
Optimizing array
reference checking
in Java programs

by S. P. Midkiff
J. E. Moreira
M. Snir

The Java" language specification requires that
all array references be checked for validity. If a
reference is invalid, an exception must be
thrown. Furthermore, the environment at the
time of the exception must be preserved and
made available to whatever code handles the
exception. Performing the checks at run time
incurs a large penalty in execution time. In this
paper we describe a collection of trans-
formations that can dramatically reduce this
overhead in the common case (when the access
is valid) while preserving the program state at
the time of an exception. The transformations
allow trade-offs to be made in the efficiency and
size of the resulting code, and are fully compliant
with the Java language semantics. Preliminary
evaluation of the effectiveness of these
transformations shows that performance
improvements of 10 times and more can be
achieved for array-intensive Java programs.

T hree goals of the Java* * programming language'
and execution environment are bit-for-bit repro-

ducibility of results on different platforms, safety of
execution, and ease of programming and testing. A
crucial component of the Java language specifica-
tion for achieving the latter two goals is that a pro-
gram only be allowed to access objects via a valid
pointer, and that programs only be allowed to ac-
cess elements of an array that are part of the defined
extent of the array. A naive implementation of this
specification component requires every access to ev-
ery element of an array to check the validity of all
base pointers and indices involved in the access.

Figure 1 shows a typical representation of a four-
dimensional array in Java. A naive checking of a ref-

erence to element A [11 [2][3][4], indicated in the
figure, would require four base pointer tests and four
range tests:A,A[l],A[1][2], andA[l][2][3] must
all be tested as valid pointers; 1,2,3, and 4 must all
be tested as valid indices along the corresponding
axes of the array. If the entire array is accessed, a
total of 4N base pointer tests and 4N range tests will
be necessary, where N is the total number of ele-
ments in the array. In this paper, we present a suite
of techniques to greatly reduce the number of run-
time tests. In many cases, the run-time tests can be
completely eliminated.

The above-mentioned goal of bit-for-bit reproduc-
ibility of results, combined with the ability to catch
exceptions and examine the state of the program at
the time the exception was thrown, imply that it is
not sufficient to determine that an invalid reference
occurred. Rather, any optimizations of valid refer-
ence checking must cause all exceptions that would
have been thrown in the original program to still be
thrown. The exceptions must be thrown in precisely
the same order, with respect to the rest of the com-
putation, dictated by the original program seman-
tics. The techniques we describe fulfill this require-
ment. Our methods also handle loops that catch
exceptions within their bodies (i.e., with nested try
blocks).

Wopyright 1998 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) theJournal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 0018-8670/98/$5.00 0 1998 IBM MIDKIFF, MOREIRA. AND SNIR 409


~~~ 

Figure 1 Access  of an element in a four-dimensional  array 

We note  that  the techniques and methods described 
here  are not restricted to Java. They can be applied 
to any language in  which the bounds of an array can 
be determined at  run time. They could be used, for 
example, in C and FORTRAN compilers that want to 
provide an option to check array references. 

The rest of this paper is organized as  follows. The 
next section presents an informal overview of our 
optimizations and is  followed by an introduction to 
the concept of safe bounds, used throughout the  pa- 
per.  The  fourth section presents the first of our  op- 
timization techniques, the exact method. The suc- 
ceeding sections present other techniques, the 
general, compact, and restricted methods, respec- 
tively. The eighth section discusses an inspector-ex- 
ecutor variant of our methods, to handle more 
complex  cases. The ninth section explains our  op- 
timizations in the context of multithreaded execu- 
tion. The  tenth section presents some experimental 
results, followed by a discussion of related work. Fi- 
nally, we present our conclusions. 

Overview  of the optimizations 

The main  goal of our work  is to develop techniques 
that minimize the number of run-time tests that must 
be performed for array reference operations in Java. 
An arrayA is defined by a lower bound lo(A) and 
an  upper bound up(A). We use a Java-like nota- 
tion for array declarations: 

doubleA[] = new double[lo(A) : up(A)] 

declares a one-dimensional arrayA of doubles. Note 
that we  allow an explicit declaration of the lower 

410 MIDKIFF, MOREIRA, AND SNIR 

bound lo( A )  of array A. In Java, the lower bound 
is  always zero. Also, Java array declarations specify 
the number of elements of the array. Therefore,  the 
Java declaration 

double A[ ] = new double [nl 

would correspond to  the declaration 

doubleA[] = new double[O:n - 11 

in our  notation. 

An array element reference is denoted by A [a], 
where a i s  an index into the array. For  the reference 
to be valid, A must not be null, and (T must  be  within 
the valid  range of indices for A :  lo(A), lo(A) + 
1, . . . , up(A). IfA is null, then the reference causes 
a nullpointer violation. In Java, this corresponds to 
the throwing of a NullPointerException. IfA 
is a valid pointer and a is  less than  the lower bound 
lo( A )  of the array, then  the reference causes a lower 
bound violation.  IfA  is a valid pointer and ais greater 
than  the upper bound up(A) of the array, then  the 
reference causes an upper  bound violation. Java does 
not distinguish between lower and upper bound vi- 
olations. A bound violation (lower or  upper) in Java 
causesanArrayIndexOutOfBoundsException 
to be thrown. 

Multidimensional arrays are  treated as arrays of 
arrays: 

double M[][] = new double[l, : ul] [ l , :  u2] 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



declares  an  array M with lower bound 1 ,  and  upper 
bound u , . Each  element of M is an  array of doubles, 
with lower bound 1, and  upper  bound u 2 .  M is an 
example of a rectangular array. Rectangular  arrays 
have uncoupled  bounds  along  each axis. As in Java, 
we also allow ragged arrays, where  the  bounds  for one 
axis depend  on  the  coordinate along another axis. 
A  triangular  array is an example of a  ragged  array: 

double T [ ] [ ]  = new double[l : n ] [ ]  

T[i]  = new double[l : i ] ,  i = 1, . . . , n 

Even  though  ragged  arrays are allowed and  treated 
by our techniques, we do have optimizations that  take 
advantage of rectangular  arrays. 

Arbitrary  array lower bounds,  the distinction  be- 
tween lower bound  and  upper  bound violations, and 
treatment for  rectangular  arrays  are  features of our 
work that  are  not strictly necessary for  Java  appli- 
cations. Our motivation to include them is twofold: 
First, we want our  methods  to be applicable to  other 
programming  languages, in particular C, C+ +, and 
FORTRAN 90. Second, we want to be prepared  to  han- 
dle  extensions to Java that  are being  considered to 
efficiently support numerical computing, as described 
in Reference 2. 

Array accesses typically occur in the body of loops. 
Our optimizations operate on do-loops, which are 
for-loops of the  form: 

for (i = 1; i 5 u ;  i++){ 

1 

where i is the index variable of the  loop, 1 defines 
the lower bound of the  loop,  and u defines the up- 
per  bound of the loop. The iteration  space of the 
loop is defined by the  range of values that i takes: 
1, 1 + 1, . . . , u .  All loops have a unit step,  and  there- 
fore  a  loop with I > LL has  an empty  iteration  space. 
B ( i )  is the body of the loop, which typically contains 
references to  the  loop index variable i .  As a  short- 
hand, we represent  the above  loop  structure by the 
notation L( i ,  1, u ,  B ( i ) ) .  Note  that loops with pos- 
itive nonunity  strides  can  be normalized by the  trans- 
formation 

B( i )  

for ( i  = 1; i 5 u ;  i = i + s){ 

1 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

becomes 

B(l  + i s )  
1 

A  loop with negative  stride can be first transformed 
into  a  loop with a positive stride: 

becomes 

for (i = 1; i 5 u ;  i = i + s){ 

} 
B(u + 1 - i )  

Loops  are  often nested within other loops.  Standard 
control-flow and data-flow  techniques’  can be used 
to recognize many for, while, and do-while loops, 
which occur in Java  and C, as  do-loops. Many goto 
loops,  occurring in C and  FORTRAN,  can  be  recog- 
nized as do-loops as well. 

Four different  tests  can be applied to  an array  ref- 
erence A [i]. A null test verifies whether A is a null 
pointer.  An lb  test verifies whether i 2 lo(A), and 
a  ub  test verifies whether i 5 up(A). Finally, a  test 
called all  tests verifies whether lo(A) 5 i 5 up(A). 
Tests  for  bounds  subsume null tests,  since  a null ar- 
ray can be set to have an empty  extent.  Furthermore, 
we show in  the next section that for  do-loops only 
one of three cases can  occur  for  each  iteration  and 
each  array  reference: (1) an lb test is required, (2) 
a  ub  test is required, or ( 3 )  no test is required. In 
many situations it is possible to precisely determine 
which case  occurs. In other situations, one has to be 
conservative  and adopt a  stronger  test  than  abso- 
lutely required.  In  particular,  an all tests  can be used 
to  detect any possible violations. 

We introduce  later  a  method  for deriving the min- 
imum  set of tests  required  at  each  iteration of a sim- 
ple  loop with no nesting. This  method will be  referred 
to as the exact method.  It provides the  general  frame- 
work that is used by the  subsequent  methods, which 
handle  nested  loops.  The exact method specifies, for 
each  iteration  and  each  array  reference, which test 

MIDKIFF, MOREIRA, AND SNIR 411 



of the  three  named above is required, if any. A  loop 
with p array  references in its body is split at compile 
time  into  up  to 3 p  consecutive regions, each with a 
specialized version of the  loop body. At  run time, 
no more  than 2p + 1 regions are actually executed. 

This level of code  replication is not  practical in gen- 
eral.  However, one can  reduce  the  number of code 
versions by merging  together  regions,  at  the  expense 
of performing  superfluous  tests.  This is shown in the 
section  describing the  general  method. In practice, 
this  does not increase  execution  time. The regions 
where  tests are  required will usually be  found  to  be 
empty at  run  time so that  the tests in these  regions 
are never normally  executed.  Reducing the  number 
of distinct  regions will not only decrease  code size, 
but may also  decrease  execution  time.  A  practical 
version of the exact method splits an iteration  space 
i = 1, 1 + 1, . . . , u into  three regions: 

1. A  region of the  iteration  space  where no tests are 
needed.  This region is defined by a safe lower 
bound 1” and  a safe upper bound u”.  The range 
of values of i in this  region is I“, 1” + 1, . . . , u ’. 

2. A  region of the  iteration  space  where  the index 
variable  has  values  smaller  than the safe lower 
bound I“. For this region i = I ,  I + 1,. . . , I‘ - 1. 

3. Aregion of the iteration space where the indexvari- 
able has values greater  than  the safe upper bound 
us.  For this region i = us + 1, u’ + 2,.  . . , u. 

The  loop is split into  three loops,  each  associated 
with a  different  code  version. As a  simpler  alterna- 
tive, the  number of code  versions  can be  further re- 
duced to two: one with no tests, and  one with all tests 
enabled. 

We extend  this method  to  nested loops in the  later 
section, “The  general  method,” recursively splitting 
each  iteration  space  into  three  regions.  When  ap- 
plied to a  perfect  d-dimensional  loop  nest,  this 
method  leads  to 3 distinct  loop  nests,  each  poten- 
tially executing a  different  code  version. One can re- 
duce  the  number of distinct  code  versions by merg- 
ing different  versions. In the  extreme case, it is 
possible to use only two versions.  This method will 
be  referred  to as the general method. 

In the sixth section we present  a  method  that avoids 
this  exponential blow-up in static  code size. This 
method is referred to  as  the compact method.  When 
applied to a  perfect  d-dimensional  loop  nest, it re- 
sults in 2d + 1 loop  nests. Depending on the sim- 

412 MIDKIFF, MOREIRA, AND  SNIR 

plifications adopted, it  can use from  2  up  to  2d + 
1 different  code  versions. 

Finally, in the seventh  section we describe  a tiling 
method  that can  be  applied to  certain types of loop 
nests. It effectively implements  the compact method 
through  generated  code of a very simple  form. The 
method uses two versions for  each  loop body (no  tests 
and all tests  enabled).  This  method is referred  to  as 
the restricted method. 

These  four  methods apply to Java as well as  to 
FORTRAN or C  and  work  for  all  machine  architec- 
tures.  Additional  optimizations  are possible in im- 
portant special cases. We briefly discuss two of these 
optimizations now: how to  determine a valid index 
with a single test  and how to test  for null pointers. 
We  do  not discuss special  optimization  techniques 
any further in this paper. 

In the  particular case of Java  an all tests  test  can be 
implemented with a single comparison. Because Java 
does  not distinguish between lower bound  and  up- 
per  bound violations, and  because lo(A) = 0 always, 
it suffices to test if i < up(A) + 1 using unsigned 
arithmetic. A negative  number  appears, in unsigned 
arithmetic,  as  a very large positive number which, 
by the Java  language specification, is always larger 
than  the largest possible array  extent.  This  technique 
is used,  for  example, in the IBM HPCJ (High-Perfor- 
mance  Compiler  for  Java) project4 

The  optimization of checks  for null pointer viola- 
tions in array  references is a  direct  consequence of 
the optimization of checks  for  bound violations, as 
discussed in the next section. There  are also many 
ad hoc solutions to  the  optimization of null pointer 
violations. For machines with segmented memory ar- 
chitecture,  such  as  the IBM POWER2 Architecture*, 
null pointers  can  be  represented by a  pointer to a 
protected  segment.  For  machines with linear,  but 
paged,  memory  architecture,  a  protected  segment 
can be simulated with a  region of protected  pages. 
