6952 WILLUHN ET AL.

Developing accessible
software for
data visualization

An increasing number of countries are
establishing regulations that require
information technology to be fully accessible
by all users. To make software products
accessible, they must be designed and
implemented so that they can also be used
by persons with sensorial or physical
impairments. Although checklists and coding
guidelines are available, this requirement can
be challenging, especially when implementing
accessibility for a product that displays
information in a graphical format. This paper
presents a process-oriented view of
addressing accessibility issues in software
development. It describes what had to be
taken into consideration and how accessibility
issues were solved. The experience was
gained during the development of the IBM
DB2? Intelligent Miner™ Visualization, an
application used to visualize data mining
results. The following areas are addressed:
integrating design for accessibility into the
development process, providing special
design features that enable users to interact
with graphical data, and programming
solutions for accessibility features.

A significant number of users of information tech-
nology (IT) products are affected by some kind of
disability such as impaired vision, hearing, mobility,
or cognition.? To accommodate the special needs
of these users, many regulations and standards for
accessibility are in effect worldwide.® An increasing
number of businesses and organizations have pur-
chasing requirements that stipulate accessible prod-

0018-8670/03/$5.00 © 2003 IBM

by D. Willuhn
C. Schulz
L. Knoth-Weber
S. Feger
Y. Saillet

ucts. Hence, software manufacturers must consider
accessibility requirements as an important aspect of
product development.

When software is accessible, individuals with disabil-
ities can use assistive technology to increase, main-
tain, or augment their functional capabilities. For ex-
ample, blind persons can use a screen reader to have
the information displayed on the graphical user in-
terface (GUI) of a product read to them. At a min-
imum, developers must provide the appropriate pre-
requisites by which assistive technologies can interact
with a given product. At best, the product provides
special forms of input and output techniques that
suit the needs of disabled users.

Principles and guidelines for accessibility design for
various types of software are available from standard-
ization organizations, government authorities, and
human-computer interaction (HCI) research. *° Soft-
ware manufacturers provide developers with acces-
sibility checklists based on these regulations. For ex-
ample, the IBM accessibility checklists” specify
principles and guidelines for input methods, output
methods, and consistency and flexibility in software
applications as follows.

For choice of input methods:

©Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

* Support the user’s choice of input methods, includ-
ing keyboard, mouse, voice, and assistive devices
via the serial port.

* Provide keyboard access (mouseless operation) to
all features and functions of the software appli-
cation as the primary requirement.

* Provide support, usually by means of the operat-
ing system, for input via the serial port, keyboard
movement of the mouse pointer, and other key-
board enhancements.

For choice of output methods:

* Support the user’s choice of output methods, in-
cluding display, sound, and print.

* Provide text labels for icons, graphics, and user in-
terface elements and support visual indications for
sounds as the primary requirement.

* Implement the accessibility application program-
ming interfaces (APIs), for example, Java™* acces-
sibility or Microsoft active accessibility, so that the
target operating system meets this principle.

For consistency and flexibility:

* Make the application consistent with the user’s
choice of system behavior, colors, font sizes, and
keyboard settings.

* Provide a user interface that can be customized to
accommodate the user’s needs and preferences,
including fonts, colors, and display layout.

At the lowest level, checklists give specific recom-
mendations for designers and programmers, such as
“provide keyboard equivalents for all actions” or
“provide a variety of color selections capable of pro-
ducing a range of contrast levels.” In addition, they
provide examples and tips for coding and testing ac-
cessibility features.

Coding guidelines, such as the IBM Guidelines for
Writing Accessible Applications Using 100% Pure
Java** ® provide application developers with essen-
tial information about programming practices and

how to use the Java accessibility API.

In this paper, we address (1) making designing for
accessibility part of the development process, which
includes planning for accessibility, additional efforts
for coding, testing, and writing software, and imple-
menting multidisciplinary teamwork; (2) providing
special design features to enable all users to interact
with graphical data, such as with different ways of
presenting information, color palettes that are suit-

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

able for a wide range of users, keyboard navigation
in on-screen diagrams, and assistive technologies
such as screen readers; and (3) using programming
to produce accessibility features such as high-con-
trast settings and keyboard handling.

Accessibility in the User-Centered Design
process

Merely consulting accessibility guidelines during de-
velopment is not sufficient because they share the
same fate as all other kinds of design guidelines: They
are context-independent and thus need to be inter-
preted in each situation in which they are applied.
Even when they are as specific as giving details of
implementation, developers cannot be sure if a
guideline is at all appropriate in a given context. The
same holds for usability. A product may conform to
all generally accepted design recommendations but
may still lack usability in certain contexts of use. To
avoid this problem, a User-Centered Design (UCD)
approach must be followed.*!°

Developing accessible products requires a process-
oriented, multidisciplinary approach. Accessibility
requirements must be addressed from the very start,
when design and evaluation activities are initiated,
through all phases of the development process. Thus,
accessibility must be integrated in a UCD process. !

In the UCD process, a team of experts works on all
aspects in all phases of the development cycle. A typ-
ical UCD team is comprised of experts for user in-
terface programming, human-computer interaction
design, visual design, information development de-
sign, and user feedback. All of these disciplines are
also needed when it comes to designing and imple-
menting accessibility. Thus, all team members need
a thorough understanding of how accessibility re-
quirements affect their work and how it is related to
the work of the other disciplines.

Design objectives. The product under discussion,
the 1BM DB2* Intelligent Miner* Visualization Ver-
sion 8.1, presents the results of data-mining func-
tions and statistical functions. Customized visualiz-
ers are available for depicting clustering, tree
classification, or association analyses. Each visual-
izer deploys various types of diagrams and color-cod-
ing techniques to facilitate the comprehension of
complex data and relationships.

The extensive use of graphic representions poses a
number of challenges with regard to accessibility re-

WILLUKN ET AL. 653

quirements. For example, diagrams and color cod-
ing provide a powerful means of conveying the mean-
ing of and the relationships among complex data for
individuals with normal eyesight. However, the very
same means makes this information almost inacces-
sible to users with impaired eyesight. The objective
was to find a solution that (1) serves the needs of
disabled users as defined in the applicable accessi-
bility checklist, (2) does not compromise usability
for the majority of users without disabilities, and (3)
keeps development resources within acceptable
limits.

