
Java server
performance: A case
study of building
efficient, scalable Jvms

by R. Dimpsey
R. Arora
K. Kuiper

The importance of the JavaTM platform has
shifted from a client-centered paradigm to the
server. In particular, the Java language has
matured into a viable programming model for
server applications. Correspondingly, the
requirements on the Java virtual machine (Jvm)
have shifted. This paper details the server-
specific performance enhancements made to the
core Jvm and just-in-time (JIT) compiler, which
have allowed the IBM Developer Kits that
implement Java code for Intel processors to
become industry performance leaders. The paper
focuses on synchronization implementation and
granularity improvements that have greatly
increased the scalability of the Java language on
multiprocessor machines. Focus is also given to
memory management, specifically, object
allocation, garbage collection, and heap
management. Details of communication and
connection scaling are also provided. Finally,
server-specific enhancements to the JIT compiler
are discussed. All component enhancements in
the paper are explained, and their performance
implications are quantified with results from
representative multithreaded server workloads.
The paper summarizes work from across IBM.
The authors’ specific contributions include the
three-tier spin lock, the thread local heap and
freelist merge, the dynamic heap growth
algorithm, bitwise sweep, compaction avoidance,
and the suite of network enhancements.

Initially targeted at the client market, the Java**
platform has emerged as a compelling base for

server applications. The use of the Java platform on
the server is diverse and, not surprisingly, produces

workloads significantly different from those found on
the client. Correspondingly, performance enhance-
ments generated by client workloads may not trans-
late to increased server performance. Examples of
Java platform use on the server include servlets, with
their efficient implementation of dynamic Web con-
tent, database access through a variety of connec-
tors, chat servers, terminal servers, Enterprise Java-
Beans** components, and frameworks for persistent
business objects. Although these workloads are quite
distinct, they all place certain common stresses on
the core Java virtual machine (Jvm), just-in-time (JIT)
compiler, and class libraries. For instance, server
workloads require that the Jvm manage large Java
heaps efficiently, both through optimized object al-
location and efficient garbage collection. Also, server
workloads, and their corresponding underlying in-
frastructure, must be designed to scale to larger sys-
tems with more processors and memory. This re-
quirement places a premium on an efficient lock
implementation, as well as the granularity of the lock-
ing within the Jvm. Another common attribute of
Java server workloads is their reliance on efficient,
robust networking and their need for a large num-
ber of simultaneous connections and threads.

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 0018-8670/00/$5.00 © 2000 IBM DIMPSEY, ARORA, AND KUIPER 151

Given IBM’s long history with server systems, it is not
surprising that IBM’s Java virtual machines have met
the above requirements to become the highest-per-
forming server Jvms. Proof of this statement comes
from both external and internal benchmarks.1 For in-
stance, JavaWorld magazine has identified through the
use of the server benchmark VolanoMark** that the
two highest-performing Jvms are the Jvm in the IBM
Developer Kit for OS/2* (Operating System/2*) Warp,
Java Technology Edition, version 1.1.7, and the Jvm
in the IBM Developer Kit for Windows**, Java Tech-
nology Edition, version 1.1.7.2 In addition, InfoWorld,
using a proprietary server workload, identified the Jvm
in the IBM Developer Kit for AIX* (Advanced Inter-
active Executive), Java Technology Edition, version

1.1.6, to be the top performer with the Developer Kit
(DK) for OS/2, v 1.1.7 next in line.3 Other sources val-
idating the superiority of IBM Jvms are also available.4,5

The above results have generated significant inter-
est in the internal implementation of the IBM Jvms.
This paper presents a synopsis of the major enhance-
ments made to the IBM Jvms in the Developer Kits
for Windows and OS/2. The enhancements described
are intended for server workloads but will benefit
all workloads with a significant Java component. This
paper is not intended to be a theoretical research
paper. The nature of theoretical research often pre-
cludes the scrutiny of implementation and the mar-
ketplace. This paper is an attempt to summarize the
key ideas, whether from research or invention, that
have been implemented and are currently enjoying
success in the field. One may view this paper as a
case study of a Jvm implementation aimed at serv-
ers. It is a summary of the pragmatic decisions that
must be made when research and product deadlines
collide. In addition, the paper can be seen as a com-
panion piece to the paper written by Gu et al.,6 which
describes initial changes to the Jvm in the IBM DK
for OS/2 focused on client workloads and encompass-
ing enhancements up to version 1.1.4.

The contribution of this paper is that it describes in
detail and supports with data the enhancements
made to the current IBM Jvms on Intel processors.
Considered first are the design and implementations
of the Java lock (monitor). Next the object alloca-
tion subsystem and its evolution are described. Sub-
sequently, there is a discussion of enhancements
made to heap management and heap growth as they
pertain to a server workload. This discussion is fol-
lowed by a summary of the changes made to the
mark/sweep/compact garbage collection technology
shipped by the reference platform. Because efficient
I/O, especially network I/O, is crucial for server work-
loads, a section is dedicated to enhancements IBM
has made in this area. Finally, server-specific changes
to the JIT compiler are discussed.

Monitor implementation

It soon becomes evident to all users, developers, or
performance analysts working with the Java platform
that the implementation of monitors is the key to
good performance. An article in JavaWorld claimed
that synchronization accounts for over 19 percent
of Java application time while running on the Sun
Microsystems reference platform.7 The prodigious
use of monitors for synchronization is especially ev-
ident in server applications running on multiple pro-
cessors. Heavy monitor usage can be found in the
Java classes and user applications. In addition, the
locking implementations described in this section are
also those used by the core Jvm to guard internal
structures. Monitors are used for synchronization in
one of two ways. The most common is the synchro-
nized method call, whereby the monitor is obtained
before execution of the method and released after
completion. The second is by using the synchronize-
d(Object) call to enforce a recursive mutex lock
around a critical section. In both cases, synchroni-
zation is done at the object level, and therefore a
lock structure is required per object instance.

Given the importance of monitors to performance,
considerable effort has been expended across IBM
in designing and implementing them for each IBM
Jvm. The work has been completed in an iterative
fashion with one improvement built upon the last.
This section describes the key performance issues
associated with Java monitor implementation and
sketches the current IBM solution based on Intel pro-
cessors.

The key performance issues to attend to when im-
plementing the Java monitor are:

Considerable effort has been
expended across IBM in designing
and implementing monitors for

each Jvm.

DIMPSEY, ARORA, AND KUIPER IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000152

1. The acquisition and release time for an uncon-
tended monitor

2. The action to take when contention occurs (e.g.,
spin, yield, block)

3. The mechanism used to determine which thread
obtains the monitor when there are multiple wait-
ers

Uncontended lock acquire or release. The time to
acquire or release the monitor was optimized
through a design proposed by Bacon et al.8 referred
to as thin locks. These locks are inspired by the MCS
locks proposed by Mellor-Crummey and Scott and
named from the initials of their last names.9 The thin
locks are the second iteration of monitors imple-
mented by IBM. The first implementation is described
in the paper by Gu et al.6 The thin lock design is
based on 24 bits stored in the object header that act
as a lock word.10 The high bit in the word delineates
between two basic lock states: inflated and flat. A
flat lock is one that has never been the source of con-
tention (i.e., all acquires have been successful on the
lock up to the point of the current acquisition). An
inflated lock is one that has sustained contention in
the past. For the flat lock, the 24 bits are defined as
follows: one to indicate lock type (inflated or flat),
15 for a thread identifier, and eight for a recursion
count. The 24 bits in the inflated case contain the
one-bit lock type indicator plus an index to an array
that holds a pointer to the inflated lock structure.

The inflation of a lock occurs on the first instance
of contention, and the lock remains inflated for the
lifetime of the object. However, because most mon-
itors are never contended, they remain flat. There-
fore, the acquisition and release time for the uncon-
tended flat case is crucial. Fortunately, the structure
of the flat lock enables a very efficient acquire and
release. In essence, to acquire the lock, a unique
thread identifier needs to be atomically swapped into
the lock word, or if it is a recursive acquisition, the
recursion count needs to be incremented. A release
is nothing more than a zeroing of the ID (identifier)
or a decrement of the recursion count. On Intel sys-
tems the cmpxchg instruction is employed for the
atomic instruction, and an acquire-release pair takes
just 7 and 5 instructions in the nonrecursive case,
and 11 and 6 for the recursive case. Note that this
count does not include obtaining the thread iden-
tifier and chaining monitors for exception process-
ing. Because of this, and also because of the gran-
ularity of the measurement, a processor cycle count
for the acquire-release operation was difficult to ac-
curately collect. However, cycle count is the true

measure of performance, so for improved cycle-per-
instruction (CPI) behavior, the code only locks the
system bus for atomic operations on multiprocessor
systems, thus saving this expensive operation on a
uniprocessor.