Any attempts  at access through  a null pointer will 
immediately  cause  a  hardware  exception that can 
then  be  translated  into  the  appropriate software ex- 
ception.  This  implementation  completely  eliminates 
the  need for any explicit checks  for null pointer vi- 
olations in the  code.  It is also applicable to all pointer 
dereferences,  not  just  array accesses. Despite  the 
complications in properly  translating  a  hardware ex- 
ception,  this  technique  has  been successfully used, 
for  example, in the CACAO project.’ 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Computing safe bounds 

The basic idea of our  methods is to  partition  the  it- 
eration  space of a loop into regions. A region is a 
contiguous  subset of the  iteration  space.  It is char- 
acterized by a collection of tests  that  need  to  be  per- 
formed  for  array  references in that  subset.  We  are 
particularly  interested in finding safe regions, where 
we  know there  can be no violations in array  refer- 
ences. If an array  reference is guaranteed  not  to  gen- 
erate a violation, explicit tests  are unnecessary. 

We  illustrate the  computation of safe  regions with 
a simple  example.  We then  proceed  to formalize  it 
to more  general cases. Consider  the simple  loop: 

for ( i  = 1; i 5 u ;  i++){ 

I 

which we represent as L(i ,  I ,  u ,  B ( i ) ) .  B ( i )  is the 
body of the  loop  and, in general,  contains  references 
to  the  loop index variable i. The iteration  space of 
this  loop  consists of the  range of values i = 1, I + 
1, . . . , u.  

Let  there  be a single array  referenceA [i] in the  loop 
bodyB(i).  We  denote  the lower bound  ofA by lo(A) 
and  the  upper  bound  ofA by up(A). Therefore,  for 
the  array  reference A [ i ]  to be valid we must have 
lo(A) 5 i 5 up(A).  IfA is null, we define lo(A) 
= 0 and up(A) = - 1. This  guarantees thatA[i] is 
never valid if A is null. We can split the  iteration 
space of the  loop into three regions :~:[1], 9:[2], and 
:j:[3], defined as follows: 

B ( 4  

$)1[1] : (1 5 i 5 U )  A ( i  < lo (A))  (1) 

:K[2] : (1 5 i 5 u )  A (lo(A) 5 i 5 up(A))  (2) 

:1:[3] : ( I  5 i 5 u )  A ( i  > up(A))  ( 3 )  

Region $1: [ l ]  corresponds to those  iterations of the 
loop  for which the index i into array A is too small. 
Therefore, an Ib test is required  before  each  array 
reference in this  region. No tests are  required in re- 
gion 9:[2], since the index i falls within the  bounds 
of A .  Finally, a ub  test is required in region $):[3], 
because the values of i are  too large to index A. 

Using Equation 2,  we can compute  the lower and 
upper  bounds P and I - l r  of the safe  region: 

X = max(1, lo(A)) (4) 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

Similarly, we use Equation 1  and  Equation 3 to com- 
pute  the lower and  upper  bounds of regions CJ: [ 11 and 
a:[3], respectively: 

%[1] : i = 1, . . . , min(u + 1, lo(A)) - 1 (7) 

n:[3] : i = max(1 - 1,  up(A)) + 1 , .  . . , u (8) 

Note  that  min(u + 1, lo(A)) = A', except when 
lo(A) < 1 or lo(A) > u + 1. In the  former case, 
%[1] is empty; in the  latter case, 9[2] is empty. To 
handle  these  cases,  and  the  symmetric  upper  bound 
cases, we redefine 

.I" = min(u + 1, max(Z, lo(A))) (9) 

e11 = max(1 - 1, min(u,  up(A))) (10) 

We can now express the  bounds of each of the re- 
gions just  in  terms of 1, u ,  i', and %: 

9:[1] : i = 1, . . . , ~Y - 1 

% [ 2 ]  : i = .Y, . . . , 'II 
3:[3] : i = 011 + 1, . . . , u 

Equations 11-13 define the  same regions as Equa- 
tions 6-8. The values of region  bounds are different 
only for  empty  regions,  but  they  are still empty. 

In  Figure 2 we illustrate  the values of X and  for 
different  relative  positions of iteration  bounds  and 
array  bounds.  Figure  2A  has  empty  regions rK [ 11 and 
cj? [3],  whereas  region $11 [2] comprises the  entire it- 
eration  space.  Region rK[1]  is empty in Figure 2B, 
whereas  region !r: [3] is empty in Figure 2C. All three 
regions are nonempty in Figure  2D.  Regions %[2] 
and ~ 1 [ 3 ]  are empty in Figure  2E,  because all values 
of i fall below the lower bound ofA. Finally, regions 
a:[1] and !K[2] are empty in Figure 2F, since all val- 
ues of i fall above the  upper  bound of A .  

In  the  general case, we have an array  reference of 
the form A [ f ( i ) ]  in the body B ( i )  of a loop.  Depend- 
ing on  the behavior of f(i), we can  compute  safe 
bounds P andill that partition  the  iteration  space  into 
three regions, as defined by Equations 11-13. Re- 
gion $~:[2] is safe, and  no  test is defined in it. We de- 
tine  tests ~ [ l ]  and 7131 that  are sufficient for  regions 

MIDKIFF. MOREIRA, AND SNIR 413 



Figure 2 Relationship between loop bounds and array bounds 

9 [ 11 and L R  [3 ] ,  respectively. Expressions for Y, k%, and An exact method 
T for  various  forms off(i)  are described in Appen- 
dix A.  The  safe  bounds  are  computed so that we al- In this section we consider  the case of  a simple (depth 
ways have -11 2 p - 1 and ,Y 5 011 + 1. These  prop-  one)  loop, with multiple  references.  The exact 
erties  are  important  for  the  correct functioning of method described here  performs only the tests strictly 
our  methods. necessary (as specified in Appendix  A)  to  detect  the 

414 MIDKIFF, MOREIRA, AND SNIR IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 3 Regions  generated by the  intersection of simple  regions 

array  reference  violations  that  occur  during  the ex- 
ecution of a  loop.  It is, in general, of limited  prac- 
ticality because up  to 3P versions of the  loop body 
must be  instantiated in the  code,  where  pis  the  num- 
ber of array  references in the  loop body. In  some 
situations,  when  enough  information is available to 
the compiler, it is possible to  generate efficient code 
using this  technique. Our main  interest in studying 
this  method is that  the  other,  more practical,  trans- 
formations  are derived  from  this  technique. 

In this section we treat  references of the  form A [ f(i)3 
that allow the  computation of safe  bounds  as  de- 
scribed in the previous  section. The eighth  section 
discusses how to  handle  more complex  subscripts. 
We first describe how the  method  generates opti- 
mized code,  and  then we illustrate the  method with 
an example. 

Code generation. The  method works  as follows. Let 
L( i ,  I ,  u ,  B ( i ) )  be a  loop  on  index  variable i and 
body B(i ) .  Let  there  be p references of the  form 
A l [ f , ( i ) ] ,  j = 1, . . . , p, in body B(i) .  Each array 
referenceAj[ f,(i)] partitions the iteration  space  into 
three  (each possibly empty)  regions: 

:1:’[1] : i = I, . . . , .f I - 1 

r,:’[2] : i = .$”, . . . , ~ I I ’  

:1:’[3] : i = YI’ + I, . . . , u 

as  defined by Equations 11-13. We call these regions 
defined by a single array  reference simple  regions. 
Also,  each  region r,:j[k] has  a test + [ k ]  associated 
with it, which describes  what kind of test  has to  be 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

performed  for  referenceAj[ f , ( i ) ]  in that region. The 
test +[2] for  region 9!lj[2] always specifies no  test, 
because  %j[2] is a  safe  region with respect to this 
reference. The tests ~ j [  11 and +[3], for regions 9Ij[ 11 
and %j[3],  respectively, can  be any one of ub  test 
(an  upper  bound  test), Ib test  (a lower bound  test), 
or all tests (both a lower and  an  upper  bound  test). 
The exact choice depends  on characteristics of the 
array  reference Aj  [ f, (i)]. This issue is discussed in 
detail in Appendix  A.  For  each  region %j[k]  we  de- 
note its lower bound by 9 ’  [k] .1 and  its upper  bound 
by ?~t j [k] .u .  

Two references A,[f , ( i )]  and A k [ f k ( i ) ]  can  be 
thought of as  partitioning the  iteration  space  into 
five regions  defined by the  four  points 2j ,  W’, Y k ,  
and i.ll k .  We illustrate  this in Figure 3 for two ref- 
erences, A [ f l  (i)] and A 2[ f2(i)]. Note  that  some 
of the resulting  regions may be empty, in general. 
The resulting  regions are a  subset of the 3 * 3 = 9 
regions formed by all combinations of intersections 
of two simple  regions, one from  each  reference. 

In  general, given the p references A [ f, (i)], we can 
create a  vector of all 3p regions formed by intersect- 
ing the simple  regions  from  different  array  refer- 
ences: 

%[x1 ‘ X z ’  . . . *xp] = 

YI ‘[X,] n 5): ’[x2] n . . . n $,I ~ [ X J  (14) 

Each  indexxk is 1,2,  or 3. The lower bound of a re- 
gion %[xl   -x2 - . . . .xp] is the maximum of the lower 
bounds of the forming  simple  regions.  Correspond- 

MIDKIFF, MOREIRA, AND SNIR 415 



ingly, its upper  bound is the minimum of the 
bounds of the forming  simple  regions: 

%[x, *xz*. . . -x,].l = 

max(ctl[x,].l, :R 2[x,].1, . . . , :~p[x,].I)  

9qx1 ‘X, * . . . ‘X,].U = 

min($jt ‘ [ x , ] . ~ ,  9t2[x,].u, . . . , Y1p[x,].u) 

Finally, the tests that  characterize region %[xl ex, 
. . . x,] can  be  described by: 

7[x1 *x2-. . . - x p ]  = {+[x,], j = 1, . . . , p }  (17) 

That is, the  combination of the tests  for  each  simple 
region %j[xj]. 

Using  this  partitioning of the  iteration  space  into 3” 
regions, the  loop 

can  be  transformed  into 3’’ loops,  each one imple- 
menting one of the regions $R [x1 - xz * . . . * x,]. The 
body of each  region  can  be  specialized to perform 
exactly the tests  described by T [  x , - x2 . . . x,] . We 
use BXIX2. .  .X,(i) to  denote  the body B(i )  specialized 
with the  tests described by 7[x1 * x, . . . - x,,]: 

for (i = C J { [ ~  1 . . . 11.1; 

i 5 - 1 - .  . . * 11.u; i++){B,,, , ,l(i)} 

for (i = C J ? [ ~  1 e .  . . - 21.1; 

i 5 51[1 * 1 * . . . - 21.u; i++){B,,, , ,,(i)} 

for (i = ~ t [ 1  1 . . . - 31.1; 

i 5 %[1 1 - . . . * 31.u; i++){B,,, , ,Ji)} 

for (i = ct[1 - 2 . . . * 13.1; 

i 5 2 * . . . - 1I.u; i++){B,,,, ,,(i)} 

for (i = $t[1 - 2 . . . 21.1; 

i 5 %[ 1 - 2 - . . . 21.u; i+ +){B , ,  , ,,(i)} 

for (i = %[1 - 2 * . . . 31.1; 
i 5 X[1 * 2 * . . . 31.u; i++){B12, , ,3(i)} 

for (i = 9 [ 3  - 3 . . . - 11.1; 
i 5 % [ 3  * 3 e .  . . - 11.u; i++){B,,, . ,,(i)} 

for (i = %[3 - 3 . . . - 21.1; 
i 5 9 [ 3  3 - . . . * 21.u; i++){B,,, , ,,(i)} 

for (i = Ck[3 3 . . . 31.1; 

i 5 ~ t [ 3  3 * . . . * 31.u; i++){&, , ,3(i)} (19) 

Note  that  the  order of the resulting  loops is impor- 
tant,  although  there  are many correct  orders.  The 
requirement is that,  for any value of j ,  region 
91 [x1 - . . . - 1 * . . . x,] has  to  precede 
%[x, . . . - xj-l * 2 ex,,, . . . - x p ]  which in turn 
has to  precede %[x1 . . . * x J - ,  3 .xj+, . . . . x p ] .  

Out of the 3 ,  possible regions formed by the  inter- 
section of the simple  regions, no  more  than 2p + 1 
are  nonempty  and  are actually  executed at run  time. 
Which of the 3 ,  regions are  nonempty  depends  on 
the relative  positions of the 2 p  safe  bounds P ’, . . . , 
. Y p ,  W ’, . . . , C-ll”. Letp ,, . . . ,p2 ,  be  the list obtained 
by sorting s l ,  . . . , P P ,  i . l l l  + 1, . . . , q l p  + 1 in as- 
cending order.  Definep, = 1 andp,,,, = u + 1. 
The safe  bounds ’, . . . , .t’p, Y I  ’, . . . , ~ I I  p partition 
the  iteration space  into 2 p  + 1 (each possibly empty) 
regions Y [ k ] ,  k = 0, 1, . . . , 2 p  defined by 

ii’[k] : i = pk, . . . , pk+’ - 1 (20) 

Each  region 9 [ k ]  corresponds to a region %[xl -x2 
. . . - x,] defined by 

I 1 if X J  ?pk+, 

X]  = 3 if <pk (21) 
2 if (.YJ <pk+J A ~ I I J  ?pk) 

(It can  occur that  both Y ’  2 pk+, and b11J < p k .  In 
that case,  region Y[k]  is necessarily empty,  and the 
choice  ofx, is irrelevant.) Let M ( k )  be  the  function 
that defines the  correspondence X [ M ( k ) ]  = Y [ k ]  
for k = 0, . . . , 2 p .  Then  the  loop 

can be  transformed  to 

416 MIDKIFF, MOREIRA, AND SNIR IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 4 A program  optimized  using  the  exact  method: (A) original  code,  (B)  transformed code 

for ( k  = 0; k 9 2p; k + + ) {  
for (i = p k ;  i < P ~ + ~ ;  i++){ 

} 
BMdi)  

If the  order of the safe  bounds Y', . . . , X P ,  Y I  ', . . . , 
e11 p is known at compile  time, the mapping  function 
M ( k )  can  also be  determined.  In this  case, only the 
loop body versions that  are actually executed  need 
to be  generated.  In general, the  order of the safe 
bounds is not known, and B M ( k )  ( i )  has to  be selected 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

at  run  time  from  the set of all possible 3 p  body ver- 
sions. 

