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Although computer programs and database
resources for bioinformatics applications are
becoming more widely available, these resources
are unstandardized and frequently incompatible.
The problem of integrating heterogeneous
software is of immense importance to the field,
especially because a rapid pace of change and
a general scarcity of development resources
discourage re-engineering and compel
developers to find ways to use legacy resources.
In this paper, we describe an approach to the
problem of integration of heterogeneous
bioinformatics resources that relies on a
generalized software platform, written in the
JavaTM language, that we call ISYSTM. The ISYS
platform employs techniques for interoperation
among loosely coupled components, such as
brokered service exchange and mediated event
exchange, that are increasingly common in
software engineering but still not used widely in
bioinformatics. In addition, it further promotes
loose coupling of independent components
through a flexible, semistructured data model
that supports run-time association of attributes
with objects, and allows different components to
maintain different “views” of the same object. We
describe our general approach, the architecture
of the system, the mechanics of event and
service exchange, and the implementation of the
data model. The platform is not restricted in its
utility to bioinformatics, and could be useful
for any rapidly changing field in which the
integration of heterogeneous legacy components
is important.

The field of biology is becoming increasingly de-
pendent on computer software. Molecular and

cellular biologists, geneticists, and biochemists rely
on analysis programs, modeling tools, databases, and
visualization software to accomplish their everyday

work. As is true for many scientific fields, however,
software development to support biology is more of
a craft than a professional engineering discipline.1

Separately funded groups—public and private—in-
dependently create custom tools, often for narrowly
conceived, short-term needs. Scientists “moonlight-
ing” as computer programmers write software to sup-
port their research, but try to avoid being consumed
by engineering concerns tangential to their main in-
terests. In addition, the extremely rapid pace of
change of the field—in terms of science, technology,
and business—discourages the development of sta-
ble standards for interoperation and the formation
of commercial companies that can deliver special-
ized software at reasonable prices.

This disunity and decentralization—which are nat-
ural and necessary in any vibrant, developing scien-
tific field—unfortunately result in crippling incom-
patibilities among software tools and databases.
Scientists find it slow, cumbersome, and labor-inten-
sive to establish the connections across information
resources that fuel scientific synthesis. At the same
time, mounting pressure for “functional genomics”
(the identification of the functions of previously char-
acterized genomic structures) makes the need for in-
tegration even more acute. For example, a powerful
tool for functional inference called “comparative
genomics”2 often requires the integration of data
from various specialized databases and can benefit
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enormously if those databases interoperate readily
with one another and with assorted visualization and
analysis tools.

Figure 1 describes a typical sequence of steps a sci-
entist might take to accomplish a relatively simple
analysis task. To examine a DNA (deoxyribonucleic
acid) sequence in alignment with similar sequences
from a public database (that is, arranged so that ho-
mologous portions of the sequences are vertically
aligned), the scientist must use three different tools
with three different interfaces and convert the out-
put from each one to a format acceptable as input
to the next. For more complex analysis, many other
resources might be required. One of our colleagues,
a quantitative biologist who does comparative
genomics using gene expression data, claims to spend
more than half of his time on tasks related to the
integration of data from incompatible databases and
software programs. Moreover, this approach of con-

verting the output of one program into acceptable
input for another greatly limits the integrative po-
tential between components that are highly interac-
tive in nature.

Recognizing that integration is essential, but that
rapid change and limited development resources pro-
hibit complete re-engineering of legacy components,
researchers and commercial companies have tried
various “bottom-up” approaches to allow interop-
erability of formerly incompatible resources.

One common approach, used both by public sys-
tems3–6 and commercial application service provid-
ers,7,8 is to provide a uniform Web interface to var-
ious databases and analysis tools. These systems
usually use CGI (Common Gateway Interface) scripts
or Java** servlets to execute queries against data-
bases, to call analysis programs, or to search file-

Figure 1 Typical sequence of steps a scientist might take for a simple analysis task

1. Starting with a
DNA sequence in
a text file ...

3. Using another Web-based
tool, the scientist retrieves
full-length sequence text of
best matches.

4. Then the scientist uses
a command-line tool to
create a multiple
sequence alignment.

(Cuts and pastes text)

2. ... the scientist
uses a Web-based
tool to perform a
search for similar
sequences.

(Saves results and extracts
sequence identifiers)

(Saves results and
converts format)

>
>
>
>

AGT
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based data repositories. Some allow users to send
output from one program as input to another with-
out concern for schematic representation or file for-
mats. Many of these systems are ingenious and widely
used, but all are ultimately limited by the Web-
browser/CGI model in terms of user-interface rich-
ness and responsiveness. In addition, they generally
permit little customization by the user and are not
designed to allow “plug and play” of components.

A second approach, focused on data access rather
than analysis or visualization, allows complex declar-
ative queries that span multiple heterogeneous da-
tabases.9–11 This approach has received considerable
attention in bioinformatics and has given rise to sev-
eral interesting systems. However, it either requires
problematic “on-the-fly” mappings12 from represen-
tations in source databases to a definitive ontology
(roughly, a global schema), or forces users to express
queries in the sundry schemas of source databases.
Moreover, many cross-database query systems as-
sume a separation of user interface development and
data integration. We believe this ignores the need
for exploratory query formulation that users expe-
rience with inconsistent and unstandardized biolog-
ical databases.13 Finally, these systems can be insuf-
ficiently flexible (e.g., to the addition or subtraction
of source databases or to changes in a global ontol-
ogy) for such a turbulent field.

A third approach is to package heterogeneous soft-
ware tools and databases as components adhering
to standard, well-defined interfaces, according to
which information can be exchanged. This approach
encourages components to encapsulate their differ-
ences and expose only minimal, abstract attributes
and behaviors. Perhaps its strongest advocate is the
Object Management Group (OMG), which hosts a
“task force” for the life sciences14 as well as for many
other domains. The OMG promotes the development
of standard interfaces using its interface definition
language (IDL) and implementation of components
using CORBA** (Common Object Request Broker
Architecture**). The component-based approach
has a number of advantages for the problem of in-
tegration, in addition to the design, development,
and maintenance strengths of component-based de-
sign in general.15 For example, it enables interop-
eration with minimum homogenization and allows
components implementing the same abstract inter-
face to be interchanged. In bioinformatics, several
groups have embraced this approach.16–19 Its main
stumbling block is the standardization of interfaces.
The OMG defines its standards by committee, in a

way that is strenuously fair but slow and arduous. It
chooses to define interfaces in relatively specific
terms, which encourages exchange of data without
loss of information but makes standards harder to
agree upon and more constraining for implement-
ers. In addition, the specification of standard inter-
faces, useful as it is, still does not address how com-
ponents are to be integrated. System builders are free
to integrate them as they see fit, and sometimes write
top-level controllers that instantiate and call com-
ponents directly. In this way, they fail to take full ad-
vantage of the great potential for flexibility offered
by component-based design.