Activities and teamwork. Four phases are involved
in the design process.

The planning phase. The IBM Java Accessibility
Checklist and coding guidelines were a pivotal re-
source at the beginning of our UCD process. They
helped the team to identify accessibility requirements
for user interface (UI) design, visual design, and in-
formation design, and to determine which skills,
tools, and efforts were needed by team members to
work on accessibility requirements in their fields of
responsibility. This aspect was crucial, especially be-
cause efforts for coding and testing were significantly
higher than usual. This need for additional resources
could not have been satisfied if it had been identi-
fied later in the development process.

The conceptual design phase. At the beginning of the
design activities, the UCD team discussed how the
accessibility requirements affect the design concept
for each visualizer. It was quite obvious that soft-
ware that aims at explaining complex data and re-
lationships by visualization is very difficult for per-
sons with visual impairments to use. Even if the
relevant data in the charts and the diagrams can be
accessed by a screen reader, it is very difficult to nav-
igate within diagrams and to understand the mean-
ing of the data.

To solve this problem, we decided on a design strat-
egy that is based on offering alternative presenta-
tions, or views, of the data. Besides a graphical view,
data are shown in a textual and a tabular form. See
the next section on user interface design for a de-
tailed discussion of these views.

To ensure that users have mouseless access to all fea-
tures, a special design specification for keyboard op-
erations was written. We intended to follow existing
conventions as defined in the Java and Microsoft
Windows** design guidelines as closely as possible.

654 WILLUHN ET AL

Additionally, we wanted to introduce supplemental
features for keyboard operation where needed.

The detailed design phase. The main activity of this
phase was to elaborate the design of views, interac-
tions, and navigation techniques. Elaboration was
done by developing prototypes in an iterative fash-
ion. Each prototype was evaluated against the re-
quirements of the accessibility checklist. Necessary
design changes were identified and implemented in
the next prototype. The results are shown in detail
in the next two sections of this paper.

During the detailed design phase, the keyboard op-
eration specification needed several revisions. Al-
though keyboard operations were increasingly im-
plemented and tested, we discovered that a number
of the assignments could not be realized. Usually this
was a result of technical limitations and side effects
in the Java development environment. In these in-
stances, the UI programmer and the UI designer
worked together to find new keyboard assignments
that fitted within the overall concept.

Also in this phase, we started to test the accessibil-
ity. Recommended test tools such as screen readers
and code inspection programs were used to check
that requirements were met. Screen readers espe-
cially turned out to be tricky to use. At the time of
development, no single screen reader was available
that could work smoothly with all features of Java
applications. We decided to test with two readers in
parallel, JAWS for Windows 4.02, and the 1BM Self-
Voicing Kit for Java Version 1.3. Other recom-
mended Java accessibility test tools that we used were
Java Accessibility Helper, Ferret, and Monkey. "

The evaluation phase. In this phase, a series of ac-
cessibility evaluations was conducted with the test
tools mentioned in the detailed design phase. Dur-
ing function verification test (FVT), test cases cov-
ered all features of the user interface. We followed
the approach that is recommended in the IBM Java
Accessibility Checklist:

e Test using the keyboard only
» Test using assistive technology
» Test using accessibility testing tools

This activity resulted in about 40 accessibility de-
fects—approximately twice the number of usability
defects found. These accessibility defects were mainly
related to keyboard operation (navigation and in-
teraction in the user interface) and screen reader use

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

Table 1

Responsibilities and activities

UI programming

HCI design

Visual design

Information development
design

User feedback

and resources.

Understand
requirements of
accessibility
checklist and plan
resources for
implementation
and test

Understand
requirements of
accessibility
checklist and
identify need for
specialized designs.

Identify product
externals and
define visual
identity/brand
elements.

Plan content of
deliverables and
determine
accessibility
features to be
documented.

Understand test
requirements of
the accessibility
checklist.
Determine time
and resources
needed for
evaluations.

the UCD team.

Work with HCI
designer to
determine technical
feasibility and
effort for
accessibility
features.

Create concepts for
presentation of
information,
navigation, and
interaction.

Create design
concepts, mock-
ups, storyboards
using visualization
techniques; gather
feedback from
intended audience
and stakeholders.

Create outline of the
on-line help system
and the manuals.

Become familiar with
accessibility test
tools and assistive
technologies.
Inspect early
designs using
accessibility
checklist.

Implement accessibility
features. Work with
HCI designer and
visual designer on
technical issues.

Work with visual
designer and UI
programmer to
resolve issues found
during initial
evaluations

Finalize concepts
considering
technology
requirements,
applicable standards,
and legal
regulations.

Write on-line help and
documentation in
accessible format.

Perform initial
accessibility
evaluations with
recommended tools.

Responsibility Planning Conceptual Design Detailed Design Evaluation
User experience design Establish accessibility Ensure early Negotiate issues Make final
lead objectives and appropriate affecting accessibility accessibility
make an overall interlocks among and usability. assessment.
plan for activities all disciplines in Document

accessibility status

Test code with regard
to high-contrast
settings and use of
screen readers

Understand evaluation
results and map into
final design change
proposals.

Use simulation tools
and user feedback
to validate
accessibility of visual
product externals.

Verity accessibility of
on-line help and
documentation.

Perform accessibility
tests with
recommended tools.

(information such as object names and values not
accessible). Again, a few instances were found where
planned keyboard assignments had to be changed.

The final assessment took place during system ver-
ification test (SVT) when we repeated all test cases.
At this time, only a small number of defects were
found. Again, the Ul programmer and the Ul designer
worked together to solve these issues. The specifi-
cation for keyboard operation was finalized and
could now be used by the information developer to
document accessibility features.

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

Table 1 summarizes the responsibilities and activ-
ities of the multidisciplinary UCD team with regard
to accessibility requirements.

The sections that follow describe the accessibility de-
sign features that were produced in this UCD pro-
cess.

User interface design

In designing the user interface, we looked at alter-
native formats and interaction techniques.

WILLUHN ET AL.