An example. In  the  interest of conciseness,  we  use 
avery simple code  fragment to illustrate  this  method. 
Figure 4A illustrates the original  loop to be  trans- 
formed.  It  has two array  references, A [ i  - 21 and 
A *[i + 21, each  generating  three simple regions: 
9 ' [ 1 : 31 and $R z[ 1 : 31, respectively. The straightfor- 
wardly transformed  code, using the exact  method, 
is shown in Figure 4B. We  note  that: 

MIDKIFF, MOREIRA, AND SNIR 417 



Figure 5 A program  optimized  using the exact  method: (A) original code, (B) transformed  code 

Y I = min(u + 1, max(l, 3))  (24) 

X ' = min(u + 1, max(l, -1)) (25) 

% ' = max(Z - 1,  min(u, n + 2)) (26) 

Y I  = max(1 - 1,  min(u, n - 2)) (27) 

7'[1] = ~ ~ [ 1 ]  = lb test  (28) 

7'[3] = ~ ~ [ 3 ]  = ub test  (29) 

which does  not  provide  us with enough  information 
to  order  the safe  bounds P I ,  P ', Y I  and ill '. We im- 
plement  the  code in Figure 4B according to  Equa- 
tion 19. We could have used the  method in Equa- 
tion 23, but  it would still have required all 3p body 
versions to  be  generated. 

Now let n = 10, as shown in Figure 5A. In  this  case, 
the expressions  for the safe  bounds  become: 

1-11 ' = max(l - 1, min(u,  12))  (32) 

9 = max(l - 1,  min(u, 8)) (33) 

and we can  order P 5 LY 5 Y I  4 i.l[ I .  In  particular, 
this is the  ordering shown in Figure  3. We only need 
to  generate  code  for five loops, as shown in Figure 
5B. In  some cases, a  compiler with appropriate sym- 
bolic analysis can  even  eliminate some of these five 
loops. For example, if the compiler  could  prove that 
1 > 2, neither of the first two loops  (body  versions 
B I I ( i )  and B 12(i)) would be necessary. 

Summary of the exact method. The exact method 
transforms  code so that,  for each iteration of the orig- 
inal  loop, only those  tests that  cannot  be shown to 
be unnecessary are  performed.  In  the straightforward 
application of the  method  to a  loop with p array  ref- 
erences in its body, 3 p  new loops are  generated,  each 
with a slightly different body. No more  than 2p + 1 
of these  loops are actually  executed at  run  time.  In 
some  situations,  compile-time analysis can show that 

418 MIDKIFF, MOREIRA, AND SNIR IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 6 Partitioning of an iteration  space  into  three  regions 

some of these  loops  implement  empty  regions of the 
iteration  space  and,  therefore, can be  discarded. 

The  general  method 

The general  method works by partitioning the  iter- 
ation  space of a  loop always into  three regions, in- 
dependent of the  number of array  references in the 
body of the  loop.  One of the regions is a  safe  region: 
no array  reference in that region can  cause  a vio- 
lation.  Another region  precedes  the  safe  region, in 
iteration  order. Finally, the  third region succeeds the 
safe  region, in iteration  order.  This  method  can  be 
applied to each  and every loop of an  arbitrary  loop 
nest individually. The general  method  does  not  spe- 
cialize the  tests as much as the exact method,  but  it 
does identify the  same safe  regions that can  be ex- 
ecuted without any tests. 

Transforming a single loop. Consider  the  loop L(i ,  
I, u ,  B ( i ) ) ,  with p references of the  formA,[fi(i)] 
in its body. Using  the  concepts  developed in the  pre- 
vious two sections, we can  compute its safe  region 
as the intersection of all simple  safe  regions.  This 
safe  region is defined by the  range of values of i = 
I', I '  + 1, . . . , u s  where: 

The 1" - 1 term in the expression  for u ' is necessary 
to handle  cases  where  the  safe  region is empty. We 
can  then  partition  the  iteration  space of the  loop  into 
three  (each possibly empty) regions: 

This  partitioning is not very different from  our very 
first example in the  third section,  except that now 
it applies to a  loop with an arbitrary  number of ar- 
ray references in its body. We  illustrate  this  for two 
references: A [ f l  (i)] andA 2[ f2(i)] in Figure 6. Re- 
gion !K[2] is the intersection of the safe  simple  re- 
gions 51 '121 and 51 2[2]. Correspondingly, region 9[1] 
is the  union of the unsafe  simple  regions a: ' [ l ]  and 
> ~ 1  2[1]. Region %[3] is the union of the unsafe  simple 
regions 9 ' [3] and 9 *[3].  With reference  to  Figure 
3, %[1] is formed by merging all regions  preceding 
SJ? [2 21, and  region $11 [3] is formed by merging all 
regions  succeeding  region 91[2  21. 

Region tK[2] is the safe  region,  and  its body can  be 
implemented  without any tests. We  denote this  ver- 
sion of the  loop body by B(notest(i)). Conversely, 
the  bodies of regions %[1] and t~I[3] need  at least 
some  tests. For simplicity, we can  implement  both 
with a  version B(  test(i)) of body B( i ) .  This  version 
performs  an all tests  test  before  each  and every ar- 
ray reference. 

The implementation of the  general  method consists 
of the  transformation: 

IBM SYSTEMS JOURNAL, VOL 37, NO 3. 1998 MIDKIFF, MOREIRA, AND SNIR 419 



Figure 7 Applying  the  general  method  to  a  loop  nest 

becomes 

for (i = 1; i I I‘ - 1. > i ++){ 

} 
for (i = I”; i I us ;  i++){ 

1 
for (i = u ‘  + 1; i 5 u ;  i++){ 

} 

B(test(i)) 

B(notest(i)) 

B(test(i)) 
(39) 

or, in shorthand: 

1 Ll(i ,  I, I s  - 1, B(test(i))) 

~ ( i ,  I ,  U ,  ~ ( i ) )  + LAi, Is, us,  WnotestW)) 

L3(i, u’ + 1, u ,  B(test(i))) 
(40) 

The  code expansion in this  case is only twofold, since 
the  same  code  for B(test(i)) can be  used twice. 
Methods  to realize all three resulting loops using only 
two instances of B(i) are discussed in Appendix B. 

Recursive application of the transformation. If the 
bodyB of a  loop  contains  other  loops,  then  the  same 
transformation  can  be  applied  to  each of the loops 

in B. The transformation  can  be  applied individu- 
ally to each  and every loop in a  general  loop  nest. 
In fact, the final result is independent of the  order 
in which the individual loops  are  transformed. 

Consider  the case of the two-dimensional loop nest 
L ( i ,  I,, u, ,  Lr( j ,  I , ,  u i ,  B(i ,  j ) ) ) .  By first applying 
the  transformation  to  the L loop, we generate a  re- 
gion without any tests on  array  references  indexed 
by i: 

L(i ,  4, ui, L f ( j ,  I,, u,, B(i ,  j>>> 

becomes 

h ( i ,  I, ,  II - 1, L r ( j ,  I,, uj, B(test(i) ,j)))  

M i ,  C, ul,  L r ( j ,  I,, u,, B(notest(i),j>)) 

U i ,  ul’ + 1, u,, L r ( j ,  I,, u,, B(test(i) ,j)))  

We can now apply the  transformation to each of the 
three L loops.  This will generate two regions with- 
out any tests  on  array  references  indexed by j and 
one region  without any tests on array  references  in- 
dexed by either i o r j  as  seen in Figure 7. This  trans- 
formation  partitions the  iteration  space  into nine  re- 
gions, and  requires  four different versions of the  loop 
body B ( i ) .  

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 8 Program  fragment  to be optimized 

Figure 9 A program  with  explicit  violation  tests 

An example of the general method. For simplicity, 
we  give an example of single-threaded  code with rect- 
angular  arrays. In  the  ninth section is a discussion 
of the application of these  optimizations to multi- 
threaded  code.  The  program of Figure 8 will be used 
in this  example. It  implements  a  step of a two-di- 
mensional Jacobi We chose  it  because 
it is a well-known operation  that illustrates  a  loop 
nest with various  array  references in its  body. Also, 

the  array  references all use slightly different  indices, 
making our example more interesting. 

Figure 9 shows the  loop  implemented with naive 
tests. The  statement 

ifAccessViolation(A , i )  throwException 

throws the  appropriate exception if A is a null 
pointer, i is below the lower bound of A ,  or i is above 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 MIDKIFF,  MOREIRA, AND SNIR 421 



Figure 10 An  example of the  general  method 

the upper bound of A .  In the actual executable code, nest optimized for testing using the general method. 
the tests would  be interweaved with the individual In each of the resulting loops, we  list the violations 
array references, and  the  order of tests would  be that can  occur in its  body. The code with  explicit tests 
slightly different, but this example gives an idea of for the different versions of the  loop body are shown 
the cost of naive testing. Figure 10 shows the loop in Figure 11. The minimal tests needed for the i ,  

422 MIDKIFF, MoREIRA, AND SNlR IBM SYSTEMS  JOURNAL, VOL 37, NO 3, 1998 



Figure 11 The four  different  body  versions  used in Figure 10 

and i3 loops differ in that  the i , loop only needs to 
test for lower bounds violations, and the i3 loop only 
needs to test for upper bounds violations. By using 
the transformation of Equation 39, the version 
for both loops can be the same, as indicated in 
Figure 10. 

Transforming  the loops. The optimized code is the 
result of the following transformations. First, the 
outer i loop is  split into three loops (i,, i,, and i3), 

as shown  in Figure 10. The middle loop, iz, corre- 
sponds to those iterations of the original i loop that 
cannot cause bound violations on array references 
indexed by i. Within this loop, these array references 
need not be tested. This is the safe region for loop i. 

The first loop, i,, executes those iterations of the 
original i loop whose values of i precede the safe re- 
gion. Within this loop, all array references indexed 
by i need to be tested. Because the subscript expres- 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 MIDKIFF, MOREIRA. AND SNIR 423 



Figure 12 Lower  and  upper  safe  bounds  for  each  reference 

sions on i are monotonically increasing across the 
iteration space of the i loop, only  lower bound vi- 
olations can occur in the i ,  region. 

The third loop, i,, executes those iterations of the 
original i loop whose values of i succeed the safe re- 
gion. Again, within  this loop, all array references in- 
dexed by i need to be tested. Because the subscript 
expressions on i are monotonically increasing across 
the iteration space of the i loop, only upper bound 
violations can occur in the i3  region. 

Within each of the resulting loops i l ,  i,, and i, the 
j loop is similarly split. For example, the body of re- 
sulting loopj,,, executes all iterations of the nest that 
attempt  to reference elements of a or b that  are be- 
low the corresponding lower bound, and elements 
of b[iJ, a [ i ] ,   a [ i  + 11, and a [ i  - 11 that  are above 
the corresponding upper bound. In a typical correct 
numerical code, where all references are in bounds, 
only the body of loop j2,2 will execute. This body  is 

424 MIDKIFF, MOREIRA, AND SNIR 

represented byB(notest(i),  notest(j)), and because 
it has no tests, it executes faster. 

Computing  the bounds of the split loops. To compute 
the bounds for the resulting i l ,  iz, and i3  loops, we 
first  have to compute the safe bounds for loop i: 1; 
and u ) .  In the body of the i loop there  are five array 
references indexed byi: b[i],  a[i] (appearing twice), 
a [ i  + 11, and a [ i  - 11. The values of Y,k and b11: 
are shown  in Figure 12A. They are computed using 
Equation 64 of Appendix A. The values of 1; and u,‘ 
can be computed according to Equations 34 and 35: 

The bounds for  the resulting j loops are computed 
similarly. In the body of the j loop there  are five 
array references indexed by j:  (a[i])[j + 11, 
(a[il)[j - 11, (u t i  + l l ) [ j l ,  ( u t i  - l I ) [ j l ,  and 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



( b [ i ] ) [ j ] .  Note  that b[ i ] ,  a [ i ] ,  a [ i  + 11, and a [ i  - 
11 are  the arrays being accessed. The values of 1; and 
u; can  be  computed by Equations 34 and 35, using 
values of .I": and b11; obtained  through  Equation 64 
and shown in Figure  12B. In this  example, the  ar- 
rays are  rectangular,  and  the lower and  upper  bounds 
fora[i] ,  a [ i  + 11, a [ i  - 11, and b[ i]  do not  depend 
on  the value of i. (Note  that, in general, 1; and u; 
would  be  functions of i.) 

Checks that must still be done. The transformation 
just discussed creates  regions of the  loop  that  are 
free  from violations on array  references  indexed by 
either i, j ,  or  both.  Figure 10 lists the specific vio- 
lations  that can  occur in each  region. Note  that this 
particular  behavior is specific to this  loop. We chose 
to implement the  loop usingversions of the body that 
perform  tests covering more  than  the strictly nec- 
essary violations.  This allowed us to use only four 
versions of the  loop body, as shown in Figure 10 and 
detailed in Figure 11. We  perform  an all tests  test 
on  any i reference  when  outside  the  safe  region  for 
i. Correspondingly, we perform  an all tests on any 
j reference  when  outside  the  safe  region for j .  

