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Preface

All IBM Data Processing Systems, regardless of size,
type, or basic use, have certain common fundamental
concepts and operational principles. This manual
presents these concepts and principles as an aid in
developing a basic knowledge of computers. The man-
ual is designed for use in training programs where a
basic knowledge of computers is the end objective or
is a prerequisite to the detailed study of a particular
IBM system.

Each section is organized to present a logical as-
sociation of related concepts and operational prin-
ciples. The sections may be used in a progressive
sequence to develop a concept of the computer system,
or they may be used independently as reference mate-
rial. The subject matter has been generalized and
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refers to actual machines and systems as little as pos-
sible. Specific systems are mentioned only to illustrate
a general principle, not to compare one system with
another.

Throughout this manual you will be reading about
data processing concepts and devices supported by
IBM. Such specifics as core requirements, device ca-
pacities and speeds, and special features will be dis-
cussed. However, because of the dynamic nature of
data processing, where changes and improvements are
being made at a very rapid pace, the reader is ad-
vised to refer to the IBM Systems Reference Library
and other IBM publications for the most current
information.



Technological advance in data processing is both
dynamic and extensive. The ways in which data proc-
essing systems can be used seem almost boundless.
Each new application demonstrates how such systems
can be used to help man enlarge his capabilities.

Data processing systems ordinarily consist of a
combination of programs and physical equipment de-
signed to handle business or scientific data at electron-
ic speeds with self-checking accuracy. The physical
equipment (Figure 1) consists of various units, in-
cluding input, storage, processing, and output devices.
Figure 2 pictures a teleprocessing (telecommunica-
tions plus data processing) system applied to airline
reservation activities.

Figure 1. IBM System/360 Model 40 Data Processing System

Introduction

Machines are devised by men for a purpose. In the
case of data processing machines, the purpose can be
expressed simply: they offer man a means to increase
his productivity.

They do this in two ways. First, they enable man
to increase his output per hour and the quality of his
output (this is true whether it be in research, produc-
tion, problem solving, or the distribution of goods and
services). Second, they increase productivity by en-
couraging careful and intelligent planning,

Data processing machines came into being primarily
to meet the increased need for information under
increasingly complex conditions.

As a manufacturing economy developed during the
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Figure 2. Data processing system application

19th century, it became clear that expanded markets
would require mass production techniques. Machinery
was introduced to increase productivity. It became
possible to turn out more and more goods with less
human effort.

During the last quarter century, further changes
have taken place. Science has moved into the fore-
front of human activity. Research has grown to a
multibillion-dollar-a-year undertaking. New technol-
ogy has provided a new impetus for corporate growth.
Service industries have multiplied. Patterns of con-
sumer spending have changed.

As these changes gained force, they manifested

17 Instant Record Retrieval
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themselves in many ways. Informational needs greatly
increased. Data assumed new importance. Clerical
tasks multiplied. It seemed that paper handling alone
would overwhelm all productive activities, for clerical
mechanization had not kept pace with production line
developments in the factory.

Great opportunities and challenges lie ahead. An ex-
ample of what can be done is the development a few
years ago of magnetic character sensing for the bank-
ing industry. The estimated 10 billion checks that cir-
culate annually in the United States present a stagger-
ing task in data handling for banks. Each check drawn
on a bank must be handled at least six times before it



is canceled and returned. Even when business ma-
chines were introduced to handle part of this chore,
operators were needed to transfer data from the
checks to a form in which the data could be used by
the machines.

Magnetic character sensing, developed by computer
manufacturers in cooperation with the American
Bankers Association (ABA), permits data to be read
directly by both man and machine (Figure 3). By
agreement among computer manufacturers, check
printers, and the ABA, such banking documents as
checks, deposit slips, and debit and credit memos can
be printed in magnetic ink. Printed information about
the bank of origin, depositor’s account number, and
other essential data can be read directly by the ma-
chine. Only the specific amount of each check or de-
posit slip need be recorded on the document in
magnetic print, and this need be done only once by
an operator to process the document through its en-
tire routine.

In addition to the growing need for mechanization
of clerical routines and management procedures, there
is the tremendously expanded need for data processing
to match the new rate of technological growth and
scientific research. The demands for information are
enormous. Data processing systems are increasingly
relied upon for information to assist in running enter-
prises, administering institutions, directing research,
and planning future activities. To this end, data proc-

essing centers are, increasingly, offering time-sharing
services to their users. The users can enter problems
to be solved, requests for information, and data to be
processed — all from remote terminals located either
on site or possibly thousands of miles away. The
automatic reservation systems for airlines and motels
are examples of the long-distance entries in intracom-
pany time sharing.

Two other areas of remarkable advances are image
processing and audio response. The processing of the
Mariner IV pictures transmitted from the planet Mars
to Earth was an example of image processing.

Rapid microfilm scanning was combined with au-
tomatic interpretation of dark and light spots into I’s
and 0’s for computer storage. These pictures were
then displayed on viewers’ screens.

Although it is possible, experimentally, to dictate
or speak directly to a binary recording device that
will compute from the dictation, the converse is being
done daily at the New York Stock Exchange. There,
the latest stock prices are quoted on request, by a
recorded voice. The message is selected and assembled
from spoken words previously stored in the computer.

Regardless of the product or problem, the nature of
the enterprise or institution, wherever there is need
for information upon which human judgments can be
based, there may also exist a need for a data process-
ing system.

Figure 3. Magnetic character sensing — IBM 1419 Magnetic Character Reader



Data Processing in the Past

Although data processing systems are tools of aston-
ishing versatility, the automatic processing of data
is so recent that its biggest period of growth can be
traced within the last 40 years.

Punched cards were introduced during the census
of 1890, but the data processing industry, as recently
as 1930, amounted to little more than a fledgling.

World War II caused a swift change of pace in data
processing developments. Much of the momentum
came from the urgent demands of science. In aircraft
design and ordnance development, new and prodi-
gious requirements for data were encountered. As work
got under way on the atomic bomb, scientists found
themselves suddenly faced with new dimensions in
calculation.

Both here and abroad, the first two large-scale com-
puters were developed in university laboratories. The
earliest, the ENIAC, came from the University of
Pennsylvania; Europe’s first, the EDSAC, came from
the laboratories of Cambridge University, in England.

In these machines, the switching and control func-
tions, once entrusted to relays, were handled by vac-
uum tubes. Thus, the relatively slow movements of
switches in electromechanical computers were re-
placed by the swift motion of electrons. By this change-
over, it became possible to increase the speed of cal-
culation and perform computations 1000 times as fast
as before.

Almost concurrently with the use of electronics
came another major development that was to widen
the capabilities of data processing systems and ex-
pand their opportunities for application. This ad-
vance is embodied in what is called a stored program
computer. At the start, machine instructions were
programmed on interchangeable control panels, cards,
or paper tapes. Detailed instructions had to be wired
in or read into the machine as the work progressed.
Data put into the computer was processed according
to the instructions contained in these preset devices.
Only in a limited way could the computer depart from
the fixed sequence of its program.

It soon became apparent that these programming
techniques inhibited the performance of the computer.
To give the computer greater latitude in working prob-
lems without operator assistance, scientists proposed
that the computer store its program in a high-speed
internal memory or storage unit. Thus, the computer
would have immediate access to instructions as rapid-
ly as it called for them. With an internal storage sys-
tem, the computer could process a program in much
the same way that it processed data. It could even be
made to modify its own instructions as dictated by
developing stages of work.

The earliest computer to incorporate this feature
was completed in 1948. Later computers extended the
principle until it became possible for a computer to
generate a considerable part of its own instructions.

Because the computer is capable of making simple
decisions, and because it is capable of modifying in-
structions, the user is relieved of a vast amount of
costly and repetitive programming.

Concurrently with the development of stored pro-
grams for computers, teleprocessing was being born,
although it was not known by that name for more
than a decade. In 1940, the U.S. Air Corps voiced a
need for a machine to automatically punch IBM cards
with the data received over telegraph lines in the form
of punched paper tape. To answer this need, IBM
produced a tape-controlled card punch and a card-
controlled tape punch. During the last two years of
World War II, 4 to 5 million cards per month were
transmitted from point to point by telegraph.

The next major advance in teleprocessing was the
introduction of the IBM Data Transceiver (1954) to
provide direct card-to-card transmission over voice-
grade (telephone) channels, as well as microwave,
short-wave radio, and telegraph channels.

The early 1950s saw the introduction of medium-
and large-scale data processing systems, specifically de-
signed to take over the burdensome clerical chores
that beset so many growing companies.

Though essentially similar to previous computers in
the way they processed data, these new business sys-
tems differed substantially in various parts of their
makeup. In scientific research, most problems call for
relatively few items to be subjected to intensive ma-
chine processing. In business operations, the reverse is
more often true. Here the need is for machines that ac-
commodate vast numbers of items, while the proc-
essing, by comparison, is ordinarily quite simple.

Modifications in these new business systems were
addressed to the twin problems of input and output.

Early computers had used punched cards and paper
tapes for the input of information. Then a method was
developed for storing information as magnetized spots
on magnetic tape. This new technique provided input
speed 50 to 75 times that of cards and brought im-
provement in input, output, and storage. More recent
advances in magnetic tape technology have greatly
increased the original input/output rate,

After the Korean War, man’s need seemed to be
constantly one jump ahead of the computer’s ability
to handle the logical and arithmetic labors of his rea-
soning. The demand quickened especially in such
fields as nuclear physics and space technology, where
work on the H-bomb and ballistic missiles presented
problems that put a severe strain on the capacities of



existing machines. Still more speed was needed.

A substitute for earlier storage devices appeared in
the early 1950s — the magnetic core, which is a small
ring of ferromagnetic material. When strung on a com-
plex of fine wires (Figure 4), magnetic cores can be
made up into a high-speed internal storage system. An
array of cores — some magnetized in one direction,
some in the other — represents items of information.
Items in a core storage can be located and made ready
for processing in a few millionths of a second.

S

Figure 4. Magnetic core plane

Almost at the same time, other engineers developed
magnetic drum storage. Access to information stored
on the drum was substantially slower than with the
core system, but storage capacity was substantially in-
creased, and access was still faster than with magnetic
tape.

Other conditions peculiar to business led to still
more developments. A major one is a system that over-
comes a problem — batching — often encountered in
data processing. For example, magnetic tapes store
information sequentially, and the user must accumu-
late information in batches before putting it on tape.
Otherwise, the computer would be prohibitively costly
and time consuming. But when this limitation is ap-
plied to business practice, it means that each item of
information can be only as current as the batch in
which it is bundled for delivery to the computer. In

ordinary operations, hours and sometimes days may
elapse between batches.

Because of the sequential nature of tapes, the limita-
tion is compounded when the user calls for the re-
trieval of a piece of information. The computer is
forced to search through a long reel of information for
the piece. Access is slow; time may be lost.

Batching and searching requirements frequently
present serious drawbacks, even in scientific work. In
business, the difficulty becomes much more acute,
especially in accounting procedures.

Inline data processing was provided in the mid-50s
with the introduction of random (direct) access stor-
age units. These allow direct access to the desired
data record addressed, thus reducing the processing
time required in sequential processing. The first direct
access storage units consisted essentially of a stack of
magnetically coated, rotating disks, each disk contain-
ing data tracks. Information can be recorded on, or
retrieved from, the data tracks without regard to the
sequential order of recorded data.

Meanwhile, continuing developments in electronics
and solid state physics led to still newer and better
components.

In some switching functions, the vacuum tube was
replaced by a smaller semiconductor diode that has
the advantage of demanding less power. A further
advance came when tiny transistors were introduced
in place of vacuum tubes in the computer. Not only
can these transistors be packed into smaller units
(Figure 5), but they have greater reliability. The
changeover to transistors was accomplished, creating
what has frequently been referred to as the “Second
Generation” of computer.

The next technological advance miniaturized and
refined components of the Second Generation. This,
when done, led to a concept known as Solid Logic
Technology. The use of these components (Figure 5)
ushered in the “Third Generation” of computer.

Research scientists have already advanced to still
further stages in design. Some are studying the use of
microwave phenomena as a medium for performing
computer logic. Others are studying the behavior of
materials and electrons at extremely low temperatures
(cryogenics).

As always, the objective is to develop a better, more
versatile, more useful computer — one that will work
faster, store more information, require less power,
occupy less space, and cost less.
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Data Processing in the Future

Computers of the future will inevitably introduce
changes in the way we work, in the way we learn, and
even in the way we provide for our armed defense.

The new science of automatic programming seeks to
make programming easier and more manageable. The
goal is to build and program computers so that they
accept instructions in a language close to English.
Ultimately, computer scientists hope to develop ma-
chines that can read ordinary printed matter and that
can respond to spoken words.

A significant advance in input/output technique is
the development of the various types of graphic dis-
plays. These are similar in appearance to television
sets, but the “picture” is computer output in the form
of printed characters or graphic designs specified by
the program and data. In some cases, the user can

change the output display by using a “light pen” to
“erase” a character (or part of a line) from the dis-
play screen. Then, by using the light pen or the asso-
ciated keyboards, or both, he can alter the displayed
information.

Computers of the future, as well as programs, will
probably be quite different from those of today. Stor-
age and processing units will be drastically reduced
in physical size, yet speed and capacity will be greatly
increased. Already many systems are serving a number
of widely separated inquiry stations and remote ter-
minals. Such systems of large networks have integrated
widely scattered business operations. These physical
changes have brought a need for control programming
— tomonitor the whole system — and a need for
shorter operating programs and priority ratings for
programs.

Information can be communicated and processed
more accurately and with less cost by network-inte-
grated data processing systems. Some even contem-
plate a time when paper bank checks will disappear
in many transactions. Instead of handing an employee
his paycheck, a paymaster some day may simply in-
struct a computer, serving a bank, to credit the em-
ployee’s earnings to his bank account.

The Data Processing System

Data processing is a series of planned actions and
operations upon information to achieve a desired re-
sult. The procedures and devices used constitute a
data processing system (Figure 6). The devices may
vary: all operations may be done by machine, or the
devices may be only pencil and paper. The proce-
dures, however, remain basically the same.

There are many types of IBM data processing sys-
tems. These vary in size, complexity, speed, cost,
levels of programming systems, and application. But,
regardless of the information to be processed or the
equipment used, all data processing involves at least
three basic considerations:

1. The source data or input entering the system

2. The orderly, planned processing within the sys-

tem

3. The end result or output from the system

Input may consist of any type of data: commercial,
scientific, statistical, engineering, and so on (Fig-
ure 7).

Processing is carried out in a preestablished se-
quence of instructions that are followed automatically
by the computer (Figure 8). The plan of processing
is always of human origin. By calculation, sorting,
analysis, or other operations, the computer arrives at
results that may be used for further processing or re-
corded as reports or sets of data.
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Figure 8. Data processing by computer

Stored Programs

Each data processing system is designed to perform a
specific number and type of operations. It is directed
to perform each operation by an instruction. The in-
struction defines a basic operation to be performed
and identifies the data, device, or mechanism needed
to carry out the operation. The entire series of instruc-
tions required to complete a given procedure is known
as a program.

For example, the computer may have the operation
of multiplication built into its circuits in much the
same way that the ability to add is built into a simple
desk adding machine. There must be some means of
directing the computer to perform mutiplication, just
as the adding machine is directed by depressing keys.
There must also be a way to instruct the computer
where in storage it can find the factors to multiply.

Further, the comparatively simple operation of mul-
tiplication implies other activity that must precede
and follow the calculation. Assume that the multipli-
cand and the multiplier are read into storage by an
input device. This device must previously have had
access to the record or records from which these fac-
tors are to be supplied. Once the calculation is per-
formed, the product must be returned to storage at a
specified location, from which it may be written out
by an output device.

Any calculation, therefore, involves reading, locating
factors in storage, perhaps adjusting the result, return-
ing the result to storage, and writing out the com-
pleted result. Even the simplest portion of a procedure
involves a number of planned steps that must be
spelled out to the computer if the procedure is to be
accomplished.

An entire procedure is composed of these individual
steps grouped in a sequence that directs the com-
puter to produce a desired result. Thus, a complex
problem must first be reduced to a series of basic



machine operations before it can be solved. Each of
these operations is coded as one instruction or a series
of instructions, in a form that can be interpreted by
the computer, and is placed in the main storage unit
as a portion of a stored program.

The possible variations of a stored program provide
the data processing system with almost unlimited
flexibility. A computer can be applied to a great num-
ber of different procedures simply by reading in or
loading the proper program into storage. Any of the
standard input devices can be used for this purpose,
because instructions can be coded into machine lan-
guage just as data can (see section titled “Machine
Coding”).

The stored program is accessible to the machine,
providing the computer with the ability to alter the
program in response to conditions encountered dur-
ing an operation. Consequently, the program selects
alternatives within the framework of the anticipated
conditions.

A brief introduction to various types of programs
and systems operations follows. All of the terms are
discussed in greater detail later in the manual.

To make possible the teleprocessing networks and
the orderly operation of many types of input/output
devices that may be online with a computer, control
programs have been developed by IBM and users of
IBM computers. Control programs are also known as
monitor programs or supervisory programs and they
act as traffic directors for all the other programs. The
others, called processing programs or problem pro-
grams, solve a problem or carry out a particular oper-
ation or process on a set of data and later relinquish
control of the computer to the control program, which
may be constructed to allow the computer to handle
random inquiries from remote terminals, switch from
one problem program within the computer to another,
control external equipment or do whatever the appli-
cation calls for.

The concept of maintaining optimum computer
usage by interleaving and interspersing processing
programs under the direction of control programs gives
rise to the use of two terms — time sharing and multi-
programming.

Briefly, time sharing may be thought of as the co-
operative use of a central computer by more than one
user (company, division or branch of a company, in-
stitution, or government agency). Each user receives
a share of the time available, with the result that many
jobs are being performed within a congruent time
(either simultaneously or seemingly simultaneously).
This service may be achieved by interspersing pro-
grams rapidly on one computer system, by multi-
programming (described later), or by using two
computers that are joined to permit the sharing of
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each other’s facilities (multiprocessing).

Multiprogramming is usually thought of as a system
of control programs and computer equipment that
permits many processing or operating programs of one
or more users to go on concurrently. This is accom-
plished by interleaving the programs with each other
in their use of the central processing unit, storage,
and input/output devices. To do this, the control pro-
grams and equipment must be able to identify the
point at which a problem program that is being exe-
cuted must “wait” for the completion of some event.
At that point, the control program begins another
processing task that is ready to be executed. When
that is done, the control program must be able to go
on to something else or go back to the former (un-
finished) program, if it is ready to continue. Since
many programs may be in stages of partial completion,
successful multiprogramming usually requires sched-
uling levels of priority for the different tasks.

Time sharing, multiprogramming, and multiproc-
essing are closely linked, and may be combined in
many ways. While one user has the computer on a
time sharing basis, his problem may involve several
different tasks that can be interleaved by a computer
and programming system that provides for multipro-
gramming. It is also perfectly possible for teleprocess-
ing messages to be coming in and going out of certain
types of computers at the same time that process
(problem) programs are being run: These are but two
examples of possible combinations of time sharing and
multiprogramming.

Functional Units

Data processing systems can be divided into four
types of functional units: central processing unit, stor-
age, input devices, and output devices.

Central Processing Unit
The central processing unit (Figure 9) is the control-
ling center of the entire data processing system. It can
be divided into two parts:

1. The arithmetic/logical unit

2. The control section

The arithmetic/logical unit performs such opera-
tions as addition, subtraction, multiplication, division,
shifting, moving, comparing, and storing. It also has a
logical capability to test various conditions encoun-
tered during processing and to take action accordingly.

The control section directs and coordinates the en-
tire computer system. Its functions involve controlling
the input/output units and the arithmetic/logical oper-
ation of the central processing unit, and transferring
data to and from storage, within given design limits.
This section directs the system according to the pro-
cedure originated by its human operators and pro-
grammers.



Figure 9. Central processing unit and console

Storage

Storage is somewhat like an electronic filing cabinet,
completely indexed and instantaneously accessible to
the computer.

All data must be placed in storage before it can be
processed by the computer. Information is read into
storage by an input unit and is then available for
internal processing. Each position or section of storage
has a specific location called an address, so that the
stored data can be readily located by the computer
as needed.

The computer may rearrange data in storage by
sorting or combining different types of information
received from a number of input units. The computer
may also take the original data from storage, calculate
new information, and place the result back in storage.

The size or capacity of storage determines the
amount of information that can be held within the
system at any one time. In some computers, storage
capacity is measured in millions of digits or characters
(bytes), providing space to retain entire files of in-
formation. In other systems, storage is smaller, and
data is held only while being processed. Consequently,
the capacity and design of storage affect the method
in which data is handled by the system.

In System/360, main storage is thought of as con-
sisting of the following: main data storage, which may
vary in size from 4096 to over a million characters of
programs and other data; control storage, which often
contains special built-in “microprograms” to assist the

computer in carrying out its own operations; local
storage, consisting of high-speed working areas
(registers) for floating-point arithmetic, fixed-point
arithmetic, and other types of processing; and large-
capacity storage (Figure 10), multiples of which can
be added to the larger models, and which provides up
to 8 million characters (bytes) of information.

Figure 10. IBM 2361 Core Storage



In addition, much more storage is provided by the
direct access storage devices described in a later sec-
tion. These direct access devices and the tape units
provide what is sometimes called secondary storage
or auxiliary storage.

Storage is designed in such a way that information
can be put there in many forms — as complete records,
portions of records, digits, symbols, characters, code
patterns, signals, and so on. However, capacity is usu-
ally stated in characters, meaning letters of the alpha-
bet, digits, and special symbols of accounting, scientific
notation, and report writing. In System/360, the word
“byte” is used instead of “character”. It is possible to
“pack” two numeric digits into the same storage space
that is required for letters of the alphabet, special
characters, and the other symbols usually referred to
as characters.

Input and Output Devices

The data processing system requires, as a necessary
part of its information-handling ability, features that
can enter data into the system and record data from
the system. These functions are performed by input/
output devices (Figure 11) linked directly to the
system.
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Input devices read or sense coded data that is re-
corded on a prescribed medium and make this infor-
mation available to the computer. Data for input is
recorded in cards and paper tape as punched holes, on
magnetic tape as magnetized spots along the length of
the tape, on paper documents as characters or line
drawings created with the light pen and associated key-
boards, etc.

The method of recording data for machine use and
the characteristics of each medium are discussed in
later sections.

Output devices record or write information from
the computer on cards, paper tape, and magnetic tape;
they print information on paper; generate signals for
transmission over teleprocessing networks; produce
graphic displays, microfilm images, and take other
specialized forms. The number and type of input/out-
put devices connected directly to the computer depend
on the design of the system and its application.

Special data conversion operations are associated
with all computer systems to transcribe information
recorded on one medium to another. For example, in-
formation on punched cards can be transcribed auto-
matically to magnetic tape. This operation may take
place online, using the computer, or offline, using
input/output devices independently.
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Console

The console (Figure 12) is an input/output device
that provides external control of the data processing
system. Keys turn power on or off, start or stop oper-
ation, and control various devices in the system. Data
may be entered directly by manually depressing keys.
Lights are provided so that data in the system may be
displayed visually.

On some systems, a console printer and keyboard
provide limited output or input. The input/output
device may print messages, signaling the end of proc-
essing or an error condition. It may also print totals
or other information that enables the operator to mon-
itor and supervise operation, or it may give instruc-
tions to the operator. On the other hand, it may be
used to key in meaningful information (such as alter-
ing instructions) to a data processing system that is
programmed to respond to such messages.

A remote console (Figure 13) may offer increased
efficiency and flexibility by providing duplicate oper-
ator controls at a station removed from the processing
unit.

Figure 13. IBM 2150 Console for remote operation

Figure 12. IBM System/360 Model 40 Console, Console Printer, and Keyboard
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Symbols convey information; the symbol itself is not
the information but merely represents it. The printed
characters on this page are symbols that convey one
meaning to some persons, a different meaning to
others, and no meaning to those who do not know
their significance (Figure 14).

\;g 55y, 1B

% a 4
$ D /N\/ .

) o”

Figure 14. Symbols for communication

Presenting data to the computer system is similar
in many ways to communicating with another person
by letter. The intelligence to be conveyed must be
reduced to a set of symbols. In the English language,
these are the familiar letters of the alphabet, numbers
and punctuation. The symbols are recorded on paper
in a prescribed sequence and transported to another
person who reads and interprets them.

Similarly, communication with the computer system
requires that data be reduced to a set of symbols that
can be read and interpreted by data processing ma-
chines. The symbols differ from those commonly used
by people, because the information to be represented
must conform to the design and operation of the ma-
chine. The choice of these symbols (and their mean-
ing) is a matter of convention on the part of the
designers. The important fact is that information can
be represented by symbols, which become a language
for the communication between people and machines.

Information to be used with the computer systems
can be in the form of punched cards, paper tape, mag-
netic tape, direct access storage devices (DASD),
magnetic ink characters, optically recognizable char-
acters, microfilm and display screen images, communi-
cation network signals, etc. The list is growing larger
each year. Some are pictured in Figure 15.

Data Representation

IBM Card

Magnetic Tape

MUNICIPAL WATER WORKS
o83 Lost D
A 1} A

RL4S332 | Sk O3 | 4598 |4 305&-

DISCOUNT TERMS: 10 DAYS
Prasent Previous  Consun
Reoding SR € b one

245 (HES'INUT ST
3255886 |230A014 | 887 ANYTOUN USA

PLEASE RETURN THIS WITH YOUR PAYMENT

Optically Readable Characters

87

YOUR NATIONAL BANK e
New York, N.Y. @i//._»éz

S

Paper Tape b

1202100987 2 20084 2670

10% 2/00000056 704

Magnetic Ink Characters

Direct Access Storage Device

Figure 15. Data recording media
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Data is represented on the punched card by the
presence of small rectangular holes in specific loca-
tions of the card. In a similar manner, small circular
holes along a paper tape represent data. On magnetic
tape, or DASD, the symbols are small magnetized
areas, called spots or bits, arranged in specific pat-
terns. Magnetic ink characters are printed on paper.
The shape of the characters and the magnetic proper-
ties of the ink permit the printed data to be read by
both man and machine. The shape of the optical char-
acters, together with the contrast with the background
paper, permits optical characters to be read by the
machine and by people.

Each medium requires a code or specific arrange-
ment of symbols to represent data. These codes are
described later in this section.

An input device of the computer system is a machine
designed to sense or read information from one of the
recording media. In the reading process, recorded
data is converted to, or symbolized in, electronic
form; the data can then be used by the machine for
data processing operations.

An output device is a machine that receives informa-
tion from the computer system and records it on the
designated output medium.

All input/output devices cannot be used directly
with all computer systems. However, data recorded on

2265 Data Entry
& Display Station

7770 Audio
Response Unit

2740 Keyboard
Printer

Figure 16. Machine-to-machine communication
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2540 Card
Read Punch

Mode! 25 Console

one medium can be transcribed to another medium
for use with a different system. For example, data on
cards or paper tape can be transcribed onto magnetic
tape. Conversely, data on magnetic tape can be con-
verted to cards, paper, tape, printed reports, or plotted
graphs.

As there is communication between people and ma-
chines, there is also communication from one machine
to another (Figure 16). This intercommunication may
be the direct exchange of data (in electronic form)
over wires, cables, or radio waves, or recorded output
of one machine or system may be used as input to
another machine or system.

Computer Data Representation

Not only must there be a method of representing data
on cards, on paper tape, on magnetic tape, and in mag-
netic ink characters, but there must also be a method
of representing data within a machine.

In the computer, data is represented by many elec-
tronic components: transistors, magnetic cores, wires,
and so on. The storage and flow of data through these
devices are represented as electronic signals or indi-
cations. The presence or absence of these signals in
specific circuitry is the method of representing data,
much as the presence of holes in a card represents data.

2401
Tape Drive

2311
Disk Storage

1403 Printer



Binary States

Computers function in binary states; this means that
the computer components can indicate only two pos-
sible states or conditions. For example, the ordinary
light bulb operates in a binary mode, that is, it is
either on or off. Likewise, within the computer, tran-
sistors are maintained either conducting or noncon-
ducting; magnetic materials are magnetized in one
direction or in an opposite direction; and specific volt-
age potentials are present or absent (Figure 17). The
binary states of operation of the components are sig-
nals to the computer, as the presence or absence of
light from an electric light bulb can be a signal to a
person.

"Q" State

"1" State
MAGNETIC CORE

ELECTRICAL PULSES

Figure 17. Binary components

Representing data within the computer is accom-
plished by assigning or associating a specific value to
a binary indication or group of binary indications.
For example, a device to represent decimal values
could be designed with four electric light bulbs and
switches to turn each bulb on or off (Figure 18).

The bulbs are assigned decimal values of 1, 2, 4, and
8. When a light is on, it represents the decimal value
associated with it. When a light is off, the decimal
value is not considered. With such an arrangement,
the single decimal value represented by the four bulbs

Off On Off On Off Cn Off On

Figure 18. Representing decimal data with binary components

will be the numeric sum indicated by the lighted
bulbs.

Decimal values 0 through 15 can be represented.
The numeric value 0 is represented by all lights off;
the value 15, by all lights on; 9, by having the 8 and
1 lights on and the 4 and 2 lights off; 5, by the 1 and
4 lights on and the 8 and 2 lights off; and so on.

The value assigned to each bulb or indicator in the
example could have been something other than the
values used. This change would involve assigning new
values and determining a new scheme of operation.
In a computer, the values assigned to a specific num-
ber of binary indications become the code or lan-
guage for representing data.

Because binary indications represent data within a
computer, a binary method of notation is used to illus-
trate these indications. The binary system of notation
uses only two symbols, zero (0) and ome (1), to
represent specific values. In any one position of binary
notation, the 0 represents the absence of a related or
assigned value, and the 1 represents the presence of
a related or assigned value. For example, to illustrate
the indications of the light bulb in Figure 18, the
following binary notation would be used: 0101.

The binary notations 0 and 1 are commonly called
bits. Properly, they are called 0 bit and 1 bit. Occa-
sionally, however, they are loosely spoken of as no
bit (0 bit) and bit (1 bit). For example, the binary
notation 0101 of Figure 18 would be described as
having a 1 bit in the 1 and 4 bit positions, and a 0 bit
in the 2 and 8 bit positions.

Binary Number Systems

In some computers, the values associated with the
binary notation are related directly to the binary
system. This system is not used in all computers, but
the method of representing values using this number-
ing system is useful in learning the general concept
of data representation.

The common decimal number system uses ten sym-
bols or digits to represent numeric values, and the
place value of the digits signifies units, tens, hundreds,
thousands, and so on. The binary or base-two number
system uses only two symbols or digits: 0 and 1. The
position value of the bit symbols (0 or 1) is based
on the progression of powers of 2; the units position
of a binary number has the value of 1; the next posi-
tion, a value of 2; the next, 4; the next, 8; the next,
16; and so on (Figure 19).

Figure 19. Place value of binary numbers
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In pure binary notation, the binary digits or bits
indicate whether the corresponding power of 2 is
absent or present in each position of the number. The
1 bit represents the presence of the value, and the 0
bit represents the absence of the value. The place
value of the digits does not signify units, tens, hun-
dreds, or thousands, as in the decimal system; instead,
the place value signifies units, twos, fours, eights, six-
teens, and so on. Using this system the quantity 12,
for example, is expressed with the symbols 1100, mean-
ing (1 X 28) + (1 X 22) + (0 X 21) + (0 X 2°), or
(1X8)+(1X4)+(0Xx2)+(0xX1).

Figure 20 shows the binary representation of the
decimal values 0 through 16.

Place Value

Figure 20. Binary representation of decimal values 0-16

Note that the decimal digits 0 through 9 are ex-
pressed by four binary digits. The system of coding
or expressing decimal digits in an equivalent binary
value is known as binary coded decimal (BCD). For
example, the decimal value 265, 498 would appear in
binary coded decimal form as shown in Figure 21.

Decimal Digits
Binary Value :

[Place Valve EmE

HBEz

Figure 21. Binary coded decimal representation of decimal
number 265, 498

Computer Codes

The method used to represent (symbolize) data is
known as a code or a system. In the compuler, the
code relates data to a fixed number of binary indica-
tions (symbols). For example, a code used to represent

16

numeric and alphabetic characters may use eight posi-
tions of binary indication. By the proper arrangement
of the binary indications (0 bit, 1 bit), all characters
can be represented by a different combination of bits.

Some computer codes in use are six-bit alphameric
code, eight-bit alphameric code, two-out-of-five-count
code, and six-bit (packed) numeric code.

Code Checking

Most computer codes are self-checking; that is, they
are provided with a built-in method of checking the
validity of the coded information. This code checking
occurs automatically within the machine as the data
processing operations are carried out. The method of
validity checking is part of the design of the code.

In some codes, each unit or character of data is
represented by a specific number of bit positions that
must always contain an even number of 1 bits. Dif-
ferent characters are made up of different combina-
tions of 1 bits, but the number of 1 bits in any valid
character is always even. With this code system, a
character with an odd number of 1 bits is detected,
and an error is indicated. Likewise, a code may be
used in which all characters must have an odd number
of 1 bits; an error is indicated when characters with
an even number of 1 bits are detected.

This type of checking is known as a parity check.
Codes that use an even number of 1 bits are said to
have even parity. Codes that use an odd number of
bits are said to have odd parity.

In other codes, the number of 1 bits present in each
unit of data is fixed. For example, a code may use
eight bit positions to code all characters, but exactly
four 1 bits will be present in each character. Char-
acters having more or fewer than four 1 bits cause an
error indication. This system of checking is known as
a fixed-count check and is often used for data trans-
mission in teleprocessing networks.