The acquisition and release time for an inflated lock
is relatively more expensive. Although this opera-
tion occurs at a lower frequency than the acquisi-
tion and release of a flat lock, it is an area of con-
cern and is under investigation.

Contention behavior. In general, when a thread tries
to acquire a lock held by another thread, a number
of possible actions can be taken. The most common
are to (1) block waiting to be notified for the lock
to be released, or (2) yield the processor until the
thread is rescheduled and then try to acquire the lock
again, or (3) spin consuming CPU cycles until the lock
is released. In addition, combinations of the above
can be implemented. For instance, one popular
methodology is to spin for a given amount of time
and then block. To add to this set of technologies
there have been implementations that “sleep” for
increasing periods of time when locks become “hot,”
those that dynamically set the spin time, and those
that disable interrupts while the lock is being held.

Each of the different implementations has varying
strengths and weaknesses that in turn depend on
the workload and the environment in which the lock-
ing is being done. For instance, it has been found
through empirical database studies done with DB2*
(DATABASE 2*) that the optimal length of time to
spin before blocking depends on the number of pro-
cessors on the system. If there are more processors
on the system, longer spin times yield increased per-
formance. The appropriate spin length also depends
on whether it is possible for a thread to be blocked
while holding a lock. For instance, if it can be guar-
anteed that a lock will not be held by a blocked thread
(possible with kernel-level locks that can turn off in-
terrupts and guarantee that code is in memory to
avoid page faults), then spin times of unconstrained
length are often the right choice for optimum per-
formance.11

The literature on this subject is also vast. Of note is a
technique proposed by Mukherjee and Schwan con-
cerning dynamically configurable kernel locks.12,13 In
addition, by using analytical models, Zahorjan and
Lazowska found that multiprogramming and data-
dependent uncertainty do not affect the choice of
spinning versus blocking for simple mutex locks.14

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 DIMPSEY, ARORA, AND KUIPER 153

Empirical results for the spinning versus blocking are
presented by Karlin et al.15 Finally, the reference by
Anderson compiles a good summary of synchroni-
zation methods with performance data.16 However,
none of these references presents empirical results
from Java-driven applications or is concerned with
product-level code, and for this reason, the follow-
ing data are valuable.

Before the contention mechanism employed by the
IBM Jvms is described, it is necessary to detail the
structure of an inflated lock. In essence, the infla-
tion of a lock provides the lock word with a mech-
anism by which it can suspend a thread; it associates
a system semaphore with the lock structure. In ad-
dition to this system semaphore, the inflated lock
structure contains the owning thread ID, the recur-
sion count, a condition variable, and a pointer to the
next lock on the chain (for inflated lock management
and reuse). For the IBM DK for Windows implemen-
tation, the mutex lock that is used by an inflated lock
is the Windows CriticalSection; for OS/2, 16-bit RAM
semaphores are employed. Both of these mutex im-
plementations immediately block on a failed lock ac-
quire and are notified when the lock is released by
the owning thread.

Figure 1 illustrates the results obtained with this
blocking type lock under the stress of a mul-
tithreaded, highly contended workload on a mul-
tiprocessor. The workload used, called portable BOB
(pBOB), was created by the SanFrancisco* project
group within IBM and is representative of user ap-
plications implementing business logic using the
SanFrancisco framework. pBOB stresses object al-
location, garbage collection, threading, core Jvm
scalability, JIT technology, and monitor implemen-
tation. The figure shows throughput as a function
of the number of threads. The workload was run
on a four-CPU, 200-MHz Pentium Pro** system
with 1 GB of memory. As expected, throughput
increases as the number of threads increases to
equal the number of processors. At this point (four
threads), one can simplistically view each indepen-
dent thread running unencumbered on a dedicated
processor. When more threads than CPUs are
executing, the throughput precipitously drops
off— 45 percent less throughput at five threads
when compared to four. The ideal behavior (as-
suming full CPU utilization) would be either slightly
increased performance or a leveling off of perfor-
mance as more threads are added.

DIMPSEY, ARORA, AND KUIPER IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000154

Why does the performance degrade so much with
the introduction of the fifth thread? Like many Java
workloads, pBOB contains a few extremely highly con-
tended locks.17 When many threads are executing,
the system operates in a mode where at most times
threads are blocked waiting on one of these hot locks.
This behavior is exacerbated by the fact that a lock
can actually be held by a thread that is not currently
active. For the sake of fairness, the Windows Criti-
calSection forces the thread that holds a lock to re-
lease (or hand off) the lock to a waiter before it can
reacquire the lock after release (see Figure 2). The
figure illustrates this behavior and shows thread b
waiting until thread a tries to reacquire the lock be-
fore it is allowed to run. (Note: It is assumed that
the CPU being used by thread b is utilized by a thread
of equal priority while thread b waits.) This behav-
ior, which is referred to as the convoy problem,
thrashes the system by only allowing a thread to ex-
ecute for a short time (thread a in the figure) before
a context switch is required.

The solution implemented in the IBM Jvm is to alter
the behavior upon a failed acquire attempt to avoid
the convoy. A simple infinite-spinning lock, though,
is not appropriate because a lock can be held by a
blocked thread. In addition, yield-based solutions are
not optimal because they are inherently unfair and
result in too many context switches. The solution
reached, through much empirical testing, was a three-
tier spin/yield/block solution that was first proposed
by a database group within IBM (see Figure 3). Note
that the solution required that the operating system
semaphore be exposed so that a failed acquire does
not block immediately.

The solution exposes three separate counts for loop-
ing. The first is the amount of time to spin wasting
CPU cycles before the lock is retried. The second is
the number of retries before a system yield is at-
tempted. Finally, the last parameter is the number
of yields to attempt before a system block. The val-
ues that the IBM Jvm uses for these counts depends
on the number of CPUs in the system and is propri-
etary. However, it is the case that for almost all locks
in the system, the final block is avoided. The results
are impressive, as Figure 4 shows. Not only has raw
performance improved, the drop after four threads
has been removed. The actions for contention on a
single-CPU system are the same as that for the mul-
tiprocessor case (Figure 3) with the inner “while”
loop removed. The improvement on the single-CPU
system as shown in Figure 4 illustrates that the con-

voy effect can even occur in a limited way on a
single-CPU system.

Monitor fairness. Monitors, or more correctly, the
sections of code or data structures that monitors syn-
chronize, are shared resources and, as such, the fair-
ness with which the resources are provided to the
requesting threads becomes an issue. Enforcement
of lock access fairness is centered on the action taken
when a lock is released. In general, implementing a
higher degree of access fairness reduces overall
throughput but improves response time. In this sub-
section we introduce and provide performance data
for three types of monitor-lock fairness: strict, hy-
brid, and greedy-random fairness.

In a strictly fair locking implementation, the next
owner of a released lock will be the thread that has
been waiting the longest for it (or has the highest
priority). If none is waiting, the current thread may
reacquire the lock. The Windows CriticalSection un-
derlying the spin structures described in the last sub-
section is strictly fair (see Figure 2). The monitor
implementation provided in the Jvm in the IBM DK
1.1.7 is a perturbation of the strictly fair lock because
of the three-tier spin lock. It will be referred to as
the hybrid implementation.

In a random fairness implementation, all waiters on
the lock are made runnable when a lock is released,
and the next one scheduled gets the lock if it is free.
This condition is sometimes referred to as the “thun-
dering herd” problem, where all the threads stam-
pede to obtain the lock.18 If the thread that released

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 DIMPSEY, ARORA, AND KUIPER 155

the lock is eligible to be the next owner of the lock
when there are other threads waiting, the policy is
described as greedy. In a greedy system, the running
thread has the highest probability of acquiring the
lock if a lock is hot and the system is busy. This as-

pect of the policy tends to reduce context switches
(used to enforce fairness) and increase throughput
because it allows a thread to run for a long time with-
out context switching. The result is often excellent
cache behavior. However, the greedy aspect allows

DIMPSEY, ARORA, AND KUIPER IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000156

for unfairness and thread starvation, especially when,
as in the case of the Jvms, a thread holding a lock
is not guaranteed to be running. The 16-bit RAM
semaphores provided by OS/2 and used by the Jvms
in the inflated locks are implemented in the greedy-
random fairness style.

Figure 5 shows four-way results on three Jvms that
are similar in most respects except for their locking
fairness policy. The Jvm in the IBM DK for Windows,
v 1.1.6 uses a strict fairness policy, the Jvm in the
IBM DK for Windows, v 1.1.7 uses a hybrid policy,
and the Jvm in the IBM DK for OS/2 uses a random-
greedy policy. It should be noted that there are other
differences between the Jvms in the DK for OS/2 and
DK for Windows. For instance, the OS/2 implemen-
tation does not exploit the three-tier spin code (Fig-
ure 3). However, even with these differences, it is
instructive to compare, with the proper caution, the
performance of the Jvms. Note that from a through-
put point of view, the hybrid and greedy policies are
much more efficient than the strict policy. The ap-
parent greedy policy loss as compared to the hybrid
solution may more likely be the result of the thun-

dering herd problem, so with the above data it can-
not be concluded that the hybrid approach is more
efficient than the greedy approach.