655

Figure 1 The graphics view

£ Clustering Visualizer - Clus demo banking - 1 ocal File: ClusSampleBanking.vis

File Edit Selected View Help
EEHS D4 ¢ 2R, Q [
[Sraghics | Text| Details | N
Name Size

B2 ﬂ.M’mmﬂﬂhﬂ._ _h_—a__ |

35.30% AGE INCOME [GENDER)
1o j_mmhﬂhmh._ _Ln_

21.09% AGE INCOME [GENDER]
Ll | L .| @~

=
14.94% AGE INCOME [GENDER)
»

Cluster size
M2 s i At S ei% ades 20m miw wisk ssdw
9 clusters | | Read only

Figure 2 The tabular presentation of a chart in the
graphics view

Cluster [1] 0, 21.09% of the population

<< TYPE INCOME =>

Category Cluster Whole population
-0 0.00% 0.00%|
0-5 2.55%; 12.60%
5-10 4.17%] 11.28%
10-15 12.96% 11.04%
15-20 15.74% 9.72%
20-25 14.81% 9.38%
25-30 13.43% 9.47%
30-35 6.02% 6.84%
35-4 5.32% 6.20%
40- 4 5.09% 5.37%
45-5 2.55% 4.20%
50 - 55 2.31%] 2.93%
55 - 60 2.31%] 2.29%
60 - 65 3.47% 2.39%
65-70 1.62% 1.51%
70- 40 7.64% 4.39%
IMV 0.00% U.UU%lI
[0 2N Anne

Presenting information in alternative formats. Pro-
viding text labels for icons and graphics is a basic

656 WILLUHN ET AL

requirement for accessibility. It is fairly simple to im-
plement and provide the information that is neces-
sary for alternative output devices, such as speech
or braille. However, this technique is suitable only
for applications that use static graphics (icons or pic-
tures). It does not work for applications that use dy-
namic graphical objects such as diagrams or charts.

Our solution to this problem is to provide alterna-
tive presentations. Each visualizer presents informa-
tion not only in a graphical format (pie charts, bar
charts, or nodes and arrows), but also in textual or
tabular format. This variation makes the data that
are shown by a graphic accessible in a format ap-
propriate for assistive technologies.

The graphics view shown in Figure 1 is the primary
view of a visualizer. It presents data in different types
of charts and in two dimensions of color coding, fore-
ground colors and background colors.

Alternatively, every chart can be displayed in a tab-

ular presentation, making the chart data accessible
to screen readers (Figure 2).

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

Figure 3 The text view

Graphics Text | Details|

Visible clusters:
I Name Size Characteristics
I[g] 2 35.30% TYPE is predominantly blue, AGE is low, INCOME is low, JGENDER] happens to be predominantly male and SIBLINGS is medium.
lm 0 21.09% TYPE is predominantly red, AGE is medium, INCOME is medium, [GENDER] happens to be predominantly female and SIBLINGS is medium.
Im 1 14.94% TYPE is predominantly green, AGE is , INCOME is medium, [GENDER] happens to be predominantly female and SIBLINGS is medium.
Im 3 9.38%| TYPE is predominantly blue, AGE is high, INCOME is medium, SIBLINGS is medium and {GENDER] happens to be predominantly female.

87 8.35%| TYPE is predominantly purple, INCOME is high, AGE is medium, JGENDER] h tobe p male and SIBLINGS is medium.

Figure 4 The details view

Graphics | Text [Details]|

¥ Cluster Statistics =
Statistic Similarity Between Clusters
D Abs. Size Size (%) Homogeneity Cluster Cluster Similarity
312 723 35.30%) 0.641| 312 0.3692| 4|
1)0 432 21.09%. 0.647| 312 0.3434
21 306 14.94%) 615 [13]2 4067
4)3 192 9.38%. 1599 (3] 2 .2839
) 7 171 8.35% 619) [(3]2 .3168|
8 81 3.96% 613 |13 0.1096
[7)6 69 3.37% ,608| |13 0.1244|
(6] 5 48| 2.34% 565 (3] 0.1810|
4 26| 1.27% 0.484 [(1]0 0.3527|
(0 0.3095|
1]0 0.3078|
1] 0 0.2957|
110 0.4641|
[1]0 0.1728| |
» Details for Clusters
» Details for Fields
»F

requencies for Fields

In the text view, the most important characteristics
of each cluster are described in sentences (Figure
3). This format is especially useful for individuals who
rely on speech output, because this representation
reduces the cognitive load by summarizing the most
important characteristics of the underlying data.

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

Finally, the details view shows all numerical data of
the mining model in tables (Figure 4).

Interaction techniques. The associations visualizer

uses graphs that not only display information, but
also allow many interactions. For example, users can

WILLUHN ET AL. 657

Figure 5 The graph view of the associations visualizer

File Edit Selected View Help

DCES PesEPAweq q @

& Association Visualizer - No model name - Local File: AssocSample.xml

Rules | tem Sats Graph | statistics |

[Disp. nappies P]

move elements (nodes or arrows) or select partic-
ular elements to display only those elements that are
of interest.

How can this activity be done without using a mouse?
We designed a simple mechanism for keyboard nav-
igation and selection. As in a table or a list, each el-
ement can receive the keyboard focus. Figure 5 shows
that the arrow pointing from [mineral water] to [ap-
ple juice] has the keyboard focus (indicated by a dot-
ted line). Users can navigate in this graph as follows:

* To move the keyboard focus across the arrows that
are connected to [mineral water] in a clockwise di-
rection, press the Right Arrow key or the Down
Arrow key.

* To move the keyboard focus counterclockwise,
press the Left Arrow key or the Up Arrow key.

* To move the focus to the node [apple juice], press
the End key.

* To move the focus back to [mineral water], press
the Home key.

658 WILLUHN ET AL

[Detergent]

[Apple juice]
[Soap A] + [Antifreeze] &
4%
[Colour slide film] 5742 / [/
7 5 4%
3% i

[Scotch Whisky] [B-Beer]

3%
8.377

3%

8.376
3%

2,885 [Griaps]

[Lemonade]

[Stout]

[Soap A] + [Mineral water]

Elements in this graph are selected or deselected with
the Space bar. Together with a few additional key-
board functions, association graphs are fully enabled
for mouseless operation.

Besides special presentation and interaction tech-
niques, choosing appropriate colors is a critical as-
pect. Color selection is the task of the visual designer.