Six-Bit Alphameric Code (Binary Coded Decimal
System)

In this code, all characters — numeric, alphabetic, and
special — are represented (coded) using six positions
of binary notation (plus a parity bit position). These
positions are divided into three groups: one check
position, two zone positions, and four numeric posi-
tions (Figure 22).

Check
Zone Bits

Figure 22. Bit positions, six-bit alphameric code



The four numeric positions are assigned decimal
values of 8, 4, 2, and 1, and represent, in binary coded
decimal form, the numeric digits 0 through 9 (Figure
23). Note that 0 is represented as 1010, actually the
binary number for 10. The B and A zone bits are not
present (00) when the numeric digits 0 through 9

Figure 23. Numeric bit configurations, decimal digits 0-9,
six-bit alphameric code

Combinations of zone and numeric bits represent
alphabetic and special characters. The B and A bits
provide for four possible bit combinations: 10, 01, 11,
and 00.

The C position, known as the check bit, is used for
code checking only. Because the six-bit alphameric
code is usually an even parity code, the total number
of bits used to represent a character must have an
even number of 1 bits, or the character is considered
invalid. A 1 bit is added to a character when the sum
of the zone and numeric bits used to represent the
character is odd. If the number of bits in a character
is even without the C bit, the C bit is a 0.

Standard BCD Interchange Code

To provide compatibility of data for interchange-
ability among various computer systems, the standard
BCD interchange code has been developed. This cod-
ing structure consists basically of 64 different char-
acters.

Figure 24 shows the BCD standard interchange
code used on the IBM 1401, 1410, 7010, 7040, and
7044 Data Processing Systems.

Shown are the collating sequence, graphics, card
code, and BCD code for each of the 64 different bit
combinations. The C bit, used for parity checking pur-
poses, is dependent upon the specific computer de-
sign using the standard BCD interchange code. If the
system uses odd parity, a C bit will be automatically
placed in each C position of a character that contains
an even number of bits. Conversely, a system using
even parity will have a C bit placed in each C position
of a character that contains an odd number of bits.

CHARACTER | CARD CODE | BCD CODE (Core Storage)
Report: Program
Low—> b No Punches C
| . 1238 8 |Als 2|1
& ) 1248 cleas T4
[ 1258 8 |Afs]4 ]
< 1268 B A8 ]4]2
= 1278 cle|ajsfal2
& T+ 12 cle[a
$ 1138 cle 8 2|1
* 1148 B 8 |4
1 1158 cls 8 |4 1
5 1168 cle 8 |42
A 1178 ] 8 (42
— 1 [
/0 [X] c A 1
s 038 c A s 21
% | ( 0-48 A8 4
~ ! 0-58 [3 Als 4 1
AY 048 C A8 |42
H 078 AlsTal2]
B 28 A
# 1 = 38 8 2]
@ i’ 48 c 8 |4
: 5.8 8 |4 1
> 68 8 [4]2
v 78 3 8 (412
? 120 clefals 2
u A 121 B [A 1
£ B 12.2 B |A 2
§ c 123 clsa 2 [
@ D 124 B A 4
2 £ 125 <18 A 4 i
g F 126 clefa 4]2
3 [ 127 B|A 412
o H 128 B [Als
| 129 clefals 1
! 110 B s 2
3 141 cls 1
K 112 cls 2
L 13 B 2[1
M 114 cls 4
N 115 B 4 1
) 116 B 42
P 17 cls 42
Q 118 clB 8
R 119 B 8 1
* 0-2-8 Als 2
s 02 c A 2
T 03 A 2(1
u 04 c A 4
v 05 A 4 1
w 06 A 412
X 07 [3 A 4[2[
Y 0-8 [ Als
z 09 Als 1
g ) C 8 2
1 1 1
2 2 2
3 3 c 2 [
4 4 4
5 5 c 4 1
3 6 3 412
7 7 4121
8 8 8
High> |9 9 [ 8 1

NOTE: Tape may use even parity.

Figure 24. Standard BCD interchange code

Five of the standard BCD bit combinations print
out as two different characters (called graphics), de-
pending upon the type set used in the printer. The
two variations are called graphic subset 1 and graphic
subset 2 (Figure 25).
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Graphic Subset 1 Graphic Subset 2
BCD Code Print Arrangement A Print Arrangement H
8-2-1 # =
8-4 @ !
A-8-4 % (
B-A & +
B-A-8-4 a }

Figure 25. Graphic subsets 1 and 2

Graphic subset 1 is used primarily for computer
report writing and most commercial uses, while
graphic subset 2 is used for advanced programming
languages, such as FORTRAN and COBOL, and
meets general requirements for mathematical sym-
bolism.

Figure 26 indicates the preferred standardized ter-
minology for the special characters included in the
standard BCD interchange code.

NAME

Group Mark
Record Mark
Segment Mark
Word Separator
At Sign

Number Sign
Ampersand

Plus

Asterisk

Percent

Slash

Backslash
Lozenge

Blank

Substitute Blank
Left Parenthesis
Right Parenthesis
Left Bracket
Right Bracket
Tape Mark

Less than
Greater than
Equal to
Semicolon.
Colon

. Period or Point

‘ Prime or Apostrophe
- Minus or Hyphen (Dash)
A Delta

SYMBOL

e HIVA<L— e~ ko O ~R*+ 3@ FHH

Figure 26. Special character names
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Eight-bit Alphameric Code (Extended Binary Coded
Decimal Interchange Code — EBCDIC)

This code (Figure 27) uses eight binary positions for
each character format, plus a position for parity check-
ing. By using eight bit positions, 256 different char-
acters can be coded. This code permits, for instance,
the coding of uppercase and lowercase alphabetic
characters, a much wider range of special characters,
and many control characters that are meaningful to
certain input/output devices. At present, many bit
patterns have no assigned function (control or graph-
ic). They are reserved for future assignment. EBCDIC
is one of the two principal coding schemes for
System/360.

Eight-Bit Alphameric Code (USASCII-8)

The USA Standard Code for Information Interchange
(USASCII) is a seven-bit code developed through
the cooperation of users of equipment of communi-
cations and data processing industries, in an attempt
to simplify and standardize machine-to-machine and
system-to-system communication.

Because the System/360 has an eight-bit character
capacity, it was necessary to expand USASCII to an
eight-bit representation. This expanded representation
is referred to by IBM as USASCII-8. This code may
be used for internal processing and input/output pur-
poses with System/360 in those media for which
USASCII has been standardized.

Computer Number Systems and Conversion

Binary System
Computers using the binary system of data representa-
tion are typified by the IBM System/360.

For these systems, the basic unit of information is
a byte. Four bytes constitute a word consisting of 32
consecutive bit positions of information which are
interpreted as a unit, much as a character or a digit
in other systems.

The bit sections within the word have a place sig-
nificance related to the binary number system. That
is, the place position of a bit in the word determines
the value of the bit. In the binary number system, the
decimal values of the places (from right to left) are
1,2, 4,8, 16, 32, 64, and so on as shown in Figure 19.

Although the place values of the bits of a word are
always those of the binary number system, they can
be interpreted or processed in such a way as to repre-
sent other than a binary number. For example, a 32-



Bit
EBCDIC Configuration
NUL 0000 0000
SOH 0000 0001
STX 0000 0010
ETX 0000 0011
PF 0000 0100
HT 0000 0101
LC 0000 0110
DEL 0000 0111

0000 1000
RLF 0000 1001
SMM 0000 1010
vT 0000 1011
FF 0000 1100
CR 0000 1101
SO 0000 1110
sl 0000 1111
DLE 0001 0000
DC1 0001 0001
bDCc2 0001 0010
™ 0001 0011
RES 0001 0100
NL 0001 0101
BS 0001 0110
L 0001 0111
CAN 0001 1000
EM © 0001 1001
cc 0001 1010
CuUi 0001 1011
IFS 0001 1100
IGS 0001 1101
IRS 0001 1110
1US 0001 1111
DS 0010 0000
SOS 0010 0001
FS 0010 0010

0010 0011
BYP 0010 0100
LF 0010 0101
ETB 00100110
ESC 00100111

0010 1000

0010 1001
SM 0010 1010
cu2 0010 1011

0010 1100
ENQ 0010 1101
ACK 0010 1110
BEL 0010 1111

0011 0000

0011 0001
SYN 0011 0010

0011 0011
PN 0011 0100
RS 0011 0101
uc 00110110
EOT 00110111

0011 1000

0011 1001

0011 1010
cus 0011 1011
DC4 0011 1100
NAK 0011 1101

0011 1110
suB 0011 1111
sP 0100 0000

0100 0001

0100 0010

0100 0011

0100 0100

Bit

EBCDIC Configuration

=+~ A" -

~1| I - *

7/12

N Vl

6/0

-—TJO -0 00T

0100 0101
0100 0110
01000111
0100 1000
0100 1001
0100 1010
0100 1011
0100 1100
0100 1101
0100 1110
0100 111
0101 0000
0101 0001
0101 0010
0101 0011
0101 0100
0101 0101
01010110
01010111
0101 1000
0101 1001
0101 1010
0101 1011
0101 1100
0101 1101
0101 1110
0101 1111
0110 0000
0110 0001
0110 0010
0110 0011
0110 0100
01100101
01100110
01100111
0110 1000
0110 1001
0110 1010
0110 1011
0110 1100
01101101
0110 1110
01101111
01110000
0111 0001
0111 0010
0111 0011
0111 0100
01110101
01110110
o111 011
0111 1000
0111 1001
0111 1010
0111 1011
0111 1100
01111101
0111 1110
0111111
1000 0000
1000 0001
1000 0010
1000 0011
1000 0100
1000 0101
1000 0110
1000 0111
1000 1000
1000 1001

.

Bit
EBCDIC Configuration

1000 1010
1000 1011
1000 1100
1000 1101
1000 1110
1000 1111
1001 0000
1001 0001
1001 0010
1001 0011
1001 0100
1001 0101
1001 0110
1001 0111
1001 1000
1001 1001
1001 1010
1001 1011
1001 1100
1001 1101
1001 1110
1001 1111
1010 0000
1010 0001
1010 0010
1010 0011
1010 0100
1616 6101
10100110
10100111
1010 1000
1010 1001
1010 1010
1010 1011
1010 1100
1010 1101
1010 1110
1010 1111
1011 0000
1011 0001
1011 0010
1011 0011
1011 0100
1011 0101
10110110
10110111
1011 1000
1011 1001
1011 1010
1011 1011
1011 1100
1011 1101
1011 1110
1011 1111
PZ7/11 1100 0000
1100 0001
1100 0010
1100 0011
1100 0100
1100 0101
1100 0110
1100 0111
1100 1000
1100 1001
1100 1010
1100 1011
1100 1100
1100 1101
- 1100 1110

“TfopavVOS3—T X T

N< X g<crmrwn

-IoTMMoOOw>

5

Figure 27. Configurations, Extended Binary Coded Decimal Interchange Code (EBCDIC)
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Bit
Configuration

1100 1111
1101 0000
1101 0001
1101 0010
1101 0011
1101 0100
1101 0101
1101 0110
1101 0111
1101 1000
1101 1001
1101 1010
1101 1011
1101 1100
1101 1101
1101 1110
1101 1111
1110 0000
1110 0001
11100010
. 1Mooon
11100100
11100101
11100110
11100111
1110 1000
1110 1001
1110 1010
1110 1011
1110 1100
1110 1101
11101110
1110 1111
1111 0000
1111 0001
1111 0010
1111 0011
1111 0100
1111 0101
11110110
111011
1111 1000
1111 1001
11111010
1111101
1111 1100
1111 1101
11111110
EO 1111111

EBCDIC

Mz 7/13

DOVOZErRe

RM 5/12

N<XS<C-H®”

1

WOCONONBEWN=O

Figure 27. (Continued)

bit word (Figure 28) can be interpreted as one
32-place binary number, as an eight-digit hexadecimal
number, as four alphameric characters (which may be
alphabetic or numeric), or as any predetermined
representation established by the programmer.

3,799,762,129 Binary
S # D J Alphameric
Esfe 251 75 Bofe Cole- 4 5fs- Dofe- 13 Hexadecimal

11100010011110111100010011010001 Bit Configuration

Figure 28. The 32-bit word
20

Octal System

It is apparent that binary numbers require several
times as many positions as decimal numbers to dis-
play the equivalent number. In talking and writing,
these binary numbers are bulky. A long string of ones
and zeros cannot be effectively transmitted from one
individual to another. Some shorthand method is nec-
essary. The octal and hexadecimal number systems fill
this need. Because of their simple relationship to bin-
ary, numbers can be converted from one system to
another by inspection. The base or radix of the octal
system is 8. This means there are eight symbols: 0,
1,2, 3,4, 5, 6, and 7. There are no 8s or 9s in this
number system. The important relationship to remem-
ber is that three binary positions are equivalent to one
octal position. The sample chart shown as Figure 29
is used to convert between the binary, octal, and deci-
mal systems.

BINARY OCTAL DECIMAL
000 0 0
001 1 1
010 2 2
011 3 3
100 4 4
101 5 5
110 6 6
111 7 7

At this point, a carry to the next-higher position of the
number is necessary, since all eight symbols have been
used.

BINARY OCTAL DECIMAL
001 000 10 8
001 001 11 9
001 010 12 10
001 011 13 11
001 100 14 12

Figure 29. Binary octal decimal conversion

Remember that the internal circuitry of the computer
understands only binary ones and zeros. The octal sys-
tem is used to provide a shorthand method of reading
and writing binary numbers. In the octal system, the
base number is 8. The digits of the number represent
the coefficients of the ascending powers of 8. Consider
the octal number:

173 = (1 X 8) + (7 X 8') + (3 X 8)
= 64 + 56 + 3
= 123 (decimal)
Similarly:
Octal 173
3 units = 3
56 eights = 56
64 sixty-fours = 64




By remembering what a number represents in the
binary or octal system, the number can be converted
to its decimal equivalent by the method shown above.
As the numbers get bigger, this method becomes more
difficult to use. The following section provides detailed
methods for converting from one system to another.

Integer Conversion

Decimal to Octal

Rule: Continuously divide the decimal number by 8,
and develop the octal number from the remainders of
each step of the division.

Example: Convert the decimal number 149 to its octal
equivalent.

8 [149 Remainder 5

8 |18 ? 2 =225
8 |2 ” 2 T
0 Read

We first divide the original number to be converted by
8. The remainder of this division becomes the low-
order digit of the conversion (5). We then divide the
quotient (received from the first division) by 8. Again
the remainder becomes a part of the answer (next-
higher order, 2). This is continued until the quotient
is smaller than the divisor. At this time the final
quotient is considered the high order of the conver-
sion (2).

Octal to Decimal
Example: Convert the octal number 225 to its decimal
equivalent.
Rule: Continuously multiply by 8, and add the next
octal digit.
2 2 5
X 8
16
+ 2
18
X 8
144
+ 54__

149

The high-order digit is multiplied by 8, and the next-
lower-order digit is added to the result. The resultant
answer is then multiplied by 8, and the next-lower-
order digit is added to the result. When the low-order
digit has been added to the answer, the process ends.
In the following examples, where multiplication or
division is used, detailed explanations will not be used
because the proceedings are similar.

Octal to Binary and Binary to Octal .
Rule: Express the number in binary groups of three.

Examples:
Octal to Binary Binary to Octal
2 2 5 010 010 101

P e ) s andib e o di e o

010 010 101 = 010 010 101 2 2 5 = 225

Decimal to Binary

Rule: Divide the decimal number by 2, and develop
the binary number from the remainders.

Example: Convert 149 to its binary equivalent.

2 1149 Remainder 1
2 |74 » 0
2 137 ? 1
2 |18 » 0

219 » 1 = 010 010 101
2 |4 » 0
212 » 0

211 ” 1 T
0 » Read

Binary to Decimal

Rule: Continuously multiply by 2, and add the next
binary digit.

Example: Convert 010 010 101 to its decimal equiva-
lent.

10 010 101

X 2
2
+ 0

}X
o ro

+
P

Cal
S0

|

+
k= Qo

OR 10 010 101

5ol

= 1(27) + 0 (28) + 0(2%) + 1 (2%) +

+
g

0 (23) + 1 (22) 4 0 (2!) + 1 (2)

X
o

|

=8
|

=128+ 16+ 441

+

|

= 149

X
W
o 1
|

+
on

X
-1
[LITN

|

+
&

=
S
©
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Fraction Conversion

Decimal to Octal

Rule: Multiply by 8, and develop the octal number
from the carry.
Example:
Read 149
. X 8

|

(-
8

X
®

H
5
x4

o w
=g xp

1142 +

Octal to Decimal
Rule: Express as powers of 8, and add.
Example:

J142

1(8-1) 4 1 (8-2)

+4 (8-3) + 2 (8-%)
1/8 + 1/64 4 4/512 4 2/4096
610,/4096
.1489
or .149

Octal to Binary and Binary te Octal
Rule: The same rule applies for fractions as for whole
numbers.
Example:
d 1 4 2 001 001 100 010

001 001 100 010 1 1 4 2

Binary to Decimal
Rule: The same rule applies as for whole numbers.

Example:
001 001 100 010
=1(27%) +1(27%) +1(277) +1(2-1)
= 1/8 4 1/64 + 1/128 4- 1/2048
= 305/2048
= .1489 plus
or .149

Hexadecimal System

Whereas all IBM computers use a binary system to in-
dicate the presence of a power of 2 up to the size of
a full word or designated field, the basic man-machine
communication with System/360 is in the hexadecimal
numbering system. For example, assembler programs
usually list the contents of storage in hexadecimal no-
tation, and the literature describing operation codes
and storage formats gives this information in hexa-
decimal notation.
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Hexadecimal means 16. The hexadecimal system
uses binary bits to count up to 16, carry, and then
start counting again. It does not, however, count to 16
in numbers. It counts from 0 through 9 in numbers;
then 10is A, 11is B, 12is C, 13is D, 14 is E, and 15
is F, in hexadecimal representation. It takes four bi-
nary bit positions to count to F (15) in a computer.
Figure 30 shows how it is done.

DECIMAL HEXADECIMAL BINARY SYSTEM
SYSTEM SYSTEM 8 4 2 1 Bitvalues

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

1" B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Figure 30. Relationship among decimal, hexadecimal, and
binary systems

Since System/360 has eight bits (plus a parity bit)
in each byte of its storage, each byte can be thought
of as being two hexadecimal-system digits; for ex-

ample:
Decimal 248
Binary 1111 1000
Hexadecimal F 8

Remember that the hexadecimal system, like the
octal system, is simply a shorthand notation used to
express the binary bit patterns within a computer such
as System/360. Thus, it is also related to the other
code structures defined previously. In extended binary
coded decimal interchange code (EBCDIC), this
eight-bit character (called F8 in hexadecimal) would
be an 8; in USASCII-8 code, it would be an x; it could
have other meanings in other codes. But, regardless of
the code meaning, it is expressed as F8 in the hexa-
decimal system.

Integer Translation, Hexadecimal to Decimal

Suppose we have a hexadecimal number such as
A4B5. How de we convert it to a decimal-system num-
ber? First, think of the rightmost (low-order) position
as position 1, the next position to the left as position 2,




H H H H H H H H
E E E E E E E E
X DEC X DEC X X DEC | X DEC|{X DEC| XDEC | X DEC
0 oloO 0|0 0j0 010 0|0 010 0j0 G
1 268,435456| 1 16,777,216} 1 1,048576( 1 65536| 1 4,096 |1 256 1 1611 1
2 536,870,912 2 33554,432| 2 2,097,152| 2 131,072{2 8192|2 51232 32,2 2
3 805,306,368 | 3 50,331,648| 3 3,145728| 3 196608 |3 12288|3 768|3 483 3
4 1,073,741,824 | 4 67,108,864 | 4 4,194,304 | 4 262,144 | 4 16,384 | 4 1,024 4 64|14 4
5 1,342,177,280 | 5 83,886,080 | 5 5,242,880 | 5 327,680(5 204805 1,280 5 80 5 5
6 1,610,612,736 | 6 100,663,296 { 6 6,291,456 6 393,216 |6 24576 |6 15366 96 6 6
7 1,879,048,192 | 7 117,440,512 | 7 7,340,032| 7 458,752 |7 28672 |7 1,792(7 11247 7
8 2,147,483,648 | 8 134,217,728 | 8 8,388,608 | 8 524,288 | 8 32,768 | 8 2,048 |8 12818 8
9 2,415,919,104 | 9 150,994,944 | 9 9,437,184 | 9 589,824 |9 36,864 |9 2304 |9 144|9 9
A 2,684,354,560 | A 167,772,160 | A 10,485,760 | A 655,360 | A 40,960 | A 2560 A 160 | A 10
B 2,952,790,016 | B 184,549,376 | B 11,634,336 | B 720,896 | B 45,056 | B 2816 {B 176 | B 11
C 3,221,225,472 | C 201,326,592 | C 12,682,912 | C 786,432 | C 49,1562 |C 3,072|C 192 |C 12
D 3,489,660,928 | D 218,103,808 | D 13,631,488 | D 851,968 | D 53,248 | D 3,328 | D 208 | D 13
E 3,758,096,384 | E 234,881,024 | E 14,680,064 | E 917,504 |E 57,344 | € 3584 |E 224 |E 14
Hexadecimal F 4,026,531,840 | F 251,658,240 | F 15,728,640 | F 983,040 | F 61,440 | F 3840 |F 240|F 15
Positions 8 7 6 5 4 3 2 1

Figure 31. Hexadecimal — decimal integer conversion table

the next position to the left as position 3, and the left-
most position as position 4. Looking at Figure 31, note
that:

5 in hex (hexadecimal) position 1 equals 5

B in hex position 2 equals 176

4 in hex position 3 equals 1,024

A in hex position 4 equals 40,960
The sum is the decimal value of A4B5 (42,165)

Note: Without reference tables, use the same conver-
sion method described for octal to decimal, substitut-
ing 16 for 8 as the multiplicand.

Integer Translation, Decimal to Hexadecimal
Reversing the procedure, to convert the decimal num-

ber 16,428 to hex, look up in Figure 31 the next-smaller
number than 16,428. Note the hex equivalent and posi-

tion number. Subtract the decimal value of that hex
digit from 16,428, and look up the remainder in Figure
31. The process works as follows:

Find the hex equivalent of decimal 16,428
4 in hex position 4 equals 16,384
Remainder 44

0 in position 3 equals 0
Remainder 44

2 in position 2 equals 32
Remainder 12

C in position 1 equals 12

Therefore, 402C is the hex equivalent of 16,428.

Note: Without tables, use the same conversion meth-
od as for decimal to octal, substituting 16 for 8 as the
divisor.
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H 0123| H 456 7 H 1 2 3 H 4 5 6 7
E E E E
X DEC| X DECIMAL X DECIMAL X DECIMAL EQUIVALENT
.1 .0625 [.01 .0039 0625 | .001 .0002 4414 0625 | .0001 .0000 1525 8789 0625
.2 .1250 (.02 .0078 1250 | .002 .0004 8828 1250 |.0002 .0000 3051 7578 1250
.3 .1875].03 .0117 1875 | .003 .0007 3242 1875 | .0003 .0000 4577 6367 1875
4 .2500 (.04 .0156 2500 | .004 0009 7656 2500 |.0004 .0000 6103 5156 2500
5 .3125 (.05 .0195 3125 | .005 .0012 2070 3125 | .0005 0000 7629 3945 3125
6 .3750 .06 .0234 3750 | .006 .0014 6484 3750 | .0006 .0000 9155 2734 3750
.7 .4375|.07 .0273 4375 | .007 .0017 0898 4375 |.0007 .0001 0681 1523 4375
.8 .5000 |.08 .0312 5000 | .008 .0019 5312 5000 |.0008 0001 2207 0312 5000
9 .5625 (.09 .0351 5625 |.009 .0021 9726 5625 | .0009 .0001 3732 9101 5625
A .6250 |.0A .0390 6250 | .00A .0024 4140 6250 | .000A .0001 5258 7890 6250
.B .6875 |.0B .0429 6875 |.00B .0026 8554 6875 |.000B .0001 6784 6679 6875
.C .7500 |.0C .0468 7500 |.00C .0029 2968 7500 |.000C .0001 8310 5468 7500
.D .8125|.0D .0507 8125 |.00D .0031 7382 8125 |.000D .0001 9836 4257 8125
.E .8750 |.0OE .0546 8750 | .00E .0034 1796 8750 |.000E 0002 1362 3046 8750
Hexadecimal].F .9375 |.OF .0585 9375 | .00F .0036 6210 9375 |.000F .0002 2888 1835 9375
Positions 1 2 3 4

Figure 32. Hexadecimal — decimal fraction conversion table

Fraction Translation, Hexadecimal to Decimal

To convert from hex fractions to decimal fractions, use
Figure 32 to find the sum of the decimal equivalents
for each position of the fraction.

Example: Convert .ABC hex to decimal.

.A hex in position 1 equals 6250
.OB hex in position 2 equals .0429 6875
.00C hex in position 3 equals .0029 2968 7500

.ABC hex equals decimal 6708 9843 7500

Note: Without tables, use the same method as for
octal to decimal, substituting 16 for 8 as the base in
calculating the value of each digit.

Fraction Translation, Decimal to Hexadecimal

To convert from decimal to hex, find the next-lower
decimal value and its hex equivalent in Figure 32. Sub-
tract the found decimal value from the desired decimal
value, and use this to locate the next hex equivalent.
Repeat this procedure for the number of positions re-
quired,
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Example: Convert .13 decimal to hex.
Decimal number

to convert .1300 to Hex

Next-lower decimal

number 1250 equals .2
Remainder .0050 0000

Next-lower decimal

number .0039 0625 01
Remainder .0010 9375 000

Next-lower decimal

number .0009 7656 2500 004
Remainder .0001 1718 7500

Next-lower decimal

number

.0001 0681 1523 4375 .0007

.13 decimal approximately

equals hex .2147

Note: In the absence of convenient tables, use the
same method as for decimal to octal, substituting 16
for 8 as the multiplicand.



LETTERS

A A

DIGITS

SPECIAL
CHARACTERS

r N r

PRINTED

Y —

BY THE26 ==

— 01234567R% I

e NIRRT T TTT 1“

g;;rogg::’ggl__.'.l,lk' 11i=44443444343 34141414
1" 111
2220020002222 2 ]
EEEE] R 1R I -RRERL 1Y) 33 TE 111
uudnl NYYeer IR 1R AT bjaallp)

ponHes 3 s55555@pppplslsssssssMbpEsssssMblpsssslb

sececssBppplslscccssoslbpsssccclppscsch
RRERRERI 121U RRERRERR] 12 RRERRE] FIRRERE)
sesossssolpsisaasanssoshpeaassnshbsssssell

SESIGNATION © [—= 123488 Ta el

ABCDEFGHI JKLHNOP@RSTU\-‘HK*"’ 8=

HERITUHNRNZDNBAIBABNRNUBRIRNBSNQCUUSSTVANNUADURRTANNHORNUSBCONINNINN

TBM DATA PROCESSING  JOLDS00 < sy mie 2

E .l nmn ni niil DATE CARD PUNCH
5'5 MOPpAY]YR.
J 1 m 1
| auluuluuuluunullnuu-:r.LI
1P QQUSKONBARNINUBAININHROUERONOINIRINEND BN W
(ARRRRERRRRRARERY LI ARRRRRRRRRARERI (RIIR

222222222222002222222222220022222202222)22
332333333333333330333330333333333[3333)33
R Y L XN RNy ey Yy Yy
$555555555555555555555555055505555[s55[5H[55
666666666666666666666606666666666/66{66[c6
IRRARRRRRRRRRRRRERAN] SARRRRER] FRE/1RIIR]IA]
||ssllaln1||llllucllllotulllatlljujo]la

Figure 33. IBM punched card, standard hole pattern

Data Recording Media

IBM Cards

The IBM punched card is one of the most successful
media for communication with machines. Information
is recorded as small rectangular holes punched in spe-
cific locations in a standard size card (Figure 33). In-
formation, represented (coded) by the presence or
absence of holes in specific locations, can be read or
sensed as the card is moved through a card-reading
machine.

Reading or sensing the card is basically a process
of automatically converting data, recorded as holes,
to an electronic impulse and thereby entering the data
into the machine. Cards are used both for entering
the data into the machine and for recording or punch-
ing information from a machine. Thus, the card is not
only a means of transferring data from some original
source to a machine, but also is a common medium for
the exchange of information between machines.

IBM’s cards provide 80 vertical columns with twelve
punching positions in each column. The twelve punch-
ing positions form twelve horizontal rows across the
card. One or more punches in a single column repre-
sents a character. The number of columns used de-
pends on the amount of data to be represented.

The card is often called a unit record, because the
data is restricted to the 80 columns, and the card is
read or punched as a unit of information. The actual
data on the card, however, may consist of part of a

record, one record, or more than one record. If more
than 80 columns are needed to contain the data of a
record, two or more cards may be used. Continuity
between the cards of one record may be established
by punching identifying information in designated
columns of each card.

Information punched in cards is read or interpreted
by a machine called a card reader and is recorded
(punched) in a card by a machine called a card punch.
Data is transcribed from source documents to punched
cards by manually operated card punch machines.

IBM Card Code (Hole Pattern)

The standard IBM card code uses the twelve possible
punching positions of a vertical column on a card to
represent a numeric, alphabetic, or special character
(Figure 33). The twelve hole positions are divided into
two areas, numeric and zone. The first nine hole posi-
tions from the bottom edge of the card are the numeric
hole positions and have an assigned value of 9, 8, 7, 6,
5,4, 3, 2, and 1, respectively. The remaining three posi-
tions, 0, 11, and 12, are the zone positions. (The 0 posi-
tion is considered to be both a numeric and a zone
position. )

The numeric characters 0 through 9 are represented
by a single hole in a vertical column. For example, 0
is represented by a single hole in the 0 zone position
of the column.

The alphabetic characters are represented by two
holes in a single vertical column, one numeric hole and
one zone hole. The alphabetic characters A through I
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Word 1

Word 54

The word numbers appear in every third column across the top of the card.

Figure 34. IBM 1130 binary card

use the twelve zone hole and a numeric hole 1 through
9, respectively. The alphabetic characters J through R
use the 11 hole and a numeric hole 1 through 9, re-
spectively. The alphabetic characters S through Z use
the 0 zone hole and a numeric hole 2 through 9, re-
spectively.

The standard special characters $ * % and so on, are
represented by one, two, or three holes in a column
of the card and consist of hole patterns not used to
represent numeric or alphabetic characters.

Column Binary Data Representation

Column binary describes one method of recording bi-
nary information on cards. In this system, the informa-
tion is arranged by words, starting in row 12 and going
down through the column. Each punch represents a
binary 1 in that position of the word. The IBM 1130
Computing System uses the column binary feature.
Each word is made up of 16 bits and uses 1% columns
per word. Figure 34 is an example of an IBM 1130
column binary card.

Fifty-four words can be placed on a card (1-1/3 columns per ‘word, four”columns fdr th‘reé’ word‘s).

Paper Tape

Punched paper tape serves much the same purpose as
punched cards. Developed for transmitting telegraph
messages over wires, paper tape is now used for data
processing communication as well. For long-distance
transmission, machines convert data from cards and
keyboard strokes to paper tape, send the informa-
tion over telephone or telegraph wires to produce a
duplicate paper tape at the other end of the wire, and
reconvert the information to punched cards, for later
processing.

Data is recorded as a special arrangement of
punched holes, precisely arranged along the length
of a paper tape (Figures 35 and 36). Paper tape is a
continuous recording medium, as compared to cards,
which are fixed in length. Thus, paper tape can be
used to record data in records of any length, limited
only by the capacity of the storage medium into which
the data is to be placed or from which the data is
received.

Data punched in paper tape is read or interpreted
by a paper tape reader and recorded by a paper tape
punch.

X—0000000000000000000 el
O0—o0e0000000 000000000 [T3K] ®
CHECK—® © o0 o000 ¢ o0 © © 0O e @ ) ®

§—e o0 e (1) 0000000000 [ 1)
(AN N NENNNEENENNNENNNNNNNNNENENNEENNNNE N NN NN NN NN NI NN NN NN NN NN NN ]

4—@ o000 YT 0000 Tl [TX 1] 0000 ©0 0000

2—0 o0 oo o0 00 o0 o0 0 o0 (X1 I 0000000

i—e® © ¢ @ oo o 00 o ¢ 0o 0 ® 6 & o o0o ® see® o ®

Figure 35. Paper tape, eight-channel code
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Figure 36. Paper tape, five-channel code

Eight-Channel Code (Hole Pattern)

Data is recorded (punched) and read as holes located
in eight parallel channels along the length of the paper
tape. One column of the eight possible punching po-
sitions (one for each channel) across the width of the
tape is used to code numeric, alphabetic, special, and
function characters. Figure 35 shows a section of paper
tape with the eight channels and several coded char-
acters.

The lower four channels of the tape (excluding the
feed holes) are labeled 1, 2, 4, and 8 and are used to
record numeric characters. The numeric characters 0
through 9 are represented as a punch or punches in
these four positions. The sum of the position values
indicates the numeric value of the character. For ex-
ample, a hole in channel 1 is used to represent a nu-
meric 1; a combination of a 1 and a 2 punch repre-
sents a numeric 3.

The X and 0 channels are similar to the zone
punches in IBM punched cards. These channels are
used in combination with the numeric channels to
record alphabetic and special characters. The coding
for the alphabetic and special characters is shown in
Figure 35.

To check that each character is recorded correctly,
each column of the tape is punched with an odd num-
ber of holes. A check hole must be present in the
check channel for any column whose basic code (X,
0,8, 4,2, 1) consists of an even number of holes.

