
Real-time  complexity 
metrics for Smalltalk 
methods 

by S. L. Burbeck 

This paper presents the rationale for  ubiquitous 
and immediate metric feedback on the com- 
plexity of Smalltalk methods whenever they 
are viewed  or changed, It also  presents  seven 
metrics  for Smalltalk methods that can be 
quickly  and  easily determined from the code  and 
are suitable  for real-time feedback. For each 
of these metrics, there is a description,  an 
explanation  of  how  it is determined and  why it is 
related to complexity,  and  suggestions  for  how to 
improve  code that receives a poor rating for the 
metric. 

C omplexity is the relentless  enemy of software 
engineering. Civil engineers have a saying that 

“rust never sleeps.” The  comparable maxim in soft- 
ware  engineering  ought to  be  that “complexity never 
sleeps.”  It  frustrates our efforts to express clear  re- 
quirements,  to  create  clean designs, and  to  produce 
understandable, maintainable implementations. Cer- 
tainly some,  perhaps  much, of this complexity is in- 
herent in the application  domain.  Additional  com- 
plexity can be  attributed  to limitations in the tools 
and  languages with which we implement  software. 
Yet all too much complexity is inadvertently  intro- 
duced by the very software  professionals  whose job 
it is to minimize it. 

Rarely  does  a  professional  designer or programmer 
deliberately  add  gratuitous complexity to a system. 
Complexity creeps  into  software systems unbid- 
den-a little  here,  a  little there-as a  result of poorly 
informed or hasty choices, small misunderstandings, 
poor communications,  and  subtle  failures of fore- 
sight.  Much of this  unbidden complexity would be 
avoided if we could spot it as it creeps into  our systems. 

The  traditional policy of obtaining complexity met- 
rics at  major milestones in a  software  development 
project (or worse  yet, at  the  end of the project)  does 
not  help us to detect  creeping complexity. The only 
practical  choice to  be  made  at  major milestones is 
to accept or reject the work done  thus  far.  Rework 
to  reduce complexity usually seems too difficult or 
expensive because the system embodies  a  bewilder- 
ing set of interlocking  assumptions  and trade-offs. 
Once complexity has  gotten  out of control,  it  takes 
control! 

What we need  are real-time metrics: metrics that  are 
computed  afresh  and  presented  without  noticeable 
delay each  time  a  change is made.  Real-time  met- 
rics become  the complexity equivalent of a  smoke 
alarm-a complexity detection  process  that is ever 
vigilant and  that warns us at  the first sign of excess 
complexity, rather  than  one  that notifies us after  the 
fact that  the software is hopelessly complex. 

Real-time  metrics  are  one  example of the kind of 
constant  software quality management  proposed by 
Adams  and  Burbeck in 1992. 1,2 They  argued that 
short cycle-time quality feedback, which has  proven 
its effectiveness in manufacturing, is equally useful 
in software  development.  They  also  point out  that 
quality feedback is not  just  for  managers.  Program- 
mers  need  feedback on software quality as much as 

OCopyright 1996 by International Business Machines Corpora- 
tion. Copying in printed form for private use is permitted with- 
out payment of royalty provided that (1) each reproduction is done 
without alteration  and (2) the Journal reference and IBM copy- 
right notice are included on  the first page. The title and  abstract, 
but  no other portions, of this paper may be copied or distributed 
royalty free without further permission by computer-based  and 
other information-service systems. Permission to republish any 
other portion of this paper must be obtained from the  Editor. 

204 BURBECK 0018-8670/96/$5.00 D 1996 IBM IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



do managers,  and, unlike managers,  programmers 
can make  immediate  direct use of such  feedback. Af- 
ter all, minimizing complexity should be  the respon- 
sibility of those who best  understand  the  true cost 

To discharge that responsibility, developers  need 
feedback  about the effects of their work. Metric  feed- 
back is most useful at  the time  each  addition or mod- 
ification to  the system is made  because the  alterna- 
tives and  trade-offs involved in the  change  are fresh 
in the mind of the developer.  Immediate  feedback 
allows developers to continuously  and iteratively 
manage  the complexity of a system as it is built. Expe- 
rience with such a system shows that professional de- 
velopers welcome such feedback  and use it to im- 
prove  their  work. 

Issues  raised by real-time  metric  feedback do  not 

from  the minute-by-minute business of software  de- 
velopment. Such issues include: 

Which metrics  should  be  measured? As with all 
forms of performance  measurement, you must 
choose  metrics carefully. As the saying goes: “Be 
careful  what you  wish for. You might get  it.” If we 
wish developers to pay attention  to  real-time  met- 
rics as  they work, it behooves us to  ensure  that  our 
metrics  measure complexity in a  meaningful way. 
This  requires  both  a  theoretical  understanding of 
complexity measurement  and  some empirical study 
of the reasonableness of the metrics in real-world 
applications. 
Which metrics can be  measured? Software  com- 
plexity takes many forms,  not all of which can be 
measured meaningfully. Of those  measurements 
that  are meaningful, not all can be  computed eas- 
ily enough or quickly enough  for use in real-time 
metrics. 
How should  metric  feedback  be  presented to  the 
developers?  Tabular  reports  such  as  those avail- 
able  from  traditional  metrics  tools would quickly 
became annoying if they appeared every time  a 
change was made to  the system. Ubiquitous  real- 
time  feedback  should  be  unobtrusive yet informa- 
tive. The volume of feedback  information  should 
be very small when complexity is within acceptable 
limits, but  more detail  should be available when 
it is needed or desired. 
How are developers  expected to  reduce complex- 
ity when  metrics  indicate the  need?  Traditional 
metrics  reports invite a leisurely assessment of the 
options  for  reducing complexity. In  contrast,  the 
typically rapid  pace of software  development,  and 

I of complexity: the professional  software  developers. 

I arise or  are less important when metrics are divorced 

I 

1 

I 
IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 

hence of the real-time  metric  feedback,  encour- 
ages  the  developer to immediately rectify a  prob- 
lem. Experienced developers will usually  know  how 
to  do so, but  inexperienced  developers  could  eas- 
ily be  at a loss. Thus,  it is important to provide im- 
mediately available suggestions for how improve- 
ments  can  be  made. 

This paper examines  these issues in the context of 
Smalltalk, one of the two most popular  object-ori- 
ented programming languages. The second  and third 
sections discuss what we mean by complexity and how 
it is manifested in Smalltalk systems. The  fourth sec- 
tion reviews the key issues that affect our ability to 
measure complexity in Smalltalk systems. The fifth 
section discusses the reasons  for  and the effective- 
ness of real-time feedback of metric information. The 
sixth section  presents seven specific metrics  for  mea- 
suring the complexity of Smalltalk methods.  These 
metrics have proven to  be suitable  for  real-time  feed- 
back.  Each  metric is discussed in terms of its rela- 
tionship to complexity, and ways to improve  meth- 
ods  that  the metric indicates are  too complex. Finally, 
the  chosen  metrics are applied to approximately 
35 000 methods in the  three major  dialects of Small- 
talk. The results  indicate that it is reasonable  to ex- 
pect developers to implement very large systems with 
relatively few violations of the metric guidelines. The 
last section  concludes with a discussion of some  of 
the effects observed in day-to-day use of the tools. 

What is complexity? 

When we  say that a system is complex, we mean,  at 
the very least, that it  has  a  large  number of parts. 
But we mean  more  than  that. A beach  has  a vast 
number of grains of sand, yet we usually do not  con- 
sider  sand to  be complex. Complex systems have 
many different kinds of parts, and  the many parts con- 
nect  to, or interact with, one  another in many ways. 
Thus, two characteristics of complex systems are nu- 
merosig (both of elements  and kinds of element)  and 
interconnectedness. In  the case of an object-oriented 
(00) system these  notions  can  be  made  more  con- 
crete. We consider an 00 system to  be complex when 
it consists of many objects  (parts) of many classes 
(kinds of part)  that  collaborate  (interact) with one 
another in many ways. 

