
Characteristics of I/O
traffic in personal
computer and server
workloads

by W. W. Hsu
A. J. Smith

Understanding the characteristics of I/O traffic
is increasingly important as the performance
gap between the processor and disk-based
storage continues to widen. Moreover, recent
advances in technology, coupled with market
demands, have led to new and exciting
developments in storage systems, particularly
network storage, storage utilities, and
intelligent self-optimizing storage. In this
paper, we empirically examine the physical
I/O traffic of a wide range of server and
personal computer (PC) workloads, focusing
on how these workloads will be affected by
the recent developments in storage systems.
As part of our analysis, we compare our results
with historical data and re-examine some rules
of thumb (e.g., one bit of I/O per second for
each instruction per second of processing
power) that have been widely used for
designing computer systems. We find that the
I/O traffic is bursty and appears to exhibit self-
similar characteristics. Our analysis also
indicates that there is little cross-correlation
between traffic volumes of server workloads,
which suggests that aggregating these
workloads will likely help to smooth out the
traffic and enable more efficient utilization of
resources. We discover that there is significant
potential for harnessing “free” system resources
to perform background tasks such as
optimization of disk block layout. In general, we
observe that the characteristics of the I/O traffic
are relatively insensitive to the extent of
upstream caching, and thus our results still
apply, on a qualitative level, when the upstream
cache is increased in size.

Processor performance has been increasing at the
rate of 60 percent per year1 while disk access time,
being limited by mechanical delays, has been improv-
ing by less than 10 percent per year.2 Compounding
this widening performance gap between processor
and disk storage, disk capacity has been growing by
more than 60 percent per year,2 so that each disk
is responsible for storing and retrieving increasing
amounts of data. The overall result of these tech-
nology trends, which show no signs of easing, is com-
puter systems increasingly bottlenecked at disk-based
storage. The key to overcoming this bottleneck is to
understand how storage is actually used, so that new
optimization techniques and algorithms can be de-
signed.

A focused examination of the I/O characteristics of
real workloads is also needed to determine how re-
cent developments in the storage industry will im-
pact I/O performance. First, storage is increasingly
attached to some network, so that it can be shared
and accessed directly by multiple servers (e.g., net-
work-attached storage [NAS] for file storage and stor-
age area networks [SANs] for block storage). To
achieve good performance for such network storage,
the I/O traffic patterns must be known, and the net-
work must be optimized for such patterns. Second,
it is anticipated that the storage now managed by
various entities within an enterprise will become con-
solidated through the use of storage utilities or stor-

�Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 0018-8670/03/$5.00 © 2003 IBM HSU AND SMITH 347

age service providers (SSPs). Whether such pooling
of resources leads to a more efficient use of resources
depends on the I/O characteristics of the workloads
and, in particular, on whether the workloads are in-
dependent. In practice, we will need rules of thumb
for the storage and performance requirements of
each group of users, as well as realistic traffic mod-
els. Third, the rapid growth of processing power
available in the storage system3 makes it possible to
build intelligent storage systems that can dynamically
optimize themselves for the actual workload.4 The
design of these systems requires a good understand-
ing of how real workloads behave.

In this research, therefore, we empirically examine
how storage is used in various personal computers
(PCs) and servers from the perspective of evaluating
these new storage opportunities. A total of 18 traces
gathered from a wide range of environments are ex-
amined. We focus in this paper on analyzing the phys-
ical I/O traffic and, specifically, we analyze (1) the I/O
intensity of the workloads and the overall significance
of I/O in the workloads, (2) how the I/O load varies
over time and how it will behave when aggregated,
and (3) the interaction of reads and writes and how
it affects performance. We compare our results with
historical data in order to identify trends and to re-
validate rules of thumb that are useful for systems
design and sizing. To make our results more broadly
applicable, we also study the effect of increased up-
stream caching on our analysis. In a companion pa-
per, we examine how these real workloads are af-
fected by disk improvements and I/O optimizations
such as caching and prefetching.5 The insights gained
from this research are instrumental to the block re-
organization technique outlined in Reference 4.

The rest of this paper is organized as follows. In the
next section we present a brief overview of previous
work in characterizing I/O behavior. In the follow-
ing section, we discuss our methodology and describe
the traces that we use. In the next three sections, we
analyze the I/O traffic of our workloads in detail. Spe-
cifically, we discuss (1) intensity of I/O, (2) variabil-
ity of I/O traffic over time, and (3) the interaction of
reads and writes. In the last section we include our
concluding remarks. Because of the huge amount
of data that is involved in this study, we can only high-
light here some of the results of our research. More
detailed graphs and data are presented in Reference
6, as are some of the more involved mathematical
analyses.

Related work

I/O behavior at the file system level has been pre-
viously characterized in some detail (see for exam-
ple References 7, 8, and 9). There have also been
several studies of the logical I/O characteristics of
large database and scientific systems; see References
10 and 11 for a brief bibliography. Compared to the
analysis of I/O behavior at the logical level, physical
I/O characterization has received much less attention.
Part of the reason is that storage-level characteris-
tics are sensitive to the file system and buffer pool
design and implementation, so that the results of any
analysis are less broadly applicable. But this is pre-
cisely the reason to analyze the physical I/O charac-
teristics of many different systems.

Traces of the physical I/Os in large IBM mainframe
installations12 and production VAX/VMS systems13,14

have been used to study design issues in disk caches.
There has also been some analysis of the physical
I/O characteristics of UNIX** systems15 and Novell
NetWare** file servers16 in academic/research en-
vironments. Even though PCs running various ver-
sions of Microsoft Windows** are now an integral
part of many office activities, to the best of our knowl-
edge there has been no published systematic anal-
ysis of how physical storage is used in such systems.

Methodology

Trace data can generally be gathered at different lev-
els in the system, depending on the reason for col-
lecting the data. For instance, to evaluate cache pol-
icies for the file system buffer, I/O references have
to be recorded at the logical level, before they are
filtered by the file system buffer. In general, collect-
ing trace data at the logical level reduces dependen-
cies on the system being traced and allows the trace
to be used in a wider variety of studies, including sim-
ulations of systems somewhat different from the orig-
inal system. To study physical storage systems, for
example, we could filter a logical trace through mod-
els of the file system layer in order to obtain a trace
of physical I/Os. A commonly used method for ob-
taining such a logical trace is to insert a filter driver
that intercepts all requests to an existing file system
device and that records information about the re-
quests before passing these requests on to the real
file system device.

However, this approach does not account for I/Os that
bypass the file system interface (e.g., raw I/O, virtual
memory paging, and memory-mapped I/O). Recent

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003348

results9 show that 15 percent of reads and nearly 30
percent of writes in Windows NT** workloads can
be attributed to paging by running programs. In ad-
dition, 85 percent of processes now memory-map
files, compared with 36 percent that read files and
22 percent that write them. From a practical perspec-
tive, the approach of starting with a logical trace to
evaluate physical storage systems requires that a large
amount of data be collected—which introduces a dis-
turbance to the systems being traced—and then
painstakingly filtered away by simulating not only the
buffer cache and prefetcher but also how the data
are laid out and how the meta-data are referenced.
For today’s well-tuned systems, these components
are complex and the details of their operation are
seldom publicly available. For instance, the file sys-
tem buffer on many systems (e.g., Windows NT) is
integrated with the memory manager and dynam-
ically sized, based on perceived workload character-
istics. Therefore, the net result of taking a logical
trace and filtering it through models of the file sys-
tem components is not likely to reflect the workload
seen by any real storage system. Since file systems
today are relatively stable and rarely undergo rad-
ical changes, we believe that for the purpose of study-
ing physical storage systems, analyzing traces col-
lected at the physical level is generally more practical
and more realistic. This is the method we use in this
paper.

In order to make our characterization more useful
for subsequent modeling and analysis by others, we
fitted our data to various functional forms through
nonlinear regression, which we solved by using the
Levenberg-Marquardt method. When appropriate,
we also fitted standard probability distributions to
our data by using the method of maximum likelihood,
in order to obtain parameter estimates, and then op-
timizing these estimates with the Levenberg-Mar-
quardt algorithm.

Trace collection. The traces analyzed in this study
were collected from both server and PC systems run-
ning real user workloads on three different platforms:
Windows NT, IBM AIX*, and Hewlett-Packard
HP-UX**. A different trace facility was used on each
platform. The Windows NT traces were collected by
using VTrace,17 a software tracing tool for Intel x86
PCs running Windows NT and Windows 2000. VTrace
was primarily developed to collect data for energy
management studies for portable computers. In this
study, we focus mainly on the disk activities, which
are collected by VTrace through the use of device
filters. We have verified the disk activity collected

by VTrace with the raw traffic observed by a bus
(SCSI—Small Computer System Interface) analyzer.

After VTrace is installed on a system, each disk re-
quest generates a trace record consisting of the time
(based on the Intel Pentium** cycle counter), se-
quence number, file object pointer, disk and parti-
tion numbers, start address, transfer size, and flags
describing the request (e.g., read, write, synchro-
nous). After the disk request has been serviced, a
completion record is written. In a post-processing
step, we match up the sequence number recorded
in the request and completion records to obtain the
service times.

To better understand the I/O behavior of the system,
it is useful to be able to associate each disk request
with the name of the corresponding file and process.
Because VTrace also collects data on file system ac-
tivities, in most cases we are able to match up the
file object pointer with a file open record and thus
obtain the filename. When the match fails, we try to
determine the filename by looking up the block ad-
dress in a reverse allocation map that is constructed
from the daily snapshots that VTrace takes of the
Windows NT file system meta-data. Since VTrace was
designed to collect data for energy management stud-
ies, it also gathers data about process and thread cre-
ations and deletions as well as thread switches. By
using the thread create and thread switch trace rec-
ords, we are able to match I/O requests with the
names of the requesting processes. In addition, the
thread switch records enable us to determine the
overall significance of I/O in these workloads (we look
at this in the next section under “Overall significance
of I/O”).

To keep the amount of data collected manageable,
the collection of process and thread trace records is
limited to a span of one-and-a-half hours, every
three-and-a-half hours. In addition, all trace collec-
tion is turned off ten minutes after the cessation of
user mouse and keyboard activity. Newer versions
of VTrace collect some trace data all the time, but
in order to have a consistent set of data we have pro-
cessed the traces used in this study and deleted trace
records that occur more than ten minutes after the
last user keyboard or mouse activity. In other words,
we consider the system to be idle starting ten min-
utes after the last user action and lasting until the
next user action, and we assume that there is no I/O
activity during the idle periods. This means that the
traces contain only the I/Os that occur when the user
is actively interacting with the system, and which are

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HSU AND SMITH 349

therefore likely to be noticed by the user. We be-
lieve that this is a reasonable approximation in the
PC environment, although it is possible that we are
ignoring some level of activity due to periodic sys-
tem tasks such as daemons. This type of activity
should have a negligible effect on the I/O load, al-
though it might be important for other types of stud-
ies, such as energy usage.

Both the IBM AIX and Hewlett-Packard HP-UX traces
were collected using kernel-level trace facilities built
into the respective operating systems. These trace
facilities are completely transparent to the user and
add no noticeable processor load. The data collected
for each physical I/O include timing information, disk
and partition numbers, start address, transfer size,
and flags describing the request. More details about
the IBM AIX trace facility can be found in Reference

18. The HP-UX trace facility is described in Refer-
ence 15.

Trace description. In this study, we use traces col-
lected on both server and PC systems. Table 1 sum-
marizes the characteristics of the traces. The foot-
print of a trace is the cumulative size in bytes of all
the data blocks referenced at least once.

The PC traces are denoted as P1, P2, . . . , P14. “P-
Avg.” denotes a fictitious trace with metrics that
are the arithmetic mean of the corresponding
values for all the PC traces. These traces were col-
lected on Windows NT PCs over a period ranging from
about a month to well over nine months. In this pa-
per, we utilize only the first 45 days of the traces.
The users of these systems include engineers, grad-
uate students, one secretary, and several managers.