The differences between the strict Jvm in the IBM DK
for Windows, v 1.1.6 policy and the random-greedy
OS/2 policy are highlighted by the InfoWorld server
benchmark.3 This benchmark runs a highly repet-
itive, contended workload on hundreds of threads
in a Jvm. The benchmark shows the greedy policy
found in OS/2 able to sustain three times more
throughput than the strictly fair policy of the Jvm in
the IBM DK for Windows 1.1.6. The performance
throughput advantage of this policy is even more
compelling given that the OS/2 implementation suf-
fers from the thundering herd problem. The strict
policy ends up causing excessive context switches,
whereas the OS/2 system allows work to complete on
given threads. In contrast, the Windows solution al-
lows all threads to complete approximately an equal
amount of work in a given time. The OS/2 solution
had shown some threads completing two to three
times more work than others.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 DIMPSEY, ARORA, AND KUIPER 157

Object allocation

The evolution of the object allocation implementa-
tion within the Jvm is an excellent example of im-
proving system software through iterative analysis
and enhancement. Changes to this crucial compo-
nent have been made by various divisions within IBM
and also by Sun Microsystems. The changes were
made to address two related, but distinct, concerns.
First, due to the frequency of allocation, improved
allocation efficiency was required for good perfor-
mance on both client and server platforms. Second,
the lock under which allocation is done, referred to
as the heap lock, is one of the most contended locks
in the system. Early versions of the Jvms exhibited
excessive heap lock hold times on four-way systems.
Given that hold times greater than 20 percent lead
to exponential performance degradation,11 it was ob-
served that the object allocation implementation
would not scale on a multiprocessor system. This sec-
tion briefly describes the stages of object allocation
evolution, the current implementation, and possible
future directions. Direct measures of object alloca-
tion time are intentionally avoided, because they de-
pend on many factors (i.e., heap fragmentation, ob-
ject size).

Freelist introduction. Simply put, object allocation
requires the Jvm to find a contiguous chunk of space
within the heap large enough for the requested ob-
ject and an object header. The first implementation
kept a linear list of open chunks on the heap and
would traverse this list looking for a large enough
chunk. If none was found, then garbage collection
would be tried. Not surprisingly, the performance
of this code was poor.

This simple approach was first improved by intro-
ducing an array of lists that chained together free
heap chunks of predetermined size (for details con-
sult Gu et al.6). In other words, each freelist in the
array kept the list of currently free objects of a given
size. When an object of a certain size was requested,
the correct freelist was consulted, and if it was not
empty, the request could be satisfied quickly. If the
list was empty, freelists of larger size were consulted.
If all proper-sized freelists were empty, or if the ini-
tial request was larger than a certain threshold (512
bytes), a freelist of all objects larger than the thresh-
old was traversed.

Thread local heaps. Because almost all objects re-
quested are small (measurements indicate greater
than 99 percent of the objects requested are less than

512 bytes in size), the introduction of freelists dras-
tically improved the time required to satisfy an ob-
ject allocation. However, it still required that the
heap lock be acquired on each object allocation or
whenever the freelists were consulted. Not surpris-
ingly, this design did not scale when multiple CPUs
were trying to allocate objects simultaneously. Sun
addressed this problem in the 1.1.5 reference plat-
form with the introduction of thread local heaps
(TLHs).

Contrary to expectations based on the name, the TLH
design is not a two-level store with the heap divided
among multiple threads. A thread local heap is noth-
ing more than an object of a certain size (1024 bytes
in the reference platform) to which a thread has ex-
clusive access. To satisfy a typical small object allo-
cation, the TLH is split at one end to release the re-
quired space. If the TLH is not large enough to satisfy
an allocation, it is discarded, and a fresh TLH takes
its place. Large allocations bypass the TLH mecha-
nism and are satisfied directly from the heap. Be-
cause the thread has exclusive access to the TLH, the
heap lock is not required for allocations satisfied
from it.

Measurements have shown that performance can be
improved by increasing thread local heaps from 1
KB to 1.5 KB in size, and this was done on IBM im-
plementations. However, it is interesting to note that
beyond this size not much improvement has been
measured. In fact, if the required TLH size is too big,
overall performance degrades. This issue is ad-
dressed in more detail shortly.

Freelists with thread local heaps. The introduction
of TLHs made the initially introduced freelist struc-
tures ineffective. Most allocations would come from
the TLH and not the freelists. Those allocations that
did come directly from the heap manager were most
frequently requests for new TLHs. Of course, there
were some exceptions. For instance, objects greater
than 0.25 of the TLH (384 bytes) went straight to the
heap manager, and certain class objects also bypassed
the TLH. But, for the most part, all requests to the
heap manager were for TLHs themselves and were
satisfied with a linear search of the large-object free-
list.

For large heaps this method led to very long searches
of the large-object freelist. This problem was exac-
erbated by the fact that with time, free chunks that
could not satisfy a request of TLH size would gather
at the front of the list, being passed over on each

DIMPSEY, ARORA, AND KUIPER IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000158

TLH request. For certain runs of pBOB that were run
in a 256-MB heap, repeated searches of over 3000
chunks were not uncommon. In addition, because
the search was on the shared freelists, it was done
under the protection of the heap lock.

Taken separately, the freelist and TLH fixes were both
beneficial. However, when combined they produced
the adverse side effect noted above. To address this
inefficiency, a freelist was added that contained
chunks exactly the size of the thread local heaps (1.5
KB plus object header). In addition, a separate list
was added for requests between 512 bytes and TLH
size. The large-object list now contained only objects
greater in size than the thread local heaps. When
the freelist containing chunks of TLH size ran dry,
a chunk was obtained from the large-chunk list and
split into multiple (up to 100) TLHs.

Figure 6 illustrates the improvement that this change
yielded in pBOB performance (data for only seven
warehouses are included because of temporary in-
stability of the code base). Note that the memory
work was done during an early stage of Jvm devel-
opment so the pBOB curves look different than those

shown in the previous section. The TLH specific pBOB
fix resulted in a 46 percent improvement on unipro-
cessor systems. The improvement was even greater
on a four-CPU system; the peak performance nearly
doubled. This large improvement was a result of both
raw path length improvement and enhanced scaling
on a multiprocessor because hold time of the heap
lock was reduced.

Dynamic heap growth. The initial reference imple-
mentation of the core Jvm was geared for client
workloads and, as such, placed a high priority on lim-
iting memory consumption. Often a major consumer
of memory for Java applications is the heap. There-
fore, initial Jvm implementations (i.e., the Jvms in
the IBM DKs prior to version 1.1.4 and all 1.1.X Sun
Jvms) were initialized with very small heaps (1 MB),
and these heaps grew very slowly. To offer some re-
spite from this constrained setting, which is wholly
inadequate for a server workload, Sun provided the
following two command line options: -ms and -mx,
allowing the user to specify the minimum and max-
imum heap size, respectively. The minimum setting
is the amount of memory allocated and committed
for the initial heap. The maximum value is the

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 DIMPSEY, ARORA, AND KUIPER 159

amount of virtual space reserved for the heap. (For
reasons of efficiency and simplicity, it is important
to keep the heap contiguous in virtual memory.)

These parameters provided some relief to server ap-
plications, but they had significant drawbacks. The
stinginess of heap growth was still enforced, even at
large heap settings. This would force the Jvm user
to understand the heap working set size of an ap-
plication a priori and set its minimum size to this value
because the Jvm could not be relied upon to realize
when a larger heap would benefit performance and
grow accordingly. In addition, the Jvm would not rec-
ognize when the application working set size had de-
creased and reduce its heap accordingly. The latter
is especially important given the mark/sweep garbage
collector in use, which traverses the entire heap on
each pass. Furthermore, the heap growth mechanism
did not take into account the physical memory avail-
able and could indiscriminately grow larger than
physical memory onto paging space. When such
growth occurred, the performance of the Jvm and
the system suffered tremendously. Finally, the av-
erage user does not want to set multiple settings for
good performance but wants the system to dynam-
ically react to the current workload. What was
needed was a mechanism that would take the above
considerations into account and dynamically grow
the heap fast enough for optimum performance with-
out overgrowing for the current system and work-
load.

IBM addressed the above concerns with a number of
innovations. First, a simple change was made to link
the initial heap size allocated in the default case to
the total system memory available. The rationale was
that a system with 4 GB of physical memory was more
likely to be running a server application than one
with 32 MB of memory and could more easily afford
more memory per Jvm. The default -mx value was
also set relative to system physical space available
to avoid the case of the heap growing outside of phys-
ical memory and causing performance problems
through excessive paging. This algorithm has proved
useful on systems running a single Jvm but has caused
problems that are being addressed for systems run-
ning many independent Jvms.