Our method is related to this third approach, but
focuses more on component integration and less on
component standardization. We have designed and
implemented a client-side integration platform (the
ISYS** platform) that allows interoperation of com-
ponents adhering to a minimal set of standards. A
decentralized and highly flexible “integrated system”
results from the interactions among the components
present in a given configuration. The focus is on cli-
ent-side integration, but proxies to server-side re-
sources allow access to local or remote servers. In
general, both legacy software and new development
are accommodated relatively easily. We believe the
ISYS platform could be useful in any domain in which
flexibility is of paramount importance and there is
a strong incentive to integrate already-existing het-
erogeneous components.

The ISYS approach

The ISYS approach is loosely inspired by complex sys-
tems such as cellular automata and Boolean net-
works,20,21 in which the interaction of simple, inde-
pendent agents results in the emergence of complex
properties. The idea is to define a simple set of
ground rules and mechanisms by which disparate
components can interoperate in useful and construc-
tive ways (and which discourage distracting and non-
intuitive types of interaction), then to allow their in-
teractions dynamically to define the behavior of the
system.22 In this way, we accept the diversity of soft-
ware in our field, rather than struggle against it.

In ISYS, each component interacts directly only with
the platform, which serves as the medium for the ex-
change of events and services and permits compo-
nents to remain decoupled. The exchange of events
allows components to synchronize their behavior,
and the exchange of services allows them to draw on
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one another’s capabilities to retrieve data, perform
analyses, or present user interfaces.

Figures 2 and 3 describe the integration of several
components using the ISYS platform, as seen by a
user of the current prototypical implementation. The
user is performing the same analysis steps executed
in Figure 1.

Figure 2 depicts two components, the Sequence-
Viewer (right) and SimilaritySearcher (left). The Se-
quenceViewer component displays colored bars
representing a DNA sequence and its annotations
(parcels of information about sequence segments
based on laboratory experiments or computer anal-
ysis). The sequence is represented at the top (off the
screen here), stretching from left to right. The an-
notations are tiled beneath it, each bar color rep-
resenting a different type (e.g., gene, exon, intron,
transcription factor binding site, and region of high

similarity to another sequence). The tool lets users
scroll and zoom the display and view detailed de-
scription of annotations. In Figures 2 and 3 all vis-
ible bars represent regions of high similarity to other
sequences (i.e., all are of the same type; the ones of
darker color are simply selected).

The SimilaritySearcher component launches
searches of single query sequences against large da-
tabases and displays search results. Figures 2 and 3
show the SimilaritySearcher results browser (i.e., the
search has already been launched and the results re-
turned). The top pane of the browser is a summary
table of the search results, each row of which rep-
resents a single matching sequence from the back-
ground database. The bottom pane displays details
about the first selected match, including an align-
ment of the query sequence and background se-
quence in the regions of high similarity. The search
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was executed using a popular program called
BLAST. 23

These components were developed separately and
have no direct dependencies on one another; nev-
ertheless, they appear to the user to be closely in-
tegrated. The SimilaritySearcher component was
originally invoked from the SequenceViewer com-
ponent, which passed it the text of the displayed se-
quence for use as a query sequence (using ISYS, the
user began in the SequenceViewer component,
rather than with a text file as in Figure 1). The an-
notations visible in Figure 2 in the SequenceViewer
display were not originally present; they reflect the
similarity search hits in the other component and ap-
peared only when the search returned and the
browser appeared. Selection and visibility of the
search hits are synchronized in the two components.
When the user selects items in the table in the top
pane of the SimilaritySearcher display, the corre-

sponding annotations are selected in the Sequence-
Viewer display (as seen in Figure 2). Similarly, when
the user causes items to disappear in the Similari-
tySearcher display, they disappear also from the Se-
quenceViewer display. This can be seen in the inset
box of Figure 2, which shows the application of a fil-
tering tool to the similarity search results (the tool
filters by BLAST’s “expect value,” a statistical score
indicating the significance of sequence similarity) and
the corresponding disappearance of annotations in
the SequenceViewer display. All of this synchroni-
zation occurs via the broadcast and reception of ge-
neric events, which we explore in detail in the next
section.

The pop-up menu obscuring part of the Simi-
laritySearcher display in Figure 2 appeared when the
user clicked the right button of the mouse after se-
lecting several of the rows in the search-results ta-
ble. The options appearing in this menu were dynam-
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ically generated and reflect the set of components
installed and registered with the ISYS platform. Us-
ing a process we call interactive discovery, registered
components have been interrogated about the se-
lected data set. Those that respond that they can op-
erate on the data set have been represented in the
menu with appropriate descriptions. The interactive
discovery process is central to ISYS. This mechanism,
which is available from most ISYS components, en-
courages an exploratory mode of usage in which new
paths through the system emerge dynamically, ac-
cording to selected data and available components.
As with graphical synchronization, the exchange of
services does not require components to have direct
knowledge of one another. We will discuss the me-
chanics of service exchange also in the next section.

If the user selects the option “Perform multiple se-
quence alignment” from this pop-up menu, he or she
is presented first with a simple interface to a pro-
gram called CLUSTAL W, 24 which computes a multi-
ple alignment of the selected sequences, then with
a program called JalView, 25 which provides a color-
ful, editable display of the alignment. Both interfaces
are shown in Figure 3. These components illustrate
three of the most common ways to integrate exist-
ing resources using ISYS. First, CLUSTAL W, which is
available as a command-line program written in the
C language, has been wrapped with a service pro-
vider, a component that registers abstract services
with the ISYS platform but hides how they are im-
plemented. Second, JalView, available as a Java ap-
plication, has been wrapped with a simple Java class
that makes it appear to ISYS like any other client.
This wrapper handles the broadcast and reception
of ISYS events and transmits them to JalView in terms
it can understand. Third, the full-length sequences
required for the multiple sequence alignment, not
available in the SimilaritySearcher component (it
knows only of segments of database sequences), were
retrieved from a public database of DNA sequences.26

This occurred transparently to the user by way of an-
other service provider, which acts as a proxy to a re-
source available on the Internet (behind the scenes,
this proxy makes calls to a server for the database
using Java Remote Method Invocation). We exam-
ine these mechanisms, too, in the next section.

