Optimizing array
reference checking
in Java programs

The Java™ language specification requires that
all array references be checked for validity. If a
reference is invalid, an exception must be
thrown. Furthermore, the environment at the
time of the exception must be preserved and
made available to whatever code handles the
exception. Performing the checks at run time
incurs a large penalty in execution time. In this
paper we describe a collection of trans-
formations that can dramatically reduce this
overhead in the common case (when the access
is valid) while preserving the program state at
the time of an exception. The transformations
allow trade-offs to be made in the efficiency and
size of the resulting code, and are fully compliant
with the Java language semantics. Preliminary
evaluation of the effectiveness of these
transformations shows that performance
improvements of 10 times and more can be
achieved for array-intensive Java programs.

hree goals of the Java** programming language

and execution environment are bit-for-bit repro-
ducibility of results on different platforms, safety of
execution, and ease of programming and testing. A
crucial component of the Java language specifica-
tion for achieving the latter two goals is that a pro-
gram only be allowed to access objects via a valid
pointer, and that programs only be allowed to ac-
cess elements of an array that are part of the defined
extent of the array. A naive implementation of this
specification component requires every access to ev-
ery element of an array to check the validity of all
base pointers and indices involved in the access.

Figure 1 shows a typical representation of a four-
dimensional array in Java. A naive checking of a ref-
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erence to element A[1]{2][3][4], indicated in the
figure, would require four base pointer tests and four
range tests: A, A[1], A[1][2], and A[1][2][3] must
all be tested as valid pointers; 1, 2, 3, and 4 must all
be tested as valid indices along the corresponding
axes of the array. If the entire array is accessed, a
total of 4N base pointer tests and 4N range tests will
be necessary, where N is the total number of ele-
ments in the array. In this paper, we present a suite
of techniques to greatly reduce the number of run-
time tests. In many cases, the run-time tests can be
completely eliminated.

The above-mentioned goal of bit-for-bit reproduc-
ibility of results, combined with the ability to catch
exceptions and examine the state of the program at
the time the exception was thrown, imply that it is
not sufficient to determine that an invalid reference
occurred. Rather, any optimizations of valid refer-
ence checking must cause all exceptions that would
have been thrown in the original program to still be
thrown. The exceptions must be thrown in precisely
the same order, with respect to the rest of the com-
putation, dictated by the original program seman-
tics. The techniques we describe fulfill this require-
ment. Our methods also handle loops that catch
exceptions within their bodies (i.e., with nested try
blocks).
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Figure 1 Access of an element in a four-dimensional array

We note that the techniques and methods described
here are not restricted to Java. They can be applied
to any language in which the bounds of an array can
be determined at run time. They could be used, for
example, in C and FORTRAN compilers that want to
provide an option to check array references.

The rest of this paper is organized as follows. The
next section presents an informal overview of our
optimizations and is followed by an introduction to
the concept of safe bounds, used throughout the pa-
per. The fourth section presents the first of our op-
timization techniques, the exact method. The suc-
ceeding sections present other techniques, the
general, compact, and restricted methods, respec-
tively. The eighth section discusses an inspector-ex-
ecutor variant of our methods, to handle more
complex cases. The ninth section explains our op-
timizations in the context of multithreaded execu-
tion. The tenth section presents some experimental
results, followed by a discussion of related work. Fi-
nally, we present our conclusions.

Overview of the optimizations

The main goal of our work is to develop techniques
that minimize the number of run-time tests that must
be performed for array reference operations in Java.
An array A is defined by a lower bound lo(A4) and
an upper bound up(A4). We use a Java-like nota-
tion for array declarations:

double A[] = new double[lo(A4):up(A)]

declares a one-dimensional array 4 of doubles. Note
that we allow an explicit declaration of the lower
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bound lo(A4) of array A. In Java, the lower bound
is always zero. Also, Java array declarations specify
the number of elements of the array. Therefore, the
Java declaration

double A[] = new double[n]

would correspond to the declaration
double A[ ] = new double[0:n — 1]

in our notation.

An array element reference is denoted by A[o],
where o is an index into the array. For the reference
to be valid, 4 must not be null, and o- must be within
the valid range of indices for A: lo(A), lo(A4) +
1, ...,up(A). IfA4 isnull, then the reference causes
a null pointer violation. In Java, this corresponds to
the throwing of a NullPointerException. If 4
is a valid pointer and o is less than the lower bound
lo(A4) of the array, then the reference causes a lower
bound violation. If 4 is a valid pointer and o is greater
than the upper bound up(A) of the array, then the
reference causes an upper bound violation. Java does
not distinguish between lower and upper bound vi-
olations. A bound violation (lower or upper) in Java
causes an ArrayIndexOutOfBoundsException
to be thrown.

Multidimensional arrays are treated as arrays of
arrays:

double M[ ][] = new double[l,:u,][/,:u,]
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declares an array M with lower bound /, and upper
bound u,. Each element of M is an array of doubles,
with lower bound /, and upper bound u,. M is an
example of a rectangular array. Rectangular arrays
have uncoupled bounds along each axis. As in Java,
we also allow ragged arrays, where the bounds for one
axis depend on the coordinate along another axis.
A triangular array is an example of a ragged array:

double T ][] = new double[1:n][]
T[i] = new double[1:i],i=1,...,n

Even though ragged arrays are allowed and treated
by our techniques, we do have optimizations that take
advantage of rectangular arrays.

Arbitrary array lower bounds, the distinction be-
tween lower bound and upper bound violations, and
treatment for rectangular arrays are features of our
work that are not strictly necessary for Java appli-
cations. Our motivation to include them is twofold:
First, we want our methods to be applicable to other
programming languages, in particular C, C++, and
FORTRAN 90. Second, we want to be prepared to han-
dle extensions to Java that are being considered to
efficiently support numerical computing, as described
in Reference 2.

Array accesses typically occur in the body of loops.
Our optimizations operate on do-loops, which are
for-loops of the form:

for (=0i=u;i++){
B(i)
}

where i is the index variable of the loop, [ defines
the lower bound of the loop, and u defines the up-
per bound of the loop. The iteration space of the
loop is defined by the range of values that i takes:
LI+ 1,...,u. Allloops have a unit step, and there-
fore a loop with/ > u has an empty iteration space.
B(i) is the body of the loop, which typically contains
references to the loop index variable /. As a short-
hand, we represent the above loop structure by the
notation L (i, I, u, B(i)). Note that loops with pos-
itive nonunity strides can be normalized by the trans-
formation

for(i=lLisu;i=i+s)

B(i)
}
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becomes
u—1
for(iZO;iS{ p J;i++>{
B(l + is)
}

A loop with negative stride can be first transformed
into a loop with a positive stride:

for(i=u;i=li=i—s)
B(i)
}

becomes

for(i=Li=u;i=i+s)
Bu+1-1
}

Loops are often nested within other loops. Standard
control-flow and data-flow techniques* can be used
to recognize many for, while, and do-while loops,
which occur in Java and C, as do-loops. Many goto
loops, occurring in C and FORTRAN, can be recog-
nized as do-loops as well.

Four different tests can be applied to an array ref-
erence A[i]. A null test verifies whether A4 is a null
pointer. An Ib test verifies whether i = lo(A), and
a ub test verifies whether i = up(A). Finally, a test
called all tests verifies whether lo(A4) = i = up(A4).
Tests for bounds subsume null tests, since a null ar-
ray can be set to have an empty extent. Furthermore,
we show in the next section that for do-loops only
one of three cases can occur for each iteration and
each array reference: (1) an Ib test is required, (2)
a ub test is required, or (3) no test is required. In
many situations it is possible to precisely determine
which case occurs. In other situations, one has to be
conservative and adopt a stronger test than abso-
lutely required. In particular, an all tests can be used
to detect any possible violations.

We introduce later a method for deriving the min-
imum set of tests required at each iteration of a sim-
ple loop with no nesting. This method will be referred
to as the exact method. It provides the general frame-
work that is used by the subsequent methods, which
handle nested loops. The exact method specifies, for
each iteration and each array reference, which test
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of the three named above is required, if any. A loop
with p array references in its body is split at compile
time into up to 3° consecutive regions, each with a
specialized version of the loop body. At run time,
no more than 2p + 1 regions are actually executed.

This level of code replication is not practical in gen-
eral. However, one can reduce the number of code
versions by merging together regions, at the expense
of performing superfluous tests. This is shown in the
section describing the general method. In practice,
this does not increase execution time. The regions
where tests are required will usually be found to be
empty at run time so that the tests in these regions
are never normally executed. Reducing the number
of distinct regions will not only decrease code size,
but may also decrease execution time. A practical
version of the exact method splits an iteration space
i=1,1+1,...,u into three regions:

1. Aregion of the iteration space where no tests are
needed. This region is defined by a safe lower
bound /* and a safe upper bound u*. The range
of values of / in this regionis /*, I + 1, ..., u’.

2. A region of the iteration space where the index
variable has values smaller than the safe lower
bound /. For this regioni =,/ + 1,...,I° — 1.

3. Aregion of the iteration space where the index vari-
able has values greater than the safe upper bound
u’. For thisregioni = u* + L, u’ + 2,...,u.

The loop is split into three loops, each associated
with a different code version. As a simpler alterna-
tive, the number of code versions can be further re-
duced to two: one with no tests, and one with all tests
enabled.

We extend this method to nested loops in the later
section, “The general method,” recursively splitting
each iteration space into three regions. When ap-
plied to a perfect d-dimensional loop nest, this
method leads to 3¢ distinct loop nests, each poten-
tially executing a different code version. One can re-
duce the number of distinct code versions by merg-
ing different versions. In the extreme case, it is
possible to use only two versions. This method will
be referred to as the general method.

In the sixth section we present a method that avoids
this exponential blow-up in static code size. This
method is referred to as the compact method. When
applied to a perfect d-dimensional loop nest, it re-
sults in 2d + 1 loop nests. Depending on the sim-
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plifications adopted, it can use from 2 up to 2d +
1 different code versions.

Finally, in the seventh section we describe a tiling
method that can be applied to certain types of loop
nests. It effectively implements the compact method
through generated code of a very simple form. The
method uses two versions for each loop body (no tests
and all tests enabled). This method is referred to as
the restricted method.

These four methods apply to Java as well as to
FORTRAN or C and work for all machine architec-
tures. Additional optimizations are possible in im-
portant special cases. We briefly discuss two of these
optimizations now: how to determine a valid index
with a single test and how to test for null pointers.
We do not discuss special optimization techniques
any further in this paper.

In the particular case of Java an all tests test can be
implemented with a single comparison. Because Java
does not distinguish between lower bound and up-
per bound violations, and because lo(A) = 0 always,
it suffices to test if i < up(A) + 1 using unsigned
arithmetic. A negative number appears, in unsigned
arithmetic, as a very large positive number which,
by the Java language specification, is always larger
than the largest possible array extent. This technique
is used, for example, in the IBM HPCJ (High-Perfor-
mance Compiler for Java) project.*

The optimization of checks for null pointer viola-
tions in array references is a direct consequence of
the optimization of checks for bound violations, as
discussed in the next section. There are also many
ad hoc solutions to the optimization of null pointer
violations. For machines with segmented memory ar-
chitecture, such as the IBM POWER2 Architecture®,
null pointers can be represented by a pointer to a
protected segment. For machines with linear, but
paged, memory architecture, a protected segment
can be simulated with a region of protected pages.
Any attempts at access through a null pointer will
immediately cause a hardware exception that can
then be translated into the appropriate software ex-
ception. This implementation completely eliminates
the need for any explicit checks for null pointer vi-
olations in the code. It is also applicable to all pointer
dereferences, not just array accesses. Despite the
complications in properly translating a hardware ex-
ception, this technique has been successtully used,
for example, in the CACAO project.’
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Computing safe bounds

The basic idea of our methods is to partition the it-
eration space of a loop into regions. A region is a
contiguous subset of the iteration space. It is char-
acterized by a collection of tests that need to be per-
formed for array references in that subset. We are
particularly interested in finding safe regions, where
we know there can be no violations in array refer-
ences. If an array reference is guaranteed not to gen-
erate a violation, explicit tests are unnecessary.

