IBM WebSphere
Commerce Suite
Product Advisor

This paper describes the Product Advisor
component of the IBM WebSphere™ Commerce
Suite. Product Advisor consists of a set of tools
to be used by marketing personnel to generate,
without programming help, Web shopping
applications involving a product catalog. The
user interfaces generated by these tools cover
an extensible set of shopping paradigms
including parametric search, a knowledge-based
“virtual salesperson,” and side-by-side
comparison shopping. The paper also describes
the Java™ infrastructure that supports the
Product Advisor tools: servilets, JavaBeans™ and
JavaServer Pages™ in the server, and applets in
the client. Furthermore, it describes the
implementation techniques used for rendering
dynamic data: a data container hierarchy, a data
type hierarchy, and presentation beans.

hen trying to sell products over the World

Wide Web, companies face a unique problem.
How do they sell to customers who are unfamiliar
with their products? How do customers who know
the product features they want, find the particular
product that will meet their needs among the hun-
dreds offered? In a physical storefront, a salesper-
son is available to help both novice and knowledge-
able customers, but on the Web, there are no
salespersons; only knowledgeable customers have a
real chance of finding the right product. WebSphere*
Commerce Suite' Product Advisor provides tools
that e-commerce sites can use to support “feature-
relevant” searches and a “virtual salesperson” to help
customers find the products that meet their needs.

Another problem, often overlooked, is “How do mer-
chants maintain their dynamic Web sites?” As Web

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

0018-8670/01/$5.00 © 2001 I1BM

by J. J. Rofrano

technology advances, its complexity increases.
JavaServer Pages** (JsP**),? used for rendering dy-
namic output to client browsers, requires some pro-
gramming skills. But the decision to place data on
a page is often made by marketing people trying to
elicit a particular customer behavior. The problem
is to implement new technology in a way that will
allow marketing people, with no programming skills,
to take full advantage of the technology. There are
many tools for programmers and many tools for Web
page designers, but very few tools for marketing peo-
ple. This paper describes how Product Advisor pro-
vides a set of tools for marketing people to record
“meta-data” about what is to be displayed on a page,
and a run-time environment that interprets the meta-
data and dynamically renders the correct content.

The 1BM WebSphere Commerce Suite, a member
of the WebSphere family of products, is an appli-
cation built on top of the WebSphere Application
Server Advanced Edition. It provides the tools used
to build e-commerce Web sites and is based on serv-
er-side Java**? and JSP technologies. JSP pages are
HyperText Markup Language (HTML) pages that
contain special HTML tags for declaring and using
JavaBeans**.* They can also contain scripting ele-
ments based on the Java programming language,
which will be executed at the server before render-
ing the page on the client browser. Server-side Java
programming allows Java code to run at the server

©Copyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

ROFRANO 91

where it has greater bandwidth for access to back-
end resources such as databases.

Owners of e-commerce Web sites are constantly
looking for ways to make their Web sites more dy-
namic and compelling and, at the same time, easier
for customers to navigate. Navigating a Web site by
following hyperlinks can be tedious and may often
lead to “dead ends.” Search mechanisms, such as key-
word search, often lead either to zero hits or hun-
dreds of hits with varying degrees of relevance. In
the case of many hits, it is up to the customer to sort
out these results, which can be unproductive and frus-
trating at times.

Product Advisor is a suite of tools within the IBM
WebSphere Commerce Suite that allows merchants
to create e-commerce Web sites with advanced prod-
uct search and display capabilities. There are cur-
rently three tools in the suite:

1. Product Exploration Builder provides parametric
search capabilities that allow customers to spec-
ify the product features and the corresponding
values they are interested in, so they can quickly
narrow down the product search space. Product
Exploration Builder keeps a nonempty set of
products in the search space and thus never yields
zero hits.

2. Sales Assistance Builder is a knowledge-based tool
that uses the salesperson’s knowledge to create
a “virtual salesperson.” The resulting user inter-
face guides customers to the products that are
right for them through a question-and-answer ses-
sion.

3. Product Comparison Builder is used to create a
user interface that provides dynamic side-by-side
product comparisons. It also serves as a comple-
mentary component for displaying the results of
the other two search techniques.

