of performance improvements relative to
ISAM.

A significant feature of VSAM is that of data set and volume portability
between DOS/VS and OS/VS systems. Portability of data sets and volumes
is made possible by the user catalogs and the multi-function service program,
Access Method Services.

Introduction to IBM Data Processing Systems

Telecommunications
Access Methods

Section 9: Programming Systems

Access to data via VSAM may be protected by multiple levels of passwords.
In addition, VSAM provides an exit for users to impose their own security
routines.

Access to VSAM is controlled by macro instructions. Most programs written
to access ISAM data sets may be used with VSAM data sets via the ISAM
interface.

VSAM offers a multi-function service program (Access Method Services) to
facilitate overall management of data. Such services as defining data sets
initially, deleting VSAM data sets from the VSAM catalog, printing and
copying data, listing the VSAM catalog, and providing backup and portability
features are controlled by this multi-function program. Converting data sets
from the ISAM or SAM format to the VSAM format is another important
function of this program.

Optional features include:
Alternate Indexes

This feature permits application programs to access the records of a VSAM
entry or key sequenced data set on the basis of keys other than the prime key.
These alternate keys may be non-unique and must be contained in the base
data record. Once an Alternate Index has been constructed by using Access
Method Services, it may optionally be automatically updated whenever a data
record is changed in the base data set to which it relates.

Relative Record Data Set

With this feature the data set is viewed as a numbered sequence of fixed
length slots. Records may be inserted, updated, read, or erased in these slots
using VSAM keyed processing, with the slot (i.e., record) number as the key.
No index is used since each record’s physical location is calculated directly by
VSAM from its record number and the characteristics of the data set.

Get Previous

This feature permits retrieval and update processing on the basis of descend-
ing key values, relative record numbers, or relative byte addresses. Processing
may begin either within or at the end of the data set.

Included in the data management function of the virtual storage programming
systems is teleprocessing device support which provides a link between the
application program and remotely connected teleprocessing terminals via the
communications control device. This support is divided into three access
methods which aid the host processor application programs in obtaining data
from remote terminals.

Basic or Virtual Telecommunications Access Method (BTAM/VTAM) directs
the transmission of data between the host processor application programs and
terminals. BTAM/VTAM provides basic capabilities to receive and send
messages, dial and answer (switched lines), chain input buffers, detect and
correct errors, and perform code translation. Stated simply, BTAM/VTAM
controls terminal input/output operations. Further details concerning BTAM
and VTAM appear later in this section.

Introduction to IBM Data Processing Systems ~ 9-25

Section 9: Programming Systems

Basic Telecommunications
Access Method - BT AM

Virtual
Telecommunications
Access Method - VT AM

If queued control is required in an asynchronous transmission mode network,
Queued Telecommunications Access Method (QTAM) is available. QTAM
includes BTAM capabilities as well as message queuing, routing, and logging.
If queued control is required in a synchronous transmission mode network,
Telecommunciations Access Method (TCAM) is available. For example, data
can be directed to an inactive terminal and held in queue until that terminal is
activated and connected.

TCAM and QTAM are not available with all of the virtual storage program-
ming systems.

The facilities of the Basic Telecommunications Access Method (BTAM) are
designed chiefly to provide the basic tool required to write a telecommunica-
tions program. These include facilities for creating terminal lists and for
performing the following operations:

« Initiating and answering calls to and from terminals on switched net-
works.

« Polling and addressing terminals on non-switched multi-point lines.
» Changing the status of terminal lists.

+ Transmitting and receiving messages.

« Code translation.

« Retransmitting messages which are received with detected error.

+ Providing on-line terminal test facilities.

« Keeping error statistics.

The support of Binary Synchronous Communications combined with that of
the various start/stop devices gives BTAM a wide range of applicability and
flexibility. BTAM supports low, medium, and high speed devices.

All terminals (except Binary Synchronous Communication) on a multi-point
non-switched line must be the same type. Terminals may be mixed within the
same problem program.

The BTAM facilities of DOS/VS may be used in all or any of the system
partitions in either virtual or real mode, or may be used to design a dedicated
telecommunications system in a system with a single partition.

VTAM is a direct-control access method that enables application programs to
control VTAM terminals without concern for intermediate connections, such
as control units and telecommunication lines. It is designed to use advanced
hardware and software including System/370 virtual storage, the IBM 3704
and 3705 Communications Controllers (Figure 9-2), the virtual storage
operating systems, and the teleprocessing subsystems that use the SDLC
(synchronous data link control) line discipline.

9.26 Introduction to IBM Data Processing Systems

Section 9: Programming Systems

Figure 9-2 IBM 3705 Communications Controller

With VSAM (virtual storage access method), VTAM can be used to provide a
complementary data base/data communication facility. In addition to its
primary role of data transmission, VTAM has features that establish it as a
base for building small to large telecommunication systems. These features
include:

Sharing of network resources, which reduces line costs and makes more
efficient use of the network.

Concurrent execution of TCAM and VTAM application programs using
the same telecommunication network.

Services required for interactive applications such as online inquiries and
updates.

Operation with the IBM 3704 and 3705 Communications Controllers to
reduce the number of functions performed in the central computer for
remote devices.

Generation options for tailoring the telecommunication system to the
user’s needs.

Support for industry-oriented teleprocessing subsystems such as the
IBM 3600 Finance Communication System.

RAS (reliability, availability, and serviceability) aids to assist in reducing
both the incidence of errors in the telecommunication system and the

Introduction to IBM Data Processing Systems 9-27

Section 9: Programming Systems

Application
Program

impact of errors that do occur, and in maintaining the telecommunica-
tion system.

When an IBM 3704 or 3705 Communications Controller is installed as the
control device, VTAM allocates some of the network management responsi-
bilities to this unit. The Network Control Program - Virtual Storage
(NCP/VS) operates with the IBM 3704 or 3705 to route data through the
network. Through commands sent from VTAM, the NCP/VS assumes much
of the responsibility for controlling communications lines (Figure 9-3). Thus,
valuable host processor space is freed for higher, application-related func-
tions. Also, because some control is exercised locally (in the 3704 and 3705),
line traffic is reduced and line costs are lowered.

%

/ VTA

.7 ' / G777 ,

T

Application
Program

Host System/370
Resource Management

* 3601, 3651, and 3791 are examples

3704 or 3705 Controller* Terminal
Communications Device
Management Management

Figure 9-3. Concept of Function Distribution Under Programming Control

9-28

Telecommunications
Access Method - TCAM

TCAM is a generalized IOCS (input/output control system) that extends the
techniques of logical IOCS to the telecommunication environment. Data sets
accessed by the problem program are queues of messages coming in from, or
going out to, remote terminals via communication lines.