We illustrate the computation of safe regions with
a simple example. We then proceed to formalize it
to more general cases. Consider the simple loop:

for i =1l i=u;i++){
B(i)
I3

which we represent as L{i, [, u, B(i)). B(i) is the
body of the loop and, in general, contains references
to the loop index variable i. The iteration space of
this loop consists of the range of valuesi = [, [ +
1, ..., u.

Let there be a single array reference 4] in the loop
body B(i). We denote the lower bound of 4 by lo(A4)
and the upper bound of A by up(A4). Therefore, for
the array reference 4[i] to be valid we must have
lo(A) =i =< up(A). If A is null, we define lo(A)
= 0 and up(A4) = —1. This guarantees that 4[i] is
never valid if A is null. We can split the iteration
space of the loop into three regions «X[1], ®[2], and
R[3), defined as follows:

RKR1T: A =i=su) A (i <lo(A)) (1)
R21:U=i=u)A(lo(d)=i=up(4)) (2)
R3] U=i=u)A(i>up(A)) 3)

Region «[1] corresponds to those iterations of the
loop for which the index i into array A4 is too small.
Therefore, an Ib test is required before each array
reference in this region. No tests are required in re-
gion R[2], since the index i falls within the bounds
of A. Finally, a ub test is required in region ®[3],
because the values of i are too large to index 4.

Using Equation 2, we can compute the lower and
upper bounds £ and < of the safe region:

£ = max(/, lo(A4)) 4)
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U = min(u, up(A4)) %)
R[2]:i=9, ..., (6)
Similarly, we use Equation 1 and Equation 3 to com-
pute the lower and upper bounds of regions R[1] and
R[3], respectively:

R1]:i=1, ..., min(u + 1, lo(A)) — 1 (7
R[3]:i=max(! — 1l,up(A)) +1,...,u (8)
Note that min(u + 1, lo(A4)) = &, except when
lo(A4) <! orlo(A) > u + 1. In the former case,
R[1] is empty; in the latter case, ®[2] is empty. To

handle these cases, and the symmetric upper bound
cases, we redefine

¢ = min{u + 1, max(l, lo(A4))) 9)
A = max(! — 1, min(u, up(A4))) (10)

We can now express the bounds of each of the re-
gions just in terms of /, u, £, and 4

R1l:i=14, ..., ¢ —1 (11)
R(2]:i=9,..., (12)
RE3]:i=u+1,...,u (13)

Equations 11-13 define the same regions as Equa-
tions 6-8. The values of region bounds are different
only for empty regions, but they are still empty.

In Figure 2 we illustrate the values of £ and < for
different relative positions of iteration bounds and
array bounds. Figure 2A has empty regions ®[1] and
R [3], whereas region R[2] comprises the entire it-
eration space. Region ®[1] is empty in Figure 2B,
whereas region ®[3] is empty in Figure 2C. All three
regions are nonempty in Figure 2D. Regions }[2]
and ®[3] are empty in Figure 2E, because all values
of i fall below the lower bound of 4. Finally, regions
[1] and R[2] are empty in Figure 2F, since all val-
ues of i fall above the upper bound of A4.

In the general case, we have an array reference of
the form A[ f(i)] in the body B(i) of aloop. Depend-
ing on the behavior of f(i), we can compute safe
bounds £ and U that partition the iteration space into
three regions, as defined by Equations 11-13. Re-
gion R[2] is safe, and no test is defined in it. We de-
fine tests 7[1] and 7{3] that are sufficient for regions

MIDKIFF, MOREIRA, AND SNIR 413




Figure 2 Relationship between loop bounds and array bounds
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R[1] and [3], respectively. Expressions for £, <, and An exact method

7 for various forms of f(i) are described in Appen-

dix A. The safe bounds are computed so that we al- In this section we consider the case of a simple (depth

ways have U = ¢ — 1 and £ =4 + 1. These prop- one) loop, with multiple references. The exact

erties are important for the correct functioning of method described here performs only the tests strictly

our methods. necessary (as specified in Appendix A) to detect the
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Figure 3 Regions generated by the intersection of simple regions
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array reference violations that occur during the ex-
ecution of a loop. It is, in general, of limited prac-
ticality because up to 3° versions of the loop body
must be instantiated in the code, where pis the num-
ber of array references in the loop body. In some
situations, when enough information is available to
the compiler, it is possible to generate efficient code
using this technique. Our main interest in studying
this method is that the other, more practical, trans-
formations are derived from this technique.

In this section we treat references of the form A[ f(i)]
that allow the computation of safe bounds as de-
scribed in the previous section. The eighth section
discusses how to handle more complex subscripts.
We first describe how the method generates opti-
mized code, and then we illustrate the method with
an example.

Code generation. The method works as follows. Let
L(i, I, u, B(i)) be a loop on index variable i and
body B(7). Let there be p references of the form
A;[f,()],j =1,..., p, inbody B(i). Each array
reference A, f;(i)] partitions the iteration space into
three (each possibly empty) regions:

R :i=1,...,¢ -1
RI2]):i= ¢4, ...,
RI3J:i=al+1,...,u

as defined by Equations 11-13. We call these regions
defined by a single array reference simple regions.
Also, each region ®/[k] has a test 7/[k] associated
with it, which describes what kind of test has to be
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performed for reference 4| f;(i)] in that region. The
test 7/[2] for region ®R/[2] always specifies no test,
because R/[2] is a safe region with respect to this
reference. The tests #/[1] and +/[3], for regions ®/[1]
and ®/[3], respectively, can be any one of ub test
(an upper bound test), Ib test (a lower bound test),
or all tests (both a lower and an upper bound test).
The exact choice depends on characteristics of the
array reference 4,[ f;(i)]. This issue is discussed in
detail in Appendix A. For each region ®/[k] we de-
note its lower bound by ®/[k]./ and its upper bound
by ®/[k].u.

Two references A4,[f;(i)] and A,[f.(i)] can be
thought of as partitioning the iteration space into
five regions defined by the four points £/, A/, £,
and Q(%. We illustrate this in Figure 3 for two ref-
erences, A [ f1({)] and A,[ f,(i)]. Note that some
of the resulting regions may be empty, in general.
The resulting regions are a subset of the 3-3 =9
regions formed by all combinations of intersections
of two simple regions, one from each reference.

In general, given the p references 4;[ f;(i)], we can
create a vector of all 37 regions formed by intersect-
ing the simple regions from different array refer-
ences:

Rxp X0 .0x,] =

RKULxIN R[] NN R x] (14)
Each index x, is 1, 2, or 3. The lower bound of a re-
gion R[x, -x,-...-x,] is the maximum of the lower
bounds of the forming simple regions. Correspond-
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ingly, its upper bound is the minimum of the upper
bounds of the forming simple regions:

RLx;x0 .0 x, )l =
max(R [x,].0, R{x,1L, ..., /x,10) (15)
RExpox0 . ox,Ju =

min(R '[xJ.u, RIx]u, ...

, R x,]u) (16)

Finally, the tests that characterize region ®[x; - x,
x,] can be described by:

X x ...

x]={lx],j=1,..., p} a7

That is, the combination of the tests for each simple
region R'[x;].

Using this partitioning of the iteration space into 3”
regions, the loop

for i =1L i=u;i++)}
B(i)
+ (18)

can be transformed into 3* loops, each one imple-
menting one of the regions K[ x; - x, - x,). The
body of each region can be specialized to perform
exactly the tests described by 7[x; < x,-... x,]. We
use B,,, ., (i) to denote the body B(i) speaahzed

with the tests described by t[x; * x, ... - x,]:
for(i=x[1-1-...-1].L;
i=R[1-1-.. .- 1] i++){By, (D}
for(=w[1-1-...-2].;
i=R[1-1-...-2]u; i++){B,; @)}
for (=<[1-1-...-3].L
i< QRL-1-.. .3 i++){B;, 4@}

for (i = ®[1-2-...-1].4;

i=R1-2-.. .- 1lu;i++){By, ()}
for ( =R[1-2-...-2].0;

P=R1-2-. . 2] i++ 1B, L)}
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for i =x[1-2-...-3].1;

i=1-2-...-3)u; i++){B, L)}
for { = R[3-3-...-1].;
i=R[3-3-.. .- 1]u; i++){By ()}
for (i = R[3:3-...-2].;
i=Q[3-3-... 2] i++){By L)}
for (i = ®R[3-3-...-3].L;
i=R[3-3-...-3Lu; i++)Bs 50} (19)

Note that the order of the resulting loops is impor-
tant, although there are many correct orders. The
requirement is that, for any value of j, region

Rlxy s ooooxg o Loxgyy e x,] has to precede
R[xy oo X 2 Xy x,] which in turn
has to precede R[x; ... x;_; =3 x;000 ... x,].

Out of the 3 possible regions formed by the inter-
section of the simple regions, no more than 2p + 1
are nonempty and are actually executed at run time.
Which of the 3 regions are nonempty depends on
the relative positions of the 2p safe bounds ¢/, . . .,
eralt, Lo, Letpy, .. ., p,, be the list obtained
by sorting £',..., e2,u' + 1,...,U” + 11in as-
cending order. Define p, = / and py,,; = u + 1.
The safe bounds £',..., ¢*,a',. .., u” partition
the iteration space into 2p + 1 (each possibly empty)
regions 9[k], k = 0, 1, ..., 2p defined by

‘(P[k]:i =DPis -+ Prr1 — 1 (20)

Each region 9[k] corresponds to a region R[x, - x, -
x,] defined by
L if e =p,
x, =13 if U’ < p, 21
2 (T <p) A @ =py)
(It can occur that both £/ = p,., and a9/ < p,. In
that case, region ¥[k] is necessarily empty, and the

choice of x; is irrelevant.) Let M (k) be the function
that defines the correspondence R[M(k)] = 9k]

fork =0, ..., 2p. Then the loop
for (=1L i=u;i++){
B(i)
} (22)

can be transformed to
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Figure 4 A program optimized using the exact method: (A) original code, (B) transformed code

" double A;{] = new double{1 : 1}
.+ double Ay[] =new double(1 : n]
odor (i =LiSw; iv) {
CAgli+2]=Ay[i-2] 1/ BG)
}

(A)

- for (i

for (i = 1; i < min(£' - 1, 2= 1); i++) {
Byi(iy 1 Ay, Ay Ib check

for (i = max(l, £9;i S min(z! = 1, WPy iea) {
Bu(;) ML Ay b check, no A, check

for (i = max(l @+ 1) i < min(2' =1, w): 1++) {:,‘:
313(3} M A; b check, Ay ub chieck ﬁ
}

for (i = max(2), ): i < min(el', 225 1); i) {
By Jino Al check, A; 1b ckeck

for (i = max(£1 ;1 < min(e, U 48 {
BZZ{I) ”?16441, Ag L‘heck LRI

for (i = max(,(} 1%+ 1); i € min(et, u), z++) { '
Bys(i) u no Aj check, A, ub check ; -

for (i & max(‘n‘-t—l ;i< min(u; LF=1); z++){

831(3) ”Al uIJ Chgﬂk, Ag Ib check

for (i = max(ﬁ’ + 1,02 i < minGu. U2 144 { -
By,()) # A; ub check, noA2 check .. L

c (e 1, WA DS w i
333(!) : :ff\Al, A2 ub check
} o i

®

for (k =0; k= 2p; k++){
for (i = p;; i <p.;i++)

Biyoli) 23)

If the order of the safe bounds £1, ..., £°, 9!,

q(* is known at compile time, the mapping function
M (k) can also be determined. In this case, only the
loop body versions that are actually executed need
to be generated. In general, the order of the safe
bounds is not known, and B, ({) has to be selected
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at run time from the set of all possible 37 body ver-
sions.