Note that the advantages of ISYS with respect to the
scenario in Figure 1 go beyond convenience and ef-
ficiency. Even though the user in this discussion fol-
lowed an anticipated course of action with ISYS, the
interactive discovery process suggests paths that one
might not have imagined. In addition, through the

interactions of separate components, ISYS can pro-
vide new capabilities and new perspectives on bio-
logical data. For example, when the user filtered the
search results and observed the effect in the Simi-
laritySearcher display (inset, Figure 2), he or she was
able to view the physical locations of search results
above a certain threshold—something permitted by
neither component individually.27

System architecture

The architecture is based on the principle that no
component should depend on direct knowledge of
any other, e.g., in terms of specific classes or inter-
faces. At the level of the platform only abstract
events, services, and classes of components are de-
fined. Nearly all specific functionality resides within
the components themselves. The system must behave
appropriately regardless of what particular compo-
nents are present. At run time, components register
as providers of types of services and as listeners of
types of events; they broadcast events and request
services. Components must be prepared for the pos-
sibilities that services are not available and that no
other component is listening to broadcasted events.

Figure 4 shows the components active in the scenario
of Figure 2 and their interactions, which are accom-
plished by the exchange of events and services
through the integration platform. We will discuss the
integration platform, the exchange of services, the
exchange of events, the roles of components, and the
data model that unifies components. As we do so,
we refer to Figure 4, and to the scenario of Figures
2 and 3.

In our discussion we introduce several terms for dif-
ferent types of ISYS components. Figure 5 shows a
taxonomy of these terms to illustrate their relation-
ships. In the figure, labels in italics represent abstract
categories for classification purposes only and non-
italicized labels represent concrete categories actu-
ally reflected in the code. Of the latter, those having
solid, bold outlines are implemented as Java classes,
and those having dashed outlines are implemented
as Java interfaces. The categories highlighted by the
shaded oval represent nonexclusive roles, of which
a single component is allowed to play more than one
(although multiple roles are rarely used).

The platform. The ISYS platform consists of three
components: EventChannel, ServiceBroker, and ISYS
Client Environment (ICE). The EventChannel compo-
nent is responsible for the exchange of events and the
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ServiceBroker component for the exchange of ser-
vices.28 We will discuss both further in our treatment
of events and services. The ICE provides general system-
wide user interface capabilities and allows users to
configure the system. The EventChannel, Service-
Broker, and ICE components are grouped together
behind a single class simply called Isys using the Fa-
cade pattern.29 This class also uses the Singleton pat-
tern29 to restrict itself to one instance per running
system. Its public interface supports the following
capabilities:

● Registry of a component as a listener for a par-
ticular class of events (uses the EventChannel com-
ponent)

● Broadcast of an event (uses the EventChannel
component)

● Registry of a component as a provider of partic-
ular services (uses the ServiceBroker component)

● Request of services by type (uses the ServiceBro-
ker component)

● Request of services applicable for a particular ob-
ject, as demanded by the interactive discovery pro-
cess (uses the ServiceBroker component)

The ICE serves as a manager for nonplatform com-
ponents. Upon startup of the system, it discovers and
instantiates installed components based on the pres-
ence of corresponding class files in a user-defined
“class path” (it uses a custom ClassLoader object,
which could be enhanced to load components over
the Internet). The ICE provides user interface op-
tions (buttons and pull-down-menu options) to in-
voke those components defined as entry points to

Figure 4 Interactions among components from Figure 2
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the system. In addition, the ICE can display infor-
mation on the status of pending asynchronous op-
erations (e.g., the execution of a long search on a
remote server). Finally, it serves as a configuration
tool for the installed components, allowing the user
to select default service implementations (when mul-
tiple services of the same type are available).

The ICE is not shown in Figures 2, 3, and 4. It ap-
pears when the user starts up the system and pre-
sents the option that (in this example) allows him
or her initially to invoke the SequenceViewer com-
ponent. It is also active behind the scenes; as the in-
stantiator of all of the service providers, it monitors
the asynchronous requests for computation (i.e., the
similarity search and the multiple sequence align-
ment).

The ISYS platform is highly general and essentially
independent of the domain of bioinformatics—it
could be used to integrate any components adher-
ing to its conventions for exchanging events and ser-
vices. We encourage other developers to make use of
the platform for their own purposes. It is available for
download (http://www.ncgr.org/research/isys) with
extensive documentation.

Exchange of services. Exchange of services in ISYS
depends on the ServiceBroker component, which
uses a variation of the Broker pattern.30 This pat-
tern, well known for its role in CORBA,31 allows ser-
vice consumers to access service providers accord-
ing to properties of the providers. A match between
a consumer and a provider registered with the bro-
ker is made at run time. The pattern helps request-
ers’ needs to be met even when the set of providers
is variable and unpredictable. In Figure 4, four dif-
ferent service providers are shown: the Sequence-
ServerProxy, SequenceAnalysisServerProxy, Sequence-
ViewerFactory, and SimilaritySearcherFactory. Each
of these registers one or more services upon instan-
tiation. As discussed, these services can be discov-
ered at run time according to various properties.

The ServiceBroker component in ISYS differs from
the standard Broker pattern in three main ways. First,
services are encapsulated as objects (using the Com-
mand pattern29) and represent the unit of exchange
between consumers and providers. Services are
atomic operations, analogous to single method calls.
In the standard pattern, service providers adhering
to specific interfaces are the unit of exchange, so that
related services are bundled together. The focus in

Figure 5 Taxonomy of ISYS components
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ISYS on the single service reflects a kind of proce-
dural philosophy by which data can be transformed
or manipulated through any logical sequence of op-
erations, regardless of which component performs
those operations or how they are accomplished (see
Discussion section). Such transformations are illus-
trated in the scenario of Figure 1, where the user
proceeds from a DNA sequence, to a set of similar
sequences, to a multiple sequence alignment.