Visual design

An important task of visual design for accessibility
is to define a scheme for color coding that accom-
modates the needs of individuals with color-vision
deficiencies. About 8 percent of the male popula-
tion and less than 1 percent of the female popula-
tion are afflicted by anomalous color perception or
color blindness. ** The most common forms of color-
vision deficiencies are related to difficulties in dis-
tinguishing red and green colors (protanopia, deu-
teranopia). As Meyer and Greenberg point out,*
these forms have similar characteristics in how they

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

Figure 6 Application of deuteranope and protanope filters to an RGB color palette

A. Initial color palette (without filter)

B. With protanope simulation filter

|||

| ENEEEEEEN
B] EEN 1]
LR

| [| ||

C. With deuteranope simulation filter

* * * * *
@58 255 | 255 255 213
161 233 2001 255 229

59 159 138 59 255

255 230 il
255 230 @ 179
255 230 IS

D. Default color palette, suitable for users with red-green color deficiences

cause confusion in colors, so that it is possible to find
a set of colors that is suitable for almost all color-
defective users.

Using a color-defect simulation tool to identify suit-
able colors. To select colors that are distinguishable
for users with red-green deficiencies, visual design-
ers have to know how these individuals perceive dif-
ferent colors. Brettel et al."> have developed an al-
gorithm for simulating anomalous (dichromatic)
vision for persons with normal (trichromatic) color
perception. A number of color simulation tools are
available that are based on this method. We used
VisCheck ' to construct a color palette.

Applying the deuteranope and the protanope filters
to a red/green/blue (RGB) color palette led to the
results shown in Figure 6. This set of suitable, “fil-
tered” colors was further refined according to the
following requirements: distinguishability, visual ap-
peal, and readability of foreground text. The result-
ing palette of selected colors is shown in Part D of
Figure 6 (numbers indicate the RGB values for the
colors). In cases where this default color set is not
suitable, users can still turn to the standard Java color
chooser dialog to modify all color coding according
to their preferences.

For contexts where color coding is not desirable at

all—for instance, complete color blindness—we pro-
vided an option to code charts with monochrome tex-

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

tures. This feature is also useful when charts are
printed in black and white.

Software development

So far, we have described how we addressed acces-
sibility issues with regard to user interface design.
We will now look at the solutions that programmers
developed to meet two important accessibility
requirements: high-contrast settings and keyboard
handling.

Accessibility schemes and pluggable look and feel.
Users with visual impairments need specific fonts or
specific color schemes with a high contrast between
text and background to be able to read information
on the screen. Therefore, the IBM Java Accessibility
Checklist” specifies that high-contrast settings must
be supported by all user interface objects.

On Microsoft Windows operating systems, users can
modify the display settings to use specific color
schemes and fonts. They can also use predefined
schemes that are designed for users with visual de-
ficiencies. By selecting a scheme in the display set-
tings of the desktop, the palette of system colors and
system fonts is modified. This modification usually
has an impact on the appearance of all the native
applications of Microsoft Windows.

WILLUHN ET AL. 6§59

Figure 7 Default theme

Text Radio But O Ruby TR O e
{O Radio One O Radio Two O Radio Three } ¥ Paint Border
[l Paint Focus
[Vi Enabled
(maelal [vi Content Filled
[akndhOne G Radio Two alhdhmree‘
Pad
® Default
Oo

Java applications work differently because they do
not rely on the graphical libraries that are used by
the native applications. Swing-based Java applica-
tions can use their own pluggable look and feel
(PLAF) that works independent of the underlying op-
erating system. The standard Java platform includes
the following PLAFs:

e The Microsoft Windows PLAF emulates the ap-
pearance of the Microsoft Windows operating sys-
tem.

* The Motif PLAF emulates the appearance of a Mo-
tif application.

» The Metal PLAF provides its own look and feel that
is independent of any existing operating system.

Programmers can force the application to use a par-
ticular PLAF or allow users to select the PLAF that
they want to use.

Applications that use the Windows PLAF of Java nor-
mally inherit the color settings of the underlying op-
erating system automatically. This fulfills a part of
the IBM Java Accessibility Checklist. However, the
font settings are not properly inherited if versions
earlier than Java 1.3.1 are used. In this case, if Mi-
crosoft Windows is set up to use a high-contrast color
scheme with large fonts, the Java application uses
the correct color scheme, but it does not change from
the standard small fonts to the large fonts. This be-
havior makes it inaccessible for users with a vision
deficiency.

Furthermore, inheriting the color settings of the un-
derlying operating system works only with the Win-

660 WILLUHN ET AL

dows PLAF, which can be used only on a Microsoft
Windows operating system. For any other operat-
ing system, such as Linux**, AIX*, or the Solaris**
Operating Environment, there is no way to inherit
the settings of the underlying operating system.

The 1BM Java Accessibility Checklist recommends
the creation of one’s own PLAF and the use of native
methods to obtain the system preferences if the Win-
dows PLAF cannot be used. Unfortunately, this is dif-
ficult to realize. Even if work is derived from an ex-
isting PLAF, the creation of one’s own PLAF is a huge
task that is beyond the scope of a development proj-
ect. Furthermore, using native methods breaks the
operating system independency for which Java was
designed. It also means that one’s own PLAF must
be created for each different operating system or for
each different windowing system, because some op-
erating systems can use different windows manag-
ers, each of them having its own API and its own way
to define a color scheme.

IBM DB2 Intelligent Miner Visualization had to be
delivered as a stand-alone product for five different
operating systems and as an applet for any Java-en-
abled browser. Therefore, these technical recom-
mendations were not acceptable to us. We had to
find another solution to enable users with deficien-
cies in vision to use the product, even on a non-Win-
dows operating system.

We decided to exploit a feature of the Java Metal
PLAF. It allows the use of different color and font
schemes. The SwingSet demos that are delivered with
the Java software development kit demonstrate this
feature. Figure 7 shows the default theme, and Fig-
ure 8 shows the high-contrast theme.

