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The IBM TotalStorageTM Enterprise Storage
Server� (ESS) is a powerful and versatile
storage subsystem that can respond well to
the explosion in demand for on-line data
storage. ESS provides unique features in the
areas of connectivity, capacity and
performance scalability, data integrity,
reliability, availability, and serviceability. This
technical note discusses the stages of ESS
hardware and software testing. Focus is then
given to the collaboration, tools, and
techniques needed for testing ESS software
support provided specifically for the
System/390® platform.

Testing the IBM TotalStorage* Enterprise Storage
Server* (ESS)—both the hardware and the support-
ing software—is a daunting task. ESS supports a large
number of programmable features, heterogeneous
servers and their attached devices, attachment meth-
ods, and operating systems. The complexity of the
hardware and software testing required is consider-
able, in light of a very rich function set (including,
for example, Peer-to-Peer Remote Copy [PPRC], Ex-
tended Remote Copy [XRC], remote services sup-
port, and Concurrent Copy). There are also a number
of performance-enhancing features for System/390*,
for example, priority I/O queuing.

Additional complicating factors are the configura-
tion and operations tools provided with ESS, which
include Web-based configuration tools, service
log-on tools provided for service personnel use such
as ESS Net Console, a server-based command line
interface tool for invocation of scripted copy oper-

ations, and a server subsystem device driver for con-
current service operation.

The ESS project presents a range of engineering test-
ing challenges, requiring team skills in multiple dis-
ciplines, education in numerous system environ-
ments, intensive code driver delivery schedules,
considerable product complexity, and the difficulty
of stressing the machine in various configurations and
types of I/O activity. As ESS host attachments increase
in variety of host types and adapter types, the num-
ber of host attachment test scenarios is exponentially
increased. The development team also has to be cre-
ative in its approach for testing ESS in multiple cus-
tomer environments in order to support the “time-
to-market” goals of IBM and to meet customer
requirements, while providing a highly reliable and
stable product.

ESS can to be attached in various ways to a variety
of computer architectures. For example, System/390
uses ESCON* (Enterprise Systems Connection) and
FICON* (Fiber Connection) to attach to ESS and views
its ESS volumes as CKD (count-key-data) format devices.
The other server types (i.e., other than System/390),
referred to by IBM as “open systems,” attach via SCSI
(Small Computer System Interface) and view their
devices as fixed block devices. As a result, ESS test-
ing requires several different host types (not to men-
tion hosts from many different manufacturers). Also
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requiring variation are hardware adapters, device
adapters, and the hard drives themselves.

In the following sections, we describe the design and
execution of ESS hardware and software tests. Al-
though much of the test implementation is tailored
to the unique requirements of ESS and its applica-
tions, our experience may be instructive to testers
of a wide variety of systems.

ESS hardware testing

In the following, we describe in detail the ESS hard-
ware testing: its objective, test design, and the hard-
ware development verification tests.

Testing objective. The objective of our hardware de-
velopment testing is to provide a technical evalua-
tion of storage products. Results of that technical
evaluation are utilized to support key product check-
points (such as announcement, early ship program
[ESP], and general availability [GA]) and to support
post-GA field problem resolution and the release of
product enhancements.

The breadth of ESS product features and attachment
types (as well as attachable computers, operating sys-
tems, and network topologies), makes testing chal-
lenging, due to the number of possible interactions
and permutations. Test planning also becomes crit-
ical. Flexibility must be built into the test plans in
order to adapt to potentially changing conditions.
Test planning and methodologies must anticipate
and work around frequent and recurring bottlenecks
in device and software availability.

In addition to the formal test objective, the hard-
ware testing for ESS is organized around the follow-
ing key principles.

The process itself must be subject to analysis. Both the
product and the testing processes must improve over
time. Criteria for the quality of testing are defined
and evaluated. Progress is monitored throughout the
test (see the subsection “In-process metrics”), allow-
ing the team to make “in-flight” corrections to test
scenarios. These metrics are combined with the
adoption of postprocess methods, experience re-
ports, and postmortem evaluations.

Testing must consist of both function-oriented and task-
oriented approaches. Later stages of testing—which
increasingly involve the integration of subsystem el-

ements—must be oriented toward actual customer
usage, task scenarios, and solution testing, rather
than individual function verification.

There must be room in the test plan for “creative test-
ing.” Such testing capitalizes on the improving skills
of the test team and gives them room to modify test
procedures.