Second, the ServiceBroker component in ISYS does
not match distributed consumers and providers as
in the standard pattern; instead, all concerned com-
ponents are running locally in the client machine, as
can be seen in Figure 4 (access to remote resources
is handled via separate client-side proxies to serv-
ers, independently of the ServiceBroker component,
e.g., the SequenceServerProxy and SequenceAnalysis-
ServerProxy components). Therefore, we have no
need for client- and server-side proxies that handle
marshaling and unmarshaling of data and concern
themselves with low-level network protocols.

Third, ISYS supports two kinds of service requests:
direct discovery and interactive discovery. 32 Direct dis-
covery request handling is similar to the standard
approach, in that requesters specify a desired prop-
erty and are provided with a single match or informed
that none exists. As described earlier, the subjects
of requests in ISYS are services (i.e., procedures). In
addition, direct discovery accommodates hierarchi-
cal relationships among services. Requesters spec-
ify a class of service instead of a name or property,
and the ServiceBroker component may respond with
either a registered service of that specific class or one
of any subclass. This hierarchical service structure
allows a requester to ask for a general class of ser-
vice and to take advantage of specific implementa-
tions that may be added in the future. The config-
uration feature of ICE allows the user to define which
specific, registered service is to be used for each class
of service.

The request for full-length sequences behind the
scenes in Figure 3 is an example of direct discovery.
The alignment component requested an instance of
GetSequencesByIdService, from which it knew it could
obtain sequence text for specified sequence identi-
fiers. This service, having been registered by the Se-
quenceServerProxy component, was discovered by
the ServiceBroker component, which called upon the
SequenceServerProxy component to instantiate the
service and then passed the instance to the request-
ing component. Multiple subclasses of GetSe-

quencesByIdService could have been registered. For
example, suppose one service were registered by an
instance of SequenceServerXProxy, called GetSe-
quencesByIdFromXService, and another registered by
an instance of SequenceServerYProxy, called GetSe-
quencesByIdFromYService (assume X and Y are dif-
ferent database resources). In this case, the Ser-
viceBroker component would return an instance of
the default of these two services (specified via the
system configuration menu). As a result of this hi-
erarchical mechanism, a requester can be more or
less specific in its request; if less, the system will at-
tempt to behave in a sensible way.

Interactive discovery, illustrated in Figure 2, is a two-
step process by which a user is presented with a set
of services suitable for a selected data object, then
a service is invoked according to the user’s selection.
Interactive discovery is more complicated than di-
rect discovery, not only because it involves user in-
teraction but also because service providers must
evaluate a selected data object before deciding
whether they can operate on it.

Figure 6 is a sequence diagram describing interac-
tive discovery in the context of Figure 2. When the
user initiates a request, the SimilaritySearcher com-
ponent requests eligible services from the Service-
Broker component, sending along a reference to
the selected data object, in this case an instance of
IsysObject representing a set of sequence homologs
(see the section on the data model), for evaluation
by service providers. The ServiceBroker component
in turn requests eligible services from all of its reg-
istered service providers (three are shown, belong-
ing to classes MSAServerProxy, SequenceServerProxy,
and SequenceAnalysisServerProxy). Some of these ser-
vice providers will find that they have services that
can operate on the data object, while others will not.
Some will find that the data object is eligible for more
than one of their services. In this case, the server
proxy that performs multiple sequence alignments,
the MSAServerProxy component, recognizes upon
inspection of the IsysObject instance that it can ap-
ply its AlignSequences service to the object, so it cre-
ates and returns an instance of this service. Similarly,
the SequenceServerProxy component creates and re-
turns an instance of its GetSequenceAnnotations ser-
vice. The SequenceAnalysisServerProxy component,
however, does not know how to operate on the
IsysObject instance, so it creates no service and re-
turns a null value. The ServiceBroker component col-
lects all returned instances of services and passes
them back to the SimilaritySearcher component.
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Figure 6 Sequence diagram illustrating interactive discovery
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Each service has an attribute called displayName con-
taining a value that can be shown to users. The Simi-
laritySearcher component arranges all such names
in a pop-up menu, and when the user selects one,
executes the corresponding service on the original
IsysObject instance. In this case, the service spawns
an instance of a component that serves as a front-
end to CLUSTAL W.

Exchange of events. Events are exchanged using the
EventChannel component, which implements the
Event Channel pattern.30 The Event Channel pat-
tern is a variant of the standard Observer pattern
that allows components to exchange events without
registering directly with one another. It is similar to
the Broker pattern in that it uses a mediator to avoid
direct dependencies among components, but is dif-
ferent in that it allows components to interact by a
“push” mechanism rather than a “pull” one—that
is, with the Broker pattern the active partner is the
requester, whereas with the Event Channel pattern
the active partner is the provider.

Event exchange in ISYS follows the Event Channel
pattern. First, receiving components register listen-
ers with the EventChannel component. Then when
broadcasting components “fire” events, the Event-
Channel component calls all registered listeners,
which prescribe appropriate reactions. Events in ISYS
are divided into different types, only one of which
is of interest to each listener. Each event is linked
to a data object (see the section on the data model),
which represents the subject of the action that the
event describes. In addition, for event exchange to
be active, two components must be explicitly synchro-
nized. This prevents undesired synchronization,
which can be confusing to the user and expensive in
terms of performance. Components are generally
synchronized when one spawns another and passes
it a starting data set.

Consider the scenario illustrated in Figure 2, in which
the SequenceViewer component and the Simi-
laritySearcher component exchange events. Even be-
fore the SequenceViewer component had spawned
the SimilaritySearcher component, it had registered
listeners with the EventChannel component. After
the SimilaritySearcher component was invoked, the
search executed, and the results returned, the Simi-
laritySearcher component fired events describing
the addition and display of the search hits. The
EventChannel component called the corresponding
listeners on the SequenceViewer component, pass-
ing them the events, and the listeners accomplished

the addition and display of corresponding annota-
tion bars in the SequenceViewer component. The
listeners acquired the information they needed about
the hits by examining the data objects linked to the
events.