TCAM furnishes far more than the control for I/O operations. In addition to
supporting the transfer of messages between the terminal and user-written
application programs, TCAM provides a high-level, flexible, message control
language. (Data enters a telecommunication system in the form of messages.)
You can use TCAM macro instructions to construct an installation-oriented
message control program that controls the flow of message traffic from one
remote terminal to another (message switching application), and between
remote terminals and any application programs (message processing applica-
tions).

A telecommunication control system created through the use of the TCAM
message control language:

« Establishes contact and controls message traffic between the computer
and terminals.

Introduction to IBM Data Processing Systems

Section 9: Programming Systems

Deletes and inserts line-control characters automatically, thereby
removing line-control from the user’s domain.

Dynamically assigns and uses buffers as required.

Edits incoming and outgoing messages (for example, code translation
and insertion of new fields in message headers).

Forwards messages to destination terminals and application programs.

Takes corrective action and provides special handling for messages
containing errors.

Maintains statistical information about message traffic and system
components.

Introduction to IBM Data Processing Systems ~ 9-29

Section 10:

Data Security and Integrity

With the continued expansion in the use of the computer to encompass more
and more activities of individuals, business enterprises, private and public
organizations, governments, and so on, concern over the possibility and the
effect of data processing errors, misuse of information maintained within the
computer system, destruction of files, and so on, whether intentionally or
accidentally, takes on a significantly more serious tone. Furthermore, as
procedures once done manually in an organization are automated, the poten-
tial for loss associated with the use of the computer increases.

In many cases, even an interruption in the availability of data or processing
capability can have catastrophic effects on organizations highly dependent
upon the availability of such data or processing.

Security involves protecting both the data and the equipment needed to
maintain and process the data. The number of possible hazards is quite large.
Physical hazards such as fire, water, and malicious visible acts are well-
known. Others such as those considered below may not be but all require
adequate security measures.

Often not considered a threat to the security of data, program errors and
operator accidents can cause more damage than most other hazards. Seem-
ingly minor accidents can have severe consequences. Damage can often be
minimized by proper training and alertness of operating personnel. In one
incident, a single disk pack was dropped; the warped pack was mounted on a
drive, thus damaging the access mechanism. The pack was moved to another
drive, and a different pack was tried on the first drive. The result was several
damaged drives and unusable packs — a simple accident compounded by poor
judgment. If one of the packs had been the working copy of a file and
another the single backup copy being readied for emergency storage, the file
would have been unrecoverable. In most backup systems, vulnerability is
greatest while preparing the backup copy and getting it safely into storage.

The hazard of accidental modifications is exemplified by such everyday
occurrences as keypunching or other key entry errors. Intentional modifica-
tion can be a vehicle for internal fraud and embezzlement; its significance
may be greater than that of destruction.

Malicious damage or destruction can be equally severe, whether accomplished
by an employee or by an outsider. According to published reports, vindictive
employees have inserted routines in programs to disrupt or destroy applica-
tions after they have left a company.

The hazard of disclosure can be obvious (a tape reel is removed from its slot
in the library), or it can be concealed (a discarded report is retrieved by an
outsider or a disgruntled employee). In certain situations disclosure can also
be extremely harmful.

Concern for losses due to errors and omissions, inadequate systems design,
and improper controls tends to result in an expressed need for better controls
on the processing procedure and data processing personnel as the means to
reduce such losses. However, it should be recognized that it is practically

Introduction to IBM Data Processing Systems 10-1

Section 10: Data Security and Integrity

impossible to provide complete security for all possible hazards. Neverthe-
less, many controls exist or can be put into place to help minimize security
risks. Some of these are described below.

Backup Facilities A key element of a security program is backup, the means to recovery. The

' ability to recover protects against the widest set of hazards, including many
that cannot be anticipated or prevented. The resources that must be provided
to permit resumption of operations within a reasonable length of time after
various kinds of disasters is the first consideration. Planning the use of
alternate resources should be on a job-by-job basis, having first determined
priorities for the jobs in the order of their relative urgency. A backup plan
considers the people, plant, and records needed to resume operations.

A backup computer installation should be far enough away from the primary
facility so it is not subject to the same hazards, but it should be accessible and
close enough to serve its customer organizations. In a data communications
system, accessiblility may mean simply being near communications lines
rather than near other company plants or offices. But any system needs
people to operate it people who would have to be moved if the backup facility
were very far from the facility being backed up. Most systems have a great
interdependence on the resources of the parent organizations; therefore, if the
backup is to be operational quickly, and if it is to provide service for an
extended period, then proximity to the primary facility is important.

Physical separation ensures that both locations will not be crippled by a single
fire, explosion, airplane crash, or any other single accident; and it reduces the
risk of simultaneous damage from weather hazards. The benefits of physical
separation can be further enhanced by (1) obtaining electric service from
separate substations so that, a single power outage would not disable both
locations, and (2) avoiding use of common communications trunks or ex-
changes in communications-oriented systems.

Companies having multiple installations containing similar data processing
systems have what may be the ideal backup situation, particularly if the
separate installations are geographically close or have high-speed intercom-
munications. The advantages of this kind of backup are that it is available
immediately, it is already under the company’s control, trained personnel are
already available, and each installation already has acceptable storage areas
for supplies and data. It may be necessary to provide excess capacity and
availability in some of the systems in order to take on the extra workload in a
backup situation. This excess capacity can be in the form of unused shifts
and personnel trained in multiple skills, as well as larger data processing
systems than needed for normal operation. Those companies that already
have multiple installations may find that few changes are needed to permit
any installation to adequately back up another.

Those having a single data processing center may want to arrange for mutual
backup with other organizations having similar systems. Arrangements of this
type should be reviewed periodically to minimize risks such as these: the
configurations can become dissimilar, the backup installation can become
incapable of absorbing the added workload, or any of a number of other
factors may render the alternative unavailable or unsuitable.

102 Introduction to IBM Data Processing Systems Systems

Data Controls

Input Controls

Section 10: Data Security and Integrity

Security will be required in a backup location; however, the measures em-
ployed to obtain it may be different, and the level of risk acceptable may be
higher. For example, the existence and location of backup may be kept
reasonably confidential, probably more effectively than that of the primary
site.

The purpose of data controls in any system, whether it be manual or automat-
ed, is to prevent or promptly detect undesirable events, such as loss of data,
errors in processing, fraud, inconsistency of data, or any other form of loss.

An important control mechanism is the audit trail. Ideally, an audit trail
should indicate how every record in the system got to its present state, what it
looked like at any point in the past, when and by whom each change was
made, as well as the pertinent circumstances; the audit trail should make it
possible to reconstruct the record. The audit trail enables the system to fix
accountability, and thus serves to maintain the accuracy and integrity of the
data.