Summary of the general method. The exact method 
of the previous  section  formed  a  different  region of 
the  iteration  space of a  loop  for  each possible com- 
bination of necessary array  reference  tests. The gen- 
eral  method always partitions  the  iteration  space of 
a loop  into  three regions: (1) a  region  for  those  it- 
erations  that  need  no test (the safe  region), (2) a  re- 
gion  for  those  iterations that occur  prior to  the safe 
region,  and  (3)  a  region  for  those  iterations that oc- 
cur  after  the safe  region.  In  each of the nonsafe  loop 
regions, any test that might be  needed  for a  refer- 
ence in any iteration of that region is performed in 
all iterations of that region.  This  means that  some 
additional  tests might be executed  compared to  the 
exact method.  For a  nest of loops, the  general 
method  can  be  applied  to  each  and every loop  re- 
cursively and  independently. Thus, for  a  loop  nest 
of depth d ,  3"  loop regions are  created. 

When  generating  code  for  the regions, several  ap- 
proaches  can  be  taken.  One  approach  generates a 
different  version of the  loop body for  each  region. 
When applied to  the example of Figure 10, this would 
generate only lower bound  tests on arrays  indexed 
by i in the i , loop  and only upper  bound  tests in the 
i3 loop.  This  approach  leads  to 3" versions of the 
loop body for  a  loop  nest of depth d. A second  ap- 
proach, actually used in our example of Figures 10 
and 11, uses only two versions of the  loop body for 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

each  loop index: one with no tests  on that index and 
one with all  tests.  This  leads to 2d versions of the 
loop body for  a  loop  nest of depth d .  A  third  ap- 
proach  would  be  to  generate only two versions of 
the  loop body, independent of the  number of nested 
loops: one with all tests on all indices  and one with 
no tests on any index. Obviously, the version with 
no tests  can only be  used  in  that region  where  no 
violations in any array  reference  can  occur. 

The compact method 

The exponential  expansion on the  number of loops 
caused by the application of the  general  method  can 
be highly undesirable in some cases. In this  section 
we propose an alternative  method that results in only 
a  linear  increase in the  number of regions. The dif- 
ference  resides in how the  transformation is applied 
to  loop nests. In  the  compact  method,  the  partition- 
ing into  three regions is always applied in outermost 
to  innermost  loop  order.  Furthermore, it is only ap- 
plied to  inner loops in the  untested version of an 
outer  loop body. 

Again, consider  the case of the two-dimensional loop 
nest L(i ,  li, u, ,  L ' ( j ,  l,, u,, B ( i , j ) ) ) .  By first ap- 
plying the transformation to  the  outer i loop, we gen- 
erate a  region  without  tests on array  references  in- 
dexed by i: 

L( i ,  li, ui, L r ( j ,  u,, B ( i , j ) ) )  

becomes 

Ll( i ,  I,, 1: - 1, L ' ( j ,  l,, u,, B(test(i), j ) ) )  

L2(i, 11, us, L r ( j ,  I,, uj, B(notest(i), j ) ) )  

~ ~ ( i ,  us + 1, u,, ~ ' ( j ,  I,, uj, B(test( i ) , j ) ) )  (41) 

We now apply the  transformation  to  the  instance of 
L in the L region.  This  results in a  region  without 
any  tests on array  references  indexed by either i or 
j as  seen in Figure 13. 

This  transformation  partitions  the  two-dimensional 
iteration  space  into five regions,  and  requires three 
different  versions of the  loop body B( i ) .  It still gen- 
erates  the  same region  safe on i andj  as  the general 
method. 

An example of the compact method. As an example, 
we apply the compact method to  the two-dimensional 
loop  nest of Figure 8. The resulting  code is shown 

MIDKIFF,  MOREIRA,  AND SNIR 425 



Figure 13 Applying  the  compact  method to  a  loop  nest 

in Figure 14. Note  that only loop i2  has its j loop 
partitioned into  three regions. When applied to  a 
d-dimensional loop nest, the compact method gen- 
erates 2d + 1 regions of the loop iteration space. 
Because the two regions preceding and succeeding 
a safe region are similar, only d + 1 versions of the 
loop body  must be generated. 

Summary of the compact method. Like the general 
method of the previous section, the compact method 
divides each loop into  one safe and two nonsafe re- 
gions. The differences between the two methods are 
manifested only  when  applying the transformation 
to  a loop nest. The general method splits all nested 
loops into  three regions, whereas the compact 
method splits only loops nested within the version 
without tests. This implies that within the nonsafe 
versions of an  outer  loop  the compact method may 
perform more tests than  the general method. The 
benefit is that only a linear number of loop regions 
(2d + 1 for a loop nest of depth d )  are necessary 
with the compact method, as opposed to an expo- 
nential number with the general method. The num- 
ber of versions of the loop needed is a linear func- 
tion of the nesting depth of the loop (d + 1 for a 
loop nest of depth d). 

The number of versions of code can be further  re- 
duced to two by using a fully tested version on any 
region that needs tests. Also, if the  loop nesting is 
perfect, the  structure of the  generated code can  be 
greatly simplified  when  only two versions are used. 
These observations provide the motivation for  the 
restricted method of the next section. 

426 MIDKIFF, MOREIRA, AND SNIR 

The restricted method 

We now consider a transformation that can  be ap- 
plied to perfect loop nests, or any loop nest that can 
be transformed to a perfect loop nest via compiler 
techniques. The restricted method partitions the loop 
into multiple regions. Each region executes either 
a test (all array references are fully tested) or a notest 
(no array references are  tested) version of the loop 
body.  Having a perfect loop nest allows us to map 
every iteration of the loop nest onto  a single point 
in a d-dimensional space, where d is the  depth of 
the loop nest. Partitioning the  loop  into test and 
notest regions is equivalent to tiling  this iteration 
space. 

The advantage of the restricted method, when ap- 
plied to  a perfect d-dimensional loop nest, is that it 
can be implemented with  only one instance of each 
version of the loop body. Also, the instances can be 
generated in place in a fixed loop structure. The  pre- 
vious methods, when implemented with  only two ver- 
sions of code, require a specialized loop structure 
that invokes those versions from more than one point 
in the program. 

We start by considering a d-dimensional rectangu- 
lar loop nest: 

Ll(il> u,,, L2(i2, liz, uiz, * * . 7 

L d G d ,  I,,, %<,’ W I ,  i,, f . . , id)) . . . 1) (42) 

That is, the bounds l l k  and ui,, of loop i k  do not de- 
pend on the values of i l ,  . . . , i k - l .  The  iteration 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 14 Structure of generated  code  for  the  compact  method 

space of this  loop can be  partitioned  into  consecu- 
tive regions  described by a  vector :)I [ 1 : u Each  en- 
try in this  vector  has the  form: 

:1:[6] = (1(6), u(6), T )  (43) 

1(6) = U,,@), @), . ' ' 7 @)) (44) 

u(6) = b, , (6 )>  u l J a  . . . 7 ul<l(6))  (45) 

T = {testlnotest}  (46) 

The vectors I and u define the lower and  upper 
bounds  for  each  loop in the  region, respectively. The 
elements 11,(6) and u,! denote  the lower and  upper 
bounds, respectively, of loop i, in the region 9 [ 6 ] .  
The definition of a region also  contains  a flag 7 that 
has  the value test if the region  requires any array 
reference  to  be  tested  and notest otherwise. 

With  partitioning, the original  loop can be executed 
by a  driver  loop that  iterates over the regions: 

Note  that in previous sections single-dimensional re- 
gions  were  described by a  vector  containing the up- 
per  and lower bounds  for  the regions. Here a mul- 
tidimensional  region is described by vectors with 
upper  and  lower  bounds  for every index  variable in 
the  loop  nest.  The  techniques of the previous  sec- 
tions  formed  regions  loop by loop,  whereas  the  tech- 
niques of this  section  form regions for the  entire  loop 
nest. 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 MIDKIFF, MOREIRA, AND SNIR 427 



Figure 15 Iteration space for a perfectly  nested  two-dimensional  loop 

Our goal is to  partition  the  iteration  space  into  re- 
gions that we can  identify as  either requiring  tests 
on  array  references  or  not.  Those  regions  that do 
not  require  tests  can  then  be  executed with a notest 
version of the  loop body. We use the  same kind of 
partitioning  described in the compact  method.  First, 
an  outer  loop is divided into  three regions. Then, 
the  inner  loop in the region  without  tests is divided 
again.  This  partitioning is illustrated in Figure 15, 
for  a  two-dimensional  iteration  space. 

Computing vector 9. Vector >,L can be  computed by 
procedure regions in Figure 16. Procedure regions 
takes seven parameters.  The first five are  input  pa- 
rameters  and describe the  loop nest being  optimized. 
They  are: 

1. The  indexj indicating that region  extents  along 
index variable ij are being  computed 

2. The vector ( a , ,  a z ,  . . . , a j - l ) ,  where ak is the 
lower bound  for  loop index ik in the regions to 
be  computed 

3. The vector (ol, 02, . . . , o,-,), where o k  is the 
upper  bound  for  loop index ik in the regions to 
be  computed 

4. The dimensionality d of the  loop nest 
5. The  vector fA[l:d], where % [ k ]  = ( l L k ,  u ik ,  l;,  

u;') contains  the full and  safe  bounds  for  loop i k  

The next two parameters  are  the  output of the  pro- 
cedure. The first output  parameter is the vector of 
regions, $R, described in Equations 43 through 46, 
for  the  loop.  The  second is u s ,  the  count of those 
regions. Note  that u is also  used  as an  input, which 
gets  incremented  each  time  a new region is created. 

An invocation of procedure regions for  a given value 
of j partitions  the  loop nest  formed by loops i,, 

428 MIDKIFF, MOREIRA, AND SNIR IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 16 Procedure  to  compute  the  regions for a loop  nest 

i,+l, . . . , id. It is only performed  for  safe  values of 
i l ,  i,, . . . , i j _ ,  . Procedure regions partitions  loop i, 
into  three  parts.  The first part consists of iterations 
of ij that  precede  the safe region of i,. The inner loops 
of ij are  not  partitioned.  These regions necessarily 
require  testing of the  array references, since they are 
unsafe on references  indexed by i,. Regions  corre- 
sponding to this part of the  iteration  space  are com- 
puted in statements S1 and S 2 ,  and  correspond to 
the regions 9[1] (for j  = l), $!:[2], !\:[5], 9[8], and 
%[l l ]   ( for j  = 2) in the two-dimensional  iteration 
space of Figure 15. The  third  part consists of the it- 
erations of ij that succeed the safe region of i!. Again, 
the  inner loops are not  partitioned,  and  testing is re- 
quired.  Regions  corresponding  to  this  part of the it- 
eration  space  are  computed in statements S11 and 
S12, and  correspond to  the regions $JI [4], [7], :!I [lo], 
$Jl[13] ( for j  = 2), and $k[14] ( for j  = 1)  in Figure 
15. The middle  (second)  part consists of the  itera- 
tions of i, that  are within its safe  region. If i, is the 
innermost  loop,  this is computed by statements S4 
and S 5 ,  and  the  partitioning of loop i, is complete. 
No tests are  required. If i, is not the  innermost  loop, 
the  partitioning is applied recursively to  loop ij+ for 
each  iteration of i, in its safe region, as shown in lines 
S7 and S8. 

To compute  the  entire  vector of regions, the invo- 
cation regions(1, (), (), d ,  $13, 9 ,  u 8  = 0) should 
be  performed.  At  the  end of the  computation, vec- 
tor $jL contains  the description of the regions, and 
the value of u s  is the  total  number of regions in $JI. 

Although  the example in Figure  15  and  the  notation 
imply that  the  iteration  space passed to regions in !c 
is rectangular,  the algorithm is not  restricted to rect- 
angular  loop nests. In particular, if the expressions 
for li,, uL,,  l;, and u;  are functions of ik, 1 5 k < 
J ,  the  computation  performed by regions is correct. 

We can  optimize the execution of the  loop nest by 
using two versions of code  inside the driver  loop:  (1) 
aversionB(notest(i,),  notest(i,), . . . , notest(i,)) 
that  does  not  perform any of the  array  reference tests, 
and (2) aversionB(test(i,),  test(i,), . . . , test(i,)) 
that  performs tests on all array  references.  Version 
1 isusedonlyforregionswhere9[6].?isnotest,while 
version 2 is used  for all other regions.  This  corre- 
sponds to forcing all regions with any potential  ref- 
erence violation to perform all reference  tests. The 
optimized  loop  nest  can be  implemented by the fol- 
lowing construct: 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 MIDKIFF, MOREIRA, AND SNIR 429 



(47) 

An important optimization. If,  for  a  particular value 
ofj ,  l l ;  = l ,f  and u;  = ut,, then  the safe  region  along 
axis i, of the  iteration  space  corresponds  to  the  en- 
tire  extent of the axis. If 11: = Zi, and u;; = ui, for 
k = j ,  . . . , d ,  then axis i,-l can  be  partitioned  into 
only three regions:  (1) one region  from to 
- 1, (2) one region  from li-l to U , S - ~ ,  and (3) one 
region  from + 1 to ui, ~ I .  Each of these  regions 
spans  the  entire  iteration  space  along axes i,, 
i,, , , . . . , id. This  situation  for  a  two-dimensional  it- 
eration  space is illustrated in Figure 17. Note  that 
the new partitioning  results in only three regions. 
Collapsing  multiple  regions into a single region re- 
duces  the cost of computing the regions, the total 
number of iterations in the driver loop (47), and, con- 
sequently,  reduces the  run-time  overhead of the  re- 
stricted  method. To incorporate  this  optimization in 
the  computation of regions,  procedure regions is 
modified as shown in Figure  37 in Appendix F. 