The heap growth algorithm was also altered with a
bias toward server applications. This alteration was
done without incurring a large detriment to memory-
constrained systems. Before the enhancements are
described, a cursory description of the reference plat-
form implementation is now presented. The refer-

ence platform will expand the heap when less than
a certain percentage of the heap is not free after a
garbage collection. For the 1.1.X releases this value
is set at 25 percent; for Java 2, version 1.2 this value
is set at 35 percent. When the decision to grow the
heap is made, the heap is grown the necessary
amount to reach this required free space threshold.
Analysis exposed two major weaknesses with this ap-
proach. First, if a workload creates a preponderance
of short-lived objects (which is common), it is often
the case that the 25 percent free goal is met. How-
ever, meeting the goal does not indicate that the heap
is ideally set for the working set of the particular ap-
plication. Second, heap growth itself is a costly op-
eration and should be done infrequently. However,
it was found that in the field, the heap would some-
times grow minuscule amounts (sometimes only a
handful of system pages) and then be required to
grow again in a few garbage collection iterations.

To address these two shortcomings, IBM redefined
the concept of a heap working set size. The Sun ref-
erence implementation implicitly views the heap
working set size as the space consumed by live ob-
jects (those not collected) after garbage collection.
We enhanced this definition to also take into account
the percentage of time spent in garbage collection
at a given heap size. If a workload spent 50 percent
of its execution time collecting garbage in a certain
heap, its heap working set size would be considered
larger than if it only spent 30 percent of its time col-
lecting garbage. This perspective would be true even
if the space consumed by the live objects after gar-
bage collection was the same. This fundamentally
different approach to gauging heap working set size
allows the Jvm to treat workloads that create short-
lived objects at a high rate differently than those that
do not. It also allows the Jvm to dynamically tune
the heap to both live object consumption and short-
lived object creation rate.

In the Jvm in the IBM DK for Windows, v 1.1.7, heap
growth was triggered if the given percentage of free
space was not available after a garbage collection or
if the ratio of garbage collection time to mutator time
(Java application execution time) was greater than
0.13. This threshold was determined through exper-
imentation. Ratios smaller than this number (faster
growing heaps) did not show an appreciable differ-
ence in overall throughput.

In addition, because the act of growing the heap is
relatively expensive, the IBM implementation in-
creases the heap by a fixed percentage (17 percent)

DIMPSEY, ARORA, AND KUIPER IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000160

once it is determined that the heap should grow. This
percentage allowed the heap growth mechanism to
scale with larger heaps and correspondingly larger
workloads. The heap growth would still be capped
by the specified -mx value and, for the sake of con-
servatism, the ratio heap growth trigger was disabled
when the heap approached 75 percent of physical
memory size.

Sun has also recognized the inefficiency of the orig-
inal heap growth mechanism and has provided four
new user-specified values to allow more user con-
trol. The Jvm in the IBM DK, v 1.1.8 implementa-
tions19 also provides these new parameters, but it is
recommended that users allow the default heap
growth mechanism to adapt to the workload unless
they are very familiar with their workload. Currently,
IBM is enhancing the implementation to shrink the
heap as the IBM defined heap working set size
shrinks.

The effect of the new implementation can be mea-
sured by running server workloads with small or de-
fault initial heaps before and after the fix. For in-
stance, when VolanoMark20 is run in loop-back mode
with an initial heap of 2 MB on a uniprocessor, the
enhanced heap growth mechanism increases the
throughput by 28 percent. This improvement is even
greater on a four-way system, netting a gain of 70
percent. These results indicate that the working set
size of a Java application, when defined in the new
sense, increases as relative throughput increases (i.e.,
more short-term data are created). Similar exper-
iments using pBOB with an initial heap of 2 MB show
throughput increases of 28 percent and 66 percent
for a uniprocessor and four-processor system, respec-
tively. This improvement is solely due to the Jvm rec-
ognizing the correct working set size of the appli-
cation quickly and setting the heap to that size.

Garbage collection

Not surprisingly, the inverse of object allocation, re-
ferred to as “garbage collection,” is also a key area
in the performance of Java server workloads. The
impact of garbage collection on performance is ex-
acerbated by the fact that the current Intel imple-
mentations “stop the world” by allowing only a sin-
gle thread within the Jvm to be active while garbage
is collected. The possible adverse impact on scalabil-
ity of this implementation is obvious, so in response,
IBM has made significant server-specific enhance-
ments to the garbage collection implementation.
These enhancements are summarized in this section,

and as will be seen, some involve further enhance-
ments to object allocation.

An overview of the mark/sweep/compact collector.
The IBM Java garbage collector is derived from the
reference implementation provided by Sun. It is a
fairly traditional collector that marks live objects,
sweeps to find free space, and compacts objects

within the heap as required. For background, a quick
overview is provided here; see Jones and Lins21 for
additional general information.

Java objects are marked (noted as live) by following
chains of references from a set of root objects to all
other objects they reach. Marks are recorded in an
area of memory allocated outside of the heap, re-
ferred to as mark bits. A single bit in the mark bit
array is set as each new live object is discovered.

Root objects, the initial set of known live objects,
are identified by a set of global references (such as
objects referenced by JNI, the Java Native Interface)
and through inspection of the dynamic state of the
program. The entire run-time stack of each thread
involved in the Java program is scanned, looking for
pointers to objects. Because the location of pointers
within the stack is uncertain, a combination of tests
is applied to each value on the stack to determine
whether it may be a pointer to an object. For instance,
if the stack variable in question points outside the
range of the Java heap, it certainly is not a pointer
to a Java object. If, after these tests, a value appears
to be a pointer to an existing object, that object is
marked and included in the root set.

When an object is marked, a reference to it is pushed
on a stack called the marking stack. The marking
stack is processed by popping an object reference
and scanning the associated object for references to
other unmarked objects. Newly discovered objects
are placed on the stack for future processing. The

Garbage collection is a key area
in the performance of Java

server workloads.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 DIMPSEY, ARORA, AND KUIPER 161

process completes when all root objects have been
examined and the mark stack is empty.

Once all live objects have been marked, free space
is reclaimed during the sweep phase by coalescing
sequences of dead objects and spaces that are not
marked as live. In some cases, fragmentation caused
by the live objects within the heap motivates a step
following the sweep phase called compaction. Com-
paction moves objects toward one end of the heap
with the goal of creating the largest possible contig-
uous free area or areas.22 Object references are up-
dated using a technique called pointer reversal, where
an object is moved only after temporarily inverting
any pointers to it. Because moving objects and the
calculations required for compaction are CPU-
intensive, compaction is performed sparingly.
An example is when a large object must be allocated,
but fragmentation of the free space prevents allo-
cation from succeeding. In this case, compacting the
heap avoids allocating new memory to expand its
size.

Bitwise sweep. Given the importance of garbage col-
lection to overall performance, a number of relatively
straightforward enhancements devised across the
IBM Corporation were included in the 1.1.6 imple-
mentations of the Jvms in the DKs on Intel proces-
sors. For example, a technique proposed at IBM Re-
search23 exploited structural information created
when each class is loaded to accelerate the scanning
process in both the mark and the compaction phases
of the garbage collector. The peak pBOB benchmark
score improved by more than 5 percent as mark time
dropped by 55 percent and compaction time fell
nearly 20 percent.

Before this enhancement to object marking, the mark
and sweep phase of garbage collection took roughly
the same amount of time. After the enhancement, the
sweep phase dominated the time for garbage collec-
tion. This domination was especially true for large
heaps with few live objects. Mark time is proportional
to thenumberof liveobjects in theheap,whereas sweep
time, because it must enumerate over all objects, is
proportional to the sum of live and dead objects.

To reduce sweep time, a methodology that avoids
inspecting individual dead objects was implemented.
The idea was inspired by traditional copying collec-
tors24 and involves scanning the mark bits directly
instead of enumerating the objects in the heap. Dur-
ing the mark phase every live object has a single mark
bit set corresponding to its header. Therefore, a se-

quence of zero mark bits either describes a large live
object or free space following an object. To distin-
guish these cases, the size of the live object under
the set mark bit is inspected. If the object is smaller
than the size implied by the sequence of zero mark
bits, the zeros indicate free space following the ob-
ject. This free space may have originally been oc-
cupied by many live objects, but there is no longer
any need to inspect them.

To accelerate the traversal of the mark bits, a thresh-
old is established below which free space is ignored.
That is, free areas less than a certain size are not
reclaimed. This threshold establishes a correspond-
ing lower bound on the number of consecutive zero
mark bits needed to meet the threshold and require
object inspection. Without this lower bound, the size
of every live object would have to be inspected, in-
cluding the common and unproductive case of small
adjacent live objects. This free space threshold pol-
icy mirrors on the collector side the actual behavior
imposed by thread local heaps on the allocation side.
The smallest objects actually allocated from the heap
are too large to allocate from a TLH directly.