Writing server-side Java code requires programming
skills. JSP pages are usually created by Web design-
ers, in much the same way as HTML pages are cre-
ated. In addition, Web designers can place special
bean tags on the JSP page that can be used to render
dynamic data using JavaBeans. Here dynamic data
are any data that are extracted from a database and
used to fill an area on a Web page. The Web de-
signer may need to also add some Java scripting code
to the page in order to iterate over the data returned
by the JavaBean. While there are JSP layout tools
like WebSphere Studio that will automatically gen-
erate much of this code, Web designers still need to

02 ROFRANO

understand the structure and type of data being re-
turned in order to iterate over it and format it prop-
erly for presentation. Product Advisor bridges the
gap between the skills needed for laying out Web
pages and those needed for Java scripting.

The remainder of this paper is organized as follows.
The next section describes the tools that enable a
marketing person to create the user interface for
parametric search and question-driven product se-
lection. The following section describes the Java in-
frastructure and the implementation techniques that
enable Product Advisor to work without the need to
include custom-developed Java code. The paper ends
with a conclusion.

Tools for building e-commerce Web sites

The way customers shop depends on the specific
need they’re trying to satisfy and their knowledge of
aproduct. Customers familiar with a product are usu-
ally looking for particular features, while others need
sales advice to help them select the right product.
To attract and satisfy the broadest range of custom-
ers possible, e-commerce Web sites need to support
different shopping methods for different types of
shoppers. Product Advisor provides tools that com-
bine the marketing knowledge of a merchant’s sales-
person, the technical knowledge of the product spe-
cialist, and the rich set of product features that are
necessary for a customer to make an informed buy-
ing decision.

When developing an e-commerce Web site, persons
of varying skills are needed. Among these are op-
erations people—the traditional IT (information
technology) staff that maintains the site and the prod-
uct data in the database. There are Web design peo-
ple—the traditional graphics design staff whose role
is to design the Web pages. There are also market-
ing people who understand the products and how to
sell them. Product Advisor takes these different roles
into account. It provides a set of tools for marketing
people to use as a “marketing workbench,” and a
set of JavaBeans for Web designers to include dy-
namic content on Web pages. Traditionally, the per-
son designing a Web catalog would need to work with
a marketing person or product specialist to under-
stand what content needs to appear on each page,
then work with a programmer who helps implement
the dynamic content rendering to the client.

Because the WebSphere Commerce Suite is a Web
application, the client is always a browser. Java ap-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 1 Product Advisor high-level data flow

JSP/HTML JSP
EDITOR

PRODUCT

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

}

|| ADVISOR
|

|

|

|

|

} 4
| CATALOG
} (PRODUCT DATA)
|

|

|

|

|

|

|

|

TOOLS

plets technology was selected to create the user in-
terface for Product Advisor tools. Applets allow code
versioning to be controlled from the server, avoid-
ing client installation headaches. They also provide
a much richer graphical interface than just HTML
forms. These applets have the “look and feel” of the
windowing system for their respective platform and
allow the application to be accessed from any work-
station with just a Web browser. The applets com-
municate with the server component, which is
based on Java servlets. Java Database Connectivity
(JDBC**) is used to manipulate relational data in the
commerce database.

The time during which the Product Advisor tools are
used to build the Web site is known as the build time.
The time when the customer visits a site is the run
time. A high-level data flow for Product Advisor can
be seen in Figure 1. WebSphere Commerce Studio
Page Designer tool (seen at the top left of the fig-
ure, labeled JSPHTML Editor) is used to create JSP
and HTML pages. The registries are a collection of
database tables used both at build time and run time.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

There are three registries defined in the Product
Adpvisor:

1. Data Type Registry—Holds the list of extensible
data types. These data types are an extension of
the Java wrapper classes for the primitive data
types. These data types are needed for the pur-
pose of rendering the Web page and are discussed
in the next section. New data types can be added
to this registry as needed.

2. Data Entry Widget Registry—Holds the list of GUI
(graphical user interface) controls that know how
to render values for data entry on a JSP page.
These include the default controls provided by
HTML tags such as radio buttons, check boxes,
drop-down lists, etc., as well as new controls imple-
mented as Java applets, such as sliders and dials.