Next, when the user selected search hits in the Simi-
laritySearcher display, the SimilaritySearcher com-
ponent fired events describing the selection, the
EventChannel component called the appropriate lis-
teners on the SequenceViewer component, and the
listeners caused the corresponding graphical bars to
become selected. When the user filtered the search
hits by expect value (inset of Figure 2), the Simi-
laritySearcher component fired appropriate events
for all of the hits that became invisible, and the Se-
quenceViewer component reacted by hiding the cor-
responding graphical bars. Note that these compo-
nents can exchange events in the reverse direction
(e.g., to effect selection in the SimilaritySearcher dis-
play corresponding to mouse clicks from the Se-
quenceViewer display), but only because the Se-
quenceViewer component knows how to broadcast
them and the SimilaritySearcher component knows
how to receive them. Event exchange is not auto-
matically bidirectional.

Figure 7 is a sequence diagram describing part of
the exchange between the SequenceViewer and
SimilaritySearcher components. It shows the Se-
quenceViewer component creating and registering
listeners for instances of ItemAddedEvent and Item-
ShownEvent, then invoking the SimilaritySearcher
component (via a service). Note the explicit call to
the method synchronizeClients. After the Similari-
tySearcher component receives its search results (not
shown), it broadcasts events describing the addition
of new search hits to its model and to the graphical
display. The EventChannel component calls the ap-
propriate listeners on the SequenceViewer compo-
nent, and the listeners cause corresponding graph-
ical annotations to be created and displayed. Next,
the user filters the search results, and the Similari-
tySearcher component broadcasts an event describ-
ing the disappearance of eliminated hits. Again, the
EventChannel component calls the appropriate lis-
tener, which this time causes the corresponding bars
to become invisible.

Figures 6 and 7 should help to make clear that, de-
spite involving separate components, these scenar-
ios take place within a single process space, and may
involve only a single thread of execution. With the
exception of auxiliary servers (see next section), all
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Figure 7 Sequence diagram illustrating exchange of events

sv: SequenceViewer

: SimilaritySearcherFactory

: EventChannel

itemAddedListener :
IsysEventListener

itemShownListener :
IsysEventListener

itemAddedEvent :
ItemAddedEvent

itemShownEvent :
ItemShownEvent

itemHiddenEvent
ItemHiddenEvent

ss: SimilaritySearcher

new

new

new

create

new

execute( )

addEventListener(itemAddedListener)

addEventListener(itemShownListener)

new

*[for each object in itemAddedEvent] addFeature(feature)

*[for each object in itemShownEvent] showFeature(feature,true)

*[for each feature removed by filter] showFeature(feature,false)

handleEvent(itemShownEvent)

fireEvent(itemShownEvent)

filter homologs

synchronizeClients(sv, ss)

fireEvent(itemAddedEvent)

handleEvent(itemAddedEvent)

fireEvent(itemHiddenEvent)

handleEvent(itemShownEvent)
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ISYS components currently run within the same Java
virtual machine.33 In the scenario just described, the
code for the EventChannel component and the lis-
teners in the SequenceViewer component was ex-
ecuted by the same thread that handled the initial
user-interface actions in the SimilaritySearcher com-
ponent. This is the way the Observer pattern is typ-
ically implemented, but it has important implications
when multiple components are involved. For exam-
ple, ISYS components are interdependent in terms
of threading and user-interface performance. If one
component has a slow, computationally intensive lis-
tener, and another component fires events without
spawning new threads, the first component can ren-
der the second unresponsive. This behavior is con-
trary to the basic principle of independence of com-
ponents, and we are working to alleviate it in two
ways: by having the platform handle threading itself
where appropriate, and by incorporating rules for
threading and performance into the standards that
each component must meet. On the other hand, shar-
ing a process space means that sending data from
one component to another is inexpensive, because
it can be accomplished simply by passing references.
The EventChannel component in particular cannot
become a performance bottleneck (at least with
proper threading) because it is not actually a con-
duit through which data must be passed, but simply
an object whose methods are called as needed by
interested components.

How components fit into the system. Besides the plat-
form and external servers, all ISYS components im-
plement at least one of two interfaces: Client and Ser-
viceProvider (see Figure 5). Implementers of Client
may broadcast and receive events, and implement-
ers of ServiceProvider may register and provide ser-
vices. Any component may request a service. Com-
ponents may implement both interfaces but generally
do not.

By convention, ServiceProvider implementations fall
into two classes: server proxies and client factories.
Server proxies are client-side representatives of
server resources that insulate other components from
changes to such resources, and that allow equivalent
server-side operations to be interchanged (i.e., server
proxies break down the capabilities of a server into
its constituent services, each of which can be inter-
changed with equivalent services). For example, one
might define server proxy components for two
Internet resources that both perform similarity
searches of DNA sequences against public databas-
es—call them SequenceAnalysisServerProxyA and Se-

quenceAnalysisServerProxyB. Each of these server
proxies could provide a particular type of service—
call it SimilaritySearch—and either one (or both)
could be installed and could register as a provider
of that service. No matter which was installed, the
service would be discoverable by the direct discov-
ery process (if both services were registered, the sys-
tem would provide requesters with the user-defined
default), and would perform the same abstract task—
although the two servers might differ in terms of per-
formance, search algorithm, or background database.
In addition, changes to the interface of either Inter-
net resource would require alteration in ISYS only
to the corresponding server proxy.

Client factories register and provide services that in-
stantiate clients. For example, the SequenceViewer
component in Figure 2 has a corresponding factory,
SequenceViewerFactory (see Figure 4). The factory
registers as a provider of a service to display sequence
annotation. In fulfillment of each request for this ser-
vice, the factory instantiates a SequenceViewer com-
ponent.

Servers are essential for the system but auxiliary (see
Figure 5) in the sense that they do not interact di-
rectly with the platform—they are always accessed
via server proxies. Any resource from which a server
proxy can obtain data can function as a server. Such
resources may exist locally or remotely and may be
called using whatever mechanism is most convenient
for the server proxy (e.g., TCP/IP [Transmission Con-
trol Protocol/Internet Protocol] sockets, HTTP
[HyperText Transfer Protocol], CORBA, Java RMI
[Remote Method Invocation], and JDBC** [Java
Database Connectivity]). Although they are not serv-
ers in the conventional sense, utility libraries or ex-
ecutable programs that are called directly by server
proxies may function as servers in the sense of aux-
iliary data providers.