There must be cooperation between the hardware and
software test teams, for the benefit of both. Customers
buy system solutions, not isolated elements. As il-
lustrated by the testing of the DFSMS (Data Facility
Storage Management Subsystem) Small Program-
ming Enhancement (SPE), which is needed to sup-
port testing of ESS, this kind of cooperation is crit-
ical to the successful delivery of ESS.

Hardware test design. In this subsection, we describe
our experiences in planning and implementing the
ESS hardware test suite. ESS testing follows the in-
dustry-proven best practices of planning, prepara-
tion, and execution.

Test planning normally begins when a product such
as ESS becomes part of the official product plan and
with completion of the design documents—primar-
ily the functional specifications for the product. Draft
plans are developed and reviewed, and issues are
tracked and resolved prior to test plan acceptance.
At this point, detailed schedules are set in place and
dependencies are cross-checked.

The preparation phase involves setting up labs, ac-
quiring software and hardware tools, preparing sta-
tus-tracking databases, and doing detailed test de-
sign. In some cases, this phase also includes “lessons
learned” from the planning phase.

For each test, execution begins when all of the en-
trance criteria documented in the test plan for that
test are met. Each hardware test ends when its exit
criteria, as documented in the appropriate test plan,
are met. However, some tests continue after exit cri-
teria are met, for the purposes of fix verification or
regression testing. This extended test scope covers
the verification of functions added after the initial
product plan, as well as boundary testing, whitebox
testing, and fix verification. Boundary testing empha-
sizes the limits of allowable parameters and extremes
in environmental conditions. Whereas blackbox test-
ing considers only the inputs and outputs of the sys-
tem under test, whitebox testing also takes into ac-
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count some known internal characteristics of the
system under test.

In-process metrics. The use of in-process metrics is
a common practice for both hardware and software
testing. Some of the metrics that are used during ESS
hardware and DFSMS software testing are power
curves, defect charts, and defect analysis.

Power curves track the expected versus actual pro-
gress of test case groups against time. The usual prac-
tice is to track test attempts (planned and actual) as
well as test successes (planned and actual).

Product defects found in each test are recorded both
by component and by type of test. The rates of de-
tecting and resolving defects, the severity of the de-
fects, and the time between detection and resolu-
tion of defects are all tracked. Defects are prioritized
by severity and, in some cases, this may lead to re-
ordering of the testing. Defects in the tests them-
selves are also recorded. Defect rates and catego-
ries are later used with the Orthogonal Defect
Classification (ODC)1 process as one measure of test
effectiveness.

Several layers of defect analysis are done during and
after product development. During ESS hardware and
microcode development, all defects are classified by
customer impact and probability of occurrence. This
provides input to the development team as to the
severity of the problem from a customer standpoint.
This information, along with the ODC process (which
helps measure test effectiveness), provides develop-
ers with tools to review the defects identified during
test cycle and field life, to enhance or change the de-
velopment process.

After the product cycle is completed, testing con-
tinues with escape analysis. Escape analysis is a stan-
dard engineering practice that treats problems found
by customers after general product availability as po-
tential testing escapes—problems that should have
or could have been found during product testing. For
ESS escape analysis, each problem encountered in
the field is evaluated as follows, once the problem
is resolved. The problem is evaluated to determine
if it was a hardware failure or code problem. Hard-
ware problems require a failure analysis to deter-
mine what caused the hardware failure. In some
cases, the problem is so convoluted or requires so
many multiple fault conditions that it cannot be
found in normal/realistic testing. In the remaining
cases, a determination is made as to why the prob-

lem was not found, and the testing process is then
modified or expanded to eliminate this type of es-
cape in the future. Both hardware failures and code
problems may necessitate additional test scenarios
for the appropriate areas of test, or a modification
of an existing test scenario to perform a test in a dif-
ferent manner or sequence. Escape analysis is an on-
going process throughout the life of a product.

Hardware development verification. Hardware test-
ing for ESS is conducted in a variety of modes. Some
tests—for example, the device-level failure test—
correspond directly to the architecture of the stor-
age system; some tests—for example, the system-
level test—represent a point in development when
lower-level hardware pieces come together for the
first time. Other tests—such as the system-level-ser-
viceability test—are included as an engineering “best
practice.”

The following subsections describe the most signif-
icant of the test modes used in ESS hardware testing.