3. Tool Registry—Holds the list of tools installed in
the suite. The tools that are registered by default
are Product Exploration Builder, Sales Assistance
Builder, and Product Comparison Builder. De-
velopers can extend the product by adding new

ROFRANO 93

Figure 2 Product Exploration Builder parametric search setup tool
{&;|Product Exploration Builder - The Mutual Fund Store =10] x|
File View Help

=] 8|2 ki|%| @]

Category: Mutual Funds Product Count: 42
Feature Name | Order#l Max Char | # Unigue | Display I Sort Widget I

Fund Name 1 254 42 Don'tShow Ascending Multi select list

Fund Type 2] 4 Show Ascending Check box

Initial Investment 3 4 Show Ascending Multi select list

1997 Total Return 4 - Show Descending IDmp down | vI

10yr Return 5 16 Show Descending SRS

Syr Return 6 27 Show Descending |Hyper-text link

3yr Return E 33 Show Descending |Multi selectlist

Turnover Ratio 8 35 Sho Descendin Slugiewsslertiiz

' ki ing Check box

Net Assets (ME) 9 41 Show Descending |Radio button

Expense Ratio 10 33 Show Ascending |Text entry

IManager Tenure 11 12 Show Descending Drop down list

Itern Na. 12 64 42 Don'tShow Ascending Drop down list

Loga 13 254 15 Don'tShow Ascending Drop down list

Specify a widget for displaying the values of a feature

tools and registering them in this table. They will
then appear in the tools launch window.

The importance of the registry design is that it al-
lows Product Advisor to be extended by adding new
data types that know how to render themselves, new
GUI controls for data entry, and new tools that cre-
ate new shopping paradigms.

The Product Advisor tools are now illustrated in a
case study taken from the mutual funds industry. The
user interface of the Product Exploration Builder for
building parametric search is shown in Figure 2. The
tabular view has one row for each product attribute,
the first column containing the attribute name. The
columns represent meta-data.

The second column controls the display order of the
product attributes. This allows the tool user to move
the most important attributes to the top where cus-

94 ROFRANO

tomers will see them first. The columns in the mid-
dle are informational. The # Unique column shows
how many unique values there are for each attribute.
Max Char shows the number of characters needed
for display.

The Display column turns the display of an attribute
on and off. This controls what attributes are actually
displayed on the parametric search page. Note that
the upper right-hand corner of Figure 2 indicates
there are 42 products in this category and the unique
value column indicates there are 42 unique values
for Fund Name. That means selecting Fund Name
will narrow the search to one product. This may, or
may not, be desirable. One might argue that if one
knew the name of the mutual fund one wanted, there
would be no need for a search at all. More impor-
tantly, if there were 10000 funds in this category, it
may not be desirable to display 10000 fund names
in a list on the JSP page. It is for these reasons that

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

this attribute has been turned off by selecting “Don’t
Show” as its display value. It will be shown later that
a dynamic table will be generated from these val-
ues. Adding and removing columns in this table is
as easy as turning these values from “Show” to “Don’t
Show.” No programmer intervention is required.

The Sort column determines how the values are
sorted for each attribute. The Total Return and Net
Assets attributes are set to sort in descending order
because “more is better” for these attributes. Initial
Investment is set to be sorted in ascending order be-
cause “less is better” for this attribute. Finally, the
Widget column controls which graphical control el-
ement will be used to display the actual data: multi-
select list, single-select list, drop-down list, radio but-
ton, hypertext link, or check box, etc. These values,
which were read from the data entry widget regis-
try, can be extended by creating additional GUI con-
trols and adding corresponding entries in the reg-

istry.

The parametric search user interface is shown in Fig-
ure 3. The product count (42) above the table rep-
resents the number of products in the current search
space. The customer first selects an attribute value,
say, the value 20% for the 10yr Return row. The cus-
tomer then clicks on the = button in the same row.
Since all the buttons to the right of the attribute value
fields are of the type SUBMIT, clicking any of these
buttons causes the HTML form to be sent to the server
for processing. The result of this processing is a new
page containing the same form with values that re-
flect the new, and now reduced, search space. Thus,
the product count drops to, say, 20.

The parametric search user interface is so designed
that the product count stays always larger than zero.
This is done in order to avoid unproductive searches,
which may frustrate the customer. In the example
above, assume that among the 20 products that make
up the new search space there are no funds of type
Growth. Then, on the page returned by the server
there would be no check box marked Growth in the
row for Fund Type, since a search for growth funds
would then result in zero funds.

The Product Exploration Builder tool allows the
marketing person to experiment with changes in the
GUI controls. An interactive session results, in which
there is immediate feedback as to what the paramet-
ric search page will look like to a customer. The tool
lets merchandisers determine what is important and
how the user interface is to be customized. The re-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 3 Product Exploration parametric search
customer view

Product Exploration
Mutual Funds

2 Lo« £

Products F:odqcl Sales

Comparison Assistance
Fund Type I” Blend I” Growth I~ Index I~ Value =1#!
. $50000
Initial Investment $1,000.00
$2500.00 v| =% (<>

1997 Total Return [0% =] =lstl<i>
10yr Return [198% | ===z
5yr Return [236% =] =lz(<=
:SyrR'et'um [336% =] =l<(>
Turnover Ratio [186 =] =lsl=<1>
Net Assets (M$) [18265 =] =1=I<|=
Expense Ratio 02 7] ===

Manager Tenure [13 <] = # <>

sulting data are part of the meta-data to be used at
run time. It is thus possible to use a minimal set of
JSP pages and generate from these a broad range of
pages for each category of products.