Numerosity and  interconnectedness  are  the most vis- 
ible aspects of complexity, but they do not fully ac- 
count  for  the difficulty we have managing complex- 
ity in software  engineering. Two other aspects of 
complexity must  also be  taken  into account. One- 

BURBECK 205 



cognitive  complexiy- has to  do with human ability 
to understand a system. The other-udaptive com- 
plexity-has to do with  how  systems  change or evolve 
over time. 

Cognitive complexity. Software is a creation of the 
human mind, so software complexity  must  in part 
be a cognitive  issue.  Cognitive  complexity  is that 
which hinders human understanding of  how the soft- 
ware is designed and constructed and how it func- 
tions at run time. Numerosity and interconnected- 
ness  play a role in  cognitive  complexity because 
people have limited abilities to understand and re- 
member the details about and the relationships be- 
tween  many distinct entities. As we  say, “The devil 
is  in the details.” Nonlinearities also  play a role. Peo- 
ple tend to reason inaccurately about nonlinear pro- 
cesses-even  simple ones such as exponential or 
combinatoric growth. Modern software  systems rou- 
tinely  involve such a large number of elements in- 
terconnected in so many nonlinear ways that human 
abilities are  inadequate for the task of completely 
understanding these systems. 

Details come  in various forms that challenge human 
cognitive  abilities  differently. There  are persons who 
cannot remember a 12-digit number but have no 
trouble remembering the names of dozens, if not 
hundreds, of friends and acquaintances who are  en- 
meshed in a complex  web of personal and business 
relationships. We are aided in dealing with the mul- 
tiplicity of people and relationships by our ability to 
classify  much of the detail into categories with  sim- 
ilar and familiar behavior. For example, we under- 
stand much about people in terms of their roles and 
responsibilities, job titles, positions in organization 
charts, status as  employee or customer, and so forth. 

Object-oriented analysis  and  design tends to give  rise 
to models that mirror much of the familiar under- 
standable domain relationships. When an 00 design 
is fresh, many  of the classes, their responsibilities, 
and  the messages  they understand reflect familiar 
aspects of the problem domain. This similarity helps 
those working  with the system to better understand 
its function and reduces the cognitive  complexity of 
the system. However, the correspondence between 
the 00 system and the problem domain requires a 
carefully constructed balance of trade-offs  among the 
desired function of the program, domain require- 
ments, platform constraints, and strengths or weak- 
nesses of the language and class  library.  Over time, 
changing requirements disrupt these careful trade- 
offs, thereby causing changes to the system that 

206 BURBECK 

stretch the fidelity of the models beyond the break- 
ing point. The corresponding growth of cognitive 
complexity is  slow  in the early stages of this  pro- 
cess and increases rapidly as  the models lose touch 
with the domain.  When that has  occurred,  judi- 
cious refactoring can restore  an  understandable 
correspondence  between  the  model  and  the new- 

Software ,is a creation of the 
human  mind, so software  complexity 

must in  part  be a cognitive issue. 

behavior of the system. Such refactoring  reduces 
cognitive complexity without necessarily reducing 
the number of classes or  their interactions. 

Adaptive complexity. Although software begins  as 
an abstract creation in the human mind, once the 
idea leaves our minds  it takes concrete forms-both 
a source code form and an executable form-that 
have  lives of their own. Software executes in a com- 
puter  that is indifferent to numerosity and intercon- 
nectedness (not to mention cognitive  complexity). 
As  it does so, it  reveals behavior not foreseen by its 
developers. Source code also has a life of its own. 
For example, a class written by one person with one 
intent suggests other uses to other team members. 
Finally,  when the software is released to  end users, 
it becomes enmeshed in the business or social prob- 
lem domain for which it provides a solution. Users 
of the software discover unforeseen ways  in  which 
it can  be  used or could be used if it were just changed 
slightly. This notion that software has a life of its own 
reflects the fact that software is one element of an 
evolving  dynamic  system, a system that involves the 
software, the hardware on which  it runs, the people 
who develop it, and the people who  use it. 

Adaptive complexity refers to the way in  which the 
numerosity and the nonlinear interconnectedness of 
software affect the evolution of the system. These 
issues are  the subject of the relatively  new  science 
of complex adaptive systems. (For an introductory 
review, see Waldrop4 or Nicolis  and Prig~gine.~) Re- 
searchers in that field  view  complexity as a poorly 
understood but nonetheless objective property of 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



adaptive systems.  Software  is but one of many  such 
evolutionary systems. 

Complex adaptive systems are ones in  which the 
number, the  nature,  the interconnections, or the in- 
teractions of the elements in the system are chang- 
ing  over time in ways that affect and are affected by 
the system’s  own  complex structure, i.e.,  they feed 
back  upon  themselves.  Numerosity  and interconnect- 
edness play a role in adaptive complexity because 
the more elements and interconnections there  are, 
the more possibilities there  are for feedback. Our 
intuitions about such  systems lead us to expect them 
to become increasingly chaotic as the number of 
feedback loops grows. Yet  the phenomenon that 
complexity theorists find  common to a wide  variety 
of complex adaptive systems  is  self-organizing emer- 
gent behavior. That is,  complex adaptive systems be- 
have in a counter-intuitive manner: order emerges 
out of chaos. 

Emergent behavior from complexity  is ubiquitous in 
the world around us at every  physical  scale  and  in 
many  kinds of systems.  Molecules emerge from com- 
plex interactions between the  outer electrons of at- 
oms. Ecologies emerge from complex interactions 
between various species, geographic features, and 
weather. Social organizations (groups, clubs,  busi- 
nesses, etc.) emerge from complex interactions be- 
tween people. Hurricanes emerge from complex 
interactions between warm ocean currents, atmo- 
spheric humidity  and temperature gradients, and 
winds. Monopolies and cartels emerge from com- 
plex interactions within disordered economic mar- 
kets. And highly ordered self-perpetuating patterns 
emerge from random initial states in cellular autom- 
ata such  as John Conway’s game of “Life.”6-8  The 
emergence of each of these macro-level patterns is 
thought to be an inherent and inevitable result of 
the complexity of the substrate level. 

Computing systems are complex adaptive systems  in 
two quite different realms: their execution environ- 
ment and their development environment. Execut- 
ing programs involve  many interconnected elements 
that  adapt  to  the execution environment: memory 
usage, compute cycles,  file  system space, input from 
users,  and perhaps other programs  (especially  in net- 
worked client-server environments). The macro be- 
havior of a running program emerges from these in- 
teracting elements. To as large a degree as  possible, 
the behavior that emerges from a program should 
be that which  is expected by the developers. But 
in  complex  systems, emergent behavior is seldom if 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 

ever  completely predictable. Unexpected pernicious 
emergent behavior at run time is  called a bug. We 
strive to reduce unnecessary complexity  in part to 
reduce unwanted emergent behavior. 

Computer programs exist  in human-readable form 
separately from the form in  which  they execute. The 
many interacting elements of this realm are source 
code constructs, design elements, development tools 
and environments, and human developers. Through- 
out the life cycle  of a system,  designers  and program- 
mers add, remove, and change design and source 
code elements to  adapt  the system to changing re- 
quirements or changing understanding of existing re- 
quirements or existing  system behavior, or  to both. 
These additions and changes depend on the preex- 
isting state of the system. Therein lies the feedback 
that fuels a complex adaptive system.  Some elements 
engender others like  themselves,  e.g., they are used 
as patterns  or conventions or invite “cut-and-paste” 
reuse. Some invite specialization by subclassing (in- 
heritance reuse) or reuse in collaborations with  new 
objects. And some resist change or reuse because 
their cognitive  complexity  makes them difficult to 
understand or change. Resistant elements may cause 
suboptimal changes to be made elsewhere. These 
suboptimal changes tend to increase the complexity 
of the elements in  which  they land. Complex areas 
that cannot be avoided tend to become even more 
complex because changes to them are more likely 
to be made without understanding the cleanest way 
to solve the problem. In general, repeated changes 
tend to increase complexity and reduce understand- 
ability. This sort of self-reinforcing creeping com- 
plexity  eventually renders the system so brittle that 
often it  must be abandoned. Real-time metric feed- 
back,  as proposed here, aims at reducing creeping 
complexity during development and maintenance by 
making the effect changes have on complexity more 
visible. 