Table 1 Trace description

S
er

ve
r

W
o

rk
lo

ad
s

P
er

so
na

l C
o

m
p

ut
er

 W
o

rk
lo

ad
s

 P1 Engineer 333MHz P6 64 1GB FAT 5GB NTFS 6 1 45 days (7/26/99–9/8/99) 0.945 17.1 1.88
 P2 Engineer 200MHz P6 64 1.2, 2.4, 1.2GB FAT 4.8 2 39 days (7/26/99–9/2/99) 0.509 9.45 1.15
 P3 Engineer 450MHz P6 128 4, 2GB NTFS 6 1 45 days (7/26/99–9/8/99) 0.708 5.01 0.679
 P4 Engineer 450MHz P6 128 3, 3GB NTFS 6 1 29 days (7/27/99–8/24/99) 4.72 26.6 2.56
 P5 Engineer 450MHz P6 128 3.9, 2.1GB NTFS 6 1 45 days (7/26/99–9/8/99) 2.66 31.5 4.04
 P6 Manager 166MHz P6 128 3, 2GB NTFS 5 2 45 days (7/23/99–9/5/99) 0.513 2.43 0.324
 P7 Engineer 266MHz P6 192 4GB NTFS 4 1 45 days (7/26/99–9/8/99) 1.84 20.1 2.27
 P8 Secretary 300MHz P5 64 1, 3GB NTFS 4 1 45 days (7/27/99–9/9/99) 0.519 9.52 1.15
 P9 Engineer 166MHz P5 80 1.5, 1.5GB NTFS 3 2 32 days (7/23/99–8/23/99) 0.848 9.93 1.42
 P10 CTO 266MHz P6 96 4.2GB NTFS 4.2 1 45 days (1/20/00–3/4/00) 2.58 16.3 1.75
 P11 Director 350MHz P6 64 2, 2GB NTFS 4 1 45 days (8/25/99–10/8/99) 0.73 11.4 1.58
 P12 Director 400MHz P6 128 2, 4GB NTFS 6 1 45 days (9/10/99–10/24/99) 1.36 6.2 0.514
 P13 Grad. Student 200MHz P6 128 1, 1, 2GB NTFS 4 2 45 days (10/22/99–12/5/99) 0.442 6.62 1.13
 P14 Grad. Student 450MHz P6 128 2, 2, 2, 2GB NTFS 8 3 45 days (8/30/99–10/13/99) 3.92 22.3 2.9

P-Avg. — 318MHz 109 — 5.07 1.43 41.2 days 1.59 13.9 1.67

 FS1 File Server HP 9000/720
32

3 BSD FFS (3GB)

3

3

45 days (4/25/92–6/8/92) 1.39 63 9.78 (NFSiii) (50MHz)

 FS2 File Server
IBM RS/6000 —

 23 AIX JFS
99.1 17 8am–6pm (11/6/2000) —

1.70 — (AFSiii) (99.1GB)

 TS1 Time-Sharing HP 9000/877
96

 12 BSD FFS
10.4 8 45 days (4/18/92–6/1/92) 4.75 123 20 System (64MHz) (10.4GB)

 DS1 Database IBM RS/6000 8 AIX JFS (9GB), 3
 Server (ERPiii) R30 SMPii

768
 paging (1.4GB), 30

52.4 13 7 days (8/13/96–8/19/96) 6.52 37.7 6.64 (4X 75MHz) raw database
 partitions (42GB)

S-Avg. — — 299 — 18.5 8 32.3 days 4.22 74.6 12.1

Foot-
print
(GB)

Traffic
(GB)

Trace CharacteristicsSystem Configuration

Desig-
nation

Primary
User/Use

System Memory
(MB)

File
Systems

Storage
Used
(GB)

#
Disks

Duration Re-
quests
(106)

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003350

The workload generated by the set of users in our
sample is representative, we believe, of the PC work-
loads in many offices, and especially of those that
involve research and development work. Note, how-
ever, that the traces should not be taken as typical
or representative of other workloads. Despite this
disclaimer, the fact that many of our results turn out
to resemble results obtained previously, albeit in
somewhat different environments, suggests that our
findings are to a large extent generalizable.

The servers examined include two file servers, a time-
sharing system, and a database server. The first work-
load (FS1) was taken from a file server supporting
nine clients at the University of California, Berke-
ley. This system was primarily used for compilation
and editing. It is referred to as “Snake” in Refer-
ence 15. The second workload (FS2) was taken from
an Andrew File System (AFS) server at one of the
major development sites of a leading computer ven-
dor. The system was the primary server used to sup-
port a software development effort. For this system,
only per-second aggregate statistics of the I/O traffic
were gathered; addresses for individual I/Os were not
collected. The FS2 data could therefore be used only
in a limited number of analyses. Trace TS1 was gath-
ered on a time-sharing system at an industrial re-
search laboratory. It was mainly used for news, elec-
tronic mail, text editing, simulation, and compilation.
It is referred to as “cello” in Reference 15. The da-
tabase server trace (DS1) originates from an enter-
prise in the health insurance industry. The system
traced was running an Enterprise Resource Planning
(ERP) application on top of a commercial database.
“S-Avg.” denotes a fictitious trace with metrics that
are the arithmetic mean of the corresponding val-
ues for traces FS1, TS1, and DS1.

Our traces capture the actual workloads that are pre-
sented to the storage system and are therefore likely
to be sensitive to the amount of filtering by the file

system cache and/or the database buffer pool. How-
ever, we believe that changing the amount of cach-
ing upstream will only affect our characterization
quantitatively and that on a qualitative level the re-
sults still apply. To confirm this hypothesis, we fil-
tered our traces through a least-recently-used (LRU)
write-back cache to obtain another set of traces on
which to run our analysis. Following the design of
most file systems, we allow a dirty block (that is, a
block that has been changed) to remain in the cache
for up to 30 seconds. When a block is written back,
we write out, in the same operation, all the dirty
blocks that are physically contiguous, up to a max-
imum of 512 blocks. The size of the cache is chosen
to be the size of the entire main memory in the orig-
inal systems (Table 1). These filtered traces are de-
noted by adding an “f” to the original designation.
For instance, the trace obtained by filtering P1 is de-
noted as P1f. We further denote the fictitious trace
corresponding to the arithmetic mean of the mat-
rics for all the filtered PC workloads by “Pf-Avg.” and
that for the filtered FS1, TS1, and DS1 workloads as
“Sf-Avg.”

In Table 2, we present the fraction of I/O activity that
is satisfied by such an additional cache. On average,
over 50 percent of the I/O requests are removed by
the cache, which shows that the amount of caching
has been significantly increased over what was in the
original traced systems. Observe further that the traf-
fic volume is reduced less significantly than the num-
ber of operations. This is because the smaller re-
quests tend to have a higher chance of a hit, that is,
finding the data in the cache. Furthermore, by de-
laying the writes, we are able to consolidate them
into fewer but larger sequential writes. In Table 3
and Figure 1, we present the request size distribu-
tion for both the original and the filtered traces. The
average request size for the original workloads is about
7–9 KB. The filtered traces have larger writes on av-
erage but their request size distributions track those

Table 2 Fraction of I/O activity that is filtered, and fraction of I/O requests that are synchronous

P-Avg.

S-Avg.

Number of MBs Number of Requests

Fraction of Synchronous I/O
Requests

Fraction of I/O Activity That Is Filtered

Write

0.193

0.390

Read

0.489

0.412

Overall

0.329

0.393

Write

0.589

0.612

Read

0.526

0.416

Overall

0.562

0.539

Write

0.710

0.462

Read

0.874

0.845

Overall

0.784

0.624

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HSU AND SMITH 351

of the original traces remarkably well. That the fil-
tered traces maintain the qualitative behavior of the
original traces is a result that we will see repeated
for different characteristics in the rest of the paper.

Intensity of I/O

We begin our characterization by focusing on the
I/O intensity of the various workloads. This is akin
to understanding the size of a problem so that we
can better approach it. The questions we seek to ad-
dress in this section include how significant the I/O
component is in the overall workload, how many I/Os
are generated, and how fast the requests arrive.

Overall significance of I/O. In Figure 2, we show the
percentage of time the disk and processor are busy
for the PC workloads. Similar results for the server
workloads would be interesting but, unfortunately,
this analysis relies on information that is available
only in the PC traces. Specifically, we calculate the
processor busy time by looking at the thread switch
records to determine when the processor is not in
the idle loop. The disk busy time is taken to be the
duration during which one or more of the disks in
the system are servicing requests. Recall that for the
PC workloads, we only have trace data for the pe-
riods during which user input activity occurs at least
once every ten minutes. The results in Figure 2 there-

Figure 1 Distribution of request size

0

20

40

60

80

100

1 1 0 100

REQUEST SIZE (# 512-BYTE BLOCKS)

C
U

M
U

LA
TI

V
E

 P
E

R
C

E
N

T
O

F
R

E
Q

U
E

S
TS

P-AVG.
PF-AVG.
S-AVG.
SF-AVG.

Figure 2 Disk and processor busy time

WORKLOAD

P
E

R
C

E
N

T
O

F
TI

M
E

0

5

10

15

20

25

30

35

40

P1 P2 P3 P4 P5 P6 P7 P8 P9
P10 P11 P12 P13 P14

P-A
VG.

BOTH BUSY
DISK BUSY
PROCESSOR
BUSY

Table 3 Request size (number of 512-byte blocks)

All requests

Avg.

Long-Run
Average

Busiest
One-Hour

Period

Read Requests Write Requests

 P-Avg. 17.5 28.4 1 373 19.5 26.9 1 156 16.5 29.6 1 373
 Pf-Avg. 27.4 64.3 1 512 21.3 29.3 1 155 34.1 84.2 1 512

 S-Avg. 12.8 11.6 1.67 512 14.1 13.0 1.67 267 12.0 10.2 1.67 427
 Sf-Avg. 16.4 29.8 1.67 512 14.0 13.5 1.67 222 18.9 41.0 1.67 512

 P-Avg. 28.6 42.3 1 256 31.5 37.7 1 156 31.8 44.3 1 256
 Pf-Avg. 55.5 93.3 1 512 34.2 38.2 1 155 91 141 1 512

 S-Avg. 15.5 16.9 1.67 219 16.5 16.6 1.67 63.3 16.1 18.9 1.67 219
 Sf-Avg. 25.8 12.7 2.00 213 27 8.73 2.00 51.3 13.1 13.4 2.67 213

Std. Dev. Min. Max. Avg. Std. Dev. Min. Max. Avg. Std. Dev. Min. Max.

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003352

fore cover only the periods during which the user is
actively interacting with the system.

From the figure, the processor is, on average, busy
for only about 10 percent of the time, while the disk
is busy for only about 2.5 percent of the time. We
cannot, however, conclude that the processor and
I/O system are “fast enough.” CPU idle generally rep-
resents user think time (the interval from the time
results are displayed to the time the user completes
entry of the next command) and occurs in any case
in a single user environment. What the results do
suggest is that there is substantial idle time that can
be used for performing background tasks, even when
the user is active. The challenge is to harness these
idle resources without affecting the foreground work.
If this can be done unobtrusively, it will pave the way
for sharing idle resources in collaborative comput-
ing, a paradigm commonly referred to as peer-to-
peer (P2P) computing. In addition, the idle resources
can be used to optimize the system so that it will per-
form better in the future for the foreground task (see,
for example, Reference 4). We characterize the disk
idle periods in detail in the section “The relative
lulls.”

