250 MENON ET AL.

IBM Storage Tank—
A heterogeneous
scalable SAN

file system

As the amount of data being stored in the
open systems environment continues to grow,
new paradigms for the attachment and
management of data and the underlying
storage of the data are emerging. One of the
emerging technologies in this area is the
storage area network (SAN). Using a SAN to
connect large amounts of storage to large
numbers of computers gives us the potential
for new approaches to accessing, sharing,
and managing our data and storage.
However, existing operating systems and file
systems are not built to exploit these new
capabilities. IBM Storage Tank™ is a SAN-
based distributed file system and storage
management solution that enables many of
the promises of SANs, including shared
heterogeneous file access, centralized
management, and enterprise-wide scalability.
In addition, Storage Tank borrows policy-
based storage and data management
concepts from mainframe computers and
makes them available in the open systems
environment. This paper explores the goals of
the Storage Tank project, the architecture
used to achieve these goals, and the current
and future plans for the technology.

IBM Storage Tank* (ST) is a multiplatform, scalable
file system and storage management solution that
works with storage area networks (SANs). By means
of SANs, thousands of computers can connect to and
share a large number of storage devices that range
from simple disks to large, high-performance, high-
function storage systems. The current state of SAN

0018-8670/03/$5.00 © 2003 IBM

by J. Menon
D. A. Pease
R. Rees
L. Duyanovich
B. Hillsberg

technology limits its use to machine room environ-
ments; therefore, ST is also currently limited in the
same way. As SANs evolve beyond machine room en-
vironments, so will ST.

ST goes beyond cluster file systems, such as the IBM
General Parallel File System (GPFS),' that allow a
cluster of homogenous (single operating system)
computers to share data by allowing thousands of
heterogeneous computers, some subset of which may
be clustered, to share data. ST can provide an effec-
tive solution for customers with as little as tens of
computers and a terabyte of data, and can scale up
to support customers with thousands of computers,
petabytes of data, and billions of files.

In addition to sharing data, ST also centralizes stor-
age management functions such as backup, restore,
and file allocation. This centralization replaces the
labor-intensive, computer-by-computer storage man-
agement that is currently in practice. ST further
simplifies storage management by supporting pol-
icy-based storage management. An administrator
specifies policies for how backup, restore, alloca-
tion, and so on are to be performed, and the ST
system enforces these policies without human in-
tervention. As a result, ST is an important step in
the direction toward autonomic computing.?

©Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

This paper describes the Storage Tank architecture
and design. Whenever we describe the current sta-
tus of ST in this paper, we are referring to the status
of the ST prototype built at the IBM Almaden Re-
search Center.

Motivation

Customers face many issues today as they build or
grow their storage infrastructures. Although the cost
of purchasing storage hardware continues its rapid
decline, the cost of managing storage is not keeping
pace. In some cases, storage management costs are
actually rising. Recent studies by Gartner, Inc.® and
IDC* show that the purchase price of storage hard-
ware comprises as little as 5 to 10 percent of the to-
tal cost of storage. Factors such as administration
costs, downtime, environmental overhead, device
management tasks, and backup and recovery pro-
cedures make up the majority of the total cost of own-
ership. Information technology managers are under
significant pressure to reduce costs while deploying
more storage to remain competitive. They must ad-
dress the increasing complexity of storage systems,
the explosive growth in data, and the shortage of
skilled storage administrators. Furthermore, the stor-
age infrastructure must be designed to help maxi-
mize the availability of critical applications.

To address these issues, ST provides centralized stor-
age management for the many different servers and
operating systems present in a typical customer envi-
ronment. The alternative of individually managing
many servers is a major reason for the high cost of
storage management today.

In many customer environments, data sharing is also
an important requirement. Data are often generated
by an application running on a particular operating
system and then later processed by other applica-
tions running on different operating systems. In some
cases, this pipeline operation, from creation of data
through final processing, may consist of three or four
stages on three or four different operating systems.
ST provides high-speed, direct-access data sharing
across heterogeneous platforms for such applica-
tions, thus eliminating the need to copy data between
the steps of the pipeline operations.

ST is designed to provide I/O performance compa-
rable to that of local file systems, as well as increased
scalability, high availability, and centralized, auto-
mated storage and data management. It is also de-
signed to provide performance superior to network-

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

attached storage (NAS) for data sharing among
heterogeneous computers. These attributes will ad-
dress customer requirements for growth capability,
minimal-to-zero downtime, data sharing, and sim-
plified storage management. The policy-based au-
tomation of storage and data management tasks in
ST provides an important first step toward autonomic
storage management.>

In the next section, the problems to be solved are
described in greater detail. In the fourth section, we
present the ST architecture and design, and in the
fifth section, we compare the ST approach to alter-
native approaches. In the sixth section, we discuss
our future plans for ST.

Problems to be solved

We begin with a description of storage area networks,
OT SANs. SANs solve many problems for customers and
simplify storage management, but their full poten-
tial remains untapped without a scalable, multiplat-
form, SAN file system such as ST.

Background on storage area network technology.
SANs enable the direct connection of large numbers
of computers to large numbers of storage devices that
range from simple disks to large, high-performance,
high-function storage systems. A SAN can be built
using Fibre Channel® networks, Ethernet networks,
or, in the future, InfiniBand** networks.” Comput-
ers use the SCSI (Small Computer System Interface)
Protocol® to talk to storage systems or devices on
the SAN—sSCSI on Fibre Channel is called Fibre
Channel Protocol, or FCP, SCSI on Ethernet is called
iscs1, and scsI on InfiniBand is called scsI VI Pro-
tocol (SVP). SCST is a block-oriented protocol—com-
puters access storage over the SAN by reading and
writing blocks of data from storage devices.

With a SAN, storage can be separated from the com-
puter that uses it. SANs make it easier for adminis-
trators to make server and storage decisions inde-
pendently, and enterprises are not required to make
their storage purchases from their system vendor.
Large, high-performance, high-function storage sys-
tems, such as the IBM TotalStorage™ Enterprise Stor-
age Server*,? can be shared among many hosts.

For security purposes, SANs support zoning. Using
zoning, we can group a subset of the computers and
a subset of the storage systems into a zone so that
they can see only each other, not other computers
and storage systems in other zones.

MENON ET AL. 251

Figure 1 Virtualization

Furthermore, storage space can be assigned where
it is needed. In a traditional environment, unused
logical volumes or partitions on one system typically
cannot be used by other systems. With a SAN, that
free space can be partitioned and allocated efficiently
and effectively. The ability to share free space among
multiple systems allows administrators to achieve
higher space utilization levels and thus lower their
overall storage costs. However, although SANs and
the storage devices that support them have provided
improvements in storage and space management,
many of the opportunities presented by SANs remain
untapped.

Background on virtualization. Essentially, virtualiza-
tion introduces another layer between computers and
storage systems. This layer permits a level of in-
direction between storage devices as seen by com-
puters and storage devices as exported by storage
systems. Virtualization is illustrated in Figure 1. Vir-
tualization allows a storage device as seen by a com-
puter to actually span multiple storage systems. The
virtualization layer keeps the mapping between stor-
age devices as seen by computers (host storage
devices) and storage devices as exported by storage

252 MENON ET AL.

5

k|
1.0
i

BLOCK VIRTUALIZATION

systems (exported storage devices). Virtualization al-
lows remapping of host storage devices to exported
storage devices without causing a computer to be re-
booted—as a result, it deals more gracefully with the
addition and removal of storage systems than sys-
tems without virtualization.

Problems still unsolved. SANs and virtualization al-
low storage devices to be shared by multiple heter-
ogeneous operating systems. However, native file sys-
tems, such as NTFS (New Technology File System)
for the Windows** platform ' or JFS (journaled file
system) for the AIX* operating system,'' expect to
have exclusive access to their volumes, and data in
these file systems cannot be directly shared with other
systems.