What about customers who need more help in se-
lecting a mutual fund? The Sales Assistance Builder
tool in Figure 4 constructs a knowledge tree based
on a set of questions and answers, as shown in the
left window in the figure. A salesperson would start
by adding the leading question to the knowledge tree.
This is simply the first question asked if a customer
says, “I am looking for a mutual fund.” This would
be followed by entering the possible answers that a
customer could give to this question. Each answer
is formulated as a product constraint. The pop-up
window on the right side of the figure shows the di-
alog box that is presented to the salesperson using
the tool when a product constraint is specified. These
constraints will be added to the search criteria and
applied to the product in a way analogous to the para-
metric search. The difference is that a salesperson
is specifying the constraint based on the customer’s
answering a question. Each answer can have a fol-
low-up question. This question will have a set of pos-
sible answers which, in turn, can add new product

ROFRANO 0§

Figure 4 Sales Assistance Builder tool

=1olx]

File Edit Link Yiew

als] [el4le]

Category: Mutual Funds

|] 2] |

Product Count: 42

Q&AS | order | Products [IEa e i x|
=€} What type of investment are you looking for? —Current Question and Answer Product Counts
& I:nn Term (less than Is) 1 m Q: What type of investment are you.... Products in Category: 42
=2 How much free income do you have to invest? 3 e .
A Less than $5,000 1 5 A: Short Term (less than 2 years) Remaining Products: 23
A Between $5,000 and $150,000 2 14 Features —Previous Canstraints
A More than $150,000 3 4 e T
= A Medium term (around 5 years) 2 19 Manager Tenure
=] Q Which hest describes your investment philosophy? Net Asspts (MEY =
I'm willing to take a risk for a hett turn 1 14
ﬁ llik:V:o]plgay it safe riskiora betler retur 2 5 — Feature Values Operation —Selected Constraints
=] A Long term (10 years or more) 3 19 IBnlsg;? ' Equalto EE:S ;VpiS;?L""gh
=€} Which best describes you marital status? " Notequal to RE =
A 'msingle 1 4 ¢ Greater or Equalto
A I'm married with small shildren 2 18 B
A 'm married with grown children 3 8 e b
Add === I
=<< Rermove
The currently selected Question and Answer ’
viewsaL| ok | cancel |
)) . n Implementation techniques for rendering
Figure 5 Sales Assistance “virtual salesperson

customer view dynamic data

Figure 6 illustrates a typical HTML page to be ren-
dered in a client browser for a Web application that
includes a product catalog. As shown in Figure 6,
the displayed page often contains an image of the
product, a description, and possibly a table summar-
izing the main product attributes and their values.

42 PRODUCTS SALES ASSISTANCE -~MUTUAL FUNDS

Jo. WHAT TYPE OF
INVESTMENT ARE YOU

PRODUCT LOOKING FOR? Consider now a design that uses a single JSP page
EXPLORATION to display all products in a catalog. Moreover, con-
sider a catalog that contains both refrigerators and

SHORT TERM
(LESS THAN 2 YEARS) washing machines. Because refrigerators have dif-
ferent specifications than washing machines, the
Rs %@ pages to be displayed will differ in the number of at-
PRODUCT tributes and their data type. As shown below, it is
COMPARISON LONG TERM often advantageous to use a single JSP page for both

10 YEAR R MORE
¢ S ORMO products.

The Web designer laying out the page shown in Fig-
ure 6 would usually need to know the type of data.
String data can simply be displayed, but numeric data

constraints and more questions. This builds a knowl-
edge tree that enables a user interface in which cus-
tomers are led to select a product via a question-and-
answer session. The resulting user interface is shown
in Figure 5.

96 ROFRANO

have to be formatted correctly. If an image is in-
volved, the designer would have to know and create
an image link instead of displaying the image name.
The designer would also need to know how to for-
mat the price data correctly. If the Web site is mul-

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

ticultural and allows customers to shop in several cur-
rencies, the Web designer would need to have
information available on various currencies and how
these are formatted.