An example. In the interest of conciseness, we use
avery simple code fragment to illustrate this method.
Figure 4A illustrates the original loop to be trans-
formed. It has two array references, A,[i — 2] and
A,[i + 2], each generating three simple regions:
@ '[1:3] and R?[1:3], respectively. The straightfor-
wardly transformed code, using the exact method,
is shown in Figure 4B. We note that:
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Figure 5 A program optimized using the exact method: (A) original code, (B) transformed code

- dahbie Ay[1=new double1 : 10] :
 double A,[] = new doubia{l 10]\ 3

‘for(z—i' 1<u,z++){ ;
Afi 42 =Ai=2] 41}_3@)

for(z.-l w:L2 s++){

B”(l) !!Al’ Az Ib Ckeﬂk

for (i = L2 i L1 t++} {

By 1 Al lla check "o A2 check

for (i = L‘ z~<'Zi2+1 ¢++){

322(5) ” ?30 AI, Ag Ekéfk

for (i = ‘Zfz+1 z<ﬁ1+1 z++)‘{

Bza(i) I no Ay check, A2 ub check

for (i = ‘Hld- i z++) {
Basty A A, ub check -

’,/5
Il

min{u + 1, max(l, 3)) (24)
min(u + 1, max(/, —1)) (25)
max(! — 1, min{u, n + 2)) (26)

Q2 =max(!/ — 1, min(u, n — 2)) (27)
[1] = 741] = b test (28)
7'[3] = 743] = ub test (29)

e
]
I

=
f

i

which does not provide us with enough information
to order the safe bounds ¢!, £2,41!, andu?, We im-
plement the code in Figure 4B according to Equa-
tion 19. We could have used the method in Equa-
tion 23, but it would still have required all 37 body
versions to be generated.

Now letn = 10, as shown in Figure SA. In this case,
the expressions for the safe bounds become:

e'"=min(u + 1, max(/, 3)) (30)
¢%=min(u + 1, max(/, —1)) (31)
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! =max(/ — 1, min(u, 12)) (32)

% = max(! — 1, min(u, 8)) (33)

and we can order £? = ¢! = ? =, In particular,
this is the ordering shown in Figure 3. We only need
to generate code for five loops, as shown in Figure
5B. In some cases, a compiler with appropriate sym-
bolic analysis can even eliminate some of these five
loops. For example, if the compiler could prove that
[ > 2, neither of the first two loops (body versions
B (i) and B ,(i)) would be necessary.

Summary of the exact method. The exact method
transforms code so that, for each iteration of the orig-
inal loop, only those tests that cannot be shown to
be unnecessary are performed. In the straightforward
application of the method to a loop with p array ref-
erences in its body, 3” new loops are generated, each
with a slightly different body. No more than 2p + 1
of these loops are actually executed at run time. In
some situations, compile-time analysis can show that
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Figure 6 Partitioning of an iteration space into three regions

some of these loops implement empty regions of the
iteration space and, therefore, can be discarded.

The general method

The general method works by partitioning the iter-
ation space of a loop always into three regions, in-
dependent of the number of array references in the
body of the loop. One of the regions is a safe region:
no array reference in that region can cause a vio-
lation. Another region precedes the safe region, in
iteration order. Finally, the third region succeeds the
safe region, in iteration order. This method can be
applied to each and every loop of an arbitrary loop
nest individually. The general method does not spe-
cialize the tests as much as the exact method, but it
does identify the same safe regions that can be ex-
ecuted without any tests.

Transforming a single loop. Consider the loop L (i,
[, u, B(i)), with p references of the form A4;[ f;(i)]
in its body. Using the concepts developed in the pre-
vious two sections, we can compute its safe region
as the intersection of all simple safe regions. This
safe region is defined by the range of values of i =

0 +1,..., u® where:
FF=max(e! €3 ..., 9" (34)
w=max({* — 1, min(u }, u? ..., ") (35)

The /* — 1 term in the expression for u* is necessary
to handle cases where the safe region is empty. We
can then partition the iteration space of the loop into
three (each possibly empty) regions:
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RIY:i=L ..., =1 (36)
KI2]:i=1% ..., u’ (37)
RKIB]:ii=wu+1,...,u (38)

This partitioning is not very different from our very
first example in the third section, except that now
it applies to a loop with an arbitrary number of ar-
ray references in its body. We illustrate this for two
references: A ,[ f;({)] and 4 ,[ f>(¢)] in Figure 6. Re-
gion {[2] is the intersection of the safe simple re-
gions R '[2] and R ?[2]. Correspondingly, region R{1]
is the union of the unsafe simple regions & '[1] and
®*[1]. Region R[3] is the union of the unsafe simple
regions R '[3] and K ?[3]. With reference to Figure
3, ®[1] is formed by merging all regions preceding
R[2 - 2], and region R[3] is formed by merging all
regions succeeding region R[2 - 2].

Region ®[2] is the safe region, and its body can be
implemented without any tests. We denote this ver-
sion of the loop body by B(netest(i)). Conversely,
the bodies of regions ®X[1] and ®[3] need at least
some tests. For simplicity, we can implement both
with a version B(test(i)) of body B(i). This version
performs an all tests test before each and every ar-
ray reference.

The implementation of the general method consists
of the transformation:

for(i =1 i=u;i++){
B(i)
}
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Figure 7 Applying the general method to a loop nest

ig,' ';-'-

q(i, 1 1= 1,

LG, 12,

Ll(]’ J: ;S 1 B(tﬁst(i}, tesﬂ:j)))
Ly, 1, uf, Bltest(), motest( /)
La(J, zf +1, 1 B(tﬁ&f{f), m(f))}

st

LGy 1’ L, B{aateétis}; tsest{ﬁn’
Ly 4 u,, ‘B(notest(1), notest( /)))

Ly(i, ui+ 1, ;.

Ly d; +1, u;, B(natest(;), t&iﬁ(ﬁ)) -

T T s(m(z), test() |
Ly(j, I} u, Bltest(7), notest( j)))
: *L%(L&f +1 U; B(%St(i), testi M}

becomes

for (i=LislI'—1;i++)

B(test(i))
}
for (=0 i=su’i++){
B(notest(z))
}
for(i=u'+1;i=su;i++){
B(test(1))
b (39)

or, in shorthand:

LG, I, I° — 1, B(test(i)))
LG, 1, u, Bi)) = {L,(i, I, u’, B(notest(i)))

L,(i, u*+ 1, u, B(test(i)))
(40)

The code expansion in this case is only twofold, since
the same code for B(test(i)) can be used twice.
Methods to realize all three resulting loops using only
two instances of B(i) are discussed in Appendix B.

Recursive application of the transformation. If the
body B of aloop contains other loops, then the same
transformation can be applied to each of the loops
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in B. The transformation can be applied individu-
ally to each and every loop in a general loop nest.
In fact, the final result is independent of the order
in which the individual loops are transformed.

Consider the case of the two-dimensional loop nest
L{i, 1, u;, L'(j, !, u;, B(i, j))). By first applying
the transformation to the L loop, we generate a re-
gion without any tests on array references indexed
by i:

L(l5 i ui’ L'(ja lj> ujy B(l,])))
becomes
LG, L, 05—1,L'(j, lj, u;, B(test(i), J)))

Lo, 1f, ui, L'(j, I, u;, B(notest(i), j)))
3(i9 l/l; + 1s M[; L (.]’ lj7 I/t/-, B(teSt(l)aj)))

We can now apply the transformation to each of the
three L' loops. This will generate two regions with-
out any tests on array references indexed by j and
one region without any tests on array references in-
dexed by either i orj as seen in Figure 7. This trans-
formation partitions the iteration space into nine re-
gions, and requires four different versions of the loop
body B(i).
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Figure 8 Program fragment to be optimized

_ double af)f] = new double(l; : u]{l; 4]
~ double b[]{} =new double(}; : ul]{i2 ]
for (i = ll,z‘iu,,z +).{ S

fm‘(;-{,;< ’f++) :
| s (a[ﬂfﬁ 1]+ alillj - 1] +a[z + 10 ol LS.

Figure 9 A program with explicit violation tests

double a[}[] new double[l; : u, [l uz]
double &{][] = new csk:‘ui:»le[ll ullly: uz]

for (i =l i< 1++} {

for (j =1;j s uijre){
ﬂAccesst}anan(a, i) throwExceptmn
ifAccessViolation(a[il, j + 1) throwException
1fAccessV1olanon(a[z], Jj = 1) throwException
ifAccessViolation(a, i + 1) throwException
ifAccessViolation(ali + 11, j) throwExeeption
ifAccessViglation(a, i — 1) throwException
ifAccessViolation(ali — 1], j) throwException
ifAccessViolation(b, i) throwException
ifAccessViolation(b[il, /) throwException \
bl 1 = (ali]lj + 11+ alillj - 1] +ali + 1]L ) + ali- 1}[j]/4

An example of the general method. For simplicity, the array references all use slightly different indices,
we give an example of single-threaded code with rect- making our example more interesting.

angular arrays. In the ninth section is a discussion
of the application of these optimizations to multi-
threaded code. The program of Figure 8 will be used
in this example. It implements a step of a two-di-
mensional Jacobi relaxation.® We chose it because
it is a well-known operation that illustrates a loop throws the appropriate exception if 4 is a null
nest with various array references in its body. Also, pointer, i is below the lower bound of A4, ori is above

Figure 9 shows the loop implemented with naive
tests. The statement

ifAccessViolation( A, i) throwException
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Figure 10 An example of the general method

the upper bound of A. In the actual executable code,
the tests would be interweaved with the individual
array references, and the order of tests would be
slightly different, but this example gives an idea of
the cost of naive testing. Figure 10 shows the loop
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nest optimized for testing using the general method.
In each of the resuiting loops, we list the violations
that can occur in its body. The code with explicit tests
for the different versions of the loop body are shown
in Figure 11. The minimal tests needed for the i,
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Figure 11 The four different body versions used in Figure 10

 Bltest(), test( )

| Bt st ):

,ﬁAccesstlatmn(& b thﬁ;w
BIEIL/] = (@li]L + 1] + alil

Bnotest(), test())):

_ B(uotest(i), notest( o

and i, loops differ in that the i, loop only needs to
test for lower bounds violations, and the i loop only
needs to test for upper bounds violations. By using
the transformation of Equation 39, the version
for both loops can be the same, as indicated in
Figure 10.

Transforming the loops. The optimized code is the

result of the following transformations. First, the
outer { loop is split into three loops (i}, i,, and i3),
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Bl = (@l + 13+ é&

}Hj‘:éﬁ"; 1A '-:t»a{ii_.: N ;ﬂ},; :

as shown in Figure 10. The middle loop, i,, corre-
sponds to those iterations of the original i loop that
cannot cause bound violations on array references
indexed by i. Within this loop, these array references
need not be tested. This is the safe region for loop i.

The first loop, i,, executes those iterations of the
original i loop whose values of i precede the safe re-
gion. Within this loop, all array references indexed
by i need to be tested. Because the subscript expres-
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Figure 12 Lower and upper safe bounds for each reference

10—

 reference | ‘ﬁ(i) e A af -
: G{i} fi(i‘) =i g ,3-:'1 mm(u +1, max(ip I])‘) \‘U,lﬂ max(l = 1 M(M;, ul)}
{alil =i \.c,, = min(; + 1, max(ly 1)) - ag max(l, - 1, min(u; 1))
a{u- 11 HD=i+l L, = min(u; + 1, max(l, b = 1)) | 7= - max(l; - 1, min(u;, 4~ 1))
ali-11 | f@=i-1 | g=mine L max@il+ 1) | ' maxgt,- 1, min(u, u; + 1))
blil | fl) =i “;5 mini; + 1, max(l 1) ‘@5\ = max(l, - 1, min(u, u))
g «(A\)'\Array references ind‘e'x‘ddbyi .
[eernce [ 70 L e
; alilij+1] Hp=j+1 - 1:31 min(y; + 1, max( 12-‘1')), \ 'Zg max(! =1 mm(u,uzwl))
: \\'1a{i}[j~\1] D=l L min(x; + 1, max(l; 124- 11} ‘lg =max(l;~ 1, mm(uj, Wy I))
el UL | AD=] ”,L min(y; + 1, max(/; \l‘z)) ﬂ, = max(l; - 1, min(u;, 1))
afl = 1][ At fkp=i o s=min(y; + 1, max( by o ) *uf‘m max(i =1, min(u; ug)}
b{z][fl L= | C=min(y+ 1, max(l; b)) *u] max(i -1, mm(u}, )

sions on i are monotonically increasing across the
iteration space of the i loop, only lower bound vi-
olations can occur in the i; region.