There are several other problems. First, each differ-
ent operating system, for example the UNIX** and
Windows systems, reserves storage devices for its own
use, and space in a storage device owned by one op-
erating system cannot be used by another. Second,
acomputer cannot create a file anywhere on any stor-
age device on the SAN; it is limited to storage de-
vices or virtual disks that it owns. Third, a computer

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

Figure 2 Difference between a SAN with virtualization and a SAN that uses virtualization with ST

WINDOWS
NT

NT FILE
SYSTEM

UNIX FILE
SYSTEM

does not have access to all files created by any com-
puter, but only to the files it creates. Fourth, it is not
possible to move an application from a computer
running one file system to another computer run-
ning a different file system without also reading all
of the data of the application, modifying the data to
the format of the second file system, and writing all
the data back to disk. Note that some of the prob-
lems mentioned above may exist even if the differ-
ent computers are running the same operating sys-
tem.

All of these problems are addressed by ST. As a re-
sult, ST offers the potential to simplify storage man-
agement significantly.

Figure 2 shows the difference between a SAN with
virtualization that uses many local file systems, one
on each computer (on the left), and a SAN that uses
virtualization with ST to provide a common set of
file services for all computers (on the right).

A variety of shared file systems that provide com-
mon file services, such as Network FileSystem
(NES**),'> Common Internet File System (CIFS),"
and the distributed file systems AFS*/DFS* ' have ex-
isted for a number of years. Typically, such shared
file systems have been subject to three limitations.

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

First, some of these file systems do not appear like
alocal file system to applications that share data, be-
cause they provide semantics that are subtly differ-
ent from those expected of a local file system. Sec-
ond, they interpose an additional computer between
the computer that wants to access the data and the
storage system or device. This interposition causes
performance bottlenecks, particularly for data-inten-
sive applications. Third, they often do not provide
a global namespace automatically; that is, without
significant administrative burden, they do not pro-
vide the ability to access a file from any computer
using the same name. With ST, we avoid all of these
problems.

Another alternative shared file system is a cluster
file system, such as GPFS.! Cluster file systems can
provide local file system semantics and do not in-
terpose an additional computer in the path to data.
However, current cluster file systems support only
homogeneous environments and, therefore, do not
satisfy our heterogeneity requirements. Further-
more, they are focused on high-speed data sharing
and do not address the requirements for simplified
storage management.

The fifth section of this paper compares ST to other
shared file systems in detail.

MENON ET AL. 253

Storage Tank goals and architecture

We are now ready to describe ST more fully. We be-
gin by enumerating the goals for the ST project and
then describe the ST architecture. In reading Stor-
age Tank project goals, keep in mind that ST has a
client/server architecture (as shown later in Figure
3). Note that the servers are configured in a cluster
for scalability and availability and manage only meta-
data. ST clients access data directly from storage de-
vices attached to a storage area network.

Storage Tank project goals. The goals of the ST proj-
ect are as follows:

 Exploitation and enablement of SAN technology—
Traditional network file systems, including NAS, use
a client/server data access model that interposes
intermediate computers called servers in the path
to data. They have the additional limitation of using
conventional networks to transfer the data. Although
these systems allow users to share data, they do not
provide the performance required for data-intensive
applications. In contrast, ST uses a data access
model that allows computers to access data directly
from storage devices using a high-bandwidth SAN,
without interposing servers. Direct data access helps
eliminate server bottlenecks and provides the per-
formance necessary for data-intensive applications.

* Heterogeneous (multiplatform) data sharing—The
ST file system is specifically designed to be easy to
implement in virtually any operating system envi-
ronment. All systems running this file system,
regardless of operating system or hardware plat-
form, have uniform access to the data stored in
the system. File meta-data, such as directory en-
tries, and file attributes, such as last modification
time, are presented to users and applications in a
form that is compatible with the native file system
interface of the platform. ST servers provide the
locking needed to ensure consistent data sharing
between heterogeneous computers. Our goal is to
make ST a solution that is superior in performance
to NAS for heterogeneous data sharing.

* Policy-based storage and data management—One
of the most important goals of the ST project is to
reduce the effort and cost associated with manag-
ing large, complex storage environments. A key to
achieving this goal is policy-based storage and data
management. ST provides the storage administra-
tor with tools for automating the management of
storage resources and the data stored on those re-

254 MENON ET AL.

sources. An example of policy-based management
in ST is the automatic placement of files on appro-
priate storage devices based on specified applica-
tion performance requirements. Policy-based man-
agement of data is a concept that has been common
in IBM mainframe (z/0S*) installations for dec-
ades; " ST brings these desirable features to all op-
erating systems.

Massive scalability of data, servers, and clients—
The amount of data being stored and managed by
installations is growing at an unprecedented rate.
A system such as ST must be ready to manage ever-
increasing amounts of data and numbers of com-
puters. ST achieves scalability through its ability to:

— Attach and control massive amounts of storage
(petabytes)

— Efficiently manage huge numbers of files (bil-
lions)

— Connect to and control file access for large num-
bers of clients (thousands)

— Add as many servers to a server cluster as needed
to support the client load and efficiently distrib-
ute work among those servers

Our goal is to make ST useful over a wide range
of customer environments. Although ST is designed
to support massive scalability, it is also designed
to be an attractive solution for smaller customers
with much smaller numbers of computers and less
data. Thus, small customers can install ST, and ST
will be able to grow with them as they accumulate
more data.

High availability of servers and data—An ST server
cluster performs load balancing and fail-over pro-
cessing to ensure that data are available to users
quickly and continuously in the event of a server
failure. When a server fails, ST reallocates its work-
load to other servers in the cluster.

ST is also designed so that an administrator can
perform SAN administration tasks, such as adding
or deleting disks, allocating storage, moving data,
or initiating a backup, without interrupting system
availability. This design allows execution of stor-
age administration tasks while all ST clients and
servers remain operational and all data remain on
line and available to users and applications.

Finally, new ST clients can be commissioned with-

out reconfiguring or otherwise interrupting the
running system.

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

* Global namespace and single-system semantics—
The ST system presents a single namespace view
of all files in the system to all of the clients, with-
out manual, client-by-client configuration by the
administrator. As a result, a file can be identified
using the same path and file name, regardless of
the system from which it is being accessed. Fur-
thermore, ST organizes its global namespace such
that clients need not specify the actual location of
the data (e.g., the name of the server that serves
the data). This is called location independence.

ST differs from previous distributed storage systems
by providing exact local file system semantics to
its clients. ST lock semantics are rich enough to fully
describe and enforce local file system semantics
in a distributed environment. When clients or serv-
ers fail, ST is designed to enforce cache coherency
and proper file system semantics across the remain-
ing systems.

e Multiple server platforms—The ST server is im-
plemented as a highly portable, user-level appli-
cation, allowing it to run on many systems from
low-end Linux** personal computers to high-per-
formance SP2* supercomputers, or even main-
frames. Server portability gives an administrator
the flexibility to choose the appropriate server plat-
form for the needs of an enterprise. The ST server
has been run on Linux, several versions of UNIX,
and Windows NT**, Windows 2000, and Windows
XP.

 High-performance file 1/0 for all kinds of files—
Because ST accesses data directly over the SAN, all
file 1/0 operations can be as fast as those using a
local file system. Features such as striping and par-
allel 1/0 operations can allow ST to serve applica-
tions with /0 bandwidth requirements beyond
what is typically provided by the native file system.
ST is designed to perform well for all kinds of files,
both small and large. ST improves performance for
large files by eliminating the server from the data
path, and it achieves good performance for small
files by using more sophisticated caching of meta-
data and through the use of a protocol that reduces
message traffic relative to protocols such as NFS.

Storage Tank architecture. Figure 3 illustrates the
Storage Tank architecture. Computers that want to
share data and have their storage centrally managed
are all connected to the SAN. In Figure 3, we show
five such computers, each running a different oper-
ating system. ST is designed to support thousands of

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

computers, initially running these five different op-
erating systems, and then other operating systems
over time. Each of these computers will run a pro-
gram called the ST client. Since the ST client is in-
serted at the virtual file system (VFS) interface on
UNIX systems and as an installable file system (IFS)
on Windows systems, the clients are shown as VFS
or IFS in the figure.