The Web designer would also need to know some-
thing about the product specifications, such as the
multiple name/value pairs that must be formatted
into a table. The display of such a table would re-
quire Java scripting in order to iterate over the data.

The Web designer could make certain assumptions
and “hard code” some of these decisions in order to
get the page to display properly. The page will work
for all products, in a given category, that have iden-
tical product attribute specifications. Now let us sup-
pose there are 200 categories of products in the cat-
alog. Making 200 different pages to display the
various products may not be desirable.

The Product Advisor implementation incorporates
a solution that requires a single JSP page for display-
ing all products in the catalog. It provides a tool for
tagging the data, a common set of data containers,
presentation beans, and data types that understand
how to render themselves properly. The tool for tag-
ging the data can be seen in Figure 7. This tool al-
lows the user to specify the data type for each prod-
uct attribute. The attribute Logo, for example, is
assigned a data type of Image. This information is
stored as meta-data, and it is used at run time to de-
termine how to display these data. When retrieved
from the data, the information is really string data,
but by using the meta-data, it will be determined that
the string is actually an image name, and it will be
assigned a data type that knows how to display it as
an HTML image tag. By using this system of tagging
data, the run time can correctly render any type of
data by looking the tag up in the Data Type Reg-
istry and finding the data bean that represents the
data type.

This approach requires a single JSP page in order to
display products from any number of categories cor-
rectly, because the data type of their attributes can
be easily determined and rendered correctly. The
rendering scheme is composed of three components:

1. A data container hierarchy in which the data con-
tainers are self-describing. This includes both hav-
ing a well-known interface, as well as optional
meta-data that describe the contents of the con-
tainer.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 6 Typical product Web page

ldeaPad 2000

SPECIFICATION:
PROCESSOR: 1.2 GHz
=] MEMORY: 512 MB
Q% HARD DRIVE: 165 GB
6%0
CD-ROM: DVD 8x
PRICE: $2,500
DESCRIPTION:

2. A data-typing hierarchy that extends the Java
wrapper classes, such as Integer, String, Double,
etc., and carries enough information so that the
data beans can be rendered correctly. This infor-
mation includes items such as locale, unit of mea-
sure, etc.

3. Presentation beans that understand how to inter-
pret the data containers and require the typed
data beans to render themselves.

This design emulates the javax.swing ListModel/
JList, TableModel/JTable pairs where a data con-
tainer (e.g., ListModel or TableModel) has a well-
defined interface, and a presentation object (e.g.,
JList or JTable) understands how to manipulate the
data container.

Data container hierarchy. The data container is a
hierarchy of classes as shown in the Unified Mod-
eling Language’® (UML**) diagram in Figure 8. At
the root of the hierarchy is an abstract class called
DynamicDataBean from which all other data con-
tainer subclasses are derived. These beans can have
new data elements dynamically added to them. The
ItemDataBean represents a single data item, whereas
the ListDataBean, ColumnDataBean, and Table-
DataBean represent a collection of ItemDataBeans.
Likewise, the NodeDataBean represents a single
data node, and a TreeDataBean represents a col-
lection of nodes. Notice also that a ListDataBean
contains one or more ItemDataBeans, a Table-
DataBean contains a collection of either List-

ROFRANO 97

Figure 7 Catalog Builder tool for tagging data

[(,_]l:atalog Builder - The Mutual Fund Store g

File View Help

E%]l‘?al |

Category: Mutual Funds

Product Count: 42

Feature Name DB Column Name Max Char| Field Size | Include Type Unit =
1997 Total Return F_1997TOTALRETURN 4 Yes |pouble v|%
10yr Return F_ANNUALIZEDRETURN 4 Yes [string %
3yr Return F_ANMUALIZEDRETURD 4 Yes |Integer %
Syr Return F_ANNUALIZEDRETUR1 4 Yes %
Expense Ratio F_EXPENSERATIO 5} Yes g:rcrm;y
Fund Type F_FUNDTYPE] Yes |URL Link
IManager Tenure F_MANAGERTENURE 4 Yes |Image
Net Assets (M$) F_NETASSETS 4 ves LDate
[Turnover Ratio F_TURNOVERRATIO 4 Yes Integer
Initial Investment PFPFPRC Yes Currency USD
Itern No. PRNBR Yes String
Fund Name PRSDESC Yes String
Logo PRTHMB Yes Image
More Info FRURL Yes URL Link
Inventory FPRVENT MNo Integer _:J

Specify the type of data used for a feature's values

DataBeans or ColumnDataBeans, and a Tree-
DataBean contains a collection of NodeDataBeans.