I/O is known to be a major component of server work-
loads (see, for example, Reference 19). But if pro-
cessor performance continues to increase at the his-
torical rate of 60 percent per year,1 the results in
Figure 2 suggest that I/O may also become the dom-
inant component of personal computer workloads in
the next few years. More memory will, of course, be
available in the future for caching, but the PC sys-
tems in our study are already well-endowed with
memory. A common way of hiding I/O latency is to
overlap it with some computation, either through
multiprogramming or by performing I/O asynchro-
nously. From Figure 2, this technique appears to be
relatively ineffective for the PC workloads since only
a small fraction (20 percent on average) of the disk
busy time is overlapped with computation. In Figure
3, we compare the processor busy time during the
disk idle intervals with that during the disk busy in-
tervals. A disk idle interval refers to the time inter-
val during which all the disks are idle. A disk busy
interval is simply the period of time between two con-
secutive disk idle intervals. Reflecting the low aver-
age processor utilization of the workloads, the pro-
cessor is busy less than 20 percent of the time for
the long intervals (�0.1s), regardless of whether any
of the disks are busy. During the short intervals
(�0.1s), the processor is busy almost all the time
when all the disks are idle, but the processor utili-

zation drops to less than 50 percent when one or
more of the disks are busy. Such results imply that
little processing can be overlapped with I/O and that
I/O response time is important for these kinds of work-
loads.

That only a small amount of processing is overlapped
with I/O suggests that there is effectively little mul-
tiprocessing in the PC workloads. Furthermore, as
shown in Table 2, I/Os, especially those in the PC work-
loads, tend to be synchronous. This means that the
system generally has to wait for I/Os to be completed
before it can continue with subsequent processing.
Observe from the table that although Windows NT
provides a common convenient interface for per-
forming both synchronous and asynchronous I/O, on
average nearly 80 percent of the I/O requests are
flagged as synchronous. Meta-data updates account
for most, but not all, of the synchronous writes. Ex-
cluding meta-data writes, about half of the writes are
synchronous. In traces FS1 and TS1, some I/O requests
are not explicitly flagged as synchronous or asynchro-
nous. For these traces, we assume that I/Os are syn-
chronous unless they are explicitly flagged otherwise.
Trace DS1 does not tell us whether the I/Os are syn-
chronous.

A common difficulty in using trace-driven simulations
to study I/O systems is accounting for events that oc-
cur faster or slower in the simulated system than in

Figure 3 Processor busy time during disk busy/idle
 intervals

INTERVAL SIZE (sec)

P
R

O
C

E
S

S
O

R
 B

U
S

Y
 T

IM
E

 (P
E

R
C

E
N

T
IN

TE
R

VA
L)

0

10

20

30

40

50

60

70

80

90

100

0.0001 0.001 0.01 0.1 1 10

(Bars indicate
 standard deviation.
To reduce clutter
 we show only the
 deviation in one
 direction.)

DISK BUSY
INTERVALS
DISK IDLE
INTERVALS

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HSU AND SMITH 353

the original system. Since the PC workloads have lit-
tle multiprocessing and most of the I/Os are synchro-
nous, these workloads can be modeled by assuming
that after completing an I/O, the system has to do
some processing, and the user some “thinking,” be-
fore the next set of I/Os is issued. For instance, in the
timeline in Figure 4, after request R0 is completed,
there are delays during which the system is process-
ing and the user is thinking before requests R1, R2,
and R3 are issued. Because R1, R2, and R3 are is-
sued after R0 has been completed, we consider them
to be dependent on R0. Similarly, R4 and R5 are
deemed to be dependent on R1. Presumably, if R0
was completed earlier, R1, R2, and R3 would have

been likewise issued earlier. If this in turn causes R1
to be finished earlier, R4 and R5 would similarly
move earlier in time.

In Figure 5, we plot the percentage of time the pro-
cessor is busy during the interval between the time
an I/O request is issued and the most recent com-
pletion of an I/O request (the Xs in Figure 4). We
are interested in the processor busy time during such
intervals in order to model what happens when the
processing time is reduced through faster processors.
From Figure 5, we find that for the PC workloads,
the processor utilization during the intervals between
an I/O issuance and the last I/O completion is related
to the length of the interval by a reciprocal function
of the form f(x) � 1/(ax � b) where a � 0.0857
and b � 0.0105. The reciprocal function suggests
that there is a fixed amount of processing per I/O.
To model a processor that is n times faster than the
processor in the traced system, we would scale down
the processing time by n, leaving the user think time
unchanged. Specifically, we would replace an inter-
val of length x by one of length x[1 � f(x) � f(x)/n].
We believe that for the PC workloads, this is con-
siderably more realistic than simply scaling the in-
terarrival time between I/O requests by n, as is com-
monly done.

In Figure 5, we also plot the percentage of time the
kernel is busy during the intervals between the issue
of an I/O request and the most recent I/O comple-
tion. We consider the kernel to be busy if the pro-
cessor is allocated to the kernel process (process ID
� 2 in Windows NT). As shown in the figure, the ker-
nel busy time is also related to the length of the in-
terval by a reciprocal function, as we would expect
when there is some fixed kernel cost per I/O.

Amdahl’s factor and access density. Table 4 pre-
sents the average and maximum amount of I/O traf-
fic generated per day by the various workloads. Note
that the average is taken over the days when there
is some I/O activity recorded in the traces. This means
that for the PC workloads, the weekends are, for the
most part, ignored. We find that the maximum daily
I/O traffic is about two to four times higher than the
average. The server workloads are clearly more
I/O-intensive than the PC workloads, and we expect
that servers today will have even higher rates of I/O
activity. Nevertheless, it should still be the case that
collecting a daily trace of referenced disk blocks is quite
feasible. Such a trace could be used later for analysis
and optimization (e.g., to optimize disk block place-
ment4). Specifically, for the database server work-

INTERVAL BETWEEN I/O ISSUE AND
LAST I/O COMPLETION (sec)

P
R

O
C

E
S

S
O

R
 /

K
E

R
N

E
L

B
U

S
Y

 T
IM

E
 (

P
E

R
C

E
N

T
O

F
IN

TE
R

VA
L)

0

10

20

30

40

50

60

70

80

90

100

0.0001 0.001 0.01 0.1 1 10 100

(Bars indicate
standard deviation.
To reduce clutter
we show only the
deviation in one
direction.)

PROCESSOR
BUSY
KERNEL
BUSY

Figure 5 Processor/kernel busy time during intervals
 between issuance of I/Os and the most recent
 request completion

f(x)=1/(0.0857x+0.0105)
 r2 = 0.985

f(x)=1/(28.7x+0.060)
 r2 = 0.956

Figure 4 Intervals between issuance of I/O requests and
 most recent request completion

REQUEST
ISSUED

REQUEST
COMPLETED

R1

R0

R2 R3 R4 R5

R1 R3
TIME

X1

X2

X3

X4

X5

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003354

load, logging eight bytes of information per request
will create just over 12 MB of data on the busiest
day.

When designing the IBM System/360*, Amdahl ob-
served that the amount of I/O generated per instruc-
tion tends to be relatively constant.20 More specif-
ically, Amdahl’s rule of thumb states that a typical
data processing system requires approximately 1
Mb/s of I/O bandwidth for every million instructions
per second (MIPS) of processing power. This rule of
thumb dates back to the 1960s before buffering and
caching techniques were widely used. It was recently
revalidated for the logical I/O of database workloads
in the production environments of some of the
world’s largest corporations.10 Due to the advent of
caching, however, Amdahl’s factor for the ratio of
physical I/O bandwidth to MIPS was found to be on
the order of 0.05.10 Because the value of Amdahl’s
factor determines what constitutes a balanced sys-
tem, it would be useful to determine if the same value
applies to the current set of workloads.

To this end, we calculated the ratio between the I/O
intensity (the rate of I/O activity) and the processor
speed for our workloads. Unlike the traces used in
Reference 10, which cover only the peak periods of
the workloads as identified by the system adminis-

trator, the traces in the current study span periods
of days and weeks and include periods of light ac-
tivity as well as those of heavy activity. Therefore,
in calculating the I/O intensity normalized by pro-
cessor speed in Table 5, we consider the busiest one-
hour interval, which we define as the one-hour in-
terval with the highest I/O bandwidth requirement.
The I/O intensity averaged over various time inter-
vals ranging from 100 milliseconds to the trace length
is presented in Reference 6. Notice that according
to Table 5, the filtered traces have significantly fewer
I/O operations during the busiest one-hour interval.
However, because the request sizes for the filtered
traces are much larger during this period (see Table
3), the bandwidth figures for the filtered traces are
just slightly lower than those for the original work-
loads. In this section, our focus is on establishing gen-
eral rules of thumb with regard to the I/O intensity
of our various workloads. It turns out that the effect
of filtering the workloads is not large enough to sig-
nificantly affect any of our findings.

From Table 5, the server workloads are fairly con-
sistent, generating about 0.02–0.03 Mb/s of I/O for
every MHz of processing power. The PC workloads
are less I/O intensive, generating about 0.007
Mb/s/MHz on average. In order to determine an or-
der of magnitude figure for the ratio of I/O bandwidth

Table 4 Daily volume of I/O activity in thousands of I/O requests and megabytes of I/O traffic

Average Maximum Average Maximum

I/O Traffic (MB)# I/O Requests (103)

 37
 15

313
113

 62
 27

522
251

25
12

209
137

102
 30

527
162

 183
 78

1056
 609

 82
 48

530
446

 295
 236

1635
1090

 529
 368

3214
2250

234
131

1579
1161

1084
 856

3393
2403

2057
1557

6659
5134

 973
 701

3266
2731

Write TotalRead Write TotalRead Write TotalRead Write TotalRead

P-Avg.
Pf-Avg.

S-Avg.
Sf-Avg.

Table 5 Intensity of I/O during the busiest one-hour period

P-Avg.
Pf-Avg.

S-Avg.
Sf-Avg.

Avg. Number of Mb/s of I/O Avg. Number of I/Os

Per Second

2.37
1.92

3.12
2.98

/sec /MHz

0.00697
0.00569

0.0255
0.0234

/sec /GB

0.457
0.372

0.242
0.217

/sec /MHz

0.0632
0.0312

 0.462
 0.375

/sec /MIPS

0.0632
0.0312

 0.925
 0.750

/sec /GB

4.04
1.94

4.69
3.99

Per Second

20.5
9.24

46.1
29.5

/sec /MIPS

0.00697
0.00569

0.0511
0.0467

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HSU AND SMITH 355

to MIPS, we need a rough estimate of the cycles per
instruction (CPI) for the various workloads. We use
a value of one for the PC workloads because the CPI
for the SPEC95 benchmark on the Intel Pentium Pro
processor has been found to be between 0.5 and 1.5.21

For the server workloads, we use a CPI value of two
in view of results in References 22 and 23. Based on
these estimates of the CPI, we find that the server
workloads generate around 0.05 bits of real I/O per in-
struction, which is consistent with the estimated Am-
dahl’s factor for the production database workloads
in Reference 10. The figure for the PC workloads is
seven times lower at about 0.007 bits of I/O per instruc-
tion.

Interestingly, surveys conducted between 1980 and
1993 of large data processing mainframe installations
found that the number of physical I/Os per second
per MIPS was decreasing by just over 10 percent per
year to 9.0 in 1993.24 This figure is about ten times
higher than what we are seeing for our server work-
loads. A possible explanation for this large discrep-
ancy is that the mainframe workloads issue many
small I/Os, but data reported in Reference 24 show
that the average I/O request size for the surveyed
mainframe installations was about 9 KB, which is
slightly larger than the 8 KB for our server work-
loads (Table 3). Of course, mainframe MIPS and re-
duced instruction set computer (RISC) MIPS are not
directly comparable, and this difference could ac-
count for some of the disparity, as could intrinsic dif-
ferences between the workloads. In addition, our cal-
culations are based on the MIPS rating of the system,
which is what we have available to us. The mainframe
surveys, on the other hand, used utilized MIPS25 or
the processing power actually consumed by the work-

load. To make our calculations consistent with the
survey results, we could factor in the processor uti-
lization when the workload is running. For instance,
if the processor utilization is 10 percent, as suggested
by our earlier results for the PC workloads, we would
multiple our figures by 10. With this adjustment, the
PC workloads still generate less than one I/O per sec-
ond per MIPS. The server traces, unfortunately, do
not contain information from which we can derive
the processor utilization for these workloads. But we
expect the processor in these workloads to be also
less than fully utilized so that the number of I/Os gen-
erated per second per MIPS by these workloads is ac-
tually closer to the survey results than the raw num-
bers suggest.