An example of the restricted method. We apply the 
restricted  method to  the two-dimensional  loop  nest 
of Figure 8. The logical structure of the  generated 
code is the  same as that  generated by the  compact 
method in Figure 14. The actual  implementation with 
the driver loop  and  the two versions of code is shown 
in Figure  18. The driver  loop (with index 8) of Fig- 
ure 18 executes u fi iterations,  where u , is the  num- 
ber of regions  computed by procedure regions. On 

430 MIDKIFF, MOREIRA, AND SNIR 

each  iteration,  either  the version of the  loop with 
run-time  tests  or  the  version with no run-time  tests 
is executed. The code in Figure 18 instantiates  the 
regions dynamically. This  contrasts with the static 
instantiation of Figure 14. 

Summary  of the restricted method. The restricted 
method  works  on perfect  loop  nests. It partitions the 
iteration  space  into  multidimensional  regions  and 
generates two versions of the  loop body. Each re- 
gion is executed with either  the test version of the 
body or  the notest version. Only regions that  are  free 
from any possible access violation can  use  the notest 
version. 

Iterative computation of loop bounds 

In  the  third section  and in Appendix A we discuss 
how to partition  an  iteration  space  into  regions  for 
a variety of common  forms of subscript  functions. 
In  this  section, we discuss how regions-based  testing 
optimization  can  often  be  performed  even  when the 
subscript  expressions are  not  one of the  forms dis- 
cussed in those  sections. 

The  technique is similar to  that of the inspector/ 
executor method  for parallelizing loops.  We  decom- 
pose the  computation  and  execution of the regions 
into  an inspector phase  and  an executor phase. The 
inspector phase  examines the  references within the 
iteration  space of a  loop  and  computes  a list of it- 
eration  subspaces  (regions).  Some  regions  need  run- 
time tests, whereas  others do not. The inspector phase 
is analogous to  procedure regions of the previous sec- 
tion. The executor phase  traverses the list of itera- 
tion  subspaces  and executes them using different ver- 
sions of the  loop body. Thus  the executor phase 
corresponds to  the driver  loop of the last section. 

Construction of the inspector phase. We show how 
to  construct an inspector for a singly nested  loop. 
This method  can  then  be recursively applied to a  loop 
nest. Let L(i,  1, u ,  B ( i ) )  be a  loop  on i, where B(i) 
containsaseriesofpreferencesA,[a,],Az[az], . . . , 
A ,,[a,,], where a, is a  function  defined in the  iter- 
ation  space of L. A reference  can  be of the  form 
A j [ A k [ a k ] ] ,  where A k  is also an array. In  general, 
A k [ ak] may be  present  as a  term in a,. We label the 
array  references so that Ai[ a,] executes  before 
Aj+l[a,+l]. 

The inspector  constructed  takes  the  form shown in 
Figure 19A. The first argument  to  procedure regions 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 17 Iteration  space  for  a  perfectly  nested  two-dimensional  loop 

is the  output ?A, a  vector of regions. An  element n: [a] 
of the  region  vector  consists of: 

91[6] = (1(6) ,  u (6 ) ,  7) 

where I( 6) and u (  S) are  the  bounds of region nt[S], 
and 7 is its test flag. The next argument, u *, is also 
an  output:  the  number of regions in vector ?I?. The 
other  arguments  for  procedure regions are  the  input 
of the  procedure. They are: (1) the lower and  upper 
bounds, I and u ,  of the  loop,  and (2) the list of array 
references ( A  , [ (T, 1, A [ a * ] ,  . . . , A [ a,,]). 

The inspector enumerates all iterations  from  the 
loop, by executing  a for (i = 1; i 5 u ;  i + + )  loop. 
For  each  iteration i, it checks all array  references 
A, [ ai] and  determines if a  test is necessary. If the 
evaluation of aj itself causes  a  violation, we define 

CT, = --oo. If uj is invariant with respect to i, opti- 
mizations can be  performed  to  reduce  the  number 
of evaluations in the inspector. The inspector  marks 
in a flag check if a  test is required  for  iteration i. If 
check is the  same  as oldcheck, this  iteration i belongs 
to  the  same region  as the previous  iterations,  and 
we update  the  upper  bound of the  current region. 
Otherwise,  it is the first iteration of a new region. 

Construction of the executor phase. The executor, 
shown in Figure 19B, consists of a driver loop (in- 
dicated by an  indexvariable s), that  iterates over the 
regions. Each region is executed with one of the two 
different  versions of the  loop body, one with tests 
and  one  without. 

Optimizations and alternate constructions. The 
inspector/executor  technique  can  be  applied to each 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 MIDKIFF, MOREIRA, AND SNIR 431 



Figure 18 Generated code for the  restricted  method 

loop in a  loop nest independently, as we did for the 
general method discussed earlier. Alternatively, it 
can be directly applied to  a d-dimensional perfect 
loop nest. In this case, the inspector has to  enumer- 
ate all iterations in the d-dimensional iteration space, 
and the executor consists of a driver loop around dif- 
ferent versions of the loop nest. 

For  the inspector/executor method to be effective, 
the inspector phase has to be hoisted out of a loop 
nest. When that is possible, the same vector of re- 
gions %[ 1 : u *] can be used in multiple instances of 
the executor. The number of checks is reduced by 
the number of iterations in the loops from which the 
inspector was hoisted. We show  such an example in 
the following subsection. 

Finally,  it  is also possible to build an inspector/ 
executor pair that uses more refined versions of the 

loop body. For example, one could use  all 3 p  ver- 
sions generated in the exact method. 

An example. In this example, the  loop of Figure 20A 
is transformed. The inspector for this loop is  shown 
in Figure 20B and the executor in Figure 20C. Note 
that we have optimized the loop by moving the in- 
spector phase out of the j loop. This is  possible be- 
cause the array reference patterns  are not depen- 
dent on j .  Thus, even though there  are O(u,u j )  
computations being performed, only O(u,)  tests are 
necessary. 

Summary of inspector-based  methods. The inspec- 
tor-based methods differ from the exact, general, 
compact, and restricted methods in how regions are 
formed. In the former methods, regions are com- 
puted analytically  using the formulas of the third sec- 
tion and Appendix A. In the inspector-based meth- 

432 MIDKIFF, MOREIRA, AND SNIR IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 19 Template for constructing an inspector/executor 

ods  the regions are  computed by executing  the  code 
that  generates  the subscripts  for  the  references be- 
ing optimized.  This allows references  whose  sub- 
scripts  preclude  an analytic computation of regions 
to  be  optimized.  There  are two caveats, however. 
First,  because  the  inspector  overhead is proportional 
within a  constant  factor  to  the cost of executing an 
instance of the loop,  the  methods are most effective 
when  the  inspector  for a loop can be hoisted out of 
that  loop.  Second,  there  are still some  loops which 
cannot  be  optimized with inspector-based  methods. 
Figure 21 shows such a  loop.  Because  the  execution 
of an inspector for this loop would have side effects 
(other  than region computation)  that live beyond the 
life of the  inspector, forming an inspector with the 
methods we have discussed would alter  the  outcome 
of the  program. This  loop  can be optimized using 
speculative methods.  Because they are not  region- 

based,  they are beyond the scope of this paper.  They 
are discussed in Reference 8. 

Multithreading  considerations 

Up  to now, the  problem of other  threads of execu- 
tion  and optimized code being active at  the same time 
has  been  ignored. If arrays  had  static  shape, that is, 
if it  were  not possible for an array to  change  shape 
during  the  course of execution of a  routine, mul- 
tithreading would not  be  a  problem.  Multithread- 
ing is beyond the scope of the  current FORTRAN, C, 
and C+ + language  definitions.  Java, however, has 
made  multithreading an integral part of the language. 
Furthermore, it is possible for  one  thread of a  Java 
program to alter  the  shape of a multidimensional  ar- 
ray that is being accessed by other  threads. 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 MIDKIFF, MOREIRA, AND SNlR 433 





Figure 21 A loop that cannot be optimized by inspector-based methods 

2. Before  a  synchronization within a thread is fin- 
ished,  all  shared  variables that have been  mod- 
ified since the last synchronization  point in that 
thread must  be  written  back to  the main  mem- 
ory. 

3. If a  shared  variable  has  been  written by a thread, 
it must be  written to main memory before its value 
can  be read  from main  memory by some  thread. 
This  prevents locally written values to shared  var- 
iables  from  being  lost. 

4. As long as  item 3 is obeyed, the value of a shared 
variable  can be  updated  from global memory at 
any time  prior to  an access by a thread. 

The consequences of the Java  memory  model  rules 
to  our work are  threefold. First, it is legal and valid 
within a thread  to  cache in local memory the values 
of a variable- even if the  thread is not synchronized. 
Second, if the  thread is not  synchronized, the cached 
values  need  not be written  back.  Third, if a synchro- 
nization  point exists within a  loop  nest  being  opti- 
mized,  the  shapes of shared  arrays have to be 
conservatively assumed to have changed at  the 
synchronization  point. To prove that  the  shape of a 
shared  array  does not change  across  a  synchroniza- 
tion  requires proving that  none of the  threads  that 
have access to  the array at  that  time can  change its 
shape. 

We now describe how to  handle  the case in which 
a body of code  without  synchronization accesses a 
(potentially)  shared  array. We can divide arrays into 
two distinct  parts. The first part is comprised of de- 
scriptors, those  parts of an  array  that  contain  point- 
ers  to  other descriptors or to rows of data.  The sec- 
ond  part is comprised of data,  the  one-dimensional 
rows that  contain  the  actual  elements. In Figure 22, 
the  dashed boxes indicate  descriptors, and  the solid 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

boxes indicate data. In  general,  a  d-dimensional  rect- 
angular  arrayA [ 1 : n [ 1 : n 2 ]  . . . [ 1 : n d ]  consists of 
one level-0 descriptor  that points to a  vector of n 
level-1 descriptors. Each level-1 descriptor  points 
to a  vector of n2 level-2 descriptors,  for  a  total of 
n ln2  level-2 descriptors. There  are a  total of 
O(n . . . n d - l )  descriptors. The last axis  of the  ar- 
ray contains  the  actual  data, in the  form of vectors 
of nd elements,  pointed  to by the level-(d - 1) de- 
scriptors. 

The following then  ensures  the  thread safety of our 
transformations:  before every optimized body of 
code,  a copy of the  descriptors  part of each  shared 
array A is cached in working memory. Note  that if 
a  cached  descriptor  for A that is valid by the Java 
thread semantics is already  present,  it may be used 
for  the  purposes we describe.  This  action  insulates 
the  thread executing the optimized  code  from any 
changes to  the  shared  array  shape  caused by other 
threads.  Also  note  that only the  array  shape is rel- 
evant in computing  the safe  and  unsafe  regions for 
our  transformations.  The  data  part of the  array can 
be modified by other  threads without any effects on 
those  regions. By using this  caching of descriptors, 
the only places that  shape changes  become visible 
are at  synchronization  points. The  shape of a  shared 
array  should be  marked  as variant  across  those 
points. This, in turn,  can  prevent many optimizations. 

At first glance, the caching of descriptors may seem 
expensive. In general, given a  d-dimensional  rect- 
angular  array A[1 : n  1][1 : n z ]  . . . [1 :nd] ,  only 
O(n . . . n d - l )  storage  needs to  be  cached.  Thus, 
a  one-dimensional  array  needs only a  constant 
amount of storage,  and an n I X n 2  array  needs only 
n words of storage.  Therefore, if most of the  array 
is accessed within the  loop,  the  amount of storage 

MIDKIFF, MOREIRA, AND SNlR 435 



Figure 22 Multidimensional  array  organization,  showing the separation  between  descriptors  and  data 

Figure 23 Java code that  implements DDOT 

cached is approximately  a  factor of nd less than  the 
number of references. 

Experimental  results 

To test  the effectiveness of our compiler  transfor- 
mations, we developed  a  prototype  framework.  This 
prototype  framework  currently  implements only the 
restricted method  and only handles perfectly nested 
rectangular loops. The framework consists of a  Java- 
to-Java  translator  that  produces  the two versions of 
code necessary for  the restricted  method.  These  ver- 
sions are  then compiled  into  executable  object  code 
using the IBM High  Performance  Compiler  for  Java 
(HPCJ).4 HPCJ has  a switch to  generate  code  without 
any run-time checks, on a class basis. 

Benchmarks. Using the prototype framework, we ap- 
plied the  transformations in the  restricted  method 

to Java  programs in a  benchmark  suite.  This  suite 
consists of two numerical  kernels  and three appli- 
cation  kernels, all with array-intensive computations. 
The two numerical  kernels are a  vector  dot-product 
operation (DDOT), and  a matrix-multiply operation 
(MATMUL). The  three application  kernels are a  shal- 
low-water simulation kernel (SHALLOW), a  data-min- 
ing kernel (BSOM), and  a cryptography kernel (CBC). 
We  compare  the  performance of a  Java  implemen- 
tation of each  benchmark with a  corresponding  ver- 
sion  written in either C (DDOT,  MATMUL, and CBC) 
or C+ + (SHALLOW and BSOM). The C and C+ + ver- 
sions  were  written and compiled  according to what 
we call Java rules: (1) two-dimensional arrays are rep- 
resented  as  vectors of pointers  to  one-dimensional 
arrays,  and (2) any compiler  optimizations that vi- 
olate  the Java IEEE 754 floating-point  semantics (ex- 
act  reproducibility of results) are disabled. The im- 

436 MIDKIFF, MOREIRA, AND SNIR IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 24 Source code for C = C + A x B in Java 

pact of these  rules on the  performance of C or C+ + 
programs is beyond  the  scope of this paper.  We dis- 
cuss each of the  benchmarks in more  detail below. 

DDOT. The DDOT benchmark  computes  the  dot- 
product E:=, x,y, of two vectorsx  andy of n double- 
precision floating-point numbers. The Java  code  that 
implements DDOT is straightforward  and shown in 
Figure 23. The C code is very similar. The  compu- 
tation of DDOT requires 2n floating-point  loads  and 
2n floating-point  operations ( n  multiplies  and n 
adds).  For  our  measurements we use n = lo6.   We 
report  the  performance of DDOT in Mflops. 