The third loop, i3, executes those iterations of the
original / loop whose values of i succeed the safe re-
gion. Again, within this loop, all array references in-
dexed by i need to be tested. Because the subscript
expressions oni are monotonically increasing across
the iteration space of the i loop, only upper bound
violations can occur in the i; region.

Within each of the resulting loops iy, i,, and i; the
Jj loop is similarly split. For example, the body of re-
sulting loopj, ; executes all iterations of the nest that
attempt to reference elements of a or b that are be-
low the corresponding lower bound, and elements
of b[i], a[i], a[i + 1], and a[i — 1] that are above
the corresponding upper bound. In a typical correct
numerical code, where all references are in bounds,
only the body of loop j,, will execute. This body is
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o (B) Array references indexed byj

represented by B(notest(i), notest()), and because
it has no tests, it executes faster.

Computing the bounds of the split loops. To compute
the bounds for the resulting i, i,, and i; loops, we
first have to compute the safe bounds for loop i: I}
and u;. In the body of the i loop there are five array
references indexed by i: b[i], a[i] (appearing twice),
ali + 1], and a[i — 1]. The values of £f and <}
are shown in Figure 12A. They are computed using
Equation 64 of Appendix A. The values of /{ and u;
can be computed according to Equations 34 and 35:

[ =max(e}, 2, £3, ¢}, ¢?)
u! = max(/{ — 1, min(u/}, a2 i, af, )

The bounds for the resulting j loops are computed
similarly. In the body of the j loop there are five
array references indexed by j: (a[iD[j + 1]

(aliDlj — 1), (ali + 1D[j] (ali — 1DL], and
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(b[iD[j]- Note that b[i], a[i], a[i + 1], and a[i —
1] are the arrays being accessed. The values of [} and
u; can be computed by Equations 34 and 35, using
values of ¢/ and u} obtained through Equation 64
and shown in Figure 12B. In this example, the ar-
rays are rectangular, and the lower and upper bounds
forali], a[i + 1], a|i — 1], and b[i} do not depend
on the value of i. (Note that, in general, /; and u
would be functions of i.)

Checks that must still be done. The transformation
just discussed creates regions of the loop that are
free from violations on array references indexed by
either i, j, or both. Figure 10 lists the specific vio-
lations that can occur in each region. Note that this
particular behavior is specific to this loop. We chose
to implement the loop using versions of the body that
perform tests covering more than the strictly nec-
essary violations. This allowed us to use only four
versions of the loop body, as shown in Figure 10 and
detailed in Figure 11. We perform an all tests test
on any i reference when outside the safe region for
i. Correspondingly, we perform an all tests on any
j reference when outside the safe region for j.

Summary of the general method. The exact method
of the previous section formed a different region of
the iteration space of a loop for each possible com-
bination of necessary array reference tests. The gen-
eral method always partitions the iteration space of
a loop into three regions: (1) a region for those it-
erations that need no test (the safe region), (2) a re-
gion for those iterations that occur prior to the safe
region, and (3) a region for those iterations that oc-
cur after the safe region. In each of the nonsafe loop
regions, any test that might be needed for a refer-
ence in any iteration of that region is performed in
all iterations of that region. This means that some
additional tests might be executed compared to the
exact method. For a nest of loops, the general
method can be applied to each and every loop re-
cursively and independently. Thus, for a loop nest
of depth d, 3¢ loop regions are created.

When generating code for the regions, several ap-
proaches can be taken. One approach generates a
different version of the loop body for each region.
When applied to the example of Figure 10, this would
generate only lower bound tests on arrays indexed
by i in the i, loop and only upper bound tests in the
i3 loop. This approach leads to 3¢ versions of the
loop body for a loop nest of depth d. A second ap-
proach, actually used in our example of Figures 10
and 11, uses only two versions of the loop body for
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each loop index: one with no tests on that index and
one with all tests. This leads to 2¢ versions of the
loop body for a loop nest of depth d. A third ap-
proach would be to generate only two versions of
the loop body, independent of the number of nested
loops: one with all tests on all indices and one with
no tests on any index. Obviously, the version with
no tests can only be used in that region where no
violations in any array reference can occur.

The compact method

The exponential expansion on the number of loops
caused by the application of the general method can
be highly undesirable in some cases. In this section
we propose an alternative method that results in only
a linear increase in the number of regions. The dif-
ference resides in how the transformation is applied
to loop nests. In the compact method, the partition-
ing into three regions is always applied in outermost
to innermost loop order. Furthermore, it is only ap-
plied to inner loops in the untested version of an
outer loop body.

Again, consider the case of the two-dimensional loop
nest L(i, I;, u;, L'(j, I;, u;, B(i, j))). By first ap-
plying the transformation to the outer i loop, we gen-
erate a region without tests on array references in-
dexed by i:

L(l, li’ ui’ L,(j5 lp uj, B(l’])))
becomes

Ll(ii L 1] — 19 L,(ja lja uj; B(teSt(l)’])))

Lz(ia lf, uf} L’(j’ lj, Llj, B(HOteSt(l)7.l)))
Ly(i, u? + 1, u, L'(j, I, u, B(test(i), j))) (41)

We now apply the transformation to the instance of
L’ in the L, region. This results in a region without
any tests on array references indexed by either i or
j as seen in Figure 13.

This transformation partitions the two-dimensional
iteration space into five regions, and requires three
different versions of the loop body B(i). It still gen-
crates the same region safe oni andj as the general
method.

An example of the compact method. As an example,
we apply the compact method to the two-dimensional
loop nest of Figure 8. The resulting code is shown
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Figure 13 Applying the compact method to a loop nest

LG 1

Ly, B u5 Bl

in Figure 14. Note that only loop i, has its j loop
partitioned into three regions. When applied to a
d-dimensional loop nest, the compact method gen-
erates 2d + 1 regions of the loop iteration space.
Because the two regions preceding and succeeding
a safe region are similar, only d + 1 versions of the
loop body must be generated.

Summary of the compact method. Like the general
method of the previous section, the compact method
divides each loop into one safe and two nonsafe re-
gions. The differences between the two methods are
manifested only when applying the transformation
to a loop nest. The general method splits all nested
loops into three regions, whereas the compact
method splits only loops nested within the version
without tests. This implies that within the nonsafe
versions of an outer loop the compact method may
perform more tests than the general method. The
benefit is that only a linear number of loop regions
(2d + 1 for a loop nest of depth d) are necessary
with the compact method, as opposed to an expo-
nential number with the general method. The num-
ber of versions of the loop needed is a linear func-
tion of the nesting depth of the loop (d + 1 for a
loop nest of depth d).

The number of versions of code can be further re-
duced to two by using a fully tested version on any
region that needs tests. Also, if the loop nesting is
perfect, the structure of the generated code can be
greatly simplified when only two versions are used.
These observations provide the motivation for the
restricted method of the next section.
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The restricted method

We now consider a transformation that can be ap-
plied to perfect loop nests, or any loop nest that can
be transformed to a perfect loop nest via compiler
techniques. The restricted method partitions the loop
into multiple regions. Each region executes either
a test (all array references are fully tested) or a notest
(no array references are tested) version of the loop
body. Having a perfect loop nest allows us to map
every iteration of the loop nest onto a single point
in a d-dimensional space, where d is the depth of
the loop nest. Partitioning the loop into test and
notest regions is equivalent to tiling this iteration
space.

The advantage of the restricted method, when ap-
plied to a perfect d-dimensional loop nest, is that it
can be implemented with only one instance of each
version of the loop body. Also, the instances can be
generated in place in a fixed loop structure. The pre-
vious methods, when implemented with only two ver-
sions of code, require a specialized loop structure
that invokes those versions from more than one point
in the program.

We start by considering a d-dimensional rectangu-
lar loop nest:

L(,, [il’ Uy, Ly(iy, liza Upp o« oy

LGy by iy Bliy, iy, -, i) . .2)) (42)

That is, the bounds /; and u,, of loop i, do not de-
pend on the values of i, ..., i;,_,. The iteration
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Figure 14 Structure of generated code for the compact method

double af][] = new doublell; : ,1[fy+ ]
~double b[1[] = new double[l; : u;}{}; : uy]
for (ll l;: 31 1 - 1 i1++) { : =

for (jia=1i ji1 S wijee) b
B(test(zl) test(j;. 1)) ,

5 /,",;{}/ : '
o fer (;2 = l,, iySul :2++) {

: B(notest(i,), tﬁt( 2,10

S

e fer(}z,z 22 S U g+ )
e B{mtestég) notest( j; ,))

} -
: for{.fz3-u +Lj3su ’123'*‘*‘){
B(notest(zz). test( j,, 3)5

}
o
Cfor iy = ui+ 1 iy S uy i) {
for (j31 = Lijay Suysjsg+h)§
B(teSt(la) test( j;, 1))

}

)

space of this loop can be partitioned into consecu-
tive regions described by a vector ®[1:u;]. Eachen-
try in this vector has the form:

R[8] = (1(8), u(d), 7 (43)
18) = (1,(8), 1,(8), ..., ,(3)) (44)
w(8) = (u,(8), u,(8), ..., u,l8) (45)

7 = {test|notest} (46)

The vectors 1 and u define the lower and upper
bounds for each loop in the region, respectively. The
elements /;(8) and u; denote the lower and upper
bounds, respectlvely, of loop i; in the region K{8].
The deﬁmtlon of a region also contams a flag r that
has the value test if the region requires any array
reference to be tested and notest otherwise.
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fﬂl‘(izl*ldzx-l*“l 321++}{ -

Afz :Iewér bound violations S
 //j lower and upper bound violations

: i violations
- W jlower bound violations

upper bound violations

- Wiupper b&#fté violations
f o "r/amf upper bound violations

With partitioning, the original loop can be executed
by a driver loop that iterates over the regions:

for (6 =1; 86 = ug 8++)
Ll(ib lil(s)’ uil(s)’ LZ(iZ’ liz(S)’ uiz(8)7 LR}
Lyip 1.(8), u,(8), Blin, iny -5 i) - .. ).
}

Note that in previous sections single-dimensional re-
gions were described by a vector containing the up-
per and lower bounds for the regions. Here a mul-
tidimensional region is described by vectors with
uppet and lower bounds for every index variable in
the loop nest. The techniques of the previous sec-
tions formed regions loop by loop, whereas the tech-
niques of this section form regions for the entire loop
nest.
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Figure 15 Iteration space for a perfectly nested two-dimensional ioop
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(B) Mandatory tests in-each region

Our goal is to partition the iteration space into re-
gions that we can identify as either requiring tests
on array references or not. Those regions that do
not require tests can then be executed with a notest
version of the loop body. We use the same kind of
partitioning described in the compact method. First,
an outer loop is divided into three regions. Then,
the inner loop in the region without tests is divided
again. This partitioning is illustrated in Figure 15,
for a two-dimensional iteration space.