Each of these containers has appropriate getXXX()
methods to return the other containers or data ob-
jects they are composed of. For example, Table-
DataBean has getColumnAt(i), getColumn(“name™),
and getRowAt(i) methods, while ListDataBean has
a getltemAt(i) method and ItemDataBean has a
getDataFElement() method to get the data. Only
the ItemDataBean, ColumnDataBean, and Node-
DataBean contain actual data objects. The data ob-
ject they contain is an object derived from DsData.
The DsData class hierarchy is a model of data types
that know how to format themselves for rendering.
The DsData class also has a getRawData() method
to get at the actual unformatted data if this is needed.

08 RoFRANO

The DynamicDataBean classes also contain a
DataBeanDescriptor that is derived from the
java.beans.FeatureDescriptor class. This allows the
server-side code to store more information about the
data that must be carried to the client. The typical
use of the DataBeanDescriptor is to store the name
and displayName for the data. The name is a token
that will not change across locales, while the dis-
playName may be in a language that matches the
client’s locale. The ItemDataBean, along with the
DataBeanDescriptor, make up a name/value pair to
be used in rendering. The advantage is that in ad-
dition to numerical formatting of the data, a name
or label can be printed with it as well. As stated ear-
lier, this is particularly helpful when making a table
of product specifications because the names and val-
ues are all contained in the ItemDataBean object.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 8 DynamicDataBean container hierarchy

DataBeanDescriptor
; DESCRIBES
DynamicDataBean name : String
displayName : String
ltemDataBean
- : ListDataBean TreeDataBean
getDataElement() T
1.7
COMPOSED OF 1%
ColumnDataBean TableDataBean NodeDataBean
e —
1.7
1
DsData CONTAINS

The set of well-defined containers allows the pre-
sentation beans to understand the structure of the
data much like a JTable understands a TableModel
in Swing. The advantage of using containers over just
sending a two-dimensional array of data to repre-
sent a table, is that the Web page designer would
need to know which dimension represents the rows
and which dimension represents the columns. A sim-
ple two-dimensional array would not carry any meta-
data about what the column names should be. Per-
haps this would need to be sent separately or an
agreement would be made between the client and
server code that the first row contains the column
names. Finally, if only a subset of columns is to be
displayed, the Web designer would need to know the
index of each column rather than addressing the col-
umns by name (with getColumn(“name”)) as this
model allows.

Data type hierarchy. The next component of the
model deals with the data themselves. This is the data
type hierarchy shown in Figure 9.

At the root of this data type hierarchy is the DsData
class. This is an abstract base class from which all

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

data objects are derived. It contains a java.util.Lo-
cale object that is inherited by all other classes. This
is especially useful in a multicultural environment.
At the client browser, only the client’s locale is
known. There may be times when it is necessary to
know the locale at the location where the data were
stored in order to format the data properly. Format-
ting currencies falls into this category. It is not
enough to just send a decimal number from the
server to the client.

Each DsData object has a method called getPresen-
tationString() that will format the data correctly and
return the data as a string for displaying. The model
supports all of the primitive data types found in Java
and some, like DsCurrency, that are not. This model
can easily be extended by creating new subclasses
for new data types.

One could argue that if all data were formatted cor-
rectly as strings when extracted from the database,
this would be all that is required. While it does solve
the display problem, this approach has a drawback.
JSP pages can contain Java code. If there is a need
to perform math on the data in the JSP page—for

ROFRANO 99

Figure 9 Data type hierarchy

DsData

locale : java.util.Locale

getPresentationString()
getRawData()
DsString DsDate | :
DsNumeric
data : String data : Date
| |
Ds| ; T DsDouble Dslnteger
slmage DsURLLink sHotMedia ki © Cloull data + int
| l
DsDecimal
DsCurrency
scale : int

example, to determine if the price is less than a cer-
tain value—this would require parsing and stripping
all the formatting from the string in order to extract
the numeric value within it. It is not easy to parse
numbers in a multicultural environment, where the
comma and decimal point are used differently, with-
out knowing the original locale of the data. It is bet-
ter to leave the data in their original form and
use getRawData() to get the actual data or
getPresentationString() to format the data only
when needed for display. This gives the Web designer
the most flexibility.

Presentation beans. The data beans can be manip-
ulated manually with Java code, but it was one of
our design goals to have the data rendered automat-
ically just by dropping a data bean and a presenta-
tion bean on a page. The classes that enable the au-
tomatic rendering are shown in the UML diagram in
Figure 10.