MATMUL. The MATMUL benchmark  computes  the 
matrix  operation C = C + A X B ,  where C is an 
rn X p matrix, A is an rn X n matrix, and B is an 
n X p matrix. The elements  are double-precision 
floating-point  numbers. The Java  implementation of 
this matrix operation is illustrated in Figure 24. The 
C implementation is very similar, with the matrices 
implemented  as  vectors  of  pointers to rows of ele- 
ments.  This is in accordance with the previously 
mentioned  Java  rules  for C. The  computation of 
MATMUL requires 2mnp floating-point  operations 
( m n p  adds  and rnnp multiplies). For  our  measure- 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

ments, we used m = n = p = 64. We  also report 
the  performance of MATMUL in Mflops. 

SHALLOW The SHALLOW benchmark is a  compu- 
tational  kernel  from  a shallow water  simulation  code 
from  the  National  Center  for  Atmospheric  Research 
(NCAR). It consists of approximately 200 lines of 
code, in either  the C+ + or Java  version. The  data 
structures in SHALLOW consist of 14 matrices  (two- 
dimensional  arrays) of size n X rn each.  The com- 
putational  part of the  code is organized as a  time- 
step loop, with several  array  operations  executed in 
each  time  step  (iteration),  as shown in Figure 25. In 
that figure we indicate  the  number of occurrences 
for  each  kind of array  operation. The notations A + 
A ,  A * A ,  and A / A  denote  addition, multiplication, 
and division of all corresponding array elements. The 
notation s * A denotes multiplication of a  scalar 
value by each of the  elements of an array. There- 
fore,  each  iteration of the time step loop executes 
65rnn floating-point  operations. The matrix oper- 
ations  do  not  appear explicitly. Instead,  they  are 
fused into  three  double-nested loops. 

Just  as in the MATMUL benchmark,  the matrices in 
the C+ + code  are  implemented  as  vectors of point- 

MIDKIFF, MOREIRA, AND SNlR 437 



Figure 25 General  structure of the SHALLOW benchmark 

ers  to rows of elements.  For  our  measurements we 
fix the  number of time  steps T = 20  and use n = 
rn = 256.  Once again,  performance  for SHALLOW 
is reported in Mflops. 

BSOM. BSOM (Batch  Self-organizing  Map) is a 
data-mining  kernel  being  incorporated into Version 
2 of the IBM Intelligent  Miner*. It implements  a  neu- 
ral-network-based  algorithm to  determine clusters 
of input  records  that exhibit similar  attributes of be- 
havior. The simplified kernel  used  for  this study con- 
sists of approximately 300 lines of code, in either  the 
C+ + or Java  version. 

We  time  the execution of the training phase of this 
algorithm, which actually builds the  neural network. 
The training is performed in multiple  passes  over 
the training data.  Each pass is called an epoch. Let 
e be  the  number of epochs,  let n be  the  number of 
neural  nodes,  let Y be  the  number of records in the 
training data,  and let rn be  the  number of fields in 
each  input  record.  For  each  epoch  and  each  input 
record,  the  training algorithm  performs nm connec- 
tion  updates in the  neural network.  Each update re- 
quires five floating-point  operations. 

For  our  measurements, we use e = 25, n = 16,  and 
r = rn = 256.  We  report  the  performance of BSOM 
in millions of connection  updates  per  second, or 
MCUPls, as is usually done in the  literature  for  neu- 
ral-network  training. 

CBC. Our last benchmark is an  implementation of 
CBC, or cipher block chaining.’ CBC is a block ci- 
pher  mode in which a  feedback  mechanism is used 
to encrypt  a  vector of n blocks of data.  Each block 
is encrypted in sequence. The result of encrypting 

438 MIDKIFF, MOREIRA, AND SNIR 

a block is XORed with the next block before  encrypt- 
ing this next block. Let P = ( P I ,  . . . , P,) be  the 
vector of plaintext blocks and  let C = (C,, . . . , C,) 
be  the  vector of ciphertext blocks. Then 

C, = E#, G3 CL-J, i = 1, . . . , n 

where EK( . )  is the encrypting  function with key K,  
and Co is the initial  chaining value. The CBC bench- 
mark uses the  data encryption standard (DES) algo- 
rithm’ to encrypt the blocks. DES transforms  each 
64-bit plaintext  block into a 64-bit ciphertext block, 
using a  56-bit key. 

We use our CBC benchmark  to  encrypt  a  vector of 
128k blocks (1 MB)  and we report its performance 
in millions of bytes encrypted per  second (MBIS). We 
measure  both C and  Java versions of this  benchmark. 
The CBC benchmark  performs  integer  and logical 
operations  on array  elements.  This  contrasts with the 
mostly floating-point  operations that  the  other  four 
benchmarks  perform. 

Execution environment. We  performed  our  exper- 
iments on an IBM RSi6000* Model 590 workstation, 
running  Advanced  Interactive  Executive (AIX*) 4.2. 
This  workstation  has  a 66 MHZ POWER2 processor, 
and is configured with 256 kB of level-1 cache  and 
512 MB of main  memory. The C and C+ + programs 
were  compiled with C Set + + version  3  for AIX and 
we used version PA9 of HPCJ to compile the  Java 
programs. 

Results. Table 1 summarizes the results  from our ex- 
periments.  For  each  benchmark  and  code version, 
we list the  measured  performance in the  appropri- 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Table 1 Summary  of  results from applying  our transformations 

ate units. The first row (C or  C+ + with Java  rules) 
of the  table lists the results  for  the  C or  C+ + ver- 
sion of the  benchmarks.  The  second row (HPCJ no 
checks) lists the results  for the Java version compiled 
with H P ~ ,  with all run-time checks disabled. Note  that 
this  version is not Java-compliant,  since  it will not 
detect any indexing violations that may occur. The 
third row (Transformations) lists the results  for the 
Java version with our  transformations  applied. This 
version is Java-compliant,  since all necessary tests 
are  performed.  When it is necessary to  make private 
copies of the  descriptors of an  array  (as described 
in the previous  section), the  time for copying is in- 
cluded in computing  the  performance. Finally, the 
last row (HPCJ with all checks) of the  table lists the 
performance  measured  for  Java compiled with HPCJ, 
with the  run-time checks  enabled.  Again,  this  ver- 
sion is Java-compliant. 

From  Table 1, we observe that HPCJ can  produce ex- 
ecutable  code  for  Java  that is very competitive with 
code  produced  for C or  C+ +, ifthe run-time checks 
are disabled. However,  when the checks are  present, 
the  performance of Java code is degraded by as much 
as 15 times (MATMUL). This  indicates that HPCJ al- 
ready  implements many of the optimizations  neces- 
sary to make  Java  competitive with Cor   C+  + in per- 
formance. In fact, the Java  version of SHALLOW 
achieves  higher  performance than  the C+ + version 
because of better  pointer disambiguation in Java than 
in C+ +. The executable  code  produced by HPCJ is 
hampered only by the  need  for  run-time tests.  When 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

our  transformations  are  applied  to  the  code,  part of 
the execution can be  performed without any run-time 
tests. That is the  reason why the  performance of the 
transformed  code is so much better  than  that of HPCJ 
with all tests. 

We compare  the  performance achieved for  Java with 
our  transformations  to  the  performance of the  cor- 
responding C or C++  code.  That comparison is 
shown in Table 2. The “%” row in that  table indi- 
cates  the fraction of C o r   C++  performance  that 
the Java  code with transformation achieves. We  ob- 
serve that we can  achieve  between 55 percent  and 
114 percent of C or C+ + code  performance with 
code  that is entirely legal Java. 

Finally, we compare  the  performance of code  pro- 
duced with our  transformations to  the  performance 
of code  generated by HPCJ with all run-time  checks 
enabled.  Those  results  are shown in Table 3. The 
“improvement” row lists the  performance  ratio  be- 
tween the version with transformations  and  the  ver- 
sion  without.  We  observe  that we achieve  perfor- 
mance  improvements of up  to 14  times  when we 
apply our  transformations. 

Related work 

A  great  deal of work  has been  done in the  area of 
optimizing  bounds  checking  for  arrays.  Most of this 
work has  been  done in the context of programming 
languages with no  requirements as to  the execution 

MIDKIFF, MOREIRA,  AND  SNlR 439 



Table 3 Comparing the performance of Java with and without transformations 

state  at  the time  the  bounds violation occurs.  In  Java, 
a violation must generate  an exception at a very pre- 
cise point in the execution of the  program.  The 
bounds  checking  work for  Ada"  confronts a  prob- 
lem similar to  the  one we face, but  takes a less ag- 
gressive approach  than we do. 

There  are two main  approaches in the  literature  to 
optimizing  array  bounds checks: (1) the use of static 
data-flow analysis information  to  determine  that a 
test is unnecessary, 1'"14 and (2) the use of data-flow 
information and symbolic analysis at compile  time 
to  reduce  the dynamic number of tests  remaining in 
the  program. 

Work in the first group uses data-flow information 
to prove at compile  time that  an  array  bounds vi- 
olation  cannot  occur at  run  time  and,  therefore,  that 
the test  for  the  violation is unnecessary.  Using the 
terms of our discussion, the goal of this  work is to 
identify loops that  are safe  regions. In contrast,  the 
goal of our work is to transform  loops  to  place  the 
maximum possible number of iterations in safe re- 
gions (with constraints on the  number of loop  ver- 
sions or regions).  Methods of the first group  use in- 
formation  about  loop  and  array  bounds,  and  about 
subscript expressions, to prove  that either  no access 
violation will occur in a  loop  execution or  that  an 
access violation might occur. In  the  former case, no 
tests are  generated. In the  latter case,  tests are  gen- 
erated as needed.  The difficulty  of this  approach is 
that  the  information  needed to prove that  no vio- 
lation will occur might not  be available at compile 
time. These techniques would have better results with 
just-in-time compilation, but  the analysis overhead 
then  becomes  problematic. 

Work in the  second  group  attempts  to  reduce  the 
dynamic  and  static number of bounds  tests.  It  also 
attempts  to  reduce  the  overhead induced by a  test 
even if it cannot  be  eliminated.  This is done (1) by 
hoisting  tests out of loops  when po~s ib l e '~  and (2) 

440 MIDKIFF, MOREIRA, AND SNIR 

by also  determining  that  a  test is covered by another 
test 15-18 and  can  be  eliminated. 

The optimization method of Markstein,  Cocke,  and 
Markstein l9 is closely related  to  our  computation of 
I' and u s  for  a single linear  reference.  It is imple- 
mented by three changes to  the  loop. First,  before 
entering  the  loop a  test is made  to  determine if a 
bounds  violation  occurs on the first iteration. If so, 
the  loop is exited  immediately.  Second, the  loop exit 
conditions are modified so that  the  loop  terminates 
before  the access violation  occurs. Finally, at  loop 
exit, the final iterate value is examined. If it is less 
than or equal to  the  upper  loop  bound in the orig- 
inal program,  an access violation  occurs,  and an ex- 
ception  (or trap, in their  terminology) is thrown. The 
application of the  method  to  the  four-point stencil 
problem of Figure 8 is shown in Figure 26. 

To  see how the  removal of redundant  (covered)  tests 
works, consider the naive sequence of tests in Fig- 
ure 9. If a [ i  - 11 and a [ i  + 11 are both legal ref- 
erences,  then a [i] is also legal; therefore,  the explicit 
test  ifAccessViolation(a, i) is redundant. Similarly, 
considering  references indexed by j ,  if a [i][j + 11 
anda[i][j  - 11 are  bothlegal,  thena[i + 1] [ j ]  and 
a [i - 11 [ j ]  are also legal. (Note  that we need to know 
that  the array a is rectangular in order  to make  this 
statement.)  Therefore,  the explicit tests ifAccessVio- 
lation(a[i + 11, j )  and ifAccessViolation(a[i - 11, 
j )  are  redundant. Finally, because  b  and a are  ar- 
rays with the  same  shape,  the tests ifAccessViola- 
tion(b, i) and ifAccessViolation(b[i],j) are also  re- 
dundant.  After  these optimizations we are left with 
the  four explicit tests shown in Figure 27. Note  that 
the  remaining tests  must  be ordered  appropriately. 

Neither of these  optimizations is usable with Java 
in general  because the Java  semantics  requiring  pre- 
cise exceptions  make the hoisting  and  reordering of 
tests illegal in many  situations.  Also,  when an access 
violation  exception is caught by a try block in the 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 26 Optimization of the  code of Figure 8 by the  Markstein,  Cocke,  and  Markstein  method 

Figure 27 Optimization of the tests in Figure 9 by test  coverage 

loop body, the  loop  should  not  be  terminated  (as  to  speed  up  bounds checking in various  implemen- 
would occur  when  hoisting  tests).  Nevertheless, the  tations of Java.  This is exemplified by the  bound in- 
techniques  for  eliminating  redundant  tests can be struction in the  Intel x86 architecture,*’ used in the 
used to optimize the  performance of inspectors. jx virtual  machine,  and  the trap instructions of the 

IBM POWER2 Architecture,’l used in the IBM Java JIT 
Some  instruction  set  architectures  provide  special  Compiler.” These instructions generate  interrupts 
support  for  index checking, which have been  used in the case of violations, which inhibit  a  wide  range 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 MIDKIFF, MOREIRA, AND SNIR 441 



of compiler  optimization^.^ Optimizations  that  are 
inhibited  include  code  motion,  reordering,  and  pre- 
scient  stores. 