Hardware microcode integration test. The hardware
microcode integration test provides initial validation
of hardware and code integration on physical hardware.
A set of scenarios is executed to confirm that a min-
imum level of functionality is met before delivery to
engineering verification test (EVT).

Engineering verification test. The engineering veri-
fication test verifies function against the approved
functional specification and design documents par-
ticular to ESS. EVT verifies that any new functions
introduced late in the product cycle do not cause pre-
viously available functions to regress and do not ad-
versely affect any other function. EVT is important
for test history when doing gateway testing, allow-
ing the team to refer back to EVT results when per-
forming gateway tests.

Gateway test. The gateway test provides the pass-or-
fail validation to each new code link or microcode
level delivered to test during the test cycle. Gateway
testing provides a regression test to prevent fixes and
functions from interfering with further testing or re-
ducing the efficiency of test execution. If any prob-
lems are found during this check, the defects are re-
viewed and fixes provided before the new microcode
level is released for use in testing. Unlike some tests
that have conditional exit criteria, the gateway test
is a pass-or-fail test.

Protocol test. The protocol test is executed on open
system fiber network connections between the tar-
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get server environment and ESS. Its primary focus
is to ensure correct handling according to the Amer-
ican National Standards Institute (ANSI) Fibre Chan-
nel specification. The protocol test also tests for un-
supported usages and some exception usages.

Attachment test. The attachment test is executed on
a variety of System/390 processors in both single and
multihost environments and utilizes both switched
and direct ESCON and FICON connections. It is also
used to verify a correct response to all sequence con-
trols from any host interfaces, in single and multi-
host environments, including start subchannel, can-
cel subchannel, clear subchannel, test subchannel,
reset channel path, and suspend and resume sub-
channel. Test cases include those testing the copy
services features PPRC, XRC, Concurrent Copy, Flash-
Copy*, and Parallel Access Volume (PAV, see later
subsection “Going beyond software FVT” [function-
al verification test]). Attachment test is responsible
for checking for a correct response to various invalid
or perverse channel programs and the output of the
correct status and sense data, where applicable. Fi-
nally, this test confirms that ESS can successfully op-
erate at the specified maximum distances from the
ESCON and FICON switch (and/or the processor, in
the case of the direct channel connection).

Input/output test. The input/output test is responsi-
ble for storage area network (SAN) coverage. It is
divided into the following areas.

Good path verifies that all components in the SAN
interoperate while performing nonfailure operations
without adversely affecting each other.

Fabric error recovery verifies that hosts and their con-
nected storage recover as expected from temporary
and permanent faults of SAN components and that
the appropriate recovery actions do not adversely
affect other concurrent operations in the SAN that
are not involved with the recovery.

Storage device error recovery verifies that hosts and
their connected storage recover as expected from
temporary and permanent failures of the attached
storage devices, and that the appropriate recovery
actions do not adversely affect other concurrent op-
erations in the SAN that are not involved with the
recovery.

Storage device setup and service verifies that the con-
nected storage devices can be successfully set up and
serviced without disrupting other concurrent oper-

ations in the SAN that are not involved with the setup
or service operations.

In addition, a Microsoft Cluster Services (MSCS) area
is included to verify the Windows NT** and Win-
dows** 2000 cluster operations in a SAN attachment.

Function-based test. The function-based test deals
with specific functions one at a time and in isolation
from other functions. The emphasis is not on cus-
tomer tasks but rather on validating input and out-
put and boundary conditions, with limited failure
handling.

Error handling behavior test. The error handling be-
havior (EHB) test verifies that when a fault2 is ap-
plied, the machine correctly responds to the fault
condition. This may involve the machine repairing
itself, properly isolating and reporting the problem
for service action, isolating the failing hardware
(fencing or quiescing the system resource), and/or
routing the work through other resources to min-
imize the problem impact.

The types of EHB test are: device, channel, control
unit, and IML (initial machine load).

System-level serviceability test. The system-level ser-
viceability (SLS) test involves testing all of the hu-
man interface tools provided for service personnel
as well as customer-provided tools. Testing these
tools in their proper environment requires perform-
ing concurrent maintenance within the defined
boundaries, configuring machines from both the ser-
vice perspective as well as the customer perspective,
and verifying the invocation, manipulation, and ter-
mination of various copy services operations via the
appropriately provided tools. SLS test also provides
usability-level testing of all interfaces that customer
and support personnel use to interface with ESS.

An example of SLS testing involves the following
steps:

● Configure ESS with a mix of System/390 and open
system devices.