Another useful way of looking at I/O intensity is with
respect to the storage used (Table 1). In this paper,
the storage used by each of the workloads is esti-
mated to be the combined size of all the file systems
and logical volumes defined in that workload. This
makes our calculations comparable to historical data
and is a reasonable assumption unless storage can
be allocated only when written to, for instance by
using storage virtualization software that separates
the system view of storage from the actual physical
storage. Table 5 summarizes, for our various work-
loads, the number of I/Os per second per GB of stor-
age used. This metric is commonly referred to as ac-
cess density and is widely used in commercial data
processing environments.24 The survey of large data
processing mainframe installations cited above found
the access density to be decreasing by about 10 per-
cent per year to 2.1 I/Os per second per GB of stor-
age in 1993. Notice from Table 5 that for both our
base PC and server workloads, the access density is,

Table 6 Projected processing power and storage needed to drive various types of I/O interconnect to 50 percent utilization

P-Avg.
Pf-Avg.

S-Avg.
Sf-Avg.

P-Avg.
Pft-Avg.

S-Avg.
Sf-Avg.

Bandwidth (Mb/s)

Processing
Power
(GHz)

Storage
(GB)

InfiniBand

2500

179
220

49.0
53.5

2733
3360

5157
5756

Fast
Ethernet

100

7.18
8.79

1.96
2.14

109
134

206
230

Gigabit
Ethernet

1000

71.8
87.9

19.6
21.4

1093
1344

2063
2302

Ultra
ATA-100

800

57.4
70.3

15.7
17.1

875
1075

1650
1842

Serial
ATA

1200

86.1
105

23.5
25.7

1312
1613

2475
2763

UltraSCSI
320

2560

184
225

50.1
54.8

2799
3441

5281
5894

Fibre
Channel

1000

71.8
87.9

19.6
21.4

1093
1344

2063
2302

10

0.718
0.879

0.196
0.214

10.9
13.4

20.6
23.0

Ethernet

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003356

on average, about two times higher. The results for
the filtered workloads are substantially lower, as one
would expect. That the access density of our PC work-
loads is similar to the figure for our server workloads
even though these server workloads are several years
older suggests that PC workloads may be comparable
to server workloads in terms of access density. Note,
however, that as disks become a lot bigger and PCs
have at least one disk, the density of access with re-
spect to the available storage is likely to be much lower
for PC workloads.

Table 5 also contains results for the number of bits
of I/O per second per GB of storage used. The PC
workloads have, on average, 0.46 Mb/s of I/O per GB
of storage. By this measure, the server workloads are
less I/O-intense with an average of only 0.24 Mb/s of
I/O per GB of storage. Based on these results, we
project the amount of processing power and stor-
age space that will be needed to drive various types
of I/O interconnect to 50 percent utilization. The re-
sults are summarized in Table 6. Note that all the
modern I/O interconnects offer Gb/s bandwidth.
Some of them, specifically Ethernet and Fibre Chan-
nel, have newer versions with even higher data rates.
For the kinds of workloads we analyze here, the I/O
interconnect is not expected to be a bottleneck any
time soon. However, we would expect to see much
higher bandwidth requirements for workloads that
are dominated by large sequential I/Os (e.g., scien-
tific and decision support workloads). In such en-
vironments, and especially when many workloads are
consolidated into a large server and many disks are
consolidated into a sizeable outboard controller, the
bandwidth requirements have to be carefully eval-
uated to ensure that the network or connection be-
tween the disks and the host does not become the
bottleneck.

Request arrival rate. In Figure 6, we present the dis-
tribution of I/O interarrival time. Since this distribu-
tion is often needed in modeling I/O systems, we fit-
ted standard probability distributions to it. As shown
in the figure, the commonly used exponential dis-
tribution, while easy to work with mathematically,
turns out to be a rather poor fit for all the workloads.
Instead, the lognormal distribution (denoted Lognorm
[�, �] where � and � are, respectively, the mean and
standard deviation) is a reasonably good fit. Recall that
a random variable is lognormally distributed if the
logarithm of the random variable is normally distrib-
uted. Therefore, the lognormal distribution is skewed
to the right or toward the larger values, meaning that
there exist long intervals with no I/O arrivals. The

long tail of the interarrival distribution could be a
manifestation of different underlying behavior such
as correlated arrival times, but regardless of the
cause, the net effect is that I/O requests seldom occur
singly but tend to arrive in groups, because if there are
long intervals with no arrivals, there must be inter-

S-AVG.-EXP. FIT
EXP(0.0914)

1.E–05 1.E–04 1.E–03 1.E–02 1.E–01 1.E+00

INTERARRIVAL TIME (sec)

P-AVG.-EXP. FIT
EXP(0.233)

P-AVG.-FITTED
LOGNORM(0.175,7.58)

S-AVG.-FITTED
LOGNORM(0.315,0.227)

Figure 6 Distribution of I/O interarrival time

0

20

40

60

80

100
P-AVG.
PF-AVG.
S-AVG.
SF-AVG.

C
U

M
U

LA
TI

V
E

 P
E

R
C

E
N

T
O

F
A

R
R

IV
A

LS

Figure 7 Distribution of queue depth on arrival

QUEUE DEPTH ON ARRIVAL

C
U

M
U

LA
TI

V
E

 P
E

R
C

E
N

T
O

F
R

E
Q

U
E

S
TS

(Bars indicate
standard
deviation.)

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

P-AVG.

S-AVG.

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HSU AND SMITH 357

vals that have far more arrivals than their even share.
We will analyze the burstiness of the I/O traffic in
greater detail in the next section.

Another interesting way to analyze the arrival pro-
cess of I/O requests is relative to the completion of
preceding requests. In particular, if the workload sup-
ports multiple outstanding I/O requests, there will be
more potential for improving the average I/O per-
formance, for instance, through request scheduling.
Figure 7 presents the distribution of queue depth,
which we define to be the length of the request queue
as seen by an arriving request. In Table 7, we break
down the outstanding requests into reads and writes.
Note that we consider a request to be in the queue
while it is being serviced.

We find that across all the workloads, the read queue
tends to be shallow—more than 85 percent of the
requests arrive to find the queue devoid of read re-
quests, and the average number of reads outstand-
ing is only about 0.2. Nevertheless, the read queue
can be deep at times. If there are read requests in
the queue, the average number of them is almost 2
(denoted Avg.� � 0 in Table 7). In addition, the max-
imum read queue depth can be more than 90 times
higher than the average. Notice that the server work-
loads do not appear to have a deeper read queue than
the personal system workloads. This finding suggests
that read performance in personal system workloads
could benefit as much from request scheduling as in
server workloads. We examine request scheduling in
detail in Reference 5. Observe further from Table
7 that the write queue is markedly deeper than the read
queue for all the workloads, as we would expect given
that a greater fraction of writes are asynchronous
compared to reads (Table 2). The PC workloads ap-
pear to have a significantly shallower write queue
than the server workloads.

Note that we are looking at the number of outstand-
ing requests from the perspective of the operating

system layer at which the trace data were collected.
This reflects the potential for request scheduling at
any of the levels below, and not just at the physical
storage system. Some of the differences among the
workloads could be the result of collecting the traces
at different levels on the different platforms.

Variability in I/O traffic over time

When I/O traffic is smooth and uniform over time,
system resources can be very efficiently utilized. How-
ever, when the I/O traffic is bursty as is the case in
practice (cf. “Request arrival rate” above), resources
have to be provisioned to handle the bursts so that
during the periods when the system is relatively idle,
these resources will be wasted. There are several ap-
proaches to try to even out the load. The first is to
aggregate multiple workloads in the hope that the
peak and idle periods in the different workloads can-
cel one another out. This idea is one of the premises
of the storage utilities model. Whether the aggre-
gation of multiple workloads achieves the desired
effect of smoothening the load depends on whether
the workloads are dependent or correlated. We ex-
amine below the dependence among our workloads.

The second approach to smoothening the traffic is
to try to shift the load temporally, for instance, by
deferring or offloading some work from the busy pe-
riods to the relative lulls (e.g., write buffering and
logging disk arrays26) or by eagerly or speculatively
performing some work in the hope that such work
will help improve performance during the next busy
period (e.g., prefetching and reorganizing data based
on access patterns4). The effectiveness of these at-
tempts at time-shifting the load to even out the traf-
fic depends on the extent to which the traffic is au-
tocorrelated. We analyze the autocorrelation of I/O
traffic in order to determine whether it is long-range
dependent or self-similar in the section “Self-sim-
ilarity in I/O traffic.” In the section “The relative lulls,”
we characterize in detail the idle periods to help in

Table 7 Queue depth on arrival

P-Avg.

S-Avg.

I/Os Outstanding # Reads Outstanding # Writes Outstanding

Avg. Avg. >0 Std.
Dev.

90%-
tile

Max. Avg. Avg. >0 Std.
Dev.

90%-
tile

Max. Avg. Avg. >0 Std.
Dev.

90%-
tile

Max.

0.489

4.87

2.14

13.4

1.34

20.5

1.64

6.67

34.3

656

0.216

0.201

1.91

1.58

0.797

0.672

0.643

1

20.2

14

0.273

4.66

1.94

16.7

0.975

20.5

0.786

6.33

28.6

656

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003358

the design of techniques that try to exploit idle re-
sources.

Dependence among workloads. In general, two pro-
cesses are said to be dependent or correlated if the
value a process takes on constrains the possible val-
ues that the other process can assume. In the cur-
rent context, the process is the discretized time se-
ries of the I/O traffic generated by a given workload.
If two workloads are positively correlated, the peaks
in the corresponding processes of the two workloads
occur at the same time so that if the two workloads
are aggregated, the resulting workload will have
higher peaks. If the workloads are negatively cor-
related, the peaks of one will occur when the other
workload is relatively idle. If the workloads are in-
dependent, there is no correlation between the vol-
umes of activity of the two workloads. When many
independent workloads are aggregated, the result-
ing traffic will tend to be smooth.

To more formally characterize the dependence
among the workloads, we calculate the cross-corre-
lation. The cross correlation between two processes
P(i) and Q(i), where i � 0, 1, 2 . . . n � 1, is de-
fined as

rPQ �
�i �P�i� � P� ��Q�i� � Q� �

��i �P�i� � P� � 2 ��i �Q�i� � Q� � 2
(1)

The possible values of rPQ range from �1 to 1, with
�1 indicating perfect negative correlation between
the two processes, 0 indicating no correlation, and
1 indicating perfect positive correlation. For each
workload, we consider the I/O arrival process aggre-
gated over fixed intervals that range from one minute
to a day. We synchronize the processes by the time
of day and the day of week. The results are available
in Reference 6.

To summarize the dependence among a set of work-
loads W, we introduce the average cross-correlation
which is defined as rPQ where P � W, Q � W and
P � Q. Figure 8 plots the average cross-correlation
for the PC workloads as a function of the time in-
terval used to aggregate the arrival process. The same
figure also plots the average cross-correlation among
the server workloads. We find that, in general, there
is little cross-correlation among the server workloads,
suggesting that aggregating them will likely help to
smooth out the traffic and enable more efficient uti-
lization of resources. Our PC workloads are taken
mostly from office environments with flexible work-

ing hours. Nevertheless, the cross-correlation among
the PC workloads is still significant except at small time
intervals. This suggests that multiplexing the PC work-
loads will smooth out the high frequency fluctuations
in I/O traffic, but some of the time-of-day effects will
remain unless the PCs are geographically distributed in
different time zones. Note that the filtered workloads
tend to be less correlated but the difference is small.