With ST, computers that want to access data run the
ST client. There are also special computers called ST
servers'® that run ST server code, as shown on the
left side of the figure. The ST servers manage file sys-
tem meta-data (file creation time, file security infor-
mation, file location information, and so on), but data
transferred from storage systems or devices to com-
puters do not need to pass through the ST servers.
This eliminates the performance bottleneck prob-
lem from which many existing shared file system ap-
proaches suffer. ST servers are clustered for scalabil-
ity and availability of meta-data operations and are
often referred to as an ST server cluster. Storage sys-
tems and devices that store computer data are sep-
arated from storage systems or devices that store ST
meta-data, as shown in the figure.

ST is built on two logical networks. The control net-
work is used by file system clients and the admin-
istrative client to communicate with ST servers. This
control network carries only lock state and meta-
data, so the amount of data transferred over it is min-
imal. The control network is implemented on an In-
ternet Protocol (1P) network using the IBM Storage
Tank Protocol.!” The second network is the SAN. ST
clients, servers, and storage devices are all connected
to the high-speed SAN. The SAN is used for all data
transfer, which removes the ST server from the data
path and eliminates performance overhead and po-
tential bottlenecks. ST is designed to be independent
of the actual SAN fabric technology. It works with
Fibre Channel networks,’ as well as new emerging
storage networking technologies such as Gigabit Eth-
ernet (iCSI)® and InfiniBand.”

The ST administrative client serves as the adminis-
trative control point. An administrator can perform
administrative tasks on line with no service interrup-
tion to applications running on the clients. An IFS
(or VFS in the case of supported UNIX clients) is in-
stalled on each ST client. An IFS directs requests for
meta-data and locks™® to an ST server and sends re-
quests for data to storage devices on the SAN. ST cli-
ents can access data directly from any storage de-
vice attached to the SAN. ST clients aggressively cache

MENON ET AL. 255

Figure 3 IBM Storage Tank system architecture

STORAGE
TANK
SERVER
CLUSTER

AIX SOLARIS

META-DATA
STORE

META-DATA
SERVER

4l

IP NETWORK FOR CLIENT/META-DATA CLUSTER COMMUNICATIONS

NFS
CIFS

— | EXTERNAL
— | CLIENTS

ADMINISTRATIVE
CLIENT

LINUX WIN2K, XP

D D G G R

STORAGE AREA NETWORK

I SHARED
STORAGE
- DEVICES

#J

MULTIPLE STORAGE POOLS |

file data, as well as meta-data and locks that they
obtain from an ST server, in memory. In contrast to
some other distributed file systems, there is no need
to cache files to local disk because ST clients already
have direct access to data on disk.

Unlike most file systems, ST stores meta-data and
data separately. Meta-data, which include standard
file meta-data such as file name, creation date, and
access control information, also contain the location
of the file data on disk (the extent list). Separating
the meta-data and data allows meta-data to be stored
on high-performance, highly available private server
storage (which can be on the same SAN as the data
storage or on a separate SAN) if needed. Meta-data
must be accessible by all servers in the cluster. Meta-
data are never directly accessed by clients but are
served via the ST Protocol over the IP control net-
work.

256 MENON ET AL.

DATA STORE

Data blocks for any given file are stored on data disks.
Data disks must be configured on the SAN to be ac-
cessible by both ST clients and ST servers. In most
situations, the SAN would be configured with one
zone for ST data disks, clients, and servers. It is also
possible, if desired, to create zones accessible by only
the ST servers and a subset of ST clients to meet spe-
cial security requirements.

An enterprise can use one ST server, a cluster of ST
servers, or multiple clusters of ST servers. Clustered
servers provide load balancing, fail-over processing,
and increased scalability. The servers in a cluster are
interconnected, either on their own high-speed net-
work or on the same IP network that they use to com-
municate with ST clients. The private server storage
that contains the meta-data managed by a server clus-
ter can be attached to a private storage network, per-
haps in a separate zone.

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

Storage Tank abstractions. In addition to the tradi-
tional abstractions found in file systems such as files,
directories, and disk volumes, ST also defines the fol-
lowing two primary abstractions.

¢ Container—A container is a subtree of the global
namespace. It groups a set of ST files and direc-
tories for the purpose of load balancing and man-
agement. After an administrator defines appropri-
ate containers, ST automatically performs load
balancing of these containers across the ST meta-
data servers. Containers are also the basic unit for
storage management operations such as backup,
recovery, and point-in-time snapshot. A system can
have many containers, each capable of storing on
the order of 100 million files, allowing ST to scale
to billions of files.

* Storage pool—A storage pool is a collection of one
or more disk volumes. It provides a logical group-
ing of the volumes for the allocation of space to
containers. It is expected that different storage
pools will have different performance and avail-
ability characteristics. An administrator can spec-
ify policies that allow different applications to au-
tomatically choose different storage pools for the
placement of their data. The files in a container
can belong to different storage pools. Multiple con-
tainers can own storage within a single storage pool.

Together these two abstractions allow independence
between logical naming and physical placement. This
is unlike most file systems, in which the path name
of a file determines the logical volume on which it
is stored.

Storage Tank Protocol. The Storage Tank Protocol
is used for communications between ST clients and
sTservers.'” The protocol implements a locking and
data consistency model that allows the ST distributed
storage system to look and behave like a local file
system.'® The objective of the ST Protocol is to pro-
vide strong data consistency between clients and serv-
ers in a distributed environment in which a SAN is
used to transfer data between clients and disks.

The ST Protocol allows aggressive caching at the cli-
ent and allows the retention of modified meta-data,
data, and lock state beyond close-of-file by an ap-
plication. Furthermore, allocation operations are
piggybacked on other protocol messages for effi-
ciency.

The ST Protocol provides locks that enable file shar-
ing among ST clients or, when necessary, provides

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

locks that allow clients to have exclusive access to
files. An ST server grants locks to clients when files
are opened. The ST Protocol guarantees that when
a client reads data from a file, it always reads the
latest data written to that file by any client.

The ST Protocol includes support for recovery from
network partitions and from server failures within
the server cluster through the use of leases. " It also
provides copy-on-write capability for snapshots or
point-in-time copies of data in a SAN environment.

Storage Tank clients. ST enables full, transparent data
sharing of files among heterogeneous clients, such
as those running the Windows 2000, AIX, Solaris**,
Linux, and HP-UX** operating systems. All ST clients
can access the same data using the ST global namespace
as described before. This capability requires no ap-
plication changes; applications use the same inter-
faces to access ST data as they use to access the na-
tive file system.

The ST client is designed to direct all meta-data op-
erations to an ST server and direct all data opera-
tions to storage devices attached to a high-speed net-
work. It makes the meta-data that are visible to the
client’s operating system (and to any applications
running on the system) look identical to meta-data
read from a native, locally attached file system.

An ST client is composed of three components as
shown in Figure 4: the file system interface, the cli-
ent state manager (CSM), and operating system ser-
vices. Porting the ST client to a new operating sys-
tem involves writing the platform-specific file system
interface and operating system services. The CSM,
which incorporates the ST-specific part of the file sys-
tem, is platform-independent and does not need to
be changed. The installable file system makes use of
the native virtual memory management and device
drivers of the platform. The client end of the ST Pro-
tocol is implemented by the CSM. The CSM is the in-
termediary between the platform-specific client file
system and the ST server.

The csSM maintains both session locks, which are ac-
quired at file open and are needed to ensure session
semantics, and data locks, which are needed to en-
sure the consistency of the data and meta-data. We
chose to separate locking for sessions on files (open
files) from locking for cache consistency. This sep-
aration permits more flexible caching policies; for
example, a file can be prefetched into cache prior
to any application opening that file.