A punch in the EL (end-of-line) channel is a spe-
cial function character used to mark the end of a rec-
ord on the tape. The tape feed code consists of punches
inthe X, 0, 8, 4, 2, and 1 channels, and is used to indi-
cate blank character positions. The paper tape reader
automatically skips over the areas of tape punched with
the tape feed code.

Five-Channel Code (Hole Pattern)

Data is recorded (punched) and read as holes in five
parallel channels along the length of the paper tape.
One column of the five possible punching positions
(one of each channel) across the width of the tape
is used to code numeric, alphabetic, special, and func-
tion characters. Figure 36 shows a section of paper
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—|eee oee o0 e o o oc00
2—|oe @ e oooe eee oo °
..........................‘...
3— o ‘0o 00 © 00 00 © 00 00 o
i—|e eoe 00 oo 000 o o ® °
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tape with the five channels and several coded char-
acters.

Because there are only 32 possible combinations of
punches, using the five punching positions, a shift
system is used to double the number of available
codes. When the letters (LTRS) code punch pre-
cedes a section of tape, the characters that follow are
interpreted as alphabetic characters (Figure 36).
When the figures (FIGS) code punch precedes a sec-
tion of tape, the coded punches are interpreted as
numeric or special characters.

Ten of the 32 characters are used for coding both
the alphabetic characters P, @, W, E, R, T, Y, U, L,
and O and the decimal digits 0 through 9, respectively.
Interpretation depends on the shift code, LTRS or
FIGS, preceding these characters. Likewise, the code
for special characters is identical to that of other al-
phabetic characters. The actual alphabetic code that
is equivalent to a given special character code varies,
depending on customer requirements.

The function characters — space, carriage return
(CR), and line feed (LF) — are the same in either
LTRS or FIGS shift. The space code is used to indi-
cate the absence of data on tape. The actual function
of the CR and LF characters depends on the machine
with which they are used.

Magnetic Tape

Magnetic tape is one of the principal input/output
recording media for computer systems. It is also used
extensively for storing intermediate results of com-
putations and for compact storage of large files of
data.

Magnetic tape units offer high-speed entry of data
into the computer system, as well as efficient, ex-
tremely fast recording of processed data from the
system. Highly reliable input/output data rates of up
to 640,000 numeric characters per second are possible.

The magnetic tape unit functions as both an input
unit and an output unit for the computer system. It
moves the magnetic tape across a read/write head
and accomplishes the actual reading and writing of in-
formation on the tape.
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Information is recorded on magnetic tape as mag-
netized spots called bits. The recording can be re-
tained indefinitely, or the recorded information can
be automatically erased and the tape reused many
times with continued high reliability.

So that tape can be easily handled and processed,
it is wound on individual reels or in dust-resistant
cartridges. Tape on the individual reels is % inch wide
and is supplied in lengths of up to 2400 feet per reel.
The cartridge-contained tape is threaded automati-
cally.

The IBM 2420 magnetic tape unit model 7 reduces
setup time with simplified automatic threading. In
ten seconds, the free end of the tape is automatically
threaded through the tape path from the supply reel
to the takeup reel, positioned at the load point and
loaded into the vacuum columns. Rewinding of a full
2,400-foot reel takes only one minute because the tape
does not have to be removed from the vacuum
columns.

Data is recorded in parallel channels or tracks along
the length of the tape.

The tracks across the width of the tape provide one
row of data. The spacing between the vertical rows
is automatically generated during the writing opera-
tion and varies, depending on the character density
used for recording. Character densities as high as 1600
characters per inch are available.

A longer space is automatically generated between

IJKLMNOPQRSTUVWXYZ

blocks of records on the tape; this space is called the
interblock gap (formerly called interrecord gap).

Data for IBM computers may be coded on seven-
track magnetic tape in two modes, binary coded deci-
mal (BCD) or binary. The code used depends on the
computer that originates the data.

The IBM 2400 series tape units usually have a nine-
track read/write head. A seven-track read/write head
is available as an option. The nine-track heads read or
write information in nine tracks along the length of
the tape at a single density of 800 or 1600 bytes per
inch, depending upon the model. Each byte consists
of eight data bits and a parity bit. Each byte may
represent two packed decimal digits, eight binary bits,
or one special or alphameric character.

Packed mode is limited to recording decimal num-
bers, but it offers the advantage of recording two
numbers in a single tape row, effectively doubling the
reading and writing speed for numeric data on certain
data processing systems.

BCD Coding on Tape

Letters of the alphabet, decimal numbers, and special
characters may be recorded on magnetic tape using
the binary coded decimal code (Figure 37).

Binary Coding on Tape
Some computer systems record data on magnetic tape
in binary notation (Figure 38).
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Figure 37. Magnetic tape, seven-track, seven-bit alphameric code
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Figure 38. Magnetic tape, seven-track, binary recording
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As in BCD recording, the C track is used to verify
accuracy of tape reading and writing. With binary
tape, however, each row of bits must contain an odd
number of 1 bits.

The longitudinal parity check in binary mode is
similar to that for BCD mode; the total number of bits
in each horizontal track of a record block must be

Nine-Track Coding on Tape

The nine-track magnetic tape for Series 2400 tape units
accepts the System/360 central processing unit coding,
shown in Figure 39 as System/360 Eight-Bit Code. It
adds an odd-parity bit, however, and the order of the
bits in the character (byte) row is rearranged as
shown in Figure 40.

even.
Hexa- Graphic- & Con- | Punched System/360 | | Hexa- Graphic & Con- | Punched System/360 Hexa- Graphic & Con- System/360
deci- | Mnemonic |__trol Symbols Card 8Bit deci- | Mnemonic trol Symbols Card 8Bit deci- | Mnemonic trol Symbols 8Bit

| BCDIC EBCDIC Cod "'BCDIC EBCDIC] [BCDIC EBCDIC|

e e Code mal BCDIC EBCDIC| Code Code mal BCDIC EBCDIC Code
o1 120981 el = 1o 121196 701 0170 B 7070 1017
02 1202 0000 0010 57 | X 121197 0101 0111 AC 1010 1100
03 1293 0000 0011 58 | L 12-11-98 0101 1000 AD 1010 1101
04| spm PE 1294 0000 0100 58 |c 181 0101 1001 AE 1010 1110
05 | BALR AT 1295 0000 0101 5A | A ! 1182 0101 1010 AF 1010 1111
o | sctR e e o000 0170 58 1S 3 $ 1183 0101 1011 BO 1011 0000
07 | BCR DEL 1297 0000 0111 5C | M 1184 0101 1100 B1 1611 0001
08 |Ssk 1298 0000 1000 50 | D 3 ) 1188 oot 1101 B2 1011 0010
09 | ISK 12981 0000 1001 SE | AL : : nee o101 1110 83 1011 0011
TRER 12582 0000 1010 5F_| st A - 1187 0101 1111 B4 1011 0100
o8 12983 0000 1011 60 | sTD . : o e o B85 1011 0101
oc | (EBcoicH 12984 o000 1100 | | & / ! o B6 1011 0110
oD | (EBCDIC —) 12985 0000 1101 62 11092 0110 0010 B7 1011 0111
OF 12986 0000 1110 63 11083 0110 0011 88 1011 1000
oF 12687 0000 1111 52 11094 01100100 | | B9 1011 1001
10 | LPR 1211981 0001 0000 85 1108E 0110 0101 BA
1 | INR e %07 508 66 11096 0110 0110 BB
12 | LTR 11-9-2 0001 0010 67 11-097 0110 0111 8C 1011 1100
13 | Lcr 193 0001 0011 68 | LD 11-098 0110 1000 8D 1011 1101
1 TNR RES T1o4 5001 0100 69 | cD 0-8-1 0110 1001 BE 1011 1110
15 | CLR N [1198 0001 0101 NS AN ooy BF 1211687 | 1011 1101
16 | OR BS Hoed o e 68 | NSD . . 083 0110 1011 co ) 120 1100 0000
17 | xR I 1197 0001 0111 6C | NMD %l % 084 0110 1100 ct A A 121 1100 0001
18 LR 1198 0001 1000 €D | NDD N - 0-8-5 0110 1101 c2 B B 122 1100 0010
9 CR 1587 3001 1007 6E | AW \ > 086 0110 1110 c3 C C 12-3 1100 0011
A | an 82 oot 1070 6F | SW W 7 087 0110 1111 ca o D 124 1100 0100
B |sk 1683 %01 1011 70 | STE 12110 0111 0000 cs5 E E 125 1100 0101
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Figure 39. IBM System/360 Eight-Bit Code
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The 4-7 recording positions of nine-track tape
parallel the function of the 8, 4, 2, 1 bit positions of
seven-track tape. The 2 and 3 recording positions are
the exact reverse of the A and B bit positions of
seven-track. Positions 0 ond 1 are the two additional
recording channels that group the characters into one
of four classifications: uppercase alpha and numeric,
lowercase alpha, special characters, and no assigned
character. Note that the actual channels on nine-track
tape do not run in 0-7 sequence.

9 8 7 6 5 4 3 2 1 Track Number

4 6 0 1 2 C 3 7 5 Reference Edge of Tape
C B A 8 4 2 1 Seven-track BCD

cC 0 1 2 3 4 5 6 7 Nine-track EBCDIC

Same as 8, 4, 2, 1 bits of BCD code

Reverse of A and B bits of BCD code

EBCDIC BCD
00 A-1 00 Numeric
01 J-R 10 J-R
10 S-Z 01 S-Z
11 Numeric 11 A-1
“———— 11  Uppercase alpha and numeric

10 Lowercase alpha
01  Special character
00 No characters assigned

Figure 40. Comparison of seven-track and nine-track
alphabetic code

Character Reading

Magnetic Ink Characters

Another method of representing data on paper media
for machine processing is with magnetic ink char-
acters — a language readable by both man and ma-
chine. Magnetic ink characters are printed on paper,
as in Figure 41. The shape of the characters permits
easy visual interpretation; the special magnetic ink
allows reading or interpretation by machine.

The printing (inscribing) of magnetic ink characters
on the paper documents is done by machine. The
paper documents may be random size paper or cards
ranging from 2% inches to 3% inches wide, from 6
inches to 8% inches long, and from .003 inch to .007
inch thick.

The IBM 1260 Electronic Inscriber, in addition to
performing the normal proving functions related to
banking procedures. inscribes documents. After in-
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Optically Readable Characters

Figure 41. Magnetically and optically readable characters

scription, the IBM 1419 Magnetic Character Reader
reads the inscribed information from the documents
and converts it to a machine language. At this point,
the information enters directly into an IBM data proc-
essing system. The 1419 can sort the documents as
well.

Optically Read Characters

Another method of representing data on paper docu-
ments for input to a data processing system uses opti-
cally readable characters. Figure 41 shows some of the
characters acceptable to the 1418/1428 type of optical
reader. They include the 26 letters of the alphabet,
digits 0 through 9, and special characters,

The 1231 Optical Mark Page Reader can also read
ordinary No. 2 pencil marks or printed marks from
1403 or 1443 Printers on common (8% x 11”) sheets
of paper.

The IBM 1285 reads printed paper tapes, such as
those produced on cash registers and adding machines.
Primary applications of optical reading are utility bill-
ing, insurance premium notices, charge sales invoices,
etc.

The 1287 Optical Reader can read hand-printed or
machine printed numeric digits and certain alphabetic
characters from paper or card documents or journal
tapes.
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Figure 42. IBM 2250 screen contents. A display including absolute vector graphics, point plotting, and both sizes of alpha-

betic characters.

Visual Output

Visual display units in several sizes, capacities, speeds,
and capabilities to handle complexities of information
permit the user of a computing system to see, on a
cathode ray tube, graphic reports that would take
many times longer to produce by normal printing
methods. The use of a visual display unit as a system
operator console is a typical application. Another is
the retrieval and presentation of a client’s account rec-
ord during a telephone inquiry. It is possible to up-
date the record immediately (by using an entry key-
board) and return the corrected data to storage.

The display units present (on the cathode ray tube
screen) tables, graphs, charts, and alphameric letters
and figures. The IBM 2250 Display Unit has a display
area containing over one million points that can be
addressed by X and Y coordinates. It can display 52

lines of 74 characters each — all on a twelve-inch-
square area. Figure 42 shows an example of a display
on the 2250.

The 2840 Control Unit, connected to the 2250, ac-
cepts and stores data from the computer at up to
238,000 characters per second. As many as 60,000 char-
acters, or lines, can be displayed per second. Horizon-
tal and vertical lines may be drawn by specifying only
the end points of the lines; in addition, a special fea-
ture enables lines to be drawn at any angle. Points
may be displayed as fast as 16.8 microseconds (mil-
lionths of a second) per point.

The 2260 Display Unit can display twelve lines, of
80 characters, on its 4 x 9” display area.

The 2848 Control Unit, connected to the 2260, ac-
cepts and stores data from the computer at rates of up
to 2560 characters per second.
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Storage Devices

Several types of IBM storage are presently available:  strip data cells (Figure 43). Sometimes magnetic tape
core, magnetic drum, magnetic disk, and magnetic-  is thought of as storage rather than as an input/output
medium,

IBM 2303 Drum Storage

IBM 2321 Data Cell Drive Model 1

IBM 2361 Core Storage IBM 2311 Disk Storage Drive

Figure 43. 1BM storage devices
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Information can be placed into, held in, or re-
moved from, computer storage as needed. The infor-
mation can be:

1. Instructions to direct the central processing unit

2. Data (input, in-process, or output)

3. Reference data associated with processing

(tables, code charts, constant factors, and so on).

Storage is classified as main or auxiliary, as in Sys-
tem/360 (Figure 44). Main storage includes all core
storage.

Input Output
Device Device
MAIN STORAGE Ii
Do;a Input Instructions Results
P fo be d Quantity 1. Add to be
rocesse Cost 2. Subtract Recorded
Other Data 3. Divide
4. Compare
Table A Output
123=12.06 Cost per Piece
124=12.14 Number in Stock 7
125=13.01 N
AUXILIARY STORAGE "
Table A | | Table B B e
123=12.06 | | Square Other Central
124=12.14 | | Roots Programs Processing
125=13.01 Unit

Figure 44. Schematic, main, and auxiliary storage

Auxiliary refers to all other storage and is of two
types: '

1. Direct access. Drum, disk, and data cell devices
in which records can be accessed without having
to read from the beginning of a file to find them.

2. Sequential. Tape units and Hypertape, where
reels must be read from the beginning in ordér
to read or write a desired record.

Main storage accepts data from an input unit, ex-
changes data with and supplies instructions to the
central processing unit, and can furnish data to an
output unit. All data to be processed by any system
must pass through main storage. This unit must there-
fore have capacity to retain a usable amount of data
and the necessary instructions for processing,

Applications can require additional storage. If so,
the capacity of main storage is augmented by an
auxiliary storage unit. All information to and from
auxiliary storage must be routed through main storage.

Storage is arranged somewhat like a group of num-
bered mail boxes in a post office (Figure 45).
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Figure 45. Post office mail boxes

Each box is identified and located by its number. In
the same way, storage is divided into locations, each
with an assigned address. Each location holds a specif-
ic unit of data. Depending on the system, the unit of
data may be a character, a digit, an entire record, or
a word. To insert or remove data at a location, the
address must be known, either to the programmer or
to a control program (explained later).

When information enters a location, it replaces the
previous contents of that location. However, when
information is taken from a location, the contents re-
main unaltered. Thus, once located in storage, the
same data may be used many times. In effect, a dupli-
cate of the information is made available for process-
ing.

The computer requires some time to locate and
transfer information to or from storage. This is called
access time. Storage units are available whose access
time is so brief that it is measured in billionths of a
second. To appreciate such a minute interval of time,
consider a spaceship of the future traveling at 100,000
miles per hour. In one-millionth of a second, the space-
ship would travel about 1% inches. In a nanosecond
(billionth of a second), it would travel about one-
thousandth of 1% inches.

Because so many references must be made to stor-
age in all data processing operations, the access speed
has a direct bearing on the efficiency of the entire
system.

For example, core storage is the most expensive
storage device in terms of cost per storage location.
However, core storage also provides the fastest access
time; thus, it may be the most economical in terms of
cost per machine calculation. Drum storage offers the
advantages of lower direct cost to offset slower speed.
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Most disk storage devices are slower than drum stor-
age but offer the advantage of capacity in millions
of digits. The largest single storage device is the
data cell drive with a capacity of about 400 million
eight-bit characters (or about 800 million four-bit
numeric digits)!

Core Storage

A magnetic core is a tiny ring of ferromagnetic materi-
al, a few hundredths of an inch in diameter. Each core
is pressed from a mixture of ferric oxide powder and
other materials and then baked in an oven.

Aside from its compact size — a decided advantage
in computer design — the important characteristic of
the core is that it can be easily magnetized in a few
millionths of a second. And, unless deliberately
changed, it retains its magnetism indefinitely.

If cores are placed on a wire, like beads on a string,
and a strong enough electrical current is sent through
the wire, the cores become magnetized (Figure 46).
The direction of current determines the polarity or
magnetic state of the core (Figure 47). By reversing
the direction of current, the magnetic state is changed
(Figure 48). Consequently, the two states can be used
to represent 0 or 1, plus or minus, yes or no, or on or
off conditions. For machine purposes, this is the basis
of the binary system of storing information. Because
any specified location of storage must be instantly ac-
cessible, the cores are arranged so that any combina-
tion of ones (ls) and zeros (0s) representing a
character can be written magnetically or read back
when needed.

Figure 46. Polarity of magnetic cores
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Current is applied Current is removed
Core remains
magnetized

Figure 47. Magnetizing a core

Current is reversed;
the core reverses
its magnetic state

Current is applied Core is magnetized

Figure 48. Reversing a core

Selected Core

1/2

Current

|
T 1/2 Current

Figure 49. Selecting a core



To accomplish selection, two wires run through
each core at right angles to each other (Figure 49).
When half the current needed to magnetize a core
is sent through each wire, only the core at the inter-
section of the wires is magnetized. No other core in
the string is affected. Using this principle, a large
number of cores can be strung on a screen of wires;
yet, any single core in the screen can be selected for
storage or reading without affecting any other.

Once information is placed in core storage, some
means must be devised to make it accessible, that is,
to recall it when needed. It has been shown that a
definite magnetic polarity can be set up in a core by
the flow of current through a wire. In the machine,
the flow is not actually constant; it is sent through the
wire as an electrical pulse, which is said to flip the
core to a positive or a negative state, depending on
the direction of current flow.

If the magnetic state of the core is reversed by the
pulse, the abrupt change or flip induces current in a
third wire running through the center of the core

(Figure 50).

Figure 50. Core sense wire

The signal through this sense wire can be detected
to determine whether the core contained a 1. Only
one sense wire is needed for an entire core plane, be-
cause only one core at a time in any plane is tested
for its magnetic state. The wire is therefore strung
through all the cores of the plane (Figure 51).

Note, however, that when information has been
read from storage, all cores storing that information
are set to 0. Readout is destructive; that is, the process
of reading a 1 resets the core to 0. Therefore, to re-
tain data in storage, the computer must replace ones
(1s) in those cores that had previously contained
ones (1s). But cores that contained zeros (0s) must
remain zeros (0s).

To reproduce (regenerate) ones (1s) as they should
be, the computer tries to write back ones (1s) in all

Figure 51. Sense wire in core plane

the locations previously read; at the same time, an
inhibit pulse suppresses writing in cores that previous-
ly contained zeros (0s). The inhibit is sent through
a fourth wire and, in effect, cancels out the writing
pulse in one of the two wires used to magnetize the
core. Like the sense wire, the inhibit wire (Figure
52) also runs through every core in a plane.

Figure 52. Core inhibit wire
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It is beyond the scope of this manual to fully ex-
plain core storage. However, a basic knowledge of
how core storage works is helpful in understanding
the operation of all data processing systems using
cores. In some core storage systems, the sense and
inhibit functions are combined into one wire, which
carries a charge in one direction for sensing and a
charge in the opposite direction for inhibiting. Still
more compact and advanced systems, such as that
of the large-capacity IBM 2361 Core Storage shown
in Figures 10 and 43, use only two wires and operate
on a quite different principle — very time-saving and
efficient, yet producing the same bit manipulation
described here.

Magnetic Drum Storage

Two storage concepts are used in magnetic drum
storage operations. The first is to use the drum as
a high-capacity, intermediate-access, storage device.
Principally, it is used for the storage of data that is
referred to repeatedly throughout the computing op-
eration (actuarial tables, logarithmic tables, etc.) or
as a supplementary storage facility for main storage.
The second and more recent concept is to provide
program storage, program modification data, and a
temporary storage for high-activity direct access oper-
ations involving limited amounts of data.

A magnetic drum is a cylinder that rotates at a
constant speed and the outer surface of which is
coated with a magnetic material. If an area of this
material is placed in a magnetic field, the area be-
comes magnetized. After the magnetic field is re-
moved, the magnetized spot remains on the surface
of the drum indefinitely. Data recorded on the surface
may be read repetitively. Each time new data is re-
corded, the old data is automatically erased. Informa-
tion is recorded or retrieved by read/write heads
that are suspended a very slight distance from the
periphery of the drum. The read/write heads (Figure
53) contain coils of fine wire wound around tiny
magnetic cores.

By sending pulses of current to the write coils in the
read/write heads, the magnetic drum surface is mag-
netized. Conversely, by passing the magnetized spots
recorded on the drum surface under the read coils, the
drum-recorded data is used. Each drum has a specific
number of storage locations, each of which is ad-
dressable by the computer. The capacity of each stor-
age location depends upon the design of the drum
and the data representation code used.

For an example of drum storage operation, let us
consider the IBM 2303 Drum Storage, which consists
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Figure 53. Drum recording

of a vertically mounted drum and its associated
electronic circuitry. The drum, coated with a magnetic
recording material, rotates at about 3500 revolutions
per minute. The surface of the drum is divided into
addressable tracks, which extend around the periphery
of the drum, and which are used for storing data
as follows:

800 Standard Data Tracks

80 Alternate Data Tracks

The alternate tracks are provided to ensure that
each recorded bit can be stored in a magnetically
reliable medium. If a defect develops on a track, an
alternate track is substituted, and the alternate is given
the address of the disabled track.

Each data track has its own read/write head, which
is used for both recording and retrieving data. The
read/write heads are fixed in position on 20 vertical
racks that surround the drum. Each rack contains 40
heads. If required, heads are readily moved (by the
customer engineer) from disabled tracks to alternate
tracks.

The read/write heads contain tiny, coil-wrapped,
magnetic cores. During writing operations, these cores
convert electrical signals, received from the computer,
into magnetic flux to magnetize defined spots on the
drum surface. During reading operations, the action is
reversed; the magnetized spots on the drum surface
generate a magnetic flux, which is converted to an
electrical signal by the read/write head and trans-
mitted to the computer.

Data Access Times

Two interrelated modes of data access are involved
in drum storage operation, as compared to three in
disk storage operation. One access mode is mechanical,
the other electronic.



Magnetic Disk Storage

Disk storage, like drum storage, provides IBM data
processing systems with the ability to record and re-
trieve stored data sequentially or randomly (directly).
It permits immediate access to specific areas of in-
formation without the need to examine sequentially
all recorded data. Magnetic tape operations do not
have this ability; tape searching must start at the be-
ginning of the tape reel and continue sequentially
through all records until the desired information area
is found.

For an example of the application of direct access
operations, as compared to sequential operations, con-
sider the search for a word in a large unabridged
dictionary. If the contents of the dictionary were
stored on magnetic tape, the complete dictionary could
be machine-read in about two minutes. A wide range
of individual words would require an average of one
minute to be found and read by the magnetic tape
sequential method of searching. Using the dictionary,
a human being would average about 1/5 of a minute
per word, simply because he would limit his search
for each word to an appropriate portion of the whole
dictionary. That is, he would immediately go to a
specific letter rather than start at the beginning of the
dictionary and check each entry. This concept of limit-
ing a search to a small section of the whole would
permit direct access storage to perform the dictionary
word search in a few thousandths of a second.

The high-speed access to data storage locations
provided by direct access data processing permits the
user to maintain up-to-date files and to make frequent
direct reference to the stored data.

The magnetic disk is a thin metal disk coated on
both sides with magnetic recording material. Disks
are mounted on a vertical shaft; they are slightly
separated from one another to provide space for the
movement of read/write assemblies. The shaft re-
volves, spinning the disk (Figure 54).

Data is stored as magnetized spots in concentric
tracks on each surface of the disk. Some units have
500 tracks on each surface. The tracks are accessible
for reading and writing by positioning the read/write
heads between the spinning disks.

On the IBM 2302 Disk Storage, the read/write
heads are mounted on an access mechanism with 24
arms, arranged like teeth on a comb, that move
horizontally between the disks. Two read/write heads
are mounted on each arm. One head services the
bottom surface of the upper disk; the other head
services the top surface of the lower disk. Thus, it is
possible to read or to write on either side of the disk.

The magnetic disk data surface can be used re-
petitively. Each time as new information is recorded
and stored on a track, the old information is erased.
The recorded data may be read as often as desired;
data remains recorded until written over.

Figure 34. IBM 2311 Disk Storage Drive showing mounted disk pack and access arms
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The IBM 2302 Disk Storage contains one or two
modules of disk assemblies. Each module consists of
25 magnetically coated disks, two feet in diameter,
and an access mechanism. Each disk surface has 492
tracks. The disks are mounted % inch apart on the
rotating vertical shaft.

The IBM 2311 Disk Storage (Figure 54) is similar
in operating principle to the 2302, except that the 2311
uses interchangeable disk packs. Six disks are mounted
as a disk pack which can be readily removed from
the 2311 Disk Drive and stored in a library of disk
packs in much the same manner as reels of magnetic
tape may be stored. The packs are 14 inches in
diameter and weigh less than ten pounds. Each of the
ten recording surfaces contains 200 data recording
tracks. The disks turn at 2400 revolutions per minute.
Up to 7.25 million characters of information can be
stored on each disk pack.

The IBM 2314 Direct Access Storage Facility con-
sists of nine drives and a control unit. Any eight of
the drives can be online at a time. The ninth drive
is available for backup if one of the other drives re-
quires servicing or maintenance. The device uses re-
moveable disk packs similar to those on the 2311. The
packs are larger, however, each consisting of eleven
disks, with 20 of the surfaces used for recording. Each
surface has 200 data recording tracks. Up to 29.18
million bytes of information can be stored on each
disk pack.

Figure 55, IBM 2321 Data Cell Drive
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Data Cell Storage

A data cell shown in Figure 55 stores several hundred
strips of magnetic film approximately two inches
wide and twelve inches long. Ten of these strips
grouped are called a sub-cell. Twenty sub-cells in
turn make up one data cell. Individual strips can be
retrieved by the device and information stored on the
200 tracks available on each strip.

The cell drive can accommodate up to ten data
cells and positions the selected cell under the retrieval
mechanism. Cells may be removed and replaced with
others containing different files. Each of the drives
shown in Figure 56 has a capacity for storing up to
40 million characters.

DRIVE .

10 Cells per Driv

Figure 56. IBM 2321 Data Cell Drive, Cell, and Sub-cell

The data cell drive economically extends online
direct access storage capabilities to a volume of data
beyond that of other storage devices. Each drive offers
400 million characters of data.

Storage and Data Processing Methods

IBM data processing systems use two methods of data
handling — sequential or batch processing and inline
or direct access processing (see Figure 57). The ap-
plication requirements determine which method is
needed.
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Figure 57. Batch and direct access processing

In either case, all data pertaining to a single applica-
tion is maintained in files (often called data sets).

In sequential processing, these files are stored out-
side the computer — usually on magnetic tape — and
they are arranged in a predetermined sequence. The
data may concern inventory, accounts receivable, ac-
counts payable, payroll, and the like. Each file (data

set) is made up of records, each containing informa-
tion required to describe completely a single item.
The sequence may be by item number, name, account
number, or man number, but all files pertaining to a
single application must be in the same sequence.

In many cases, processing involves not only per-
forming calculation on some parts of each record to
arrive at balances, amounts, or earnings, but also in-
volves adding, changing, or deleting records as new
transactions occur. However, before transactions can
be applied against the main or master file, they must
also be arranged in the same sequence as the master
file. For this reason, they are accumulated in con-
venient groups or batches.

The two files (data sets), master and transaction,
now become input to the data processing system. One
record or a small group of records (also called a
block) is read into storage at a time. These are proc-
essed, and the result is written as output. When mag-
netic tape files are used, the output records with the
updated results of current processing must be recorded
on a separate tape, producing a new master that will
be used as input the next time the job is to be done.
The next group of records is read in, and the process
is repeated. The series of repetitive operations con-
tinues under the direction of program instructions,
record by record, until the input files are exhausted.
The results form a revised master file, updated accord-
ing to the current transactions. The new master file
is in the same sequence as the original files.

Other output may also be produced as a by-product
of the processing. This output may be records of de-
linquent accounts, bank orders, earnings statements,
payroll checks, and so on. In every case, however,
the sequence of all output remains the same as the
sequence of the incoming data.

With sequential processing, the information in stor-
age is transient. Consequently, the storage unit needs
only enough capacity for program instructions, plus
the largest element of data to be processed.

When direct access processing is used, transactions
affecting the contents of the file (data set) are fed
to the computer directly, as they occur. In this case,
the computer locates the corresponding record or data
in storage and adjusts this master record accordingly.
Accounts or balances are constantly maintained and
are available as output when needed. Transactions
are not batched, and they need not be sorted before
processing.
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Central Processing Unit (CPU)

The central processing unit controls and supervises
the entire computer system and performs the actual
arithmetic and logical operations on data. From a
functional viewpoint, the CPU consists of two sections
— control and arithmetic/logical (Figure 58).

Control

Section @

Logical Section

Arithmetic I

Figure 58. Central processing unit in the data processing
system

The control section directs and coordinates all op-
erations called for by instructions. This involves con-
trol of input/output devices, entry or removal of in-
formation from storage, and routing of information
between storage and the arithmetic/logical section.
Through the action of the control section, automatic,
integrated operation of the entire computer system is
achieved.

In many ways, the control section can be compared
to a telephone exchange. All possible data transfer
paths already exist, just as there are connecting lines
between all telephones serviced by a central exchange
(Figure 59).

The telephone exchange has a means of controlling
instruments that carry sound pulses from one phone
to another, ring the phones, connect and disconnect
circuits, and so on. The path of conversation between
one telephone and another is set up by appropriate
controls in the exchange itself. In the computer, execu-
tion of an instruction involves opening and closing
many paths or gates for a given operation. Some
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functions of the control section are to start or stop
an input/output unit, to turn a signal device on or off,
to rewind a tape reel, or to direct a process of calcu-
lation. In some System/360 models, a part of this
section consists of a control device called “read-only
storage” that contains circuits for performing oper-
ations designated by the operation codes. It also
houses the emulator circuits that the user may select
to make his System/360 perform programming instruc-
tions written for other computers.

The arithmetic/logical section contains the cir-
cuitry to perform arithmetic and logical operations.
The former portion calculates, shifts numbers, sets
the algebraic sign of results, rounds, compares, and
so on. The latter portion carries out the decision-
making operations to change the sequence of instruc-
tion execution.

Figure 59. Telephone exchange system



Functional Units

Register

A register is a device capable of receiving information,
holding it, and transferring it as directed by control
circuits. The electronic components used may be mag-
netic cores or transistors.

Registers are named according to their function: an
accumulator accumulates results; a multiplier-quotient
holds either multiplier or quotient; a storage register
contains information taken from or being sent to stor-
age; an address register holds the address of a storage
location or device; and an instruction register contains
the instruction being executed (Figure 60). System/
360 has general purpose registers, which are used for
several functions, including storage addresses, index
addresses, and data that is to be processed logically
or arithmetically.

Storage

Storage
Register

Address
Register

Instruction
Register

Figure 60. Register nomenclature and function

Registers differ in size, capacity, and use. In some
cases, extra positions detect possible overflow condi-
tions during an arithmetic operation. For example, if
two eleven-digit numbers are added, it is possible that
the result is a twelve-digit answer (Figure 61).

s

Register A

#

Register B

Register C

A

Overflow Position

Figure 61. Overflow condition resulting from addition

In this figure, register A holds one factor, and register
B holds the other factor. The two factors are com-
bined, and the result is placed in register C, where
an overflow condition is indicated by the presence
of data in the overflow position. The contents of other
registers can be shifted right or left within the register

and, in some cases, even between registers. Figure 62
shows shifting of register contents three positions to
the right. Positions vacated are filled with zeros, and
numbers shifted beyond register capacity are lost.

— 1

Register A

Shifting in a single register

1
1

Register A

Shifting in double registers

1
—

Figure 62. Types of computer register shifting

In other instances, a register holds data while asso-
ciated circuits analyze the data. For example, an in-
struction can be placed in a register, and associated
circuits can determine the operation tc be performed
and locate the data to be used. Data within specific
registers may also he checked for validity.

The more important registers of a system, particular-
ly those involved in normal data flow and storage ad-
dressing, have small lights associated with them. These
lights are located on the machine console (Figure 63)
for visual indication of register contents and various
program conditions.

Typical operator console

Figure 63.
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Counter

The counter is closely related to a register, and may
perform some of the same functions. Its contents can
be increased or decreased. The action of a counter is
related to its design and use within the computer sys-
tem. Like the register, it may also have visual indica-
tors on the machine console.

Adder

The adder receives data from two or more sources,
performs addition, and sends the result to a receiving
register or accumulator. Figure 64 shows two positions
of an adder circuit, with input from registers A and B.
The sum is developed in the adder. A carry from any
position is sent to the next-higher-order position. The
final sum goes to the corresponding positions of the
receiving register.