Complexity in Smalltalk  systems 

Smalltalk  systems are structured at multiple levels 
of organization: the web of interacting instances, the 
collection of interconnected and interdependent 
classes  (which are related by a  tree of inheritance- 
“is-a”-relationships, a web of attribute-“has-a”- 
relationships, and a web  of collaborations), and  the 
parallel  and  partially independent tree of metaclasses 
(i.e., the class objects themselves that provide the 
class behavior as opposed to the instance behavior 
of the class). Often additional organized structures, 
such as groups of collaborating abstract classes that 

BURBECK 207 



form  frameworks, are  embedded within and  across 
these  other structures.  Those who design, build, test, 
and  maintain the system must explicitly understand 
and  deal with each of these levels of organization. 
Each level hinders or facilitates understanding of the 
system in different ways and  therefore  contributes 
its own sort of cognitive complexity. As the system 
grows and  changes  during its initial construction  and 
later evolves in maintenance  phases,  each level af- 
fects  and is affected by this  evolutionary  process dif- 
ferently; therefore,  each level contributes differently 
to  the adaptive complexity of the system. 

Methods. Individual  methods  define the  atomic col- 
laborations of the system. Their existence in a given 
class defines which messages can  be  sent to objects 
of that class, and  the  code within them  defines the 
precise  series of collaborations that  implement  the 
computation.  Each  method is a nexus of intercon- 
nections (i.e., collaborations)  between  objects. 

The number of objects involved in a  method  and  the 
number of collaborations specified in the  method 
clearly affect the complexity of the  method.  Meth- 
ods  most commonly contribute  to complexity by do- 
ing too much or doing it too procedurally. In addi- 
tion,  a  method may contribute  disproportionally to 
cognitive complexity if its behavior is awkwardly cho- 
sen or poorly named. 

Overly long  and complex methods  tend  to resist 
change  and reuse.’ A disciplined, experienced Small- 
talk developer will break up, refactor,  and clarify long 
complex methods.  But the longer  and more complex 
a  method is, the  more difficult the task  tends to  be 
and,  hence, the  more  tempting it is to avoid. If the 
necessary experience or  the discipline, or  both,  to 
simplify long or complex methods is lacking, such 
methods  tend to get  longer  and  more complex as new 
requirements  force changes. Thus, complexity be- 
gets  more complexity. This is the essence of adap- 
tive complexity. 

Classes and metaclasses. Individual classes contrib- 
ute cognitive complexity if they are poorly matched 
to  the  domain (i.e., model it badly), are poorly 
named, or define poorly named  or poorly factored 
methods so that  their  purpose is obscure. Or a class 
can  attempt to  do  too much or too  little. Classes con- 
tribute to overall numerosity and  interconnectedness 
by defining attributes (e.g., instance  variables)  and 
methods.  Unlike  the  case of individual methods, 
smaller classes are  not necessarily better. Classes with 
little behavior may be  entirely  appropriate to  the do- 

main, or they may simply be thinly disguised data 
structures.  In  the  latter  case, they seem  simple only 
because they are manipulated by other (usually over- 
weight) classes that  are thinly disguised procedural 
programs. The  apparent simplicity of such light- 
weight data  structure classes is illusory if the behav- 
ior  that must be  understood  to reuse or change  them 
resides in other large, overly procedural classes that 
are difficult to understand,  reuse, or change. 

The characteristic way  in which classes grow more 
complex is by accumulating  methods that  do  not 
quite fit with the previous responsibilities of the class. 
However,  increasing the  number of methods in a 
class does  not necessarily add complexity. For ex- 
ample, the  number of methods  increaseswhen  a long, 
overly complex method is broken  into two or  more 
simpler  methods, yet the result may be a  simpler 
class. The complexity of the class increases when new 
kinds of behavior are  added. 

Classes themselves are objects that provide class var- 
iables and class methods. The majority of classes de- 
fine no class variables and  implement  no class be- 
havior. For  that  reason,  programmers (especially 
novices) may find class behavior  confusing  when it 
is present. Class variables  can  add complexity be- 
cause they are  shared by all instances of the class 
and  therefore  can  provide  interconnection  between 
otherwise  isolated  objects. Class methods  do  not, in 
general,  increase  connectedness  because they are in- 
voked only by messages to  the class object  (and its 
subclasses), not  to instances of the class. The most 
typical class behavior is instance  creation  and ini- 
tialization. Cognitive complexity can  arise if the ini- 
tialization is not  straightforward.  Examples of other 
types of class behavior are:  maintenance of instance 
uniqueness (e.g., Symbol or Character) and  delega- 
tion of instance  creation to  other classes (usually the 
newly created  object is an instance of some  appro- 
priate subclass). In very rare cases, class behavior 
modifies the class itself. The class determines  the  be- 
havior of all instances,  and  that  behavior may be 
changed  programmatically at run  time.  To  do so, 
however, dramatically  increases  both the cognitive 
and  the adaptive complexity of the system. 

Inheritance. Inheritance  relationships  between 
classes affect complexity in  ways that may not  be  ap- 
parent  from an examination of the individual classes. 
A careful  examination of the  inheritance  tree might 
show that  behavior is misplaced. A couple of classes 
might duplicate  behavior  that could be  shared if a 
new abstract superclass were  created  from which  they 

IBM SYSTEMS JOURNAL, VOL 35, NO 2. 1996 



can  both  inherit. Or a class may do less than it could, 
thereby forcing its subclasses to implement  more  be- 
havior than necessary. In both cases the lack of be- 
havior (or  the lack of behavior in the  “right” place) 
has  the  potential  for  promoting complexity as new 
subclasses are  added. Experienced  developers may 
well spot the  opportunity  for  refactoring in these 

. ~~ ~~~~~ ~ . ~~~ ~~ ~ ~ ~ ~ ~~ ~~~~~ ~~~~ 

The  cognitive  complexity of a 
framework  depends on how  well 

matched  it  is  to  the  needs of 
its  subclasses. 

cases. If not,  the flaws  in the  hierarchy grow as new 
classes are  added. Thus, the flaws represent  adap- 
tive complexity. 

A more  subtle misuse of inheritance  occurs when a 
class inherits  behavior  that  cannot  be used, presum- 
ably  in order  to inherit other behavior that is desired. 
This type of inheritance  adds  substantially  to  com- 
plexity. The developer  who  chooses  such  improper 
inheritance may clearly understand which inherited 
messages must not be  used.  Subsequent  developers 
have a difficult task deducing  that  information. 

Collaboration. Two related  collaboration webs are 
involved in an 00 application:  the web of collabo- 
rating classes and  the web of specific collaborations 
between  instances  that accomplish a  computation. 
In  the Booch method of 00 analysis and design, “) 
the  former is described with class diagrams  and the 
latter with object diagrams and  interaction diagrams. 
Collaboration complexity has to  do with how exten- 
sive and  tangled  these webs may be  and how “nat- 
urally” they  model the interactions in the  problem 
domain. 