Computing vector . Vector X can be computed by
procedure regions in Figure 16. Procedure regions
takes seven parameters. The first five are input pa-
rameters and describe the loop nest being optimized.
They are:

1. The indexj indicating that region extents along
index variable i; are being computed
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2. The vector (a,, a5, ..., a;_), where a; is the
lower bound for loop index i, in the regions to
be computed

3. The vector (w,, w,, ..., w;_,), where w, is the

upper bound for loop index i, in the regions to

be computed

The dimensionality d of the loop nest

. The vector %[1:d], where $[k] = (I,, u,, ,‘,

u ;) contains the full and safe bounds for loop i,

o~

The next two parameters are the output of the pro-
cedure. The first output parameter is the vector of
regions, R, described in Equations 43 through 46,
for the loop. The second is u;, the count of those
regions. Note that u ; is also used as an input, which
gets incremented each time a new region is created.

An invocation of procedure regions for a given value
of j partitions the loop nest formed by loops i;,

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998



Figure 16 Procedure to compute the regions for a loop nest
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[jc1, ..., I4. It is only performed for safe values of
i1,15, ...,1;_. Procedure regions partitions loop I;
into three parts. The first part consists of iterations
of i; that precede the safe region of i;. The inner loops
of i; are not partitioned. These regions necessarily
require testing of the array references, since they are
unsafe on references indexed by i;. Regions corre-
sponding to this part of the iteration space are com-
puted in statements S1 and $2, and correspond to
the regions R[1] (forj = 1), ®[2], R[5], K[8], and
R{11] (for j = 2) in the two-dimensional iteration
space of Figure 15. The third part consists of the it-
erations of /; that succeed the safe region of ;. Again,
the inner loops are not partitioned, and testing is re-
quired. Regions corresponding to this part of the it-
eration space are computed in statements §11 and
S12, and correspond to the regions R [4], R[7], X[10],
R[13] (forj = 2), and R[14] (forj = 1) in Figure
15. The middle (second) part consists of the itera-
tions of i; that are within its safe region. If i; is the
innermost loop, this is computed by statements S4
and §5, and the partitioning of loop i; is complete.
No tests are required. If/; is not the innermost loop,
the partitioning is applied recursively to loop i, , for
each iteration of i; in its safe region, as shown in lines
S7 and S8.
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To compute the entire vector of regions, the invo-
cation regions(1, (), (), d, B, R, us = 0) should
be performed. At the end of the computation, vec-
tor R contains the description of the regions, and
the value of u is the total number of regions in K.

Although the example in Figure 15 and the notation
imply that the iteration space passed to regions in %
isrectangular, the algorithm is not restricted to rect-
angular loop nests. In particular, if the expressions
for l,, u, ll ,and u; are functions of i;, 1 = k <
I the computatlon performed by regions is correct.

We can optimize the execution of the loop nest by
using two versions of code inside the driver loop: (1)
a version B(notest(i, ), notest(i,), . .., notest(i,))
that does not perform any of the array reference tests,
and (2) a version B(test(i,), test(i,), . .., test(i,))
that performs tests on all array references. Version
1is used only for regions where [ 8].7is notest, while
version 2 is used for all other regions. This corre-
sponds to forcing all regions with any potential ref-
erence violation to perform all reference tests. The
optimized loop nest can be implemented by the fol-
lowing construct:
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for (§=1; 6 = u, 6++){
if (R[8].7 ==test){
Ly, li](8)7 uil(a)a
Ly(iy, li3(5), ”iz(s),

Laig, 1,(5), u,(5), Btest(iy),
test(i,), ..., test(i,)))

)...

)
telse{

Ll(il’ lil(S)’ ui,(8)7
LZ(iZ, liz(a)’ ui2(8)7
Ld(id’ li,;

notest(i,), ...,

(8), u,(8), B(notest(i,),
notest(i,)))

)
¥

} 47)

An important optimization. If, for a particular value
ofj,1; =[; andu; = u;, then the safe region along
axis i; of the 1teration space corresponds to the en-
fire extent of the axis. If [}, = [, and u; = u, for
k=j,...,d, thenaxisi,_, can be partitioned ‘into
only three regions (1) one region from L ol
— 1, (2) one region from/; tou; , and (3) one
region fromu + 1tou, " Each of these regions
spans the entire iteration space along axes i,
ij41, - .-, 14 Thissituation for a two-dimensional 1t-
eration space is illustrated in Figure 17. Note that
the new partitioning results in only three regions.
Collapsing multiple regions into a single region re-
duces the cost of computing the regions, the total
number of iterations in the driver loop (47), and, con-
sequently, reduces the run-time overhead of the re-
stricted method. To incorporate this optimization in
the computation of regions, procedure regions is
modified as shown in Figure 37 in Appendix F.

An example of the restricted method. We apply the
restricted method to the two-dimensional loop nest
of Figure 8. The logical structure of the generated
code is the same as that generated by the compact
method in Figure 14. The actual implementation with
the driver loop and the two versions of code is shown
in Figure 18. The driver loop (with index 8) of Fig-
ure 18 executes u; iterations, where u 5 is the num-
ber of regions computed by procedure regions. On
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each iteration, either the version of the loop with
run-time tests or the version with no run-time tests
is executed. The code in Figure 18 instantiates the
regions dynamically. This contrasts with the static
instantiation of Figure 14.

Summary of the restricted method. The restricted
method works on perfect loop nests. It partitions the
iteration space into multidimensional regions and
generates two versions of the loop body. Each re-
gion is executed with either the test version of the
body or the notest version. Only regions that are free
from any possible access violation can use the notest
version.

Iterative computation of loop bounds

In the third section and in Appendix A we discuss
how to partition an iteration space into regions for
a variety of common forms of subscript functions.
In this section, we discuss how regions-based testing
optimization can often be performed even when the
subscript expressions are not one of the forms dis-
cussed in those sections.

The technique is similar to that of the inspector/
executor method for parallelizing loops.” We decom-
pose the computation and execution of the regions
into an inspector phase and an executor phase. The
inspector phase examines the references within the
iteration space of a loop and computes a list of it-
eration subspaces (regions). Some regions need run-
time tests, whereas others do not. The inspector phase
is analogous to procedure regions of the previous sec-
tion. The executor phase traverses the list of itera-
tion subspaces and executes them using different ver-
sions of the loop body. Thus the executor phase
corresponds to the driver loop of the last section.

Construction of the inspector phase. We show how
to construct an inspector for a singly nested loop.
This method can then be recursively applied to a loop
nest. Let L(i, I, u, B(i)) be aloop on i, where B(i)
contains a series of preferences 4 [o,],4,[03], - ..,
A,lo,], where o; is a function defined in the iter-
ation space of L. A reference can be of the form
A;[A[o]], where 4, is also an array. In general,
A,| o] may be present as a term in ;. We label the
array references so that A;[o;] executes before

Aj+1[0'j+i]-

The inspector constructed takes the form shown in
Figure 19A. The first argument to procedure regions
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Figure 17 Ilteration space for a perfectly nested two-dimensional loop

is the output (%, a vector of regions. An element R[]
of the region vector consists of:

R[8] = (1(8), u(s), 7

where /(8) and u(8) are the bounds of region ®[8],
and T is its test flag. The next argument, u s, is also
an output: the number of regions in vector K. The
other arguments for procedure regions are the input
of the procedure. They are: (1) the lower and upper
bounds, / and u, of the loop, and (2) the list of array
references (A [o,], A,[02], ..., A,[0,]).

The inspector enumerates all iterations from the
loop, by executing a for (i = [; i = u; i++) loop.
For each iteration i, it checks all array references
A;[o;] and determines if a test is necessary. If the
evaluation of g; itself causes a violation, we define
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Sistes

e R[] tests in
e R[2]: no tes
‘ -R,\[S]:téatém

B) Mandatory t\e\sis?iﬁ eachre

o; = —. If ¢; is invariant with respect to i, opti-
mizations can be performed to reduce the number
of evaluations in the inspector. The inspector marks
in a flag check if a test is required for iteration ;. If
check is the same as oldcheck, this iteration i belongs
to the same region as the previous iterations, and
we update the upper bound of the current region.
Otherwise, it is the first iteration of a new region.

Construction of the executor phase. The executor,
shown in Figure 19B, consists of a driver loop (in-
dicated by an index variable 8), that iterates over the
regions. Each region is executed with one of the two
different versions of the loop body, one with tests
and one without.

Optimizations and alternate constructions. The
inspector/executor technique can be applied to each
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Figure 18 Generated code for the restricted method

double a[]{] = new double(l, : u 1[I, w5}
double b{]{} = new double[/, : u;1L;: u,]

regiom(l) ()1 ()5 2'1 ((lh ui, l;f ui)! (Z}a “}" I;; u;))s g{a uﬁ = 0)

for (& =18 <ug; 6++) {

i (RI61:1 == test) {

for(i=100); i<u(d); i++) {
for (j = 4(8); j < u(8); j++) {
/. all out-of-bounds tests are performed

B(test(i), test( j))

}
Felse

for (i =1,(8); i < u(d); i++) {
for (j=1;(8); j < u;(8); j++) {
// no out-of-bounds tests are performed

B(notest(i), notest( j))

}

loop in a loop nest independently, as we did for the
general method discussed earlier. Alternatively, it
can be directly applied to a d-dimensional perfect
loop nest. In this case, the inspector has to enumer-
ate all iterations in the d-dimensional iteration space,
and the executor consists of a driver loop around dif-
ferent versions of the loop nest.

For the inspector/executor method to be effective,
the inspector phase has to be hoisted out of a loop
nest. When that is possible, the same vector of re-
gions R[1:u;] can be used in multiple instances of
the executor. The number of checks is reduced by
the number of iterations in the loops from which the
inspector was hoisted. We show such an example in
the following subsection.

Finally, it is also possible to build an inspector/
executor pair that uses more refined versions of the
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loop body. For example, one could use all 3° ver-
sions generated in the exact method.

An example. In this example, the loop of Figure 20A
is transformed. The inspector for this loop is shown
in Figure 20B and the executor in Figure 20C. Note
that we have optimized the loop by moving the in-
spector phase out of the j loop. This is possible be-
cause the array reference patterns are not depen-
dent on j. Thus, even though there are O(uu;)
computations being performed, only O(u,) tests are
necessary.

Summary of inspector-based methods. The inspec-
tor-based methods differ from the exact, general,
compact, and restricted methods in how regions are
formed. In the former methods, regions are com-
puted analytically using the formulas of the third sec-
tion and Appendix A. In the inspector-based meth-
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Figure 19 Template for constructing an inspector/executor

procedure regions(R, us, I, u, (Afo;).j = )

us=0 ,
oldcheck = undefined
for(i=Ligsuis+){

check = notest
or (J=Ljspi el :
i ((05<10(4) v (07 > up@,)) {
check = test

-}

1 ,
if (check == oldcheck){
a u(ﬂs) =i
i Yelse {
Ug=Ug+ 1
Hug) = ulugy =i
Rlugl.t = check
oldcheck = check
}

(A) Inspector

for (8=1;05 ug; 0++){
if (R[5].T == test){
for (i = K(8); i S ulB); i++)}{
B(test(i))

}else {
for (i = I(8); i S a(D); i++){
B(notest(i)) o
}
}
}

{B) Executor

ods the regions are computed by executing the code
that generates the subscripts for the references be-
ing optimized. This allows references whose sub-
scripts preclude an analytic computation of regions
to be optimized. There are two caveats, however.
First, because the inspector overhead is proportional
within a constant factor to the cost of executing an
instance of the loop, the methods are most effective
when the inspector for a loop can be hoisted out of
that loop. Second, there are still some loops which
cannot be optimized with inspector-based methods.
Figure 21 shows such a loop. Because the execution
of an inspector for this loop would have side effects
(other than region computation) that live beyond the
life of the inspector, forming an inspector with the
methods we have discussed would alter the outcome
of the program. This loop can be optimized using
speculative methods. Because they are not region-
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based, they are beyond the scope of this paper. They
are discussed in Reference 8.