Existing software tools are typically incorporated into
the system as servers or clients. Tools that provide
data (e.g., analysis tools or databases) are added as
servers, and corresponding server proxies are cre-
ated. The server proxies must register as providers
of services that represent in abstract terms the es-
sential functionality of the servers. Methods of these
services responsible for their execution must call data
providers appropriately and repackage their output
in a form recognizable by other components (see the
section on the data model). Tools that provide user
interfaces are added as clients. Corresponding cli-
ent factories are created to register as providers of
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services representing the functionality of the user in-
terface tools. These services instantiate the tools
when invoked. The tools themselves are generally
wrapped with simple, lightweight Java classes that
implement the Client interface. These classes han-
dle ISYS-level interaction by delegating calls to the
original tools in terms the tools can understand, and
intercepting intracomponent user-interface events
of interest to other ISYS components, for which they
broadcast corresponding ISYS events. In general, sep-
arately developed tools can become part of ISYS with
relatively little alteration and minimal compromise
of autonomy.

Various levels of integration are possible with cli-
ents, and there is some tension between integration
and autonomy. In the simplest case, a previously de-
veloped user-interface tool can be invoked from ISYS
(usually with a data set passed from another com-
ponent) but does not synchronize with other com-
ponents or perform interactive discovery. The abil-
ities to listen and respond to events, to fire events,
and to enable the interactive discovery process can
each be added independently. Listening and re-
sponding to events requires a wrapper to register as
a listener with the EventChannel component and del-
egate appropriate calls to the original tool.

Often the tool does not provide an interface that al-
lows the wrapper easily to alter the selection or vis-
ibility of individual graphical objects (for example),
so some invasion of its internal mechanisms is nec-
essary (leading to dependencies between the wrap-
per and the internals of the tool). If the client is to
fire ISYS-level events, the wrapper must intercept in
some way the GUI (graphical user interface) events
in the existing tool, then create and broadcast cor-
responding ISYS events. If the code for the tool is
available, simple hooks for the wrapper can be added
to the appropriate internal listeners. These hooks
can easily be written so that the tool can run with
or without ISYS. This approach, however, does re-
sult in further dependency between the tool and the
wrapper, and hooks may need to be added again
when new versions of the tool replace older ones.
If neither the code nor an adequate programming
interface is available, events must be intercepted at
a higher level (e.g., that of the windowing environ-
ment). This will be more difficult but should be pos-
sible (we have not had the need to integrate such a
client).

Data model. A common standard for representation
of data is necessary to allow components to exchange

information. If components are to interoperate, both
service providers and event listeners must be able
to recognize and interpret the data that other com-
ponents pass to them. In many integration solutions,
this need is addressed with a canonical schema, to
which all components must be able to convert their
internal representations.11,34 We have avoided such
a schema, however, because it would compromise
the flexibility of the system. A shared schema rep-
resents an implicit interdependency among compo-
nents, since changes to the global schema required
by one component can necessitate changes to many
others; and in bioinformatics, the prospect of a stan-
dard, stable schema is unlikely.35,36 In addition, it is
unrealistic to expect every component to represent
all data at the same level of detail, since data of pri-
mary interest to one component often are periph-
eral to others. Therefore, even if a global schema is
used, it must be possible to “fill out” its data struc-
tures to various extents.

Instead of using a canonical schema, we have cho-
sen an approach that allows each component to ac-
cess only the information essential for its needs. In
general, components are interested in only a few at-
tributes of the objects they receive from other com-
ponents. Additional schematic details are encapsu-
lated within components, so that integration can be
achieved with minimal interdependency. We de-
scribe this approach in detail, first by describing an
early design that we eventually dismissed, and then
by introducing an improved solution.

Our first design used a set of Java interfaces to de-
fine a high-level data model that represented a kind
of common denominator for all components.37 Each
interface characterized a class, with accessor meth-
ods defining attributes and links to associated classes.
Components implemented these interfaces with
classes that could allow considerably richer repre-
sentations of data. For example, Figure 8 shows the
definition of one such interface, IsysSequence, and
a class that implements that interface, SequenceView-
erSequence. IsysSequence provides methods signify-
ing the attributes and associations believed to be
most essential for integrative purposes. Sequence-
ViewerSequence defines a more detailed represen-
tation of a sequence, appropriate for use by the
SequenceViewer component. It implements the
IsysSequence interface, and fulfills its methods by
returning selected aspects of the richer representa-
tion. This allows an object of type SequenceView-
erSequence to be passed to another component and

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 SIEPEL ET AL. 583



interpreted as being of type IsysSequence. The sec-
ond component can access essential data from the
object but does not need to know about unneces-
sary details of the SequenceViewerSequence exten-
sions. In addition, its code can be dependent only
on the relatively stable IsysSequence class, not on
SequenceViewerSequence (which may need to be
changed as SequenceViewer evolves).

This design was appealing in its simplicity and took
advantage of Java’s interface mechanism to allow the
same object in memory to serve as both the detailed
and common-denominator representations of the
data object. It had several disadvantages, however.
Most importantly, we found that it was difficult to
determine a common denominator of attributes for
each class. Rather than all components sharing in-
terest in a core set of attributes, different compo-
nents seemed to require different “views” on the
same object that were only partially overlapping or
completely disjoint. Furthermore, no matter what
common denominator of attributes one chose, some
data providers were unable to supply elements of it.
Consequently, data consumers could not reliably ex-
pect core attributes to be present (in their absence,
a null value was returned). In addition, the data

model was “hard coded” into the interface defini-
tions, so changes required recompilation and posed
problems for already-deployed software.

Finally, the design was clumsy for handling associ-
ations of objects. In many cases, an object needs to
be interpreted as equivalent to a closely associated
object. For example, if a listener receives an event
that references an IsysSequence object but the lis-
tener is concerned with taxonomy, it should still re-
spond appropriately because an IsysSequence object
“has” an IsysTaxon object. In this design, the receiver
handled such associations by traversing the network
of objects (in this case by retrieving the related
IsysTaxon object, then inspecting it), using helper
interfaces that defined close associations among
classes. This complicated the code of data consum-
ers, forcing them to unravel object relationships that
would be better kept transparent.