The webs determined by the  attributes (Le., instance 
variables  and class variables) of the classes are gen- 
erally subwebs of the  collaboration webs because  an 
object usually has  collaborators that  are  not  at- 
tributes (e.g., they  are passed to  the object  as mes- 
sage  arguments).  These subwebs of “containment” 
contribute complexity that is distinct from that of the 
collaboration web whenever webs of objects must be 
exported or imported  from  external  databases, e.g., 

IBM SYSTEMS JOURNAL, VOL 35. NO 2. 1996 

in client/server environments. 00 databases can man- 
age  persistent  storage of webs of objects with arbi- 
trary  references to  one  another, although  not always 
without  performance  implications.  But  the  most 
common  case in commercial 00 systems is that in 
which  webs  of objects must be stored in and retrieved 
from  relational  databases.  The  constraints  imposed 
by the  requirements of relational  models  add to the 
cognitive complexity of a system when they conflict 
with principles of good 00 design. 

Frameworks. Frameworks are webs of abstract classes 
that  are  meant  to  be  extended by subclassing to fit 
the specific requirements of the application.  What 
differentiates frameworks from other  abstract classes 
is that  concrete subclasses are  intended  to special- 
ize a specific set of abstract  collaborations  between 
the  inheritance  trees  that  descend  from  each of the 
abstract classes in the basic framework. In large mea- 
sure,  frameworks exist to provide important  inher- 
itable  collaborations. Their impact on complexity 
therefore involves issues of both  inheritance  and col- 
laboration. 

The cognitive complexity of a  framework  depends 
on how well matched it is to  the  needs of its sub- 
classes. A good framework  that is easy to understand 
can anchor  a  large  set of subclasses. Such a  match 
tends to lower the overall cognitive complexity of the 
set of subclasses in the framework because they share 
a  stereotypical  collaboration.  However, it may in- 
crease  adaptive complexity because  a  change  that af- 
fects one of the  abstract  collaborations  can  ripple in 
unforeseen ways to all the subclasses that  inherit 
from the framework. 

Interactions between levels. The complexity within 
each of these levels clearly contributes  to  the  over- 
all complexity of a  Smalltalk system. Just as  impor- 
tantly, the relationship  between the levels also  con- 
tributes  to  the complexity. Since changes to  the 
system usually affect more  than one level, the effect 
of a  change  on overall complexity can  be difficult to 
assess. In some cases complexity within one level can 
be reduced  without  impacting other  structures. 
Poorly written  methods,  for  instance, can often  be 
made  simpler with no  changes  outside the  method 
itself. Occasionally, we may be able  to refactor  a sys- 
tem in a way that simplifies more  than  one level at 
once-perhaps one  or  more classes are  seen  to  be 
superfluous  and  disappear  entirely, while code  that 
relied on those classes becomes simpler as well. More 
often, however, refactoring  reduces complexity at 
one level by judiciously adding complexity to  another. 



A new class may be  added  to allow simplification of 
methods or collaborations  elsewhere, or  an  abstract 
class may be  added  to simplify many of the classes 
that inherit  from the new abstract class. Either case 
raises  the complexity of the class hierarchy.  Addi- 
tion of a new framework may increase complexity 
at many levels  in exchange for  a slower rate of growth 
in complexity as  future specializations of the  frame- 
work are  added. 

Understanding  these issues well enough to  measure 
the effects of changes that move complexity from one 
level to  another is, at  best, a  distant possibility. For 
the  foreseeable  future, we must  trust the explicit re- 
distribution of complexity to  the judgment  and expe- 
rience of skilled people. The only plausible near-term 
goal is to  measure complexity within these levels. 

Measuring complexity 

Our experience with everyday measurement of the 
physical world  tempts us to assume that  once we un- 
derstand  a  particular  notion of complexity, it is a 
straightforward matter  to  measure it. That assump- 
tion  stems  from our experience with measurements 
of simple physical properties  such  as  length or mass. 
We  are aware of potential  problems with measure- 
ment accuracy, but we take  for  granted  the  mean- 
ingfulness of notions such as  “average  length” or 
“twice the mass.” Even in the physical world, though, 
measurement is not always so simple.  Hardness is 
a readily measurable  property of  physical objects, and 
it is meaningful to say that  one substance is harder 
than  another. Color,  too, is measurable.  Yet  the no- 
tions of “twice as  hard” or “average  color” are  mean- 
ingless. When we step away from  the physical world, 
measurement  often becomes even more problematic. 
Consider the well-known  difficulties of measuring hu- 
man  intelligence or product quality. The problem is 
that  the underlying empirical  properties of color, 
hardness, intelligence, or quality do not  behave com- 
patibly with all of the  properties of numbers. 

The theory of measurement  has  long  been  the  sub- 
ject of rather  deep  theoretical study that aims to rig- 
orously  characterize  the  properties of empirical 
structures  required  to  support  meaningful  numeric 
manipulation. ” The empirical  structures of interest 
here  are software structures such as  methods, classes, 
inheritance hierarchies, and  the like. We wish to  map 
these  structures  into  numerical  representations so 
that we can discuss and  reason  about  one aspect of 
software, its complexity, in  isolation  from the many 
other aspects of the software. The difficulty  is that 

21 0 BURBECK 

numbers  can  be assigned to empirical  structures in 
infinitely many ways. Some  are useful,  and others 
are  not.  The  theory of measurement provides a 
framework within which to choose  among  these  nu- 
merical  representations.  Before we leap  into mea- 
suring  software complexity, it is worth  considering 
the issue of just  what we can expect to  learn  from 
such  measurements. 

Metrics and meaningfulness. Both the  properties of 
the empirical  structures  and  the way in which we 
choose to  map  them  into  numbers  determine how 
we can  use the resulting  measurements. For  an  at- 
tribute of software (e.g., complexity) to be  measured 
in a  meaningful way, it  must exhibit properties  that 
can  be  mapped consistently into  analogous  proper- 
ties of the  number system. l 2  

To meaningfully compare different chunks of soft- 
ware in terms of which is more complex, the  mea- 
sure must map chunks of software into  numbers so 
that  the  ordering relationship of the  “natural com- 
plexity” of the software  maps  appropriately  into the 
natural  ordering of numbers (i.e., x < = y). Such map- 
ping requires  that we be  able  to say which of two 
software  artifacts is more complex than  the  other. 
More formally, for any two artifacts A and B,  we must 
be  able  to say either  that artifact  A is at least  as  com- 
plex as  artifact B, or  that artifact  B is at least as com- 
plex as  artifact A.  And if both  statements  are  true, 
the two artifacts  must  be of equal complexity. The 
natural  order of complexity must  also be transitive: 
if artifact  A is at least as complex as  artifact  B and 
artifact  B is at least  as complex as artifact  C, then 
it must be  the case that artifact  A is at least  as  com- 
plex as artifact  C. An empirical  structure that 
obeys these necessary ordering  relationships can be 
mapped  into  an  ordinal scale. That is, a  number  can 
be  chosen  for  each  artifact  such that  the  natural  or- 
der of the  numbers  agrees with the  natural  order of 
the complexity of the  structures. 

It is another deceptively large step  from meaning- 
fully answering the  question of  which artifact is “more 
complex” to answering the  question of “how  much 
more  complex?” The first question simply requires 
that  the mapping  not  violate  the  numeric  ordering 
relation. The second  question, in essence,  requires 
that  the  mapping  preserve  the  much  stronger  rela- 
tionship of numeric  addition. To preserve  this  re- 
lationship we need  a  clear  notion of what  it  means 
to combine, or concatenate, two chunks of software 
into a single chunk  for which it  can be assumed that: 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



The complexity of the  concatenation of any two 
artifacts is at least as large as  the complexity of ei- 
ther  artifact  alone  (monotonicity). 
The complexity of the  concatenation of any two 
artifacts is independent of the  order in which they 
are  concatenated (commutativity). 
The complexity of the  concatenation of any three 
artifacts is independent of  which pair is concate- 
nated first (associativity). 