Self-similarity in I/O traffic. In many situations, es-
pecially when outsourcing storage, we need rules of
thumb to estimate the I/O bandwidth requirement
of a workload without having to analyze the work-
load in detail. We previously computed the access
density and found that the server workloads aver-
age about five I/Os or about 30 KB worth of I/O per
second per GB of data. This result can be used to
provide a baseline estimate for the I/O bandwidth re-
quired by a workload given the amount of storage
it uses. To account for the variability in the I/O traf-
fic, Figure 9A plots the distribution of I/O traffic av-
eraged over one-second intervals and normalized to
the average bandwidth over the entire trace. The fig-
ure shows that to satisfy the bandwidth requirement
for 99 percent of the one-second intervals, we would
need to provision for about 15 times the long-run av-
erage bandwidth. Notice that for all the workloads,
there is an abrupt knee in the plots just beyond 99
percent of the intervals. This means that to satisfy
requirements beyond 99 percent of the time would re-
quire disproportionately more resources.

Figure 8 Cross-correlation of volume of I/O activity vs
 time interval used to aggregate volume

TIME INTERVAL (minutes)

A
V

E
R

A
G

E
 C

R
O

S
S

-C
O

R
R

E
LA

TI
O

N

–0.05

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60

P-AVG.

PF-AVG.

S-AVG.

SF-AVG.

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HSU AND SMITH 359

In analyzing the data, we notice that for many of the
workloads, the distribution of I/O traffic is relatively
insensitive to the size of the interval over which the
traffic is averaged. For instance, in Figure 9B, the
distributions for time intervals of 0.1s, 1s, 10s, 100s
for the database server DS1 are very similar. In Ref-
erence 6, we plot the discretized time series of the
traffic for TS1 and DS1 and find that the plots look
similar for time scales ranging from tens of millisec-
onds to tens of seconds. In other words, rescaling
the time series does not remove the burstiness.

Definition of self-similarity. The phenomenon whereby
a certain property of an object is preserved with re-
spect to scaling in space and/or time is described by
self-similarity and fractals.27 Let X be the incremen-
tal process of a process Y, that is, X(i) � Y(i � 1) �
Y(i). In this context, Y counts the number of I/O ar-
rivals and X(i) is the number of I/O arrivals during
the ith time interval. Y is said to be self-similar with
parameter H if for all integers m,

X � m 1�HX �m� (2)

where

X �m��k� � �1/m� �
i��k�1�m�1

km

X�i�, k � 1, 2, . . .

is the aggregated sequence obtained by dividing the
original series into blocks of size m and averaging
over each block, and k is an index over the sequence
of blocks. In this paper, we focus on second-order
self-similarity, which means that m 1�HX (m) has the
same variance and autocorrelation as X.

The single parameter H expresses the degree of self-
similarity and is known as the Hurst parameter. For
smooth Poisson traffic, the H value is 0.5. For self-
similar series, 0.5 � H � 1, and as H 3 1, the de-
gree of self-similarity increases. Mathematically, self-
similarity is manifested in several equivalent ways
and different methods that examine specific indica-
tions of self-similarity are used to estimate the Hurst
parameter. Many of the statistical methods used to
estimate the Hurst parameter assume that the ar-
rival process is stationary. In order to avoid an ar-
rival process that was potentially nonstationary, we
selected two one-hour periods from each trace. The
first period is chosen to be a high-traffic period, spe-
cifically one that contains more I/O traffic than 95 per-
cent of other one-hour periods in the trace. The sec-
ond period is meant to reflect a low traffic situation
and is chosen to be one that contains more I/O traffic
than 30 percent of other one-hour periods in the
trace.

Figure 9 Distribution of I/O traffic averaged over various time intervals

86

88

90

92

94

96

98

100

10 100

ONE-SECOND
INTERVALS

15

99

AVERAGE I/O BANDWIDTH DURING INTERVAL
(RELATIVE TO LONG-RUN AVERAGE)

1

C
U

M
U

L
A
T

IV
E

 P
E

R
C

E
N

T
 O

F
 IN

T
E

R
V

A
L
S

C
U

M
U

L
A
T

IV
E

 P
E

R
C

E
N

T
 O

F
 IN

T
E

R
V

A
L
S

AVERAGE I/O BANDWIDTH INTERVAL
(RELATIVE TO LONG-RUN AVERAGE)

10 1001
86

88

90

92

94

96

98

100

P-AVG.

PF-AVG.

S-AVG.

SF-AVG.

0.1

1

10

100

INTERVAL SIZE (sec)

A B

DS1

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003360

The interested reader is referred to Reference 6 for
details about how we estimate the degree of self-sim-
ilarity for our various workloads. Here, we simply
summarize the Hurst parameter values we obtain
(Table 8) and state the finding that for time scales
ranging from tens of milliseconds to tens and some-
times even hundreds of seconds, the I/O traffic is well-
represented by a self-similar process. Note that filter-
ing the workloads does not affect the self-similar
nature of their I/O traffic.

Implications of self-similarity in I/O traffic. The I/O traf-
fic being self-similar implies that burstiness exists
over a wide range of time scales and that attempts
at evening out the traffic temporally will tend to not
remove all the variability. More specifically, the I/O
system may experience concentrated periods of con-
gestion with associated increase in queuing time. Fur-
thermore, resource (e.g., buffer space, channel band-
width) requirements may skyrocket at much lower
levels of utilization than expected with the commonly
assumed Poisson model in which arrivals are mutu-
ally independent and are separated by exponentially
distributed intervals. This behavior should be con-
sidered when designing storage systems, especially
when multiple workloads are to be isolated so that
they can coexist peacefully in the same storage sys-
tem, as is required in many storage utilities. Such
burstiness should also be accounted for in the ser-
vice level agreements (SLAs) when outsourcing stor-
age.

More generally, I/O traffic has been known to be
bursty but characterizing this variability has been dif-
ficult. The concept of self-similarity provides us with
a succinct way to characterize the burstiness of the
traffic. We recommend that I/O traffic be character-
ized by a three-tuple consisting of the mean and vari-
ance of the arrival rate and some measure of the self-
similarity of the traffic such as the Hurst parameter.
The first two parameters can be easily understood
and measured. The third is more involved but can
still be visually explained. Table 8 summarizes these
parameter values for our various workloads.

It turns out that self-similar behavior is not limited
to I/O traffic or to our workloads. Recently, file sys-
tem activities28 and I/O traffic29 have been found to
exhibit scale-invariant burstiness. Local and wide-
area network traffic may also be more accurately
modeled using statistically self-similar processes
rather than the Poisson model (see for example Ref-
erence 30). However, analytical modeling with self-
similar inputs has not been well developed yet. This,

coupled with the complexity of storage systems to-
day, means that the effect of self-similar I/O traffic
has to be analyzed, for the most part, through sim-
ulations. The parameters in Table 8 can be used to
generate self-similar traffic for such simulations. See,
for example, Reference 6.

Underpinnings of self-similar I/O traffic. We have seen
that the I/O traffic in our workloads is self-similar,
but self-similarity is a rather abstract concept. To
present a more compelling case and provide further
insights into the dynamic nature of the traffic, we re-
late this phenomenon to some underlying physical
cause, namely the superposition of I/O from multi-
ple processes in the system where each process be-
haves as an independent source of I/O with on pe-
riods that are heavy-tailed.

A random variable, X, is said to follow a heavy-tailed
distribution if

P�X � x� � cx ��, as x3 	, c � 0, 1 � � � 2

(3)

Such a random variable can give rise to extremely
large values with nonnegligible probability. The su-
perposition of a large number of independent traf-
fic sources with on and/or off periods that are heavy-
tailed is known to result in traffic that is self-similar31

(the process does not follow a Poisson distribution,
and the assumptions of Palm-Khintchine theorem
are not satisfied). In the current context, we consider
each process in the system as an independent source
of I/O. As in Reference 29, we define an off period
for a process as any interval longer than 0.2s during
which the process does not generate any I/O. All other
intervals are considered to be on periods for the pro-
cess. This analysis has been shown to be relatively

Table 8 Hurst parameter, mean, and variance (per second)
 of traffic arrival rate during the high-traffic period

P-Avg.
Pf-Avg.

S-Avg.
Sf-Avg.

Characteristics of High-Traffic Period

0.81
0.79

0.90
0.80

H

769080
528538

627261
528439

σ2(KB/s)2

188
91.6

445
367

µ(KB/s)

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HSU AND SMITH 361

insensitive to the threshold value used to distinguish
the on and off periods.31

Taking the logarithm of both sides of Equation 3,
we get

log�P�X � x�� � log�c� � �log� x�, as x3 	 (4)

Therefore, if X is heavy-tailed, the plot of P(X �
x) versus x on log-log scale should yield a straight
line with slope � for large values of x. Such log-log
plots are known as complementary cumulative dis-
tribution plots or “qq-plots.” In Figure 10, we present
the qq-plots for the lengths of the on and off periods
for the five processes that generate the most I/O traf-
fic in each of our PC workloads. Unfortunately, none
of our other workloads contain the process informa-
tion that is needed for this analysis. As shown in the
figure, the on periods appear to be heavy-tailed but
not the off periods. This is consistent with results re-
ported in Reference 29 where the lack of heavy-tailed
behavior for the off periods is attributed to periodic
activity such as the sync daemon traffic. Having
heavy-tailed on periods is sufficient, however, to re-
sult in self-similar aggregate traffic.

The relative lulls. As discussed earlier, when the I/O
load is not constant but varies over time, there may

be opportunities to use the relatively idle periods to
do some useful work. Here, we characterize in de-
tail the idle periods, focusing on specific metrics that
will be helpful in designing techniques that try to ex-
ploit idle time.

We consider an interval to be idle if the average num-
ber of I/Os per second during the interval is less than
some value k. The term idle period refers to a se-
quence of intervals that are idle. The duration of an
idle period is simply the product of the number of
idle intervals it contains and the interval size. In this
study, we use a relatively long interval of 10 seconds
because we are interested in long idle periods dur-
ing which we can perform a substantial amount of
work. Note that storage systems tend to have some
periodic background activity so that treating an in-
terval to be idle only if it contains absolutely no I/O
activity would be far too conservative. Since disks
today are capable of supporting in excess of 100 I/Os
per second, we select k to be 20 for all our work-
loads except DS1. DS1 contains several times the al-
located storage in the other workloads so its storage
system will presumably be much more powerful.
Therefore, we use a k value of 40 for DS1.

Based on this definition of an idle interval, we find
that for the PC workloads, more than 99 percent of

Figure 10 Length of ON periods (A) and OFF periods (B) for the five most I/O-active processes

LOG10 (LENGTH OF ON-PERIODS (sec))

L
O

G
1
0
(1

-C
U

M
U

L
A
T

IV
E

 P
E

R
C

E
N

T
/1

0
0
)

A B

–3

–2

–1

0

–2 –1 0

SLOPE=–1SLOPE=–2

1 2

P-AVG.

LOG10 (LENGTH OF OFF-PERIODS (sec))

L
O

G
1
0
(1

-C
U

M
U

L
A
T

IV
E

 P
E

R
C

E
N

T
/1

0
0
)

–3

–2

–1

0

–1 0 1 2

P-AVG.

1
2
3
4
5

I/O RANK OF

SLOPE=–1

SLOPE=–2

3

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003362

the intervals are idle. The corresponding figure for
the server workloads on average is more than 93 per-
cent. Such results clearly indicate that there are re-
sources in the storage system that are significantly un-
derutilized and that can be put to good use. Figure 11A
presents the distribution of idle periods for our work-
loads, while Figure 11B shows the corresponding dis-
tribution of idle time. Figure 11B is obtained by
weighing the idle periods by their duration. We fit-
ted standard probability distributions to the data and
found that the lognormal distribution is a reason-
ably good fit for most of the workloads. Notice that
although most of the idle periods are short (less than
a thousand seconds), long idle periods account for
most of the idle time. This is consistent with previ-
ous results32 and implies that a system that exploits
idle time can get most of the potential benefit by simply
focusing on the long idle periods.

Inter-idle gap. An important consideration in utiliz-
ing idle resources is the frequency with which suit-
ably long idle periods can be expected. In addition,
the amount of activity that occurs between such long
idle periods determines the effectiveness and the fea-
sibility of exploiting the idle periods. For instance,
a log-structured file system33 where garbage collec-
tion is performed periodically during system idle time
may run out of free space if there is a lot of write

activity between the idle periods. In the disk block
reorganization scheme proposed in Reference 4, the
inter-idle gap, that is, the time span between suit-
ably long idle periods, determines the amount of
trace data that have to be accumulated on the disk.