The presentation beans are in a class hierarchy that
mirrors the data container hierarchy of Dynamic-

100 RorFrANO

DataBeans. For each dynamic data bean there is a
presentation bean that knows how to iterate over the
data in that bean and render it correctly. A Dynam-
icTable knows how to render a TableDataBean, a
DynamicList bean knows how to render a Dynam-
icListBean, etc. The advantage of the dynamic pre-
sentation framework is that the Java code to iterate
over the data in a DynamicTableBean is written and
tested in the DynamicTable presentation bean. Web
designers can reuse this code by using the Dynam-
icTable presentation bean anywhere they need a ta-
ble of dynamic data to be rendered. It will set up the
table headers by asking each ColumnDataBean for
its displayName property. Then it will iterate over
the rows and columns, creating the correct HTML ta-
ble tags, asking each DsData object it encounters for
its formatted string, and placing it in the appropri-
ate cell of the table.

Putting it all together. All of the design elements
discussed above are utilized by the JSP sample code
in Figure 11. This figure actually shows two exam-
ples, one that does not use a presentation bean and

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Figure 10 Presentation beans hierarchy

Figure 11 JSP sample code

<HTML>

<BODY>

<!-- Example One -->

<jsp:useBean id="productCount" class="com.ibm.commerce.beans.ProductCountDataBean"/>
<%

com.ibm.commerce.beans.DataBeanManager.activate(productCount, request);
%>
<p><p>Funds: <%= productCount.getDataElement().getPresentationString() %>

<!-- Example Two -->

<jsp:useBean id="pcDS" class="com.ibm.commerce.beans.ProductCompareDataBean">
<jsp:setProperty name="pcDS" property="*"/>

</jsp:useBean>

<TABLE CELLPADDING=5 CELLSPACING=2 BORDER=0>

<jsp:useBean id="pcTable" class="com.ibm.commerce.widget.DynamicTable">
<jsp:setProperty name="pcTable" property="dataBeanName" value="pcDS"/>
<jsp:setProperty name="pcTable" property="orientation" value="HORIZONTAL"/>

</jsp:useBean>

<h
pcTable.execute(request, response, out);
%>
S/ TABLES LEGEND:
</BODY> B HTML TAG
W JSP TAG
</HTML> B JAVA SCRIPTLET

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 ROFRANO 101

Figure 12 Results of JSP sample code

Funds: 3
Item No. 27000-2 32000-4
Fund Type Value Blend

Initial Investment | = | $1,000.00 | $1,000.00 | $1,000.00

1997 Total Return ? 36.1% 32.1% 50%
10yr Return ? 12.8% 18.5%
5yr Return ? 21% 15.8% 22.8%
3yr Return ? 32.6% 22.3% 32.5%

a 0.63 1.08 1.02

Manager Tenure =1 6
Net Assets (M$) a 703 118 534

Turnover Ratio a 131 146 125

Expense Ratio

one that does. The first JSP tag (i.e., jsp:useBean) in
the figure is a ProductCountDataBean, which is de-
rived from an [temDataBean. It returns a single data
element that represents the number of products in
a category. The Java scriptlet call to DataBeanMan-
ager.activate() fills the bean with data. The next Java
scriptlet calls the getPresentationString() method on
the DsData object returned by productCount.get-
DataFElement(), and the resulting data are displayed.

We now look at how this rendering model simpli-
fied the Web designer’s job. If the product count was
1000, this sample would correctly display 1,000 or
1.000, depending on the locale of the data. The Web
designer did not need to do any additional work. To
illustrate the advantage of this code over simply re-
turning strings, consider the case when the Web de-
signer wants to display a special message that sug-
gests to the user to use the search page if there are
more than 1000 products. Then a call to the product-
Count.getRawData() method returns an integer ob-
ject and it is easy to determine if the count was over
1000 without having to parse already formatted data.

The second example in Figure 11 shows a data bean
and a presentation bean working together. The sec-
ond JSP tag in the figure contains a data bean called
ProductCompareDataBean, which is derived from
a TableDataBean. It returns a table of products and
their attributes so that a side-by-side comparison can
be displayed. The third JSP tag in the figure is a pre-

102 RoFrRANO

sentation bean called DynamicTable. The first prop-
erty that is set is “dataBeanName” and its value is
the identifier of the previous ProductCompare-
DataBean “pcDS.” The second property that is set
is “orientation” and its value is set to “HORIZONTAL.”
Finally, a Java scriptlet is added to tell the dynamic
table to render itself with a call to pcTable.execute().
The result is a table of formatted data complete with
column headings taken from the displayName prop-
erty in the DataBeanDescriptor of the Column-
DataBeans, which can be seen in Figure 12.