● Configure and activate copy services operations:
PPRC, FlashCopy, PAV.

● Perform read/write operations from System/390
and open systems to the defined devices.

● Perform concurrent service operations on differ-
ent boundary areas (cluster, power supplies, etc.)
and check for any impact to the attached systems.
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● Perform concurrent ESS code load operation and
check for any impact to the attached systems.

● Perform all possible ESS array configurations and
verify operation.

● Check all customer-capable operations and eval-
uate for usability and accuracy of documentation.

System-level test. The system-level test (SLT) includes
open SLT (combinations of open system hosts and
network switches), System/390 SLT (heavy System/
390 workloads), and heterogeneous SLT (a mixture
of open systems and System/390). SLT provides a fo-
cus on product stability at a level that is equal to
known customer environments or an intermixture
of such environments.

ESS software testing

ESS software testing involves verifying the software
functions written to support the ESS logical control
units and DASD (direct access storage devices). The
code needed to support these devices is referred to
as a Small Programming Enhancement (SPE). An SPE
represents a programming development effort of be-
tween 50 and 10000 lines of code.

First, we describe the ESS DFSMS (Data Facility Stor-
age Management Subsystem)3 testing in general.
Then, in the next section, we focus on our experi-
ence with DFSMS device FVT testing for ESS. (In our
discussion, “FVT” refers to DFSMS device FVT.)

DFSMS testing. DFSMS is an element of the z/OS* op-
erating system. DFSMS, along with z/OS BCP (base con-

trol program), is responsible for data, storage, and
device management of the mainframe operating
system. 4

Because the entire current DFSMS customer base is
the target group for the use of any new storage de-
vice, an SPE normally needs to be written for all re-
leases of DFSMS currently supported. This may cover
three or four supported versions or releases of
DFSMS, along with any additional version or release
currently in the development cycle that is to be an-
nounced at a future date.

DFSMS testing is performed by software engineers
working in various areas of product test and devel-
opment. Descriptions of the six phases of DFSMS test-
ing for an SPE supporting a new device (as shown in
sequence in Figure 1) follow.

Unit test. The programmers who develop the code
(developers) are responsible for doing modular test-
ing for the code changes they have made to individ-
ual modules. The purpose is to verify that every new
line of code performs correctly when executed. To
complete unit test for device support code requires
that the new device is physically available, or that
code is written to simulate the new device. Much of
the device error simulation testing is also covered
during this phase. DFSMS device support code nor-
mally has dependencies on z/OS base code changes,
as well as other DFSMS component changes, in order
to validate its function.

Figure 1 DFSMS device support SPE test phases
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Development verification test. Developers perform
this test as well, with the assistance of function testers
(people responsible for verifying that the code func-
tions work as documented). Development verifica-
tion test (DVT) ensures that each function works as
stated in the design and that device interactions work
correctly. It also validates the stability of the newly
integrated modules. Before DVT can begin, all of the
new and changed modules need to have been unit
tested and informally integrated into a driver. For
a device DVT, a hardware “acceptance criteria” list
is included in the DVT plan specifying the major new
hardware functions of the device, which are neces-
sary to start the software testing. The new functions
listed as hardware acceptance criteria are selected
with hardware planning and development person-
nel to support delivery of the functions that need to
be working in hardware as a prerequisite for soft-
ware function verification.

Function verification test. Function testers perform
this test to verify that new product externals execute
as documented in the programming functional spec-
ification (PFS) for the project. Product externals in-
clude functions, error handling, and product behav-
ior. DFSMS device FVT is divided into separate FVT
groups by products and devices (tape and DASD).
One reason for dividing the FVT is the complexity
of DFSMS and the devices supported. Another rea-
son is to stage the verification of the functions tested.
The first FVT focuses on validating the basic inter-
action of the device with the operating system (i.e.,
varying the device on line and off line) and confirm-
ing that the access methods work correctly. This FVT
stage then provides the entrance criteria for the next
stage, which focuses on copy services or products like
DFSORT (Data Facility Sort). FVT is executed only
on formally integrated code. Each FVT group writes
a separate FVT plan documenting the device and soft-
ware functions to be tested.