An additional optimization speeds the process of
finding an interesting sequence of mark bits (one with
the proper number of zeros). The inner loop of the
search inspects mark bits a byte at a time, and a word
at a time when possible. To help terminate the
search, a sentinel pattern with a leading set bit and
a sequence of zeros is appended to the mark bit ar-
ray. A pair of small tables translate arbitrary byte
values into counts of leading and trailing zero bits.

Using these techniques, the bitwise sweep algorithm
ends up spending most of its time in one of two pro-
ductive activities. The first involves skipping runs of
live objects, possibly intermingled with small unus-
able free areas. The second skips runs of dead ob-
jects, allowing them to be coalesced at very low cost.
The result is a dramatic reduction in sweep time, of-
ten by more than a factor of five, yielding improve-
ment in pBOB scores as shown in Figure 7.

Compaction avoidance. With the above enhance-
ments, mark and sweep costs were improved to the
point where compaction stood out dramatically in
overall garbage collection time. Empirical results
showed that the best overall performance was ob-
tained by using a fragmentation heuristic that typ-
ically triggered compaction during every second or
third garbage collection. But this led to compaction
contributing approximately half of all garbage col-

DIMPSEY, ARORA, AND KUIPER IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000162

lection time. Without ruling out improvements to
compaction itself, the next focus was on performing
compactions less frequently. The inspiration for this
tactic, nicknamed compaction avoidance, came from
studying memory allocators in environments where
objects cannot be moved. For example, C language
heap managers have been available for decades and
often perform remarkably well. 25

In his Ph.D. dissertation,26 Mark Johnstone studied
memory fragmentation introduced by various allo-
cation policies and made several key observations,
some of which apply to Jvm allocators. First, he noted
that objects that are born together tend to die to-
gether. Thus, if objects allocated at the same time
are also physically near one another, there is a bet-
ter chance that they can eventually be coalesced
into a large free area to satisfy future allocations.
Johnstone pointed out the potential locality ad-

vantages of this scheme both for caches and for
virtual memory. Of the many allocation policies
he studied, one of the best was also surprisingly
simple—address-ordered first fit, where allocation
requests are satisfied greedily from a single freelist
maintained in address order. Johnstone asserted,
“For a large class of programs using well-known al-
location policies, we show that fragmentation costs
are near zero.”

Johnstone also discussed a key concept called “wil-
derness preservation,” first introduced in a 1985 pa-
per by Korn and Vo,27 whereby memory allocators
try to preserve a portion of memory in a pristine state.
The wilderness improves the ability of the allocator
to satisfy the occasional large allocation request.

Compaction avoidance is a Java memory manage-
ment strategy built on these two fundamental con-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 DIMPSEY, ARORA, AND KUIPER 163

cepts: (1) choose a good placement policy, and (2)
implement a form of wilderness preservation. By pur-
suing this approach, we have found that objects rarely
need to be moved and that compaction is often un-
necessary.

Object placement. Following Johnstone’s advice, an
address-ordered first fit allocator was created under-
lying the present TLH implementation. By greedily
placing new objects in the first available location, ad-
dress-ordered first fit inherently works to place con-
secutive allocations near one another. This policy
supports sustained operation of the allocator with
low demand for memory compaction.

Because of bitwise sweep, free areas smaller than a
threshold size never appear on the freelist. This lim-
itation reduces the size of the list, shortening searches
for usable free areas. In keeping with this policy, the
allocator discards remainders of split free blocks that
fall below this threshold size. In a sense, these small
free areas are dropped until they “grow up” and
again become usable.

Another factor makes significant contributions to the
success of this allocation scheme. The introduction
of variable-sized TLHs has a profound effect on overall
performance. The initial motivation was that fixed-size
TLHs increased fragmentation by ignoring significant
memory available at slightly smaller sizes. It also
seemed reasonable to allow TLH sizes to be somewhat
larger than usual when such allocations were possible.

Variable-sized TLH support is based on the concept
of a desired size, “T.” Integration with address-or-
dered first fit placement is as follows. First, the min-
imum acceptable TLH size matches the threshold of
minimum size for anything on the freelist. Then by
definition, the first item on the list is either an ac-
ceptable TLH or can be split to produce one. If the
first item is of any size up to T, it is used “as is.” If
the size of the first item is between T and 2T, it is
split evenly; the remainder is likely to be taken as
the next TLH allocation. If the first item is larger than
2T, it is split to yield a TLH of size T.

Data gathered from several benchmarks using var-
ious heap sizes showed that choosing 6K bytes for
T results in a good balance between making large TLH
allocations when possible and avoiding excessive mem-
ory consumption in small heaps with large numbers of
threads. Finding a suitable threshold was not diffi-
cult; the allocator is largely self-tuning, reducing av-
erage TLH size as the heap becomes fragmented.

An obvious concern when implementing the address-
ordered first fit policy is the cost of searching the
linear list of free areas. In a typical first fit scheme,
free areas early on the list rapidly become small as
allocations are greedily satisfied from them. Thus,
the tendency is for relatively large allocation requests
to experience long searches as small items begin ac-
cumulating at the beginning of the list. But because
TLH allocations typically dominate other allocations
from the freelist, often by more than ten to one, there
is little accumulation of smaller free space entries
at the head of the list in practice. The TLH allocator
eagerly consumes the first free space on the list, keep-
ing average search lengths for other objects small in
the general case.

Managing the wilderness. Without further modifica-
tion, the existing garbage collector automatically trig-
gers a collection cycle when the entire heap has been
exhausted. The C language run-time analogy is to
artificially defer all calls to the free¼ function until
after malloc¼ encounters low free memory. This does
not lend itself to wilderness preservation, as continu-
ing allocation activity carves up all available memory.
Adapting wilderness preservation to Java memory
management led to exploring methods of triggering
garbage collection before the wilderness is consumed.

A key issue in implementing wilderness preservation
is determining the proper size of the reserved area.
Clearly, this determination involves a balance be-
tween competing demands. Wilderness area is (by
design) largely unused by the program and should
be of minimal size. But without some wilderness area
on hand, large allocation requests are more likely to
force a compaction. After measuring a variety of Java
programs, a reasonable compromise was determined
empirically. The target wilderness size is 5 percent
of the heap, with an upper bound size of three meg-
abytes. Wilderness size is dynamically reduced when
the heap becomes excessively full.

Wilderness area is preserved by setting aside free
areas that are beyond the wilderness boundary. Only
nonwilderness memory appears on the freelist. When
an allocation request cannot be satisfied from the
freelist, the allocation progress since the previous
garbage collection is checked. If sufficient progress
has been made, garbage is collected by marking and
sweeping the heap. Otherwise, an attempt is made
to allocate the object from the wilderness.

Compaction avoidance results. A variant of pBOB, its
auto server mode, challenges a Jvm by simulating

DIMPSEY, ARORA, AND KUIPER IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000164

many users via multiple threads and simulated pauses
(think times). Twenty-five additional threads inter-
act with the data in each new warehouse. The test
completes when throughput falls below a restricted
minimum threshold derived from the number of ac-
tive threads. In this environment, compaction avoid-
ance makes an especially notable improvement.
Compaction events taking tens of seconds are elim-
inated from the run, which aids throughput and dra-
matically reduces pause times. Compaction avoid-
ance shifts this benchmark from being CPU-limited
to being memory-limited. In Figure 8, throughput
falls below the restricted minimum only as the heap
becomes full.

Java network I/O

The Java network subsystem is a crucial part of the
Java run time for good server performance. This sub-
system includes the Socket and ServerSocket classes
in java.net and the associated run-time code that

maps these abstractions to the native sockets appli-
cation programming interface (API). Additionally,
this subsystem can be thought to extend and over-
lap with the java.io subsystem since the Java abstrac-
tion for data transfer is input and output streams.
Finally, some aspects of threading are also included
in this section in acknowledgment of the fact that
the Java platform commonly requires the server to
devote a thread to each socket that it services.

Performance goals and metrics. Since the Java
socket APIs and run time provide an abstraction
above those provided by the base operating system,
it is actually possible to set tangible goals for Java
network performance relative to the base operating
system. The Java sockets API should impose a min-
imal overhead above the native sockets API. Thus
one metric of Java socket performance would be
the percentage of native performance obtainable
through the Java sockets API, with the upper bound
being 100 percent.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 DIMPSEY, ARORA, AND KUIPER 165

The above metric represents the cost of the API and
would be measured by an API microbenchmark de-
scribed in the next subsection. Also of interest is how
improvements to the Java networking subsystem
would improve the throughput and scalability of real
applications. Scalability can be expressed both in
terms of throughput speedup with multiple proces-
sors, which we refer to as symmetric multiprocessor
(SMP) scaling, and the aggregate number of clients
or connections that can be supported, which we re-
fer to as connection scaling.