These  properties  ensure  that  the  operation of concat- 
enating two software  artifacts  maps into  the  oper- 
ation of adding  their complexity measures. If the em- 
pirical structure  supports  an  ordinal  scale  and  also 
supports  additive  concatenation,  it  becomes an in- 
terval scale. Interval scales support  computation of 
the familiar  statistics that rely on addition, such as 
means, standard deviations, and  correlations.  Ordi- 
nal scales do not. 

To make statements such as “artifact A is  twice as com- 
plex as artifact B,” the notion of zero must be mean- 
ingful. Zero implies that  there can be software artifacts 
with no complexity. It also implies that  the concate- 
nation of artifact A with artifact B has the same com- 
plexity as artifact A, if and only if artifact B has no com- 
plexity. The presence of an identifiable zero point 
transforms an interval scale into  a ratio scale. 

The above  qualitative  statements about complexity 
are examples of a  set of properties  that  support 
meaningful  measurement.  They  provide  enough of 
a  theoretical  foundation to decide,  for any partic- 
ular  notion of complexity, what sort of measurement 
scale  can be  supported.  Others may be  more suit- 
able in some cases. ‘3-1s 

In  the field  of software measurement, Weyuker l 6  was 
one of the first to propose  “desirable  properties of 
complexity measures.” She discusses nine  properties 
that  she  thought software complexity metrics  ought 
to have. But  she only proposed  them as  a  starting 
point for further study. She  made  no claims that  these 
properties  form  a  consistent axiom system that is ei- 
ther necessary or sufficient as a  foundation  for new 
complexity measures. As it turns  out, they are  not 
sufficient and have been shown to  be internally in- 
consistent. l 7  Some  recent  papers  present  a somewhat 
more rigorous discussion of the  theoretical issues of 
the  measurement of complexity. 18-20 

Meaningful  Smalltalk  metrics. The many levels of 
complexity in 00 software  present  challenges  for 
those  who  seek to create  comprehensive complexity 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 

metrics. These levels are fundamentally  different 
from  one  another.  Some  do  not  support even  a lin- 
ear  ordering relationship. Others  support  ordering 
but  not  concatenation  operations. 

Within individual methods,  orderings  can  be  estab- 
lished in many sensible ways. It  does not  stretch  cred- 
ibility too much to assume that  concatenation 
amounts  to appending  code  from one  method  to  that 
of a  second  method (even though that may be  se- 
mantically meaningless in most cases).  This kind of 
concatenation is analogous to  the  measurement of 
length  where  concatenation  amounts to placing two 
physical objects  end-to-end  for  the  purpose of mea- 
suring  their  combined  length. Given this  sort of con- 
catenation,  the  method-level  metrics  proposed  later 
in this paper satisfy the  ordering  and  concatenation 
requirements of a  ratio scale. 

The  foundation  for complexity of a class is not  as 
firm. Some  notions of class complexity support  plau- 
sible orderings: the  number of instance  variables  (or 
class variables)  defined or inherited, or both,  the 
number of methods  defined or inherited, or both, 
and so forth. I’ But  these  orderings  depend  on 
whether we take  into account only what is defined 
by the class or also include  what is inherited by the 
class. We routinely  and casually talk  about  the  com- 
plexity  of a class in terms of what it defines  despite 
the fact that a class encompasses everything it in- 
herits  as well. It is tempting  to believe that  a class 
that  defines one instance  variable  and  a  couple of 
methods is less complex, independent of its place in 
the  hierarchy,  than one  that defines  more state  or 
behavior.  This belief seems plausible from  the  per- 
spective of cognitive complexity if we are willing to 
assume that  one already understands its superclasses. 
From  the perspective of adaptive complexity this 
seems  much less plausible  since the new class inter- 
acts with other classes with all its behavior-inher- 
ited as well as  defined.  Consider the following ex- 
ample of two actual classes in IBM Smalltalk: 

Class A defines no  instance or class variables, eight 

Class B defines no  instance or class variables, seven 
instance  methods,  and one class method. 

instance  methods,  and two class methods. 

On the face of it, neither class seems very complex, 
and  there is little to choose  from in deciding which 
one is more complex than  the  other.  (Note  that we 
are ignoring the complexity of the  methods  them- 
selves. In this case  neither class has especially com- 
plex methods.)  Inheritance  changes  the  picture 

BURBECK 21 1 



rather dramatically. Class A isAway, which inherits 
from Object,  Collection, and SequenceableCollection. 
Class B is Boolean, which inherits directly from Ob- 
ject. Array inherits  a  large body of relatively compli- 
cated  behavior  from its superclasses,  most of which 
is used by arrays. Boolean inherits  a  number of meth- 
ods  from Object (more  than most  programmers  re- 

. ~ ~~~~ ~ ~~~~~~. . ~~~~ ~ ~ ~ ~ ~ ~~~~ ~~ ~ ~ 

The incremental and iterative 
development  style of Smalltalk 

development is  well-suited 
to real-time  method-level  metrics. 

alize),  but very little of the  inherited behavior is ever 
used.  Moreover,  inheritance plays an additional  role 
in this  case: Away is a  concrete class that  stands  on 
its own, whereas Boolean is an abstract class. The 
behavior Boolean implements is meaningless apart 
from  the behavior of its subclasses: True and False. 
There is a  case of subtractive  inheritance in Boolean 
as well: it overrides the class new method to disable 
it.  When  proposing  orderings  between classes, we 
must  take issues of inheritance  into  account. 

Inheritance  complicates the notion of concatenat- 
ing classes as well. Concatenation of two classes that 
share  the  same superclass (i.e., sibling classes) could 
be  taken  to  be  the  creation of a new class with all 
the variables  and  methods  defined in either  original 
class. This  concatenation is somewhat  analogous to 
pouring two liquids into  a  common  container  for  the 
purpose of measuring  volume.  However,  a  metric 
that is restricted to a family of sibling classes is  of 
little  use. The  situation is less straightforward if one 
of the two classes descends  from the  other  and over- 
rides  methods in its  superclass. In that case  concat- 
enation may result in the removal (via override) of 
behavior as well as the addition of new behavior. 
Concatenation  then has aspects of both  addition  and 
subtraction. 

Establishing an  ordering or concatenation  operation 
for  other aspects of 00 software is even  more  prob- 
lematic. We lack obvious candidates  for  the  proper 
ordering or sensible  concatenation of webs of col- 
laborating  objects, class-metaclass relationships, in- 
heritance  trees,  or  frameworks.  We  therefore  do not 

and  cannot have a  theoretically  sound way to mea- 
sure all of the  contributors to  the complexity of an 
00 system. Hence,  the very notion of measuring 
overall complexity is inherently meaningless (as oth- 
ers have noted  on  different grounds’y~zl).  The only 
levels that seem  promising at this  time are  the 
method  and class levels, and  the class level may well 
support no more  than  ordinal metrics. For  the  fore- 
seeable  future, we must be  content with the goal of 
constructing  reasonable  measures of the complex- 
ity within these  tractable levels of organization.  This 
outcome  echoes  what  Fenton’’ proposes: “. . . the 
most promising approach is to identify specific at- 
tributes of complexity and measure these separately.” 