MENON ET AL. 257

Figure 4 Storage Tank client architecture

— (APPLICATIONS

KERNEL SPACE |

% FILE SYSTEM
U)

CLIENT
STATE

CLIENT

The ST client makes an ST file system appear to be
just another file system on a client. A user sees no
difference between accessing a file from the ST file
system and accessing a file from a local file system.
For example, to open a file in the ST file system, an
application issues a standard file open request. The
client file system passes the request to the CSM, which
determines whether the request can be satisfied us-
ing locks already in its cache. If not, the CSM con-
tacts the ST server to obtain the file meta-data and
locks. The file meta-data supply the client with infor-
mation about the file—its attributes and location on
storage device(s). Locks supply the client with the priv-
ileges it needs to open the file and read or write data.

Read and write requests must also be passed to the
CSM to ensure that locks are consistent with the ac-
cess requests. If, for example, the request is a write,
but the lock is valid only for reading, the CSM com-
municates with the server to request that a lock be
upgraded. Once the required lock or locks have been
obtained, file data can be accessed directly over the
SAN.

ST session locks can be cached or semi-preempted, '®
allowing file system clients to retain distributed locks

258 MENON ET AL.

STORAGE TANK
SERVER CLUSTER

-

OSSERVICES IF w o o = = = = = = =

STORAGE TANK PROTOCOL

even when there are no open instances of the file.
Thus, requests for a given file by subsequent appli-
cations at the same client may be able to be satisfied
without incurring the overhead of contacting the
server and obtaining new locks. If a client requests
an open mode for a file that is incompatible with a
lock already cached at another client, the ST server
asks the other client whether it can comply with the
requested open mode. If there are no incompatible
open file instances, the client complies. Otherwise,
the requesting client is denied access.

The ST compatibility matrix for open modes is com-
plex and is designed to capture the many open modes
defined by both the Windows and UNIX operating
systems. Details are beyond the scope of this paper.
However, our scheme supports both the read and
write compatibility on UNIX and the exclusive modes
of Windows. As an example, whether open for write
is compatible with open for read is a function of the
specific open mode requested.

The cSM also implements the client side of a lease-
based protocol that protects the system from con-
sistency errors caused by network failures.' The ST
server maintains a lease for each client in the sys-

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

tem. This lease is opportunistically updated with each
client/server interaction. If the server is unable to
renew the lease with that client, that client is assumed
to have failed, and the server sets a timer. At the
end of the set period, the server recovers the locks
and is free to provide them to new clients. Leases
allow the system to make forward progress in the
event of network failures when failed clients hold
locks needed by other clients. We expect to exploit
hardware fencing capabilities in SANs to isolate lease-
expired clients.

From the client side, when the lease expires, the cli-
ent must write all “dirty” data from its cache to disk.
Access to the client’s cached data is suspended until
the lease is resolved.

The ST client cache is used to achieve low-latency
access to meta-data and data. A client can cache the
following:

e Data—Caching data allows a client to perform
reads and writes for smaller files locally, potentially
eliminating I/O operations to SAN-attached storage
devices.

e Meta-data—Caching meta-data allows a client to
perform multiple meta-data accesses locally with-
out contacting an ST server.

¢ Locks—Caching locks allows a client to grant mul-
tiple opens to a file locally without contacting an
ST server.

An ST client performs all caching in memory. If there
is not enough space in the client’s cache for all of
the data in a file, the client simply reads the data from
the shared storage device on which the file is stored.
Data access is fast because the client has direct ac-
cess to all storage devices attached to the storage
network. There is no need for a client to cache data
to a private disk.

Storage Tank servers. The ST server is a portable, us-
er-level, C++ application that is easily moved to new
operating systems. “Ports” have been done for the
Linux, AIX, Solaris, and Windows operating systems.

Support for multiple operating systems provides flex-
ibility in choosing the meta-data server cluster plat-
form and allows a range of performance options. For
example, Intel processors running Linux could be
used for cost-effective scalability, whereas an IBM SP2
supercomputer running AIX could be used for high-
end scalability.

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

ST servers provide meta-data, storage management,
and data management services. The following sub-
sections provide detailed information about each
type of service.

Meta-data services. An ST server is designed to per-
form meta-data updates, serve file system meta-data
to clients, grant file and data locks to clients, and
detect client failures and perform client recovery. It
is fundamentally a shared-nothing cluster that is op-
timized for a file system workload. Unlike NAS serv-
ers, ST servers perform no data operation. There-
fore, the ST server is designed and tuned to handle
a meta-data workload—a workload with many op-
erations on small objects that are short in duration,
and in which there are ordering constraints. It im-
plements the ARIES write-ahead logging algorithm
for transaction management, memory management,
and recovery. In normal operation, servers never
need to communicate with each other, allowing the
design to be very scalable. Servers in an ST server
cluster need to communicate only with each other
during failure detection and recovery.

To enhance performance, ST servers write log rec-
ords asynchronously to disk. To preserve the struc-
tural integrity of the file systems, ST ensures the fol-
lowing ordering: data are first written to disks on the
SAN; the meta-data are then sent to the server for
updating; finally, the free-space data structures main-
tained by ST are updated.

An enterprise can use a single server, a cluster of
servers, or multiple clusters of servers. Multiple clus-
ters of servers may be used when the need for sep-
arate administration domains within an enterprise
arises. Using ST servers in a cluster configuration has
the following benefits:

* Load balancing—The containers defined by an ad-
ministrator are the units used for automatic load
balancing among the servers in a cluster. Assign-
ing different containers to different servers permits
the server cluster to operate with minimal synchro-
nization.

* Fail-over processing—ST servers implement a clus-
tering protocol. In the event of a server failure or
loss of network connectivity between servers, the
cluster services cause a new cluster to be reformed,
and the load is distributed among the servers in
the new cluster. The ST group service detects the
loss of a server and assigns another server to re-
cover the log of the failed server, clean up the log,
and redistribute the workload of the failed server

MENON ET AL. 259

to other servers. Clients of the failed server are
redirected to the other servers. The ST Protocol
allows clients to reassert the locks" that they held
with the failed server with the other servers in the
cluster. In this way, the servers do not have to know
which locks were being held by the failed client.
By reasserting locks, clients can retain previously
cached data, and they avoid the expense of obtain-
ing new locks and reading data from storage de-
vices again.

* Scalability—An administrator can add more serv-
ers to a cluster or add more server clusters to the
SAN to serve more data and more clients. The clus-
tering services described above detect a new server,
form a new group that includes the new server, and
redistribute load to balance work across all serv-
ers in the new group automatically and with no ap-
plication impact.

To avoid the processing overhead of dealing with dif-
ferences between server platforms, the ST servers in
a specific cluster must currently all be of the same
type. However, an installation can deploy multiple
clusters of different types. For example, an enterprise
might have one server cluster in which all the serv-
ers run AIX, and another server cluster in which all
the servers run Linux.

Administrative services. There can be one or more ad-
ministrative clients connected to a server cluster.
These clients run an ST-specific administration ap-
plication program and are used by administrators to
manage the ST environment. An administrative cli-
ent is connected to the ST servers via an IP network.
To perform administrative tasks, an administrator
can choose to use either a graphical user interface
or a command line interface.

From an administrative client, an administrator can
perform system management, storage management,
and data management activities. The ST design al-
lows the following administrative tasks to be per-
formed on line with no interruption in service to cli-
ents:

e Create an ST server cluster.

e Commission or decommission server nodes.

e Create and maintain storage pools based on qual-
ity of service or other enterprise-specific require-
ments. For example, an administrator could cre-
ate a storage pool that consists of RAID (redundant
array of independent disks) or striped storage de-
vices to meet reliability requirements, and could
create another storage pool that consists of cached

260 MENON ET AL.

storage devices to meet high-performance require-
ments.

e Manage storage devices; for example, an admin-
istrator can add or remove disk volumes.

* Create containers that are subtrees of the direc-
tory tree in the namespace of a cluster.

* Manage quotas that control the size of containers
or the portion of any given storage pool that can
be used by a particular container.

* Create or manage file placement and other pol-
icies (see the subsection on data management ser-
vices).

* Invoke data movement services (see the following
subsection).

* Create snapshots by container (see the subsection
on data management services).