Our solution was to redesign the implementation
scheme for the data model to use generic objects hav-
ing collections of attributes established at run time.
In the new scheme, there are no classes or interfaces
representing types of domain objects, such as IsysSe-
quence. There are only generic objects, of a type

Figure 8 Implementation of SequenceViewerSequence interface using old data model

public interface IsysSequence
{
String getICAccession() { ... }
String getSequenceText() { ... }
IsysTaxon getTaxon() { ... }

}

public class SequenceViewerSequence implements IsysSequence
{

// IsysSequence methods
public String getICAccession() { ... }
public String getSequenceText() { ... }

// Methods specific to SequenceViewerSequence
public int getSequenceLength() { ... }
public Vector getFeatures() { ... }
public Vector getComments() { ... }
public Vector getReferences() { ... }
public Source getSource() { ... }

}

public IsysTaxon getTaxon() { ... }
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called IsysObject, each of which has a collection of
attributes (which are specified by Java interfaces).
The IsysObject type supports queries for particular
attributes or groups of attributes. The set of attributes
belonging to each object is established upon instan-
tiation of the object.38 In the new scheme, the in-
dividual attribute is the atomic unit, rather than the
domain object with fixed attributes. Data consum-
ers simply query IsysObject instances to see if they
have the attributes needed to perform a task and,
if they do, the consumers request the values of those
attributes. Because consumers no longer depend on
a fixed “contract” (i.e., interface) published by data
providers, they do not need to be recompiled when
the data model changes (providers do need to be
recompiled if they are to provide new attributes).
Thus, the dependency of consumers on providers is
greatly diminished.

Figure 9 shows the definition of IsysObject, which
is accomplished with a Java interface. The figure also

shows the IsysAttribute interface (simply a marker)
and extensions of it defining a few sample attributes.
Note that the IsysObject interface provides several
different methods for retrieving attributes: getAt-
tributeGroup retrieves a set of closely bound at-
tributes;39 getAttributeCollection and getAttribute-
GroupCollection are “Collection” analogs of the
single-item getAttribute and getAttributeGroup meth-
ods. The interfaces defining sample attributes must
be implemented by an actual data object (see be-
low).

Figure 10 shows an implementation of Sequence-
ViewerSequence using IsysObject. The new version
implements the IsysObject interface and the inter-
faces of several ISYS-level attributes. Attributes ex-
pected to be of interest to other components are ac-
cessible via the methods of the IsysObject interface.
The getAttribute method illustrates some of the value
of representing attributes as types. For example,
this representation, along with the use of Java’s

Figure 9 Definition of IsysAttribute and IsysObject interfaces and sample attributes

// A marker interface
public interface IsysAttribute {}

public interface IsysObject {
IsysAttribute getAttribute( Class attrClass );
HashMap getAttributeGroup( Class[] attrClasses );
Collection getAttributeCollection( Class attrClass );
Collection getAttributeGroupCollection( Class[] attrClasses );

}

// sample attributes

public interface IsysICAccessionAttribute extends IsysAttribute {
String getICAccession();

}

public interface IsysSequenceTextAttribute extends IsysAttribute {
String getSequenceText();

}

public interface IsysTaxonNameAttribute extends IsysAttribute {
String getTaxonName();

}
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Class.isAssignableFrom( ) method, allows for hierar-
chical definitions of attributes. The getAttribute
method will respond appropriately not only to re-
quests for any of the ISYS-level attributes assigned
to SequenceViewerSequence, but to requests for

“parents” of those attributes (in terms of interface
extension). Figure 10 does not show the implemen-
tations of the attribute collection retrieval methods,
for simplicity. They are straightforward generaliza-
tions of the implementations that are shown.

Figure 10 SequenceViewerSequence class implemented using IsysObject interface

public class SequenceViewerSequence
implements IsysObject,

IsysICAccessionAttribute,
IsysSequenceTextAttribute,
IsysTaxonNameAttribute

{
// attribute methods
public String getICAccession() { ... }
public String getSequenceText() { ... }
public String getTaxonName() { return getTaxon().getName() };

// methods specific to SequenceViewerSequence
public int getSequenceLength() { ... }
public Vector getFeatures() { ... }
public Taxon getTaxon() { ... }
public Vector getComments() { ... }
public Vector getReferences() { ... }
public Source getSource() { ... }

// IsysObject methods
public IsysAttribute getAttribute( Class attrClass ) {
if ( attrClass.isAssignableFrom( IsysICAccessionAttribute.class ) ||

attrClass.isAssignableFrom( IsysSequenceTextAttribute.class ) ||
attrClass.isAssignableFrom( IsysTaxonNameAttribute.class ) ) {
return this;

}
}

public HashMap getAttributeGroup( Class[] attrClasses ) {
HashMap result = new HashMap();
for ( int i = 0; i < attrClasses.length; ++i ) {

IsysAttribute attr = getAttribute( attrClasses[i] );
if ( attr == null ) return null;
result.put( attrClasses[i], attr );

}
return result;

}

// attribute collection retrieval
Collection getAttributeCollection( Class attrClass ) { ... }
Collection getAttributeGroupCollection( Class[] attrClasses ) { ... }

}
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By focusing on specific attributes, which ultimately
are what data consumers need, the new approach
avoids the problems of standardizing the data model
at a global level. Different consumers can have dif-
ferent views of the same object, by requesting dif-
ferent sets of attributes. Data producers can give an
object as many or as few attributes as they have at
their disposal, without being constrained by an ex-
plicit contract. Data consumers are forced to address
explicitly the issue that there is no guarantee any at-
tribute will or will not be present in a particular ob-
ject (rather than being presented with the illusion
of a guarantee, as in the old system). In fact, the new
approach serves as a method for implementation,
but defines no particular schema—even a high-level
one like that defined in the previous approach. The
schema is implicit in the attributes of and relation-
ships among objects, as defined by component de-
velopers.40

In many cases, a single IsysObject instance repre-
sents a “flattened” view of an entire network of re-
lated objects—i.e., the IsysObject instance appears
to have all of the attributes of the network. The
implementer of IsysObject is responsible for travers-
ing the network as necessary. In this way, data pro-
ducers, not consumers, bear the burden of establish-
ing associations. If this design is more complicated
than the original for data providers, it is simpler for
consumers. A default implementation of IsysObject
helps to protect developers from some of its com-
plexities.

Observe the handling of the TaxonName attribute
in Figure 10. This attribute is actually stored in a sep-
arate class (Taxon) associated with SequenceView-
erSequence. SequenceViewerSequence, however,
declares it as an ISYS-level attribute, and retrieves
it from the associated Taxon object on demand. In
this way, the data consumer is protected from hav-
ing to navigate a complex network of objects.