In Figure 12, we consider this issue by plotting the
average inter-idle gap as a function of the duration
of the idle period. The results show that for the PC
workloads on average, idle periods lasting at least
an hour are separated by busy periods of about an
hour and with just over 17000 references. As we
would expect, the server workloads have longer busy
periods separated by shorter idle periods. But in both
environments, the results indicate that there are long
idle periods that occur frequently enough to be inter-
esting for off-line optimizations such as block reorga-
nization. 4 In the server environments, we might have
to be more meticulous about using the idle time, for
instance, by dividing an off-line task into several finer-
grained steps that can be scheduled whenever there
is a short idle period.

Idle length prediction. In some cases, there is a re-
covery cost associated with stopping an off-line task
before it is completed. Therefore, it is important to
predict how long an idle period will last so that the
system can decide whether a task should be initiated.

Figure 11 Distribution of idle periods (A) and idle time (B)

DURATION OF IDLE PERIODS (sec)

C
U

M
U

LA
TI

V
E

 P
E

R
C

E
N

T
O

F
ID

LE
 P

E
R

IO
D

S

S-AVG.-FITTED
LOGNORM(655,4.84x103)

P-AVG.-FITTED
LOGNORM(5.72x103,1.23x105)

P-AVG.

PF-AVG.

S-AVG.

SF-AVG.

P-AVG.

PF-AVG.

S-AVG.

SF-AVG.

A B

1.E+021.E+01 1.E+03 1.E+04
0

20

40

60

80

100

DURATION OF IDLE PERIODS (sec)

C
U

M
U

LA
TI

V
E

 P
E

R
C

E
N

T
O

F
ID

LE
 P

E
R

IO
D

S
 (W

E
IG

H
TE

D
) S-AVG.-FITTED

LOGNORM(1.74x104,9.75x104)

P-AVG.-FITTED
LOGNORM(6.16x105,4.83x106)

1.E+021.E+01 1.E+03 1.E+051.E+04
0

20

40

60

80

100

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HSU AND SMITH 363

To this end, we calculated the autocorrelation of the
sequence of idle period duration at different lags and
discover that for all our workloads, there is little cor-
relation between the length of one idle period and
the lengths of the immediately preceding periods.6

In other words, how long the system will remain idle
is not predictable from the lengths of its recent idle pe-
riods. This is in contrast to the strong correlation that
previously was observed for a personal UNIX work-
station.32 In that study, the level of activity at which
the system was considered idle was not clear. We con-
jecture that because the personal UNIX workstation
in the previous study was not heavily used, the idle
periods are determined primarily by the periodic
background activity that exists in the system, hence
the strong autocorrelation.

In Figure 13, we plot the expected future idle du-
ration, E[I(x)], which is defined as the expected re-
maining idle duration given that the system has al-
ready been idle for x units of time. More formally,

E
I� x�� � �
i�x�1

	 �i � x�l�i�
1 � L�i�

(5)

where l� is the probability distribution of the idle
period duration; that is, l(j) is the probability that

an idle period has a duration of j, and L� is the
cumulative probability distribution of the idle period
duration; that is, L(j) � ¥ i�1

j l(i). Observe from Fig-
ure 13 that E[I(x)] is generally increasing. In other

Figure 13 Remaining idle duration

IDLE DURATION (sec)

E
X

P
E

C
TE

D
 R

E
M

A
IN

IN
G

 ID
LE

 D
U

R
AT

IO
N

 (s
ec

)

1000

10000

100000

10 100 1000 10000
100

P-AVG.
PF-AVG.
S-AVG.
SF-AVG.

Figure 12 Average duration of busy periods measured in seconds (A) and measured in number of I/O references (B)

MINIMUM DURATION OF IDLE PERIODS (sec)

A
V

G
. I

N
TE

R
-I

D
LE

 G
A

P
 (s

ec
)

A
V

G
. I

N
TE

R
-I

D
LE

 G
A

P
 (#

 I/
O

 R
E

FE
R

E
N

C
E

S
)

MINIMUM DURATION OF IDLE PERIODS (sec)

P-AVG.

PF-AVG.

S-AVG.

SF-AVG.

A

1.E+02

1.E+03

1.E+04

1.E+05

1.E+02 1.E+03 1.E+04

1 HOUR

1 HOUR

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+01 1.E+02 1.E+03

1 HOUR

P-AVG.

PF-AVG.

S-AVG.

SF-AVG.

B

17000

1.E+01
1.E+01 1.E+04

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003364

words, the longer the system has been idle, the longer
it is likely to remain idle. This phenomenon suggests
prediction policies that progressively raise the pre-
dicted remaining idle duration as the system remains
idle. Note that the plot is logarithmic so the rate of
increase in E[I(x)] is higher than it appears.

To better understand how such prediction policies
should be designed, we also calculated the hazard
rate of the idle period duration. The hazard rate is
simply the likelihood that an idle period ends with
a duration of at most k � r time units given that it
is already k units long. In other words, given that
the system has been idle for k units, H(k, r) is the
probability that a task initiated now and requiring
r units of time will not be completed before the sys-
tem becomes busy again. More formally,

H�k, r� �

�
i�0

r

l�k � i�

1 � L�k � 1�
(6)

We find that the hazard rate increases with r, mean-
ing that the chances for the task not to be completed
before the system becomes busy again increase with
the length of the task, as we would expect. In ad-
dition, the hazard rate generally declines as the
length of time the system has already been idle in-
creases.6 This result supports again the idea of pre-
dicting the remaining idle period duration by condi-
tioning on the amount of time the system has already
been idle.

Interaction of reads and writes

In general, the interaction between reads and writes
complicates a computer system and throttles its per-
formance. For instance, static data can be simply rep-
licated to improve not only the performance of the
system but also its scalability and durability. But if
the data are being updated, the system has to en-
sure that the writes occur in the correct order. In
addition, it has to either propagate the results of each
write to all possible replicated copies or to invali-
date these copies. The former usually makes sense
if the updated data are unlikely to be updated again
but are likely to be read. The latter is useful when
it is highly likely that the data will be updated sev-
eral more times before the data are read. In cases
where the data are being both updated and read, rep-
lication may not be useful. The read-write compo-
sition of the traffic, together with the flow of data

from writes to reads, is therefore an extremely im-
portant workload characteristic and the focus of this
section.

Read/write ratio. A wide range of read/write ratios
has been reported in the literature. In addition to
intrinsic workload differences, the read/write ratio
also depends to a large extent on how many of the
reads and writes have been filtered by caching, and
on the kinds of I/Os (e.g., user data, paging, file sys-
tem meta-data) that are tabulated. Because main
memory is volatile, the amount of write buffering per-
formed by the file system cache is typically limited.
For example, UNIX systems have traditionally used
a policy of periodically (once every 30 seconds) flush-
ing the dirty blocks in the file cache to disk so as to
limit the amount of data that can potentially be lost
in a system failure. In Windows NT, one quarter of
the dirty data in the file cache is written back to disk
every second.34 Therefore, more of the reads than
writes are filtered by the file system cache. The file
system also adds meta-data writes, which may ac-
count for more than half of the physical writes (more
than 72 percent in Reference 15 and more than 53
percent in our PC workloads). Thus at the logical
level, the read/write ratio is generally much higher
than at the physical level.

For instance, the ratio of logical read to write traffic
has been reported to be between 3.7 and 6.3 for desk-

R
E

A
D

/W
R

IT
E

 R
AT

IO

0

0.5

1

1.5

2

2.5

3

0 64 128 192 256

FOOTPRINT - FITTED
f(x)=0.628e43.0/x

r2=0.126

REQUESTS - FITTED
f(x)=0.164e141/x

r2=0.607

TRAFFIC - FITTED
f(x)=0.241e121/x

r2=0.720

MEMORY SIZE (MB)

Figure 14 Read/write ratio as function of memory size

REQUESTS
TRAFFIC
FOOTPRINT

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HSU AND SMITH 365

top workstation workloads,9 and the ratio of logical
read to write operations has been found to be be-
tween 3 and 4.5 in various office environments.35 But
at the physical level, the read/write ratio has been
observed to range from only about 0.4 to 1 for No-
vell NetWare file servers16 and from about 0.7 to 0.8
for several HP-UX systems.15 These figures are com-
parable to the physical read/write ratio we obtained,
which are presented in Table 9. Observe that for the
server workloads and the PC workloads on average, the
ratio of read to write requests ranges from 0.71 to 0.82,
which means that writes account for about 60 percent
of the requests. Interestingly, mainframe data process-

ing workloads appear to have a higher read/write ra-
tio. For example, measurements conducted at the
physical level at 12 moderate-to-large MVS* instal-
lations running mainly data processing applications
(circa 1993) found the read/write ratio to be about
3.5.24 Analysis of the logical I/O traffic of the pro-
duction database workloads of ten of the world’s larg-
est corporations of about the same period found the
read/write ratio to average roughly 10.10,11

In calculating the average read/write ratio presented
in Table 9, we observe that for the PC workloads, the
read/write ratio appears to be negatively correlated
with the memory size of the system. Unfortunately,
we do not have enough data points to observe any
trends for the server workloads. In Figure 14, we plot
the read/write ratio for the PC workloads as a func-
tion of the memory size. As shown in the figure, the
read/write ratio is approximately related to the mem-
ory size by an exponential function of the form f(x) �
ae b/x where a and b are constants. The model is lim-
ited by the few data points we have, but it predicts
that with an infinitely large memory, that is, as x3
	, there will be about six writes for every read. Such
results support the prediction that almost all reads
will be absorbed by the larger buffer caches in the
future so that physical I/O will become dominated
by writes.33 However, that the read/write ratio re-
mains relatively consistent across all our workloads,
which span a time period of eight years, suggests that
workload changes may have a countereffect. Also,
the fact that the ratio of read footprint to write foot-
print decreases, albeit slowly, with memory size, sug-
gests that effects (e.g., workload differences) other
than an increase in caching, could also be at work
here.

If writes become increasingly dominant, a pertinent
question to ponder is whether physical read perfor-
mance really matters. In Figure 15, we plot the read
and write cache miss ratios assuming a write-back
cache with the least-recently-used (LRU) cache re-
placement policy. We define the miss ratio to be the
fraction of requests that cannot be satisfied by the
cache but that result in a request to the underlying
storage system. Observe that the plots for the filtered
workloads are simply a translation of those for the
original workloads; the behavior is qualitatively sim-
ilar. In this experiment, we are in essence simulat-
ing a second-level cache. The upstream file system
cache and/or the database buffer pool have captured
significant portions of any read reuse but because
they are volatile, they cannot safely cache the writes.
Therefore, the writes observed at the storage level ex-

P-AVG.
PF-AVG.
S-AVG.
SF-AVG.

Figure 15 Miss ratio with LRU write-back cache
 (512-byte blocks)

CACHE SIZE (MB)

M
IS

S
 R

AT
IO

0

0.2

0.4

0.6

0.8

1

0 64 128 192 256

READ

WRITE

Table 9 Read/write ratio

P-Avg.
Pf-Avg.

S-Avg.
Sf-Avg.

Read/Write Ratio

0.816
0.965

0.706
1.12

Requests

Read
Requests

Write
Requests

0.932
0.607

0.870
0.843

Traffic

MB
Read

MB
Written

0.988
0.888

1.24
1.19

Footprint

Unique
Blocks Read

Unique
Blocks Written

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003366

hibit much stronger locality than the reads. In other
words, although read caching by the file system or the
database buffer can eliminate most of the reads, if writes
are delayed long enough by using nonvolatile memory,
write requests can similarly be very significantly reduced.
In fact, for practically all the workloads, a small cache
of 1 MB eliminates more than half the writes.