Performance benchmarks. An IBM sockets micro-
benchmark called SockPerf28 was used to measure
the cost of the Java sockets API. SockPerf is a peer-
to-peer socket benchmark written completely in the
Java language. The benchmark is multithreaded, and
concurrent sessions can be run over the same net-
work interface or over multiple network interfaces.

For the native sockets measurements, an internal IBM
socket benchmark was used that runs on OS/2 and
Windows NT** called XMPT. XMPT is functionally
identical to SockPerf and indeed formed the tem-
plate for SockPerf when it was created.

For this study, the following four tests were defined:

1. TCP RR 1: Client sends a one-byte message (re-
quest) to the server over a Transmission Control
Protocol (TCP) socket, which echoes it back (re-
sponse). The result of the test is reported as a
throughput rate of transactions per second, which
is the inverse of the round-trip time for request
and response, as well as the CPU utilization of the
client and server.

2. UDP RR 1: Client sends a one-byte message (re-
quest) to the server via a datagram with the User
Datagram Protocol (UDP), which echoes it back
(response). The reported result is in transactions
per second and CPU utilization of the client and
server.

3. TCP Stream 8k: Client sends continuous 8-KB
messages to the server, which continuously re-
ceives them. The reported result is bulk through-
put in kilobytes per second and megabytes per sec-
ond and client and server CPU utilization.

4. CRR 64 8k: Client sends a 64-byte message (re-
quest) to the server over a TCP socket, and the
server sends back an 8-KB response. The connect,
request, response (CRR) test includes the connec-
tion setup and teardown costs in the timing loop
and is designed to simulate an HTTP (HyperText
Transfer Protocol) 1.0 transaction.

Internal versions of the SockPerf and XMPT bench-
marks were used that had access to OS/2 kernel in-
strumentation for CPU utilization. Since CPU utili-
zation could be very accurately collected, a metric
called scaled throughput is defined as the figure of
merit for each test. Scaled throughput was computed
by dividing the raw throughput by the average of the
client and server CPU utilization. Dividing the Java
scaled throughput for a given test by the correspond-
ing native scaled throughput results in a metric of
Java performance as a fraction of native perfor-
mance. In addition to each of the individual tests
above, an overall score for both Java and native per-
formance was also computed. This score was the geo-
metric mean of the scaled throughputs in each case.

Scaled throughput is an estimator of software effi-
ciency or path length. Thus, the ratio of Java-to-na-
tive scaled throughput is a measure of the additional
path length imposed by the Java platform on top of
the native sockets API.

A popular industry benchmark, VolanoMark 2.1.2,20

is used for the throughput and scaling study. Vola-
noMark is suitable because it is a benchmark that
does real work, i.e., Internet chat serving, and it heav-
ily stresses the Java network subsystem.

VolanoMark simulates many clients using an Inter-
net chat server. As part of the setup, a specified num-
ber of “chat rooms” are established, with 20 users
per chat room. The total number of users can be con-
trolled by varying the number of rooms. Each user
sends a message to the server, which echoes it back
to the other users in the room. The result of the test
is a score that represents the throughput, i.e., the
number of messages transferred per second.

VolanoMark was also used to measure the connec-
tion scaling of our Jvm by measuring the maximum
number of connections that could be opened by cli-
ents to the server.

Performance improvements. Figure 9 shows Sock-
Perf and XMPT results gathered between a pair of
IBM PC Server 704 systems, each with a 200-MHz
Pentium Pro processor and 1-GB RAM, running OS/2
Warp Server SMP with TCP 4.1. The machines were
connected to an isolated 100-Mb Ethernet network.
Each of the tests listed above is shown as well as an
overall geometric mean. The native results are nor-
malized to one, and the Java SockPerf results are
shown relative to the native results.

DIMPSEY, ARORA, AND KUIPER IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000166

The performance improvement from an initial low
in IBM DK, v 1.1.4 to DK, v 1.1.7 is very clear. In DK,
v 1.1.4, Java socket performance was only 60 per-
cent of native performance. The set of improvements
that took performance up to 95 percent in DK, v 1.1.7
is described below.

The first problem found was in platform-specific
code. In an attempt to obtain the thread context, the
function preBlock¼ in the Java run time was set-
ting an OS/2 exception handler and then firing the
exception. Obviously, this way was very expensive to
obtain a thread context. This condition was fixed by
using a better API, DosQueryThreadContext¼. Ad-
ditionally, a check was put in place whereby this call
was avoided altogether in the common case.29 The
result of this change is shown by the bar represent-
ing Proto 1 in Figure 9.

Another improvement that affected performance
dramatically was the FindLoadedClass¼ routine in
the Jvm. This routine locates a reference to a class
that has been loaded by the Jvm using a linear search
which consumed CPU cycles as the number of classes

grew large. This problem was originally discovered
at IBM Research. Changing the linear search to a bi-
nary search helped performance considerably as
shown by the Proto 2 bar in Figure 9.

UDP appeared to have an additional performance
problem. The problem turned out to be as follows:
On every invocation of DatagramSocket.receive¼
in Java, the Jvm function java net PlainDatagram-
SocketImpl receive¼ would create an InetAddress
object into which would be placed the address in-
formation of the sender of the datagram packet. This
object would then be attached to the Datagram-
Packet object that was passed down on the receive¼
call. Unfortunately, the cost of creating a Java ob-
ject while in Jvm C code is very high. It requires a
call to execute java constructor¼ that is very expen-
sive. A fix was devised where an InetAddress object
was only created if one did not already exist. This
overhead is eliminated by assuming that the appli-
cation reused its DatagramPacket object for receive.
The effect of this improvement is shown by the Proto
3 bar in Figure 9.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 DIMPSEY, ARORA, AND KUIPER 167

The above improvements were achieved by use of
the SockPerf microbenchmark. At about the time
these improvements had been completed, the Vola-
noMark benchmark was emerging as an industry Java
server benchmark. Although the changes effected via
SockPerf certainly improved VolanoMark through-
put, the latter was not available during this improve-
ment cycle and so did not directly drive these
changes. Instead, VolanoMark was used to make ad-
ditional performance enhancements.

VolanoMark employs hundreds, and even thousands,
of threads and sockets. As such, it produces a lot of
stress on the system. In fact, it was instrumental in
detecting several functional problems in the Jvm and
even the underlying operating system and TCP stack.
These problems are not described in the paper, but
serve to highlight the fact that a complex real-world
benchmark such as this one tests not just the Jvm
but how well it maps to the operating system.

Figure 10 shows the history of VolanoMark loop-
back throughput on OS/2. The test was run in loop-
back mode (i.e., the client and server run on the same

system) on an IBM PC Server 704 system with a 200-
MHz Pentium Pro processor and 1-GB RAM, run-
ning OS/2 Warp Server SMP with TCP 4.1. The initial
bar shows the throughput of VolanoMark 1.0 on
IBM DK, v 1.1.4. Very early, a bug was detected in
the OS/2 loopback implementation that was result-
ing in dropped Internet Protocol datagrams. By fix-
ing this bug, the score in the “loopback fix” bar was
achieved. The next bar simply shows the cumulative
effect of the various performance improvements that
went into DK, v 1.1.6.

VolanoMark had a flaw whereby the benchmark
was unable to saturate the CPU of the system even
while running in loopback mode. On the basis of a
change proposed by one of the authors to set the
TCP NODELAY flag, Volano LLC changed their
benchmark and released VolanoMark 2.0. The ef-
fect of the benchmark change is shown in the
“VMark 2.0” bar in Figure 10. The benchmark now
saturates the CPU in both uniprocessor and SMP tests.
All subsequent measurements mentioned in this pa-
per will be assumed to refer to version 2.0.

DIMPSEY, ARORA, AND KUIPER IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000168

One of the primary performance enhancements to
the Jvms in the DKs between versions 1.1.6 and 1.1.7
was version 3.0 of the IBM JIT compiler, referred to
here as JIT 3.0. JIT 3.0 had a profound impact on
VolanoMark throughput. In addition to better code
generation, JIT 3.0 drastically reduced the overhead
of method invocations. The “JIT 3.0” bar in Figure
10 shows the improvement that resulted.

The “timeout fix” bar in the same figure reflects an-
other improvement to the Jvm network code. Java
provides a mechanism for the programmer to spec-
ify a timeout on a socket read via the Socket.setTime-
out¼ API. The Jvm was coded to conservatively
assume that the underlying native sockets implemen-
tation did not support a timeout feature. In fact, the
OS/2 TCP 4.1 stack does support socket timeout via
the SO RCVTIMEO socket option. The conserv-
ative Jvm behavior was to issue a select¼ prior to
a recv¼, using the timeout flag on the select¼ call.
The rationale for this is easy to understand: most
TCP implementations support select¼ but few sup-
port SO RCVTIMEO. However, on OS/2 a signif-
icant gain was realized by short-circuiting the select¼
call.