Real-time measurement  and feedback 

Even  a  “perfect” complexity metric-one that has 
a  clear  intuitive  connection to complexity, theoret- 
ical validity, empirical  validation,  and  perfect accu- 
racy-cannot by itself reduce  the complexity of an 
application.  Consider the analogy of dieting  and 
weight loss. The  measurement of physical weight 
presents  no  theoretical  and few practical difficulties. 
Weight  measures  are  certainly empirically valid and 
can be as  precise  as one desires.  But  as millions of 
overweight dieters  can  attest,  the ability to accurately 
measure  their weight does  not  much  help in weight 
reduction. A pound  gained or lost is the cumulative 
effect of many events  and  conditions  (calories eaten, 
calories burned in exercise, metabolic  rate,  etc.)  that 
span days. So too with creeping complexity. Feed- 
back at  the time  each decision is made is best rather 
than  feedback  about accumulated  decisions that  are 
difficult to  undo.  The accumulation of reductions in 
local complexity reduces global complexity. 

The incremental  and  iterative  development style of 
Smalltalk  development is well-suited to real-time 
method-level  metrics. Smalltalk code browsers dis- 
play code  one  method  at a  time.  When  methods are 
added or changed,  each is compiled  before moving 
on to  the next. Since methods  are typically small, each 
addition or change is done in a few minutes  (or some- 
times  a few seconds).  This  short  period provides the 
opportunity  to display feedback on the complexity 
of  new or changed  methods very soon after  the  code 
is written. The  same complexity assessment can be 
applied  as  a  developer views each existing method. 
Since Smalltalk developers typically spend much 
more  time browsing and  reading  code  than  they do 
writing code, having real-time  metric  feedback  as 
they browse provides an  ever-present  sense of the 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



complexity of a wide-ranging sample of the code they 
are reusing. 

A Smalltalk development  environment with real- 
time  metrics was first demonstrated  at O O P S L A ’ ~ ~  by 
Knowledge Systems Corporation.  Whenever  the  de- 
veloper  browsed or changed  a  method,  a simple in- 
dication of the complexity and  readability of the 
method automatically appeared in a  metric  feedback 
pane in the browser. Another system with metrics 
available upon  request was prototyped  and described 
by Barnes  and Swim.22 That system does  not have 
real-time  feedback,  but it has  a “Quality!” menu  item 
on the  primary browser that allows the developer to 
easily obtain  a  metric  report  for  the  selected class 
or method, or both. 

Requirements  for  real-time  metrics. If the kind of 
feedback and its manner of presentation are not well- 
chosen, real-time metrics could become overbearing 
and irritating. In appearance  and in content, real-time 
metrics must help rather  than distract, constrain, or 
overwhelm the developer with unasked-for informa- 
tion. 

The following principles were used to guide us in pro- 
viding real-time  metric  feedback: 

Information  should  be  presented  for  several  met- 

Metrics must be rapidly computed-delays are  an- 

I 

1 

rics-no one metric tells the whole story. 

noying. 

ever-present yet unobtrusive so that developers are 
always, if subliminally, reminded of their  respon- 
sibility to manage complexity. 
Metrics  must  be  presented in a manner  that is im- 
mediately  interpretable. No thought  should  be 
wasted on metrics  unless  thought is needed. 
The developer should be concerned with the  degree 
of complexity  only when it exceeds a threshold. 
Metrics  should  be  able to explain themselves. If 
the  coarse initial feedback  indicates  a possible 
problem,  the developer  should  be  able to easily 
obtain  more  detailed  information. 

1 Metrics  should  be  presented in a  manner  that is 

1 
Above all, feedback  should be advisory. Smalltalk 
coding is fine-grained design (i.e., detailed design of 
collaborations),  and design is a  quintessentially  hu- 
man activity. No metric system can reliably second- 
guess an experienced developer. The designer or pro- 
grammer  must be able  to  make use of or ignore 
complexity feedback  according to its value in the cir- 
cumstances of the  moment. There  are circumstances, 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 

1 

such  as working on a  rapid  prototype,  when the  de- 
veloper consciously and  properly  ignores complex- 
ity. There  are  other circumstances (e.g., when brows- 
ing methods  that have been  automatically  generated 
by tools)  where the  metric feedback  should simply 
be  ignored. 

A system that  meets  these criteria has  been devel- 
oped in the IBM North  America Object Foundry. The 
system works  as follows. Whenever  a  method is dis- 
played or changed in any of the browsers, seven met- 
rics are  computed for the  method.  The  computation 
is quick, seldom taking more  than a  fraction of a sec- 
ond.  Unless  the  method is  very large  (and  therefore 
far  too complex), there is no noticeable delay as the 
user browses or changes code. The value of each  met- 
ric is compared to two thresholds. One marks the 
upper  bound of routinely  acceptable complexity for 
that  metric,  and  a  second  larger  threshold  marks the 
point at which the  metric signals excessive complex- 
ity. This  comparison divides the values for  each  met- 
ric into  three categories that provide  broad  guide- 
lines within which the  programmer  can exercise a 
great  deal of freedom. 

For  the  purpose of visual feedback, the  three cat- 
egories so defined are  denoted by colors: green if the 
count is below the warning  threshold, yellow if it is 
between the warning threshold  and  the unacceptable 
threshold,  and red if the  count exceeds the unaccept- 
able  threshold. The use of color satisfies the require- 
ment  that  feedback  be immediately interpretable yet 
unobtrusive. The visual feedback is displayed in a 
small graphic  button that  has  been  added  to  each of 
the  standard  Smalltalk browsers. This  button  con- 
tains a  rectangular region that displays a  colored sub- 
region for  each  metric. The user may click this  but- 
ton to  obtain a new window that  presents  more 
detailed  information  about the metrics  for the 
method. In addition to  the colored  regions on the 
button,  a  face icon acts  as  a  summary  indicator that 
smiles if all metrics are  green, looks somewhat quiz- 
zical if one  or  more  are yellow, and scowls if any are 
red. This icon serves as  a unified summary of the  met- 
rics and provides redundant  feedback  for color-blind 
developers. 

On request,  the system can  present  “help” informa- 
tion  for  each  metric  that explains the common mis- 
takes that  lead  to a poor metric  together with sug- 
gested ways to simplify the code. Also, a  “quality” 
menu  added  to  the  browser provides various choices 
for browsing or obtaining  a  formatted report on all 

BURBECK 21 3 



“red”  or “yellow” methods in a group of methods 
(e.g., all “red” methods in a class). 

Defining the thresholds. The choice of thresholds 
between the categories is inherently somewhat ar- 
bitrary. The thresholds presented in the next section 
were evaluated in three ways. First, the chosen 
thresholds have been reviewed by more than a dozen 
very experienced Smalltalk developers. Legitimate 
differences of stylistic opinion generate disagree- 
ments with the exact choices for thresholds. Some 
argue that  one  or  another threshold should be more 
strict on the grounds that many methods will receive 
a green evaluation even though they  could  easily be 
written more simply. Others argue for more lenience 
on the grounds that certain situations might  excuse 
usage that exceeds the threshold. However, there is 
no consistent opinion that any one threshold is in- 
appropriate. Perhaps in the  future,  “smarter” met- 
rics  may  be able to  take more context into account 
so that  the thresholds can be stricter in the typical 
case and more lenient when lenience is warranted. 

A second assessment of the thresholds is  based on 
an  analysis of nearly  35 000 commercial Smalltalk 
methods. The results are  reported in the next sec- 
tion. These results indicate that  the thresholds are 
reasonable and  do not place undue constraints on 
typical commercial-quality code. The analysis  cov- 
ered  the following bodies of code: 

7768 methods in the Digitalk Inc. vos/2** version 
2.0 image (includes WindowBuilder** code from 
Object Share Systems, Inc.) 
15 198 methods in the IBM Smalltalk version 2.0 
image  (includes ENw/Developer* * code  from Ob- 
ject Technology International) 
11 901 methods in the VisualWorks** version 4.1 
image from ParcPlace Systems, Inc. 