Storage management services. ST is designed to per-
form a variety of storage management services based
on storage management policies set up by an admin-
istrator. It performs these services across the SAN
with no client involvement, either automatically or
at an administrator’s request. The following are
among the storage management services provided
by ST:

e Storage pool monitoring, including alert genera-
tion when utilization thresholds are exceeded.

e Volume decommission, which allows data to be
moved from a disk volume to other free space in
the storage pool when that volume must be re-
moved from service. This function can be used
when equipment leases are ending, or to move data
from a volume that is experiencing a high error
rate. Applications running on ST clients are not dis-
rupted during the data movement.

Data management services. An ST server is designed
to perform these data management services:

e Select a service class for each file based on pol-
icies set by the administrator. Any file attribute
known at file creation time, such as file name, user,
group, or client name, can be used to select the
service class for a file. The service class describes
the requirements for the file and includes attributes
such as allocation options, caching options, per-
formance priority, and availability requirements.

* Manage allocation and placement of data in stor-
age pools on storage devices. Policies are set by
the administrator. Any file attribute known at file
creation time or the service class can be used to
select the storage pool in which the file is stored.
If there is no room in the selected storage pool,

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

files “spill” into the default storage pool, and that
event is logged.

* Use policy-based backup and policy-based file re-
tention, similar to the policy-based file placement
described above.

e Move data between storage pools. This function
provides a nondisruptive data movement capabil-
ity for a file or set of files. It is useful for moving
spilled files into their correct storage pool once
space has been made available or for correcting
storage pool assignments caused by incorrect pol-
icies.

* Take snapshots of the ST data and associated meta-
data. A snapshot creates a point-in-time view of
a container. ST clients support snapshots by im-
plementing a copy-on-write facility. Any data a cli-
ent writes to a file following a snapshot are writ-
ten to a new location in storage. The data that
existed when the last snapshot was taken remain
in their original location. Data mining applications
and backup utilities can access the point-in-time
view of ST data without interrupting normal data
operations in the file system. While a snapshot is
being taken, all data remain on line and can be
read and written by clients.

Use of storage pools. An administrator can choose
to use various types of storage on the SAN. Data stor-
age can be any SAN-enabled disk or subsystem (such
as RAID, JBOD [just a bunch of disks], or hierarchi-
cally managed devices) and will ultimately include
tape and optical devices.

A storage pool can consist of multiple disks that re-
side on any combination of heterogeneous storage
devices. To an application, a storage pool appears
as a single storage space in which the application can
store data without the need to know anything about
the characteristics or boundaries of the physical disks.

A storage administrator sets up storage pools to meet
specific needs of an enterprise. For example, an en-
terprise might want to deploy storage pools that con-
sist of disks located on fast devices for transactional
data and storage pools of disks on slower devices for
backup data. An enterprise might also want to de-
ploy multiple storage pools that provide different
availability characteristics, or, perhaps, separate stor-
age pools for each department within the enterprise.

After setting up storage pools, an administrator can
increase or decrease the sizes of specific storage pools
to meet changing needs and can easily move data
from one storage pool to another. All of these tasks

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

are transparent and nondisruptive to users and ap-
plications.

SAN/NAS convergence using Storage Tank. In gen-
eral, we believe that ST can be superior to NAS in
many respects. Nevertheless, there can be situations
where a customer also needs NAS access. For exam-

A storage pool can consist
of multiple disks that reside on any
combination of heterogeneous
storage devices.

ple, a customer has a SAN in the machine room but
also needs to access data from other machines that
are outside of the machine room. The customer
chooses NAS access for the machines outside of the
machine room. In a second example, the customer
chooses to implement a small SAN to connect only
his or her high-performance servers to storage. For
all other servers, the customer decides that the lower
performance of NAS is acceptable. In a third exam-
ple, the customer may have some machines running
operating systems that are not supported by ST and,
therefore, chooses NAS to connect these machines
to shared storage.

The problem is that most vendors provide different
SAN and NAS storage solutions. This is inflexible for
customers because it does not let them share data
between servers connected to the SAN and servers
connected to NAS. Furthermore, as customers con-
vert servers using NAS access to use SAN access, data
will need to be moved from NAS storage to SAN stor-
age. Besides the disruption to the applications dur-
ing this data move, the move might also idle the NAS
storage resources, while possibly forcing customers
to make new SAN storage acquisitions.

In our view, choosing between SAN access and NAS
access should not be forced on customers at the time
they acquire the storage solution. In our approach,
customers acquire SAN storage and Storage Tank for
all of their needs. Servers that need NAS access can
obtain access via a gateway machine running a NAS
server (such as NFS or CIFS) along with an ST client.
Data can be created using SAN access from one server
and read back later using NAS access from another
server, or vice versa. It is also possible to have mul-
tiple gateway machines that allow access to a com-

MENON ET AL. 261

mon set of files stored on ST by running a distrib-
uted version of NAS server code in the multiple
gateway machines. The distributed NAS server needs
to coordinate NAS locking and NAS client cache con-
trol across all the gateway machines for correct op-
eration. The following are some other benefits of us-
ing such a gateway approach:

e Scalability—A single NAS gateway can access all
of the files in ST. Since ST is designed to be more
scalable than many other file systems, such an ap-
proach allows access to large amounts of data. Fur-
thermore, a distributed set of NAS gateways can
be built to support a very large number of NAS cli-
ents.

* One hundred percent compatibility with both NFs
and CIFS—Typically, NAS solutions offer full NFS
compatibility and less than full CIFS compatibility,
or they offer full CIFS compatibility, but less than
full NFS compatibility. By running an NFS server
and ST client on a UNIX gateway, and a CIFS server
and ST client on a Windows gateway, ST allows full
compatibility of both NFS and CIFS. This is possi-
ble because the underlying ST file system supports
both the Windows and UNIX operating systems.

* Reliability and fail-over processing—Because
many NAS gateways can be ST clients and can ex-
port the same files, requests from clients of a failed
NAS gateway can be transferred to another NAS
gateway using any technique supported by the file
server, such as high-availability cluster multipro-
cessing or IP address stealing.

¢ Policy-based storage management for NAS access.

To summarize, customers can be given two choices
for accessing data in ST. They can load the ST client
on a computer and then access the data using the
SAN directly, thus allowing high-speed access to ST
data. Alternatively, customers may choose not to load
the ST client on a computer. From this computer
without the ST client, access to ST data can still be
made using a NAS protocol such as NFS or CIFS. That
request will arrive at a NAS gateway server running
an ST client. Sharing of data between computers with
an ST client installed and computers without ST cli-
ents installed is now possible.

Support for other applications. Storage Tank pro-
vides support for database systems and other appli-
cations.

Database support. The ST file system provides a spe-
cial mode of operation, called the passthru 1/0 mode,
which is particularly useful for database systems and

262 MENON ET AL.

for applications that perform sequential 1/0 opera-
tions. When using this mode, the system performs
direct writes to disk, does not cache data, and allows
distributed applications on different computers to
write data to the same file at the same time. Using
the passthru /0 mode makes files behave more like
raw devices. This gives database systems direct con-
trol over their /0 operations, while still providing
all the advantages of the ST file system, such as policy-
based management and volume backup.

Since database systems do their own caching, this
mode of operation eliminates double caching. It also
eliminates the false sharing that results when data-
bases want to operate against different tuples that
are stored in the same disk block.

File system caching also hinders applications that
perform sequential I/O operations and does not pro-
vide them much benefit. Thus, we expect that pass-
thru /0 mode may also be beneficial for high-per-
formance computing applications.

The passthru 1/0 mode is associated by policy with
a database file at file creation.

ST will be enabled to support the DB2* (Database
2*¥) Data Links Manager,* which provides referen-
tial integrity between databases and file systems. This
will prevent files referenced by databases from be-
ing moved or deleted, thereby maintaining referen-
tial integrity.

Other application support. Special-purpose applica-
tions, for example, digital libraries, can access data
from the ST distributed storage system by using an
application programming interface to talk directly
to the ST server using the ST Protocol. Because these
applications do not use the file system to access their
data, the clients on which they run do not need to
have the IFS installed.

Comparison of Storage Tank to alternative
approaches

ST provides a shared file system for servers in a ma-
chine room. In this section, we compare it to alter-
native technologies that address similar needs.