There are four basic types of data controls: input, processing, output, and
procedural. Combined with audit trails, they give reasonable assurance that
computer-generated transactions are accurate, reliable, and complete.

These are the steps taken to ensure that input transactions are complete and
accurate before data is processed by the computer programs.

One of the most common examples is keypunch verification. It costs more to
verify every field on the input card, but it may be necessary. In many applica-
tions, however, only the important control fields are verified. One person
should key-enter the document and a second should key-verify it, thus sepa-
rating the duties and reducing the possibility of the same error being made
twice.

Manual verification is never needed for fields which contain a self-checking
digit. Any numeric field which can be generated in advance, such as invoice
number, customer number, or part number can be a self-redundant or self-
checking number. These can be prepared in advance by computer, and can
be authenticated on all successive passes through a computer. While the
redundancy involved will not totally eliminate all possible key-entry errors,
the probability of such errors entering the system becomes extremely small as
the redundancy increases.

A second method of input control is to balance to predetermined totals. For
example, a total is taken of the amounts of all invoices. After punching and
processing, the predetermined total is checked with the computer-generated
total to assure agreement. Differences indicate data may have been incorrect-
ly punched or processed.

Another common method applies to computer-generated input. For example,
in a purchasing/accounts payable/accounts receivable system, for each new
purchase order placed on the master file there will ultimately be a receipt of
goods. The system can be programmed to punch out a receiving card with
unchanging information, such as purchase order numbet, part number, and so
on. The card is then sent to the receiving department to await the parts.
Upon receipt, the stock clerk posts thé "quantity received" to the card.

Introduction to IBM Data Processing Systems 10-3

Section 10: Data Security and Integrity

Computer-generated input such as this reduces human posting errors, since
much recording is eliminated.

Edit routines are another method. These are steps written in the program to
ensure that all information required for processing is actually in the input, that
it has a value within a reasonable range, or that it is consistent with other
data. Using the example above, assume each purchase order placed on file
has a six-digit control number. The computer checks each input card for six
digits in the appropriate columns. If not found, the card is rejected.

It is necessary to ensure not only that input is processed correctly but that all
the documents sent to the computer room are actually received. Batches of
documents can be lost, and the loss be undetected. To eliminate this possibil-
ity, a control clerk should record each batch of documents sent to the com-
puter room, and should follow up to ensure that they are processed.

A method of input control used in realtime teleprocessing systems is message
verification. Because transactions are often processed through a terminal as
they occur, rather than in groups or batches, some control should be estab-
lished to ensure that the terminal message is received, and received correctly,
by the computer. Normally, this can be accomplished by designing the system
to respond to the data received. For example, the system could respond with
part description to the receipt of a part number. Visual tests can then be
made to determine the accuracy of the transmission. Realtime teleprocessing
controls are discussed in greater detail later and are mentioned here only to
demonstrate that, under any processing mode, input controls are possible and
necessary.

Processing Controls Processing controls are normally those controls written into the computer
program itself to ensure that something abnormal or undesirable does not
occur during processing.

Record Count

A record count is a tally of the number of records in a data set. The count is
normally established when the data set is assembled.

The total number of records is carried as a control total at the end (or the
beginning) of the file (data set) and is adjusted whenever records are added
or deleted. Each time the data set is processed the records are recounted, and
the quantity is balanced against the original or adjusted total. If the recount
agrees with the control total, it is accepted as proof that all records have been
run.

Record counts may also be established by batches. This is desirable when
source data is to be put into the procedure for the first time.

Although the record count is useful as a proof of processing, it is difficult to
determine the cause of error if the controls are out of balance. A failure to
balance does not help to locate a missing record, nor does it indicate which
record has been processed more than once. Therefore, some provision must
be made to check the data set against the source records, a duplicate data set,
or a listing known to contain the proper number of records.

An incorrect record count, often indicates a machine failure when records are
being processed because, once written on the tape (or disk, etc.) correctly,

10-4 Introduction to IBM Data Processing Systems Systems

Section 10: Data Security and Integrity

records cannot be misplaced or lost. In this case, the doubtful portion of the
data set should be rerun for correction.

Limit Check or Reasonableness Check

A limit check is a test of record fields or programmed totals to establish
whether certain predetermined limits have been exceeded. For example, if
transaction codes for certain records are known to cover only the digits 0
through 5, a check can be programmed to see that no code exceeds the limit
of 5.

Reasonableness tests are processing controls written into important programs
to determine if something highly unlikely or logically inconsistent has occur-
red. Payroll procedures often contain many limiting factors that can be
checked by the program. The upper limit of gross pay is usually determined
by the type of payroll: hourly, salary, piece rate, incentive, and so on. Hourly
rates must fall within established wage scales. The total number of hours
worked per employee is also subject to certain limits. For example, a weekly
paycheck would not normally be $1000 or more for an hourly-rate employee.
Therefore, the program would print out such unreasonable information on a
special report. The occurrence may or may not be legitimate, but it would at
least be available for review.

Limit checks may also be used in table lookup procedures. If an item is
known to be in a given table in storage, the modified table address may be
checked against the address of the upper table limit to verify correctness of
the search. If the search begins to exceed the limits of the table, an error has
occurred, and corrective action is required.

In many mathematical problems, the range of the final calculation can gener-
ally be estimated. If a result falls outside this reasonable range, it may be
assumed that some error condition is present, either in the data, in the pro-
gram, or in the calculation. Departures from normal trends may also indicate
faulty procedures. The simple application of a limit check in such problems
may save much detailed checking, with consequent simplification of the
program.

Tape and Disk Labels

Identification information recorded at the beginning of a reel of magnetic tape
is called the header label; identification information recorded at the end of a
reel is called the trailer label. The label may specify file identification, data of
last processing, number of reel, and so on. A label may also be placed at the
end of the file. Standard label checking is automatic in programming systems.

While tapes may have both a header and a trailer label located physically
before and after the data, respectively, disk labels can appear physically
anywhere on the volume, as long as the user specifies where it is located.

The labels are read into storage at the beginning and at the end of the pro-
gram as an added control to ensure that the proper records have been proc-
essed. The label may also ensure a true end-of-file or end-of-job condition
and, in addition, include a record count.

The various programming systems supporting System/360 and System/370
have a definite format for "volume'' labels and checking.

Introduction to IBM Data Processing Systems 10-5

Section 10: Data Security and Integrity

Housekeeping Checks

The first instructions of nearly every program are intended to perform func-
tions of housekeeping in preparation for processing. These instructions may
set program switches, clear registers, set up print areas, move constants, and
so on. In addition, housekeeping instructions may perform systems checks by
testing to determine whether all input/ output units required by the main
program are attached to the system and ready for operation. File labels may
be checked and updated, constant factors may be calculated, and other
information pertinent to the proper operation of the system may be called to
the operator’s attention by programmed instructions. Programming systems
provide many of these checking procedures.