Register B

Register A

Adder Adder
Carry
to Next R M Sum
Higher — um
Order Adder v

Position

Receiving Register

Figure 64. Adders in a computer system

Machine Cycles

All computer operations take place in fixed intervals
of time. These intervals are measured by regular
pulses emitted from an electronic clock at frequencies
as high as five million per second. A fixed number of
pulses determines the time of each basic machine
cycle.

In computer usage, time references are stated in
such terms as milliseconds, microseconds, and nano-
seconds. These terms may convey no meaning unless
it is realized just how short an interval a millisecond
is. For example, the blink of an eye takes about one-
tenth of a second or — 100 milliseconds!

The following table establishes some additional
terms and abbreviations:

g = 1/10 second
100 milliseconds
1,/1,000 second
= 1 millisecond (ms)

1

.001
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000001 = 1/1,000,000 second
= 1 microsecond (usec)
.000000001 = 1/1,000,000,000 second

1 nanosecond (ns)

Within a machine cycle, the computer can perform
a specific machine operation. The number of opera-
tions required to execute a single instruction depends
on the instruction. Various machine operations are

,thus combined to execute each instruction.

Instructions usually consist of at least two parts, an
operation and an operand. The operation tells the ma-
chine which function to perform: read, write, add,
subtract, and so on. The operand can be the address
of data or an instruction in main storage, the address
of data or programs in secondary storage, or the ad-
dress of an input/output unit. It can also specify a
control function, such as shifting a quantity in a reg-
ister, or backspacing and rewinding a reel of tape.

To receive, interpret, and execute instructions, the
central processing unit must operate in a prescribed
sequence, which is determined by the specific instruc-
tion and is carried out during a fixed interval of timed
pulses.

Instruction Cycle

The first machine cycle required to execute an in-
struction is called an instruction cycle. The time for
this cycle is instruction or I-time. During I-time:

1. The instruction is taken from a main storage loca-
tion and brought to the central processing unit.

2. The operation part is decoded in an instruction
register. This tells the machine what operation is
to be performed.

3. The operand is placed in an address register.
This tells the machine what factors are to be
used in the operation.

4. The location of the next instruction to be ex-
ecuted is determined.

At the beginning of a program, an instruction coun-
ter is set to the address of the first program instruc-
tion. This instruction is brought from storage, and,
while it is being executed, the instruction counter
automatically advances (steps) to the location cor-
responding to the space occupied by the next stored
instruction. If each instruction occupies one storage
position, the counter steps one; if an instruction oc-
cupies five positions, the counter steps five. By the
time one instruction is executed, the counter has lo-
cated the next instruction in program sequence. The
stepping action of the counter is automatic. In other
words, when the computer is directed to a series of
instructions, it executes them one after another until
instructed to do otherwise.



Assume that an instruction is given to add the con-
tents of storage location 2 to the contents of the ac-
cumulator register. Figure 65 shows the main registers
involved and the information flow lines.

Storage <

ADD 0002 (complete instruction)

/ \
(operation part) ADD - I -»- 0002 ( address part)

| Instruction Counter

Operoﬁon Decoders

Figure 65. Computer I-cycle flow lines

I-time begins when the instruction counter transfers
the location of the instruction to the address register.
This instruction is selected from storage and placed
in a storage register. From the storage register, the op-
eration part is routed to the instruction register and
the operand to the address register. Operation de-
coders then condition proper circuit paths to perform
the instruction.

Execution of instructions does not necessarily have
to proceed sequentially. Certain instructions alter the
process of sequential execution unconditionally. In
this case, an instruction brought from storage indicates
that the next sequential instruction is not to be ex-
ecuted but that one located in another position is next.
The normal stepping of the instruction counter can
also be reset back to the beginning of the program so
that the entire program can be repeated for another
incoming group of data.

This branching (transfer) to alternative instructions
may also be conditional. The computer can be directed
to examine some indicating device and then branch if
the indicator is on or off. Such an instruction could
say, in effect, “Look at the sign of the quantity in the
accumulator; if the sign is minus, take the next in-
struction from location 5000; if the sign is plus, pro-
ceed to the next instruction in sequence.” The instruc-
tion counter is set acrarding to one of the two possible
storage locations (5000 or the location of the next in-
struction in sequence). The logical path followed by
the computer (that is, the precise sequence of instruc-
tions executed) may be controlled either by uncon-
ditional branching or by a series of conditional tests
applied at various points. However, the arrangement
of insfructions in storage is not normally altered.

Execution Cycle

I-time is usually followed by one or more machine
cycles that occur during execution or E-time. The
number of execution cycles required depends on the
instruction to be executed. Figure 66 shows the data
flow following I-time illustrated by Figure 65.

The E-cycle starts by removing from storage the in-
formation located at the address (0002) indicated by
the address register. This information is placed in the
storage register. In this case, one of the factors to be
added is placed in the adders together with the num-
ber from the accumulator. The contents of the storage
register and the accumulator are combined in the ad-
ders, and the sum is returned to the accumulator.

The address register may contain information other
than the storage location of data. It can indicate the
address of an input/output device or a control func-
tion to be performed. The operation part of the in-
struction tells the computer how to interpret this
information.

(Get the number located ot 0002)
Storage ¢

I 57328031221 (number at location 0002)

Figure 66. Computer E-cycle following an I-cycle

Serial and Parallel Operation

Computers and portions of computers are classified as
either serial or parallel, depending on the method used
to perform arithmetic. Essentially, all arithmetic is
performed by addition.

In a serial computer, numbers to be added are con-
sidered one position at a time (hundred, etc.), in the
same way that addition is done with paper and pencil.
Whenever a carry is developed, it is retained tem-
porarily and then added to the sum of the next-high-
er-order position.

The time required for serial operation depends on
the number of digits in the factors to be added. Serial
addition is shown in Figure 67.
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Ist Step 2nd Step | 3rd Step | 4th Step
Addend 1234 1234 1234 1234
Augend 2459 2459 2459 2459
Carry 1 1
Sum 3 93 693 3693

Figure 67. Serial addition

In a parallel computer, addition is performed on
complete data words. The words are combined in one
operation, including carries. Any two data words, re-
gardless of the magnitude of the numbers contained
in the words, can be added in the same time. Figure
68 shows parallel addition.

00564213
Numbers being added 00000824
Carry 1
Final Result 00565037

Figure 68. Parallel addition

Fixed-Length and Variable-Length Words

Data can be addressed and processed by a computer
system using either fixed-length or variable-length
words.

In operations using fixed-length words, information
is handled and addressed in units or words containing
a predetermined number of positions. The size of a
word is designed into the system, and it normally cor-
responds to the smallest unit of information that can
be addressed for processing in the central processing
unit. Records, fields, characters, or factors are all
manipulated in parallel as words; registers, counters,
accumulators, and storage are designed to accommo-
date a standard word.

In operations using variable-length words, data-han-
dling circuitry is designed to process information
serially as single characters. Records, fields, or factors
may be of any practical length within the capacity of
the storage unit. Information is available by character
instead of by word.

Operation within a given data processing system
may be entirely fixed-length, entirely variable, or a
combination.

Floating-Point Operation

Mathematicians and scientists use logarithms to sim-
plify mathematical manipulations of very large num-
bers and very small fractions. Similarly, scientific com-
puters use floating-point operation. With the advent
of time-shared computers for diverse applications,
floating-point operation in multipurpose computers is
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becoming commonplace. We will first explain the prin-
ciples of floating-point using the 7090/7094 data proc-
essing systems. The basic principles apply (with ad-
justments for different word or field makeup and in-
ternal numbering system logic) to the business com-
puters and, finally, to the multipurpose System/360.

All central processing units that handle floating-
point arithmetic do it by converting numbers (in-
tegers, fractions, or improper fractions) into the ex-
ponential form on the right-hand side of the equation.
For example:

N = be x f where:

N = number
b = numbering system base (such as 2 for binary

system, 10 for decimal system)

e = exponent (power to which the numbering
system base is raised to make the expression
equal to N)

f = fraction (similar to the mantissa in a log-
arithm)

The base used depends on the internal numbering
system. For 7090/7094, it is 2. For System/360, it is 16.

Because the base is fixed by the design of the com-
puter, it is eliminated from the formula, which then
reads:

N = exponent x fraction

The range of exponents that can be used depends on
the space allowed and on whether a position in the
computer is allocated to contain a sign (4 or —) for
the exponent. The space allotment is:

Eight bits without sign in the 7090/7094, permitting

a binary range of a 2! (decimal exponent). These

values are about equal to 103 through 1038,

Seven bits without sign in System/360, with a hexa-

decimal range of 16% through 164, Translated into

the decimal system, this approximates a range of

from 107¢ down through 1077,

When no sign position is allowed for an exponent, a
value in the center of the total range of possible ex-
ponents is chosen to represent the exponent 0. Positive
exponents are added to this “middle” value; negative
exponents are subtracted from it. This “scaled ex-
ponent” is called a characteristic.

The range of fractions in computers using fixed-
length words is determined by the space remaining in
the word (or words), allocated to express the floating-
point number, after the exponent and sign have been
provided for. In System/360, the fraction field may
have up to 6 or up to 14 hexadecimal digits (24 or 56
bits), depending upon whether one or two 32-bit
words are to be used in carrying out the precision of
the fraction. The central processing units of other
computers using fixed-length words usually have just
two alternatives, called single- or double-precision,



depending on whether one word or two words are
designated to store the number. In the 7090/7094, a
single-precision fraction is up to 27 bits long. In the
7070/7074, it is up to eight digits long.

The length of floating-point fractions in the com-
puters that do not have fixed-length words are:

IBM 1410 — 2 through 97 digits

IBM 1710 — 2 through 18 digits

Floating-point is so called because, using the ex-
ponent x fraction method of expressing a number, we
can vary the exponent and then “float” the decimal
point (in decimal computers), the binary point (in
binary computers), or the hexadecimal point (in hexa-
decimal computers) correspondingly — and still not
change the value of the number (Figure 69).

Binary Bit Values

Integer Fraction
—A =Y 5 -~
vyrell32
bitvalues 64 3216 8 4 2 I.T','T""'""'_' ... end of word
37=1X37=2°-X----1 0010 1" '+ « «.
7=2x1812=2".x-——10010.1 .
37=4X91/4=22-X ————_ 100101, ...
37-8X45/8=23-X - ———__ 100101 * + + -
37-16X26/16=2%-x —————— 100101 " °
37-32X16/32=P-X —— o 100101 |
37-64x37/64=28 X - — - ___ .100101
37=128X37/128=27 - X — - — . 0100101

37=1/2X74=2'-x —_ 10010 1

Figure 69. Different floating-point expressions of the same
value

When the point falls just to the left of the high-order
1 bit (in binary) or the high-order significant digit (in
decimal or hexadecimal) of the fraction, the floating-
point expression is called normalized. When numbers
are initially entered into the central processing unit of
a computer as floating-point numbers, they take this
normalized form. As arithmetic operations are per-
formed on them, the points may float to the right or to
the left as the computer seeks to get all the numbers
involved in the operation into the same power of 2
(this is similar to changing fractions with different
denominators into fractions with a common denom-
inator in order to add them). The numbers then be-
come decidedly unnormalized. Eventually, however,
the computer normalizes the final result.

Binary Floating-Point Notation
Before proceeding, the subject of exponents and char-
acteristics in binary computers must be clear.

The characteristics are not signed. Therefore, as
stated before, the zero (0) exponent lies in the middle
of the range of values possible in the characteristic
field (eight bits). Since characteristics and fractions

are usually expressed in octal, for easy comprehension
and translation into binary, Figure 70 gives the relative
decimal-octal values of the largest positive, zero, and
largest negative exponents, and corresponding octal
and binary characteristics.

Decimal Decimal Binary

Exponent  Characteristic Characteristic
1038 2127 127 245 11 111 111
10°= 2° 0 128 10 000 000
1038 2128 128 0 00 000 000

Figure 70. Range of characteristics in an IBM 1130
Computing System

In a binary system normalized floating-point number,
the fraction always contains a high-order binary 1.
Therefore, the fraction is always equal to, or more
than, %, but less than one. Figure 71 shows, with sim-
ple decimal system numbers, how to translate into nor-
malized binary floating-point.

Characteristic ~ Fraction
Bit Positions Bit Positions

Decimal Representation

Dec. No. Exponent Fraction -
1=21x172 1 12 10 000 001 | 100 000 000
2=2242 2 12 10000 010 | 100 000 000
3=22x34 2 1241/4 10000 010 | 110000 000
4=28x12 3 112 10000011 | 100 000 000
5 =23x5/8 3 1/2+0/4+1/8 10000011 |101 000 000
10 =2%x5/8 4  1/2+0/4+1/8 10000 100 | 101000 000
5=2x12 0 12 10 000 000 | 100 000 000

005 =22x12 2 112 01111 110 1100 000 000

Figure 71. Examples of normalized binary floating-point

numbers

An easy way to convert from decimal system in-
tegers into this combination of exponents of 2 and
fractions is as follows:

1. Convert the decimal number to octal (see octal

system ). For example, the octal for 37 is 45.

2. Convert octal to binary (the binary for octal 45
is 100 101).

3. Place the binary point (it can no longer be called
a decimal point, since we are now in the binary
system) to the right of the binary number (hence,
100 101.).

4. Shift the binary point to the left of the leftmost 1

in the binary number (.100101).
5. The binary point is now where the vertical line
appears in Figure 71. Put the binary number just
to the right of that line (100101). It is now a
fraction between % and 1.

6. Count the number of binary digits passed over
when the binary point was shifted to the left (six
digits). That number is the correct exponent of 2.
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7. Add that number to the midpoint of the charac-
teristic range, and enter it to the left of the verti-
cal line. Example:

Characteristic Fraction,

10000110 100101
28 % 37/64 or 64 X 37/64 = 37

Converting from decimal system fractions into ex-
ponents of 2 and fractions (> % and < 1) is a similar
procedure, except that we move the binary point to
the right instead of to the left and increase the nega-
tive exponent of 2 in the process.

1. Convert the decimal fraction to octal. For ex-
ample, decimal .145 is octal .1142-.

2. Convert octal to binary (the binary for octal 1142
is 001 001 100 010).

3. Place the binary point to the left of the binary
number (.001 001 100 010).

4. Shift the binary point to the right so that it rests
just to the left of the leftmost 1 in the binary fraction
(00.100 110 001).

5. Count the number of binary digits passed over
in shifting the binary point (two digits). That num-
ber is the negative exponent.

6. Subtract that number (in octal) from the mid-
point of the characteristic range, and enter it to the
left of the vertical line. (The octal value is 200 — 2 +
176.) Example:

Characteristic Fraction
01 111 110 100 110 001
This = 2-2 X 1/2 4+ 1/16 + 1/32 + 1/512
= 1/4 X [(256 + 32 4 16 + 1)/512]
= 1/4 x 305/512
= 305/2048
= .14894 (or .149)

The computer manipulates these floating-point

words for addition, as in the following example:

which means:

Add 12 4+ 97
Decimal Octal
Arithmetic Arithmetic
12 14
497 +141
10910 155
Floating-Point Binary

00.1 100 or 2¢ x 1100
-+00.1 100 001 or 27 X 1100001
The floating-point words in the computer in normal-
ized form are:

Characteristic Fraction
(Octal) (Binary) (Binary)
204 10 000 100 1100
207 10 000 111 1100001

The computer adjusts these two floating-point words
to have a common characteristic and adds them.
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Characteristic Fraction
. ,(, Qctal) (Binary) (Binary)

207 10 000 il1 000 1i0 0 Add 3 to the characteristic,
and add three high-order zeros
to the fraction.

207 10 000 111 +110 000 1 Remains the same.

207 10 000 111 110 110 1 Translated ultimately into dec-

imal, this is:

2" X (1/2 4+ 1/4 + 1/16 4 1/32 4 1/128) = 109

128 X [(64 + 32 + 8 +4 + 1)/128]1 = 109

Since the simple addition example serves as an intro-

duction to floating-point implementation within the

computer, we will not undertake to show the more

involved manipulation of fraction and characteristic

that takes place in subtraction (complement addition),
multiplication, and division.

Hexadecimal Floating-Point Notation

System/360, like the binary system computers, uses a
point midway through the range of characteristics to
express the exponent 0. The exponent is the power of
16 with which the fraction (also expressed in hexa-
decimal) must be multiplied to produce the desired
value.

Converting a decimal number (assume the number
149.25) into a single floating-point word, as used in
System/360, is done as follows:

1. Separate the number into the integer and the

fraction;
149.25 — 149 plus 0.25
2. Convert the decimal integer to hexadecimal;
(see F: igure 31) 149;0 = 956
3. Convert the decimal fraction to hexadecimal;
(see Figure 32) 0.25i0 = 0.4:6
4. Combine the two and express in normalized form
(as a fraction times an exponent to the base 16);
95.416 = (0.954 X 162)16
5. Since 64 is the midpoint of the characteristic
range, add the exponent (2) to 64 to get the
characteristic;
64 4- 2 = 66 —= 1000010
6. Convert the fraction to binary, and group it hexa-
decimally;
95416 = .1001 0101 0100

7. The floating-point word for decimal 149.25 (hexa-

decimal 95.4) appears as:

Sign* Characteristic

0 1 100 0010

Fraction

1001 0101 0100 0000 0000 0000

#Zero (0) is used, since the value of 149.25 is positive.



An input/output unit is a device for putting in or get-
ting out data from storage (Figure 72).

Input Device Input Device

Control Unit Control Unit
Central Core
Processing — Storage
Unit
Owtput Device
Control Unit

Figure 72. Input/output units in the data processing system

Usually, device operation is initiated by a program
instruction that generates a command to an input/out-
put channel. A control unit decodes the command and
effects operation of the device.

Some control units control only a particular type
of device, such as tape units. Others control different
input/output devices; for example, the IBM 2841 con-
trol units can control the 2302, 2303, 2311, and 2321
DASD.

Input/Output Devices

Input devices sense or read data from cards, mag-
netic tape, paper, magnetic ink characters, inscribed on
paper documents, images on 35mm microfilm, or re-
mote terminals via communication lines. The data is
made available to the main storage of the system for
processing. Output devices record or write information
from main storage on cards, magnetic tape, and paper
tape, prepare printed copy, produce microfilm images,
make graphic displays, or transmit information over
teleprocessing network.

Reading takes place as the input medium physically
moves through an input device. Information is sensed
or read and is converted to a code used within the
computer system. The information is then transmitted
to main storage.

Writing involves transferring data from primary
storage to an output device. The computer code is
made compatible with the output medium.

Most input/output devices are automatic; once
started, they continue to operate as directed by the
stored program until the entire file is processed. In-
structions in the program select the required device,
direct it to read or to write, and indicate the storage
location into which data will be entered or from which
data will be taken.

Some 1/O devices are used for manual entry, and
no medium for recording data is involved. Instead,
data is entered directly into storage using a keyboard
or switches. Locally, these devices may be a console
keyboard, local terminals (such as the IBM 2740s),
or graphic display terminals. Remotely, many types
of teleprocessing terminals may be used. Instead of
a recording medium, these terminals may require
some amount of internal storage for holding (and per-
haps analyzing) signals until a short message is com-
pleted, or until the terminals are polled (requested to
transmit) and selected for data transfer.

Control Units

The type of information buffering required to co-
ordinate the operations of the input/output device
with the central processing unit (sometimes through
transmission hookups) is one of the functions of the
control unit. Other common functions are checking,
coding, and decoding. If several similar devices are
operating through one control unit, two principal
functions are (1) determining priority of servicing,
and (2) signaling device identification when request-
ing service for the input devices.
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Conversely, on the way out, the control unit directs
the data to the addressed output unit.

In some data processing systems, the traffic routing
function of the control unit is referred to as orders.
In such systems, the orders, as written by the pro-
grammer, consist solely of the address of the input/
output device that the control unit must prepare to
read or to write. In System/360, orders are part of a
control command, relayed through a channel to the
input/output control unit; they instruct the control
unit to have a device perform a specified auxiliary
operation — one that doesn’t move data, such as re-
wind or seek.

Channels

Whereas the control unit is either included under the
cover of an input/output device or located very close
to a group of such devices, the channel (or channels)
is contained within the central processing unit or is a
separate piece of equipment near the CPU. It might
be thought of as the computer’s control unit for one
or more input/output control units. It is almost a
separate, small CPU devoted exclusively to managing
the input/output control units and devices assigned to
it. After the channel has once been activated by an
initializing instruction from a program being executed
in the CPU, it carries out one or more commands that
are similar to a section (subroutine) of a program,
but the important difference is that of overlapping
operations. The program in the CPU can be con-
tinuing with other jobs while the channel is carrying
out its own program of bringing data into or out of
the main storage. Sometimes it is interleaving input
and output in a seemingly simultaneous fashion, work-
ing with several input/output control units at once,
and maintaining the proper destinations for the mes-
sages — whether they be storage allocation (for input)
or control unit and device (for output).

The steps in a program in the CPU are called in-
structions; the steps in a program for a channel are
called commands. Each command has an operation
code that tells the channel what to do (for instance:
read, write, control, sense, etc.); if it is a command
that involves a data transfer, the command also has an
address telling where to get or where to put the data
in the storage system of the computer; if it is a con-
trol command that does not involve a data transfer,
either it contains the order to be passed on to the con-
trol unit, or (in some computer systems) it contains
the address of a location in storage where the order
is located.

Just as the CPU is free to continue with its pro-
gram once it has given an instruction to start a chan-
nel on its independent program of commands, so a
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channel is free to step through other commands (prob-
ably starting or terminating some other input/output
transfer of data) as soon as it has commanded the
control unit what to do and given it an order speci-
tying the particular device. Thus, a channel is an
intermediary input/output device tkat is constantly
juggling the various input/output operations to make
the most efficient use of time, not only by overlapping
different inputs and outputs but by doing so without
tying up the CPU.

As soon as a particular input/output transaction is
completed, the device control unit signals the chan-
nel, which, in turn, signals the CPU with an “inter-
rupt”, meaning: “My particular job is done. As soon
as convenient, use the data I have given you (if it was
an input operation) and give me another command.”

This idea of automatic interrupts (built into the
design of the data processing system components),
combined with careful preprogrammed commands to
the channels and orders to the control units, leads to a
far greater total amount of data handling per unit of
time (sometimes described as throughput) than used
to be possible.

Validity Checks

All data transferred between the input/output units
and storage is automatically checked for validity. First,
data is checked before being sent by the input device
and checked when received by the output device.
Second, certain data checks are also made within the
central processing unit as it receives or sends data.
These checks do not detect the use of wrong data; for
example, if a 5 is entered instead of a 4, this error
cannot be detected. However, if the indicated number
or character is represented or coded incorrectly on
the medium or within the machine, this is automati-
cally detected.

Indicators, Keys, and Switches

All input/output units have indicator lights as well as
operating keys and switches (Figure 73). The indi-
cator lights show the status of a unit: on, off, ready,
selected, and so on. The operating keys and switches
are used primarily to start and to stop operations
manually. The specific functions and use of the indi-
cators, keys, and switches are described in the IBM
manuals for particular machines and systems.

Control Panel

Some input/output devices are equipped with a con-
trol panel, which provides a means of editing, re-



Figure 73. Operator panel

arranging, deleting, and selecting data flowing through
the device.

Basically, the control panel is similar to a telephone
exchange switchboard. An incoming call lights a sig-
nal lamp that indicates to the operator the line on
which the call is coming. After the call is answered,
the operator plugs a cord into a hub that is internally
connected on the board to the desired extension. Ac-
tually, the operator has completed an electrical cir-
cuit to give the correct result.

The control panel in a machine completes circuits
internally by means of wires placed in the panel. The
actual connections in the panel are made through
holes called exit hubs and entry hubs. An exit hub is
one that emits an impulse; an entry hub is one that
accepts an impulse. The exit and entry hubs used de-
pend on the functions to be accomplished. The panel
is prewired by the operator for a specific job before
it is placed in the machine.

Input units with control panels alter or change data

after the data is read by the unit but before the data

is sent to the main storage of the system. Output units
alter or change data after the data is received from
storage but before the data is punched or printed.

Control panels are removable and can be readily
changed for different procedures, or a separate panel
may be used for each operation.

Card Readers

Card reading devices introduce IBM punched card
data into the computer system. The card reader moves
or feeds cards past a reading unit that converts the
data on the card into an electronic form. Two types

of reading units are used: reading brushes or photo-
electric cells.

In the brush type reader, cards are mechanically
moved from a card hopper, through the card feed
unit, and under reading brushes. The reading brushes
electrically sense the presence or absence of holes in
each column of the card (Figure 74).

Read Hopper

First Read

; Second Read
\_’ /

Wy

A

Stacker

Figure 74. Read feed

This electric sensing converts the information of the
card to electrical impulses that can be detected by the
card reader circuitry and stored as data. After cards
are read, they are moved from the card feed unit and
placed in the card stacker in the same sequence in
which they were fed into the reader. Some readers
have two sets of reading brushes. As a check on the
validity of the reading process, each card can be read
twice as it moves through the card feed unit.

The photoelectric type of card reader performs the
same functions as the brush type; the difference is in
the method of sensing the holes. Photoelectric cells
are activated by the presence of light. As the punched
card is passed over a light source in the card reader,
light passing through the punched holes activates pho-
toelectric cells, one cell for each column of the card.

Card reading speeds vary from about 12 cards to
1000 cards a minute, depending on the type of card
reader.

Card Punches

Output from the computing system is recorded in
cards by a card punching device. The card punch
automatically moves blank cards, one at a time, from
the card hopper, under a punching mechanism that
punches data received from storage (Figure 75). After
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the card is punched, it is moved to a checking station,
where the data is read and checked with the informa-
tion received at the punching station. The card is then
moved to the stacker.

Punch Hopper
Punch Station

|

i

I

Punch Brushes Stacker

Figure 75. Punch feed

Card punching speeds vary from about 12 to 500
cards per minute, depending on the type of card
punch.
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Magnetic Tape Units

Increasing internal speeds of computers demand high-
speed input and output devices so that system opera-
tions are not held back waiting for input or by an
inability to get processed data out of the computer.
Magnetic tape units, with their dual capability of in-
put and output, have provided continued increases in
the speed of data transmission to and from the com-
puter and, at the same time, have provided increased
data storage capacity per reel of tape.

All magnetic tape units are basically similar in
operation, but design improvements have brought
about functional differences, increased tape applica-
tions, and easier operation (see Figures 76 and 77).

The IBM 2400 series units transport tape past the
recording head in a continuous movement and at a
constant speed. The tape is always in motion during
reading and writing. Tape moves at 37.5, 75, 112.5,
or 200 inches per second, depending on the tape unit.

Tape‘ to Card or
Card to Tape

Tape to Printer

IBM 2420 Model 7 Tape Units use a wrap-around_ cartridge
for standard 10%-inch reels that threads and rewinds auto-

matically.

IBM 2401 Tape Units are manually loaded with tape
and may be used online (attached the computer sys-
tem) or offline.

Figure 76. IBM magnetic tape units
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The IBM 7702 Magnetic Tape Transmission Terminals transmit magnetic tape
data between remote locations.

Figure 77. IBM tape transmission terminals

A full reel of %-inch-wide tape holds 2400 feet of
tape, weighs about four pounds, and can contain data
equivalent to about 400,000 fully punched cards.

Loading Tape Units

Before the tape unit can read or write, it must be
prepared for operation. This preparation involves
loading two tape reels (except cartridges) on the
tape unit and threading the magnetic tape through the
tape transport mechanism. For ease of threading, the
head assembly separates to accept tape; it is then
closed to bring the magnetic tape into close contact
with the read/write head for reading and writing. The
operation is similar to threading a home movie pro-
jector (Figure 78).

During operation, tape moves from the file reel
through the left vacuum column across the read/write
head, through the right vacuum column to the ma-
chine reel. The loop in each vacuum column acts as
a buffer to prevent high-speed starts and stops from
breaking the tape. Vertical vacuum columns are used
in some units; horizontal columns are used in the in-
cremental and variable-speed machines.

Vacuum-actuated switches in the columns control
magnetic clutches that permit the two reels to rotate
independently. The file reel feeds tape when the loop
reaches a minimum reserve length in the left vacuum
column, and the machine reel winds tape when the
loop reaches a point near the bottom of the right
vacuum column.

Tape may be rewound or backspaced to the begin-
ning of the reel. Rewind speeds are as high as 500
inches per second.

Loading Tape Reel Cartridges

Loading of cartridges is accomplished automatically
after the dust-resistant cartridge is placed in the drive
by the operator; the time-consuming manual thread-
ing operations involved in loading tape are eliminated

(Figure 79).
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Tape Assembly

During reading or writing on all tape drives other than Hypertape,
tape is transferred from the file reel, past the read/write head, to the
machine reel. During backspacing or rewinding, tape movement is
from the machine reel to the file reel.

Figure 78. Tape feed schematic
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Figure 79. Tape Reel cartridge operation

Reading From and Writing on Magnetic Tape

The magnetic tape unit reads or writes data as tape
moves past the read/write head. Two types of heads
are used in present IBM magnetic tape units, but the
general principles of writing and reading tape are the
same for both types (see Figure 80).

Writing on magnetic tape is destructive; that is, as
new information is written, old information is de-

Gap Plastic Base .
: 3 Write Gap. 1ope Mofion Read Gap
Mag:evic . -
R/W Head Oxide
y £

:wwmec\on: c:u::

A. One-Gap Read/Write Head

b

B, Two-Gap Read/Write Head

In the one-gap read/write head, reading and writing take place at the
same gap. In the two-gap head, writing occurs at one gap, and
reading occurs at the other, The two-gap head offers advantages
discussed in the tape validity-checking sections,

Figure 80. Magnetic tape unit read/write heads
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stroyed. Reading is nondestructive; the same informa-
tion can be read again and again.

Information is written on tape by magnetizing areas
in parallel tracks along the length of the tape.

There is one write coil in the write head for each
recording track. Electrical current flowing through the
coils magnetizes the iron oxide coating of the moving
tape and erases previously written information (see
Figure 81).

In incremental tape units, the tape actually is mo-
tionless during writing, but the size of the recorded
bits is almost the same as in the other tape units. Data

B Track - > SIS*NIN
A Track - . NIN-»SIS»N'\
8 Track _>\_—-),SIS->NIN ———»}
4 Track —_— S+NIN———>-
0123456789 /ABCDEFGHIJKLMNOP
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Zone B/ / DX
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g\ 1 L ] 1 {
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1) 00 0 v o e

New data is written on magnetic tape by changing the direction
of current flow and magnetic polarity from north {N) to south (S}
in some of the write coils. This causes a change in the affected
tracks. The coded pattern of 0 and 1 bits across the width of the
tape represents data received from the computer.

A. Magnetic recording of seven-track BCD code on tape

Track No.

Bit values
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*The P bit position produces odd parity.
B. Nine-track (EBCDIC) and seven-track tape data format comparison

Figure 81. Data recording on magnetic tape



generated on the incremental and variable-speed tape
units is usable on other tape units adapted to seven-
track data.

Checking Magnetic Tape Data

Data recorded on magnetic tape must be accurate so
that errors are not sent through the system. Data is
therefore checked to ensure that valid characters are
recorded and to verify that the recorded bits are of
effective magnetic strength.

Two methods of recording are used on IBM mag-
netic tape. The phase encoding method is used on IBM
2400 Series Magnetic Tape Units; other magnetic tape
units use the Non-Return-to-Zero-IBM (NRZI) meth-
od (see Figure 82).

Bit Pattern

NRZI

Phase
Encoding

In the NRZI method of recording, a change in magnetic flux is

interpreted as a 1 bit; lack of a flux change is interpreted as a 0 bit.
The phase-encoding method of recording used on Hypertape results
in a continuous wave pattern, even when a record contains all zeros.

Figure 82. Comparison of NRZI and phase-encoded bit
patterns

The NRZI method of data recording is very reliable,
but it has given way to the new phase encoding
method because of the increased densities of record-
ing possible on the 2400 series units.

The tape error detection system used on NRZI tapes
uses the principle of simple parity checking. With this
system, it is possible to detect virtually all tape read-
ing and writing errors (Figure 83).

Simple parity checking indicates the error, but not
the kind of error. Similar double-bit errors in two
characters of a record could conceivably cancel each
other and indicate correct parity. However, this coin-
cidence is extremely rare.

With the 2420 Model 7, single track errors are cor-
rected in flight without impairing tape performance.
As a result, most corrections are made without inter-
rupting processing.

Tape units with two-gap heads provide increased
checking while writing. Tape being written passes first
over the write gap (to record data) and then over the
read gap; the information that has been written is
automatically read and checked.

REEL €R€R\*O\R
CHARACTER CODE CHECK ,
EACH CHARACTER SIGNAL
S~
—
< R00R0CR0
B/ 1
A i)
8 LONG ITUDINAL
H | | | | RECORD CHECK
2 LLRUL All characters
1 1 ::f:f in block
TAPE”  ABCI1234

LONGITUDINAL
CHECK CHARACTER

Information read from tape is checked two ways. A character code
check (vertical check) is made on each column of information to
ensure that an even number of bits exists for each character read.
If an odd number of bits is detected for any character or column
of bits, an error is indicated, unless the computer operates in odd
parity. A longitudinal record check is made by developing an odd
or even indication of the number of bits read in each of the seven
bit tracks of the record, including the bits of the check character.
If any bit track of the record block indicates an odd number of
bits after it is read, an error is indicated, unless odd parity is re-
quired by system design.

Figure 83. Seven-track validity checks, BCD mode,
even parity

When an error occurs during the writing operation,
it is detected at the read gap, and an error indication
is made. Programming must test the indicator and
take an appropriate corrective action. The machine
does not stop with the error section of tape positioned
over the read gap; tape motion continues past the
end of the record block. Then the machine may be
instructed to backspace the tape and rewrite, again
checking for an error.