This body of Smalltalk code represents a wide  va- 
riety of programming styles. It contains code writ- 
ten by dozens of programmers from at least five 
different companies. Some of the methods in  Visu- 
alWorks were written by the originators of Small- 
talk at Xerox PARC in the 1970s. Many methods in 
the base classes (e.g., collections, magnitudes, and 
streams) appear in  all three images but  are imple- 
mented differently  in each. The analyzed code im- 
plements a wide  variety of behavior: from graphical 
user interface code to operating system and file  sys- 
tem interface code, from numeric algorithms to text 
formatting algorithms, and from code compilation 
to version management. The many programmers 

214 BURBECK 

who wrote the code exhibit quite different styles and 
abilities. And some of the methods (often very  long 
ones) were automatically generated by window  lay- 
out tools. Despite these many  differences  in age, au- 
thorship, purpose, and polish, the metric analysis 
shows that, for most metrics, well over 90 percent 
of the methods are  “green.” Moreover, despite the 
very  different origins of the  three versions of Small- 
talk, all three images  show a remarkable similarity 
in their metrics. 

A third approach for assessing the acceptability of 
the thresholds is to examine their effect  in actual use. 
The real-time metric tool has been used  in internal 
IBM development projects and in consulting engage- 
ments with IBM customers. It is  also  in routine use 
in training new Smalltalk developers. In addition to 
the analysis of commercial Smalltalk methods, we 
report results from an analysis of  3395 methods writ- 
ten by experienced IBM programmers using real-time 
metric feedback. Anecdotal evidence, confirmed by 
this  analysis,  shows that  the thresholds are low 
enough to improve programming practices-even 
those of experienced developers-yet  they are not 
overly constraining. 

Since the chosen thresholds are admittedly some- 
what arbitrary and experienced programmers occa- 
sionally  have legitimate arguments for setting them 
differently, the question arises as to whether thresh- 
olds should be adjustable by the user. We advise 
against it. Perhaps no harm would come from allow- 
ing programmers to set thresholds more strictly. But 
adjustable thresholds are usually requested by pro- 
grammers who  wish to make the thresholds more le- 
nient. These programmers should be reminded that 
the goal  is not just to pass the metrics thresholds; 
it  is to reduce complexity. Arguing for more lenient 
thresholds is arguing for the general acceptability of 
more complex code. Moreover, unless the different 
thresholds are adopted by all members of the  de- 
velopment  and  test  teams, a developer  who  increased 
the thresholds would fool no one but himself. If a 
good case can be made for exceeding a threshold 
in a particular method, the method need not be 
changed. Making a case for accepting a method with 
any red metrics should be  difficult. But the yellow 
threshold is intended to be merely cautionary. Some 
methods, perhaps a few percent, are  better left with 
yellow  metrics. The decision to accept such meth- 
ods should, however, be an explicit one  that  the  pro- 
grammer is  willing to defend in a  peer code review. 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



Method-level metrics 

A  large  and growing body of literature  on 00 met- 
rics is at  the class level (see  Chidamber  and  Kem- 
merer18 for  a  good review). In  comparison, there  are 
very few discussions of method-level  metrics.  This 
situation is odd given that class-level metrics  are con- 
ceptually much more difficult to motivate  and  un- 
derstand  than  method-level  metrics  (see  the  earlier 
subsection on meaningful  Smalltalk  metrics). 

Barnes  and Swim22 address method-level metrics for 
the 00 language  “Actor.”23  They  measure  McCabe 
cyclomatic c ~ m p l e x i t y , ~ ~  number of lines of code, 
number of local variables, number of messages to 
self, and  number of messages to  other objects. 

Lorenz  and I d d Z 5  discuss five method-level  met- 
rics and  also discuss thresholds that  are similar to 
our cautionary (yellow) thresholds.  They  propose 
counting the  number of message sends  (threshold 
9), number of statements  (threshold 7), lines of  ex- 
ecutable  code (no recommended  threshold),  and 
strings of message sends (no  recommended  thresh- 
old).  They  prefer  to  count message sends or state- 
ments  rather  than lines of code  on  the  grounds  that 
the  number of lines of code may be affected more 
by stylistic differences. They  also  propose  a  “com- 
plexity” metric  (threshold 65), which is a  weighted 
sum of occurrences of various  kinds of constructs 
found in Smalltalk  methods, e.g., primitive calls, as- 
signments,  nested expressions, method  arguments, 
and  temporary  variables.  This  metric is  difficult to 
justify and  interpret  because it is based on  an  un- 
supported  assumption that  the effect of its  compo- 
nents  on complexity is additive  and  because the 
weights are assigned arbitrarily. 

We have chosen to provide  real-time  feedback  on 
the following seven metrics  for  each  method. Each 
is an easily computed  indicator of some aspect of 
method complexity. 

Number of lines of code 
Number of blocks 
Number of temporary  variables  and  method  ar- 

Number of parenthesized  expressions 
Number of explicit returns 
Number of external  assignments 
Number of cascaded messages 

They are all ratio scales, each of which is intuitively 
related to method complexity or readability.  No one 

guments 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 

of them  can claim to encompass the  notion of method 
complexity. Taken  together, however, they form  a 
sieve that catches most excessive structural complex- 
ity. None of them addresses the  sort of cognitive com- 
plexity that results  from poorly chosen  names  for 
methods  and variables. That  sort of complexity must 
still be  judged by human  code reviewers. 

The following discussion includes, for  each individ- 
ual  metric,  a  description of the metric,  a brief jus- 
tification of its relationship to complexity, the  thresh- 
old  values  used to bound  the green/yellow/red 
categories,  a list of common  situations  that might 
lead to excessive complexity, suggested ways to 
change offending methods  to  reduce  their complex- 
ity, and  data  on  the distribution of measurements 
for Digitalk’s VOW2 version 2.0, IBM’s Smalltalk  ver- 
sion 2.0, and ParcPlace’s Visualworks version 4.1. 

The text presented below in each of the “descrip- 
tion,” “justification,” and “suggested improvements” 
subsections is available on line  from the metrics  tool 
in essentially the  same  form  as it appears  here. 

Number of lines. Two decades of Smalltalk experi- 
ence tell us that small is beautiful.  Methods  should 
be small, clearly written  implementations of a single- 
purpose  behavior, i.e., a  method  should  do  one  thing 
and  one thing well. The  metric used here  counts all 
lines, including comments, with the exception that 
multiple-line  comments are  counted as  a single line. 
This  method of counting avoids discouraging  good 
comments.  The longer  a  method, the  more likely it 
is to need  a multiline explanatory comment. We wish 
to encourage  the  programmer to shorten  the  method, 
not  the  comment. 

Description andjustification. The  more lines a  method 
has, the  longer it takes  a reader  to  understand it,  es- 
pecially if the  reader must scroll the text because it 
does  not fit within a typical browser text pane.  This 
length  can  inhibit the rapid  understanding of the 
code necessary for quick browsing, debugging, and 
reuse. 

Number of Lines Effect on Method Complexity 

x< = 14 Green: OK, minimal if any impact 
15<=x<=26 Yellow: Method may need refactoring 

x>26 Red: Too long, refactor 

Suggested improvements. The most  common  reasons 
for  a  method  being overly long  include: 

1. The  method  contains leftover “first draft”  code. 



2. The  method contains too much vertical white 

3. The method  contains extra comments in the  code. 

Long  methods  often signify “first draft”  code.  When 
code is first written  for  a class or a method,  the  de- 
tails of the  code  are being discovered as  coding 
progresses.  First-time discovery is usually a messy 
process, the  details of which tend  to obscure pos- 
sible simplifications. Often, similar behavior appears 
in multiple  methods in the class or even in multiple 
sections of code within the  same  method. A  second 
(or  even  third) pass is often  needed to identify the 
common  behavior, create new supporting  methods 
or classes that embody that common  behavior,  and 
then  recode  the first draft  methods to make  use of 
these new constructions. 