Sequence Check

Sequence checking is another processing control that is used to determine if
records have been sorted properly. For example, an inventory of production
parts is kept on magentic tape in sequence by part number. Withdrawals and
stock receipt transaction cards are sorted in part number sequence before
they can be used to update balances on this file. During the update run, tests
are made to determine that each record read on both files is equal to or
greater than the previous one. Without tests, an undetected out-of-sequence
condition could seriously impair the accuracy of the update.

Output Controls Output controls report the resolts of computer processing - especially in
conjunction with input and processing controls.

Control Total

The control total may be made up from amount or quantity fields in a group
of records. It is accumulated manually or by machine when the data set is
originated or when a quantity is first calculated. The control total can be
either a grand total or more convenient intermediate or minor totals.

When the data set or group of records is processed, the fields are again
accumulated and balanced against the control total. If the total is in balance,
it serves as proof that all records have been processed correctly.

The control total is an efficient systems check when it can be used to predet-
ermine the results of calculation or the updating of some record. For exam-
ple, when preparing to process a payroll, the total number of hours worked by
all employees is preestablished from clock or job-card records. This figure
then becomes the control total for payroll hours for all subsequent reports.
Totals may be broken down by group or department. The sum of all totals
must balance back to the complete original total.

Control totals are normally established for batches of convenient size, such as
department, location, account, or division. By this method, each group of
records may be balanced as it is processed. Exception reports list the transac-
tions that were not accepted by the system because they did not pass some
input or processing control point. Corrective action, if needed, is limited to
small, easily checked groups rather than to one grand total.

10-6 Introduction to IBM Data Processing Systems Systems

Procedural Controls

Section 10: Data Security and Integrity

Console Error Messages

Console error messages are also important. They are normally used for errors
significant enough to halt processing. For example, under most circum-
stances, processing terminates when records are found to be in improper
sequence during an update. The console error message prints or displays the
type of error encountered, the records that were out of sequence, and the
action the operator should take, such as notifying the proper persons.

Checkpoint and Restart

A checkpoint procedure is a programmed checking routine performed at
specific processing intervals or checkpoints as discussed in prior sections. Its
purpose is to determine that processing has been performed correctly up to
some designated point. If processing is correct, the status of the machine is
recorded, usually by writing this informaition on a tape or disk. The normal
procedure is then continued until the next checkpoint is reached.

Checkpoint procedures have the effect of breaking up a long job into a series
of small ones. Each portion of the work is run as a separate and independent
part, and each part is checked after it is completed. If the check is correct,
enough information is written out to make it possible to return to this last
point automatically. If not, the portion of work just completed incorrectly is
discarded, and the system restarts from the last point at which the work is
known to be correct.

A restart procedure (1) backs up the entire computer system to the specified
point in ‘the procedure, usually a checkpoint (tape files are backspaced or
rewound; card units and printers are adjusted manually; disk updates are
backed out using a transaction log tape or the disks rewritten using data saved at
checkpoint); (2) restores the storage of the computer to its status at the
preceding checkpoint (this may include the adjustment of accumulated totals,
reloading the program itself, reestablishing switches and counters, restoring
constant factors, and so on).

The proper use of checkpoint and restart procedures in a program contributes
to the overall operating efficiency of a computer system. If power failure or
serious machine malfunction occurs, these procedures provide a means of
rerunning only a small part of a job without having to rework an entire job.
This may mean a saving of many hours of machine time.

Restart procedures also allow interruption of a given job for the scheduling of
other jobs that need immediate or emergency attention. Thus, any procedure
may be interrupted intentionally by the operator and replaced with another
job when necessary. Provision for restart is also convenient at the end of a
shift or other work period when the operation of a job must be terminated
without loss of production time. Finally, restart procedures provide interrup-
tion of machine operation for emergency repairs or unscheduled maintenance.

Procedural controls are maintained by the people who use the system. Three
of the most important procedures are discussed below.

Separation of Responsibility

Organizational controls are those which protect an organization from fraud,
error, waste, and so forth. They establish that one department’s (or
individual’s) duties interact with another’s so that errors or thefts made by

Introduction to IBM Data Processing Systems 10-7

Section 10: Data Security and Integrity

one will be promptly detected by the other. No one person has complete
control of any part of the business.

For example, the two main functions in an accounts receivable department
are (1) recording a sale as an open receivable in the customer’s account, and
(2) receiving and recording the customer’s payment. If one person is allowed
to perform both functions, he or she could, intentionally or inadvertently fail
to record the open receivable in the customer’s account and keep the pay-
ment. Since there is no open invoice for the customer, there is little chance of
detection.

If one person performs only one of these functions, however, it is much more
difficult for either person to successfully effect a fraud for any length of time.
The person making the accounts receivable entry to the customer’s account
would have no reason to intentionally omit an entry, since he would never
receive a customer check. The cash receipts clerk might still be able to
misappropriate a check; however, the clerk would not be able to remove the
open receivable from the records. When it became delinquent and was
investigated, the misappropriation would be detected.

This concept can be applied as readily to computer systems as to manual ones.
However, computers are indiscriminate and will accept input from anyone,
provided it meets all the criteria for acceptance. This is a different ground
rule. In manual systems everything had to be passed through people. If a
cash receipts clerk asked the ledger accountant to make an adjustment elimi-
nating a receivable, it might raise some questions. However, unless procedur-
al controls prevented it, a computer would not question an entry made by a
cash receipts clerk to an accounts receivable master file.

If punched card input is used, persons receiving cash receipts and posting
them to keypunch sheets should not have access to keypunch sheets used for
other accounting entries. If on-line systems are used and entries are made
through terminals, means of identification and authorization should prevent
cash receipts clerks from entering other accounting data through the terminal.

While separation of responsibility is often maintained for the initial account-
ing entries in an operation, this control is lost if persons are given blanket
approval to make corrections or adjustments. For example, in an accounts
payable operation, it is important to ensure that receiving entries are made
only by the receiving department, purchasing entries are made only by the
purchasing department, and invoices are processed only by the accounts
payable department. It is not unusual, however, to find that persons in each
of these departments can correct or adjust any of this information. Correc-
tions should be controlled as closely as original entries; otherwise, a theft or
fraud could be easily concealed. Basically, controls should prevent someone
from successfully perpetrating a fraud by himself or herself.

While accounts receivable and accounts payable operations illustrate the
concept of separation of responsibility, the concept applies to all areas of
business, especially those in which assets could be misappropriated. The more
widely responsibilities are separated, the more people must be involved (that
is, colluded with or duped) to perpetrate a fraud. As the number of people
who must be involved increases, the probability of discovery increases, and
the risk that fraud will be attempted decreases.