Figure 84. Wrap-around cartridge



Tape Records, Interblock Gap, and Tapemark

Records on tape are not restricted to any fixed length
of characters, fields, words, or blocks. Records may be
any practical size within the limits of internal storage
capacity.

Blocks of records, including blocks consisting of a
single record, are separated on tape by an interblock
gap, a length of blank tape about .6 inch on 2400
series tape units, and .75 inch on all other tape units.
During writing, the gap is automatically produced at
the end of each block of records. During reading, the
block begins with the first character sensed after a
gap and continues without interruption until the next
gap is reached. The interblock gap also allows time
for starting and stopping the tape between record
blocks.

A tapemark (a special character represented in
hexadecimal as 7F; see Figure 39) indicates the end
of a file of records (see Figure 85). Most computers
write and read tapemarks.

Tape Unit Characteristics

Among tape units, the major performance considera-
tions are the speed at which tape is moved across the
read/write head and the recording density of informa-
tion on tape. These two factors determine important
characteristics of character rate, tape access time
(sometimes called gap time), and character time.
Some other differences among tape units involve the
length of the interblock gap, the extent and method
of checking the validity of recorded data, and provi-
sions for protecting recorded data. Figure 86 shows
the major differences among tape units.
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On magnetic tape, a single unit or block of information is marked by
an interblock gap before and after the data. A record block may
contain one record or several.

Tapemark

Tape Motion ——a
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The interblock gap followed by a unique character record is used

to mark the end of a file of information. The unique character, a
tapemark, is generated in response to an instruction and is written
on the tape following the last record of the file.

'<——End-of-File Gap —-'

=]

Tapemark

Figure 85. End-of-block and end-of-file indications on tape



2401 2415 2420
Model Mode! Model Model Model Model Model Model Model  Model
4 5 6 1 2 3 4 5 6 7
Bytes per second 60,000 120,000 180,000 15,050 15,000 15,000 30,000 30,000 30,000 320,000
Density (bytes per inch) 1,600 1,600 1,600 800 800 800 1600 1600 1600 1,600
Tape speed
(inches per second) 37.5 75.0 112.5 18.75 18.75 18.75 18.75 18.75 18.75 200
Nominal Interrecord gap
(inches) .6 6 8 .6 6 .6 .6 6 .6 .6
Nominal IRG time
(milliseconds) 16.0 8.0 5.3 32 32 32 32 32 32 3.0
Rewind time, including
reload (minutes) 3.0 1.4 1.0 4.0 4.0 4.0 4.0 4.0 4.0 1.0
Rewind and unload time
(minutes) 2.2 1.5 11 4.0 4.0 4.0 4.0 4.0 4.0 1.1

Figure 86. Characteristics of IBM 2400-series magnetic tape units
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Maximum and Effective Character Rates

Because an interblock gap is placed between each
record or block of records on tape, the total time
required to read a record must include time to space
over the gap; this is called access time to the data.
Access time is given (Figure 86) for each tape unit on
the basis of tape speed and length of interblock gap.
Access time must be considered when determining the
actual or effective character rate of a tape unit.

Load-Point and End-of-Reel Markers

Magnetic tape must have some blank space at the be-
ginning and end of the reel to allow threading through
the feed mechanism of the tape unit. Markers, called
reflective strips, are placed on the tape to enable the
magnetic tape unit to sense the beginning and the end
of the usable portion of tape. Photoelectric cells in the
tape units sense the markers as either the load-point
marker (where reading or writing is to begin) or the
end-of-reel marker (where writing is to stop). The
tape unit does not recognize the end-of-reel marker
when reading tape; a tapemark, written on the tape,
signals an end-of-reel condition (see Figure 87).

End-of-Reel

Photocell

Load~Point

and Tape -

Break Photocell Load-Point
Marker

End-of-Reel
Marker

Tape-Break

Tape Cleaner Light

Tape markers are small pieces of transparent plastic with a thin,
vapor-deposited film of aluminum on one side. Pressure-sensitive
adhesive covers the aluminum film. The markers are fastened
manually to the base (uncoated) side of the tape. New reels of
IBM tape have the markers in position. Photocells in the tape
unit sense the markers as they pass; broken tape is also detected.

Figure 87, Photosensing markers

File Protection

Because writing automatically destroys any previous
information on the tape, a file protection device is
used to prevent accidental erasure of information. This
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On noncartridge tape, the file protection device is a plastic ring that
fits into a round groove molded in the tape reel. When the ring is
in place, either reading or writing can occur. When the ring is re-
moved, writing is suppressed and only reading can take place; thus,
the file is protected from accidental erasure.

Figure 88. File protection devices

device is used when tapes are to be saved for further
reference (see Figure 88).

Direct Access Storage Devices

These have been discussed in the section entitled
“Storage Devices”. However, DASD’s may be thought
of as input/output devices.

Paper Tape Reader

The paper tape reader shown in Figure 89 reads data
represented as punched holes in five, six, seven, or
eight-channel paper tape at a rate of up to 1000 char-
acters per second. As it moves or feeds the tape past
a reading unit, the presence or absence of holes in the
tape is sensed and converted to electronic impulses
that are used as data by the computer system. Ac-
curacy of reading is determined by making a parity
check (where characters are written with parity, as
in eight-channel code). The speed of reading, from
150 to 1000 characters per second, depends on the type
of reader and the lengths of the records.

For faster paper tape input to the computer system,
the data to be converted may be written on magnetic
tape in an offline operation at 150 paper tape char-
acters per second (Figure 90). The recorded tape may
then be placed on a magnetic tape unit and read into



Figure 89. IBM 2671 Paper Tape Reader and 2822 Paper
Tape Reader Control

the computer system at the much higher magnetic
tape input rates (see table in Figure 86).

Paper Tape Punch

Data from the computer system is recorded as
punched holes in paper tape by an automatic tape
punch. Data received from main storage is converted
to a tape code and punched in blank tape as the tape
is moved through a punching mechanism. Accuracy of
data recorded is verified by a parity check for each

CONVERTER

ouTPUT INPUT

Figure 90. Data conversion-paper tape to magnetic tape

character (eight-channel code, for instance). Tape is
punched at a density of ten characters to the inch and
at rates of 15 and 150 characters per second.

Printers

IBM printing devices provide a permanent visual
record of data from the computer system. Speeds of
printing vary from 10 to 2400 characters per second.

As an output unit, the printer receives data, sym-
bolized in electronic form, from the computer system.
The electronic symbols enter appropriate circuitry and
cause printing elements to be actuated. All printing
devices have a paper transport that automatically
moves the paper as printing progresses.

The major printing devices consist of the print wheel
printer, wire matrix printer, chain printer, incremental
bar printer, and the typewriter.

The print wheel printer is equipped with 120 rotary
print wheels (Figure 91), each of which has 48 char-
acters of type, including numerals, alphabetic symbols,
and special characters. At the time of printing, all 120
print wheels are correctly positioned to represent the
data to be printed. Printing occurs as a complete line
of 120 characters, at a speed of 150 lines per minute.

Figure 91. Print wheel

In the wire matrix printer, each character is printed
as a pattern of dots, formed by the ends of small wires,
arranged in a five-by-seven rectangle (Figure 92). By
extending selected wires, the patterns may be arranged
in the shape of 47 different characters, including all
letters of the alphabet, the digits 0 to 9, and eleven
special characters used for punctuation and report
printing (Figure 93). Selected wires are pressed
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Figure 92. 5 x 7 dot pattem

against an inked fabric ribbon to print the characters
on paper. Characters are printed 120 to the line, at a
rate of 500 or 1000 lines per minute, depending upon
the device model.

The chain printer is an electromechanical line print-
er using engraved type. Alphabetic, numeric, and spe-
cial characters are assembled in a chain (Figure 94).
As the chain travels horizontally, each character is
printed as it is positioned opposite a magnetically
actuated hammer that presses the paper against one
piece of type in the moving chain. Up to 132 positions
may be printed on one line, at speeds of up to 1285
lines per minute. The print chain can be easily
changed to provide a choice of print fonts.
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Figure 93. Wire printing dot pattern
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Figure 94. Print chain

The incremental bar printer has a bar, containing
the print characters, which travels back and forth in a
horizontal plane. To print, a magnet releases a spring-
loaded hammer at the proper time so that the desired
character is pressed against the ribbon and paper.
Such printers can achieve a print speed up to 240 char-
acters per minute.

The typewriter that is used as an output device
(Figure 95) is similar to the one used manually. The
major difference is that control of the typewriter and
the printing occurs automatically as directed by the

Figure 95. 1052 Printer-keyboard



stored program. Printing speed is about 600 characters
per minute; spacing and carriage return are automatic.
With the 1052 printer-keyboard (using the “golf ball”
printer), printing speed is almost 900 characters per
minute.

Universal Character Set

A special feature available for S/360 printers is the
universal character set (UCS), which enables a user,
with a customized print chain, to obtain maximum
printer efficiency. If needed, a user can have an ex-
panded character set (up to 240 different characters
on any one chain) that is capable of using any of the
256 EBCDIC codes, except “null” or blank (hex 00
and 40).

A user can customize a print chain by having only
those characters, symbols, etc., necessary for a partic-
ular job. (IBM currently has a variety of print chains
available that meet most needs.) The user then assigns
a code to represent each character on the chain. The
codes are entered into a buffer (located on the con-
trol unit) in the positions that the characters appear
on the print chain (there are 240 buffer positions and
240 chain positions). When the user is printing, the
printer prints the character that-corresponds to the
code in the buffer position.

On printers without the UCS feature, there is a
fixed print cycle (that is, a constant time is needed to
print a line). The UCS user has a variable and (in

most cases) a faster print cycle, which ends when the
last character on the line is found.

Character Recognition Input Units

With the advent of high-speed automatic data proc-
essing systems, there came a realization that wide use
could be made of input units capable of reading data
that could also be read by people. The processing of
over 13 billion checks yearly and the inestimable
volume of other notices — insurance billings, magazine
subscription renewals, invoices, manufacturing routing
slips, utility bills, and so on — could be greatly
speeded by the use of man-machine recognizable char-
acters. Two systems that accomplish this are magnetic
characters and optically readable characters.

Magnetic Character Readers

As a specialized means of input to computer systems,
IBM magnetic character readers provide banks with a
time-saving method of reading and processing large

“volumes of daily transactions. These machines read

card and paper documents inscribed with the E13B
type font approved by the American Bankers Asso-
ciation. A second important labor-saving feature of
the magnetic character readers is their ability to sort
the magnetically inscribed documents in offline opera-
tions (see Figure 96).
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Transit Symbol “On-Us” Symbol

Figure 96. IBM 1419 Magnetic Character Reader and magnetic ink characters
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The reader examines the shape of each magnetic
ink character passing under the read head, and ten
data channels send signals to an electronic storage de-
vice called the character matrix. The matrix has a stor-
age location for each of 70 character segments, and, as
documents pass under the read head, lack of any ap-
preciable signal from a character area segment causes
the machine to store a 0 bit in that storage location.
The presence of a significant signal (indicating that
magnetic ink is under the reading gap) causes the ma-
chine to store a 1 bit in the specified storage location.
The bit structure entering the matrix is also displayed
in the character matrix lights of the indicator panel.

After the entire character area has passed under
the read head and all segments have been read, a pat-
tern of the character shape is in the character matrix
as a configuration of 0 bits and 1 bits (see Figure 97).
To verify the accuracy of processed data, the reader
automatically checks each character as it is being read.

An exhaustive study of the 14 characters shown in
Figure 97 has determined that thousands of 0 bit and
1 bit configurations can be considered acceptable pat-

I 1111 11T 111 111173
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T
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] 1113
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Each magnetic character passing the read head in the reader is
sensed and examined. The reader looks for key recognition shapes
and characteristics. If the character is slightly out of position as

it passes under the read head, the signals sent to the matrix form
what is called a folded character. The reader automatically unfolds
the pattern by shifting it vertically to check for recognition.

TT1T1T]

111

TTT7T

Character Paltern
Shifted in Matrix

Folded Character
Pattern in Matrix

Figure 97. Matrix patterns of E13B characters

60

terns for each character, even when portions of the
character are missing. All other patterns are considered
invalid.

When the machine determines that a character is
valid, the reader stores the character in another stor-
age location called the character register. The charac-
ter remains there until it is no longer needed for proc-
essing. If the machine determines that the pattern is
invalid, the recognition circuits provide the machine
with an error signal.

Optical Character Readers

The optical character reader reads uppercase letters,
numbers, and certain special characters from printed
paper documents and introduces the data into a com-
puter system. Transcribing of source data to cards or
tape is eliminated, and the time between receipt of
source documents and their entry into the data proc-
essing system is greatly reduced.

The principal operating action of the optical char-
acter reader is provided by a rotating drum that trans-
ports documents from a hopper past an optical scan-
ning station. The scanner consists of a powerful light
source and a lens system that distinguishes between
black and white patterns of reflected light. These light
patterns are read as a number of small dots and are
converted into electrical impulses to develop a charac-
ter pattern. When the pattern of the optically read
character matches a character pattern in the reader’s
character recognition circuits, the character is recorded
and transferred into the computer system for process-
ing. The read and recognition operation is automatic
and takes place at split-second speeds.

Optical readers can perform an additional operation
known as mark-reading, the reading of ordinary pen
or pencil markings. The mark, when placed in a speci-
fied location on the source document, represents spe-
cific information. This feature has many important
applications, such as recording of partial payments
directly on a customer’s bill and immediate processing
of payment, recording of meter reading cards at the
customer’s utility meter, and so on. (See Figure 98.)

Graphic Display Units

In some data processing systems, terminals produce a
visual display of records in main or secondary storage,
as called for by an operator. The IBM 2260 Display
Station (Figure 99) is such a terminal, used with
System/360. The information transfer to and from
System/360 takes place at 2560 characters per second.
Remote data transfers over telephone lines occur at
transmission line speeds of 120 or 240 characters per
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Figure 98. IBM 1428 Alphameric Optical Reader and mark- sensing document

second. Once written, the information is retained on
the screen for as long as desired.

The viewing area (four inches by nine inches) has
the capacity for six or twelve rows of 40 or 80 char-
acters each, for a total of from 240 to 960 characters
at a time, depending upon the model of display con-
trol used. Standard for display are all 36 alphameric
characters, plus 25 special characters. Each character
is designed on the basis of a five by seven matrix,
with an appearance that is similar to that of a printer
(Figure 92).

All input to the 2260 is through an alphameric or
numeric keyboard. Input data typed on the keyboard
goes into the buffer of the 2848 Display Control and
is immediately displayed on the tube face for a visual
accuracy check. Before the message is released to the
host computer for action, the operator can backspace/
erase/correct an entry, erase an entire input message
and reenter it, or erase the entire display.

Under operator or program control, output infor-
mation is written on a cleared display or added to an
existing display on the tube face. Output is on the
Figure 99. IBM 2260 Display Station cathode ray tube screen, or it may be directed to a
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1053 Printer, where it is printed out in the same for-
mat as displayed on the tube face.

Another display unit is the IBM 2250, described
under “Visual Output” in the section entitled “Data
Representatijon”.

Consoles

The console of a data processing system (Figure 100)
is used by the operator to control the system and mon-
itor its operation. Using keys, switches, audible tone
signals, and display lights on the console, the operator
can:

1. Start and stop the computation.

2. Manually enter and extract (or display) infor-

mation from internal storage.

3. Determine the status of internal electronic
switches.

4. Determine the contents of certain internal reg-
isters.

5. Alter the mode of operation so that, when an

unusual condition occurs, the computer will

either stop or indicate the condition and proceed.

Change the selection of input/output devices.

7. Reset certain types of computers when error con-
ditions cause them to halt.

»

Figure 100. Console — IBM System/360 Model 30
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In some large data processing systems, the main con-
sole is connected only to the central processing unit
and may be augmented by separate consoles that are
used for engineering functions and for additional in-
put/output control.

Terminals

IBM currently has two types of terminals used in
telecommunications. Because of the way they receive
and send messages, they are called start/stop and syn-
chronous transmit/receive (STR) terminals.

The start/stop type terminals include the IBM 1050,
1030, 1060, and 1070. The operation of these terminals
is based upon asynchronous transmission (in which
each information character is individually synchron-
ized by a start character). In this type of transmission,
each group of code elements corresponding to a char-
acter signal is preceded by a start signal, which serves
to prepare the receiving mechanism for the reception
and registration of a character. In addition, each char-
acter is followed by a stop signal, which serves to
bring the receiving mechanism to rest in preparation
for the reception of the next character.

The STR type terminals include the IBM 1009,
1013, 7702, 7711. In the STR mode of transmission,



the code bits of one character are immediately fol-
lowed, without a start or stop signal, by the code bits
of the next character.

The most common mode of communication be-
tween STR terminals is the half duplex mode (some-
times called “handshaking mode”). In this mode, two
terminals are in constant communication with each
other. The first terminal, if it has no message to send,
sends special nondata characters (called IDLE char-
acters) for about 1.5 seconds. The second terminal,
meanwhile, is synchronized to receive this signal. After
1.5 seconds, the two terminals reverse mode (that is,
the first terminal receives, and the second terminal
sends the IDLE’s). When one terminal has a message
to send, it sends a special code that “asks” permission
of the other terminal to do so. When permission is
granted, the terminal sends the message (wherein
each code bit is part of the characters of the record).
When the terminal is finished sending the record, it
sends an end-of-record signal. The receiving terminal
acknowledges receipt of the record by sending a
receipt-of-record signal. The terminal sending the mes-
sage then sends the next record. This process con-
tinues until the sending terminal sends an end-of-
message signal, which is acknowledged by the receiv-
ing terminal. If no more messages are to be sent, the
terminals go back to sending IDLE’s.

Also included for some STR terminals, is the binary
synchronous communication feature (BSC) which
provides additional flexibility. Most STR terminals use
a special code (that is, four of the eight bits of the
character must be on). BSC, on the other hand, can
use EBCDIC, USASCII-8, and Six-bit Transcode. BSC
also eliminates most restrictions needed for control
characters. All data is sent as a serial stream of binary
data, which is used to encode the characters making
up each transmission code set. The BSC feature is
designed for the IBM 2780 Data Transmission Termi-
nal.

The STR type terminal has a much faster and more
efficent method of sending and receiving messages
than the start/stop type terminals. In most cases, the
STR transmission rate exceeds 20 times the start/stop
transmission rate.

Data Buffering

All data processing procedures involve input, process-
ing, and output. Each phase takes a specific amount
of time. The usefulness of a computer is often directly
related to the speed at which it can complete a given
procedure. Any operation that does not use the central
processing unit to full capacity prevents the cntire
system from operating at maximum efficiency. Ideally,
the configuration and speed of the various input/out-

put devices should be so arranged that the CPU is
always kept busy with useful work.

The efficiency of any system can be increased to
the degree in which input, output, and internal data-
handling operations can be overlapped or allowed to
occur simultaneously.

Input is divided into specific units or logical associ-
ations of data that enter storage under control of the
program. A number of output results may be devel-
oped from a single input, or, conversely, several inputs
can be combined to form one output result. Figure
101A shows the basic time relationship between input,
processing, and output with no overlap of operations.
In this type of data flow, processing is suspended dur-
ing reading or writing operations. Inefficiency is obvi-
ous, because much of the available time of the central
processing unit is wasted.

Figure 101B shows a possible time relation between
input/output and computing when a buffered system
is used. Data is first collected in an external unit
called a buffer. When summoned by the program, the
contents of the buffer are transferred to the main stor-
age unit. The transfer takes only a fraction of the time
that would be required to read the data directly from
an input device. Also, while data is being assembled
in the buffer, internal manipulation or computing can
occur in the computer. Likewise, processed data from
main storage can be placed in the buffer at high speed.
The output device is then directed to write out the
contents of the buffer. While writing occurs, the cen-
tral processing unit is free to continue with other work.

If several buffered devices are connected to the sys-
tem, reading, writing, and computing can occur simul-
taneously (Figure 101C).

Further development of the buffering concept has
led to the use of main storage as the primary buffer.
Data is collected from, or sent to, the input/output de-
vices in words or in fixed groups of characters. Trans-
mission of words is interspersed automatically with
computation, but the time required for the transmis-
sion of single words is relatively insignificant. The ef-
fect is that of overlapping internal processing with
both reading and writing. The principal advantage
here is that the size or length of the data handled is re-
stricted only by the practical limits of main storage.
When external buffers are used, the amount of data
handled at any time is limited to the capacity of the
buffer. Overlapping operations up to this point have
demonstrated a principle of synchronous operation;
that is, the action of the input/output devices is made
to occur at fixed points in the program and in a se-
quence established by the programmer.

In some computers, design features allow for auto-
matic interruption of processing by the input/output
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Figure 101. Data buffering

devices; synchronous operation is not required. The
input or output device signals the central processing
unit when it is ready to read or to write. The central
processing unit responds to these signals and either
accepts the data as input or transmits the required
information as output. In real-time teleprocessing sys-
tems, this type of input/output is likely to be non-
sequential and unpredictable.

The problem arises of how to fill in the gaps in cen-
tral processing unit time. The answer is to somehow
queue the various tasks and programs to step in and,
without interfering with one another, to use the other-
wise idle time. This is the basis for multiprogramming
—a subject described in more detail under “Program-
ming Systems”.

Auxiliary Operation

Input/output and data conversion operations of the
data processing system are relatively slow compared
with the speed of the central processing nnit. Auxil-
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iary, or offline, operation provides a method by which
many operations can be performed by machines not
directly connected to the system. The advantage is to
free the computer of routine, time consuming proce-
dures, thereby providing more time for the prime func-
tions of computing and data manipulation within the
central processing unit.

The principal auxiliary operations are those of con-
verting data from cards to magnetic tape, magnetic
tape to cards, and magnetic tape to printed reports.
For example, all output data from a system could be
placed on magnetic tape, the fastest method of re-
cording data from a system. The tape could then, in
an auxiliary operation, be converted to cards or printed
as reports as the computer continues processing new
data.

The importance of auxiliary operation has pro-
gressed to a point where it is now usual, with large
computers, to use a small data processing system to
perform the auxiliary operations.

|




After data is transcribed to an input medium, the
computer system can take over the complete process-
ing and the preparation of results. However, the pro-
cedural steps that are to take place within the
computer system must be defined precisely in terms
of operations that the system can perform. Each step
must be written as an instruction to the computer.

A series of instructions pertaining to an entire pro-
cedure is called a program. In modern data process-
ing systems, the program is stored internally, and the
system has access to the instructions at electronic
speeds. Such programs are called stored programs.

Instructions

The computer is directed to perform each of its
operations by an instruction — a unit of specific in-
formation located in main storage. This information is
interpreted by the central processing unit as an opera-
tion to be performed.

If data is involved, the instruction directs the com-
puter to the data. If some device is to be controlled
— a magnetic tape unit, for example — the instruction
specifies the device and the required operations.

Instructions may change the condition of an indica-
tor; they may shift data from one location in storage
to another; they may cause a tape unit to rewind; or
they may change the contents of a counter. Some in-
structions arbitrarily, or as a result of some machine
or data indication, can specify the storage location of
the next instruction. In this way, it is possible to alter
the sequence in which any instruction or block of in-
structions is followed.

An instruction (Figure 102) usually consists of at
least two parts:

Operation Operand
Select Tape Unit 200
Read One Record into Storage Positions 1000-1050

Clear & Add | Quantity in Storage Location 1004
in Accumulator

Subtract Quantity in Storage Location 1005 from
Contents of Accumulator

Store Result in Storage Location 1051

Branch To Instruction in Storage Location 5004

Figure 102. Instructions

Stored Program Concepts

1. An operation part that designates read, write,

add, subtract, compare, move data, and so on.

2. An operand that designates the address of the

information or device that is needed for the
specified operation,

During an instruction cycle, an instruction is se-
lected from storage and analyzed by the central proc-
essing unit. The operation part indicates the operation
to be performed. This information is coded to have
a special meaning for the computer. For example, in
a System/360, the letter A is interpreted as “add”, the
letter C as “compare”, SIO as “start input/output”, and
TR as “translate”. Other computers use different cod-
ing and numbers of characters or positions to define an
operation.

The operand further defines or augments the func-
tion of the operation. For example, to perform arith-
metic, the storage location of one of the factors in-
volved is indicated. For input or output devices, the
unit to be used is specified. For reading or writing,
the area of storage for input or output records is in-
dicated or fixed by machine design.

Because all instructions use the same storage media
as data, they must be represented in the same form of
coding. In some types of computers, such as the IBM
7090, instructions are fixed in length (one word long).
In others such as the IBM 1401 and 1410, they may
be a variable number of characters long. In System/
360, instructions may be any of three lengths: half-
word (two bytes), whole word (four bytes), and
word-and-a-half (six bytes), depending upon specific
instruction operand requirements.

In general, no particular areas of storage are re-
served for the instructions only. In most instances,
they are grouped together and placed, in ascending
sequential locations, in the normal order in which they
are to be executed by the computer. However, the
order of execution may be varied by special instruc-
tion, by recognition of a predetermined condition of
data or devices within the system, by unpredictable
interruptions from outside the system (teleprocessing
input), by hardware conditions that require servicing
from a special set of programs, or by other programs
that require unusual priority.

The normal sequence of computer operation in a
complete program is as follows: The computer locates
the first instruction either by looking in a predeter-
mined location of storage assigned for this purpose or
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by manual reset. This first instruction is executed. The
computer then locates the next instruction and exe-
cutes it. This process continues automatically, instruc-
tion by instruction, until the program is completed or
until the computer is instructed to stop.

Two-Address Instructions

In some computers, such as the System/360, instruc-
tions have two address portions. Depending on the
function of the instruction, the two addresses can, for
example, indicate a device to be used and the data
to be operated on, or two factors of data to be proc-
essed. An output unit to be used could be indicated
by one address, and the storage location from which
information is to be written could be indicated by the
other address. In arithmetic operations, the two ad-
dresses could specify two related factors of data, such
as multiplier and multiplicand, divisor and dividend,
or addend and augend.

Fewer double-address instructions than single-ad-
dress instructions are required to perform a procedure.
This simplifies programming procedures and results
in a saving of space in computer storage.

Instructions and Data

The only distinction between instructions and data
in main storage lies in the time they are brought into
the central processing unit. If information is brought
in during an instruction cycle, it is interpreted as an
instruction; if brought in during any other type of
cycle, it is considered to be data.

The computer can operate upon its own instruc-
tions, if those instructions are supplied as data. The
computer can also be programmed to alter its own
instructions according to conditions encountered dur-
ing the handling of a procedure. It is this ability to
process instructions that provides the almost unlimited
flexibility and the so-called logical ability of the
stored program system.

Developing a Program

To develop a program, the programmer must know
(1) the number of different operations (and their
functions) available in the system with which he has
to work; (2) the procedure itself, which must be
translated, step by step, into computer instructions;
(3) the requirements to be met by the result of proc-
essing.

The first step in program preparation is a complete
analysis of the application to he programmed, includ-
ing existing and proposed procedures. This analysis
is normally accomplished by developing flowcharts
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and block diagrams, because most data processing
applications involve a large number of alternatives,
choices, and exceptions.

It is difficult to state thesc possibilities verbally.
Thus, the systems analyst finds use for many types
of pictorial representations, including form layouts,
control panel diagrams, manpower planning charts,
and so on. The two representations to be discussed
here are the system flowchart and the program flow-
chart.

The outstanding value of a flowchart is that it shows
a lot at a glance. It graphically represents organized
procedures and data flow so that broad essentials and
many details, along with their relationships, are readily
apparent. Such sequences and interrelationships are
hard to extract from detailed paragraphs of text —
and, for the program, next to impossible to determine
without supporting documentation. In flowcharting,
symbols and words support each other; identifications
and descriptions, which may be obscure in text, take
on more significance when placed in diagrammed
sequence. The communication is further improved by
consistent use of meaningful symbols (Figure 103)
and reasonably uniform techniques.

The template provides basically for two kinds of
flowcharts — system and program. This distinction is
not new. A system flowchart shows the flow of data
through all parts of a data processing system. A pro-
gram flowchart shows what takes place within a par-
ticular program in a data processing system.

System Flowchart

A system flowchart represents an application in which
data provided by source media is converted to final
media. The emphasis is on the media involved and
the work stations through which they pass. In a pro-
gram flowchart, on the other hand, emphasis is on
computer decisions and processing; the chart provides
a picture of the problem solution, the program logic
used for coding, and the processing sequences.

Because a fundamental program flowchart evolves
from a system flowchart, the former inherently has
more detail than the latter. Beyond that, a program
flowchart is quite explicit, frequently “exploding” into
a series of subsidiary flowcharts to an extremely high
level of detail.

System flowcharts are likely to be simpler, less
“formalized”, and easier to draw than program flow-
charts; they are also more flexible. A greater choice
of symbols is available, as well as more latitude in
their use. Examples of the symbols, conventions, and
techniques used in a typical system flowchart are
shown, with comments, in Figure 104.



PROGRAM FLOWCHART SYMBOLS SYSTEM FLOWCHART SYMBOLS

Processing. A group of program
instructions which perform a

Offline storage. Either of paper,

P ina. A mai .
rocessing. A major processing cards, magnetic or perforated tape.

processing function of the program. function.
|npud9umut, /.\ny'functlon- of an Display. Information displayed
1/0 device (making information ) .

. . . by platters or video devices,
available for processing, recording Input/Output. Any type of
processing information, tape medium or data.
positioning, etc.)

Online keyboard. Information

Decision. Points in the program supplied to or by a computer
where a branch to alternate paths Punched card. All varieties of utilizing an online device.
is possible, based upon punched cards, including stubs.

variable conditions.

Sorting. Collating. An
operation on sorting or
collating equipment.

Perforated tape. Paper or plastic,

Program modification. An instruc- chad or chadless.

tion or group of instructions
which changes the program.

Clerical operation. A
manual offline operation not
requiring mechanical aid.

Document. Paper documents and
Predefined process. A group of reports of all varieties.
operations not detailed in the

particular set of flowcharts.

T ——
T —
\/

Transmittal tape. A proof or adding
machine tape or similar batch-control
information.

Auxiliary operation. A machine
operation supplementing the
main processing function.

Terminal. The beginning, end, or a
point of interruption in a program.

Connector. An entry from, or an

exit to, another part of the program

flowchart. Magnetic tape.
Offpage connector. Used instead of

Keying operation. An operation
utilizing a key-driven device.

the connector symbol to designate entry
to or exit from a page.

ao JULJ O

Disk.
Drum.
Random access.

Communication link. The
automatic transmission of
information from one location
to another via communication
lines.

= JULJO|()<

Supplementary Symboi Annotation. The addition of descriptive comments or explanatory
for System and I notes as clarification. The broken line may be drawn on either the

Program Flowcharts left or right, and connected to a flowline where applicable.

Figure 103. Program and system flowchart symbols
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Bill of Lading . Misc. Trans. Remote Orders
Packing Sli Filled Remote (Returns, & Stock Status,
9 50, Orders
Etc. Rejects, Inquiry
/ L " Etc.)
Select Proper Prepare
Record & Enter Receipts Stock Prepare Misc.
New Data Withdrawals Transactions
/
Prepare i Misc.
Inventory Withdrawals Transactions
RUN 81 RUN O1
. Determine &
Invalid
1{"’“ ! Update Master Update Stock
Notice Stock Stock File Status and Prepare
Status Ship. Instructions
L
AtEnd | Stock Status
Of Day's | & Ship. Instr,
Transactions ]
|
RUN P1 L ]
Select Items Below At End
Protection Level | Of Week's
Determine Ordar Transactions
Qty. and Date
RUN P2 J RUN 82
Group Order_s Analyze Usage
By Commodity and Status
Class
RUN P3 I—————

Insert in . Select Vendor & Vendor Stock Stat.
Receiving g:::wmg Prepare Purchase File and Usage
File s Orders Report

Review and
Approve
Purchase
Orders

A typical system-flowchart description of an inventory-control application, this chart uses specific symbols for certain processing functions
and input/output. The application involves a multiple-warehouse system: items are stocked in a central warehouse for distribution to remote
warehouses; all customer orders are received by remotely-located warehouses and transmitted by teletype (communication-link symboil) to the
central data-processing installation. The system provides four major groups of operations:

(1) updating stock status [run S1], based on actual transactions; (2) response to inquiries [run O1] from auxiliary warehouses and central
warehouse; (3) reorder analysis [runs P1, P2, P3], including purchase-order preparation; (4) weekly analysis reports [run §2] to show slow-
moving items, major changes in usage rates, behind-schedule deliveries, economic lot sizes, etc,

Figure 104, Flowchart for an inventory control system
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Program Flowchart

Certain aspects of program flowcharts deserve em-
phasis by themselves, because they are so specialized
and so thoroughly integrated into both the routine and
the creative phases of programming. To the program-
mer, a program flowchart is a kind of all-purpose tool.
It is the “blueprint” of a program. In program devel-
opment, the programmer uses flowcharting in and
through every part of his task: to marshal and organize
his facts on paper; to outline problems, logic, and solu-
tions; to deal systematically with the problem as a
whole. He uses flowcharting to build, step by step,
his own reference documentation and reminders.

In the development stage of a program, a flowchart
serves as a means of experimenting with various ap-
proaches — laying out the logic. The programmer
starts with symbols representing major functions of
a proposed program. He develops the overall logic by
combining blocks to depict input/output functions,
steps for identification and selection of records, and
decision functions.

Once the programmer has tentatively established
mainline logic, he usually extracts large segments and
describes them in more detail on subsidiary charts.
This is like drawing a set of increasingly detailed maps
— starting with a general, all-inclusive map, then ex-
ploding sections of it on succeeding maps, each map
showing greater detail. The technique is called modu-
lar program flowcharting. For thorough documentation
on this basis, a typical file-maintenance routine could
possibly require as many as 80 flowcharts.