It is a relatively easy task to develop a software ap-
plication that:

e Allows users to select among different PLAFs

* Additionally provides one or more PLAFs that are
based on the Java Metal PLAF

* Provides several high-contrast color schemes

It represents an alternative for users with visual im-
pairments who are working on a non-Windows op-
erating system. In fact, it does not automatically use
the settings that users might use for their desktops.
However, users can set up the software application
with similar settings, and this compromise is accept-
able.

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

Building a customizable high-contrast scheme. To
ensure flexibility, we decided to build a generic PLAF
that inherits the functionality of the standard Java
Metal PLAF and that additionally can be customized
by editing an external resource file in text format.
In this way, the information about the colors and the
font size are not compiled in the PLAF itself, but are
read from a text file that can be modified with a sim-
ple text editor.

The implementation of a generic PLAF is relatively
easy because most of the functionality is inherited
from the standard Metal PLAF. The details about the
implementation are beyond the scope of this paper.
For more information, see the paper by Saillet.!”
From this paper, developers can download the code
of the PLAF to use or modify for any kind of swing-

based application.

The class name of the customizable PLAF that can
be downloaded from the Saillet paper is “High-
ContrastLAF.” A search can be made for the infor-
mation about the color scheme and the font size in
the file “HighContrastLAF.properties.” The follow-
ing example shows the external resource file for
the black-on-white look-and-feel, large fonts. The
font size for this PLAF is set to 30 (line 5). The icons
are scaled to 250 percent of their original size (line
3). The basic colors are set to black and white (lines
6-15). Figure 9 shows a sample dialog with this
PLAF.

H ghContrast LAF. properties

1 nane = Hi gh Contrast Look And Feel

2 description = Black on white, |arge
fonts

3 i conMagni fi cationFactor = 2.5

4 fontNane = Dial og

5 fontSize = 30

6 backgr oundCol or = 000000

7 foregroundCol or = FFFFFF

8 pri maryCol orl = FFFFFF

9 pri maryCol or2 = 000000

10 primaryCol or3 = 000000

11 secondaryCol orl = FFFFFF

12 secondaryCol or2 = 808080

13 secondaryCol or3 = 000000

14 sel ectionForeground = 000000

15 sel ectionBackground = FFFFFF

In the same way, a high-contrast look and feel with
white text on black background and normal font size
can be created just by providing another resource
file with appropriate color settings.

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

Figure 8 High-contrast theme

File Look & Feel I!m

L ERRERIE

O Charcoal

Button Demo | S0 s
Buttons |Radio B] O Emerald h
o]
Text Radio But Buby I

[O Radio One O Radio Two O Radio Three

Display Options:
[Paint Border
[Paint Focus
[V] Enabled

[vi Content Filled

Image Radio Buttons-
I-O RadioOne (D Radio Two (I Radio Three

Pad
@® Default

Oo

Figure 9 Black text on white background, large font

X5 SwingSet 2. [=lali]
File Look & Fee! Themes

Button Demo[Source Code|
[Buttons|Radio Buttons|Check Boxes|
Text Radio Buttons

oRadio One oRadio Two oRadio Three

Display Options:
@ Paint Border
@Paint Focus
Image Radio Buttons @Enabled
@Radio One @Radio Two @Radio Three |=zContent Filled

The PLAF can be used for any swing application by
invoking the following line in the main method be-
fore the first graphical object is created:

U Manager . set LookAndFeel
(“Hi ghContrast LAF");

For 1BM DB2 Intelligent Miner Visualization, we im-
plemented an entry in the Preferences dialog that
lets the user select a PLAF. If such a dialog cannot
be implemented, an easier solution might be to use
the system properties to allow users to specify the
PLAF by starting the program from the command line.

String plaf = System getProperty
(“pl af Nane”) ;
if (plaf!=null) try {
U Manager . set LookAndFeel (pl af);

WILLUHN ET AL. 661

} catch (Exception e)
{ Systemout.println(“Error |oading
PLAF “+plaf +":“+e);}

Users can select a specific PLAF by using the follow-
ing syntax in the command line when they are start-
ing the application:

java —Dpl af Nane=H ghCont r ast LAF
—classpath Miin .

Aspects to consider during the development of the
application. The previous subsection presented a ge-
neric PLAF that can be modified by editing a resource
file so that an application fulfills the accessibility re-
quirements concerning the high-contrast settings.
There are, however, rules to respect to ensure that
the application whose look and feel is customized
really uses the settings that are defined by the PLAF.
These rules are basically simple to follow if they are
adhered to from the beginning of the project. This
statement sounds as though it should be self-evident;
however, it is often forgotten during the implemen-
tation.

Rule 1—Do not use hard-coded colors or fonts. Hard
coding is a mistake that often happens when the
background of a screen view, or “widget,” must be
set to white or its foreground to black. In this case,
product developers tend to program something like
the following examples, forgetting that other PLAFs
might have a completely different color scheme:

soneW dget . set Backgr ound(Col or. white);
soneW dget . set For egr ound(Col or. bl ack);

If a PLAF uses white text on a black background, this
might result in widgets that have both their fore-
ground and their background set to white or black.
Or it results in widgets with a completely different
color scheme from the rest of the application.

The same applies to the font. Using the following
command to set the font of a widget to boldface
might result in an inconsistency if a PLAF with a large
font is used:

soneW dget . set Font (new Font (“Di al og”,
Font.BOLD, 14))

All widgets would use large fonts except the specific
widget.

662 WILLUHN ET AL

When colors or fonts are needed, the correct tech-
nique is to use the methods getColor(Object key)
and getFont(Object key) of the class javax.swing.
UlManager. These methods take a key that iden-
tifies a color or a font as a parameter, and they re-
turn the corresponding color or font as it is defined
by the current PLAF. Unfortunately, the list of the
available keys is not documented. However, the keys
are included in the source code of the class javax.
swing.plaf.basic.BasicLookAndFeel.

The keys that are available for the colors are listed
in Table 2. The keys that are available for the fonts
are listed in Table 3.

If the keys that are listed in Table 2 or in Table 3
are used, the correct technique to set the colors or
font is:

myW dget . set Backgr ound(Ul Manager . get Col or
(“text”));

myW dget . set For egr ound(Ul Manager . get Col or
(“control Text”));

myW dget . set Font (Ul Manager . get Font
(“Button.font”));

If a specific font style or size is needed to highlight
a control, an existing font must be derived, and a
value relative to the normal font size must be used
for the new size of the font. The following line cre-
ates a boldface font with a size 20 percent larger than
the normal font size independent of the font size that
the PLAF is using.