10-8 Introduction to IBM Data Processing Systems Systems

Programming Controls

Section 10: Data Security and Integrity

Not only does separation of responsibility prevent or lead to prompt detection
of fraud, but it is equally important as a tool for detecting errors. For exam-
ple, any error made by a cash receipts clerk in posting a receipt would normal-
ly be caught by an alert accountant upon noticing that the entry did not agree
with the open receivable.

Resolving Exceptions

Exceptions are transactions rejected by the system because they did not pass
one or more control points. Immediately, this indicates that the transactions
are potential problems, and every effort should be made to correct and
resolve them. It is not unusual, however, to find exceptions underestimated;
many times they are put aside because of heavy workloads, or they may be
ignored or deliberately overridden.

Some companies pay invoices when they are due whether the parts ordered
have or have not been received. The system may then print out a listing of
goods invoiced but not received. This listing is often put aside so that current
invoice processing demands can be met.

Many times exceptions are cleared without adequate investigation to deter-
mine the exact reasons for the problem. Before they are resolved, they are at
least in a pending state. Afterwards, they are normally no longer available for
review.

Controls should ensure that rejections are corrected and reentered into the
system. Sometimes rejection reports, cards, etc., are lost, and the corrected
data is never reentered. Better systems keep open files of rejections and clear
them only when they are reentered correctly. Also it usually is best to have
rejections printed on separate reports rather than on reports containing other
information. This makes them easier to isolate and correct.

Overriding Programmed Controls

Special efforts should be made to ensure that important controls written into
computer programs cannot be indiscriminately overridden. For example, in
most accounts payable systems, audit programs ensure that for each invoice
entered, there is a corresponding authorized purchase order on file. In
addition, the audit programs test whether purchase order unit price agrees
with invoice quantity, etc. Override routines are written in the programs
which allow an invoice to be paid without going through the audit tests. The
special override codes are used to avoid investigating errors; as a result, an
organization may lose control. Exception procedures should receive the
closest scrutiny.

Many of the controls formerly provided by people in manual systems are now
provided by computer programs. When controls are maintained manually, it
is relatively easy to divide responsibility for a complete transaction among a
number of people. However, with critical controls often imbedded in the
computer programs, a new internal control consideration arises. A program-
mer, through changes to program instructions only, can effect a successful
fraud unless suitable safeguards are provided. Consequently, it is desirable
that the responsibilities of writing, authorizing, modifying, and running
programs be separated.

Introduction to IBM Data Processing Systems 10-9

Section 10: Data Security and Integrity

An accounts payable operation is again used as an example. Normally, in a
manual system, an administrative person in the accounts payable department,
before approving an invoice for payment, ensures that a corresponding
purchase order and receiving ticket support it. He also verifies that informa-
tion on all three documents agrees. In addition, the check signer, normally
another person, inspects all three documents for agreement before signing the
check.

Finally, an accouts payable auditor often reviews the whole package before
the check is released--including the payee’s name and address to verify that
he is an authorized supplier. Three key control functions, performed by three
different people, significantly limit the exposure to fraud.

However, in most automated accounts payable systems, one person seldom
reviews all source documents. Purchasing and receiving documents are no
longer sent to the accounts payable department. Instead, purchasing and
receiving information is entered directly into the computer system and stored
for future use. The invoice, upon receipt, is merely prepared for entry into
the system by accounts payable. No longer does the payables department
make a test for supporting purchase orders and receiving tickets. Instead, all
control tests are made within the system by a computer program which
compares invoice information to the previously stored purchasing and receiv-
ing information.

In companies where thousands of invoices are processed weekly, there is very
little chance that an occasional fraudulent one will be detected visually. It is
precisely these large-volume operations that expose an organization to pro-
grammer fraud--especially since they are the ones that are profitable to
automate.

1t is not unusual to find that one programmer or systems analyst has complete
control and responsibility for a given system. He has easy access to programs,
documentation, and master files and can make changes to programs without
going through any approval procedures. In addition, a history is rarely kept of
programming changes. It is this type of situation that creates vulnerability to
fraud.

Establishing Programming The following steps could be taken to establish controls:
Controls
1. Determine which application could be fraudulently manipulated.
2. Identify critical programs within each of these applications.

3. Divide responsibility, where possible, for maintenance of these programs
between two or more persons.

4. Review and approve new programs and changes to existing programs.
Include review of the final program listing.

5. Establish controls to ensure that review and approval procedures are not
bypassed. Following are some techniques that could be used:

a. Control final program assembly so that only the approved program
is installed.

10-10 Introduction to IBM Data Processing Systems Systems

Operations Control
Groups

Controlling Programs

6.

Section 10: Data Security and Integrity

b. Write a program to compare controlled duplicate object program
decks to those in the computer room.

¢. Establish predetermined hash totals for critical programs. These
totals ensure that the program has not been changed.

d. If programs are kept on disk files, periodically compare them to a
control copy. Differences may flag a possible unauthorized pro-
gram change.

e. Include with output a listing of job control language to ensure that
an unauthorized program has not been executed.

Maintain an audit trail of changes to programs.

Some organizations have data processing control groups whose main function
is to assure an efficient and effective workflow into and out of the computer
room. These groups normally report to the operations manager. Their
responsibilities include checking control totals before a job is returned to the
user, scheduling jobs, resolving machine or operator errors, ensuring that new
programs or program changes are approved by management, ensuring that job
run documentation is complete, expediting important jobs, and so on. They
provide a service to users, and exercise control for management.

Highlighted below are a few suggested considerations for controlling pro-
grams and data.

1.

Hash totals, record counts, system summary totals, and control totals
should all be monitored by someone other than the originator.

Test program decks, test documentation, and sample output from tests
should be treated as securely as the program itself.

Management should screen requests for new application programs to
determine their legitimacy. Management should also determine if the
cumulative effect of multiple uses of the system by a given user yields
more information than the user is entitled to have.

Documentation of programs should include a written record of all
changes, reasons for the changes, dates they were made, authorizations,
and cross references to other programs that might be affected by the
changes. This record should be initiated by the person making each
change and should be reviewed by management.

A review procedure should be established for monitoring the operation
and input/output for programs that have been patched. The review
procedure should take place before the program is authorized to reenter
the production cycle.

An inventory of all tapes, disk files, programs, and supporting docu-
ments should be maintained. It should be reviewed and updated period-
ically or when specific changes occur. A physical audit of the inventory
should be held periodically.

Production programs should be tested to verify that programs operate as
specified.

Introduction to IBM Data Processing Systems 10-11

Section 10: Data Security and Integrity

8. Periodic dumps, traces, and transaction journals help provide an audit
trail which, when couples with good physical security, defends against
data loss by providing recent backups and helping to pinpoint the people
or programs who had access to the data.