Furthermore, unlike reads, which tend to be synchro-
nous, writes can be effectively rendered asynchro-
nous through the use of write caching or buffering.5

In addition, the effective latency of writes can often
be reduced by writing data asynchronously or in a
log33 or by using write-ahead logging. Recent results
(see for example Reference 36) further suggest that
because of the widening performance gap between
processor- and disk-based storage, file system read
response times may be dominated by disk accesses
even at very high cache hit rates. Therefore, the per-
formance of read I/Os continues to be very important.

Working set overlap. The working set W(t,) is de-
fined as the set of blocks referenced within the last
	 units of time.37 More formally,

W�t, 	� � �b�Count�b, t � 	, t� �� 1
 (7)

where Count(b, t1 , t2) denotes the number of times
block b is referenced between t1 and t2 . In Figure
16, we plot the average and maximum daily working
set size for our workloads. Note that we define the
working set of day x as W(t � midnight of day x,
	 � 1 day). To understand the interaction between
reads and writes, we classify the blocks referenced
into those that are read, written, and both read and
written. Specifically,

Wread�t, 	� � �b�ReadCount�b, t � 	, t� �� 1

Wwritten�t, 	� � �b�WriteCount�b, t � 	, t� �� 1

Wboth�t, 	� � Wread�t, 	� � Wwritten�t, 	�

On average, the daily working set for the various
workloads ranges from just over 4 percent (PC work-
loads) to about 7 percent of the storage used (FS1).
The size of the working set is not constant but fluc-
tuates day-to-day so that the maximum working set
is several times larger than the average. Notice from
Figure 16 that the working set of blocks that are both
read and written is small, representing less than 25
percent of the total working set size for all the work-
loads. To better understand the interaction between
the blocks that are read and those that are written,

we introduce the idea of the generalized working set
W(t, 	, c) � {b�Count(b, t � 	, t) �� c}. The
working set first introduced in Reference 37 is sim-
ply the special case where c � 1. Figure 17 presents
the average daily generalized working set size for our
workloads as a function of c, the minimum number
of times a block is referenced in a day for it to be
considered part of the working set. The figure shows
that for all the workloads, the relationship between
the average size of the daily generalized working set
and c can be approximately described by a recipro-
cal function of the form f(c) � a/c b where a and
b are positive constants. That the working set de-
creases sharply as c increases beyond unity indicates
that only a small fraction of the data stored is in active
use, suggesting that it is probably a good idea to iden-
tify the blocks that are in use and to optimize their lay-
out as in Reference 4. Notice also that the amount of
data that is both actively read and updated is clearly
very small. In the next section, we examine this fur-
ther by looking at the dependencies between reads
and writes.

Read/write dependencies. Dependencies are gen-
erally classified into three categories: true dependen-
cies (read-after-write or RAW), output dependencies
(write-after-write or WAW), and anti dependencies
(write-after-read or WAR). A RAW is said to exist be-
tween two operations if the first operation writes a

Figure 16 Daily working set size

WORKLOAD

D
A

IL
Y

 W
O

R
K

IN
G

 S
E

T
S

IZ
E

(P
E

R
C

E
N

T
O

F
S

TO
R

A
G

E
 U

S
E

D
)

0

5

10

15

20

25

MAXIMUM

AVERAGE

P-A
VG.

PF-
AVG.

S-A
VG.

SF-
AVG.

P-A
VG.

PF-
AVG.

S-A
VG.

SF-
AVG.

BOTH
WRITE-ONLY
READ-ONLY

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HSU AND SMITH 367

block that is later read by the second operation and
there is no intervening operation on the block. WAW
and WAR are similarly defined.

In Figure 18, we plot the percentage of reads for
which there is a write within � references that con-
stitute a WAR. We refer to � as the window size. Ob-
serve that even for a large window size of 100000
references, less than 25 percent of the reads fall into
this category for all the workloads. In other words,
blocks that are read tend not to be updated so that if
disk blocks are replicated or reorganized based on their
read access patterns, write performance will not be sig-
nificantly affected. Notice from Figure 19 that all the
workloads contain more WAW than RAW. This im-
plies that updated blocks are more likely to be updated
again than to be read, suggesting that if we do replicate
blocks, we should only update one of the copies and
invalidate the rest rather than update all the copies. In
other words, a write-invalidate policy will likely work
better than a write-broadcast policy. Again, we see
that the results for the filtered traces are quantita-
tively different from those for the original traces, but
they lead to the same conclusions.

For the PC traces, we are able to match up I/O re-
quests with the corresponding filename. To better
understand the dependencies, we rerun the RAW and
WAW analysis for these workloads excluding refer-
ences to the file system meta-data and to log files,

Figure 17 Average daily generalized working set size

15 16

C

PF-AVG.

0

50

100

150

200

1 52 63 74 8 9 10 11 12 13 14

W
O

R
K

IN
G

 S
E

T
S

IZ
E

 (M
B

)

COUNT, c

f(c)=193c–1.91

r2=1.00

0

250

500

750

1000

1250
S-AVG.

1 52 63 74 8 9 10 11 12 13 14 15 16
COUNT, c

f(c)=1283c–2.43

r2=0.997

B

W
O

R
K

IN
G

 S
E

T
S

IZ
E

 (M
B

)

A

P-AVG.

0

50

100

150

200

1 52 63 74 8 9 10 11 12 13 14 15 16

W
O

R
K

IN
G

 S
E

T
S

IZ
E

 (
M

B
)

COUNT, c

f(c)=207c–1.56

r2=0.998

0

250

500

750

1000

1250
SF-AVG.

1 52 63 74 8 9 10 11 12 13 14 15 16

COUNT, c

f(c)=1275c–2.87

r2=0.999

D

W
O

R
K

IN
G

 S
E

T
S

IZ
E

 (M
B

)

BOTH
WRITE-ONLY
READ-ONLY

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003368

which respectively constitute about half, and a quar-
ter, of all the write requests. The results are sum-
marized in Figure 20. We consider meta-data ref-
erences to be those that access blocks belonging to
directories and to the following files: $mft, $attrdef,
$bitmap, $boot, $logfile, $mftmirr, and $upcase. Log
references are taken to be those that access blocks
belonging to the following files: *
config
*, *
pro-
files
*, *.log, log.*, and netscape.hst. Observe that
once the meta-data and log references are filtered
out, it is still the case that updated blocks are more
likely to be updated again than to be read, but less
so. In other words, although meta-data and log writes
make it more likely for an updated block to be up-
dated again than to be read, they are not the only
cause for this behavior.

Conclusions

In this paper, we empirically analyze the I/O traffic
of a wide range of real workloads with an emphasis
on understanding how these workloads will respond
to new storage developments such as network stor-
age, storage utilities, and intelligent self-optimizing
storage. As part of our analysis, we also study the
effect of increased upstream caching on the traffic
characteristics seen by the storage system and dis-
cover that it affects our analysis only quantitatively.
Our major findings follow.

Importance of I/O innovation/optimization—I/O is
known to be a major component of server workloads,
and improving the I/O performance for these work-
loads is critical. Our results suggest that if proces-
sors continue to increase in performance according
to Moore’s Law, I/O is likely to also become a dom-
inant component of personal computer workloads
in the next few years. Our data show that consistently
across all the workloads, writes account for about
60 percent of the requests. However, just as read
caching by the file system or the database buffer can
eliminate most of the reads, if writes are delayed long
enough (e.g., by using nonvolatile memory), write
requests can similarly be very significantly reduced.
In fact, for practically all the workloads, a small write-
back cache of 1 MB eliminates more than half the
writes. Therefore, we believe that the performance
of read I/Os is likely to continue to have a direct im-
pact on application performance. As part of our anal-
ysis, we re-examine Amdahl’s rule of thumb for a
balanced system and discover that our server work-
loads generate on the order of 0.05 bits of physical
I/O per instruction, consistent with our earlier work
using the production database workloads of some

of the world’s largest corporations.10 The figure for
the PC workloads is seven times lower at about 0.007

Figure 19 Frequency of occurrence of read-after-write
 and write-after-write

0

20

40

60

80

100

WINDOW SIZE Ω (# REFERENCES)

P
E

R
C

E
N

T
O

F
W

R
IT

E
S

100 1000 10 000 100 000 1 000 000

WRITE-AFTER-WRITE

READ-AFTER-WRITE

P-AVG.
PF-AVG.
S-AVG.
SF-AVG.

Figure 20 Frequency of occurrence of read-after-write
 and write-after-write when meta-data and/or log
 references are excluded

0

20

40

60

80

100

WINDOW SIZE Ω (# REFERENCES)

P
E

R
C

E
N

T
O

F
W

R
IT

E
S

100 1000 10 000 100 000

P-AVG.

WRITE-AFTER-WRITE

READ-AFTER-WRITE

ALL REFERENCES

EXCLUDING META-DATA
REFERENCES

EXCLUDING META-DATA
AND LOG REFERENCES

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HSU AND SMITH 369

bits of physical I/O per instruction per second. We
also find that the average request size is about 8 KB.

Burstiness of I/O traffic—Across all the workloads,
read and write I/O requests seldom occur singly but
tend to arrive in groups. We find that the write queue
is very much deeper than the read queue. Our anal-
ysis also indicates that there is little cross-correla-
tion in traffic volume among the server workloads,
suggesting that aggregating them will likely help to
smooth out the traffic and enable more efficient uti-
lization of resources. As for the PC workloads, mul-
tiplexing them will remove the high frequency fluc-
tuations in I/O traffic, but some of the time-of-day
effects are likely to remain unless the PCs are geo-
graphically distributed in different time zones. In ad-
dition, our results show that to satisfy I/O bandwidth
requirements 99 percent of the time, we would need
to provision for 15 times the long-run average band-
width. Going beyond 99 percent of the time would
require disproportionately more resources. It turns
out that for time scales ranging from tens of milli-
seconds to tens and sometimes even hundreds of sec-
onds, the I/O traffic is well-represented by a self-sim-
ilar process. This implies that the I/O system may
become overwhelmed at much lower levels of uti-
lization than expected with the commonly assumed
Poisson model. Such behavior has to be taken into
account when designing storage systems, and in the
service level agreements (SLAs) when outsourcing
storage. We recommend that I/O traffic be charac-
terized by a three-tuple consisting of the mean and
variance of the arrival rate, and the Hurst param-
eter.

Potential for harnessing “free” resources—We find that
our PC workloads contain a lot of processor idle time
for performing background tasks, even without hav-
ing to deliberately leave the computer on when the
user is away. The storage system is also relatively idle.
For all the workloads, a system that exploits idle time
can get most of the potential benefit by simply fo-
cusing on the long idle periods. In both the PC and
server environments, there are idle periods that are
both long enough and that occur frequently enough
to be interesting for off-line optimizations such as
block reorganization. In the server environment, we
might have to be more meticulous in using the avail-
able idle time, for instance, by dividing an idle-time
task into several finer-grained steps that can be
scheduled whenever there is a short idle period. Our
results suggest that the length of an idle period can
be predicted more accurately by conditioning (us-
ing conditional probabilites) on the amount of time

the system has already been idle than from the
lengths of the recent idle periods.

Opportunity for block reorganization—In general, I/O
traffic is low enough so that collecting a daily trace
of block references for later analysis and optimiza-
tion results in a manageable amount of data. We dis-
cover that only a small fraction of the data stored
is in active use, suggesting that it is probably a good
idea to identify the blocks that are in use and to op-
timize their layout. In addition, the amount of data
that is both actively read and updated is very small.
Moreover, blocks that are read tend not to be up-
dated so that if blocks are reorganized or replicated
based on their read access patterns, write perfor-
mance will not be significantly affected. Because up-
dated blocks are more likely to be updated again than
to be read, if blocks are replicated, a write-invali-
date policy will tend to work better than a write-
broadcast policy.

Acknowledgments

The authors would like to thank Ruth Azevedo, Car-
los Fuente, Jacob Lorch, Bruce McNutt, Anjan Sen,
and John Wilkes for providing the traces used in this
study. In addition, the authors are grateful to Jai Me-
non, John Palmer, and Honesty Young for helpful
comments on versions of this paper.