Some of the improvements just listed also applied
to the Jvm in the IBM DK for Windows. Figure 11
shows a similar history of improvements on the Win-
dows platform. In these measurements, the same
computer hardware was used running Windows NT
4.0 Server, Service Pack 3.

Connection scalability improvements. As the scope
of the Java platform on the server grows, it is being
used to develop highly scalable server applications.
These applications require the ability to maintain
thousands of concurrent long-lived connections. Java
applications must typically devote a thread to each
connection on which they receive data. Thus appli-
cations that require thousands of concurrent con-
nections require thousands of concurrent threads and
sockets from their Jvm. Threads and sockets are sys-
tem resources and, as such, are finite commodities.
Moreover, they consume other system resources such
as virtual memory. Once the thread, socket, or mem-
ory limit is reached, no further connections can be
established. VolanoMark is typical of this class of
application. The design of the Volano server is such
that it uses two threads per client connection.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 DIMPSEY, ARORA, AND KUIPER 169

Figure 12 shows the history of connection-scaling im-
provements in the OS/2 Warp and Windows NT envi-
ronment. In both environments, the critical resource
is virtual memory. The pressure on this resource
comes from the combination of the Java heap as well
as the native thread stacks of the threads. On OS/2,
each process has a private memory space of 512 MB.
On Windows NT, this space is 2048 MB.

On OS/2, the connection limit on DK, v 1.1.4 was only
460 connections. By eliminating the use of select¼
for socket timeout, the limit rose to 600 in DK, v 1.1.6.
The reason was that select¼ uses a bitmap per socket
that consumes memory. In DK, v 1.1.7, this limit rose
further to 1100 by moving the Java heap to a region
above the 512-MB boundary, called high memory. Ul-
timately though, the connection limit on OS/2 remains
modest because thread stacks must reside in the
512-MB region and cannot be moved to high mem-
ory. Moreover, thread stacks consume memory in
segments of 64 KB. Thus, even though the user can
specify the desired size of thread stack via the -ss
command line option, the minimum thread stack
consumption is still 64 KB.

On Windows NT, the amount specified via the -ss
command defines the amount of virtual memory ac-
tually allocated for each of the thread stacks of the
Jvm. However, unless otherwise specified, the op-
erating system still reserves 1 MB of virtual memory
by default for each thread. Since Windows NT allows
a total 2 GB of virtual memory for the private ad-
dress space of an application, the 1-MB stack res-
ervation per thread effectively limits the Jvm to ap-
proximately 2048 threads (2048 MB total virtual
space divided by 1 MB per thread equals 2048
threads). The Jvm in the IBM DK for Windows
achieves a much higher effective thread limit by re-
ducing the virtual memory reservation per thread
from its 1-MB default.

It is easy to see why the Sun Java Development Kit
(JDK**) 1.1.7 tops out at 920 connections. Given the
default Windows NT thread stack size reservation of
1 MB, and the fact that the Volano server uses two
threads per connection, an upper bound on the Vola-
noMark connection limit is set to 1024. Consump-
tion of other memory by the process accounts for
the gap between 920 and 1024 connections.

DIMPSEY, ARORA, AND KUIPER IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000170

On IBM DK, v 1.1.6, the thread stack reservation was
changed to 512 KB, resulting in a doubling of the
connection limit. In IBM DK, v 1.1.7, this reservation
was reduced further to 256 KB, and the connection
limit rose to 3260.

JIT compiler enhancements

The relative importance of Java compiled code is dif-
ferent for client and server workloads. Client work-
loads spend the majority of their time executing Java
bytecode or in the Abstract Window Toolkit (AWT),
and therefore, their overall performance is highly
sensitive to the quality of the “JITed” (JIT compiled)
bytecode. In addition, the application or applet star-
tup time, which is often dominated by the time spent
“JITing” (JIT compiling) the classes, is crucial on a
client system. In contrast, a server workload gener-
ally “JITs” bytecode infrequently and spends a rel-
atively smaller percentage of the total CPU time ex-
ecuting the JITed code. For instance, a three-tier
database application that had its second tier written
completely in the Java language spent less than 10
percent of that tier executing JITed code. A repre-
sentative workload based on the SanFrancisco frame-
work was measured to spend less than 20 percent of
its time in JITed code, and WebSphere* servlet work-
loads have been seen to only consume 13 percent of
the CPU time with JITed code.

However, this is not to say that the JIT compiler is
unimportant to server workloads. The three-tier ap-
plication mentioned above shows a 35 percent slow-
down when the JIT compiler is not used, and a San-
Francisco-based workload degraded about 32
percent without the JIT compiler. It is the case,
though, that server workloads place different stresses
on the JIT compiler than client workloads. Signifi-
cant JIT compiler improvements have been made by
the IBM Tokyo Research Lab for both client and
server workloads.30 This section summarizes some
of the server-specific changes.

One family of functions common to server workloads
that has been hand-tuned by the Tokyo Research
Lab consists of memory movement operations (e.g.,
functions mimicking C library memset, memcpy, and
memmove). Specifically, the Java language method
System.arraycopy, which copies arrays of data, was
tuned by first “inlining” a check to see whether the
size of the copy is small. If it is, then it is done im-
mediately without a function call. Otherwise, a call
is made to code that guarantees data alignment on
an eight-byte boundary. The eight-byte boundary is
important for optimum performance on a Pentium**
II system. Table 1 summarizes the results showing
greater than three times improvement on small cop-
ies that make calls out to a memmove type function.

There is no corresponding memset operation in the
Java language specification, but it is still necessary
and common to set an entire array to a single value.
This shortcoming has been a sore spot for Java ap-
plication writers, and a number of clever techniques
have been introduced to improve the efficiency of
initializing a primitive array to a common value. The
most common technique used is to initialize a smaller
piece of the array and use the System.arraycopy call
to fill in the rest of the array in an expanding binary
fashion. The IBM implementation recognizes this
shortcoming and remedies it through JITed code. If
an application is initializing or setting a primitive ar-
ray to a common value, the JIT compiler recognizes
the code (Figure 13) and generates a call to an op-
timized C-library memset call. In this way, byte ar-
rays can be initialized as much as 16 times faster.
Table 2 illustrates the performance improvement ob-
tained through this enhancement.

Finally, a number of Java library functions have been
identified as crucial to server performance. These
functions have been specifically tuned using either
built-in or inline technology. An especially interest-
ing case is the Random.next¼ method. The imple-
mentation of this function requires all methods that
access the seed of the Multiplicative Linear Congru-

Table 1 System.arraycopy() performance improvement for character arrays

Array size 1 5 10 100 1000
Function call

(us)
0.51 0.55 0.65 1.63 6.35

Inline/align
arraycopy
(us)

0.15 0.19 0.24 1.21 4.75

Percent reduction 71% 65% 63% 26% 25%

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 DIMPSEY, ARORA, AND KUIPER 171

ent Generator to be synchronized. This over-syn-
chronization can result in poor performance on
multithreaded applications running on multiproces-
sor systems. This limitation was avoided by building
a special Random.next¼ into the JIT compiler that
uses efficient machine-level primitives (cmpxchg on
Intel processors) to access the seed. In this way, the
integrity of the seed is maintained without synchro-
nizing the full method.

Conclusions

As the Java platform has matured, its importance
has grown in the server space. We have described
the enhancements to the IBM Jvms on the Intel-based
platforms that have enabled them to be the highest-
performing Jvms in the industry on server workloads.

Although Java server applications spend a signifi-
cant amount of time executing non-Java code, e.g.,
in the operating system or the network or file sys-
tem, it is nonetheless true that the quality of the Jvm
run time and the JIT compiler can and do have a pro-
found impact on the performance of these applica-
tions. This statement is consistent since much of the
performance of the Java run time is affected by the
efficiency of the mapping of the Java abstraction of
system services to the underlying operating system
services. The enhancements to the IBM Jvm reinforce
this theme. Both the monitor improvements and the

network I/O improvements described here relate to
the notion of exploiting the underlying operating sys-
tem to the fullest.

Garbage collection and the underlying memory man-
agement are possibly the most important subsystems
of the Jvm. We have described improved algorithms
and heuristics to reduce both the frequency and du-
ration of garbage collection. Using better schemes
for memory management, the IBM Jvm allocates
memory fast and in a manner that expedites its col-
lection.

Similarly, the JIT compiler has a profound impact
on application performance. Even for Java server
workloads, where a relatively smaller fraction of CPU
time is spent in JITed code, the quality of the JIT com-
piler is a key factor in application performance. We
have described the impact of improvements in the
IBM JIT compiler on key server workloads.