Network Security Effective physical security can be established for the central facility, and, in
most cases, an adequate degree of physical security needed for terminals can
be accomplished. How to achieve a comparable level of protection for the
‘common-carrier portion of the system remains a problem for system manag-
ers. One of the reasons some people think of data security only in relation to
communications-oriented systems is that much of such a system cannot be
under the physical control of the owner of the system.

The teleprocessing environment does introduce new risks to the system.
Among them are exposure of capital equipment (terminals and terminal
equipment) to loss, damage, misuse, or unauthorized use; unauthorized use of
system time and resources from authorized terminals; unauthorized accumula-
tion of communications line charges; exposure of the system to foreign
(non-system) terminals dialing in; exposure of terminal messages to disclosure
through wiretapping; or exposure of system data to alteration or manipulation
by foreign terminals connected through wiretaps. Although the first hazards
listed are contained by controlling security at the terminals themselves,
protection against foreign terminals dialing into the system and against
wiretapping is clearly associated with the communications network. Dialing in
and using a system through any compatible terminal (located almost any-
where in the world) is wholly feasible, requiring no inconvenient, complicat-
ed, or illegal acts to connect into the system, as does wiretapping. Therefore,
any system using a switched network and permitting the terminal to initiate
communications should consider foreign terminals a valid threat and should
protect against them.

In applications where there is active participation of an operator, identifica-
tion of the operator may suffice, and determining which particular terminal is
used may be of no consequence. Where intangible operator identification is
used, such as a password which can be given to another person by telephone,
being able to identify the terminal can offer additional protection. In applica-
tions where there is no interaction with an operator, such as an RJE terminal
which is processing batched jobs, identification of the terminal identifies the
valid system user.

The frequency with which terminals should be identified to the system is
related to the job, the risks, the probability of substitution of another termi-
nal, and the limitations of the terminals themselves. Some terminals will
supply their identity codes only at sign-on; others will supply them whenever
queried by the system. Terminals should be reidentified when the system
detects, as it can, that communications have been interrupted. There is an
unavoidable aberration of telephone switching which permits a new terminal
to replace the previously-connected one at such times.

Wiretapping of data communications systems is technically feasible and
therefore possible, but it is illegal and troublesome to accomplish. The
opportunities for a passive wiretapper to merely monitor the line in the hope
that something useful will go by seem poor enough in most applications.

10-12 Introduction to IBM Data Processlng Systems Systems

Terminal Security

System Controls and
Procedures

Section 10: Data Security and lntegrit_y

There is a means of thwarting both the passive and the active wiretapper
through cryptography or scrambling. Scramblers are available for high- or
low-speed communications lines, and there are programmed algorithms for
use when there is processing capability at both ends of the communications
line. If scrambling is needed at all, the scrambling should offer reasonable
secrecy. Rather than use a trivial or weak scheme, it is far better not to use
scrambling at all, for then management will not be depending on it.

Users of the terminals should be identified for every task or job performed.
The minimum requirement is for accountability, but the intent is for positive
identification of the operator to be used in the audit or authorization function
that is employed. Signing on and identifying the job to be performed doesn’t
satisfy this need. A password or secrecy code meets this requirement only if
it is a surrogate for the user; if it is a secret name for some system resource
(for example, a data set), it cannot be used to establish user accountability or
identity. The intent is to provide a datum equivalent for the user’s signature,
with the same affirmation by the signatory, and with some reasonable protec-
tion against duplication or forgery in the signature itself.

The ideal of using some personal characteristic is not economically feasible
(authenticity of signature is proved by the way a person writes, not the
particular sequence of characters).

If passwords are used, they should be assigned for the users and generated,
recorded, and distributed in a controlled environment. A three- or four-
character or a four-to-six-digit number should yield very ample protection
against guessing or random generation, particularly if it must be entered in
combination with an employee number (or other names or numbers which can
be correlated with the password by the system or on subsequent audit). It is
of questionable value to add the overhead of long security codes so long as
the memory and discipline of users represent a much greater risk than the size
of the set of all passwords.

The previous sections have inferred or stated several functions needed to
provide network or terminal security. Among these are some that can be
implemented only by the central facility:

o Identification of terminals for system and network integrity (and, with
some terminals, for accountability as well)

« Scrambling programs, where needed
« Assignment and control of user identification
« Authorization and audit recording based on this identification

In addition, many of the controls discussed previously in connection with
nonteleprocessing systems still apply, beginning with key verification of input.
Record counts can be taken on entries made through a terminal. However,
other methods just as effectively ensure that all transactions are received and
processed by the computer. Message verification is one; sequential number-
ing of input transactions is another.

On-line systems involving money transactions can verify that dollar amounts
are entered correctly by displaying them back to the terminal operator. For

Introduction to IBM Data Processing Systems 10-13

Section 10: Data Security and Integrity

example, an accounts receivable system enters all customer remittances
through terminals. After 50 checks are entered, the central computer prints
each one on a terminal printer with the total dollar amount. The checks are
matched manually to the listings to ensure correct entry. Edit, audit, and
reasonableness tests can be made on terminal input just as on punched cards.
An on-line system can facilitate correction of errors.

A teleprocessing system can store each transaction exactly as it is entered
through the terminal on a tape or disk for future reference. In addition to
including all the input data, the record could also include the time, date, and
identification of the person entering the transactions (transaction log). Re-
view of source transactions would then simply require printing out selected
records from these tapes.

In a teleprocessing system the transaction log may also be used for recovery
purposes in case a master file is destroyed and has to be reconstructed. It is
usually easier and faster to reconstruct than to require personnel to reenter
the transactions through terminals. Often, audit trail requirements can be
included in these fallback and recovery tapes with minimal cost.

10-14 Introduction to IBM Data Processing Systems Systems

Index

A

access mechanisms 3-5
Access Method Services 9-24
access methods 9-22
access time 3-3
adder 4-5
address 1-13
alphameric 2-6
APL 2-33, 8-7, 8-10, 9-21
arithmetic/logical (unit) 1-12
ASCII 2-13, 6-5
ASCII-8{2-13
assembler 8-4