When the programmer is satisfied that the pro-
cedure is sound, he uses the flowchart as his guide

for coding. Sometimes, at this stage, program logic
may have to be modified to agree with machine logic, -
and a chart may have to be redrawn and reverified.
Modifications are even more likely during testing, in-
stallation, and future operation. '

Flowcharting Worksheet

Because most program flowcharts are so detailed, it
is a great advantage that they be drawn in a con-
sistent, well-organized format. Such “formalization™
is best done on a regular form designed for that pur-
pose. The IBM flowcharting worksheet form (X20-
8021) is shown in Figure 105 with a typical chart
superimposed on it.

The 11 x 16%” worksheet can be used for all kinds
of flowcharts, but it is particularly useful in program
flowcharting,.

Essentially, what the worksheet provides is an ar-
rangement of 50 blocks with alphabetic and numeric
coordinates. Ten horizontal rows are lettered from the
top (A) to the bottom (K). Five vertical rows are
numbered from left to right — 1 through 5. These
coordinates prove helpful in documenting and cross-
referencing.

The worksheet has guidelines for the 50 positions,
and crosslines indicating the horizontal and vertical
centers of each position. These are simply aids for
squaring up flowlines, centering symbols in each posi-
tion, and maintaining uniform spacing between sym-
bols. The result is a neatly arranged, compact chart,
but not too crowded. The worksheet itself is printed
in light-blue ink so that its guidelines will disappear
during photographic copying.
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Figure 105. First sheet of a sample program flowchart for an updating run of inventory records.



Miscellaneous Techniques

A few of the more detailed techniques in the drawing
of program flowcharts are described briefly and illus-
trated:

Cross-referencing relates the program flowchart to
source language programs (described later). One way
is to locate an instruction either by its label or by the
page and line number of the coding sheet on which
it appears. The cross-reference can be placed above
the upper left corner of a symbol, as shown in Figure
106.

Figure 106. Example of cross-referencing

Striping on a symbol (the horizontal line within
and across the upper part of a symbol) indicates a
complex logical program unit. Generally, it is used
to show that a more detailed flowchart of the pro-
gram unit exists. (On the template, recommended
stripe placements are indicated by heavier grid lines
on both sides of the upper part of certain symbols.)
Identification of the program unit may be placed
above the stripe; a brief description of its function
may be placed below the stripe. An example appears
in Figure 107.

BE—A3  \

Read Output Label
Control Card

Figure 107. Example of striping

Decision Techniques may be shown in several ways.
See examples in Figure 108. These decisions will deter-
mine which action is to be performed next by the pro-
gram (see branch operation).

Two lines
to other
symbols

A single line
which then
branches into: Table
the Lookup
appropriate
number

of lines

Y

1 2 3 4 Other

Figure 108. Examples of decision techniques

An example of a typical program flowchart is shown
in Figure 105 (superimposed on the flowcharting work-
sheet form referred to earlier). The program flow-
chart, for a daily updating run of master inventory
records, is based on the system flowchart. The system
flowchart (Figure 109) indicates that the updating
is from adjustments, receipts, orders, and issues for
the day; in addition, a shortage-and-reorder listing is
prepared. The system requires no additions or dele-
tions involving the master file.

Master
inventory

Adjustments

Run 3B

Daily
Update

Shortage

and Reorder
Listing

End-of-Job and
Error Messages

Figure 109. System Flowchart
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Flowcharting by Computer

All of the foregoing has dealt with manual flowchart-
ing — drawing the charts by hand. Much progress has
been made, however, on the running of flowcharts on
a computer. An IBM flowchart program for the IBM
System/360 enables the computer to print out, from
detailed instructions, a complete flowchart — includ-
ing machine versions of the same symbols usually
drawn by hand. This program is called S/360 Flow-
chart.

Mechanized flowcharting is particularly helpful in
programming, where modifications of a program often
require time-consuming redrawing of charts. With
S/360 Flowchart, flowcharts manually drawn in a pre-
scribed manner (and coded) can be produced auto-
matically; once produced, they can be modified and
rerun with a minimum of time and effort. The flow-
charting worksheet in Figure 105 ties in nicely with
this implementation: the 50-position grid provided by
the worksheet lends itself readily to mechanization.

Reading Data

All data entering the computer system must first be
read by an input device and routed to main storage.
Each input device is assigned a number to serve as
its address in the same way that each storage position
is also assigned a location address.

A data processing procedure is normally concerned
with entire files (called “data sets” in Operating Sys-
tem/360) of records on one or more of the input media.
These files are either fed to the input device, where
the computer has access to them, or read directly from
a secondary storage unit. To read a record from a file,
one or more instructions in a program activate the in-
put device and place the record in main storage.

At this point, it must be determined exactly where
in storage the incoming record is to be placed, and
an instruction must direct the machine to send it to
this predetermined location. Also, in the plan of manip-
ulation, it is necessary to know at all times where to
find information as needed in the successive stages of
processing.

These considerations involve the allocation of stor-
age space for specific purposes in a logical and con-
venient manner. For example, particular fields or
quantities may be used for computation. The instruc-
tions to be used later must specify the location in
storage where this information from each record can
be found.

When a data processing system includes an oper-
ating system of programs to take care of placement
of incoming records and fetching of stored records as
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needed, the problem programmer is not concerned
with the location details.

The reading operation performs the following dis-

tinct functions:

1. The input device is selected and made ready
before actual reading begins. The device chosen
is the one that has access to the proper file records
as determined by the programmer. This device
is selected by specifying its assigned code number
or address.

2. The read instruction causes the previously se-
lected unit to carry out the transfer of a record
to the storage of the computer. The record is
placed in a particular storage area reserved for
this purpose and is then available for further
processing. A number of input areas may be as-
signed to handle several related records at once
(for example, a master record and its correspond-
ing transaction detail).

3. The order of read instructions in the program
determines the sequence in which the files are
read. Other instructions later compare records
from separate files to determine the relationship
of detail to masfer, detail to detail, and so on.

4. The number of records to be placed in storage
at one time depends on the construction of the
files, the type and length of records being han-
dled, and the available storage capacity.

Calculating

Once data has been read into the computer system
and placed in known locations of storage, calculation
can begin. Each computer is capable of performing
addition, subtraction, multiplication, and division,
either as built-in operations or under program control.
For most commercial applications, these operations
are adequate. Even in many of the more advanced
scientific procedures, the most complex equations can
be reduced to steps of elementary arithmetic. How-
ever, many specialized operations can be performed
by some systems to make the solving of mathematical
problems easier.

In every operation of simple arithmetic, at least two
factors are involved: multiplier and multiplicand, di-
visor and dividend, and so on. These factors are oper-
ated on by the arithmetic unit of the machine to
produce a result, such as a product or a quotient. In
every calculation, therefore, at least two storage lo-
cations are needed. One quantity is usually in main
storage, the other in a register. In System/360, both
quantities may be in registers.

A calculation can be started by placing one factor in
the register and at the same time clearing this unit of



any previous factors or results that may be contained
there. The address part of the instruction specifies the
storage location of the first factor; the register is im-
plied by the operation. In some computers, more than
one register is available for calculation. In this case,
the address must also specify the register to be used.

When one of the factors is properly placed in the
accumulator or other suitable register, the actual cal-
culation is executed by an instruction whose operation
part specifies the arithmetic to be performed and
whose operand is the location of the second factor.
The computer acts upon two factors, one in the reg-
ister and the other in storage, and produces a result
in either place, as directed.

The result may be moved to a storage area, as a
field in some record. A field is a related arrangement
of characters or digits to represent a quantity, amount,
name, identity, and so on.

Any practical number of calculations can take place
on many factors in a single series of instructions. That
is, a factor may be placed in a register and multiplied,
and several other factors may be added to or sub-
tracted from the product. Division can then be ex-
ecuted, and other operations of adding and subtrac-
ting can proceed using this quotient. Intermediate
results can be stored at any time.

For example, a field containing employee hours
worked can be placed in a register and multiplied by
hourly rate to produce earnings. Piece work and bonus
amounts may then be added to develop a total regular
earnings amount, which is stored in the pay record.
Total regular earnings may then be divided by hours
to produce an average hourly rate. This rate is mul-
tiplied by 1.5 overtime hours to produce overtime
earnings. Total gross pay is then calculated and stored.
Taxes are computed using the calculated gross pay;
other payroll data is accumulated using the amounts
as they are calculated. Intermediate results of tax
amounts and deductions, and, finally, net pay are all
stored in the pay record.

Operations of shifting and rounding the contents of
the register are also provided to adjust, lengthen, or
shorten results. With these operations, decimal values
may be handled and directions for placing of the
decimal point may be given to the computer.

All calculations must take into account the algebraic
sign of factors in storage or associated registers. Con-
sequently, the computer system is equipped with some
provision to store and recognize the sign of a factor.

If records are made up of fixed words of data, one
position of the word is designated as a sign position

and automatically accompanies the word. Registers
also include either a special sign position of storage or
a sign indicator that is available to the programmer.
In this way, the sign of results can be determined, to-
gether with the effect, after calculations. The com-
puter follows the rules of algebra in all basic arith-
metic calculations.

The size of words, quantities, and values depends
upon the design of each particular system. The exact
rules governing the placement of factors, size of re-
sults, etc., vary somewhat from system to system.
In all cases where a result is expected to exceed the
capacity of the register, the programmer must ar-
range his data to produce partial results and then
combine these for totals. Other operations of scaling
may be executed so that very large or small values
and fractions may be handled conveniently. Comput-
ers designed primarily for mathematical applications
generally include a series of specialized arithmetic
operations for this purpose. (See “Floating-Point Op-
eration”.)

Calculation is carried out in all computer systems at
much higher rates of speed than input or output, be-
cause reading and writing require the use of mechan-
ical devices and the movement of documents, while
calculation is performed electronically. In many com-
mercial applications, calculation is relatively simple,
and the overall interleaving of the system is usually
governed by the speed of the input/output units. In
mathematical applications, the situation is reversed;
calculation is complex and involved, and high cal-
culating speeds are essential. The design of any partic-
ular system must achieve a realistic balance between
calculating and record-handling ability.

Logical Operations

The sequence in which a stored program computer
follows its instructions is determined in one of two
ways: either it finds the instructions in consecutive
storage locations, or the instruction operand also des-
ignates the location of each following instruction. If
instructions could be followed sequentially only in a
fixed pattern, a program would follow only a single
path of operation without any possibility of dealing
with exceptions to the procedure and without any
ability to choose alternatives on the basis of special
conditions encountered in processing data. Further,
without some way of resetting the computer to repeat
a given series of instructions, it would be necessary to
have a complete program for each record in a file.
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Consider the program illustrated by the block di-
agram in Figure 110.

Read
Record

Compute
A+B=T

| ]

Write
Record

Figure 110. Program flowchart A+B = T

These instructions taken alone compute T for only
one record. But, by returning to the first instruction,
any number of records can be processed, repeating
the same program as a loop. For this purpose, an-
other instruction is given to return to the first instruc-
tion (Figure 111). Once this program is initiated, it
will continue to run until there are no more records
to process. Program loops are common, and they can
be terminated in many ways.

‘ Start )
\

Loop

Figure 111. Program loop

For example, the computer may be instructed to
examine T each time it is computed and to go to a
certain routine when the value of T becomes negative
(Figure 112).
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Start

Read
Record

Yes T Negative No

Write
Record

Figure 112. Conditional transfer

In this case, the instruction becomes a conditional
transfer. The program is repeated only if some pre-
determined condition has been satisfied. The computer
may also be instructed to execute the program for ten
records and then go to a certain routine (Figure 113).

‘ Start ’

Set Counter
to 10

Operator
Intervention

Figure 113. Record count conditional transfer



It is assumed that the constants 10 and 1 are in the
computer and that 1 is subtracted from 10 each time
the loop is completed. After ten times around, a zero
will be found in the location that contained 10. A
transfer or branch then terminates the loop.

The conditional transfer or branch operation may
be used to cause a special purpose subroutine to be
executed outside the normal or straight-line path of
the program. This subroutine is executed only when
a predetermined exception or condition is noted by
the machine.

One common example of the subroutine is checking
the accuracy of records as they are read from, or writ-
ten on, magnetic tape. As each record enters or leaves
the central processing unit, a read/write error indica-
tor is examined. If the indicator has been turned on,
the computer is instructed to enter a subroutine of in-
structions that attempt to correct the error. The pro-
gram logic for such an operation — the reading only
— is shown in Figure 114. A similar loop might also
be included for writing.

When a reading error is detected, a branch is ef-
fected to the error subroutine. A counter is reset to

‘ Start ’

Check
Record

Error

A

the quantity 10 to count the number of times a reread
will be attempted. The tape is backspaced over the
error, and a second read instruction is given. Another
check is made to determine whether this operation is
correct. If it is, a transfer returns to the main program,
where computing continues.

If the error persists, 1 is subtracted from the coun-
ter, and the counter is tested for 0. The error loop is
again entered, and a second reread and check are ex-
ecuted. The machine can reread ten times. If the error
is not corrected, the program transfers to another rou-
tine, where it goes through some sort of procedure to
log the error record and then return to read in and
process the next record. With Hypertape and 2400
series nine-track tape, however, the cyclic redundancy
character feature corrects single-track errors automat-
ically, thus eliminating the need for this type of pro-
gram, in many instances. Also, input/output control
systems and operating systems (programming systems
supplied by IBM) are available for most data process-
ing systems, eliminating the need for the problem pro-
gram to include this type of checking,

Set Error
Counter to
10
Compute <
¥ A
Write Backspace
Record One Record,
\

Read
Record

Check
Record

Figure 114. Read error loop

Y

Subtract 1
from Counter
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A program can also be arranged so that the machine
can recognize one or more types of records as they are
processed from a single file. The method of computa-
tion can be varied according to the type of record in
storage. This procedure is common when a number of
types or classes of transactions are processed against
a single master file (for example, in an application of
file maintenance).

Assume that a file (data set) of master stock status
records contains quantities that reflect the number of
parts available for manufacturing planning. The rec-
ords also have considerable other information per-
taining to the status of inventory, but for purposes of
illustration, this example is concerned only with those
fields used to show availability. These fields are:

Quantity in stock

Quantity on order

Quantity available

Transactions that affect the status of the parts avail-
ability originate daily. These transactions are punched
in cards with an identifying digit code for each type of

activity.
Codes are as follows:
Code 1  Receipts
Code 2  Orders
Code 3  Withdrawals
Code 4  Adjustments plus
Code 5  Adjustments minus

As each transaction is placed in storage, it is an-
alyzed by code to determine the class to which it be-
longs (Figure 115). A branch instruction then transfers

| Transactions ”]]

y

¢ 9

Receipt Orders Withdrawal Mw + Adjust -
- On Order| |+ On Order| | - Stock - Stock
+ Stock +Available | | - Available + Availabl - Available

Continue
Program

Figure 115. Branching by code
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to the proper program subroutine to calculate avail-
ability and to adjust the corresponding master record.
Reading and writing of the adjusted master record are
not shown in the flowchart.

Comparing

The ability of the computer to make limited decisions
on the basis of programmed logic is substantially ex-
tended by operations of comparing. Such operations
enable the computer to determine whether two data
fields in storage match, or whether one is lower or
higher than the other. The basis of comparison is set
according to some predetermined sequence built into
the circuitry.

The sequence may be considered to be a normal
filing order of records of all types. For example, the
familiar ascending sequence of the digits 0-9 assumes
that the digit 9 is the highest digit of the series. In
the same manner, the letter Z is assumed to be the
highest letter of the alphabet. To the computer, there-
fore, as in any file, the number 162 is higher in se-
quence than the number 159, and the name Jones is
lower than the name Smith. Special characters, such as
/ @ * , or —, may also be included, because all com-
puter data has a value that can be compared with any
other value. This is known as the collating sequence.

Comparing operations are used to program the se-
quence checking of files, sorting procedures, or the
rearrangement of records in some desired order. The
comparison of an identifying field in one record with
that of another enables the computer to handle a num-
ber of associated files in one processing procedure,
provided that all files are in sequence by this com-
mon field.

One or both fields are placed in a storage reg-
ister(s). The compare instruction then compares the
first field against the second. (The second field, in
System/360, may be in a second register; in other
systems, it is in a main storage location.) The results
of comparison are registered as high, low, or equal, by
indicators or triggers that may then be interrogated to
determine their condition. If the indicator is on, a
branch (transfer) instruction transfers the machine to
a subroutine that will continue processing according
to the result of the comparison.

Figure 116 shows a typical program arrangement
for sequence checking a single file of records. All
records in the file are assumed to be in ascending
sequence by account number.

An input area is set aside in storage, where records are
received, one at a time, from an input unit. A second
area is also reserved in storage to store the account
number from the preceding record. The purpose of
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Figure 1168, Sequence checking

this area is to allow comparison of the account num-
ber of the incoming record with the corresponding
field of the previous record.

If the file is in ascending sequence, the incoming
record should always be higher than the record that
preceded it. When duplicate records are encountered,
the incoming record is equal to the preceding one. If
any incoming record is lower than the previous record,
it is recognized as an out-of-sequence condition, and
the program transfers to a subroutine to take correc-
tive action. After each high comparison, the account
field is placed in storage, where it may be compared
with the next record.

Instruction Modification

Some of the preceding examples have shown how
branching or transfer instructions can cause the com-
puter to follow a varied path through the program.
The routine to be executed depends on the result of a
previous comparison or a test of indicators that have
been set by a zero balance, an error condition, and
o on.

Another method of varying the program is by chang-
ing or modifying the operation part of the instructions
themselves. Instruction modification, for example, can
be used to set up a program switch that can cause the
machine to take one of two alternate paths. The switch
is turned on or off by instruction. The use of the
switch is shown in Figure 117.

Figure 117. Program switch

Assume that two files (data sets) are being read.
They are in sequence by a common identifying field,
such as part number, account number, or employee
number. One file is a master file; the second is a trans-
action file that represents adjustments to the master.
Three conditions may be encountered in applying the
transactions to the corresponding master file (data
set):

1. One or more transactions may match a single

master record.

2. There may be no transactions for a master record.

3. There may be transactions that do not match a

master — these are errors or new additions.

It is necessary to process the two files (data sets) in
step; that is, each transaction record must be com-
pared against a corresponding master record, if there
is one. If several transactions apply to the same master
record, the transaction file (data set) must continue
reading without reading a new master record. Con-
versely, if a master record is read in without a cor-
responding transaction, this record is written out
unchanged, and the following master is read in. The
reading and writing of master records continue until
a matching transaction is found.

Kith



The flowchart in Figure 117 shows that one master
record is read in first. A switch instruction is inserted
between the reading of the master and the transaction.
As operations begin, this switch is turned off, allowing
one transaction to be read in. The identifying field of
the transaction is compared against the master. If it is
equal, the master is adjusted, and a second transaction
is read in. If this transaction is not to be applied
against the master (which is still in storage), it should
be high when compared. The previously adjusted mas-
ter is then written out, and the switch is turned on. A
new master is then placed in storage, but because the
switch is on, a transaction is not read; instead, the
machine transfers directly to the compare instruction.
The switch is turned off each time this happens. Op-
eration continues with comparison for each new record
placed in storage. If a transaction is low, it is written
out on a separate output unit, and a new transaction
is then read in.

The switch, when on, has an operation part specify-
ing an unconditional transfer. The address part is the
location of the compare instruction. To turn the switch
off, the operation part is changed to no operation. In
this case, the machine ignores the instruction and
proceeds to the following instruction: read a trans-
action.

Address Modification

The address portion of instructions may also be treated
as data. An instruction address can be modified by
arithmetic, it may be compared against other addresses
or factors, or relocated in storage at will. Address
modification serves two purposes:

1. The total number of instructions in a program
may be reduced, conserving storage capacity for
data or other factors. One instruction, or a single
series of instructions, can serve to address var-
iable locations in storage.

2. A basic flow of work controlled by the program
can serve as a pattern of procedure that can
change as required by the entry data, the result
of calculation, various error conditions, end-of-
file detection, and so on.

For example, the address portion of an instruction
that gets information from a table may be modified
by the value of a character in a register (useful proce-
dure for handling character translation tables) or by
the value of a terminal line number (essential in set-
ting up correct conditions for input for a given line).
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Indexing

In many computers, the address portion of an in-
struction can be modified by adding or subtracting
variable quantities contained in one or more special
purpose counters. The counter may be called an index
register when it is set aside specifically for this pur-
pose, or it may be a predetermined location in core
storage called an index word. A computer may have
several index registers or a number of storage loca-
tions for index words. Both the index register and the
index word perform identical functions; however, the
word is usually more accessible to the program and,
consequently, offers more flexibility in its use.

Computers with an indexing feature use an ex-
panded instruction format that allows a particular reg-
ister or word to be specified as a part of the instruc-
tion operand.

Assume that 50 quantities are placed in ascending
word positions of storage from locations 1001 to 1050
inclusive and that these quantities are to be added to
the contents of a register. Without indexing or ad-
dress modification, it is necessary to repeat an add in-
struction 50 times with the address of each instruction
incremented by 1, as ADD 1001, ADD 1002, ADD
1003, and so on.

With indexing, the add instruction can be written as
ADD 1051, with the address decremented by an index
register containing the quantity 50. The address re-
mains 1051, but the computer calculates an effective
address of 1051 minus 50, or 1001. When the add in-
struction is executed, the contents of the index regis-
ter are also decremented by 1, leaving a remainder of
49. When the same add instruction is reexecuted and
is again decremented by the contents of the same
index register, the effective address is 1051 minus 49,
or 1002. If a program loop is formed to repeat this
process, the effective address of the add instruction
is stepped up 1 each time it is executed (as the index
register is stepped down). When the index register
equals 0, all 50 quantities will have been added, and
the loop is terminated. The computer has consequently
performed 50 operations using the same instructions.

Figure 118 is a flow diagram of the index loop. The
first instruction places the quantity 50 in index reg-
ister 4. An add instruction, with an address 1051, also
specifies as part of its operand a designation that the
given address is to be modified by the quantity con-
tained in index register 4.
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Figure 118. Index loop

The next instruction is branch on' index, which
means: reduce the contents of the index register by 1;
if the contents of the register are greater than zero,
branch to repeat the add instruction; if the contents
of the index register equal zero, continue to the next
instruction in the program.

The indexing feature greatly simplifies program-
ming of repetitious calculations or other operations
and reduces the required number of instructions.
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Figure 119. Indirect address

Indirect Addresses

All instruction addresses discussed in preceding illus-
trations are classified as direct — that is, they refer
directly to the location of data or other instructions in
storage, they select a machine component, or they
specify the type of control to be exercised.

Addresses may also be indirect. Such an address can
refer only to a storage location that contains another
address. The second address, in turn, refers to the
location of data, a machine component, or a control
function.

Indirect addressing is particularly useful in perform-
ing address modification. For example, in a program
it may be necessary to refer a number of instructions
to a value that changes during the program run. With-
out indirect addressing, a number of modification in-
structions would be needed.

However, if the instructions are indirectly addressed
to one core storage location, that location can contain
a single address: the address of the values being used
by the program. Therefore, to change or to modify
all instruction addresses, it is necessary only to modify
the single effective address to which the instructions
refer (Figure 119). Any number of indirect addresses
throughout a program may refer to a single effective
address. In Figure 119, each indirectly addressed in-
struction (SEL 4069) would bring in the contents of
core location 200 instead of location 4069.

Effective Address

in Memory

o

<

79



PROGRAM B

Programs
on Disk Storage
Link to A \
A
PROGRAMC
R,

Y

Link to A

Figure 120. Modular programs with linking

Linking
Up to now, we have discussed conditional branches
(transfers) and, most recently, have introduced the
principle of indirect addressing. In more modern com-
puters, it is usually possible to “link”, with one in-
struction, to a subroutine so that the program can
come back to its point of departure from the main
program after finishing with the subroutine, and not
have to store, unload, reload, and perform other house-
keeping jobs. By using indirect addressing in the link-
ing procedure, a programmer can independently write
many subroutines; the link instruction then causes the
computer to insert the desired effective return address
in the appropriate instruction of the subroutine each
time the subroutine is entered. We might imagine each
of these subroutines as a data set (comparable to a
book in a library with disk storage acting as a revolv-
ing bookcase, Figure 120). The exact linking method
differs from computer to computer: a simplified pro-
cedure is outlined below.

Suppose that many different types of reports are to

PROGRAM D

Link to A

PROGRAME

Y

Link to A

be printed at a remote IBM 1050 terminal and that the
computer is also polling other remote terminals for
input. Assume also that as soon as the internal process-
ing of the information for each of these types of out-
put reports is completed, the information is stored on
disk files in standard BCD format. Each time a mes-
sage is taken from a disk file, it must be translated
into a slightly different 1050 BCD code format. The
program sequence might be:
INSTRUCTION NUMBER

1000 Link to: Read message 1 from disk

1001  Link to: 1050 translation routine

1002 Link to: Process input from line 1, if any

1003 Link to: Write message 1 to 1050 on line 2

1004 Link to: Process input from line 3, if any

1005 Link to: Read message 2 from disk

1006 Link to: 1050 translation routine

1007 Link to: Process input from line 4, if any

1008 Link to: Write message 2 to 1050 on line 2



In this case, the first time the program links to the
1050 translation routine, either the programmer puts
the address 1002 as the return address or the com-
puter does it automatically for him. The second time,
the return address is 1007. In step 1002, the program
links to a routine to test for a certain condition. This
means that the subroutine ends with another sub-
routine. If there is no input from line 1, as the result
of some indicator being tested, the program branches
to pick up the indirect address (stored previously by
either the programmer’s program or the computer).
If there is input from line 1, the last instruction of the
subroutine will have to have the indirect address that
points the way back to 1003.

Factors in today’s computers that make this type of
programming indispensable are internal interrupt sys-
tems that permit processing to continue until some
type of input/output activity is ready to start, or that
permit a second program to be processed while a first
one is waiting for an error condition to be rectified or
an I/O operation to take place, and external interrupt
systems that permit teleprocessing interrupts from
remote terminals. _

It is easy to see, from the simplified programming
example described above, and from Figure 120, that
programs that are subject to interrupts must consist
of short subroutines with a hierarchy of linking, and,
if the computer itself does not insert the return address
in the “linked to” subroutine, the programs must build
tables of indirect addresses.

Depending upon the design of the computer, more
or less of this linking procedure can be done automat-
ically. The programmer must store the subroutines and
call for them when the computer does not do it
automatically.

Interrupts that can occur as the result of a normal
anticipated computer function, such as an interval
timer timing out or the completion of an 1/O opera-
tion, can cause an automatic link to an address that is
in a fixed location in main storage. Other types of links
that cannot be anticipated by machine design require

that the program itself do the linking and maintenance
of the indirect addresses.

Chaining

Chaining has several possible connotations in present-
day IBM computers. In general purpose computers,
such as System/360, chaining refers to I/O channel
program-linking of commands or data addresses as
“command chaining” or “data chaining”. Linking de-
scribed a system for keeping track of the return ad-
dresses at the end of a program subroutine; chaining,
on the other hand, is a similar technique of program-
ming for a “subroutine” of input/output channel com-
mands to be carried out, independently of CPU
activity. This can take place in a computer system
that permits the programmer to include, as part of
one command, the address of the next command that
the channel is to execute when it finishes its current
input/output operation. The next command may be
either to start a different input/output operation or to
transfer data to or from a different location in main
storage.

Another concept of chaining is one that exists in
computers designed especially for communication con-
trol. Here, chaining is a system of automatic block
allocation, whereby incoming data from each line is
automatically stored wherever main storage space is
available, with the computer automatically inserting
the address of each new block assigned to a message in
the last two characters of the previously assigned
block, wherever it may be. On output messages, chain-
ing is not quite so automatic. The program inserts the
address of each new block (of 32 characters) in the
last two characters of the previous block. This type of
chaining eliminates the need for allocating ahead of
time a static amount of storage space for each line,
space that may either be insufficient or go to waste
because of inactivity. Chaining, in this sense, is an
efficient form of data buffering, discussed earlier un-
der “Input/Output Devices”.
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Programming Languages

The capability of computers is expanding at a fan-
tastic rate, and the technology of utilization and con-
trol is advancing at an equal pace. These improvements
in techniques are as vitally important as the design of
the data processing system itself. To a large extent,
the future of computers depends not only on increases
in speed, logical ability, and storage capacity, but also
on the efficient use of these facilities as they are made
available.

Programming languages have been developed by
IBM to meet both present and future requirements of
computer application.

Program Preparation

A computer program represents much more than a
set of detailed instructions. It is the outcome of a
programmer’s applied knowledge of the problem and
the operation of the computer system.

Problem definition, analysis, and program flow-
charting (see preceding section) are the first steps in
program preparation. They are usually carried out in-
dependently of the computer and the programming
system.

Some or all of the following must be considered to
prepare even the simplest program (without the aid
of preprogrammed input/output and monitoring sup-
port, which will be discussed later):

1. Allocation of storage locations to data, instruc-

tions, and related information.

2. Conversion of original data to an input medium.

3. Availability of reference data, such as tables, files,
or constant factors.

4. Requirements for accuracy, and methods of
checking and auditing.

5. Ability to restart the system in case of unsched-
uled ‘interruptions or error conditions.

6. Automatic monitoring of the system to ascertain
that the required input and output devices are
connected and available for operation.

7. Housekeeping procedures that preset indicators,
switches, and registers; that type operator mes-
sages; and that check file labels.

8. Format of output data with provisions, if re-
quired, for later conversion to cards, printed re-
ports, or displayed reports,

9. Availability of program routines that have bheen
used and tested in other procedures and that may
be used to advantage in the current procedure.
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10. Conversion from the decimal number system to
binary and from binary to decimal, plus what-
ever other conversions are necessary to the in-
ternal numbering system of the computer and
codes used in input and output.

11. Editing of data with provision to record excep-
tions that cannot be processed.

Machine Coding

Figure 121 shows the basic relationship between the
computer and the programmer when the program is
written in actual machine coding. The problem is
first analyzed in terms of operations that the computer
can perform. The program is then written in machine
coding by the programmer, who supplies tables,
formulas, codes, or other reference material necessary
for the specific application.

The problem then becomes input data, and the com-
puter — by calculation or other operations — produces
useful output.

A number of difficulties arise when the program is
written in actual machine coding:

1. All instructions must be coded in machine lan-
guage. With some computers (such as the IBM
S/360, which uses binary representation in fixed
words), this method of programming becomes
especially impractical.

2. Instructions must be written in the exact se-
quence in which they are to be executed by the
computer. If one or more instructions are omitted
by error, all succeeding instructions must be
relocated in storage to make room for insertions,
or some branching technique must be used to
incorporate the new instructions. This clerical
program accounting for all storage areas must
be carried on entirely by the programmer.

3. The full burden of logic and program organiza-
tion is placed directly on the programmer.

4. Previous experience — tested programs that might
be used in part of the procedure — is difficult to
work into the new program. Such programs must
be linked to the new program by additional hand-
written instructions.

5. The programmer must understand the computer
in detail. He must know the location of each in-
dicator or register, and he must program their
functions entirely.
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Figure 121, Direct conversion of problem to machine program

Types of Programming Languages

Many of the difficulties and inconveniences of writing
programs directly in machine coding can be eliminated
or simplified by the more advanced systems of pro-
gram writing. The computer is used to prepare the
programs and eliminate the need for direct machine
coding.

A computer can be programmed to recognize in-
structions expressed or written in problem definition
language and to translate those expressions into its
internal machine language. This has led to the devel-
opment of a number of programming languages that
are easier to use and to understand than the language
of the machine.

Symbolic Language
Symbolic languages permit the programmer to write
convenient equivalents of machine instructions using
symbols (called mnemonics) to represent them. Sym-
bolic instruction representations include the follow-
ing: A for add, S for subtract, D for divide, ST for
store, B for branch, and so on. The computer, acting
under control of previously written machine language
programs, translates these symbolic instructions into
equivalent machine instructions, which then can be
used in solving the actual problem.

The first languages resulted in a one-for-one trans-
lation. That is, each instruction written in the pro-
gramming language was translated into a single

machine language instruction. For example:
A REG1,184

where REGI is one of the 16 general purpose registers
in S/360, would produce the IBM S/360 machine
language instruction:

01011010000100000000000010111000

Later, “macro instructions” were developed. That
is, single programmer language instructions could be
used to produce a whole series of machine instructions.
This development greatly increased the power of pro-
gramming languages. The art of programming has
progressed to a point where it is possible to give di-
rections to a computer by writing statements and
sentences in an English-like language that can be
understood by both the computer and the programmer.

The translation feature of the machine language
program is perhaps the most important feature, but
not the only one. The computer instructions needed
to produce a given result must be executed in a given
sequence. If an addition is to be performed, one of the
values involved must be in the accumulator before
the add instruction itself is executed. This is normally
accomplished with an operation called L, “Load”.
After this operation is executed, the add operation may
be executed. The two-instruction sequence is shown
in both a machine language and a symbolic language
in Figure 122,

Each final machine language instruction must be
assigned a particular location in core storage. For ex-
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Machine Symbolic
01011000000 1000000000001 10000000 L REG1, 384
0101 10100001000000000001 10001000 A REG1, 392

Figure 122. Machine and symbolic codes

ample, if the L instruction is to be assigned a location
of 1000 (its precise location in core storage), and the
add instruction is to immediately follow it, the location
of the add instruction must be 1004 (since the load
instruction is a four-byte instruction). Therefore, the
location of each instruction must be known precisely.
It is, in effect, the “name” of the instruction. If an ad-
ditional instruction is to be inserted in a program of
many instructions, every instruction from the point of
insertion must have its previously assigned location
changed. Since most programs undergo changing or
updating, instruction location assignment becomes a
tedious but necessary part of programming. The solu-
tion, of course, is to have the translating program do
the actual assignment of instruction locations in ad-
dition to its translating function. The programmer
need simply tell the translating program the desired lo-
cation of the first instruction, and succeeding instruc-
tions are assigned sequentially ascending locations.