System verification test. The team performing sys-
tem test (system testers) assesses the quality of the
software products from our customers’ perspective.
The system verification test (SVT) typically follows,
or sometimes overlaps, the FVT. There is one SVT
plan per DFSMS device test project, covering all the
functions verified in the separate FVTs. SVT is exe-
cuted in a sysplex environment (i.e., with MVS* [Mul-
tiple Virtual Storage] systems working together) in
order to test the interaction of many systems using
the device simultaneously.

Performance evaluation. The performance evaluation
team provides performance analysis of software
products and I/O subsystems marketed by the IBM
Systems Group. The performance team requires ded-
icated processors and devices to perform their mea-
surements for DFSMS. The output from performance
evaluation is the release of performance informa-
tion internally and externally to our customers. This
performance information is targeted to be completed
and made available prior to the GA of the device and
its supporting DFSMS code.

Installation verification test. The installation verifica-
tion test (IVT) performed by the integration team ver-
ifies that the packaging and installability of the prod-
uct deliverables meet the requirements defined for
the project. In addition, they provide recommenda-
tions to the project manager on packaging and in-
stallability for external shipment to the customers.

DFSMS device FVT on ESS: Prototype to
GA

In this section, we elaborate on the implementation
of DFSMS device FVT for ESS, which presents a unique
set of challenges and expands the boundaries of tra-
ditional FVT coverage. The testing environment,
scope, and the stages of the FVT, as well as the FVT
testing types, are detailed.

Testing environment. The customer-like environ-
ment we strove to achieve required the use of three
systems on a large IBM processor. In 1997, when FVT
for ESS was started, our testing environment was on
a G5 processor. Two systems executed test cases and
the third system served as the automation focal point.
The two testing systems were each configured with
the releases of DFSMS and OS/390* or z/OS that we were
testing. The releases targeted for FVT were docu-
mented in the FVT test plan. We would like to pro-
vide coverage for all the releases for which the new
code is written, but in reality we can usually only pro-
vide FVT test coverage for about four releases. Based
on input from development, we may take a risk on
an untested release in FVT and provide coverage for
it in one of our other testing venues—SVT, perfor-
mance test, or an FVT performed by another group.

The scope of DFSMS device FVT. DFSMS device FVT
provides function test coverage for all DFSMS soft-
ware components that interact with devices and are
affected by new or upgraded devices. Devices sup-
ported are those accessed by an S/390* processor un-
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der the control of OS/390 or z/OS, such as DASD, tape
drives, control units and automated tape libraries.

Additionally, the DFSMS device support group has
the development and test responsibility for IBM de-
vice support facilities and EREP (Environmental
Record Editing and Printing program). Many other
DFSMS components interface with our components,
thus expanding the need for testing beyond our de-
partment’s component set. We provide test cover-
age for all access methods and utilities, as well as
some BCP functions like system initialization.

DFSMS device FVT testing stages and types. The
major activities performed during DFSMS device FVT
for ESS can be divided into the following four stages:
planning, preparation, execution, and continual im-
provement.

FVT planning begins when the request for a test siz-
ing is received. The function test sizing details the
number of test engineers needed and the time line
for test execution. The function test sizing is created
based on input from the software developers, post-
mortem documentation from prior tests, and past
experience with prior device function tests.

The preparation stage begins when the first pass of
the test plan is approved. The FVT testers build the
executable test cases from the matrix tables docu-
mented in the test plan. The matrix tables show the
relationship of the component functions being tested
to the names of the test cases that will execute the
test. Any hardware that needs to be installed and con-
figured is also acquired during the preparation stage.

The execution stage includes running the test cases,
validating and saving the output, and documenting
the results. This stage is often the most volatile when
determining time estimates.

A continual improvement (postmortem) meeting is
held after all testing and final test plan reviews are

completed. Information gathered by the team leader
and presented in the postmortem review includes
PTM (program trouble memorandum) information
and the total time spent by each function tester on
test activities. The information presented and dis-
cussed during the postmortem review includes pos-
itive and negative aspects of the test, emphasizing
what worked well and what did not. Areas
discussed are test strategy and execution, fix avail-
ability and verification, PTM turnaround time, devel-
opment support, test support, driver support, inte-
gration support, hardware and microcode support,
and communication. Suggestions for the next test are
noted.

FVT of the software for device support is comprised
of four main testing types: regression testing, pro-
gression testing, new function testing, and coexis-
tence testing.

Regression testing is done to assure that the soft-
ware written to support the new device does not neg-
atively affect the functions of currently supported de-
vices. For many of our customers, regression testing
will have the greatest impact on the product quality
they experience.