Funding for this research has been provided by the
State of California under the MICRO program, and
by AT&T Laboratories, Cisco Corporation, Fujitsu
Microelectronics, IBM Corporation, Intel Corpora-
tion, Maxtor Corporation, Microsoft Corporation,
Sun Microsystems, Toshiba Corporation, and Veri-
tas Software Corporation.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of The Open Group, No-
vell Corporation, Microsoft Corporation, Hewlett-Packard Com-
pany, or Intel Corporation.

Cited references

1. J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, Second Edition, Morgan Kaufmann
Publishers, Inc., San Francisco, CA (1996).

2. E. Grochowski, “IBM Magnetic Hard Disk Drive Technol-
ogy,” Hitachi Global Storage Technologies, http://
www.hgst.com/hdd/technolo/grochows/grocho01.htm.

3. W. W. Hsu, A. J. Smith, and H. C. Young, “Projecting the
Performance of Decision Support Workloads on Systems with
Smart Storage (SmartSTOR),” Proceedings of IEEE Interna-
tional Conference on Parallel and Distributed Systems

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003370

(ICPADS), Iwate, Japan, July 2000, IEEE, New York (2000),
pp. 417–425.

4. W. W. Hsu, A. J. Smith, and H. C. Young, “The Automatic
Improvement of Locality in Storage Systems,” Technical Re-
port, Computer Science Division, University of California,
Berkeley (2003, in preparation). Available as Chapter 4 of
Reference 38.

5. W. W. Hsu and A. J. Smith, “The Real Effect of I/O Opti-
mizations and Disk Improvements,” Technical Report, Com-
puter Science Division, University of California, Berkeley
(2003, in preparation). Available as Chapter 3 of Reference
38.

6. W. W. Hsu and A. J. Smith, “Characteristics of I/O Traffic
in Personal Computer and Server Workloads,” Technical Re-
port CSD-02-1179, Computer Science Division, University
of California, Berkeley (April 2002). Available at http://
sunsite.berkeley.edu/TechRepPages/CSD-02-1179.

7. M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff,
and J. K. Ousterhout, “Measurements of a Distributed File
System,” Proceedings of ACM Symposium on Operating Sys-
tems Principles (SOSP), Pacific Grove, CA, October 1991,
ACM, New York (1991), pp. 198–212.

8. W. Vogels, “File System Usage in Windows NT 4.0,” Pro-
ceedings of ACM Symposium on Operating Systems Principles
(SOSP), ACM, New York (1999), pp. 93–109.

9. D. Roselli, J. R. Lorch, and T. E. Anderson, “A Comparison
of File System Workloads,” Proceedings of USENIX Annual
Technical Conference, San Diego, CA, June 2000, USENIX
Association, Berkeley, CA (2000), pp. 41–54.

10. W. W. Hsu, A. J. Smith, and H. C. Young, “Characteristics
of Production Database Workloads and the TPC Bench-
marks,” IBM Systems Journal 40, No. 3, 781–802 (2001).

11. W. W. Hsu, A. J. Smith, and H. C. Young, “I/O Reference
Behavior of Production Database Workloads and the TPC
Benchmarks—An Analysis at the Logical Level,” ACM Trans-
actions on Database Systems 26, 96–143 (March 2001).

12. A. J. Smith, “Disk Cache—Miss Ratio Analysis and Design
Considerations,” ACM Transactions on Computer Systems 3,
161–203 (August 1985).

13. P. Biswas, K. K. Ramakrishnan, and D. Towsley, “Trace
Driven Analysis of Write Caching Policies for Disks,” Pro-
ceedings of ACM Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Santa Clara, CA, May
1993, ACM, New York (1993), pp. 13–23.

14. R. Karedla, J. S. Love, and B. G. Wherry, “Caching Strat-
egies to Improve Disk System Performance,” Computer 27,
38–46 (March 1994).

15. C. Ruemmler and J. Wilkes, “UNIX Disk Access Patterns,”
Proceedings of USENIX Winter Conference, San Diego, CA,
January 1993, USENIX Association, Berkeley, CA (1993),
pp. 405–420.

16. J. R. Heath and S. A. R. Houser, “Analysis of Disk Work-
loads in Network File Server Environments,” Proceedings of
Computer Measurement Group (CMG) Conference, Nashville,
TN, December 1995, Computer Measurement Group (1995),
pp. 313–322.

17. J. R. Lorch and A. J. Smith, “The VTrace Tool: Building a
System Tracer for Windows NT and Windows 2000,” MSDN
Magazine 15, 86–102 (October 2000).

18. IBM Corporation, AIX Versions 3.2 and 4 Performance Tun-
ing Guide, 5th Edition (1996).

19. M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and
A. Gupta, “The Impact of Architectural Trends on Operat-
ing System Performance,” Proceedings of 15th ACM Sympo-
sium on Operating Systems Principles (SOSP), Copper Moun-

tain, CO, December 1995, ACM, New York (1995), pp. 285–
298.

20. G. M. Amdahl, “Storage and I/O Parameters and Systems
Potential,” Proceedings of IEEE International Computer Group
Conference (Memories, Terminals, and Peripherals), Washing-
ton, DC, June 1970, IEEE, New York (1970), pp. 371–372.

21. D. Bhandarkar and J. Ding, “Performance Characterization
of the Pentium Pro Processor,” Proceedings of International
Symposium on High-Performance Computer Architecture
(HPCA), San Antonio, TX, February 1997, IEEE, New York
(1997), pp. 288–297.

22. A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood,
“DBMSs on a Modern Processor: Where Does Time Go,”
Proceedings of International Conference on Very Large Data
Bases (VLDB), Edinburgh, Scotland, September 1999, Mor-
gan Kaufman Publishers, San Francisco, CA (1999), pp. 266–
277.

23. K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and
W. E. Baker, “Performance Characterization of a Quad Pen-
tium Pro SMP Using OLTP Workloads,” Proceedings of ACM
International Symposium on Computer Architecture (ISCA),
Barcelona, Spain, June 1998, ACM, New York (1998), pp.
15–26.

24. B. McNutt, “MVS DASD Survey: Results and Trends,” Pro-
ceedings of Computer Measurement Group (CMG) Conference,
Nashville, TN, December 1995, Computer Measurement
Group (1995), pp. 658–667.

25. J. B. Major, “Processor, I/O Path, and DASD Configuration
Capacity,” IBM Systems Journal 20, No. 1, 63–85 (1981).

26. Y. Chen, W. W. Hsu, and H. C. Young, “Logging RAID—An
Approach to Fast, Reliable, and Low-Cost Disk Arrays,” Pro-
ceedings of European Conference on Parallel Computing (Eu-
roPar), Munich, Germany, August 2000, Springer, New York
(2000), pp. 1302–1312.

27. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Free-
man, New York (1982).

28. S. D. Gribble, G. S. Manku, D. Roselli, E. A. Brewer, T. J.
Gibson, and E. L. Miller, “Self-Similarity in File Systems,”
Proceedings of ACM Conference on Measurement and Mod-
eling of Computer Systems (SIGMETRICS), Madison, WI,
June 1998, ACM, New York (1998), pp. 141–150.

29. M. E. Gómez and V. Santonja, “Analysis of Self-Similarity
in I/O Workload Using Structural Modeling,” Proceedings of
Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), College Park,
MD, October 1999, IEEE, New York (1999), pp. 234–242.

30. W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson,
“On the Self-Similar Nature of Ethernet Traffic (Extended
Version),” IEEE/ACM Transactions on Networking 2, 1–15
(February 1994).

31. W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson,
“Self-Similarity Through High-Variability: Statistical Anal-
ysis of Ethernet LAN Traffic at the Source Level,” IEEE/ACM
Transactions on Networking 5, 71–86 (February 1997).

32. R. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes,
“Idleness Is Not Sloth,” Proceedings of USENIX Technical
Conference, New Orleans, LA, January 1995, USENIX As-
sociation, Berkeley, CA (1995), pp. 201–212.

33. J. Ousterhout and F. Douglis, “Beating the I/O Bottleneck:
A Case for Log-Structured File Systems,” Operating Systems
Review 23, 11–28 (January 1989).

34. M. Russinovich, “Inside the Cache Manager,” Windows &
.NET Magazine, October 1998, http://www.winnetmag.com/.

35. K. K. Ramakrishnan, P. Biswas, and R. Karedla, “Analysis
of File I/O Traces in Commercial Computing Environments,”

IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003 HSU AND SMITH 371

Proceedings of ACM Conference on Measurement and Mod-
eling of Computer Systems (SIGMETRICS), Newport, RI, June
1992, ACM, New York (1992), pp. 78–90.

36. M. D. Dahlin, Serverless Network File Systems, Ph.D. thesis,
University of California, Berkeley, CA (December 1995).

37. P. J. Denning, “The Working Set Model for Program Behav-
iour,” Communications of the ACM 11, No. 5, 323–333 (May
1968).

38. W. W. Hsu, “Dynamic Locality Improvement Techniques for
Increasing Effective Storage Performance, Ph.D. thesis, Uni-
versity of California, Berkeley, CA (December 2002). Avail-
able as Technical Report CSD-03-1223, Computer Science
Division University of California, Berkeley (January 2003).

Accepted for publication December 16, 2002.

Windsor W. Hsu IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, California 95120
(windsor@almaden.ibm.com). Dr. Hsu received the B.S. degree
in electrical engineering and computer sciences, and the M.S. and
Ph.D. degrees in computer science from the University of Cal-
ifornia, Berkeley. Since 1996, he has been with the Computer Sci-
ence Department at the IBM Almaden Research Center. His
research interests include computer architecture and the perfor-
mance analysis and modeling of computer systems. Dr. Hsu has
received the IBM Supplemental Patent Issue Award (2002), IBM
Invention Achievement Award (2001, 2000), IBM Fellowship
(1995–1998), UC Regents’ Fellowship (1994–1995), UC Chan-
cellor’s Scholarship (1993–1994), and UC Regents’ Scholarship
(1991–1994).

Alan Jay Smith Computer Science Division, University of Cal-
ifornia, Berkeley, California 94720 (smith@cs.berkeley.edu). Dr.
Smith received the B.S. degree in electrical engineering from the
Massachusetts Institute of Technology, and the M.S. and Ph.D.
degrees in computer science from Stanford University. He was
an NSF Graduate Fellow. He is currently a professor in the Com-
puter Science Division of the Department of Electrical Engineer-
ing and Computer Sciences (EECS), University of California,
Berkeley, where he has been on the faculty since 1974; he was
vice chairman of the EECS department from July 1982 to June
1984. His research interests include the analysis and modeling of
computer systems and devices, computer architecture, and op-
erating systems. Dr. Smith is a Fellow of the IEEE, of the ACM,
and of the AAAS (American Association for the Advancement
of Science), and is a member of IFIP Working Group 7.3, the
Computer Measurement Group, Eta Kappa Nu, Tau Beta Pi, and
Sigma Xi. He is on the Board of Directors (1993–2005) and was
Chairman (1991–1993) of the ACM Special Interest Group on
Computer Architecture (SIGARCH), was Chairman (1983–1987)
of the ACM Special Interest Group on Operating Systems
(SIGOPS), was on the Board of Directors (1985–1989) of the
ACM Special Interest Group on Measurement and Evaluation
(SIGMETRICS), was an ACM National Lecturer (1985–1986)
and an IEEE Distinguished Visitor (1986–1987), was an asso-
ciate editor of the ACM Transactions on Computer Systems
(TOCS) (1982–1993), is a subject area editor of the Journal of
Parallel and Distributed Computing and is on the editorial board
of the Journal of Microprocessors and Microsystems. He was pro-
gram chairman for the Sigmetrics ’89/Performance ’89 Confer-
ence, program co-chair for the second (1990), sixth (1994), and
ninth (1997) Hot Chips conferences, and has served on numer-
ous program committees.

HSU AND SMITH IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003372