Conclusions 

We have developed  a  set of optimizations to reduce 
the  number of run-time  tests  that  need to  be  per- 
formed in Java  programs. All of the optimizations 
work by transforming  a  loop  nest, which implements 
an  iteration  space,  into  code  that  partitions  this  it- 
eration  space  into  multiple regions. In  some regions, 
run-time  tests  are  performed,  whereas in other  re- 
gions they are  not necessary. The optimizations dif- 
fer  on  their level of refinement  and  practicality. The 
more-refined  methods generate  code versions that 
are  more specialized for  the different characteristics 
of regions.  They  can  cause an unacceptable  code ex- 
pansion. The less-refined  methods  use  fewer  code 
versions and  merge regions with similar  character- 
istics. They  cause  a  smaller  code  expansion  and  are 
more practical. All methods  can  create  one  or  more 
regions that  are completely free of run-time  tests. 
In correct  array-intensive  programs,  these  regions 
are expected to  perform all or almost all of the com- 
putations of a  loop  nest.  In  these  cases,  the less-re- 
fined methods  can deliver most of the improvements 
to be  gained. 

We want to emphasize the  importance of creating 
regions  without any possible array  bounds  and null 
pointer  violations. The benefits of creating  these  re- 
gions are  threefold: First,  run-time  tests  can  be elim- 
inated  from  the regions, which results in a  direct  per- 
formance  improvement.  Second, try blocks that catch 
bounds  exceptions  can be removed  from the  loop 
versions  implementing  the  safe  regions.  Third  and 
most  importantly,  as  a  consequence of the first two, 
the resulting  regions  have  simpler  code, which en- 
ables  optimizations that would otherwise be  ham- 
pered by the explicit run-time  tests.  In  general,  the 
ability to  perform optimizations is enhanced by max- 
imizing the  extent of violation-free  regions.  Many 
forms of operation  reordering  and parallelization can 
be  performed in these  regions. 

We implemented  a  prototype  framework  for  per- 
forming our  more practical  optimization, which only 
requires two versions of code  to  be  generated.  We 
have measured  the effectiveness of this  optimization 
on a  suite of array-intensive  benchmarks. Our re- 
sults indicate that Java code can achieve performance 
that is within 55 to 100 percent or  more of the  per- 
formance of C or C+ + code,  when  the C or C+ + 

442 MIDKIFF. MOREIRA, AND SNIR 

code follows Java  rules. C or C+ + code  that follows 
Java  rules  implements  two-dimensional  arrays as a 
vector of pointers  to  one-dimensional  arrays,  and 
does  not  perform optimizations that violate  Java 
floating-point  semantics. 

Our benchmark  suite  currently  consists of various 
array-intensive programs, including numerical,  data- 
mining, and cryptography  kernels. The array oper- 
ations in these  benchmarks  are  representative of the 
behavior of many applications. We  intend  to extend 
our  suite  to include  graphics  and  image-processing 
applications. 

In all our discussion we have ignored the use of con- 
trol-flow analysis. This analysis can  be  a powerful tool 
to prove that  array  references only occur in certain 
combinations  (because  of,  for  example,  different 
paths  through  the  body of a  loop),  thus  reducing 
some of our  code replication. We intend to inves- 
tigate the usefulness of control-flow analysis as part 
of our  future work. 

Finally, our next step is to implement  and  integrate 
our  transformations  into IBM Java-related  products. 
We will work with technical and  data-mining  appli- 
cation  groups to help  ensure  the success of large- 
scale,  array-intensive  Java  applications that  depend 
on high performance. 

Acknowledgments 

The  authors wish to thank  George Almasi  and  Rick 
Lawrence  for providing and assisting with the BSOM 
benchmark, David Edelsohn  for providing and as- 
sisting with the CBC benchmark,  and  Yurij  Baran- 
sky and  Murthy  Devarakonda  for  leading  the  Java 
performance efforts that initially shed light on  this 
problem. 

Appendix A: Computing  safe  bounds 

We describe how to  compute  the safe  bounds X and 
0111 of an  iteration  space i = 1, . . . , u with respect 
to  an  array  reference.  The safe  region of the  iter- 
ation  space of i with respect to  an array  reference 
A [f(i)] is the set of values of i that  make f ( i )  fall 
within the  bounds ofA.  The safe  region  for  this op- 
eration is defined by 

(lO(A) S f ( i )  9 Up(A)) A (1 9 i 9 U )  (48) 

We first consider the case off(i) monotonically in- 
creasing. The iteration  space is partitioned  into  three 
regions  defined as follows: 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



No test is required in this  region. 

Correspondingly, we can  define  region 511 [ 11, which 
requires an lb  test, by 

r~[1] : i = I ,  . . . , min(u + 1, rf-I(lo(A))l) - 1 
( 5 5 )  

and  region CJ:[~], which requires  a ub test, by 

r~:[3] : i = max(I - 1, L f - ' ( u p ( ~ ) ) 1 )  + 1, . . . , u 
( 5 6 )  

To combine all three definitions. we can  compute 

and write 

r1:[1] : i = I ,  . . . , .Y - 1 

:1:[2] : i = Y, . . . , e l l  

rr:[3] : i = bll + 1, . . . , u 

As previously discussed, ~ [ l ] ,  the test  for rK  [ 
test  and ~ [ 3 ] ,  the test for r1:[3],  is ub  test. 

Similarly, iff(i) is monotonically  decreasing we can 
compute 

:j: [l], :j: [2], and % [3] are defined  as in Equations 59- 
61. In this  case, 413, the test  for $R[l], is ub  test  and 
7[3], the test  for r1:[3], is lb test. 

Note  that it is  always legal to  set  either ~ [ l ]  or ~ [ 3 ]  
(or both)  to all tests, so as  to  reduce  the  number  of 
distinct  code versions. We actually use this simpli- 
fication in some of our  methods. 

Linear subscripts. In the  particular case of a linear 
subscript  function of the  formf(i) = ai + b, the 
inverse  function f -  I (i) can  be easily computed: 

i - b  
f " ( ' )  = _____ 

U (64) 

Also, the  monotonicity of f ( i )  is determined  from 
the value of a :  if a > 0, thenf(i) is monotonically 
increasing,  and if a < 0, thenf(i) is monotonically 
decreasing. Note  that  the values of a and b need not 
be known at compile  time, since A' and  can  be ef- 
ficiently computed  at  run  time. 

Affine subscripts. Consider  the  d-dimensional  loop 
nest 

for (il = Iil; i 5 uiI; i,++){ 
for (i, = I,?; i, 5 u,?; iz++){ 

. . .  
for (id = I,,,; i, 5 u,~,; i,++){ 

} 
w , ,  i,, . . . , id) 

and  let  there  be  an  array  reference A [ f ( i  I, i2, . . . , 
id)] in the body B( i l ,  i,, . . . , id). Let  the subscript 
be  an affine function of the form f ( i l ,  i2, . . . , i,/) 
= a , i ,  + a z i 2  + . . . + adi,/ + b, wherei, ,  . . . , i d  
are  the  loop index  variables  and a . . . , a d ,  b are 
loop  invariants. At  the  innermost (id) loop  the 
values of i,, . . . , id- I are fixed, and f can  be treated 
as  linear on iCl. Determination of safe  bounds  for 
the i,, . . . , id-l loops can be  done using the 
inspector/executor method described  earlier in this 
paper. Alternatively,  these  safe  bounds  can  be  ap- 
proximated.  Replacing  true  safe  bounds .f) andb1.lr  by 
approximated  safe  bounds .@ and q~ does  not  intro- 
duce any hazards  as  long  as .@ 2 .I" and (-71 5 "11. Tech- 
niques  for  approximating the  iteration subspace of 
a  loop  that accesses some  range of an affinely sub- 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 MIDKIFF, MOREIRA, AND SNlR 443 



scripted array axis are described in References 23 
and 24. 

Constant  subscripts. For  an array referenceA [ f(i)] 
wheref(i) = k  (a  constant),f(i) is neither mono- 
tonically increasing nor monotonically decreasing. 
Nevertheless, we  can treat this special case by de- 
fining 

.I" = 1 and % = u if lo(A) 9 k 9 up(A) 

n=landoX  =I -1  if k > u p ( A )  

n = u + 1 and 0% = u if k < lo(A) 

and then computing 

.Y = min(u + 1, max(l, F)) ( 6 5 )  

w = max(l- 1, min(u, .I)) (66) 

(This last step is  necessary to handle empty loops.) 
The safe  region for referenceA [k] is either the whole 
iteration space, if k falls  within the bounds of A ,  or 
empty otherwise. Only region ~t[1] is nonempty if k 
is too small, and only region :~t[3]  is nonempty if 
k is too large. We also define 7111 = lb test and 
7131 = ub test. 

Modulo-function  subscripts. Another common  form 
of array reference isA[f(i)]  wheref(i) = g ( i )  mod 
rn + ai + b. In general, this is not a monotonic func- 
tion. However, we  know that  the values off(i)  are 
within the range described by ai  + b + j, for i = 
1 , 1 + 1 ,  . . . ,  u a n d j = 0 , 1 ,  . . . ,  rn-1.Wedefine 
a function h(i ,  j )  = ai + b + j .  Let h,,, be the 
maximum  value of h(i ,  j )  in the domain i = I, 1 + 
1, . . . , u andj = 0,1 ,  . . . , rn - 1. Lethmin be the 
minimumvalue ofh(i,j) in the same domain. These 
extreme  values  of h(i ,  j )  can be computed using the 
techniques described in Reference 25. Then we can 
define 

- 
- 

- r  if ( ( lo(A)  5 hmin) A (up(A) 2 h m a x ) )  
s =  

u + 1 otherwise, 

4 1  = u 

and compute 

P = min(u + 1, max(Z, 5)) (67) 

9 1  = max(l - 1, min(u, G)) (68) 

- 

444 MIDKIFF, MOREIRA, AND SNlR 

(Again,  this  is  necessary to handle empty  loops.) That 
is, the safe region is the whole iteration space if  we 
can guarantee  that g ( i )  mod rn + ai + b is  always 
within the bounds of A ,  or empty otherwise. Region 
9[3] is  always empty, and we make 7111 = all tests 
to catch all violations when region $R[ 11 is not empty. 

If the subscript function is neither one of the  de- 
scribed cases, then  the more general inspector/ 
executor method described earlier should be used, 
if possible. This method also  lifts the restriction on 
functionf(i) being monotonically increasing or  de- 
creasing. 

Appendix B: Auxiliary transformations 

In the fifth section of this paper we used the trans- 
formation 

for (i = I ;  i 9 u ;  i++){ 

1 
B(i)  

becomes 

f o r ( i = l ; i < l . ' - l . i  , ++){ 

} 
for (i = 1'; i 5 u ' ;  i++){ 

} 
for (i = uJ + 1; i 5 u ;  i++){ 

B(test(i)) 

B(notest(i)) 

B(test(i)) 
} (69) 

to partition the  iteration space of a loop into three 
regions,  using two different  versions of the loop  body: 
one with tests (B(  test(i)), which appears twice) and 
one without tests (B(notest(i)), which appears 
once). 

The following equivalent construct contains only one 
instance of each loop body version: 

for (6 = 1; 6 5 n ;  a++){ 
for (i = l ( 6 ) ;  i 5 u(6) ;  i++){ 

} 
for ( i  = l'((6); i 5 ~'((6); i++){ 

} 

B(test(i)) 

B(notest(i)) 

1 (70) 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 28 Bounds  for  the  two  loops  nested  within  the 6 driver  loop 

Figure 29 Example of a loop nest  to  be  transformed 

A driver loop, on index  variable 6, iterates  over body version and  the  other with the  untested ver- 
the two instances of the loop, one with the tested sion. The  bounds 1(6), u (6 ) ,  1"(6),  and u " ( 6 )  for 

IBM SYSTEMS  JOURNAL, VOL 37, NO 3, 1998 MIDKIFF, MOREIRA, AND SNlR 445 



Figure 30 The four  innermost loops transformed 

Figure 31 The two  middle loops transformed 

each iteration of the driver loop must be properly Appendix C: Applying the general method to 
computed to guarantee that the semantics of the orig- arbitrary  loop  nests 
inal loop are preserved. The specifications of these 
bounds as a function of I ,  u ,  l J ,  and uJ for the most As a  more complex example of the general method, 
practical choices of n ( n  = 2 and n = 3) are shown consider the loop nest of Figure 29. It consists of an 
in Figure 28. outermost loop i. The body of loop i contains two 

446 MIDKIFF, MOREIRA, AND  SNIR IBM SYSTEMS JOURNAL, VOL 37, NO 3,  1998 



Figure 32 Result of applying  the  transformation to all  loops 

inner  loops ( j ,  and j , )  and  three  segments of 
straight-line  code (S , , S,,  and S j). The body of loop 
j ,  contains two innermost  loops ( k ,  and k , )  and  a 
segment of straight-line  code (S , ) .  The body of loop 
j ,  also  contains two innermost  loops ( k 3  and k 4 )  and 
a segment of straight-line code (S4). The pseudocode 
for  the  loop nest is shown in Figure 29A, and  a  sche- 
matic  representation is shown in Figure 29B. We use 
the  notation i (B  (curved  braces) to  represent  a  loop 
on index variable i and body B that  needs  bounds 
testing on  array  references  indexed by i. We use the 
notation i[B (square  braces)  to  represent  a  loop  on 
index  variable i and body B that  does not  need  test- 
ing on  array  references  indexed by i. In the original 
loop, all array accesses have to  be  tested  for valid 
indices,  and  this is represented in the diagram with 
curved  braces  for all the loops. 

We first apply the  transformation  to  the  four  inner- 
most loops ( k l ,  k , ,   k 3 ,  and k 4 ) .  Each of these  loops 
is transformed  into a  sequence of three loops, with 

the middle one  not  needing tests on  the  loop index. 
These  transformations  are illustrated in Figure 30. 