Progression testing verifies that the existing suite of
test cases that work on the current devices in the field
today continues to work when executed on the new
device.

New function testing requires writing new or updated
test cases to exercise the software that supports the
new functions exploiting the new hardware capabil-
ities.

Coexistence testing is performed to ensure that add-
ing the ESS to an environment running multiple ver-
sions of DFSMS software does not impact the exe-
cution of older releases of DFSMS software not
supporting the full functions of the ESS.

Automation strategy. After experiencing many dis-
appointments using internally developed and sup-
ported automation tools, DFSMS device test adopted
an automation strategy in 1991 based on IBM soft-
ware products. This strategy had several benefits to
our test team, our customers, and the support teams
of the software products we chose. IBM software
products provide us the stability we did not find in
using internal tools. IBM software products are main-
tained, upgraded, and well-documented, and edu-

Using an MVS-based set of IBM
software products for automation

gives our testers a better sense
of how our customers

use MVS, and it increases our
skills with the products we test.
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cation is available. When IBM software products
reach their end of life, replacements are usually avail-
able. This is a very attractive benefit, since we have
seen support for many internal tools dropped when
the tool owner moved to a new job or left the com-
pany. Using an MVS-based set of IBM software prod-
ucts for automation gives our testers a better sense
of how our customers use MVS, and it increases our
skills with the products we test. On at least two oc-
casions, we discovered incompatibilities between the
IBM software products we use and new OS/390 or z/OS
functions. In many instances, we were the first group
in IBM to run OPC (Operations Planning and Con-
trol) or NetView* on a development level of z/OS that
was not to be made generally available for a year or
more. Our experience with this integration of IBM
software products into our test processes has always
been positive, and the product support groups have
always been very quick in resolving problems.

The deployed automation utilized selected IBM soft-
ware products that were targeted at the key areas
of test case generation, execution, and environment
setup (see Figure 2). The IBM software product set
used in DFSMS testing for ESS and given below is also
used by many of our customers.

● Test case generation—ISPF (Interactive System
Productivity Facility) File-Tailoring services

● Test case submission, execution, validation and
tracking—Operations Planning and Control

● Test case validation beyond condition code
checking—ISPF Search-For Utility

● Test case system command print capture from the
console—SDSF (System Display and Search Facil-
ity) executed by the batch program ISFAFD

● Test case message replies, console monitoring, and
user notification—Tivoli NetView for OS/390

● Execution environment automation—System Au-
tomation for OS/390

We now describe this product set in more detail.

ISPF File-Tailoring services are used along with ISPF
panels, CLISTS (command lists) and TSO/E REXX pro-
grams, which are written to easily generate the test
cases. Using the panels makes passing the variables
to the TSO/E REXX programs easier, and it provides
the ability to maintain the library structure and nam-
ing conventions for our executable test-case librar-
ies. (TSO/E REXX stands for Time Sharing Option
Extensions Restructured Extended Executor Lan-
guage.) In some instances, 20 or more executable test
cases can be generated from one base test case. Each
of these executable test cases exercises a uniquely
targeted device function. Variable parameters are
used for device and control unit characteristics in
all our test cases, allowing groups of test cases to be
generated for any DASD device and control unit pair
in our test lab.5

Operations Planning and Control (now known as Tivoli
Workload Scheduler [TWS] for z/OS) is the heart of
the execution phase for our testing. OPC provides an
excellent facility to submit and monitor successful
batch job execution, and is used by some of IBM’s
largest customers. Extensive use of the OPC batch
loader allows batch jobs to submit groups of test
cases for execution. ISPF panels, along with file-
tailoring, are also incorporated into creating ex-
ecutable batch loader jobs from base batch loader
jobs. An OPC-supplied system output archiving pro-
gram running in JES2 is customized to save test case
output to a sequential file. Upon successful execu-
tion of a group of test cases, the tester executes a
TSO/E REXX program to migrate the sequential files
into a partitioned data set that serves to archive the
test case execution.6

The ISPF Search-For Utility provides the power to go
beyond checking the condition code of each job step.
The Search-For SuperC batch program, ISRSUPC, is
heavily used in our test cases to verify the existence
of lines of data that are expected to be generated
when the job executes successfully.7

Figure 2  DFSMS device support automation areas
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The SDSF batch program ISFAFD print capture capa-
bility, in combination with the WRITELOG command,
is used to validate system commands written to the
MVS console. This batch program, combined with the
ISPF Search-For Utility, allows us to verify hundreds
of console messages without human intervention be-
cause checking for strings of information appearing
in the captured output is automated.8