Comparison to NAS. One popular technology for
providing shared access to file data is NAS. NAS prod-
ucts are available from IBM, Network Appliance,
Inc.,? EMC Corporation, and several other vendors.
All file data to be shared are stored on a NAS server,

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

and machines that want to access data do so through
the NAS server.

The NAS approach is inferior to ST in several ways
that we have articulated elsewhere, but repeat here.
First, such an approach is slower than ST because all
data must pass through an extra server (the NAS serv-
er). Thus, it impacts throughput for data-intensive

There are many
important differences
between ST and
NAS accelerators.

workloads. It may also impact latency. In addition,
the ST Protocol permits a more sophisticated level
of caching and requires fewer messages between the
client and the server, which can provide response
time benefits. Our experiments show that NAS can
be as much as three to ten times slower than using
alocal file system today. In the future, with the avail-
ability of network cards that offload TCP/IP (Trans-
mission Control Protocol/Internet Protocol) process-
ing, and the use of remote DMA (direct memory
access) capability, we expect that NAS will become
much faster. However, our analysis leads us to be-
lieve that NAS will continue to need 1.2 to 2.5 times
as much processing power as an approach using lo-
cal file systems and SAN storage to achieve equiv-
alent performance.

Second, NAS semantics, particularly NFS semantics,
are different from local file system semantics for ap-
plications that do data sharing. New versions of NFS,
like NFSv4, come closer to local file system seman-
tics, but differences remain. An application written
to use an NFS server cannot expect the same locking
and consistency guarantees (for example, when there
are multiple applications writing to the same file)
obtained from a local file system. In contrast, the
closeness of ST semantics to local file system seman-
tics is important for applications that perform data
sharing.

A third difference is that NAS systems typically do
not provide a global namespace automatically,
whereas ST does. As a result, when an ST server is
added, there is no impact on applications. When a
NAS server is added, however, there is typically a
manual movement of data needed between the NAS

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

servers, and all clients must remount the NAS serv-
ers.

AFS/DFS, " like NAS, interposes an extra server be-
tween the computer and the storage system or de-
vice. However, it is better than NAS in that it does
provide a global namespace, and it does come much
closer to achieving local file system semantics.

Comparison to DAFS. The NAS vendors, Network
Appliance in particular, appreciate the shortcomings
of NAS for use in machine room environments. They
have proposed a new protocol called Direct Access
File System (DAFS)* as an alternative to NAS.

DAFS semantics are closer to local file system seman-
tics, eliminating one of the issues with NAS. DAFS also
has improved performance relative to NAS. However,
it still requires the use of an additional server in the
path to the data, so we believe that its throughput
and response time will still not be as good as that
of ST, even though DAFS clients may consume fewer
CPU resources than ST clients.

Furthermore, DAFS requires the use of a new kind
of storage network—one that has Remote DMA ca-
pability. In particular, DAFS requires the deployment
of a new kind of network interface card. Most stor-
age networks deployed by customers today do not
support Remote DMA; therefore, they cannot sup-
port DAFS unchanged. ST, in contrast, can work with
existing SAN networks that customers already have
in place.

Several varieties of DAFS have been proposed. The
version of DAFS that provides the most significant
performance improvement, called uDAFS, requires
changes to applications in order to realize its ben-
efits. But ST requires no application changes.

Comparison to NAS accelerators. Another class of
product to which we need to compare ST is NAS
accelerators. Examples of NAS accelerators are
SANergy* from 1BM and HighRoad** from EMC.
NAS accelerators work just like NAS, except when an
application accesses a large file. In the case of large
file access, the NAS server, instead of returning the
file to the NAS client, returns the location of the file
instead. The NAS client then accesses the large file
directly over a SAN, avoiding the overhead of going
through the NAS server. This mode of access has
some similarity to the way ST works; however, there
are many important differences between ST and NAS
accelerators.

MENON ET AL. 263

Since NAS accelerators are like NAS in many respects,
they, too, do not provide local file system semantics.
Rather, they provide NAS semantics. As we have ar-
gued before, this may be inadequate for some ap-
plications that do data sharing. However, they are
better than NAS in performance for large files be-
cause they allow direct SAN access for large files.

NAS accelerators are focused on improving large file
performance. Since they do not use an improved pro-
tocol such as ST, they typically cannot improve the
performance of access to small files in the way ST
can. They also do not share many of the other goals
of ST, such as improved storage management for het-
erogeneous computers, consistent data sharing, and
massive scalability. They share many of the disad-
vantages of NAS, such as the lack of a global
namespace and the need for remounting NAS serv-
ers when new servers are added.

Comparison to cluster file systems. Cluster file sys-
tems, such as GPFS' and xFS from the Berkeley NOW
project,? are an alternative form of shared file sys-
tem technology. Such file systems do not use a sep-
arate meta-data server. Cluster file systems differ
from ST in several key ways. First, today’s cluster file
systems are designed to work only in homogenous
server environments. That is, they will work if all serv-
ers are running the same operating system, such as
AIX or Linux, but not in heterogeneous environ-
ments. ST, as we have discussed, supports heteroge-
neous environments. Although cluster file systems
can probably be made to support heterogeneous
server environments, it is much harder for them than
it is for ST because the code to implement a cluster
file system is larger and more complex than the code
to implement an ST client. This makes the cluster
file system harder to port and maintain on a diverse
set of platforms. Second, cluster file systems run on
tightly coupled clusters, where each computer knows
the status of other computers in the cluster, and they
all share a common mission or application. ST cli-
ents run on independent computer systems, which
may or may not share a common mission. It is sim-
pler to add another ST client than it is to add an-
other computer in a cluster file system because ST
clients run on independent computer systems. Clus-
ter file systems are limited in scalability by the pro-
tocols used to synchronize meta-data and data up-
dates. We expect the ST architecture to permit higher
scalability because the clients are not synchronized,
and because the ST servers operate on different parts
of the namespace and also need no synchronization
in normal operation. Finally, improving storage man-

264 MENON ET AL.

ageability is not a goal of cluster file systems, whereas
it is a goal of ST.

Comparison to multiplatform file systems with sep-
arate meta-data servers. Finally, we need to com-
pare ST to other multiplatform SAN file systems, such
as the SGI Clustered XFs** (CXFS) file system,* that
also use a separate meta-data server. CXFS has many
similarities to ST; however, we believe that ST is bet-
ter in the following respects:

e The ST meta-data servers support finer-grained
load balancing. ST has the notion of containers,
which are smaller than a file system, and each meta-
data server handles all traffic from a container. On
a meta-data server failure, the load on that meta-
data server can be distributed to the remaining
meta-data servers. In CXFS, one meta-data server
handles one file system. When a meta-data server
fails, it fails over to another meta-data server but
does not leverage all of the other meta-data
servers.

* ST supports policy-based storage management;
CXFS has no such support.

* CXFS clients are part of a cluster; ST clients are in-
dependent computers. As a result, adding or drop-
ping new clients is simpler in ST. When a new cli-
entis added in CXFS, all other clients need to agree
that a new client is now a part of the cluster. No
such agreement is needed in ST.

e Although CXFS has Windows support, it does not
support NT lock modes, NT Access Control Lists,
or case-insensitive names in the way ST does.

* CXFS meta-data servers are limited to the IRIX**
operating system. ST meta-data servers are oper-
ating system independent.

Comparison to NASD. The Network Attached Se-
cure Disk (NASD) project at Carnegie Mellon Uni-
versity®® was among the first to propose that file serv-
ers should be removed from the data access path to
achieve improved performance. Like ST, there are
clients and there are servers that are mainly used for
meta-data processing. For storage, they used a new
kind of storage device (called object-based storage
and discussed later), different from today’s tradi-
tional block-oriented storage device. Rather than
support commands such as read a block and write
a block, their new storage device (NASD) supported
commands such as read an object at offset X, write
an object at offset Y. Furthermore, their NASD de-
vice supported enhanced security checking. This
project implemented a version of NFS and AFS based
on the use of NASD. Like ST, the clients make direct

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

access to the disk systems, and the server is used
mainly for meta-data processing.