Discussion

Although it makes use of standard techniques for
loose coupling of components (e.g., service and event
exchange), ISYS represents a somewhat unusual ap-
proach to the problem of software integration, es-
pecially in the field of bioinformatics. Two attributes
in particular distinguish the system. First, it avoids
the use of a canonical schema and instead relies on
a loose, highly flexible, and dynamic model for data
representation that further reduces dependencies
among components. Second, it depends on no top-

level controller to coordinate the integration of com-
ponents. Instead, ISYS components are relatively in-
dependent and autonomous, and the behavior of the
system emerges from their interactions. Components
are instantiated but not controlled by the ICE, and
they use the ServiceBroker and EventChannel com-
ponents only as media for interaction. Because each
component interacts with the others according to a
highly general set of rules (defined by event broad-
casters and listeners, requests for and responses to
the interactive discovery process, and the definition
of the data model by assignment of attributes to
IsysObject instances), components can be added or
subtracted freely. As the set of active components
is altered, the nature of the system changes, while
still remaining coherent.

This property of the system to support easy “plug
and play” of components makes it well suited for the
rapid creation of integrated systems of legacy com-
ponents. Users can create such systems by installing
and activating any combination of properly wrapped
components. These systems may not be as perfectly
integrated, and will not be as unified, as if they were
developed “from scratch.” In a fast-moving field with
limited development resources, however, the flex-
ibility and speed gained by building systems out of
existing tools is worth the price of diminished unity,
for many applications.

ISYS can also be useful as a prototyping environment
for new components. With a small amount of work,
a new application can be fit to plug into the system.
The developer can then derive the benefits of access
to the other components in the system, for example,
as providers of data or tools for visualization and
analysis of biological data. This can allow more fo-
cus on the specific task the new component is in-
tended to address.

The ISYS platform can be useful in any situation in
which developers have a strong incentive to allow
client-side integration of heterogeneous software
components. The platform is best at allowing graph-
ical synchronization, transparent data retrieval, and
probing, exploratory navigation from component to
component (using the interactive discovery process).
It can be used easily to integrate command-line ex-
ecutables and stand-alone servers, and relatively eas-
ily to integrate GUIs with available source code (or
an adequate API [application programming inter-
face]). GUIs without source code or an adequate API
are more difficult to incorporate, but could (we be-
lieve) be accommodated.
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The mechanism for representing shared data is in-
dependent of the bioinformatics domain, but it may
not be appropriate for all applications. It is designed
with the assumption that different components will
occupy largely orthogonal data spaces, which inter-
sect at only a few attributes. For example, the Simi-
laritySearcher and SequenceViewer components are

mostly concerned with different data—the former
with the particulars of similarity scoring and local
sequence alignment, the latter with sequence anno-
tations and their physical locations—and they share
interest only in the identities of sequences and the
locations of search hits. The ISYS platform is not
effective for allowing components to share large por-
tions of data models (it discourages such sharing to
reduce component interdependency). If it were nec-
essary for multiple components, for example, to share
knowledge of many of the particulars of the data rep-
resentation used by the SequenceViewer component,
they should probably interact directly, without the
use of the ISYS platform. In such cases, it may make
sense to consider multiple components as one with
respect to ISYS (i.e., to give them a single point of
contact with the platform).

In bioinformatics, we think ISYS is well suited to meet
the need for flexible data and software integration
in a visually intuitive client-side environment. Al-
though the use case described in this paper was bi-
ologically simple, ISYS supports more interesting ap-
plications. It can allow sweeping navigation across
species, biological data types (e.g., maps, sequences,
and pathways), and biological perspectives (e.g.,
structural, functional, and evolutionary). For exam-
ple, it is possible using the ISYS prototype to nav-
igate from a genomic map (a high-level structural
view of a genome) to sequences placed on that map
to metabolic pathways related to these sequences (a
high-level functional view).37 With additional refine-
ment and new components, we think ISYS can be-
come a valuable instrument for comparative and
functional genomics. Because it is built from the bot-
tom up, it will continually be able to exploit the work

of the independent researchers who drive this ex-
citing scientific field.

We think it is worth reflecting on the design of the
system by exploring two questions: (1) Is our design
object-oriented? (2) Is it consistent with the Model-
View-Controller (MVC) pattern? The question of ob-
ject orientation is interesting because although at first
glance ISYS seems purely object-oriented—object-
oriented design is used throughout and the platform
is implemented with an object-oriented language—at
a deeper level it is strongly procedural. The services
are essentially coarse-grained procedures, which re-
main clearly separated from the data on which they
operate. Thus, data and behavior—whose combina-
tion is arguably a sine qua non of object orientation—
are kept separate. Like the Command pattern, ISYS
uses object-oriented design to accomplish something
inherently procedural.

This procedural approach ultimately serves to pro-
mote flexibility. The set of behaviors must be able
to change as components are plugged into and re-
moved from the system. It makes sense to separate
data and behavior because they are not bundled to-
gether neatly by the existing tools that we need to
integrate. Instead, many different tools support op-
erations for essentially the same data types. For ex-
ample, there are hundreds of different tools that per-
form various operations on sequences. The user is
typically in the position of performing multiple op-
erations on a single data object or set of related data
objects. By separating data objects from operations,
we allow the set of operations to change freely, and
at run time we can pair data objects with eligible op-
erations (as with the interactive discovery process).

Similarly, the answer to the question of the Model-
View-Controller pattern is both yes and no. Individ-
ual components can (and often do) use the MVC pat-
tern internally, but multiple components do not share
a single model. Instead, components exchange in-
formation about specific portions of their models us-
ing the common protocol of the data model. The rea-
son, once again, is flexibility. Sharing a single model
would require an unacceptable level of component
interdependency, in the same way as would adher-
ing to a canonical schema (discussed earlier). By
communicating only essential information about
their models through the exchange of events and ser-
vices, components are able to interoperate without
having any more interdependency than absolutely
necessary.

The ISYS prototype can be
used to navigate, from a

genomic map to sequences on
that map, then to

their metabolic pathways.
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Currently the ISYS team is focusing on development
of several new components, refinement of the plat-
form, and coordination with efforts at NCGR (Nation-
al Center for Genome Resources) in metabolic path-
ways, gene expression, and genomic maps. For more
information about the project, and to download the
latest release of the platform, see http://www.ncgr.
org/research/isys.
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