Font f = U Manager. get Font
(“Button.font”); // reference font
nmyW dget . set Font (f. deri veFont
(Font.BOLD, 1.2*f.getSize())) ;

Rule 2—Regular tests of how the application looks with
a different look and feel. It is a good idea to regularly
test the application with a different PLAF during the
development phase. In this way, hard-coded colors
or fonts can be detected and fixed faster as described
in Rule 1. For the tests, use a PLAF with a completely
different color scheme and font size than the PLAF
that is used during development. The customizable
PLAF presented earlier in this paper may be the one
to use.

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

Table 2 Keys that are available for the colors

Key Description
desktop Color of the desktop background
activeCaption Color for captions (title bars) when they are active
activeCaptionText Text color for text in captions (title bars)
inactiveCaption Color for captions (title bars) when not active
inactiveCaptionText Text color for text in inactive captions (title bars)
inactiveCaptionBorder Border color for inactive caption (title bar) window borders
window Default color for the interior of windows
Menu Background color for menus
menuText Text background color
text Text background color
textText Text foreground color
textHighlight Text background color when selected
textHighlightText Text color when selected
textInactiveText Text color when disabled
control Default color for controls (buttons, sliders, etc.)
controlText Default color for text in controls
controlLtHighlight Highlight color for controls
controlShadow Shadow color for controls
controlDkShadow Dark shadow color for controls
scrollbar Scrollbar background
info Background color of the tool tips
infoText Background color of the tool tips

Table 3 Keys that are available for fonts

Button.font Label.font PopupMenu.font Table.font TitledBorder.font
ToggleButton.font List.font OptionPane.font TableHeader.font ToolBar.font
RadioButton.font MenuBar.font Panel.font TextField.font ToolTip.font
CheckBox.font Menultem.font ProgressBar.font PasswordField.font Tree.font
ColorChooser.font RadioButtonMenultem.font ScrollPane.font TextArea.font

ColorChooser.font RadioButtonMenultem.font Viewport.font TextPane.font

Label.font Menu.font TabbedPane.font EditorPane.font

Rule 3—Do not assume a size for fonts or the space
required for text or widgets. This recommendation is
not only valid for accessibility issues, but also for the
globalization of the application. Because a PLAF can
use any font size, it is impossible to know definitely
how much space a widget or the text will need. This
implies that no widget position and size should be
hard-coded and that layout managers consequently
should be used.

Keyboard handling

The Java swing library offers a rich set of graphical
components that are easy to use and appropriate for
most standard applications. These components not
only comprise the graphical part, but also provide
the handling, the navigation, and the accessibility for
the functionality.

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

In complicated software products, very often it is not
sufficient to use standard components. Either exten-
sions to existing components from a library or a new
component must be written. If a new component is
written, the accessibility of the new functionality must
be ensured, and it also must be ensured that the han-
dling and navigation are working correctly.

During the development of 1BM DB2 Intelligent
Miner Visualization, we had to deal with various
problems. The following subsections describe two of
them.

Mixing standard components with newly created
components. We embedded the newly created com-
ponent association graph that is shown in Figure 5
into a scroll pane that is provided by the Java swing
library. The association graph consists of two graph-

WILLUKN ET AL. 663

Figure 10 Example of action map and input map
Actions Key id Key Stroke | Key id
Undo Undo_id Ctrl Z Undo_id
Redo Redo_id Ctrl Y Redo_id
Copy Copy_id Ctrl C Copy_id
Paste Paste_id Ctrl V Paste_id

Action Map Input Map

Figure 11 The WHEN_FOCUSED scope

ical elements: circles and arrows. The circles and the
arrows are used to represent associations between
two elements. These elements can be moved man-
ually in the graph. If the canvas, or screen area, is
too small, a scroll bar can be used to scroll to the
part that is not visible initially.

Because the association graph is a new component,
its navigation keys must first be defined. It must be
possible to navigate as to where the focus is placed
in the graph, and to select and move the elements.
We defined keys for the following actions:

e Focus navigation—Arrow keys, Home key, and
End key

e Selecting elements—Space bar

* Moving elements—Shift key and Arrow keys

664 WILLUHN ET AL

For more information, see the earlier subsection on
interaction techniques.

From an ease-of-use point of view, it is vital to pro-
vide intuitive focus navigation. Therefore, we defined
the Arrow keys to move the point of focus. How-
ever, this generates a conflict with the standard scroll
bar component. As the default, the Arrow keys are
used to move the scroll bars. As a result, the scroll
bar could only be moved with the Page Up key and
the Page Down key. The solution from the ease-of-
use viewpoint is to redefine the scroll bar keys to be
the Shift Arrow keys, because focus navigation is
used more often than the scroll bar and therefore
is more important.

It is good practice not to hard-code the key binding
but to use a more flexible approach.

In the Java language, keyboard actions are managed
with the help of input and action maps. An action
map is a structure that stores all the possible actions
that can be executed with a key identifier (ID), so
that the actions can be retrieved easily and assigned
to any key stroke combination or menu item. In con-
trast, an input map is a structure that maps a spe-
cific key stroke combination with a key ID of an ac-
tion stored in an action map (Figure 10).

Every swing component owns one action map con-
taining all the actions that can be executed on this
component, as well as three input maps. Each of the
three input maps is used in a different range, or scope,
where the action should take place. That means an
action can be executed in a different context. Every
scope is identified by a constant.

Only the key events coming from the component
owner of the input map are evaluated. Key events
coming from the parents or children of the compo-
nent are ignored. If a key stroke is registered in the
WHEN_FOCUSED scope of Component 2, the key
stroke only has an effect if the focus is on Compo-
nent 2. If the focus is on one of the other compo-
nents, it has no effect. The placement of the focus
is indicated by the area that contains the texture, as
shown in Figure 11.

The WHEN_ANCESTOR_OF_FOCUSED_COMPONENT
scope is wider than the WHEN_FOCUSED scope. Key
events coming from the component owner of the
input map or from one of its descendants are eval-
uated. Events coming from one of its parents are
ignored. If a key is registered in the scope of Com-

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

ponent 2, the key stroke only has an effect if Com-
ponent 2 or one of its children, Component 3 or
Component 4, have the focus on them. In this case,
the placement of the focus is indicated by the area
that contains the texture in Figure 12.