The NASD project was focused on data sharing be-
tween client computers rather than between servers
in a machine room. In this way it was different from
ST. Furthermore, ST goals for scalability and avail-
ability are more ambitious than the goals in the NASD
project. Third, NASD did not provide policy-based
storage management as ST does. Fourth, NASD cli-
ents were really NAS clients, so they provided NAS
semantics, which we argue is inadequate for some
types of applications that do data sharing. Finally,
ST does not require the use of a new kind of storage
device. As discussed in “Future directions for Stor-
age Tank,” ST has been designed to use object-based
storage devices when they become available, but it
does not require them.

Summary of comparisons with other approaches.
In summary, ST is superior to NAS in performance,
scalability, and consistency semantics. It is superior
to DAFS in some aspects of performance and in com-
patibility with existing storage networks. It is supe-
rior to NAS accelerators in consistency semantics,
scalability, and manageability. It is superior to clus-
ter file systems in heterogeneous system support,
manageability, and scalability. It is superior to NASD
in consistency semantics, policy-based management,
and use of unmodified storage systems. Finally, it is
superior to other multiplatform SAN file systems such
as CXFS in policy-based storage management and
fine-grained server load balancing.

Future directions for Storage Tank

One aspect of the ST architecture that makes it so
appealing is its flexibility. Although initially envi-
sioned as a SAN-based file system and management
solution, ST concepts lend themselves to solutions
that go well beyond that model. Some of the areas
of research that are currently being explored or en-
visioned include:

* Object-based storage devices: Storage devices that
have knowledge of the objects (essentially files) be-
ing stored can add significant capability to a stor-
age environment. For instance, the device can store
specific keys with an object so that host systems
that want to read or write the associated file are
required to present the proper key before being
allowed access to the object. Such an approach
eliminates SAN security problems and makes it fea-
sible to extend ST beyond the machine room to be-

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

come a campus-wide file system. Additionally, ob-
ject storage devices can conceivably optimize data
placement (having intimate knowledge of drive ge-
ometry) or participate in intelligent caching or re-
mote copy operations that are beyond the ability
of current storage devices. Though not initially im-
plemented, STwas developed with the intent to use
object-based storage devices, and the current re-
search prototype supports object-based storage
devices.

Geographically Distributed Tank: Although a cam-
pus-wide, SAN-based file system offers users and
administrators many benefits, there are times when
wide-area file access and sharing are required. As
storage networks develop to cover larger areas (for
example, through iSCSI technology), ST can be ex-
tended to provide the same single namespace and
file sharing semantics over these wider distances.
In this project, we are developing a new protocol
for communication between ST server clusters. A
request to access a file goes to the local ST server
cluster. If the file is not on the local SAN, the re-
quest is forwarded to a remote ST server cluster
on a remote SAN, and the file is then retrieved and
stored on the local SAN before the local ST server
cluster returns the block addresses of the local copy
of the file to the ST client.

zSeries® integration: Though originally imple-
mented as an open systems solution, the architec-
ture of ST is independent of any specific hardware
or operating system. zSeries integration is a nat-
ural extension of the ST platform coverage. Al-
though zLinux integration with ST should be rel-
atively straightforward (given proper hardware
capabilities), OS integration offers both potentially
greater advantages and significantly more techni-
cal challenges. If successful, ST could be the first
system to truly integrate open systems and z/OS file
and data set access.

Integration with autonomic storage systems: A
truly autonomic storage system must include an
overall autonomic manager that works coopera-
tively with all of the components of the storage sys-
tem, including the file system, the storage devices
and controllers, and the storage network infrastruc-
ture. Although it is not possible for ST (or any other
file system) to implement a complete autonomic
storage system on its own, the capabilities of the
system can be extended to work more seamlessly
in a fully autonomic environment. ST may well pro-
vide the model for future file system integration
in an autonomic system.

MENON ET AL. 265

Although these areas are by no means the only ar-
eas of future exploration envisioned for ST, they rep-
resent an interesting set of new directions for the
technology.

Summary

There is a need for a storage system that fully ex-
ploits the benefits of storage area networks. Storage
Tank is a powerful, comprehensive storage manage-
ment solution that takes advantage of SAN technol-
ogy and can address a wide range of customer re-
quirements. It operates in a heterogeneous en-
vironment, which allows data sharing across many
diverse platforms; provides massive scalability of
data, servers, and clients; ensures high availability
of customer data; and includes centralized, auto-
mated storage and data management that helps to
reduce storage management costs. In addition, ST
provides 1/0 performance comparable to that of lo-
cal file systems and better than that of NAS systems.

ST continues to evolve. In the future, NAS gateways
running on top of ST can take advantage of its ease
of scalability and policy-based storage management;
heterogeneous data sharing across wide-area net-
works will be possible; and ST can be integrated more
seamlessly into fully autonomic storage systems.

Acknowledgments

We wish to acknowledge many people who have con-
tributed to this project. Jai Menon, Bob Rees, and
David Pease originally conceived the project, which
took its present form in 1999. Bob Rees has been
the chief architect of the project, and David Pease
has been its manager. Randal Burns provided key
architectural support for the project and completed
his Ph.D. thesis based on Storage Tank. The key ar-
chitects, designers, and implementers on the proj-
ect from Research are Bob Rees, Wayne Hineman,
Darrell Long, Demyn Plantenberg, Rajagopal An-
anthanarayanan, Ralph Becker-Szendy, Bryan
Henderson, and Miriam Sivan-Zimet. Cindy Sulli-
van provided technical writing support. The project
was supported by the IBM Storage Systems Group
(sSG) for the last two years. Linda Duyanovich man-
aged the team from SSG San Jose. Bruce Hillsberg
provided directional support from SSG. The project
has been transferred to SSG Beaverton, where Tom
Clark is the architectural leader. Gordon Arnold pro-
vides key customer insights and prioritizes future di-
rections. We also wish to acknowledge Jonathan Ha-
swell, Marc Eshel, Manoj Naik, Lance Russell,

266 MENON ET AL.

Edward Chron, James Myers, and Juan Gomez for
their work on NAS over Storage Tank. Jonathan Ha-
swell is the manager of this project. For their work
on Distributed Storage Tank, we wish to acknowl-
edge Leo Luan, Ted Anderson, Jeff Riegel, Manuel
Pereira III, Binny Gill, and Chung-Hao Tan. Leo
Luan is the manager of the Distributed Storage Tank
project. In addition, we wish to acknowledge Nor-
man Pass, the second-line manager for the Storage
Tank, NAS over Storage Tank, and Distributed Stor-
age Tank groups.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of InfiniBand Trade As-
sociation, Microsoft Corporation, The Open Group, Linus Tor-
valds, Sun Microsystems, Inc., Hewlett Packard Corporation,
EMC Corporation, or Silicon Graphics, Inc.

Cited references

1. F.Schmuck and R. Haskin, “GPFS: A Shared-Disk File Sys-
tem for Large Computing Clusters,” Proceedings of the Con-
ference on File and Storage Technologies (FAST), USENIX
(January 2002), pp. 231-244.

2. Autonomic Computing, 1IBM Corporation, http://www.

research.ibm.com/autonomic/.

. Gartner, Inc., Stamford, CT, http://www3.gartner.com/.

. IDC, Framingham, MA, http://www.idcresearch.com.

. A. F. Benner, Fibre Channel: Gigabit Communications and
1/O for Computer Networks, McGraw-Hill, Inc., New York
(1996).

6. J. Menon and C. Fuentes, iSCSI Performance and Architec-
ture and Comparison to Other Protocols, IBM Corporation,
Almaden Research Center Report (February 21, 2000).

7. InfiniBand Architecture Specification, Volume 1.0, Release 1.0.
InfiniBand Trade Association (October 24,2000), http://www.
infinibandta.org.

8. R. Weber, Editor, SCSI Architecture Model-2 (SAM-2), Rev.
14, T10 working draft, International Committee for Infor-
mation Technology Standards, Technical Committee T10
(September 2000), http://www.t10.org/index.html.