Multithreading considerations

Up to now, the problem of other threads of execu-
tion and optimized code being active at the same time
has been ignored. If arrays had static shape, that is,
if it were not possible for an array to change shape
during the course of execution of a routine, mul-
tithreading would not be a problem. Multithread-
ing is beyond the scope of the current FORTRAN, C,
and C++ language definitions. Java, however, has
made multithreading an integral part of the language.
Furthermore, it is possible for one thread of a Java
program to alter the shape of a multidimensional ar-
ray that is being accessed by other threads.
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Figure 21 A loop that cannot be optimized by inspector-based methods

fér(inl;iﬁu;i++){
| alo}=f(D)

2. Before a synchronization within a thread is fin-
ished, all shared variables that have been mod-
ified since the last synchronization point in that
thread must be written back to the main mem-
ory.

3. If a shared variable has been written by a thread,
it must be written to main memory before its value
can be read from main memory by some thread.
This prevents locally written values to shared var-
iables from being lost.

4. Aslong asitem 3 is obeyed, the value of a shared
variable can be updated from global memory at
any time prior to an access by a thread.

The consequences of the Java memory model rules
to our work are threefold. First, it is legal and valid
within a thread to cache in local memory the values
of avariable—even if the thread is not synchronized.
Second, if the thread is not synchronized, the cached
values need not be written back. Third, if a synchro-
nization point exists within a loop nest being opti-
mized, the shapes of shared arrays have to be
conservatively assumed to have changed at the
synchronization point. To prove that the shape of a
shared array does not change across a synchroniza-
tion requires proving that none of the threads that
have access to the array at that time can change its
shape.

We now describe how to handle the case in which
a body of code without synchronization accesses a
(potentially) shared array. We can divide arrays into
two distinct parts. The first part is comprised of de-
scriptors, those parts of an array that contain point-
ers to other descriptors or to rows of data. The sec-
ond part is comprised of data, the one-dimensional
rows that contain the actual elements. In Figure 22,
the dashed boxes indicate descriptors, and the solid
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boxes indicate data. In general, a d-dimensional rect-
angular array A[1:n,][1:n,] ... [1:n,] consists of
one level-0 descriptor that points to a vector of n;
level-1 descriptors. Each level-1 descriptor points
to a vector of n, level-2 descriptors, for a total of
nn, level-2 descriptors. There are a total of
O(nn, ...n, ) descriptors. The last axis of the ar-
ray contains the actual data, in the form of vectors
of n, elements, pointed to by the level-(d — 1) de-
scriptors.

The following then ensures the thread safety of our
transformations: before every optimized body of
code, a copy of the descriptors part of each shared
array A is cached in working memory. Note that if
a cached descriptor for A that is valid by the Java
thread semantics is already present, it may be used
for the purposes we describe. This action insulates
the thread executing the optimized code from any
changes to the shared array shape caused by other
threads. Also note that only the array shape is rel-
evant in computing the safe and unsafe regions for
our transformations. The data part of the array can
be modified by other threads without any effects on
those regions. By using this caching of descriptors,
the only places that shape changes become visible
are at synchronization points. The shape of a shared
array should be marked as variant across those
points. This, in turn, can prevent many optimizations.

At first glance, the caching of descriptors may seem
expensive. In general, given a d-dimensional rect-
angular array A[l:n][1:n;])...[1:n,], only
O(n.n, ...n4_)storage needs to be cached. Thus,
a one-dimensional array needs only a constant
amount of storage, and ann, X n, array needs only
n, words of storage. Therefore, if most of the array
is accessed within the loop, the amount of storage
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Figure 22 Multidimensional array organization, showing the separation between descriptors and data

Figure 23 Java code that implements DDOT

;ﬁéﬁbla;sum = 0;

st ie double[] x :
st tlﬂ double[] y = new double(n];

néw§ doublelnli

Jfor(int i=0; i<n; i) {

sum = x[1] * y([i];

\‘ Yo

cached is approximately a factor of n, less than the
number of references.

Experimental results

To test the effectiveness of our compiler transfor-
mations, we developed a prototype framework. This
prototype framework currently implements only the
restricted method and only handles perfectly nested
rectangular loops. The framework consists of a Java-
to-Java translator that produces the two versions of
code necessary for the restricted method. These ver-
sions are then compiled into executable object code
using the 1BM High Performance Compiler for Java
(HPCJ).* HPCJ has a switch to generate code without
any run-time checks, on a class basis.

Benchmarks. Using the prototype framework, we ap-
plied the transformations in the restricted method
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to Java programs in a benchmark suite. This suite
consists of two numerical kernels and three appli-
cation kernels, all with array-intensive computations.
The two numerical kernels are a vector dot-product
operation (DDOT), and a matrix-multiply operation
(MATMUL). The three application kernels are a shal-
low-water simulation kernel (SHALLOW), a data-min-
ing kernel (BSOM), and a cryptography kernel (CBC).
We compare the performance of a Java implemen-
tation of each benchmark with a corresponding ver-
sion written in either C (DDOT, MATMUL, and CBC)
or C++ (SHALLOW and BSOM). The Cand C+ + ver-
sions were written and compiled according to what
we call Java rules: (1) two-dimensional arrays are rep-
resented as vectors of pointers to one-dimensional
arrays, and (2) any compiler optimizations that vi-
olate the Java IEEE 754 floating-point semantics (ex-
act reproducibility of results) are disabled. The im-
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Figure 24 Source code for C= C+ AXxBin Java

E‘fﬁstatic doublel](] A
© /static double[](] B
static doublel][] C

static void:
ol ot TP RSN

int ji
int koo

for (i=0;i<m;ise)

for (3=073<pii++) {
<np k) 0
= A[1]11k]

for

{k=0:k

pact of these rules on the performance of Cor C++
programs is beyond the scope of this paper. We dis-
cuss each of the benchmarks in more detail below.

DDQOT. The DDOT benchmark computes the dot-
product 2/, x;y, of two vectors x and y of n double-
precision floating-point numbers. The Java code that
implements DDOT is straightforward and shown in
Figure 23. The C code is very similar. The compu-
tation of DDOT requires 2n floating-point loads and
2n floating-point operations (# multiplies and »
adds). For our measurements we use n = 10°. We
report the performance of DDOT in Mflops.

MATMUL. The MATMUL benchmark computes the
matrix operation C = C + A X B, where C is an
m X p matrix, A is an m X n matrix, and B is an
n X p matrix. The elements are double-precision
floating-point numbers. The Java implementation of
this matrix operation is illustrated in Figure 24. The
C implementation is very similar, with the matrices
implemented as vectors of pointers to rows of cle-
ments. This is in accordance with the previously
mentioned Java rules for C. The computation of
MATMUL requires 2mnp floating-point operations
(mnp adds and mnp multiplies). For our measure-
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ments, we used m = n = p = 64. We also report
the performance of MATMUL in Mflops.

SHALLOW. The SHALLOW benchmark is a compu-
tational kernel from a shallow water simulation code
from the National Center for Atmospheric Research
(NCAR). It consists of approximately 200 lines of
code, in either the C++ or Java version. The data
structures in SHALLOW consist of 14 matrices (two-
dimensional arrays) of size n X m each. The com-
putational part of the code is organized as a time-
step loop, with several array operations executed in
each time step (iteration), as shown in Figure 25. In
that figure we indicate the number of occurrences
for each kind of array operation. The notations 4 +
A, A * A, and A/A denote addition, multiplication,
and division of all corresponding array elements. The
notation s * 4 denotes multiplication of a scalar
value by each of the elements of an array. There-
fore, each iteration of the time step loop executes
65mn floating-point operations. The matrix oper-
ations do not appear explicitly. Instead, they are
tused into three double-nested loops.

Just as in the MATMUL benchmark, the matrices in
the C+ + code are implemented as vectors of point-
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Figure 25 General structure of the SHALLOW benchmark

ers to rows of elements. For our measurements we
fix the number of time steps T’ = 20 and use n =
m = 256. Once again, performance for SHALLOW
is reported in Mflops.

BSOM. BSOM (Batch Self-Organizing Map) is a
data-mining kernel being incorporated into Version
2 of the IBM Intelligent Miner*. It implements a neu-
ral-network-based algorithm to determine clusters
of input records that exhibit similar attributes of be-
havior. The simplified kernel used for this study con-
sists of approximately 300 lines of code, in either the
C++ or Java version.

We time the execution of the training phase of this
algorithm, which actually builds the neural network.
The training is performed in multiple passes over
the training data. Each pass is called an epoch. Let
e be the number of epochs, let # be the number of
neural nodes, let r be the number of records in the
training data, and let m be the number of fields in
each input record. For each epoch and each input
record, the training algorithm performs nm connec-
tion updates in the neural network. Each update re-
quires five floating-point operations.

For our measurements, weusee = 25, n = 16, and
r =m = 256. We report the performance of BSOM
in millions of connection updates per second, or
MCUP/s, as is usually done in the literature for neu-
ral-network training.

CBC. Our last benchmark is an implementation of
CBC, or cipher block chaining.® CBC is a block ci-
pher mode in which a feedback mechanism is used
to encrypt a vector of n blocks of data. Each block
is encrypted in sequence. The result of encrypting
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a block is XORed with the next block before encrypt-

ing this next block. Let P = (P, ..
vector of plaintext blocks andlet C = (Cy, ..
be the vector of ciphertext blocks. Then

., P,) be the
5 Ch)

C,=E(P.®C, ) i=1...,n

where Ex(+) is the encrypting function with key K,
and C, is the initial chaining value. The CBC bench-
mark uses the data encryption standard (DES) algo-
rithm® to encrypt the blocks. DES transforms each
64-bit plaintext block into a 64-bit ciphertext block,
using a 56-bit key.

We use our CBC benchmark to encrypt a vector of
128k blocks (1 MB) and we report its performance
in millions of bytes encrypted per second (MB/s). We
measure both C and Java versions of this benchmark.
The CBC benchmark performs integer and logical
operations on array elements. This contrasts with the
mostly floating-point operations that the other four
benchmarks perform.

Execution environment. We performed our exper-
iments on an IBM RS/6000* Model 590 workstation,
running Advanced Interactive Executive (AIX*)4.2.
This workstation has a 66 MHz POWER2 processor,
and is configured with 256 kB of level-1 cache and
512 MB of main memory. The C and C+ + programs
were compiled with C Set+ + version 3 for AIX and
we used version BA9 of HPCJ to compile the Java
programs.

Results. Table 1 summarizes the results from our ex-

periments. For each benchmark and code version,
we list the measured performance in the appropri-
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Table 1 Summary of results from applying our transformations

rformance on RS/6000 590

SHALLOW B

(Mflaps) (M

343
39.1
114%

ate units. The first row (C or C++ with Java rules)
of the table lists the results for the C or C++ ver-
sion of the benchmarks. The second row (HPCJ no
checks) lists the results for the Java version compiled
with HPCJ, with all run-time checks disabled. Note that
this version is not Java-compliant, since it will not
detect any indexing violations that may occur. The
third row (Transformations) lists the results for the
Java version with our transformations applied. This
version is Java-compliant, since all necessary tests
are performed. When it is necessary to make private
copies of the descriptors of an array (as described
in the previous section), the time for copying is in-
cluded in computing the performance. Finally, the
last row (HPCJ with all checks) of the table lists the
performance measured for Java compiled with HPCJ,
with the run-time checks enabled. Again, this ver-
sion is Java-compliant.

From Table 1, we observe that HPCJ can produce ex-
ecutable code for Java that is very competitive with
code produced for C or C+ +, if the run-time checks
are disabled. However, when the checks are present,
the performance of Java code is degraded by as much
as 15 times (MATMUL). This indicates that HPCJ al-
ready implements many of the optimizations neces-
sary to make Java competitive with Cor C+ + in per-
formance. In fact, the Java version of SHALLOW
achieves higher performance than the C++ version
because of better pointer disambiguation in Java than
in C+ +. The executable code produced by HPCT is
hampered only by the need for run-time tests. When
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our transformations are applied to the code, part of
the execution can be performed without any run-time
tests. That is the reason why the performance of the
transformed code is so much better than that of HPCI
with all tests.