- Assembler 9-18
assembler language 8-6
assemblers 8-1
asynchronous mode 6-5
audio response 1-3
audit trail 10-3
auxiliary (storage) 1-13, 3-2

backup 10-2

base displacement addressing 7-22

‘base register 7-22
.BASIC 8-7

basic access technique 9-22

Basic Direct Access Method 9-23

Basic Telecommunications Access Method 9-26
batch 1-6, 3-11,9-17, 9-23

batching 1-6

BCD 2-6, 2-8, 2-27, 5-12

BDAM 9-23

belt printer 5-22

binary 2-4, 2-5, 2-13

binary coded decimal 2-6, 2-8, 2-27

See also BCD
binary number system 2-5, 2-13
binary synchronous communications 1-17, 5-30, 6-5, 9-26
" bisync see binary synchronous communications

bits 2-5

block 3-12

blocking factor 9-6

branch 4-7

BSC6-5

BTAM 9-26

buffer 5-31, 6-1

byte 2-13

bytes 1-13

C

calculating 7-12

card code 2-21

card punch 2-21, 5-5

card reader 2-21, 5-4
cartridge storage cells 3-9
central processing unit (CPU) 1-12, 4-1
chaining 7-24

channel 5-1, 5-3

‘character reading 2-30

character recognition input units 5-24
check bit 2-8

See also parity check
checkpoint (procedure) 1-7

See also checkpoint/restart

checkpoint/restart 9-14, 9-16

See also checkpoint (procedure), restart (procedure)

chief programmer teams 8-18

CMS 9-19
COBOL 2-10, 8-7,9-18
code 2-2, 2-5, 2-6
code checking 2-6
code translation 6-3
collating sequence 2-9, 7-19
command chaining 7-24
commands 5-3
communications control devices 6-2
communications line configuration 6-4
comparing 7-19°
compatibility 9-13
compilers 8-2
conditional branch (structure) 8-15
console 1-16, 5-28
control area 9-24
control interval 9-24
control program 1-11, 9-5, 9-10
control section (CPU) 1-12, 4-1
control storage 1-13
control total 10-6
control unit 5-1, 5-2

See also control section (CPU)
controlling programs 10-11
controls 10-3
conversational 9-19

See also interactive
core 1-6,3-2

"See also magnetic core

counter 4-5
CPU see central processing unit
cylinder 3-5

D
DASD 2-1, 5-16
See also direct access
data acquisition 6-7
data base 1-8, 9-3
data buffering 5-30
data cartridges 3-9
data chaining 7-24
data communication 1-8, 2-26
data controls 10-3
data entry 5-28, 6-7
data link 6-2
data link control 6-3
data management 9-6, 9-11
data module 3-7
data organization 9-6
data recording media 2-21
data representation 2-1
data security 10-1

Index 1

‘data sets (files) 3-11
data sets (communications) 6-3
data transmission multiplexers 6-2
debugging 9-18 »
-+ See also program chg_ckout, test, testing technique
decision techniques 7-9
demodulated 6-2, 6-3
deserialized 6-3 :
detail diagram (HIPO) 8-20
‘direct access 1-7, 2-1, 2-2, 3-2, 3-5, 3-11, 5-16
. disk (storage) 1-7, 1-8, 1-17, 1-18, 2-3, 3-1, 3-2, 3-5
Disk Operating System/Virtual Storage see DOS/VS
diskette 1-18, 5-6
displacement 7-22
display 1-16, 1-18, 2-1, 2-3, 2-32
distributed function 1-8
See also function distribution
DOS/VS 9-5, 9-26
DOUNTIL (structure) 8-16
DOWHILE (structure) 8-15
dual-density 2-27
dump 8-14
Iduplex transmission 6-5

'EBCDIC 2-1 1, 2-20, 2-29, 5-11, 6-5

edit routines 10-4

eight-bit (alphameric) code 2-11, 2-13, 2-28, 2-29

eight-channel code 2-24

electrographic printer 5-18

‘emulator 4-1, 9-13

end-of-block 5-13

:end-of-file 5-14

end-of-reel 5-15

'excess-64 notation 4-10

!execution cycle 4-7

lextended binary coded decimal interchange code 2-11
-See also EBCDIC

lextended description section (HIPO) 8-20

F

field 7-12

file protection 5-16
five-channel code 2-25

fixed head storage 3-7
fixed-count check 2-7
fixed-length words 4-9
floating-point (operation__ 4-9
flowchart 7-3

flowcharting worksheet 7-7
FORTRAN 2-10, 8-7, 8-8, 9-18
fraction conversion 2-17

full duplex 6-4

function distribution 9-28

.See also distributed function
graphic display 528

See display
graphic subset'2-10

Index 2

H

half-duplex 6-4

half-word 7-2

hexadecimal (number system) 2-13
hexadecimal floating-point see floating-point
HIPO 8-18

host processor 6-2

housekeeping checks 10-6

IFTHENELSE (structure) 8-16
image processing 1-3
impact printer 5-21
improved programming technologies 8-14
Indexed Sequential Access Method 9-25
indexing 7-20
indicators 5-4
input 1-9
input controls 10-3
input device 1-10, 1-13, 2-2, 5-2
input/output 2-2
input/output control systems 9-1
See also IOCS .
input/output devices 1-14, 1-16, 2-3, 2-11, 5-2
_See also input device ’
inspections 8-22)
instruction cycle 4-6, 7-1
instructions 5-3, 7-1
integer conversion 2-14
integrated communications adapter 6-2
integration (test) 8-17
interactive 1-18, 9-27

iinterblock gap 2-27, 5-13

interpreters 8-1, 8-11
interrupt 5-3

10CS 9-1, 9-28
ISAM 9-24

J

JCL 9-20

JES 9-12

Job Entry Subsystem 9-12
job management 9-10, 9-15

K

keys 5-4

L
labels 10-5
language translation 8-4
See also language translator programs
language translator programs 8-1 .
See also language translation
libraries 9-5
light pen 1-8, 1-13
limit check 10-5
line adapters 6-3
line discipline 6-5
on-line (program) development 9-18

"line printer 5-21

‘linkage editor 8-4, 9-10
linking 7-23
load module see load program
load program 8-4
load-point 5-15
local 2-33
logical operations 4-1, 7-14

" loop 7-14, 7-21

M

machine cycles 4-5
machine language 8-2
machine-oriented programming languages 8-5
macro definition 8-7 ’
macro instructions 8-2, 8-6
macro library 8-7
magnetic bubbles 1-8
magnetic character 2-2
See also magnetic ink characters
magnetic character reader 5-25
magnetic core 1-6, 2-3, 4-2
“See also DASD, direct access, disk (storage)
magnetic disk storage 3-5
magnetic drum storage 1-6
.magnetic ink characters 2-1, 2-3, 2-30
See also magnetic character
'magnetic tape 1-5, 1-13, 2-1, 2-2, 2-3, 2-26, 2-27, 2-28, 5-8
main storage 1-13, 3-2, 3-4
maintenance see program maintenance
mass storage 3-10
MCs89-14 - o
See also multiple console support
'memory 3-4
‘See also main storage
‘'message switching 6-7
MF/19-16
microfilm 5-2
microprograms 1-13
microsecond 4-5
millisecond 45
mnemonics 8-2
modems 6-2)
See also modulation/demodulation (devices)
" modulated 6-3
modulation/demodulation (devices) 6-3
module 8-4
' monitor program see control program
monolithic 3-4
multi-multipoint 6-6
multiple console support 9-14, 9-15
multipoint 6-4
multiprocessing 1-11
multiprogramming 1-11, 9-7
‘MVS9-16