The WHEN_IN_FOCUSED_WINDOW scope is the wid-
est. The key events coming from all components con-
tained in the same window as the owner of the input
map are evaluated. If a key is registered in the
WHEN_IN_FOCUSED_WINDOW scope of Component
2, the key stroke only has an effect if the window of
Component 2 is where the focus lies or contains the
component that has the focus. The focus is indicated
by the area that contains the texture shown in Fig-
ure 13. This input map is commonly used for mne-
monics or accelerators, which need to be active
regardless of where the focus is in the window.

When a key is pressed on the keyboard, the key
stroke is identified in the input map, and the cor-
responding key ID is used to look up the action in
the action map. If the key ID is found in the action
map, the action is executed. The maps have a de-
fault initialization depending on the selected look
and feel (Figure 14).

To solve the problem with the scroll bar described
earlier, the Shift Arrow key binding is inserted into
the input map of the scroll pane in the
WHEN_ANCESTOR_OF_FOCUSED_COMPONENT scope.
The keys can be used when the focus is on the scroll
bar and in the whole association graph.

Extending standard components to a new compo-
nent. We extended a standard component to realize
a new functionality. The accessibility API is already
implemented in the standard component but must
be adapted for the new functionality. For a detailed
description, see the Java accessibility utilities. '

Asastandard component, a JPanel is used. (A Jpanel
is a Java class that is a generic lightweight container.)
For the application, an expandable panel was
needed. The panel has a title and can be expanded
or collapsed to show or hide information as shown
in Figure 4.

To support the accessibility AP, extra code is needed
for the new functionality. Every component must re-
turn its accessibility context. Because the expandable
panel inherits most of the accessibility features from
the JPanel, only the changed methods must be im-
plemented. The two important items for the acces-

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

Figure 12 The WHEN-ANCESTOR_OF_FOCUSED_
COMPONENT scope

Figure 13 The WHEN_IN_FOCUSED_WINDOW scope

sibility tools are the name of the component and its
current state. For example, a screen reader is able
to inform a blind person about the focused compo-
nent and its state. But the user also needs informa-
tion about what can be done with the component.
Thus, the possible actions for the components must
be listed. Here new functionality is added to a com-
ponent, and therefore, new actions are defined. The
expandable panel has two actions: expand and col-
lapse. (A detailed reference to accessibility can be
found in Reference 8.)

WILLUKN ET AL. 665

Figure 14

Example of default initialization for input map and action map

’ WHEN IN FOCUSED WINDOW
’ WHEN ANCESTOR OF FOCUSED COMPONENT
WHEN FOCUSED

Input Map

Key Stroke

r' 3

Action Map

Action

' N

Key is pressed

Information development

Last, but not least, product-related documentation
such as user manuals and on-line help must be pro-
duced in an accessible format. To provide accessi-
ble documentation, the following requirements must
be met:’

* Provide documentation in an accessible format.

¢ Provide information on all accessibility features in-
cluding keyboard access.

» Test for accessibility using available tools.

Developing accessible documentation. For the
manuals, at least one of the available accessible elec-
tronic formats must be provided, for example, Hy-
pertext Markup Language (HTML) or Portable Doc-
ument Format (PDF).

* Manuals in HTML format must follow the IBM Web
Accessibility Checklist.

e Manuals in PDF format must be created according
to the Adobe Systems, Inc. guidelines for acces-
sibility.

Documenting accessible features. The accessible
features of a product must be described in the man-
uals and in the on-line help system. In a user’s guide
or in an administration guide, the accessible features
are described in a separate chapter in the body of
the book or in the appendix. In an on-line help sys-
tem, the accessible features are described in a sep-
arate topic that includes subtopics on the different
accessibility features.

666 WILLUHN ET AL

v

Action is executed

Furthermore, the following keywords must be added
to the index of the manual and in the index of the
on-line help system: accessibility, disability, keyboard,
shortcut keys. These words must also be searchable.

In the 1BM DB2 Intelligent Miner Visualization doc-
umentation, the following basic accessibility tasks are
covered:

Navigating by using a keyboard

Customizing fonts

Customizing colors

Providing alternative descriptions for graphics that
can be read by a screen reader

Finally, all product documentation must be tested
by using screen-reading tools.

Concluding remarks

Developing software that is accessible to users with
disabilities requires multidisciplinary teamwork and
a User-Centered Design approach. Like usability,
accessibility is more than a simple add-on. For ap-
plications that are highly graphical, specialized forms
of presentation and interaction may be required.

Early in the planning phase, the development team
must carefully determine which skills, methods, and
tools are needed to design, implement, and test ac-
cessibility features because these activities can oc-
cupy significant time and resources. For this highly
graphical product, the effort for coding and testing

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

was approximately 20 percent greater. It must be
noted, however, that this effort applied to the first-
time implementation and that it included the learn-
ing curves of all team members; the effort for sub-
sequent developments is expected to be significantly
lower.

The design solutions presented in this paper were
aimed at providing a basic enablement for accessi-
bility; that is, disabled users are not excluded from
using the application. However, there is still much
room for improvement toward an “intelligent user
interface” that is able to adapt itself to the charac-
teristics and behavior of the user.'® For instance, in-
stead of users switching manually from graphical to
textual modality, the system could present the most
appropriate modality automatically, select and fil-
ter the content accordingly, and so forth.

Accessibility checklists and coding guidelines give es-
sential guidance to programmers; nevertheless, pre-
vailing development environments may not include
support for all accessibility problems. The examples
for high-contrast settings and keyboard handling, as
described in this paper, may help solve some of these
issues.

Acknowledgment

The authors would like to thank Andrea Snow-
Weaver and Phillip Jenkins from the IBM Acces-
sibility Center for their invaluable advice and help.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Microsoft Corporation, or Linus Torvalds.

Cited references

1. H. S. Kaye, Computer and Internet Use Among People with
Disabilities, Disability Statistics Report (13), U. S. Depart-
ment of Education, National Institute on Disability and Re-
habilitation Research, Washington, DC (2000).