We compare the performance achieved for Java with
our transformations to the performance of the cor-
responding C or C++ code. That comparison is
shown in Table 2. The “%” row in that table indi-
cates the fraction of C or C++ performance that
the Java code with transformation achieves. We ob-
serve that we can achieve between 55 percent and
114 percent of C or C+ + code performance with
code that is entirely legal Java.

Finally, we compare the performance of code pro-
duced with our transformations to the performance
of code generated by HPCJ with all run-time checks
enabled. Those results are shown in Table 3. The
“improvement” row lists the performance ratio be-
tween the version with transformations and the ver-
sion without. We observe that we achieve perfor-
mance improvements of up to 14 times when we
apply our transformations.

Related work

A great deal of work has been done in the area of
optimizing bounds checking for arrays. Most of this
work has been done in the context of programming
languages with no requirements as to the execution
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state at the time the bounds violation occurs. In Java,
aviolation must generate an exception at a very pre-
cise point in the execution of the program. The
bounds checking work for Ada'® confronts a prob-
lem similar to the one we face, but takes a less ag-
gressive approach than we do.

There are two main approaches in the literature to
optimizing array bounds checks: (1) the use of static
data-flow analysis information to determine that a
test is unnecessary, '’~'* and (2) the use of data-flow
information and symbolic analysis at compile time
to reduce the dynamic number of tests remaining in
the program.'5"

Work in the first group uses data-flow information
to prove at compile time that an array bounds vi-
olation cannot occur at run time and, therefore, that
the test for the violation is unnecessary. Using the
terms of our discussion, the goal of this work is to
identify loops that are safe regions. In contrast, the
goal of our work is to transform loops to place the
maximum possible number of iterations in safe re-
gions (with constraints on the number of loop ver-
sions or regions). Methods of the first group use in-
formation about loop and array bounds, and about
subscript expressions, to prove that either no access
violation will occur in a loop execution or that an
access violation might occur. In the former case, no
tests are generated. In the latter case, tests are gen-
erated as needed. The difficulty of this approach is
that the information needed to prove that no vio-
lation will occur might not be available at compile
time. These techniques would have better results with
just-in-time compilation, but the analysis overhead
then becomes problematic.

Work in the second group attempts to reduce the
dynamic and static number of bounds tests. It also
attempts to reduce the overhead induced by a test
even if it cannot be eliminated. This is done (1) by
hoisting tests out of loops when possible' and (2)
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by also determining that a test is covered by another
test'>"® and can be eliminated.

The optimization method of Markstein, Cocke, and
Markstein' is closely related to our computation of
[* and u”® for a single linear reference. It is imple-
mented by three changes to the loop. First, before
entering the loop a test is made to determine if a
bounds violation occurs on the first iteration. If so,
the loop is exited immediately. Second, the loop exit
conditions are modified so that the loop terminates
before the access violation occurs. Finally, at loop
exit, the final iterate value is examined. If it is less
than or equal to the upper loop bound in the orig-
inal program, an access violation occurs, and an ex-
ception (or frap, in their terminology) is thrown. The
application of the method to the four-point stencil
problem of Figure 8 is shown in Figure 26.

To see how the removal of redundant (covered) tests
works, consider the naive sequence of tests in Fig-
ure 9. If a[i — 1] and afi + 1] are both legal ref-
erences, thena[i] is also legal; therefore, the explicit
test ifAccessViolation(a, i) is redundant. Similarly,
considering references indexed by j, if a[f][j + 1]
and q[i][j — 1] are both legal, thena[i + 1][j] and
a[i — 1][j] are also legal. (Note that we need to know
that the array a is rectangular in order to make this
statement.) Therefore, the explicit tests ifAccessVio-
lation(a{i + 1], j) and ifAccessViolation(a[i — 1},
j) are redundant. Finally, because b and a are ar-
rays with the same shape, the tests ifAccessViola-
tion(b, i) and ifAccessViolation(b[i], j) are also re-
dundant. After these optimizations we are left with
the four explicit tests shown in Figure 27. Note that
the remaining tests must be ordered appropriately.

Neither of these optimizations is usable with Java
in general because the Java semantics requiring pre-
cise exceptions make the hoisting and reordering of
tests illegal in many situations. Also, when an access
violation exception is caught by a try block in the
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Figure 26 Optimization of the code of Figure 8 by the Markstein, Cocke, and Markstein method

 double a[lf] = new doublel; : u;1l: u5]
double b[][1 = new double[l; : u;1[L : u,]

(T <max(y, I+ 1, 1 - D) v ;> minuy, uy + 1, ui —:1))) throwException

else {

else {

}
if (j J £iU;+1) throwExcepﬁon
} Gei

} )
e i #u;+ 1) throwException

for (i = I; (i Sup) A (i 2 maxdl;; 11 # 1 H-1)A (z Soin(uy, uy + 1, w= D)) 4
i (<max(l, h+ 1, L=1) v {I > min(u,y; 352 +:1, Lot n» thmexceptmn

for (j=1; (j Su) A (j 2 maxy, by + 1, b~ D) A (f < minGuy, uy 4 1, az—-n),m}{i; ;
BT = @A+ 11+ il = 1+ ol + L1+ ol 1114 .

Figure 27 Optimization of the tests in Figure 9 by test coverage

double a[][] = new douﬁfé{zlﬁ: wllly: ]
double b{][] = new doublefl; : ullh ]

Cfor (i=1; i< uy ivh) {/:/
for (j=1l;j<u; e

ifAccessViolation(a, i + 1) thmexcegnan

ifAccessViolation(a, i~ 1) throwExt:eption
lfAccesstlatmxl(a{i} F+ 1) thmexceptmn
1fAccessV1olatmn(zz{;} j=1) thmexceptlnn

bl j1 = (ali]lj + 1] + alil[j = 1] + ali + UL j}+ ali - 11D/

loop body, the loop should not be terminated (as
would occur when hoisting tests). Nevertheless, the
techniques for eliminating redundant tests can be
used to optimize the performance of inspectors.

Some instruction set architectures provide special
support for index checking, which have been used
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to speed up bounds checking in various implemen-
tations of Java. This is exemplified by the bound in-
struction in the Intel x86 architecture,® used in the
jx virtual machine, and the trap instructions of the
IBM POWER?2 Architecture,? used in the IBM Java JIT
Compiler.” These instructions generate interrupts
in the case of violations, which inhibit a wide range
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of compiler optimizations.® Optimizations that are
inhibited include code motion, reordering, and pre-
scient stores.’

Conclusions

We have developed a set of optimizations to reduce
the number of run-time tests that need to be per-
formed in Java programs. All of the optimizations
work by transforming a loop nest, which implements
an iteration space, into code that partitions this it-
eration space into multiple regions. In some regions,
run-time tests are performed, whereas in other re-
gions they are not necessary. The optimizations dif-
fer on their level of refinement and practicality. The
more-refined methods generate code versions that
are more specialized for the different characteristics
of regions. They can cause an unacceptable code ex-
pansion. The less-refined methods use fewer code
versions and merge regions with similar character-
istics. They cause a smaller code expansion and are
more practical. All methods can create one or more
regions that are completely free of run-time tests.
In correct array-intensive programs, these regions
are expected to perform all or almost all of the com-
putations of a loop nest. In these cases, the less-re-
fined methods can deliver most of the improvements
to be gained.

We want to emphasize the importance of creating
regions without any possible array bounds and null
pointer violations. The benefits of creating these re-
gions are threefold: First, run-time tests can be elim-
inated from the regions, which results in a direct per-
formance improvement. Second, try blocks that catch
bounds exceptions can be removed from the loop
versions implementing the safe regions. Third and
most importantly, as a consequence of the first two,
the resulting regions have simpler code, which en-
ables optimizations that would otherwise be ham-
pered by the explicit run-time tests. In general, the
ability to perform optimizations is enhanced by max-
imizing the extent of violation-free regions. Many
forms of operation reordering and parallelization can
be performed in these regions.

We implemented a prototype framework for per-
forming our more practical optimization, which only
requires two versions of code to be generated. We
have measured the effectiveness of this optimization
on a suite of array-intensive benchmarks. Our re-
sults indicate that Java code can achieve performance
that is within 55 to 100 percent or more of the per-
formance of C or C++ code, when the C or C++
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code follows Java rules. C or C+ + code that follows
Java rules implements two-dimensional arrays as a
vector of pointers to one-dimensional arrays, and
does not perform optimizations that violate Java
floating-point semantics.

Our benchmark suite currently consists of various
array-intensive programs, including numerical, data-
mining, and cryptography kernels. The array oper-
ations in these benchmarks are representative of the
behavior of many applications. We intend to extend
our suite to include graphics and image-processing
applications.

In all our discussion we have ignored the use of con-
trol-flow analysis. This analysis can be a powerful tool
to prove that array references only occur in certain
combinations (because of, for example, different
paths through the body of a loop), thus reducing
some of our code replication. We intend to inves-
tigate the usefulness of control-flow analysis as part
of our future work.

Finally, our next step is to implement and integrate
our transformations into IBM Java-related products.
We will work with technical and data-mining appli-
cation groups to help ensure the success of large-
scale, array-intensive Java applications that depend
on high performance.
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Appendix A: Computing safe bounds

We describe how to compute the safe bounds £ and
A of an iteration space i = [, ..., u with respect
to an array reference. The safe region of the iter-
ation space of i with respect to an array reference
A[ f(i)] is the set of values of i that make f(i) fall
within the bounds of 4. The safe region for this op-
eration is defined by

(lo{4) =fli) =up(A) A I =i=u) (48)
We first consider the case of f(i) monotonically in-

creasing. The iteration space is partitioned into three
regions defined as follows:

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998




KU1 (U =i=u) A (fli) <lo(A)) (49)
R[2]: I =si=u)A(lo(A) = f(i) = up(4)) (50)
R3] U=i=u) A (fli) > up(A)) (51)

Using the fact that
[f'o(A)] =i = lo(A) = () (52)
Lf "(up(A4))] =i = up(A4) = f(i) (53)
the safe region «X[2] can be defined by
®[2] : i = max(Z, [f'Ao(AND, ...,

min(u, Lf~'(up(4)))) (54)
No test is required in this region.

Correspondingly, we can define region X[1], which
requires an Ib test, by

RM1]:i=1, ..., min(w+ 1,7 flo(AN] - 1
(55)

and region ®[3], which requires a ub test, by

R[3]:i=max(! — 1,Lf'up(AN D +1,...,u
(56)

To combine all three definitions, we can compute

¢ = min(u + 1, max(/, [f'(lo(A4)) ) (57)
Q= max(/ — 1, min(u, L f~'(up(A4))J)) (58)
and write

W]:i=1,...,¢—1 (59)
K2l :i=¢,..., (60)
RKR3]:i=w+1,...,u (61)

As previously discussed, 7{1], the test for }[1], is Ib
test and 73], the test for R[3], is ub test.

Similarly, if f(7) is monotonically decreasing we can
compute

¢ = min(u + 1, max(/, [ f~'(up(A4)) 1)) (62)
A = max(! — 1, min(u, L f~'(lo(4))])) (63)
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R[1], R[2], and k[3] are defined as in Equations 59—
61. In this case, 7[1], the test for ®[1], is ub test and
7[3], the test for ®X[3], is Ib test.

Note that it is always legal to set either 7[1] or 7[3]
(or both) to all tests, so as to reduce the number of
distinct code versions. We actually use this simpli-
fication in some of our methods.

Linear subscripts. In the particular case of a linear
subscript function of the form f(i) = ai + b, the
inverse function f~'(¢) can be easily computed:

i—b

[ = (64)

a

Also, the monotonicity of f(i) is determined from
the value of ¢: if a > 0, then f(7) is monotonically
increasing, and if @ < 0, then f(i) is monotonically
decreasing. Note that the values ofa and b need not
be known at compile time, since £ and Ul can be ef-
ficiently computed at run time.