Looking to the future, we are exploring improve-
ments to compaction in cases where it cannot be
avoided. To improve the scalability of the collector,
parallel versions of mark and sweep are under con-
sideration. In the longer term, support for type ac-
curacy will allow the removal of conservative assump-
tions from the garbage collector,31 thus enhancing
our ability to exploit generational collection tech-
niques.

Other areas of exploration are: heap shrinkage to
track working set reduction, performance of inflated
monitors, and further increases in connection scal-
ing, especially on OS/2.

Acknowledgments

The work presented in this paper is the culmination
of the labor of many persons. The authors would es-
pecially like to thank Ben Hoflich, Walter Fraser,
MengWu Wang, and Robert Reynolds. Thanks also
go to the DB2 database group for their informed dis-
cussion of locking.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Volano LLC, Microsoft Corporation, or Intel Corporation.

Cited references and notes

1. S. J. Baylor, M. Devarakonda, S. Fink, E. Gluzberg, M. Kalan-
tar, P. Muttineni, E. Barsness, R. Arora, R. Dimpsey, and

Table 2 Improvement in array initialization with JIT
recognition

Byte array size 10 100 1920 10000
X-times speedup

“memset”
1.6X 4.8X 16X 12X

DIMPSEY, ARORA, AND KUIPER IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000172

S. J. Munroe, “Java Server Benchmarks,” IBM Systems Jour-
nal 39, No. 1, 57–81, (2000, this issue).

2. J. Neffenger, “The Volano Report: Which Java Platform Is
the Fastest, Most Scalable?” JavaWorld (March 1999).

3. T. Young, “No More Mr. Slow for Java,” InfoWorld (Sep-
tember 1998).

4. “SPEC JVM98 Results,” Standard Performance Evaluation
Corporation (SPEC), Manassas, VA, http://www.
spec.org/osg/jvm98/results/index.html.

5. “IBM Java Performance Update,” IBM Corporation,
http: / / www.software.ibm.com / os / warp / performance /
javaperf_1298_update.htm.

6. W. Gu, N. A. Burns, M. Collins, and W. Y. P. Wong, “The
Evolution of a High-Performing Java Virtual Machine,” IBM
Systems Journal 39, No. 1, 135–150 (2000, this issue).

7. E. Armstrong, “HotSpot: A New Breed of Virtual Machine,”
JavaWorld (March 1998).

8. D. Bacon, R. Konuru, C. Murthy, and M. Serrano, “Thin
Locks: Featherweight Synchronization for Java,” ACM Con-
ference on Programming Language Design and Implementa-
tion (June 1998), pp. 258–268.

9. J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scal-
able Synchronization on Shared-Memory Multiprocessors,”
ACM Transactions on Computer Systems 9, No. 1, 1–20 (Feb-
ruary 1991).

10. All IBM Jvms are based on a handleless object model. The
handleless design, along with other optimizations, freed
enough space per object to provide room in the header for
the 24-bit lock.

11. W. Alexander, R. Dimpsey, and B. Olszewski, “AIX Oper-
ating System SMP Performance,” AIXpert, 35–42 (Novem-
ber 1994).

12. B. Mukherjee and K. Schwan, “Experiments with Configu-
rable Locks for Multiprocessors,” International Conference
on Parallel Processing (1993).

13. B. Mukherjee and K. Schwan, “Improving Performance by
Use of Adaptive Objects: Experimentation with a Configu-
rable Multiprocessor Thread Package,” Proceedings of High
Performance and Distributed Computing (July 1993).

14. J. Zahorjan, E. Lazowska, and D. Eager, Spinning Versus
Blocking in Parallel Systems with Uncertainty, University of
Washington Technical Report 88-03-01 (March 1988).

15. A. Karlin, K. Li, M. Manasse, and S. Owicki, “Empirical Stud-
ies of Competitive Spinning for a Shared-Memory Multipro-
cessor,” Proceedings of ACM Symposium on Operating Sys-
tems Principles (1991), pp. 41–55.

16. T. E. Anderson, “The Performance of Spin Lock Alterna-
tives for Shared Memory Multiprocessors,” IEEE Transac-
tions on Parallel and Distributed Systems (January 1990), pp.
6–16.

17. This characteristic is most likely a result of both the imple-
mentation of the Java classes and the propensity of Java pro-
grammers to over-synchronize access to data because of the
coarseness of locking granularity provided by the Java lan-
guage.

18. M. Campbell et al., “The Parallelization of UNIX System V
Release 4.0,” USENIX (Winter 1991).

19. As of the writing of this paper, the Jvm in the IBM DK, v 1.1.8
was to have a third quarter 1999 release date.

20. VolanoMark 2.1.2 Benchmark, Volano LLC, San Francisco,
http://www.volano.com/benchmarks.html.

21. R. Jones and R. Lins, Garbage Collection, John Wiley & Sons
Ltd., West Sussex, England (1996).

22. It should be noted that not all objects are eligible for move-
ment during the compaction phase. For instance, objects ref-

erenced from the stack, class objects, and objects referenced
by native code are all prohibited from being moved. These
objects are referred to as being pinned in the Java heap.

23. Chet Murthy, IBM Corporation, private correspondence.
24. C. J. Cheney, “A Non-Recursive List Compacting Algo-

rithm,” Communications of the ACM 13, No. 11, 677– 678
(November 1970).

25. P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dy-
namic Storage Allocation: A Survey and Critical Review,”
International Workshop on Memory Management, Kinross,
Scotland, UK (September 1995).

26. M. S. Johnstone, Non-Compacting Memory Allocation and Real
Time Garbage Collection, Ph.D. thesis, University of Texas
at Austin, Austin, TX (1997).

27. D. G. Korn and K.-P. Vo, “In Search of a Better Malloc,”
Proceedings of USENIX (Summer 1995), pp. 489–506.

28. “SockPerf: A Peer-to-Peer Socket Benchmark Used for Com-
paring and Measuring Java Socket Performance,” IBM Cor-
poration, http://www.alphaWorks.ibm.com/formula/sockperf.

29. The common case referred to here is when running on a re-
cent version of the operating system (Fixpack 3 or greater
for OS/2 Warp and Fixpack 33 or greater for Warp Server).
In this case, the Jvm uses a mechanism called “hard suspend”
to stop all threads for garbage collection. Under this scheme,
preBlock¼ does not need to obtain the thread context. A
more detailed description of this scheme is beyond the scope
of this paper.

30. T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani,
“Overview of the IBM Java Just-In-Time Compiler,” IBM
Systems Journal 39, No. 1, 175–193 (2000, this issue).

31. O. Agesen, D. Detlefs, and J. E. B. Moss, “Garbage Collec-
tion and Local Variable Type-Precision and Liveness in Java
Virtual Machines,” ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, Montreal, Que-
bec, Canada (June 1998), pp. 269–279.

Accepted for publication August 30, 1999.

Robert Dimpsey IBM Network Computing Software Division,
11400 Burnet Road, Austin, Texas 78758 (electronic mail:
dimpsey@us.ibm.com). Dr. Dimpsey received his Ph.D. degree
in 1992 from the University of Illinois where he studied perfor-
mance measurement, modeling, and analysis of large shared mem-
ory multiprocessors. In 1992 he joined IBM to work on symmet-
ric multiprocessing performance of the AIX operating system.
In 1994 he began work on the IBM cross-operating system mi-
crokernel project. This was followed by work on kernel-level mul-
tiprocessor performance for WARPSMP and scalable, journaled
file systems. Currently, he is working on server-focused, core Jvm
performance for IBM Jvms on Intel-based platforms.

Rajiv Arora IBM Network Computing Software Division,
11400 Burnet Road, Austin, Texas 78758 (electronic mail:
rarora@us.ibm.com). Dr. Arora is a performance engineer
whose current interest is the performance of the Java language
on the server. He is working on core performance of the IBM
Jvms on the Intel platform. He also represents IBM on the
SPEC server-side Java benchmark working group. Prior to his
Java work, he has worked on Web server performance and the
performance of TCP/IP on AIX, the IBM microkernel, and
OS/2. Dr. Arora joined IBM in 1992. He holds M.S. and Ph.D.
degrees in electrical engineering from the University of Roch-
ester in the area of network protocols.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 DIMPSEY, ARORA, AND KUIPER 173

Kean Kuiper IBM Network Computing Software Division, 11400
Burnet Road, Austin, Texas 78758 (electronic mail: kuiper@
us.ibm.com). Mr. Kuiper is a senior engineer working primarily
on Java memory management. He is also actively involved in en-
hancing code generation for Intel IA32 processors. Mr. Kuiper
has extensive experience working in multiprocessor environments,
including OS/2, the S/390w I/O subsystem, and earlier midrange
S/370TM processors.

Reprint Order No. G321-5721.

DIMPSEY, ARORA, AND KUIPER IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000174