2. C.A.Meares and J. F. Sargent, The Digital Work Force: Build-
ing Infotech Skills at the Speed of Innovation, U.S. Depart-
ment of Commerce, Technology Administration, Office of
Technology Policy, Washington, DC (1999).

3. Laws, Standards, and Regulations, IBM Corporation, http://
www.ibm.com/able/laws/index.html.

4. Web Accessibility Initiative, World Wide Web Consortium,
http://www.w3.org/ WAL

5. Electronic and Information Technology Accessibility Stan-
dards, U.S. Architectural and Transportation Barriers Com-
pliance Board, http://www.access-board.gov/sec508/
508standards.htm.

6. E. Bergman, “Towards Accessible Human-Computer Inter-

IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

action,” Advances in Human-Computer Interaction, Vol. 5, J.
Nielsen, Editor, Ablex Publishing Corporation, Norwood, NJ,
now available from Intellect Ltd., Exeter, UK (1995).

7. Developer Guidelines, Software Accessibility, IBM Corpo-
ration, at http://www.ibm.com/able/guidelines.html.

8. R. S. Schwerdtfeger, IBM Guidelines for Writing Accessible
Applications Using 100% Pure Java, Developer Guidelines,
IBM Corporation, at http://www.ibm.com/able/guidelines/
java/snsjavag.html.

9. Human-Centered Design Processes for Interactive Systems, 1SO
13407, International Organization for Standardization, Ge-
neva (1999).

10. K. Vredenburg, S. Isensee, and C. Righi, User-Centered De-
sign: An Integrated Approach, Prentice Hall, Upper Saddle
River, NJ (2002).

11. C. Stephanidis, D. Akourmianakis, M. Sfyrakis, and A.
Paramythis, “Universal Accessibility in HCI: Process-Ori-
ented Design Guidelines and Tool Requirements,” Proceed-
ings of the 4th ERCIM Workshop on User Interfaces for All,
Stockholm (1998).

12. DB2 Intelligent Miner for Data, IBM Corporation, at http:
www.ibm.com/software/data/iminer/fordata;/.

13. Java Accessibility Utilities, Sun Microsystems, Inc., at http:
java.sun.com/products/jfc/jaccess-1.3/doc/.

14. G. W. Meyer and D. P. Greenberg, “Color Defective Vision
and Computer Graphics Displays,” IEEE Computer Graph-
ics and Applications 8, No. 5, 28—40 (1988).

15. H. Brettel, F. Viénot, and J. D. Mollon, “Computerized Sim-
ulation of Color Appearance for Dichromats,” Journal of the
Optical Society of America A 14, No. 10, 2647-2655 (October
1997).

16. Simulation of Colorblind Vision, http://vischeck.com.

17. Y. Saillet, Enhance the Accessibility of Your GUIs: Build a Cus-
tomizable Cross-Platform Look and Feel for Visually Impaired
Users, developerWorks, IBM Corporation (July 9,2003), http:
/lwww.ibm.com/developerworks/java/library/j-customlaf;.

18. M. T. Maybury, “Intelligent User Interfaces for All,” in User
Interfaces for All, C. Stephanidis, Editor, Lawrence Erlbaum
Associates, Mahwah, NJ (2001), pp. 65-80.

Accepted for publication July 10, 2003.

Dirk Willuhn IBM Germany Laboratory, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (dwilluhn@de.ibm.com). Mr. Willuhn,
a senior usability engineer, joined IBM Germany as an HCI and
user research specialist in 1988. He has been a UCD team lead
and user interface designer for a number of IBM products, in-
cluding workflow management, database performance monitor-
ing, data mining, and financial messaging. As a member of the
IBM Corporate UCD Advisory Council and German DATech
organization, he contributes to the development of procedures
and methods for usability testing and User Engineering. He re-
ceived his diploma in psychology from the University of Tuebin-
gen, Germany.

Carsten Schulz IBM Germany Laboratory, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (schulzc@de.ibm.com). Mr.
Schulz, a software developer, joined IBM Germany as a software
engineer in 2000. He has been working in data-mining product
development as a developer and team lead for visualization of
data-mining results. He received his diploma in computer science
from the University of Braunschweig, Germany.

WILLUHN ET AL.

667

Lieselotte Knoth-Weber IBM Germany Laboratory, Schoe-
naicherstrasse 220, 71032 Boeblingen, Germany (lkw@de.ibm.com,).
Mrs. Knoth-Weber is currently a senior information developer,
having joined IBM Germany as a management assistant in 1970.
She was a management assistant in various IBM departments such
as quality assurance, controlling, and plant management of the
semiconductor manufacturing plants in Sindelfingen and Han-
nover, Germany. From 1988 until 1990 she was manager in the
Central Administration department. In 1990 she joined the IBM
Software Laboratory as an information developer. She has been
team lead for various IBM projects, including data mining and
content management.

Stephan Feger IBM Germany Laboratory, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (sfeger@de.ibm.com). Mr. Feger
currently is an advisory visual designer and has worked as a vi-
sual designer in IBM Software Solutions Development, Boeblin-
gen since 1995, driving the visual design direction for products
such as MQSeries® Workflow, Intelligent Miner for Data, and
DB2 Performance Monitor. He joined the IBM Boeblingen De-
velopment Laboratory in 1984 and served as an industrial designer
for a wide range of IBM hardware products until 1994. He re-
ceived his diploma in industrial design from the State Academy
of Fine Arts, Stuttgart and is a PMI- (Project Management
Institute®) certified Project Management Professional (PMP).

Yannick Saillet IBM Germany Laboratory, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (ysaillet@de.ibm.com). Mr. Sail-
let is a software engineer and joined IBM Germany as a software
developer in 1998. He first worked for IBM Learning Services
as a software engineer in several distributed learning projects.
He joined the IBM Boeblingen Laboratory in 2000 and has since
been active in the development of DB2 Intelligent Miner prod-
ucts. He received his masters degree from the ESSTIN (Ecole
Supérieure des Sciences et Technologies de I'Ingénieur de Nancy)
in Nancy, France.

668 WILLUHN ET AL. IBM SYSTEMS JOURNAL, VOL 42, NO 4, 2003