Affine subscripts. Consider the d-dimensional loop
nest

for (i, =1 ;i=u;i++)

1
for (i, =1; i, = uy; i+ +){
for (iy=1;i,=u;i++){
B, iy ..., 1)
}

.
}

and let there be an array reference A[ f(i |, i, - . .,
iy)]inthe body B(i, i», ..., i,). Let the subscript
be an affine function of the form f(i,, i», ..., i)
=gy, *+azi,+ ... +ayi, +b,wherei,, ..., i,
are the loop index variables and ay, ..., a,, b are
loop invariants. At the innermost (i,) loop the
values of i, ..., i, are fixed, and f can be treated
as linear on i,. Determination of safe bounds for
the iy, ..., i,_, loops can be done using the
inspector/executor method described earlier in this
paper. Alternatively, these safe bounds can be ap-
proximated. Replacing true safe bounds £ and 4t by
approximated safe bounds £ and < does not intro-
duce any hazards as long as £ = ¢ and<u = . Tech-
niques for approximating the iteration subspace of
a loop that accesses some range of an affinely sub-
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scripted array axis are described in References 23
and 24.

Constant subscripts. For an array reference A[ f(i)]
where f(i) = k (a constant), f(i) is neither mono-
tonically increasing nor monotonically decreasing.
Nevertheless, we can treat this special case by de-
fining

F=1landq =y if lo(A) =k =up(4)
g=land=1-1 if k>up(A4)
f=u+landdi=u if k<lo(A4)

and then computing

¢ =min(u + 1, max(/, £)) (65)
q = max(/ — 1, min(u, U)) (66)

(This last step is necessary to handle empty loops.)
The safe region for reference 4 [ k] is either the whole
iteration space, if £ falls within the bounds of A, or
empty otherwise. Only region }[1] is nonempty if
is too small, and only region ®[3] is nonempty if
k is too large. We also define 1] = Ib test and
73] = ub test.

Modulo-function subscripts. Another common form
of array reference is A[ f(i)] where f(i) = g(i) mod
m + ai + b. In general, this is not a monotonic func-
tion. However, we know that the values of f(i) are
within the range described by ai + b + j, fori =
LI+1,...,uandj=0,1,...,m — 1. We define
a function 4(i, j) = ai + b + j. Let h,, be the
maximum value of 4(Z, j) in the domaini =/, | +
1,...,uandj=0,1,...,m — 1. Let h,, be the
minimum value of 4(i, ) in the same domain. These
extreme values of h(i, j) can be computed using the
techniques described in Reference 25. Then we can
define

l lf ((IO(A) = hmin) A (up(A) = hmax))
€= u + 1 otherwise,

U=u
and compute

¢ =min(u + 1, max(, £)) (67)
qt = max(/ — 1, min(u, ) (68)

444 MIDKIFF, MOREIRA, AND SNIR

(Again, this is necessary to handle empty loops.) That
is, the safe region is the whole iteration space if we
can guarantee that g(i) mod m + ai + b is always
within the bounds of 4, or empty otherwise. Region
R[3] is always empty, and we make 7[1] = all tests
to catch all violations when region X[ 1] is not empty.

If the subscript function is neither one of the de-
scribed cases, then the more general inspector/
executor method described earlier should be used,
if possible. This method also lifts the restriction on
function f(i) being monotonically increasing or de-
creasing.

Appendix B: Auxiliary transformations

In the fifth section of this paper we used the trans-
formation

for ( = I;i < u;i++){
B(i)
}

becomes

for (=1li=sl"—1;i++){
B(test(i))
I3
for i =0%i=su’i++)
B(notest(i))
}
for(i=u'+1;i=u;i++){
B(test(i))
} (69)

to partition the iteration space of a loop into three
regions, using two different versions of the loop body:
one with tests (B(test(i)), which appears twice) and
onc without tests (B(notest(i)), which appears
once).

The following equivalent construct contains only one
instance of each loop body version:

for (§ =1; 8 <n; 8++){
for (i =1(8); i = u(8); i++){
B(test(i))
}
for (i = I5(8); i = u’(8); i++){
B(notest(i))
}
} (70)
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Figure 28 Bounds for the two loops nested within the 8 driver loop

for (3= 1: $<3; 8+4)

/) \ N for (5=1;8<2; 3+
3] 1y up) [ IO w® 5 l(g( u(d) lT(g k(o)
: xlf\”\lfgl zls 3* 1 1 F-1 rw
S i N W i

Figure 29 Example of a loop nest to be transformed

[TorGi=lzi<u; 50 {
Sy
for (j; = jl;jl = ufx;j1++) {
for (ky =l ky S up ; k) {
B,
}
AYY ,
for (ky =l ; by Sy ; hpt+) { : ( 5
B, - A kB
} : Jif Sy
} i : kB
83 * P8y
for (=1 /o S 5 jp++) { \ el
for (ky =l ks < uy; kyt) { b Jal a0
: k4(By
By
S :
} 5
Sy
for(k4=lkék4;<.uké kgt+) {
B,
}
}

A driver loop, on index variable 8, iterates over body version and the other with the untested ver-
the two instances of the loop, one with the tested sion. The bounds /(8), u(8), *(8), and u*(8) for
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Figure 30 The four innermost loops transformed

B
k3(By = kx| By

KB

Figure 31 The two middle loops transformed

each iteration of the driver loop must be properly Appendix C: Applying the general method to

computed to guarantee that the semantics of the orig- arbitrary loop nests

inal loop are preserved. The specifications of these

bounds as a function of /, u, /*, and u* for the most As a more complex example of the general method,
practical choices of n (n = 2 and n = 3) are shown consider the loop nest of Figure 29. It consists of an
in Figure 28. outermost loop i. The body of loop i contains two
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Figure 32 Result of applying the transformation to all loops

inner loops (j, and j,) and three segments of
straight-line code (S, S3, and S5). The body of loop
J1 contains two innermost loops (k, and k,) and a
segment of straight-line code (.$,). The body of loop
2 also contains two innermost loops (k5 and k ;) and
ascgment of straight-line code (S,). The pseudocode
for the loop nest is shown in Figure 29A, and a sche-
matic representation is shown in Figure 29B. We use
the notation {(B (curved braces) to represent a loop
on index variable i and body B that needs bounds
testing on array references indexed by i. We use the
notation i[B (square braces) to represent a loop on
index variable i and body B that does not need test-
ing on array references indexed by i. In the original
loop, all array accesses have to be tested for valid
indices, and this is represented in the diagram with
curved braces for all the loops.

We first apply the transformation to the four inner-

most loops (k 1, k,, k3, and k). Each of these loops
is transformed into a sequence of three loops, with
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the middle one not needing tests on the loop index.
These transformations are illustrated in Figure 30.

In the next step, we apply the transformation to the
middle loops j, and j,. Again, each of these loops
is transformed into a sequence of three loops. The
resulting loop nest is shown in Figure 31. For clar-
ity, we represent each of the transformed (expand-
ed) loops, j, and j,, by|é5(j1)'and t;(jz)‘, respec-
tively.

Finally, we complete the operation by applying the
transformation to the outermost i loop. This gen-
crates three versions of the i loop, with the middle
one needing no tests on array references indexed by
i. The final result is shown in Figure 32. The original
loop nest of Figure 29B is transformed into a se-
quence of three i loops. Inside the middle i loop there
are regions that do not need any tests. The trans-
formed code will execute efficiently if all or almost
all the iterations are executed in these regions.
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Figure 33 Applying the transformation to the outermost loop

Appendix D: Applying the compact method
to arbitrary loop nests

As amore complex example of the compact method,
consider the loop nest of Figure 29. The application
of the transformation to the outermost i loop is il-
lustrated in Figure 33. It generates a driver loop
around two instances of the loop nest (as described
in Appendix B). In our schematic notation, driver
loops are represented by curly braces ({). One of the
instances (with the square bracket for i) does not
need any tests on references indexed by i.

The transformation can then be applied to the mid-
dle loops j; and j, in the unchecked version of the
i loop. This is illustrated in Figure 34. It results
in the creation of a loop nest without any tests
for i or j, and another loop nest without any tests
for i orj,.

Finally, we apply the transformation to the inner-
most k,, k,, k3, and k, loops, in the regions already
withouti,j,, andj, tests. Asillustrated in Figure 35,
this creates four regions of code (the bodies of the
ki, k,, k3, and k, loops) that do not need any tests
on the array references.
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Appendix E: Computing the number of
regions when using the compact method

In this appendix we derive an expression for the num-
ber of regions a loop nest is partitioned into when
using the compact method discussed earlier in this
paper. If we apply the compact method to loop L,
of the loop nest shown in Equation 42, we partition
the iteration space into three regions, according to
Equation 41:

Ll(ils L, I — la Lz(i2’ 11’27 Upy -« -+

i Y

Lyip by ttyy Bliyy iy .. -5 i)) ..)
LGy, 5, uly Lo, Ly uy - - -

Lyi 1yt By by - .25 i) ... )
LGy ul + 1, u,, Lo, L, uyy - - -

Lyip Ly s Biy, iy - .. 5 00) - . ).

(At this point, we are not concerned with the run-
time tests necessary in each region.) Applying the
method recursively to the L , loop in the safe region
of L, generates 2 + 3n]{ regions, where n; = u; —
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Figure 34 Applying the transformation to the two middie loops

il %

2l S4

il S5

Jz {5

P,
T
A

s

{# + 1is the number of iterations in the safe region
of loop L; as seen in Figure 36.

In general, applying the compact method to the per-
fect loop nest of Equation 42 results in

n—2+§‘,(2+2< (2+ 2 3) ))

(71)

regions. The summations over i; add the number of
regions for each value of i; in its safe region. Note
that the Values of /! and u; can depend on the values
ofi iy, ..., 0. 1If the loops are rectangular (i.c., l and
u; do not depend on the values of other index
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variables), then the expression for the number of re-
gions simplifies to:

n=2+ni2+ny...2+n,,3)...))

=2+ 2n;+ 205+ -+ 2nins .. .05,
+3nins ... n)_, (72)
or, in more compact form:
d-2 i d—1
n=2(1+2ﬂn;)+3ﬂnf (73)
i=1 j=1 i=1
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Figure 35 Applying the transformation to the four inner loops

To make Equation 73 correct ford = 1, we define
O, n = W The partitioning of a two-dimensional
iteration space into regions is shown in Figure 15.
Note that the regions have different characteristics
as to which run-time checks have to be performed.

Appendix F: Algorithm to optimize the
number of regions computed for the
restricted method

Figure 37 shows the algorithm for performing the
optimization described previously that reduces the

450 MIDKIFF, MOREIRA, AND SNIR

e

ky(By

number of regions. The main difference, with respect
to procedure regions of Figure 16, is when building
the safe region for loop ;.

In Figure 37, instead of directly applying procedure
regions to each iteration of the safe region i;, a test
is performed using function nochecks. The test ver-
ifies whether the safe lower and upper bounds of all
loops inside loop; (Ioopsi; 1,12, - . . ,i4) are equal
to the corresponding full bounds. If that is the case
(function nochecks returns true), then a single mul-
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Figure 36 Applying the compact method to the two outermost loops generates 2 + 3n; regions.

Lilin s 18- L Lol By w0 LG iy BGigs iy - 8) )
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Ly u # Loy, .., LG \zé Uy, Bliy iy, i) <)

L](il, u‘%‘l +1, uil B 12(1‘2, [ 5 u,-z, Sy Ld(id’ l’d’ H‘k, B(il,fz, Qe s ‘ld)) . .))

tidimensional safe region can be created at this point.
If function nochecks returns false, then procedure
regions is applied recursively as in Figure 16. We also
put guards to generate the regions preceding and suc-
ceeding the safe region of loop i; only if they are non-

empty.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.
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Figure 37 Optimized procedure to compute the regions for a loop nest
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