In  the next step, we apply the  transformation  to  the 
middle  loops j ,  and j , .  Again,  each of these  loops 
is transformed  into a  sequence of three loops. The 
resulting loop nest is shown in Figure 31. For clar- 
ity, we represent  each of the  transformed  (expand- 
ed) loops, j ,  and j , ,  by m l  and m, respec- 
tively. 

Finally, we complete  the  operation by applying the 
transformation  to  the  outermost i loop.  This  gen- 
erates  three versions of the i loop, with the middle 
one  needing  no tests on array  references  indexed by 
i. The final result is shown in Figure 32. The original 
loop nest of Figure 29B is transformed  into  a  se- 
quence of three i loops. Inside  the middle i loop  there 
are regions that  do  not  need any  tests. The trans- 
formed  code will execute efficiently if all or almost 
all the  iterations  are executed in these  regions. 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 MIDKIFF, MOREIRA, AND SNlR 447 



Figure 33 Applying  the  transformation  to  the  outermost  loop 

Appendix D: Applying the compact method 
to arbitrary  loop  nests 

As a more complex  example of the compact method, 
consider the loop nest of Figure 29. The application 
of the transformation to  the outermost i loop is il- 
lustrated in Figure 33. It  generates  a driver loop 
around two instances of the  loop nest (as described 
in Appendix B). In our schematic notation, driver 
loops are represented by curly braces ( 0 .  One of the 
instances (with the  square bracket for i) does not 
need any tests on references indexed by i .  

The transformation can then be applied to the mid- 
dle loops j ,  and j 2  in the unchecked version of the 
i loop. This is illustrated in Figure 34. It results 
in the creation of a loop nest without any tests 
for i or j and another loop nest without any tests 
for i or j2 .  

Finally, we apply the transformation to  the  inner- 
most k , ,   k z ,   k 3 ,  and k4 loops, in the regions already 
without i, j and j 2  tests. As illustrated in Figure 35, 
this creates four regions of code  (the bodies of the 
k , ,   k 2 ,   k 3 ,  and k ,  loops) that  do  not need any tests 
on  the array references. 

448 MIDKIFF, MOREIRA, AND SNIR 

Appendix E: Computing the number of 
regions  when  using the compact method 

In this  appendix we derive  an  expression for the num- 
ber of regions a loop nest is partitioned into when 
using the compact method discussed earlier in this 
paper. If  we apply the compact method to loop L 
of the loop nest shown  in Equation 42, we partition 
the  iteration space into  three regions, according to 
Equation 41: 

L,(i,, I,,, II", - 1,  L2@2, I,,, U;*, . . . > 

L d G d ,  I,,, U;(/,  N l ,  i 2 ,  . . ' 7 id)) . . . 1) 

&/( id ,  I,, ut,,, W l ,  i 2 ,  . . . 3 id)) . . . )) 

U i d ,  ',, U;,, m , ,  i 2 ,  . . . 2 id)) . . . 1). 

':2 L 2 ( i 2 >  '127 uiz> . . ' 9 

L I L  u;, + 1, Ui,, L2G2, 112, U,>> . . . 7 

(At this point, we are  not concerned with the run- 
time tests necessary in each region.) Applying the 
method recursively to the L loop in the safe region 
of L generates 2 + 3n; regions, where nl = - 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



Figure 34 Applying the transformation to the two middle loops 

1; + 1 is the  number of iterations in the safe  region 
of loop L, as  seen in Figure 36. 

In general, applying the compact method  to  the  per- 
fect  loop  nest of Equation 42 results in 

regions. The summations  over i, add  the  number of 
regions  for  each  value of i, in its  safe  region. Note 
that  the values of 1; and u; can depend  on  the values 
ofi,, i2, . . . , ij-l. If theloops arerectangular (i.e., 1; and 
u; do not depend on the values of other index 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

I 

variables), then  the expression for the  number of re- 
gions simplifies to: 

n = 2 + nT(2 + n;( . . . ( 2  + n,-,3) . . . )) 

or, in more compact  form: 

(73) 

MIDKIFF, MOREIRA, AND SNlR 449 



r + R  

C D C D  
3 3  



Figure 36 Applying  the  compact  method to the two outermost  loops  generates 2 + 3177 regions. 

tidimensional safe region can be  created  at this point. 
If function nochecks returns false, then  procedure 
regions is applied recursively as in Figure 16. We also 
put guards to  generate  the regions preceding and suc- 
ceeding the safe region of loop i, only if they are non- 
empty. 
*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark  or registered trademark of Sun Microsystems, Inc. 

Cited references 

1. J. Gosling, B. Joy, and G. Steele, The Java Language Spec- 
ification, Addison-Wesley Publishing Co., Reading,  MA 
(1996). 

2. J. Gosling, The Evolution of Numerical Computing  in  Java, 
document available at  URL http://java.sun.com/people/ 
jagiFP.html, Sun Microsystems, Inc. 

3. A. V. Aho, R. Sethi, and J.  D. Ullman, Compilers: Principles, 
Techniques, and Tools, Addison-Wesley Publishing Co., Read- 
ing, MA (1985). 

4. V. Seshadri,  “IBM High Performance Compiler for Java,” 
AIXpert Magazine, http://www.developer.ihm.com/library/ 
aixperti  (September 1997). 

5. A. Krall and R. Grafl, “CACAO-a 64-bit JavaVM Just in 
Time Compiler,” Concurrency, Practice and Experience 9, No. 
11, 1017-30 (November 1997). Java for  Computational Sci- 
ence  and Engineering-Simulation and Modeling 11, Las Ve- 
gas, NV (June 21, 1997). 

6. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan- 
nery, Numerical Recipes in FORTRAN:  The  Art of Scientific 
Computing, Cambridge University Press, Cambridge, UK 
(1992). 

7. D. Baxter, R. Mirchandaney, and  J. H. Saltz, “Run-Time  Par- 
allelization and Scheduling of Loops,”Proceedings ofthe 1989 
ACM Symposium on Parallel Algorithms and Architectures 

8. S. P. Midkiff, J.  E. Moreira,  and M. Gupta, Methodfor Op- 
timizingArray Bounds Checks in Programs, IBM Docket #YO- 
998-052, patent filed April 24, 1998. 

(1989), pp. 303-312. 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 

9. B. Schneier,Applied Ctyptography: Protocols, Algorithms, and 
Source Code  in C,  John Wiley & Sons, Inc., New York (1994). 

10.  B. Schwarz, W. Kirchgassner, and R. Landwehr, “An  Opti- 
mizer for Ada-Design, Experience  and Results,’’ Proceed- 
ings  of the ACM  SICPLAN ’88 Conference on Programming 
Language Design and Implementation (June 1988), pp. 175- 
185. 

11. P. Cousot and R. Cousot,  “Abstract  Interpretation:  A Uni- 
fied Lattice Model for  Static Analysis of Programs by Con- 
struction or Approximation of Fixpoints,” Conference Record 
of the 4th ACMSymposium on Principles  of Programming Lan- 
guages (January 1977), pp. 238-252. 

12. P. Cousot and N. Halbwachs, “Automatic Discovery of Lin- 
ear Restraints Among Variables of a  Program,” Conference 
Record of the 5th ACM Symposium on Principles of Program- 
ming Languages (January 1978), pp. 84-96. 

13. P. Cousot  and N. Halbwachs, “Automatic Proofs of the  Ab- 
sence of Common  Runtime  Errors,” Conference Record of 
the 5th ACM Symposium on Principles of Programming Lan- 
guages (January 1978), pp. 105-118. 

14. W. H. Harrison,  “Compiler Analysis for the  Value  Ranges 
for Variables,” IEEE Transactions on Software Engineering 
SE3, No. 3, 243-250 (May 1977). 

15. J. M. Asuru,  “Optimization of Array Subscript Range 
Checks,” ACM Letters on Programming Languages and Sys- 
tems 1, No. 2, 109-118 (June 1992). 

16. R. Gupta, “AFresh Look at Optimizing Array Bounds Check- 
ing,” Proceedings of the ACM  SIGPLAN ’90 Conference on 
Programming Language Design and Implementation (June 

17. R. Gupta, “Optimizing Array Bound  Checks Using Flow 
Analysis,” ACM Letters on Programming Languages and Sys- 
tems 2, Nos. 1-4,  135-150 (March-December, 1993). 

18. P. Kolte and M. Wolfe, “Elimination of Redundant Array 
Subscript Range Checks,”Proceedings of theACMSIGPLAN 
’95 Conference on Programming Language Design and Imple- 
mentation (June 1995), pp. 270-278. 

19. V. Markstein, J. Cocke, and P. Markstein, “Elimination of 
Redundant Array Subscript Range Checks,” Proceedings of 
theACM  SIGPLAN ’82 Conference on ProgrammingLanguage 
Design and Implementation (June 1982), pp. 114-119. 

1990), pp. 272-282. 

MIDKIFF, MOREIRA, AND SNIR 451 



Figure 37 Optimized  procedure to compute the regions for a loop  nest 

20. Pentium ProcessorFamily Developer’s Manual,  Volume 3: Ar- 
chitecture andProgrammingManua1, Intel Corporation,  Santa 
Clara, CA (1995). 

21. AIX Version 3.2 Assembler Language Reference, Third  Edi- 
tion, IBM Corporation  (October 1993); available through 
IBM branch offices. 

22. Java JIT Compiler Project Home Page, http://www.trl.ibm. 
com.jp/projects/s72lO/javaJit/index~e.htm, IBM Corporation. 

23. S. P.  Midkiff, “Computing  the Local Iteration  Set of a Block- 
Cyclically Distributed Reference with  Affine Subscripts,” Sixth 
Workshop on Compilers for Parallel Computing (1996). 

24.  K. van Reeuwijk, W. Denissen, H.  J. Sips, and E. M. R.  M. 
Paalvast, “An  Implementation Framework for HPF Distrib- 
uted Arrays on Message-Passing Parallel Computer Systems,” 
IEEE Transactions on Parallel and Distributed Systems 7, No. 
9, 897-914 (September 1996). 

452 MIDKIFF, MOREIRA, AND SNIR 

25. U. Banerjee, “Loop Transformations for Restructuring  Com- 
pilers,” Chapter 3, Dependence Analysis, Kluwer Academic 
Publishers, Boston (1997). 

Accepted for publication March 25, 1998. 

Samuel P. Midkiff ZBMResearch Division, T. .I. Watson Research 
Center, P.O. Box 218, Yorktown Heights, New  York 10598 (elec- 
tronic mail: smidkiff@us.ibm.com). Dr. Midkiff received a B.S. de- 
gree in computer science in  1983 from the University of Kentucky, 
and MS. and Ph.D.  degrees in computer science from the Uni- 
versity of Illinois at Urbana-Champaign in  1986 and 1992, respec- 
tively. While at  the University of Illinois, he spent two years in 
the design and development of the Cedar  FORTRAN compiler. 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 



He is a research staff member in the Scalable Parallel Systems 
Department at the Watson Research Center,  and an adjunct as- 
sistant professor at the University of Illinois, Urbana-Champaign. 
Since joining the Research Center in 1992, Dr. Midkiff has worked 
on the design and development of the IBM XL HPF compiler, 
the integration of the Distributed Resource  Management Sys- 
tem (DRMS) with various high-level languages, and the ASCI 
Blue compiler project. His current research areas  are optimizing 
computationally intensive Java programs, compilation for  shared 
memory multiprocessors, and  the analysis of explicitly parallel 
programs. He has authored or coauthored several refereedjour- 
nal and conference  papers on these subjects. 

Jose E. Moreira IBM Research Division, T. J. Watson Research 
Center, P.O. Box 218, Yorktown Heights, New  York 10598 (elec- 
tronic mail: jmoreira@us.ibm.com). Dr. Moreira received B.S. de- 
grees in  physics and electrical engineering in 1987 and  an M.S. 
degree in electrical engineering in  1990,  all from  the University 
of SHo Paulo, Brazil. He received his Ph.D.  degree in electrical 
engineering from the University of Illinois at Urbana-Champaign 
in 1995. Dr. Moreira is a research staff member in the Scalable 
Parallel Systems Department at the Watson Research  Center. 
Since joining IBM in  1995, he has worked on various topics re- 
lated to the design and execution of parallel applications. His cur- 
rent research activities include performance evaluation and op- 
timization of Java programs, and scheduling mechanisms for the 
ASCI Blue project. He is coauthor of several papers on task sched- 
uling, performance evaluation, programming languages, and  ap- 
plication reconfiguration. 

Marc Snir IBMResearch Division, T. J. Watson Research Center, 
P.O. Box218, Yorktown Heights, New  York 10598 (electronicmail: 
snir@us.ibm.com). Dr. Snir is a  senior  manager at the Watson 
Research Center, where he leads research on scalable parallel 
systems. He  and his grou developed many  of the technologies 
that led to  the IBM SP  product,  and  continue  to work on fu- 
ture  SP generations. He received a  Ph.D. in mathematics from 
the  Hebrew University of Jerusalem in  1979. He worked at New 
York University on the NYU  Ultracomputer project in 1980- 
1982, and worked at  the Hebrew University of Jerusalem from 
1982 to 1986, when he joined IBM. Dr. Snir has published close 
to lO0journal and conference papers on computational complex- 
i t y ,  parallel algorithms, parallel architectures,  and parallel pro- 
gramming. He has recently coauthored  the High Performance 
FORTRAN  and the Message Passing Interface  standards. He is 
on the  editorial  board of Transactions on Computer Systems and 
Parallel  Processing Letters. He is a  member of the IBM Academy 
of Technology and  an IEEE Fellow. 

TMP 

Reprint Order No. G321-5685. 

IBM SYSTEMS JOURNAL, VOL 37, NO 3, 1998 MIDKIFF, MOREIRA,  AND  SNlR 453 