If the Web designer wants to flip the table on its side,
thisrequiresonly achange in the “orientation” proper-
ty of the DynamicTable from “horizontal” to “verti-
cal,” and the presentation bean would render rows
as columns and columns as rows, thus turning the ta-
ble on its side. This would have taken much longer us-
ing Java code because inner and outer loops would have
to be reversed (and this assumes the Web designer
would even recognize what a Java looping construct
does). The DynamicTable also has the ability to pag-
inate data by setting its pageSize property, which can
save the Web designer considerable time when only
a subset of a large data set is to be displayed.

Conclusion

The Product Advisor component of the IBM Web-
Sphere Commerce Suite provides a set of tools for
the product specialist or marketing person that al-
lows control of the Web site dynamic content with-
out the need for programming skills. At the same
time, these tools provide advanced search capabil-
ity, such as parametric search or question-and-an-
swer session, with a “virtual salesperson.” The
implementation techniques that support this func-
tionality include a Swing-inspired set of contain-
er-type object hierarchy, together with a set of
HTML-aware presentation beans. An extension to the
Java wrapper classes for primitive data types leads
to multicultural data beans and thus enables the ap-
plication to operate in a multiple-locale, multicul-
tural environment.

Product Advisor has been successfully deployed in
several customer Web sites. One such customer is
a chain of retail stores in the United States that is
attempting to consolidate an emerging e-business
presence.

The Product Advisor team participated in the instal-

lation of the product by working with the company-
designated Web designers. The newly designed Web

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

pages were obtained, and the Product Advisor team,
with the cooperation of the customer product spe-
cialists, created and installed corresponding JSP pages
following the process described earlier in this paper.

The launch was successful and preliminary data show
a significant increase in Web site activity. It was
learned, through informal discussions with the cus-
tomer team, that the new Web site also had an in-
direct impact on sales with some customers who vis-
ited a store and made a purchase after having
browsed the Web site. It appears that those custom-
ers used the Web site to educate themselves and
make early buying decisions, which in turn benefited
the retailer, because these customers spent less time
in the store with sales personnel.

Acknowledgments

A product is only as good as the team that helped
transform the concept into a reality. I would like to
acknowledge the team that worked with me on Prod-
uct Advisor. In alphabetical order they are: Peter
Becker, Arthur Greef, Darko Hrelic, Hasib Jamal,
Deborah Kalantari, Mohammad Khan, Galina Kof-
man, Agnes Krechko, Ian Kupfer, Alan Lampert,
Jianren Li, Martin Maldonado, Joel Mumper, Lor-
raine Remza, Tom Schields, Ning Yan, and Kevin
Zhang. A special acknowledgment and thanks to Bob
Zitelli, without whom I could not have held the whole
thing together.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.
or Rational Software Corporation.

Cited references

1. IBM WebSphere Commerce Suite fundamentals, IBM Cor-
poration, http://www.ibm.com/software/webservers/commerce/
wes_pro/lit-tech-general.html.

2. JavaServer Pages Specification Version 1.0, May 28, 1999, Sun
Microsystems, http://java.sun.com/products/jsp/download.html.

3. Java 2 Platform, Standard Edition Documentation, Version
1.3, Sun Microsystems, http://java.sun.com/j2se/index.html.

4. JavaBeans Specification Version 1.1, April 1999, Sun Micro-
systems, http://java.sun.com/products/javabeans/software/index.
html.

5. Unified Modeling Language, Version 1.1, Sept. 1, 1997, Ra-
tional Software Corporation, http://www.rational.com/uml/
resources/documentation/index.jsp.

Accepted for publication September 22, 2000.

John J. Rofrano IBM Software Group, 17 Skyline Drive, Haw-
thorne, New York 10532 (electronic mail: rofrano@us.ibm.com).

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001

Mr. Rofrano is a Senior Technical Staff Member and one of the
senior architects for the IBM WebSphere Commerce Suite prod-
uct. He received his B.S. degree in computer science from Mercy
College, New York, in 1984. That same year he joined IBM, where
he has held various management and software development po-
sitions. Prior to his current position, he was the chief architect
for Net.Commerce Product Advisor, and the chief architect for
IBM Visual Warehouse.

roFrANO 103