9. IBM TotalStorage Enterprise Storage Server, IBM Corpo-
ration, http://www-1.ibm.com/servers/storage/disk/ess/.

[T SN

10. R. Nagar, Windows NT File System Internals: A Developer’s
Guide, O’Reilly and Associates, Cambridge, MA (Septem-
ber 1997).

11. A. Chang, M. F. Mergen, R. K. Rader, J. A. Roberts, and
S. L. Porter, “Evolution of Storage Facilities in AIX Version
3 for RISC System/6000 Processors,” IBM Journal of Research
and Development 34, No. 1, 105-110 (January 1990).

12. R.Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon,
“Design and Implementation of the Sun Network FileSys-
tem,” Proceedings of the Summer USENIX Technical Confer-
ence, Portland, OR (Summer 1985), pp. 119-130.

13. P.J. Leach, A Common Internet File System (CIFS/1.0) Pro-
tocol, Technical Report, Network Working Group, Internet
Engineering Task Force (December 1997).

14. J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebothom, and M. J. Wes, “Scale

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

and Performance in a Distributed File System,” ACM Trans-
actions on Computer Systems 6,No. 1,51-81 (February 1988).

15. J. P. Gelb, “System-Managed Storage,” IBM Systems Journal
28, No. 1, 77-103 (1989).

16. L.-F. Cabrera and D. D. E. Long, “Using Distributed Disk
Striping to Provide High (I/O) Data Rates,” Computing Sys-
tems 4, No. 4, 405-436 (1991).

17. R. Becker-Szendy, The Storage Tank Protocol, IBM Corpo-
ration, Almaden Research Center Report (March 2002).

18. R. C. Burns, R. M. Rees, and D. D. E. Long, “Semi-Pre-
emptible Locks for a Distributed File System,” Proceedings of
the 2000 IEEE International Performance, Computing, and Com-
munication Conference (IPCCC), (February 2000), pp. 397-404.

19. R. C. Burns, R. M. Rees, and D. D. E. Long, “An Analytical
Study of Opportunistic Lease Renewal,” Proceedings of the
16th International Conference on Distributed Computing Sys-
tems (ICDCS), (2001), pp. 146-153.

20. C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz, “ARIES: A Transaction Recovery Method Sup-
porting Fine-Granularity Locking and Partial Rollbacks Us-
ing Write-Ahead Logging,” ACM Transactions on Database
Systems 17, No. 1, 94-162 (1992).

21. DB2 Data Links Manager, IBM Corporation, http://www.
ibm.com/software/data/db2/datalinks/index.html.

22. D. Hitz, J. Lau, and M. Malcom, “File System Design for an
NES File Server Appliance,” Proceedings of the Winter 1994
USENIX Technical Conference, San Francisco, CA (January
1994), pp. 235-246.

23. K. Magoutis, S. Addetia, A. Fedorova, M. I. Seltzer, J. S.
Chase, A. Gallatin, R. Kisley, R. Wickremesinghe, and
E. Gabber, “Structure and Performance of the Direct Ac-
cess File System,” Proceedings of USENIX Annual Technical
Conference, Monterey, CA (June 9-14, 2002), pp. 1-14.

24. T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,
and R. Y. Wang, “Serverless Network File Systems,” ACM
Transactions on Computer Systems 14, No. 1, 41-79 (Febru-
ary 1996).

25. CXFS: An Ultrafast, Truly Shared Filesystem for SANs, SGI
(Silicon Graphics, Inc.), Mountain View, CA, http://www.
sgi.com/products/storage/cxfs.html.

26. G. A. Gibson, D. F. Nagle, W. Courtright II, N. Lanza,
P. Mazaitis, M. Unangst, and J. Zelenka, “NASD Scalable
Storage Systems,” Proceedings of 1999 USENIX Annual Tech-
nical Conference, Extreme Linux Workshop, Monterey, CA
(June 9-11, 1999).

Accepted for publication December 20, 2002.

Jai Menon IBM Research Division, Almaden Research Center,
650 Harry Road, San Jose, California 95120 (menonjm@almaden.
ibm.com). Dr. Menon is the department group manager of the
Computer Science Storage Systems Group in IBM Research and
Codirector of the Storage Systems Institute. He received a Bach-
elor of Technology degree in electrical engineering from the In-
dian Institute of Technology in 1977. He earned Master of Sci-
ence and Ph.D. degrees in computer science from Ohio State
University in 1978 and 1981, respectively. In 1982, he joined IBM
Research in San Jose, California, where he became a pioneering
researcher and designer of data storage systems and RAID (re-
dundant array of independent disks) architectures. In May 2001,
he was named an IBM Fellow. An IEEE Fellow, an IBM Master
Inventor, and member of the IBM Academy of Technology, Dr.
Menon has received numerous IBM technical awards, published
31 refereed papers and 46 technical reports, and is a contributing
author to three books on database and storage systems. He also

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

holds 42 U.S. patents and has 20 additional patent applications
on file. He received the 2002 W. Wallace McDowell Award from
the IEEE for “Leading Contributions to the Architecture and
Design of Data Storage Systems and RAID Technology.”

David A. Pease IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120 (pease@almaden.
ibm.com). Mr. Pease is a Senior Technical Staff Member in the
Almaden Research Center and manager of the Storage Software
department. Since 1996, he has managed the Storage Tank re-
search project. He began working on storage systems research
projects at Almaden in 1990. In addition to Storage Tank, he has
worked on projects relating to the Tivoli Storage Manager prod-
uct (formerly known as IBM ADSM) and the Universal Disk For-
mat (UDF) file system for DVDs. For 12 years prior to joining
IBM, Mr. Pease ran his own business, consulting and teaching
software development and operating systems. In 2000, he com-
pleted his work for a Master of Science degree in computer en-
gineering at the University of California, Santa Cruz, where he
is currently a Ph.D. degree candidate.

Robert (Bob) Rees IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, California 95120 (rees@
almaden.ibm.com). Mr. Rees is a Senior Technical Staff Member
at the Almaden Research Center. He joined IBM Research in
1982 and has received several IBM technical and Invention
Achievement awards for his work in storage-related systems. Most
notably, he was the chief architect and team leader of the Tivoli
Storage Manager product (formerly known as IBM ADSM) and
is currently the chief architect and team leader for the Storage
Tank SAN file system project. Mr. Rees received a B.S. degree
in computer engineering from the University of California, Santa
Cruz.

Linda Duyanovich IBM Systems Group, 5600 Cottle Road, San
Jose, California 95193 (lduyanov@us.ibm.com). Ms. Duyanovich
is a senior program manager for IBM’s Storage Software Prod-
ucts. From 1999 to 2002, she built and managed the product de-
velopment team that worked jointly with IBM Research in Al-
maden on the Storage Tank project, targeted at the storage
network environment. Over her more than 20 years with IBM,
Ms. Duyanovich has held a variety of management and technical
positions in storage systems development and performance. From
1996 to 1999, she was Vice President of Product Development
at MatriDigm Corporation, where she led development of rules-
based software maintenance tools. She received a Bachelor of
Science degree in mathematics from Stanislaus State College in
1976 and earned a Master of Science degree in operations re-
search from Stanford University in 1977.

Bruce Hillsberg IBM Systems Group, 5600 Cottle Road, San Jose,
California 95193 (blh@us.ibm.com). Mr. Hillsberg is Director of
Storage Software Strategy and Technology for the Systems Group.
He is responsible for developing the technology strategy for IBM
storage infrastructure software, identifying and incubating new
technologies, and identifying emerging opportunities for the stor-
age software business. He joined IBM in 1981 and has spent most
of his career managing the development of networking and sys-
tems management software. Most recently, Mr. Hillsberg has
worked in the IBM Software Group on middleware integration
initiatives. Previously, in IBM’s Banking, Finance, and Securities
Industry Solution unit, he was responsible for the Year 2000 test-
ing strategy for IBM’s internal applications, and he developed
Internet appliances for the small business marketplace.

MENON ET AL. 267