N

nanosecond 4-5

NCP/VS 9-28

network control program 9-28
network security 10-12
network 2-1, 6-1

network(s) 1-8

nine-track magnetic tape 2-28
nonimpact printer 5-21

honswitched lines 6-4

normalized floating-point number 4-10
NRZI 5-12

number systems 2-13

numeric bits 2-7

o)

‘object module see object program
object program 8-4
off-line 5-8, 5-17
on-line 1-8, 1-11, 9-4, 9-5
on-line (program) development 9-18
operand 4-6, 7-2
operating systems 9-2
operation 4-6
operations control 10-11
optical reader 2-31, 5-27
organizational controls 10-8
0S/VS19-10
0S/VS29-14
output device 1-14, 2-3

‘See also input/output devices
overflow 4-3 '
overview diagram (HIPO) 8-19

P

pack 1-13

iSee also packed decimal
pack, disk see disk
packed decimal 2-6
page-data set 9-8
page fault 9-10
page frame 9-9
page in 9-10
page supervisor 9-11
paging 9-8
paging out 9-10
paper tape 1-5, 1-14, 2-1, 2-2, 2.3, 2-24, 5-17
paper tape punch 2-24, 5-18
paper tape reader 2-24, 5-17
parallel operation 4-8

-parity check 2-7, 2-28

partition 9-7
password 9-17, 10-13
phase encoding 5-12
PL/18-7, 8-9, 9-18
point-to-point 6-4

"POWER/VS 9-6

primitive functions 8-10
printer 1-16, 2-3, 5-18
printing subsystem 5-18
problem programs 1-11
problem-oriented languages 8-7
procedural controls 10-7
process control 6-7
processing controls 10-4
processing programs 1-11, 9-5
program 1-10, 7-1
program checkout 8-13, 9-18
See also test
program flowchart 7-7
program loop 7-15
See also loop
program maintenance 8-14
program module see module
program preparation 7-3, 8-1

Index 3

'programming controls 10-4
programming languages 8-1, 9-18
programming systems 9-1
punched card 1-4, 2-1, 2-21, 5-4

Q

punched paper tape see paper tape

QTAM 9-26

queued access technique 9-22

Queued Telecommunications Access Method 9-26

'R
random access 1-6, 3-4
'See also direct access
RAS 9-11, 9-27
read 1-13
read-only storage 4-1
read/write head 2-26, 3-5, 5-10
real address area 9-9
real storage 1-13, 9-3
reasonable check 10-5
record count 10-4
recovery 10-2
recovery management 9-10
region 9-3
register 4-2
remote job entry 6-7, 9-6
repetition of an operation while (DOWHILE structure) 8-15
report program generator see RPG
-restart (procedure) 10-7
[See also checkpoint/restart
IRIE 9-6
\See also remote job entry
'rotational position sensing 3-6
RPG 87, 8-12 '

S

SAM 9-23

:scanner 2-31

SCP9-10
See also DOS/VS, MVS, 0S/VS1, SVS, VM/370

SDLC 6-5, 9-26

!sccondary storage see auxiliary storage
\See also synchronous data link control

'security 10-2

semiconductor 1-7, 3-3

‘sequence checking 7-20, 10-6

sequence (structure) 8-15

sequential 3-2

sequential access method 9-23

serial operation 4-8

serial start-stop mode see start-stop mode

serial wire matrix printer 5-23

serialized 6-2

service aids 9-12

seven-track 5-11

seven-track magnetic tape 2-27

shared DASD 9-13

shared virtual area 9-7

shifting 4-3

six-bit alphameric code 2-7

SMF 9-14, 9-16

snapshot 8-14

Index 4

solid logic technology 1-7

source program 8-4

spooling 9-12

staging 3-9

start-stop mode 6-5

start/stop terminals 5-30

storage 1-6, 1-8, 1-10, 1-12

storage devices 3-1

storage printout 8-14

stored program see program

structured programming 8-14

structured walk-through 8-21

subroutine 5-3

subvoice-grade 6-4

supervisor 9-11

supervisory program see control program

SVA 9-8

SVS9-15

switched lines 6-4

switches 5-4

symbolic languages 8-2

synchronization 6-3

synchronous data link control 5-30, 6-5
See also SDLC

synchronous mode 6-5

system control program 9-10
See also DOS/VS, MVS, 0S/VS1, SVS, VM/370

system controls 10-13

system flowchart 7-5

system generation 9-7, 9-21

system integrity 9-16

system/3 1-17

system/3 card 2-22

system/32 1-18

System Management Facilities 9-16
See also SMF

system resources manager 9-16

T

tape 2-3, 3-2
See also magnetic tape
tape punch see paper tape punch

tapemark 5-13

“:See also end-of-file

‘task management 9-11

TCAM 9-28

Telecommunications Access Methods (TCAM) 9-25, 9-28.
teleprocessing 1-1, 1-14, 2-7, 5-30, 6-1, 9-3, 9-6, 9-23, 10-12
template 7-3

terminal security 10-13

terminals 1-8, 5-30

test 9-18, 10-12

testing techniques 8-13

{See also debugging, program checkout, test
throughput 5-3
thruput see throughput
time sharing 1-11, 6-7
Time Sharing Option 9-17
time-slicing 9-14

"top-down program development 8-17

tracing 8-14

tracks 3-5

train printer 5-22
transter see branch
transistors 3-4, 4-2

translator 8-4
See also language translator programs
transmission direction 6-4
transmission mode 6-5
transparency 6-5
- TSO 9-17
turnaround documents 2-31

U

unit record 2-21
unit test 8-17
universal product code 2-2, 2-32

Vv

validity checks 5-4

variable-length words 4-9

virtual 1/0 9-16

Virtual Machine Facility/370 9-18

Virtual Machine Operating System 9-19

virtual mode 9-10

virtual storage 9-8, 9-11, 9-12

Virtual Storage Access Method 9-24
See also VSAM

Virtual Telecommunications Access Method 9-26

visual display 2-32, 5-29
See also display

visual output 2-32

~ See also display
visual table of contents (HIPO) 8-19
VM/3709-18
voice grade 6-4
VSAM 9-27
VvSi
VTAM 9-26

W

wait state 9-2
word 4-9, 7-2
workspace 8-11
write 1-14

V4

zone 2-21, 2-23
zone bits 2-7

5100 Portable Computer 1-18

~96-column card 2-22

Index § .

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(Internationat)

GC20-1684-4

SwaisAg buissaooid e1eQ W1 03 UOIIINPOIUY

VSN ul pajuld

¥-¥891-0209

	000001
	000002
	00001
	00002
	00003
	001
	002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	xBack