Tivoli NetView for OS/390 is the primary communica-
tion vehicle between systems. It provides the base
of System Automation for OS/390. The console mon-
itoring feature is used to automate replies to oper-
ator messages. Console message trapping and e-mail
notification to testers is used to monitor unusual de-
vice situations.9

System Automation for OS/390 runs as a NetView ap-
plication. System Automation is the manager for the
MVS subsystems required to execute our device test-
ing activities. System Automation sets up the exe-
cution environment by managing the startup and
shutdown for all three of our systems. It also pro-
vides automated recovery and system maintenance
tasks that would otherwise require a human oper-
ator.10

Going beyond software FVT for ESS. Adding new
hardware to a software FVT requires a cross-disci-
plinary team effort. A small group of key engineers
from software development and FVT meet weekly
with hardware and microcode engineers to ensure
that the progressive targets of the FVT efforts are be-
ing met. FVT team members work closely with the
hardware group to establish the initial testing envi-
ronment.

When the first ESS was received by DFSMS device FVT
personnel, configuration was done using UNIX**
scripts written in low-level ESS configuration com-
mands. The Web-based ESS Specialist software was
not available that early in the product life cycle.
Changes to a configuration were extremely time con-
suming, so getting it right the first time was impor-
tant.

The first ESS delivered to FVT in late 1997 was an
engineering prototype, configured as two indepen-
dent clusters. One benefit of the original design was
that it allowed us to run different microcode levels
on each cluster. This provided the ability to verify
a new release or fix on one cluster before moving all

of our testing efforts to the new code. In effect, this
gave us two separate ESS subsystems.

The main focus for the DFSMS FVT was to verify the
new PAV capability of ESS.11 Parallel access volumes
allow a single system to access a DASD volume with
multiple concurrent requests. This is accomplished
by assigning base and alias unit addresses to a vol-
ume. Base and alias unit address relationships cre-
ate a single logical volume, allowing concurrent I/O
operations to the volume. Before we could start test-
ing PAV, we had to execute and verify many other
components’ support for this new feature. There
were many interdependencies on the new functions
between various components in ESS hardware and
z/OS software.

DFSMS device FVT goes beyond the traditional FVT
philosophy of testing only the external functions of
the code. There were many instances in ESS FVT
where we were asked to verify that new or changed
channel control words were being correctly executed
by ESS. This verification was done using the gener-
alized trace facility (GTF), an MVS service aid. After
capturing the GTF trace, a batch IPCS (Interactive
Problem Control System) job was used to format it,
making analysis of the trace data easier and allow-
ing for the archiving of the successful GTF trace ex-
ecution.

Having a two-system test environment allowed us to
go beyond the traditional FVT methods of executing
function in a single thread. We configured many ini-
tiators on our systems and, using OPC applications,
we submitted several different test scenarios simul-
taneously. Providing this multithreaded test case ex-
ecution for stress testing in FVT, we could uncover
problems early in the testing cycle. This was most
beneficial to the SVT and performance testing that
followed. Our environment also allowed us to test
shared device interaction across two systems.

Following DFSMS device FVT for ESS, other FVT
groups (for example, copy services) verified their
components’ code. It is common for follow-on FVT
and SVT to overlap, based on agreed upon entrance
criteria documented in test plans. Our department
works closely with the other testing departments to
prioritize our testing based on the functions needed
to enter their tests.

ESS software testing conclusion

The process and methodologies followed by DFSMS
device FVT can be adapted to most function verifi-
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cation testing. Team building, test automation, and
adherence to established process and procedures are
the basis of many software FVT efforts. Schedule co-
ordination with dependent areas is crucial to FVT
tracking, as is the need to verify low-level software
functions beyond traditional FVT coverage.

Summary

Testing plays a major role in the introduction of new
devices by IBM. The ESS hardware development ver-
ification and software testing outlined here reflects
the breadth of testing coverage for a new storage de-
vice. The test planning, preparation, and execution,
as well as defect tracking and in-process metrics de-
scribed here, are applicable to many systems.

The testing methodology of IBM is based on con-
trolled processes and procedures and has evolved to
a high degree. Our focus on the details of the DFSMS
device FVT for ESS is intended to provide a view into
the complexity of a combined hardware and software
testing effort.
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