The advantage of expressing a problem in symbolic
language over machine language should now be evi-
dent. This symbolism may be carried one step further
by using symbolic data addresses as well as symbolic
operation codes. The translating program can then be
designed to translate and assign these symbols to
actual core storage locations. Using the same instruc-
tions as before, assume that the two values to be added
are expressed as values A and B. Of course, in both
methods the values must have been previously placed
in core storage, but the problem can now be stated
as in Figure 123.

Instruction
Operation Part Address Part
L REG1, A
A REG1,8B

Figure 123. Symbolic operations and addresses

If we now were to tell the translating/assigning
program that we want the first instruction placed at
core storage location 1000, the program shown in
Figure 124 would result. (For better understanding,
the program is expressed with symbolic operation
codes and decimal addresses and locations, instead of
machine language).
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Instruction laistruction
Location
Operation Part Address Part
1000 L REG1, 4000
1004 A REG1, 4004
4000 Vaiue of A
4004 Value of B

Figure 124. Assigned addresses and locations

The translating/assigning program is called a “trans-
lator or assembler”. In normal operation, the translator
is loaded into the computer system’s core storage.
Next, the instructions (prepared by the programmer
to accomplish a particular job, as coded in his lan-
guage) are entered into the computer. The computer
then translates the programmer’s instructions into ma-
chine language instructions, which use the order and
logic set up by the programmer. The translated ma-
chine instructions are placed in core storage and form
the actual program.

Language Translation

A programming language can be thought of in two
parts: (1) the language itself, with associated rules of
grammar, and (2) a machine language program (the
translator), whose main function is to translate the
language of the programmer into machine language.

The input to a translator is called the source pro-
gram. This is written by the programmer in the
language of the programming system (processor lan-
guage), and states the requirements of the problem
and the method of solution. Before the programmer
writes his source program, he must have completely
analyzed and defined the problem.

The output from the processor is the object program,
the translation of the source program from the pro-
grammer’s language to the language of the computer
system on which the program will be used.

In some systems the object program may be exe-
cuted. In others, the object program is not in execu-
table format but must be processed by a program
called the Linkage Editor which will produce an
executable program. Subroutines (standard programs
used with many problems), together with rate tables
and other constant factors, may also be required with-
in the computer to support the execution of the prob-
lem. The input or data source must be made available
before execution can begin.



After the problem is executed (solved) by the com-
puter, the result (output) may be recorded on mag-
netic tape or disk for later offline printing. Results also
may be printed directly from the computer.

A proven object program may be used time after
time, with varying problem data, to produce periodic
results (such as production type programs of payroll
or inventory) or to produce different results to assist
the designer seeking an optimum design (such as the
best* wing airfoil or the most efficient placement of
steam pipes within a boiler), considering all variables
for each application.

Machine-Oriented Programming Languages

In a machine-oriented programming language, the pro-
grammer uses symbolic codes or names to designate
operations that the computer is to perform. Symbols
are also used to designate the location in main stor-
age of data used with the operations. The translator
then assembles the symbolic codes and translates them
into machine language instructions with actual ma-
chine storage locations.

The System/360 Assembler Language is an example
of a machine-oriented language. The programmer uses
coding sheets (Figure 125) to write each instruction
that the computer must perform. Each line of coding
will be punched into one card. The vertical columns
on the form correspond to card columns.

Space is provided on the form for program identifi-
cation and instructions to keypunch operators. None
of this information is punched into a card.

The body of the form is composed of two fields:
the statement field (columns 1 through 71), and the
identification-sequence field ( columns 73 through 80).

Statements consist of from one to four entries in the
statement field. From left to right, they are: name
(eight characters), operation (five characters), op-
erand and/or comments (56 characters).

The name entry is a symbol created by the pro-
grammer to identify a statement. A name entry is
optional. It must consist of eight characters or fewer,
and be entered with the first character appearing in
column 1. No blanks may appear in the symbol.

The operation entry is the mnemonic operation code
specifying the machine operation or assembler func-
tions desired. An operation entry is mandatory. If there
is no name entry, the operation entry may be placed
anywhere to the right of column 1; if there is a name
entry, at least one blank column must separate name
from operation. (The same “free-form” rules apply to
the other entries — that is, at least one blank must
separate them, and they must be in the order described
above, but otherwise they are not restricted in loca-
tion.) To be able to see and comprehend easily what
there is in the way of a program, it is best to follow
the field column designations on the coding sheet and
start the operation in column 10.

IBM 1BM Systam/360 Assembler Coding Form el
[Frocsan " Teeme Joee [ T T T T [ [ [re o
[rossumwes [oer e ) R T O it
e e s o « N = w . . T . B 1L =
TITLE ") LLUSTRATUVE PIROGRAM’ 1T { ‘
PROGA STARTI ¢ 11
BEGIN BALR | 111 &
LS ING ¥, 14
L e}, DATA LOAD REGISITER
A 2, con ADD 4
SLA 2,4 THIS HAS EIFFECT C@F MULTIPLYING BY
3 2, DATATY NOTE RELATIIVE ADDPRESSING
ST 2, RESuLT
L 6, BIN1
A ¢, BINE
cV D 6, DEC CONVERT To| DECtHAL
EOY ||, END OF TOB| MACRO
DATA DC F'es'
DC F'1s’
CON DC F'10'
RESULT | DS F
BIN pe Flie'
BIN2 D F'7g!
DEC DS D
END EGQIN

Figure 125. A program to illustrate assembler language concepts
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Operand entries are the coding specifying and de-
scribing data to be acted upon by the instruction, by
indicating such things as storage locations, storage
area lengths, or types of data. Depending on the needs
of the instruction, one or more operands may be writ-
ten. The operands must be separated by commas, and
no blanks may occur between the operands and the
commas that separate them. Operands of machine in-
structions generally represent such things as storage
locations, general registers, immediate data, or con-
stant values. Operands of assembler instructions pro-
vide the information needed by the assembler program
to perform the designated operation.

Comments entries are descriptive items of informa-
tion about the program, usually something to remind
the programmer of (or direct another programmer to)
the purpose of the program step (or related sequence
of steps). An entire line may be used for a comment
by placing an asterisk in column 1. Extensive com-
ments may be written by placing an asterisk at the
beginning of each line.

There are many more conventions to the System/360
assembler language, but knowing this much about the
makeup of the four types of entries should provide a
basic understanding of the principles of coding.

Macro Instructions

The next step to increasing the effectiveness of a
machine oriented language involves enlarging the
functions of the translator.

The macro language provides the programmer with
a convenient way to write a definition that can be
used to generate a desired sequence of assembler
language statements. Most macros are supplied by
IBM. However, any user may develop his own to
satisfy a special requirement.

The definition is written only once, and a single
statement, the macro instruction statement, is written
each time a programmer wants to generate the desired
sequence of assembler language statements. This fa-
cility simplifies the coding of programs, reduces the
chance of committing programming errors, and ensures
that standard sequences of assembler language state-
ments are used to accomplish desired functions.

The Macro Instruction Statement

A macro instruction statement (usually referred to
simply as macro instruction) is a source program state-
ment that can produce a variable number of machine
instructions. Macros, just like assembler langnage state-
ments, are source program. statements that are proc-
essed by the assembler.
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The assembler generates a sequence of assembler
language statements for each occurrence of the same
macro instruction. The generated statements are then
processed like any other assembler language statement.

The Macro Definition

Before a macro instruction can be assembled, a macro
definition must be available to the assembler. A macro
definition is a set of statements that provide the as-
sembler with (1) the mnemonic operation code and
the format of the macro instruction, and (2) the se-
quence of statements that the assembler generates
when the macro instruction appears in the source
program.

The Macro Library

The same macro definition may be made available to
more than one source program by placing the macro
definition in the macro library. The macro library
is a collection of macro definitions that can be used by
all the assembler language programs in an installation.

Varying the Generated Statements

Each time a macro instruction appears in the source
program, it is replaced by the same sequence of
assembler language statements, unless one or more
conditional assembly instructions appear in the macro
definition. Conditional assembly instructions are used
to vary the number and format of the generated state-
ment.

Each problem-oriented language has its own method
of writing macros. Some seem to be almost like writ-
ing plain English sentences. Problem-oriented lan-
guages include COBOL, FORTRAN, and PL/I, a
new multipurpose programming language. They are
called “problem-oriented” because they are tailored to
the problem rather than to any particular machine.

COBOL System

With the COBOL (Common Business-Oriented Lan-
guage) system the translator still must produce a ma-
chine language program before a problem can be
solved. However, the language written by a COBOL
programmer bears little resemblance to machine lan-
guage, and the problem programmer has little direct
concern with the method by which the COBOL lan-
guage program is translated into machine language.

A simple example will best illustrate the basic
principles of the problem-oriented type of program-
ming system. Assume we wish to increase the value
of an item called INCOME by the value of an item
called DIVIDENDS. The COBOL language allows



us to specify the addition by writing the following
sentence:
ADD DIVIDENDS TO INCOME.

Before the COBOL translator can interpret this
sentence, however, it must -be given certain informa-
tion. For example, the programmer will have to write
the names DIVIDENDS and INCOME in a special
part of the program, called the “data division”, where
facts about the data represented by those names
(such as maximum size, how the data is expressed,
etc.) are stated.

When the translator encounters the sentence, it has
access to certain information that will aid it in trans-
lating the sentence. In addition, it will be able to
obtain certain information “built into” the translator
itself. (Note, however, that the exact procedure will
vary from machine to machine and that, in any case,
the problem programmer is not directly concerned
with the details.)

First, the translator examines the word ADD. It
consults a special list of words that have clearly de-
fined meanings in the COBOL language. This list is
a part of the translator. If ADD is one of these words,
the translator interprets it to mean that it must insert
into the object program the machine instruction (or
instructions) necessary to perform an addition.

The translator then examines the word DIVI-
DENDS. Since it can obtain certain information about
DIVIDENDS, it will know where and how this in-
formation is to be stored in the computer, and it will
insert into the object program the instructions needed
to locate and obtain the data.

When the translator encounters the word TO, it
again consults the special word list. In this case, it
finds that TO directs it to the value of INCOME,
which is to be increased as a result of the addition.

The translator must now examine the word IN-
COME. Again it has access to certain information
about this word, and, as a result, it is able to place
in the object program the instructions necessary in lo-
cating and using INCOME data.

We have indicated that the programmer placed a
period (.) after the word INCOME, just as he would
in terminating an English language sentence. The ef-
fect of the period on the COBOL translator is quite
similar. It tells the translator that is has reached the
last word to which the verb ADD applies.

The previously described steps are performed by
the translator in creating the object program. They
might not always be performed in exactly this way
or in the same sequence, because machines vary and
because each translator is adapted to a particular ma-
chine. However, regardless of the machine, the same
COBOL language sentence produces machine instruc-

tions that cause the object program to add together
the values DIVIDENDS and INCOME.

FORTRAN SYSTEM

The FORTRAN (Formula Translation) system is very
similar in concept to the COBOL system. One of the
main differences is in the language the programmer
uses to express his source program. Where business
English is used by COBOL, mathematical language
is used with FORTRAN. The effect of the COBOL
sentence
ADD DIVIDENDS TO INCOME.
could be achieved by the FORTRAN statement
INCOME = DIVIDENDS + INCOME
However, FORTRAN translators for some machines
might insist that the words be abbreviated to some-
thing like:
INCO = DIV -+ INCO
This would depend on the individual machine
FORTRAN translator. The statement, in effect, tells
the transiator to insert the necessary instructions into
the object program to make the INCOME data loca-
tion equal to the DIVIDEND data added to the
present INCOME data. Note that the computer is not
merely instructed to find the value of INCOME, but
is also told where to put the result of the addition
after it is performed. If the original INCOME field
(in core storage) contained 10000, and the DIVI-
DEND field contained 15, the original INCOME field
would be replaced by 10015 after the operation had
been executed.
If this result is not desired, the programmer could
change the statement to:
INCOMEL = DIVIDENDS + INCOME
With this change, a new INCOME]1 data field would
be generated in core storage, the result of the addition
would be placed there, and the original INCOME
field would remain unchanged.

PL/I System

The System/360 is able to handle problems from both
the scientific and the business fields with equal fa-
cility. Neither FORTRAN (science-oriented) nor
COBOL (business-oriented) allow access to the full
capability of such a system as System/360.

Also, with the development of more and more deci-
sion-making, forecasting, and teleprocessing uses for
computers, the business programmer requires frequent
changes to his programs and a wider scope of compu-
tations. The scientific programmer, on the other hand,
is faced with the task of handling problems with
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masses of data, with a wider variety of input/output
requirements. The differences between scientific and
business programming are thus becoming less distinct.
PL/TI has been developed to meet the need for a
broad-base language that may be used for both busi-
ness and scientific applications. Some general char-
acteristics and features of the language are sum-
marized in the example in Figures 126 and 127.

In PL/I as in FORTRAN, addition (or other arith-
metic operations) can be specified by the standard
operators -+, -, /, *, and **. For example, INCOME—
DIVIDENDS 4 INCOME; PL/I differs from FOR-
TRAN only in the presence of the semicolon (;)

which ends a statement, and in that this statement
can be written in free form, as found convenient by
the programmer.

Addition can also be indicated by a statement which
looks more like COBOL, such as:

SUM=ADD (DIVIDENDS, INCOME, 8, 2);.
This will put the result of adding DIVIDENDS to
INCOME into an address named SUM which has
an 8-position field, including two positions to the
right of the decimal point.

ADD, DIVIDE, MUTIPLY, ATAN,COMPLEX,
ERF, INDEX, MAX, MIN, ROUND, SUM, TAN, are
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Figure 126. Flowchart of part of mortgage processing
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Figure 127. Coding of Figure 126 in PL/1



a few of the built-in functions available to the PL/I
programmer to operate on individual data items, on
arrays (vectors or matrices), or on structures (tables)
of data items. The keywords of PL/I are not reserved
words, and program text may be written in free form.
For example, the program (called PROCEDURE in
PL/I) on lines 1-8 in Figure 127 is the same as that
on lines 9-12.

Keywords such as PAGE, SKIP, LINE, COLUMN,
PAGE SIZE, LINE SIZE, make it possible to specify
the format of printed output in as much detail as
desired.

Report Program Generator

The Report Program Generator (RPG) language is a
problem-oriented language. It is a very simple way of
adapting an application to a computer. The file defini-
tion and input/output control considerations normally
required of the programmer by other programming
languages are reduced to the filling out of simplified
control forms.

The input format specifications form is used to:

1. Specify the file or files to be read into the system.

2. Identify the different types of records contained

in each file.

3. Describe the location of the data fields in each

record.

The output format specifications form is used to:

1. Specify the kind of output files to be produced,

printed reports, summary cards, etc.

2. Specify the location of the data fields of the re-

ports or records.

3. Specify any headings or totals for printed reports.

4, Specify any editing or zero suppression needed

for the printed reports or records.

The file description form provides additional infor-
mation regarding the input/output files, such as speci-
fying the input/output units used by the program and
other features associated with input/output control.

The calculations form is the heart of the logic of the
program. For calculation, RPG is a three-address lan-
guage.

We can perform a mathematical operation (like
add) on two addresses and store the result in a third
address, all in the same statement.

The calculations form is divided into three catego-
ries, as follows:

1. Time to do the calculations.

2. Kind of calculations to be performed.

3. Tests to be made on the results.

Depending upon which System/360 programming
system is used, there are 22-27 different operation
codes. They include add, subtract, multiply, divide,

table lookup, compare, move, branch, test zone, exit
to a subroutine, etc.

Program Checkout

After successful translation of a source program, and
then linkage editing in some systems, the next step
in program preparation is to check the resultant ma-
chine language program by running it with test data.
This is done to make sure that the program does not
have logical errors and that it is capable of producing
a right answer when using test data. Two results are
possible. The first — and, hopefully, the only — result
is that the problem (for which the program was writ-
ten) can now be executed with real data. The second
result — the test run does not function properly —
may occur because of many things. The most frequent
cause is that the source program has been improperly
or incompletely stated.

Mistakes by the programmer are more difficult to
avoid than might be expected. It is, in fact, a rare pro-
gram that works correctly the first time it is tried with
test data. In most cases, several test runs must be made
before all mistakes are found and corrected. The
translator itself finds most of the obvious mistakes
during the translation run. Such things as calling for
a storage location by a name when that name has not
been defined, attempting to perform fixed-point arith-
metic on floating-point data (or the reverse), lack of
defined alternative paths on testing operations, and
card-punching errors of all kinds are detected and
noted during the translation run.

Computer mistakes are rare and usually obvious.
Built-in detection circuits will normally reflect the
kind of mistake the computer has made by turning on
an indicator and stopping the computer. Detection and
classification of the mistakes a programmer can make
are, however, many times more complex.

Testing Techniques

As previously stated, a computer program may be ex-
pressed in machine, symbolic, or one of the problem-
oriented languages, such as PL/I, FORTRAN, CO-
BOL, or RPG. )

Many techniques exist to assist the programmer dur-
ing the checkout phase of his work. Each has its own
advantages and disadvantages. The one to be used for
a particular problem will depend upon the program-
mer’s thoughts as to what area of his program is in
error and how extensive the error is. Techniques that
involve extensive use of switches on the operator’s
console are very wasteful of computer time and are
not recommended. Two very useful techniques are
storage printout and tracing.
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Storage Printout

This type of utility program (routine) is helpful be-
cause practically the entire contents of storage, plus
the contents of working computer registers and the
condition of indicators and switches, may be presented
in printed form. Normally, the register contents and
the condition of indicators and switches are printed
first. The contents of storage are then printed. Each
line of printing representing storage begins with the
starting location of that line expressed in octal or hexa-
decimal format. The print (dump) routine sometimes
has provisions for dumping one or more selected
blocks of storage instead of all of it.

Tracing

If visually checking a storage printout fails to reveal
the program difficulty, a technique called tracing may
be used. The trace technique usually involves an inter-
pretive routine and, therefore, executes a number of
instructions for each program instruction being traced.
The printout received while tracing normally includes
the location of the instruction being executed, the in-
struction being executed, and the contents of the work-
ing registers after the instruction has been executed.
The printing of each instruction execution in a pro-
gram would result in excessive machine time and
should be used only when all other methods fail to re-
veal the program trouble.

The basic tracing technique may be revised so that
only the contents of selected storage locations are
printed when program execution reaches a specified
point in the program. With this variation, a “snapshot”
is obtained of a particular part of the program under
particular conditions. For example, the trace and re-
sultant printout may be specified to occur only when
the program executes a transfer instruction. A whole
series of snapshots then result showing the execution
path through the program. Only the instructions that
altered the normal execution path are recorded to
show the exception paths the program has executed.

Summary

Successful program checkout depends on many things.
The time consumed by this necessary but frustrating
phase of programming may be lessened if certain basic
rules are followed:

1. Document the program wherever possible, to en-
able anyone to know what a given program step
is intended to accomplish.

2. Check the source program cards against the doc-
umentation before an assembly and test run is
attempted. This point cannot be overemphasized.

3. Leave space in the program for insertion of test-
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ing or printing routines that may be used in the
test run of the program. Program space is useful
also if changes have to be made.

4. Be aware of the checkout techniques available,
and know how best to use them; avoid becoming
a slave to one technique, excluding all others.

5. Be absolutely sure that the program does what it
is supposed to do and nothing more.

6. Be aware that a successful test run does not en-
sure that the program will run to completion with
actual data. Actual data may be too large for the
storage area assigned to it, too slow to be prop-
erly processed by the program, or not in the
planned data format.

Input/Output Control Systems

While macro instructions save much labor, the prob-
lem of organizing input/output operations in a com-
plex application could still involve considerable work
on the part of even the most expert programmer. From
a standpoint of simplicity, it is far easier to work with
one record at a time—that is, read a record, process the
record, and then write the resulting record—or to work
with one scientific problem at a time. However, effi-
cient use of tape or disk systems requires that records
be grouped both on input and on output and that the
processing of records be scheduled to best use the
available computing time.

To solve this and other problems, the concept of
input/output control systems (IOCS) was developed.
Basically, adding IOCS to a programming language
makes it possible for the programmer to think of his
problem as a simple sequential operation. Given a de-
scription of how the input and output files are organ-
ized, the processor associated with the IOCS takes care
of all the machine language coding necessary to read
and write tape, card, or disk storage records.

The IOCS statements, which give the programmer
the capability for input/output programming, are part
of the total language for an individual system. An
IOCS enables the programmer to divorce himself al-
most completely from the physical requirements of
the data, the recording media on which the data is
written, and the input/output devices on which the
media are mounted; it permits him to concentrate most
of his efforts upon the processing of the data.

With disk storage attached to data processing sys-
tems, additional complexities of input/output pro-
gramming have been introduced. Because of the direct
access nature of these devices, proper scheduling be-
comes even more important and more difficult.

Where a tape IOCS can use the serial nature of tape
files to call in the next block from the tape before it is



requested by the user’s program, this is not always pos-
sible when using a disk. Here, the “next” record of the
file (data set) may be physically located anywhere in
the disk storage, and several “logical” records may

share the same physical disk record. Many techniques

exist for solving this problem. Some are quite simple;
others are very complicated. Several of the latter in-
volve segmenting the user’s program into two or more
subprograms. Each subprogram can process one type
of record or locate the new record of a given type. The
IOCS can enter these subprograms in a more or less
random sequence, depending on which of many rec-
ords being sought on the file is found first. This is actu-
ally a simple form of multiprogramming, where several
different logical programs perform their computation
in a sequence partially dictated by a master scheduling
routine.

Important features found in most of the input/out-
put control systems in use are listed below. No one
IOCS contains all features listed, but all of them use
many of the procedures. Features not in universal use
are included to show the great versatility of these sys-
tems. Input/output control systems have grown past
the point of merely handling the normal input and
output requests, and are becoming an integral part of
the entire operating system for a data processing sys-
tem, in some cases (as in Operating System/360),
handling the manipulation of data internally as well as
to or from the input/output devices.

Input/Output Scheduling

Some computers handle input/output in a serial, syn-
chronous fashion. No computing can be done until an
input/output operation is completed, and, conversely,
no input/output can be done while the central process-
or is engaged in computation. Other computers, how-
ever, achieve simultaneous input/output and comput-
ing operation simply by allowing the central processor
to continue with its operation while the input/output
device locates data or reads data into or out of the
main storage of the system. This simultaneous (asyn-
chronous) input/output for all types of input/output
equipment helps greatly to prevent unnecessary delay
of the central processor while information is being read
into or out of main storage.

An IOCS allows the programmer to easily make use
of the complex asynchronous input/output devices
that permit a modern data processing system to oper-
ate efficiently.

Blocking and Deblocking of Records

High-density tape or disk storage units become rela-
tively inefficient when used to record short blocks of
information. When recording 80 character blocks, for

example, more than three-quarters of the file contains
no useful information; instead, it is made up of end-of-
block gaps. By grouping together or blocking a number
of such short records, all but one of the interblock
gaps can be eliminated. The result is that a given
length of tape contains several times as much informa-
tion as before. Since the tape passes through the tape
unit at a fixed rate, the tape unit now spends more of
its time reading useful information and less time spac-
ing over gaps. The end result is a higher effective
input/output data rate.

Note that the efficiency of the technique is reduced
if the records are not requested often enough to keep
the tape unit in continuous operation. In this case, the
speed of the central processor becomes the limiting
factor, and the program is said to be process-limited.
If the reverse is true, the program is said to be input/
output limited and blocking may be used to decrease
the time required to read an average logical record.

Since input/output units usually require that the en-
tire physical block be read or written once the function
has started (there is no way to stop tape motion in the
middle of a block), it is desirable to collect all records
to be written as one block. Conversely, on input, it is
desirable to unpack or deblock such a physical block
into its many logical records and release them as re-
quested by the processing program.

Standard Error Correction and Unusual Condition
Routines
Many conditions met in performing input/output are
exceptions to the normal case of simply reading or
writing a record. The programmer does not wish to
concern himself with all of these eventualities each
time he makes an I/0 request. For example, he should
not have to perform a test each time a tape file (data
set) is referenced to determine whether the end of the
tape has been reached. Doing so makes the infrequent
end-of-file condition require as much programming,
perhaps, as the normal reading of the record. Many
unusual or exceptional conditions are of a general na-
ture and, as such, can be handled by common routines
within an IOCS.

Listed below are a few of the exceptional conditions
detected or handled by input/output control systems.

Error Correction Procedures

If transfer to or from an input/output device is not
successful the first time it is attempted, certain tech-
niques can be used to try to clear the failure and allow
the program to continue without interruption. Such
standard error correction routines might involve an at-
tempt to erase a record recorded incorrectly on tape
and to rewrite the record correctly. Obviously, if the
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rewrite is successful, additional corrective instructions
need not be used. Only if the repeated erase and re-
write are not successful in clearing the failure, does the
machine operator or the program need to be informed
of the uncorrectable error. Thus, most errors can be
automatically corrected without additional program-
ming being required.

End-of-Reel and End-of-File Procedures

When all data records on a single reel of tape are
processed, the tape is said to be at end-of-reel. If, in
addition, all records of the file, which can consist of
more than one reel, are processed, the file is said to be
at end-of-file. If an end-of-file condition is met, the
processing of that file is complete, and the user’s pro-
gram must be informed of this fact.

Improper Length Record Procedures

If a record is read that, through malfunction or pro-
gramming error, is not of correct length, this condition
may be detected and corrective action taken.

If the error is such that the system cannot continue
processing the current job, automatic transition to the
next job can be initiated, or the system may be stopped
after informing the operator of the nature of the error.
In some cases, it is enough to inform the user’s pro-
gram of the condition and allow it to make the decision
as to how the condition is to be handled.

Tape Labeling

The maintenance of a large library of tapes containing
data costing thousands of dollars to generate imposes
a large responsibility of preserving the integrity of the
data. A careless operator, who inadvertently mounts a
master tape containing valuable data (or removes file
protection from a master reel by putting on a ring)
and allows the tape to be written upon, can cause al-
most complete collapse of the application using this
master tape (writing on tape automatically erases pre-
viously recorded information).

To ensure accurate library maintenance, a technique
of tape labeling has been developed. This technique
consists of recording, as the first information on each
reel, one or more labels containing information that
uniquely identifies the reel and also the information
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on the reel to the user’s program or the IOCS label-
checking routine. By comparing the desired reel and
file identification against the information recorded on
the reel, correct reel mounting can be ensured and file
integrity preserved.

Disk Pack Labeling

Special utility programs or routines for disk labeling
perform necessary labeling operations on the disk
pack. The labels indentify the disk pack and the files
on the pack. In some systems, another program sets
up the track format.

Utility Programs

Utility programs involve certain functions common to
all data processing installations. Two common types
of utility programs are (1) those that tend to the de-
tails of converting a set of data from one recording
medium to another (card to tape, tape to disk, etc.),
and (2) record comparison programs. These and
other utility programs developed by IBM and its cus-
tomers are available as an aid to system operation.
They serve a computer installation much as a book
library serves an educational institution.

Data Libraries

The arrangement of, and access to, the data library is
of paramount importance to any installation’s smooth
operation. Because mounting tapes and maintaining
the library takes manual effort, time, care, and physi-
cal space, the trend, increasingly, is to store the library
on disk packs, the larger disk storage devices, drums,
and data cell drives.

In System/360, the input/output unit has a specific
assigned address that cannot be changed. Within the
input/output units, specific subunits — such as disk
packs, data cells, tape reels, drums, and large disk
access units — also have specific nonchanging ad-
dresses. Each of these subunits is called a volume.

The operating system itself can distribute incoming
programs and other data into the volumes, keeping
track of what is where and what space is available
for new data.
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Operating Systems

An operating system is an integrated set of processing
programs and a control program designed to improve
the total operating effectiveness of a computer. The
operating system is directed by user-prepared control
cards to pass automatically from job to job with a
minimum of delay and operator intervention. Com-
munication with the computer is via the operating
system rather than directly, as was the case with most
previous computers.

With today’s more powerful machines, setup time is
becoming proportionately larger for each job. As a
result, large, expensive computers can sit idle at times
while new work is being loaded. Even during the exe-
cution of a program, many components of the system
may remain idle. Of all the resources available on a
system, only parts of the total system may be required
for a job. The operating system enables the user to
stack jobs for continuous processing, thus reducing
setup time between jobs. The operating system has
the ability to call in any required programs, routines,
or data. Some operating systems have the ability to
schedule jobs and allocate resources more efficiently
by concurrently processing two or more independent
programs (multiprogramming). They can compile
higher-level languages (COBOL, RPG, FORTRAN,
PL/I), organize files, and act as a supervisor for the
entire system. .

In short, the operating system makes possible the
maximum use of a computer.

In System/360, there are four different operating
systems. Determining which is best for any particular
S/360 depends upon the size of the system, the physi-
cal devices supported, and whether certain expanded
functions are required, since features of one operating
system may not necessarily be available in another.
Briefly, the four operating systems are BOS/360 (Basic
Operating System), DOS/360 (Disk Operating Sys-
tem), TOS/360 (Tape Operating System), and OS/360
(Operating System). Some of the similarities and dif-
ferences in their makeup are discussed below.

What is intended is a brief survey of some of the
major reasons for selecting one operating system over
the others. A discussion of all supported devices and
features is far beyond the scope of this manual. Omis-
sion of any particular feature is not meant to indicate
lack of availability of that feature. ,

All four operating systems are composed of two
major sets of programs, which are known as control
programs and processing programs.
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Control programs supervise the execution of the
processing programs, control the location, storage, and
retrieval of data, and schedule jobs for continuous
processing.

Processing programs consist of language translators,
service programs, and user-written problem programs,
all of which the programmer uses to define the work
that the computing system is to perform and to sim-
plify program preparation. :

System users may also include their own service
programs or language translators, which the program-
mer can then use as he would IBM-written programs.
Figure 128 illustrates the DOS/360, TOS/360, and
0S/360 operating systems facilities.

In all four System/360 operating systems, the work
to be done is regarded as a stack of jobs to be exe-
cuted under the management of a control program. A
job may contain one or more job steps, and may be
thought of as a series of logically related programs
that must be executed in a given sequence. Job steps
within a job are always executed in sequence and
never operate concurrently.

Necessary information about each job is punched
into job control cards by the user. These cards are
read by a portion of the control program to instruct
it as to which programs are to be executed, and in
what sequence; they also contain information about
the I/0O device requirements for each job step. The
control cards provide the information necessary to
operate in a stacked job environment.

BOS/360, TOS/360, and DOS/360 Control
Programs

IPL Loader. This program loads the supervisor into
main storage when system operation is initiated. The
IPL loader is loaded from the system residence unit
by dialing its address on the load-unit switches on the
system console and pressing the load key.

Supervisor. This program handles all input/output
operations, interruption conditions, and other control
functions for all problem programs. Part of the super-
visor resides in main storage at all times. Processing
time is divided between the supervisor and the pro-
gram being executed. This is true of user programs as
well as the other IBM-supplied components of the
system.
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Figure 128. Facilities available in three of the System/360 operating systems

The physical IOCS routines of the supervisor handle
the scheduling and supervise the execution of channel
programs. The problem program (or logical IOCS
within the problem program) supplies the channel
programs and issues physical I/O macro instructions
to request their execution.

The supervisor starts the I/0 operation and returns
control to the problem program. When the operation
is completed, the supervisor checks for, and handles,
any device error conditions. Thus, the user’s program
need not contain any I/0 device error routines.

The checkpoint/restart routines of the supervisor
provide a means of recording program status at de-
sired points so that the program can be restarted there
at a later time. The problem program resumes process-

ing after each checkpoint. In response top a CHKPT ~

(checkpoint) macro instruction, the checkpoint routine
writes the problem program, along with other informa-
tion needed to restart the program, onto magnetic

tape. The restart routine can reload the program later
and resume processing at the point of interruption.
The restart program can reposition magnetic tape files
before resuming program execution.

The supervisor transfers control of the system to job
control at the end of each job step, providing transi-
tion between job steps and between jobs.

The storage print routine of the supervisor can pro-
vide a printout of core storage, and all registers, if an
abnormal end-of-job condition occurs.

Some of the supervisor routines are loaded into main
storage during system initialization. These routines are
never overlaid and remain in main storage throughout
execution of a stream of jobs. Other routines of the
supervisor are called into main storage from external
storage (tape or disk) only when their particular
functions are needed. These are called transient rou-
tines. They are loaded into what is called a transient
area, and they overlay any previous routines in the
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area. This allows numerous supervisor functions to be
provided while using a minimum amount of storage.

Job Control. This program runs between jobs and pre-
pares the system for execution of all other programs;
it is loaded by the supervisor whenever it is needed.

Logical IOCS

IBM furnishes a comprehensive set of macro defini-
tions to create, access, and maintain data files. De-
scriptive macro instructions in the user’s program
generate the data and program logic for these files.
(In BOS, the macro instructions must be assembled
immediately preceding the rest of the problem pro-
gram. Thus, they occupy an area of core storage be-
tween the user’s program and the supervisor. )

Each imperative macro instruction issued by the
programmer causes a branch to the proper instruction
(in the generated IOCS logic) for the requested
service.

Logical IOCS does the following:

® Requests physical I/O operations, as necessary,
by issuing the required physical IOCS macro in-
structions. The necessary channel programs are
generated from the descriptive IOCS macro in-
structions.

¢ Supplies logical input records to, or accepts logi-
cal output records from, the problem program.
This includes blocking and deblocking logical
data records (fixed-length or variable-length)
from larger physical blocks. (Logical record re-
fers to the individual unit of a data file; physical
record refers to the block of logical records read
or written as a single string of information.)

e Switches between two 1/0 areas to provide time
for processing while records are being read or
written.

® ‘Handles end-of-file and end-of-volume conditions.

e Constructs and maintains file organization struc-
tures. This includes additions and deletions to
files, and the construction and use of index tables
for processing files.

Label Processing

Disk and tape label-processing capabilities are in-
cluded to provide:

1. Assurance that the correct editions of disk and
tape data files are provided for input and (in the
case of multipack or multireel files) that this in-
put is provided in the correct sequence.

2. Assurance that areas of disk storage or tape reels
designated for output contain no current infor-
mation. If usable, new labels are written for the
output areas or reels.
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The actual label processing is performed by tran-
sient routines assembled as part of the supervisor dur-
ing initial system generation. These routines are loaded
into the transient area of the supervisor and exccuted
in response to macro instructions in the problem pro-
gram. TOS/360 has only tape label-processing rou-
tines, whereas BOS/360 and DOS/360 have both tape
and disk routines.

OS/360 Control Programs

Like BOS/360, TOS/360, and DOS/360, OS/360 has
an IPL loader to initialize the system.

Data Management

This facility handles all IOCS functions relating to
tape, disk, drum, and telecommunication activities. It
can build program libraries and extract programs as
needed. The programmer calls for all data in essen-
tially the same way.
In addition, data management provides:
o Allocation of space on DASD.
® Automatic location of data sets.
® Protection of data sets against such occurrences
as unauthorized access to security files (for ex-
ample, payroll information may require “pass-
words”), an accidental attempt to write over a
file that is to be saved, concurrent updates of the
same record in a multiprogramming environ-
ment, etc.

Job Management

This facility handles the scheduling of jobs to be done
in a stacked job environment. Two types of scheduling
are possible: the sequential scheduler initiates jobs on
a first-in, first-out basis; the priority scheduler initiates
jobs on the basis of user-assigned priorities.

Task Management

This facility controls the operation of the system as
it executes tasks. A job step (program) becomes a
task when its I/O devices have been allocated, and it
is known to the control program as a unit of work to
be done. The task supervisor, responsible for interrupt
handling, program fetching, storage contents manage-
ment, etc., may handle a single task, a fixed number
of tasks, or a variable number of tasks, depending
upon the version of OS/360 being used. If many tasks
are contending for use of the CPU resource, the task
supervisor determines which task is to gain control.



Processing Programs

Each operating system discussed has, in addition to
the control program, many other programs that are,
for the sake of simplicity, classified as processing pro-
grams. To further break down this classification, there
are: language translators, service programs, and user-
written programs.

Language Translators

A language translator is defined as a routine that
accepts statements in a programming language and
produces equivalent statements in machine language.

BOS/360 supports the S/360 Assembler Language,
which includes a complete set of macro instructions.
The S/360 Assembler Language is a machine-oriented
symbolic language used in all models of System/360.

In addition, BOS/360 also includes a Report Pro-
gram Generator (RPG). RPG is a problem-oriented
language designed specifically for report-writing and
file-maintenance applications.

DO0S/360 and TOS/360 have, in addition to the as-
sembler and RPG, COBOL, FORTRAN, and PL/I
language translators.

08/360 has, in addition to all of the above-mentioned
language translators, an ALGOL translator.

The source languages that are provided for System/
360 are upward-compatible. For example, if a user
has a source FORTRAN program written according to
DO0S/360 or TOS/360 specifications, he can use the
same source program with OS/360.

Service Programs

The system service programs for BOS/360, TOS/360,
and DOS/360 include linkage editor, librarian, sort/
merge, utilities and load-system (BOS/360 only).

Linkage Editor

The linkage editor links separately compiled decks,
relocates these decks as required, resolves external ref-
erences, and includes modules from the relocatable
library as necessary.

All programs are edited onto the resident disk
(DOS/360) or a utility tape (TOS/360) by the link-
age editor. These programs can then be permanently
placed in the core image library of the system, re-
quiring only control statements to call them for execu-
tion. Alternately, they can be executed at once and
then overlaid by new programs.

Librarian

This group of programs maintains the libraries and
provides printed and punched output from them.

Three libraries, all residing on tape or disk, are avail-
able:

1. Core Image Library. All programs cataloged in
the system (IBM-supplied and user programs)
are loaded from this library by the system-loader
routine of the supervisor.

2. Source Statement Library (DOS/360, TOS/360).
This library contains IBM-supplied and user-
defined source statement books, such as macro
definitions. A book is an arbitrary collection of
80-byte records that is cataloged under a single
name in the source statement library.

Books are maintained in compressed format on
the resident volume to conserve space and im-
prove their speed of retrieval. Complete books
may be added or deleted from the library (but
not individual records). These books can be
copied, for example, into assembly source pro-
grams or COBOL source programs.

BOS/360 does not have the full source statement
library facilities. Rather, its macro library stores
IBM-supplied and user-defined macro definitions
in resident packs built to provide program as-
sembly capability.

3. Relocatable Library. This library stores object
modules for later linkage into complete programs.

Load-System (BOS/360 only)

This is an independent program that is loaded from
cards. It has its own initial program loader (IPL),
supervisor, and job control programs. The load-pro-
gram builds a resident system from cards. This pro-
gram can be used to build minimum systems for
specialized applications. If two disk drives are avail-
able, the librarian can be used instead of the load-sys-
tem program to build specialized systems.

Sort/Merge Programs BOS, TOS, DOS

The IBM BOS/360, TOS/360, and DOS/360 sort/
merge programs provide the user with the ability to
sort files of random records, or merge multiple files of
sequenced records, into one sequential file. The con-
trol data information can be contained in as many as
twelve fields in each record. The records can be sorted
or merged into ascending or descending sequence.
An individual sequence can be specified for each con-
trol data field. The output sequence for a merge-only
operation must be the same as the input sequence.

The sort/merge program is a set of generalized
modules (in the relocatable library) that must be tai-
lored at execution time to each application. The user
furnishes appropriate parameters on control cards; the
tailored sort/merge program is built in the core image
library; and it is then automatically executed as a se-
quence of overlays from this library.
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BOS/360 and DOS/360 furnish disk sort/merge pro-
grams; both DOS/360 and TOS/360 furnish tape sort/
merge prograims.

0S/360 Sort/ Merge and other Service Programs

The facilities available in OS/360 with respect to
service and other sort/merge programs are basically
the same as in DOS/360. However, they are an ex-
panded set of service programs with far fewer restric-
tions than in DOS/360. For example, the DOS/360
sort/merge programs have extra restrictions as to size
and number of files, whereas OS/360 sort/merge pro-
grams are more liberal in this respect. In addition,
0S/360 sort/merge is faster and more versatile.
0S/360 does not have a librarian per se, as does
DOS/360. However, a set of utilities is available for
maintaining all data sets. In addition, OS/360 allows
the user to supply his own programs or macro instruc-

tions for maintaining data sets. Figure 129 shows pro-
gram stages in DOS/360 and OS/360.

-

Utility Programs

BOS/360 contains eleven file-to-file utility programs:
¢ Tape to tape.
Tape to disk.
Tape to card.
Tape to printer.
Disk to tape.
Disk to disk.
Disk to card.
Disk to printer.
Card to tape.
Card to disk.
Card to printer and/or punch.
The initializing utilities in BOS/360 are:
® Clear disk, which clears as little as one track up
to one disk pack.
¢ Tape compare, which compares two files from
two or more tapes to ensure that the files are
identical.
TOS/360 has the same utilities as BOS/360, with
the exception of those utilities involving disk. DOS/
360 has all of the BOS/360 utilities, plus six addi-
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tional utility programs for the 2321 data cell. The
additional utility programs are:

Tape to data cell.

Disk to data cell.

Data cell to tape.

Data cell to disk.

Data cell to data cell.

Data cell to printer.

In BOS/360, TOS/360, and DOS/360, utility pro-
grams are device-dependent (such as tape to tape,
etc.). In OS/360, utilities are device-independent be-
cause the utilities refer only to data sets rather than
to devices. Otherwise, they operate in the same fashion
as the utilities in DOS/360. OS/360 has the ability to
use the following direct access storage devices:

e 2301 drum.

e 2302 disk storage.

® 2303 drum.

e 2311 disk drive.

® 2314 direct access facility.

® 2321 data cell.

Testing and Debugging Programs

A programmer who has for his use a set of test service
routines can be relieved of much time and frustration
involved in debugging. Such a set of routines is avail-
able for System/360 operating systems. In BOS/360,
TOS/360, and DOS/360, it is known as Autotest. In
0S/360, it is known as Testran. Both perform services
at certain points in the program (specified by the pro-
grammer ). These test actions include dumping (re-
cording for display) systems tables, registers, and main
storage; also, tracing of transfers, calls for subroutines,
and references to data. Consecutive tests can be run
with different sets of data. They can also test condi-
tions stemming from program execution and, accord-
ing to the results, either carry out or not carry out
the dumps, traces, etc.

User-Written Programs

Computer users generate many programs to solve a
specific set of problems. Some of the routines may be
useful to other users in solving similar problems. The
widespread incorporation of routines that have been
written elsewhere makes well-defined programming
conventions especially important. Such standards are
necessary if programs are to be interchanged among
computer users.

Agreement on standards has been facilitated by
the development of organizations such as SHARE,
GUIDE, and COMMON. Group members exchange
programs through program libraries established by
these groups.

Teleprocessing

Teleprocessing capabilities are available in DOS/360
and OS/360. Both DOS/360 and OS/360 are basically
the same. They may be used for a large variety of
teleprocessing applications, including the following:
® Message switching. Messages received from one
remote terminal are sent to one or more terminals.

® Remote job processing. Jobs received from re-
mote locations are routed and assembled for
processing by the job scheduler.

® Inquiry or transaction processing. Inquiries or

transactions received from a large number of
widely separated locations are routed for process-
ing by user-supplied message-processing pro-
grams.

® Data collection. Data received from a number of

terminals is collected and stored for later proc-
essing.

The three major levels of access methods supported
in the telecommunications area are BTAM (Basic
Telecommunication Access Method), QTAM (Queued
Telecommunication Access Method), and STRAM
{Synchronous Transmit Receive Access Method ).

BTAM provides for polling and addressing of termi-
nals, and for sending and receiving of messages. The
user-provided programs must include the following:

1. Initiation of polling and addressing (macro in-

structions must be given to start the process).

2. Routing of messages to the proper destination.

3. Error checking of messages.

4. Code translation, label checking, and queuing

and logging of messages, if required.

5. Processing of the data content of the message.

QTAM provides for all of the above services except
processing of the data content of the message.

Both BTAM and QTAM are for use with start/stop
type terminals, such as the IBM 1050, and can handle
transmission speeds of about 15 characters per second.

STRAM provides macro instructions and routines
to allow transmission and reception of data through
synchronous transmit/receive terminals. STRAM has
the following features:

1. Line control.

2. Environment definition.

3. Code conversion.

4. Data transmission.

5. Error recovery.

STRAM is used with the synchronous transmit/
receive (STR) terminals, such as the IBM 1009 and
1013, which have faster transmission rates. For ex-
ample, the 1009 Data Transmission Unit can transmit
up to 600 characters per second.
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Compatibility and Emulation

In the past, a change in computers usually entailed a
costly rewriting of programs originally developed for
the system being replaced. To protect programming
investments of users selecting S/360 to replace previ-
ously installed IBM systems, IBM has developed
equipment features and programs designed to ease
transition.

Compatibility features on S/360 enable a user to
take non-S/360 programs, which adhere to acceptable
coding standards for their original machine, and, with-
out change, execute them on certain specified models
of 5/360. For this purpose, a device called Read-Only
Storage (ROS) is used.

ROS is a device built into S/360 that is a step below
machine instructions (just as machine instructions are
a step below FORTRAN instructions). This concept
is called microprogramming. Instead of executing an
instruction, ROS executes a series of openings and
closings of electronic “gates” in the system data flow.
Figure 130 shows an ROS card. Each line of perfora-
tions controls the data flow for one instruction of ma-
chine language. Most models of S/360 have ROS for
S/360 instructions, but special ROS cards must be used
for compatibility. For programs written in 1401/1440/
1460 or 1620 machine language, 1401 or 1620 ROS
converts them into a series of microinstructions exe-
cutable on S/360.

Emulation involves the linking of a compatibility
feature (ROS) and a core-resident S/360 program
(called an emulator program) to execute a non-S/360
program that is also in main storage. The program is
under control of ROS until the compatibility feature
determines it cannot handle a certain operation, at
which time control is passed to the emulator program,
where the particular operation is executed in S/360
mode. At the completion of the operation, control is
passed back to the compatibility feature for the next
instruction. At present, there are emulators for several
IBM computers that preceded System/360, including:

. S/360

Model
Native Machine Required
1620 Model 30
1401,/1440/1460 1410/7010 Model 40
7070/7074 1410,/7010 Model 50

705/7080 709,7090,/7094 7040,/7044 Model 65
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Some considerations for emulation are:
® The amount of core required by the program.
(The amount required on an emulating machine
is always greater than the storage capacity of
the native machine.)
® Device and operation code restrictions, if any.
Although emulation and compatibility enable users
to run their programs from a previous machine on
S/360 with at least equal effectiveness as on the previ-
ous system, the performance will not take advantage
of the full capabilities of S/360.

A major element in converting programs for use in IBM System/360
is this special perforated card being inserted into the read-only
storage unit of the Model 30. The read-only storage unit contains
many of these instruction-bearing cards that enable programs
written for an |BM 1401 to be run on the Model 30 without change.

Figure 130. Read-only storage unit and card



A data processing procedure must include two main
areas of activity: accomplishment of the desired result
and control of the procedure itself. Complete controls
are far broader than the checks designed to supervise
the quality of work produced by the computer system.
These controls must also consider the entire applica-
tion and its importance in a business or scientific en-
deavor.

Methods must be devised to control the flow of in-
formation into and out of the data processing system
and to assure that all information received is correctly
included in the required results. In addition, should
omission or duplication occur, methods must be de-
vised to establish an audit trail without completely
retracing an entire procedure.

Control procedures differ somewhat between busi-
ness applications and engineering, statistical, scientific,
or mathematical applications, though both types may
exist in one installation. In scientific applications, prin-
cipal control is exercised on the accuracy and range
of calculation only, and, while control of data must
also be strict, the requirements of auditing are usually
simple or nonexistent.

On the other hand, business records are the property
of stockholders, and, as such, they must be available
for both external and internal auditing. Records must
also be protected from the possibility of fraudulent
practices and must legally conform to tax structures,
public service codes, and other local and regional
restrictions. In many businesses, the method of record-
keeping directly affects relations with customers, and
files must be accessible for inquiries and account
status, position of inventory, availability of services,
and so on.

The following discussion is concerned primarily with
the area of business practices. In any application, how-
ever, the purposes of overall procedure control are to:

1. Assure that data entering the computer is ac-
curate.

2. Check clerical handling of data before it reaches
the computer to assure that it is complete and
not duplicated.

3. Arrange data in the form best suited for economi-
cal use by the computer.

4. Provide a means of auditing the steps of the
complete procedure so that, in the event of error
or inconsistency, the trouble may be located with
minimum loss of time.

Procedure Control

5. Assure that accounting for tax purposes or other
legal requirements is carried out according to
law.

6. Guard against fraudulent practices that may
affect the financial standing or reputation of the
business.

Control Groups

The data processing center is usually a service unit.
It receives information to be processed (perhaps in
the form of punched cards) from outside sources,
makes the necessary calculations, and produces the
necessary reports. The center, as a rule, originates no
information; it is concerned only with data sent to it.
Under these circumstances, it is possible to establish
controls over the employees of the center and to pre-
vent fraudulent or inaccurate handling. These controls
are usually delegated to some group, either organized
within the center or closely associated with it for this

purpose.

Control of Payroll Data

One large company computing its payroll with an
electronic installation established an office known as
the payroll bureau. All changes in payroll data—such
as rate changes, new employees hired, terminations,
and changes in 25 types of pay deductions—are routed
through this bureau. The changes are indicated on an
authorization form, prepared in duplicate in the origi-
nating department.

The original approved copy of this document is
forwarded to the payroll bureau, where the change
authorization forms are grouped by type of pay data
affected. Adding machine totals of numeric fields are
accumulated, regardless of whether these fields rep-
resent dollar information or identification; in the case
of new employees or terminations, the number of em-
ployees affected is also included in these control totals.
Cards are then punched and key-verified for input to
the computer.

The totals of the changes are accumulated weekly
from the cards on a conventional punched card ac-
counting machine. These totals are checked with the
adding machine totals previously prepared. During
one of the computer runs, normal pay and pay deduc-
tions are calculated. This sum is sent to the payroll
bureau, where the totals are compared with those pre-
viously recorded. This control over payroll changes
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not only incidentally checks the operation of the data
processing system but also checks the clerical handling
and accumulation of information as it enters the
system.

Control of Sales Data

Procedures can be controlled to assure the best rela-
tions with customers. One example of this control is
supervision of the company’s price structure for the
commodities or services it sells. Here, a control group
might be established to compute amounts to be
charged to a customer.

In many organizations, for example, the sales de-
partment has discretion over the prices that customers
are charged. However, deviations from established
prices may occur because of allowances for defective
merchandise or because of special situations. The
function of the control group is to see that all excep-
tions from the official price list are investigated and
can be explained. The computer is used to report
these exceptions.

The identification code of merchandise shipped and
the code number of the customers are entered into
the computer, along with special notification if the
sales price differs from that shown in the master price
file. The computer prices all shipments, except those
for which it has special notification, at the master
price rate and follows special instructions for the
exceptions. When the output data set (or file) that
will eventually print the invoices is produced, a spe-
cial listing is made of all shipments that have been
calculated at other than master file prices. The listing
is forwarded to the control group for investigation.

The control group may have other control func-
tions that relate to the contents of the master files.
An electronic system differs significantly from a manu-
al system in the method of referring to the authorized
selling price information. Where invoices are com-
puted by billing clerks, it is reasonable to assume
that, while individual clerical errors may occur, origi-
nal price information is accurate. This is so because,
as a rule, the clerks use an identical, up-to-date price
List.

In the computer system, on the other hand, the
prices are inserted from a master price data set (or
file), and reference is made to this data set by the
machine in determining the billing price. If an error
is made in the price of a particular product as re-
corded in the master data set, this error is reflected
in the billings for all customers purchasing this item.
Therefore, the contents of the master data set must
be strictly controlled.

Changes to the data set may be made during a
special run by the computer. Price changes are in-
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serted, and a change register is produced. A copy of
the change register is forwarded to the control group,
where it can be examined in detail. From time to time,
the master data set can be used to prepare a com-
plete printout of portions or all of the product master
data sets. It may also be used, if descriptive informa-
tion is present, to prepare a price catalog,

Similar controls can be established to make certain
that shipment is made only to customers of acceptable
credit standing. This control can be established by a
customer master data set that is used to extract the
proper shipping and billing addresses and to carry the
approved credit limits. By proper control, it can be
determined that shipments are made only to customers
whose credit standing is approved by the credit de-
partment. Companies doing business with franchised
dealers can use this procedure to detect shipments to
unauthorized dealers, because the absence of a name
in the customer master data set immediately prevents
invoice preparation.

Systems Checks

Systems checks are designed to control the overall
operation of a procedure within the computer system.
They ensure that all required data is received for
processing and that all data leaving the system is
complete and accurate.

Systems checks may include controls to ensure that
all input records are included in a data set for a cur-
rent processing period and that incorrect or unrelated
records are excluded. These checks may also verify
the distribution of detail transactions to update rec-
ords when such distribution is made by coding. Sys-
tems checks may be devised for factors developed
during calculation to compare this logical or reason-
able relationship with other known factors. Cross-
footing totals is a commonly used systems check to
prove calculation or accumulation of quantities and
values.

The types of systems checks vary with each applica-
tion of the computer and with the kind of equipment
used. Particular attention should be paid to including
systems checks during the early stages of application
planning, because such controls can be most effec-
tively fitted into the program at that time. It is some-
times advisable to modify the procedure to include
the most efficient controls; this is usually far less costly
than designing a procedure without required controls.

Many commercial procedures require strict account-
ing control with provision for audit trails. This re-
quired control means that the program must be
designed to take full advantage of the high reliability
built into the data processing system. To meet the



requirements of efficient operation of the entire sys-
tem, this control also means that the trouble can be
localized quickly in case of error, without retracing
the entire procedure or reprocessing all records.

In some machines, built-in checking features make
detailed systems checks unnecessary. In others, data
manipulation in the central processing unit is less
stringently checked, particularly where elaborate
checking circuitry would materially increase the cost
of the system without a proportionate increase in ac-
curacy. Some systems checks are supplied as part of
programming systems; for example, in IOCS.

Checking is a form of quality control. It follows
that, when some percentage of error can be tolerated,
checks may be used more sparingly. Some typical
systems checks are discussed below.

Record Count

A record count is a tally of the number of records in
a data set. The count is normally established when
the data set is assembled.

The total number of records is carried as a control
total at the end (or the beginning) of the file (data
set) and is adjusted whenever records are added or
deleted. Each time the data set is processed, the rec-
ords are recounted, and the quantity is balanced
against the original or adjusted total. If the recount
agrees with the control total, it is accepted as proof
that all records have been run.

Record counts may also be established by batches.
This is desirable when source data is to be put into
the procedure for the first time.

Although the record count is useful as a proof of
processing, it is difficult to determine the cause of
error if the controls are out of balance. A failure to
balance does not help to locate a missing record, nor
does it indicate which record has been processed more
than once. Therefore, some provision must be made
to check the data set against the source records, a
duplicate data set, or a listing known to contain the
proper number of records.

An incorrect record count usually indicates a ma-
chine failure when records are being processed be-
cause, once written on the tape (or drum, disk, etc.)
correctly, records cannot be misplaced or lost. In this
case, the doubtful portion of the data set should be
rerun for correction. An IOCS supplies information as
to the bad record.

Conitrol Total

The control total may be made up from amount or
quantity fields in a group of records. It is accumu-
lated manually or by machine when the data set is
originated or when a quantity is first calculated. The

control total can be either a grand total or more con-
venient intermediate or minor totals.

When the data set or group of records is processed,
the fields are again accumulated and balanced against
the control total. If the total is in balance, it serves
as proof that all records have been processed cor-
rectly.

The control total is an efficient systems check when
it can be used to predetermine the results of calcula-
tion or the updating of some record. For example,
when preparing to process a payroll, the total number
of hours worked by all employees is prestablished
from clock or job-card records. This figure then be-
comes the control total for payroll hours for all sub-
sequent reports. Totals may be broken down by group
or department. The sum of all totals must balance
back to the complete original total.

Control totals are normally established for batches
of convenient size, such as department, location, ac-
count, or division. By this method, each group of rec-
ords may be balanced as it is processed. Corrective
action, if needed, is limited to small, easily checked
groups rather than to one grand total.

Proof Figures

Proof figures may be used to check an important mul-
tiplication in a procedure. As such a check, the proof
figure becomes both a systems check and a check on
the operation of the computer. The proof figure is
usually additional information carried in the record.

An example of the proof figure is the multiplication
of quantity by unit cost. The check is based on the
relationship between actual unit cost and a so-called
proof cost. An arbitrary fixed figure (Z) larger than
any normal cost is set up. (If a cost range for all
products in a given data set is from $.50 to $10.95, Z
might equal $11.00). Proof cost is the remainder when
cost is subtracted from Z, or proof cost may be ex-
pressed by the formula:

Cost + Proof Cost = Z

Proof cost is carried as an extra factor in each rec-
ord. Z is a constant that can be placed in storage for
use when the proof figure is calculated.

Whenever quantity is multiplied by cost, it is also
multiplied by proof cost. Normally, the factors ac-
cumulated during processing are quantity, quantity x
cost, and quantity x proof cost. At any point, it is pos-
sible to check the sums of all factors accumulated up
to this point as follows:
2(Qty X cost) + =(Qty X Proof Cost) = 3(Qty X Z)

The left side of the equation can be calculated by a
single addition of the two progressive totals that have
been accumulated during the procedure. The right
side of the equation can be calculated by a multipli-
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cation of the accumulated quantity and the constant
factor Z. This check ensures that each particular mul-
tiplication was performed correctly.

This type of proof figure can be applied to other
applications by using the same general approach.

Limit Check

A limit check is a test of record fields or programmed
totals to establish whether certain predetermined
limits have been exceeded. For example, if transaction
codes for certain records are known to cover only the
digits 0 through 5, a check can be programmed to see
that no code exceeds the limit 5.

A second type of limit check assures that calculated
totals are reasonable. Some quantities or values in a
procedure never vary more than a given percentage
between processing periods.

Payroll procedures often contain many limiting fac-
tors that can be checked by the program. The upper
limit of gross pay is usually determined by the type of
payroll: hourly, salary, piece rate, incentive, and so
on. Hourly rates must fall within established wage
scales. The total number of hours worked per em-
ployee is also subject to certain limits.

Limit checks may also be used in table lookup
procedures. If an item is known to be in a given table
in storage, the modified table address may be checked
against the address of the upper table limit to verify
correctness of the search. If the search begins to ex-
ceed the limits of the table, an error has occurred,
and corrective action is required.

In many mathematical problems, the range of the
final calculation can generally be estimated. If a result
falls outside this reasonable range, it may be assumed
that some error condition is present, either in the data,
in the program, or in the calculation. Departures from
normal trends may also indicate faulty procedures.
The simple application of a limit check in such prob-
lems may save much detailed checking, with con-
sequent simplification of the program.

Crossfooting Checks

Crossfooting checks may be used to check known con-
trol totals, or they may serve as proof totals originated
during a procedure. For example, during the process-
ing of employee records in a payroll, calculations
develop amounts of gross pay, taxes, deductions, and
net pay. Normally, these amounts are accumulated by
department or other convenient batch controls. The
totals of gross pay at any point should be equal to the
totals of net pay, deductions, and taxes.
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Tape and Disk Labels

Identification information recorded at the beginning
of a reel of magnetic tape is called the header label;
identification information recorded at the end of a
reel is called the trailer label. The label may specify
file identification, date of last processing, number of
reel, and so on. A label may also be placed at the end
of the file. Standard label checking is automatic in
programming systems.

While tapes may have both a header and a trailer
label located physically before and after the data,
respectively, disk labels can appear physically any-
where on the volume, as long as the user specifies
where it is located.

The labels are read into storage at the beginning
and at the end of the program as an added control
to ensure that the proper records have been processed.
The label may also ensure a true end-of-file or end-of-
job condition and, in addition, include a record count.

The various programming systems supporting Sys-
tem/360 have a definite format for “volume” labels
and checking.

Housekeeping Checks

The first instructions of nearly every program are in-
tended to perform functions of housekeeping in prep-
aration for processing. These instructions may set pro-
gram switches, clear registers, set up print areas, move
constants, and so on. In addition, housekeeping in-
structions may perform systems checks by testing to
determine whether all input/output units required by
the main program are attached to the system and
ready for operation. File labels may be checked and
updated, constant factors may be calculated, and other
information pertinent to the proper operation of the
system may be called to the operator’s attention by
programmed instructions. Programming systems pro-
vide many of these checking procedures.

Checkpoint and Restart

A checkpoint procedure is a programmed checking
routine performed at specific processing intervals or
checkpoints (see “Program Checkout”). Its purpose
is to determine that processing has been performed
correctly up to some designated point. If processing is
correct, the status of the machine is recorded, usually
by writing this information on a tape. The normal
procedure is then continued until the next checkpoint
is reached.

Checkpoint procedures have the effect of breaking
up a long job into a series of small ones. Each portion



of the work is run as a separate and independent part,
and each part is checked after it is completed. If the
check is correct, enough information is written out to
make it possible to return to this last point automat-
ically. If not, the portion of work just completed incor-
rectly is discarded, and the system restarts from the
last point at which the work is known to be correct.

A restart procedure (1) backs up the entire com-
puter system to the specified point in the procedure,
usually a checkpoint (tape files are backspaced or re-
wound; card units and printers are adjusted manual-
ly); (2) restores the storage of the computer to its
status at the preceding checkpoint (this may include
the adjustment of accumulated totals, reloading the
program itself, reestablishing switches and counters,
restoring constant factors, and so on).

The proper use of checkpoint and restart procedures
in a program contributes to the overall operating effi-
ciency of a computer system. If power failure or seri-
ous machine malfunction occurs, these procedures
provide a means of rerunning only a small part of a
job without having to rework an entire job. This may
mean a saving of many hours of machine time.

Restart procedures also allow interruption of a
given job for the scheduling of other jobs that need
immediate or emergency attention. Thus, any proce-
dure may be interrupted intentionally by the operator
and replaced with another job when necessary. Pro-
vision for restart is also convenient at the end of a
shift or other work period when the operation of a
job must be terminated without loss of production
time. Finally, restart procedures provide interruption
of machine operation for emergency repairs or un-
scheduled maintenance.

Machine Checking

Procedures perform two functions. First, they accom-
plish useful work; second, they control the quality
and accuracy of the work.

In the data processing procedure, useful work con-
sists of such operations as sorting, calculating, col-
lating, reading, and printing. Control operations are
necessary to establish and maintain accounting con-
trols, calculation checks, and machine checks. The
programmer can use these checking devices at his own
discretion, or they can be programmed in an operating
system of control programs. Basically, two types of
checks may be written:

1. Checks on the validity of data handled by the

input/output units. ,

2. Checks on the handling of data within the com-
puter, including checking for legitimate instruc-
tion code, arithmetic overflow, valid signs of nu-
meric quantities, and other check indicators.

In most cases, it is not necessary to halt machine
operation when an error condition is detected. The
programmer may insert special transfer or branch in-
structions designed to handle certain types of errors
as exceptions. An error in reading a record from tape,
for example, may be programmed to backspace the
tape and reread the record. If a correct reading is ob-
tained the second time, normal operation continues. If
the error persists, operation can be interrupted, or the
incorrect record can be noted and operation continued.

‘In some systems, the error indicator initiates a spe-
cial routine that places the computer under control of
service-mode repair subroutines to accomplish the
program repair, and then proceeds back to the inter-
rupted program for continued processing. This op-
eration is completely automatic. In other systems
appropriate testing instructions achieve the same end
result.
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FORTRAN system ...............

Fraction conversion .......

Graphic display units ...

Graphic subsets ...
Header label ...
Hexadecimal floating point notation .46
Hexadecimal system ... 22
Housekeeping functions ..... ..104
Image processing ........... .. 3
Indexing ... . .78
Indicators ......ocoocooiiiiiee e 48
Indirect addressing ... 79
Inhibit wire ... 35
Inline (direct access) processing ..... 38
Input devices ... ........ , 14, 47
Input/output control systems ... 90
Input/output scheduling ... 91
Instruction cycle ... 42
Instructions ... 65
Instruction modification ... 77
Integer conversion ... 21
Interblock gap ...

IPL loader ... 94
Job control ...

Job management

Keys

Label Processing
Language translators
Library
Light pen ..............
Limit check ...
Linkage editor ........
Linking
Load-point marker .
Logical IOCS ...
Logical operations

Machine checking
Machine coding ...
Machine cycles ... .42
Machine-oriented programming
languages ... 85
Macro definition, instructions ... 86, 96
Macro library ... 86
Magnetic character reader ... 59
Magnetic core
Magnetic disk storage ... 3
Magnetic drum storage ...
Magnetic ink characters
Magnetic tape storage ... 37
Magnetic tape ...
Magnetic tape units ...
Main storage ...
MicCroprograms ...........................
Monitor programs. see control programs.
Multiprocessing ..................... .
Multiprogramming

Nine-track tape ... ..
NRZI method ... ...
Numeric bit ...

Object program ... ................
Octal system .
Operand ...
Operating system T
Operation ...........
Optical characters
Optical character readers ... ... 60
0S/360 94, 96
QOutput devices ... 10, 14, 47

Paper tape ...
Paper tape punch ...

Paper tape reader
Parallel operations
Parity check ...
Phase encoding .........
PL/I system ...
Printers
Problem programs
Procedure control
Processing programs

Program . ...
Program checkout .....

Program flowchart

Program preparation ....................
Program switch ...
Proof figures ...
Punched card ...
QTAM e 99
Random access storage units ............ 5
Reading operations

Read/write head .. ... ... ...
Record count ...

Register ...

Restart procedure

ROS device ..................

RPG language .......

Secondary storage ...

Sense WIre ... ...
Sequential (batch) processing ... 38
Sequential storage .. RN 33
Serial operation ......... .. 43
Service Programs .................... 97
Six-bit alphameric code ... .. 16
Solid-logic technology ... ... 5
Sort/merge programs ................... 97
Source programs ........................ 84
Start/stop terminals ... . 62
SEOrage ... 9,32
Storage printout ... 90
Stored program ... 4,7,65
STRAM ... e 99
Striping ... .71
Subroutines ... ... 75
SUPEIVISOT ..o oo 94

Supervisory programs. see control
programs.

Symbolic language
System flowchart ....
System checks ........
Tape labeling ...
Tape loading ............
Tapemark ...
Tape punch
Tape records
Task management
Teleprocessing ......................
Terminals .....................
Testing programs ...
Time sharing ...
TOS/360
Tracing
Trailer label
Transient routines

Transistor ........................

Translator ...
Unit record (card) ......... ... 25
Universal character set ... 59
USASCII-8

User-written programs
Utility programs .......
Validity checks
Variable-length words
Visual displays ............. o

Visual output ...
Wire matrix printer ...
Zone bit
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