Used judiciously, white  space  can  make  code  more 
readable  and  understandable. However, insertion of 
blank lines between  sections of code  often implies 
that  those sections  ought to  be  separate methods. 

Well-written small methods  do not  require com- 
ments  other  than a single clearly written  method 
comment. If a  programmer finds the  need  for  other 
comments, the  method is probably too complex and 
should  be  broken  into  multiple  methods. 

Analysis of lines of code  in  commercial systems. Of 
the 35 000 methods analyzed, about 11 percent have 
more  than 14  lines of code,  and  about 3.5 percent 
have more  than 26 lines (Table 3). Thus,  even with- 
out  metric  feedback, most  methods  written by ex- 
perienced  developers satisfy the  metric criteria.  Yet 
there remains  substantial  room  for  improvement on 
this  metric. Analysis of 3395 methods  written by IBM 
programmers with the benefit of real-time  metric 
feedback shows that it can have a  substantial  ben- 
eficial effect: 6 percent of those  methods have more 
than  14 lines of code,  and only 1.2 percent have more 
than 26 lines. 

Some  small stylistic differences between the  three 
commercial  Smalltalk systems appear in the distri- 
bution of number of lines of code  (Figure  1).  Among 
small methods-those of  six lines or less in length- 
VOW methods  tend  to  be  shorter.  For  methods larger 
than seven lines, there is little difference between 
the  three systems. For all three,  the large majority 
of methods  are seven lines or less. 

Number of blocks. In this subsection we discuss the 
number of blocks as  an  indicator of method  com- 
plexity. 

space  (i.e.,  blank lines within the  code). 

21 6 BURBECK 

Description and  justijication. The number of control 
structures in a given piece of code  has long been used 
as  a  measure of the overall complexity of the  code. 
The  number of block constructs in a  method can usu- 
ally be  equated with the  number of control  struc- 
tures in the  method. 

Number of Blocks Effect on Method Complexity 

x< =4 Green: OK, minimal if any  impact 

x>7 Red: Too complex,  refactor 
5<=x<=7 Yellow:  Method  may  need  refactoring 

Suggested improvements. The most  common  reasons 
why methods may contain  too many blocks are: 

1.  The  method is trying to  do many different things. 
2. The  method implements  a  case  statement. 
3. The  method  implements a decision tree. 
4. The  method traverses  a  deeply  nested  object 

structure. 

If the  method  has several  isolated  islands of code, 
each of which contains its own independent  control 
structures (blocks), the  method is usually trying to 
do  too many things. A  good  rule of thumb in this 
case is that a method  should do  one thing well. Each 
island of code in the  method should  be  considered 
a  candidate  for  a  separate new method. 

If the  method  implements  a  case  statement in which 
the cases are distinguished by the kind (i.e., class) 
of object  held by a variable,  consider  refactoring the 
behavior using polymorphism. That is, convert  the 
block to  be executed  for  each  case  into  a  method in 
the  candidate class. If the cases reflect common states 
of the receiver,  consider  refactoring your design to 
use the State Object design pattern.” 

If the  method  implements a decision tree,  break  up 
the decisions into  separate methods. Then  the orig- 
inal  method  can act as an aggregator  for  these mi- 
cro  decisions  without  containing all the decision 
code.  This will also make it easier  for  clients of this 
object to  reuse  the finer-grained  behavior in  ways 
that would be impossible with a single decision tree 
method. 

If the  method  traverses  a  deeply  nested  object  struc- 
ture,  consider moving the  structural navigation code 
into new methods in the objects that make up  the 
structure.  Often,  this will best  be  accomplished by 
applying the Composite design pattern.26 This  ap- 
proach will simplify the  method as well as  add valu- 
able  behavior to  the objects  being  traversed. 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



Figure 1 Distribution of  number of lines  of code 

LINES OF CODE 

NUMBER OF LINES 

Analysis of blocks in commercial systems. Of the 
35 000 commercial methods analyzed, about 7 per- 
cent have more than 4 blocks, and about 3.4 percent 
have more than 7 blocks (Table 2). As  with the lines 
of code metric, there remains substantial room for 
improvement on this metric. Metric feedback had 
an even stronger effect  in this  case. Of the 3395 meth- 
ods written with the benefit of real-time metrics,  only 
1 percent of methods have more than 4 blocks, and 
only 0.2 percent have more than 7 blocks. 

The distribution of number of blocks (Figure 2) 
shows  remarkably little difference between the  three 
commercial systems. It also  shows the degree to 
which  polymorphism  obviates the need  for  many  con- 
trol structures. Two thirds of the methods have no 
control structures at all. Another fifth of the meth- 
ods have one or two, typically a single “iffrue:” block 
or  an “ifTrue:ifFalse:” pair. 

Number of temporary variables and arguments. An- 
other indicator of method complexity  is the number 
of temporary variables and arguments. 

Description andjustijication. Arguments and tempo- 
rary variables typically  hold objects to which  mes- 

Table 1 Summary  statistics  for  number of lines of 
code 

Digitalk IBM Visual- 
VOW2  2.0 Smalltalk 2.0 Works 4.1 

Percent Green 87.5  89.0 90.8 
Percent Yellow 8.3 7.4 6.5 
Percent Red 4.2  3.6 2.7 
Largest Value 331 753 111 
Mean 8.13 7.89 7.06 

sages are sent; i.e., they hold collaborators that 
provide behavior for the method. Having  many  col- 
laborators implies too much  complexity. 

TempsAndArgs 
Number of 

Effect on Method  Complexity 

x<=4  Green: OK, minimal if any impact 
5<=x<=8 Yellow: Method may need refactoring 

x>8 Red: Too complex, refactor 

Suggested improvements. The two most  common rea- 
sons why methods use too many temporary varia- 
bles or arguments are: 

1. The method is trying to do many  different  things. 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



Figure 2 Distribution of number of blocks 

70 

60 

50 ' 40 

+ 

P 

B 
m 8 30 

a w 

20 

10 

0 

BLOCKS 

I I I I I I 
1 2 3 4 5 6 

NUMBER OF BLOCKS 

Table 2 Summary  statistics  for  number of blocks 

Digitalk IBM Visual- 
VOW2  2.0 Smalltalk 2.0 Works  4.1 

Percent Green 93.6  92.5 92.1 
Percent Yellow 4.0  3.8  4.5 
Percent Red 2.5 3.1 3.4 
Largest Value 39 56 38 
Mean 1.12 1.15 1.24 

2. Several arguments are  parts of what should be a 
single object. 

Too many collaborators often indicate that  the 
method is  trying to do too many  things; break up the 
method into smaller methods. 

Too many arguments often means that  a new object 
should be designed that encapsulates the arguments; 
i.e., create  a single collaborator from a group of col- 
laborators. The new object then delegates respon- 
sibilities to members of the group. 

Analysis of temporay variables and arguments in com- 
mercial  systems. Of the 35 000 commercial methods 

analyzed, about 5.5 percent have more than 4 tem- 
porary variables, and about 1.2 percent have more 
than 8 (Table 3).  With the benefit of real-time met- 
ric feedback, we observed that 0.4 percent of meth- 
ods have more than 4 temporary variables, and  only 
0.03 percent have more than 8. 

The distribution of number of temporary variables 
and arguments (Figure 3) shows  small  systematic  dif- 
ferences between the  three commercial systems. 
vos/2 programmers write fewer methods with no 
temporary variables or arguments and more meth- 
ods with  two than do IBM programmers. The  pro- 
grammers of the Visualworks system  use a style that 
is between that of the  other two systems. 

Number of parenthesized expressions. We  now dis- 
cuss the number of parenthesized expressions as an 
indicator of method complexity. 

Description and  justification. The number of paren- 
theses can be used as a rough measure of the nest- 
edness of a piece of code and is thus an attribute of 
the overall complexity of the code. 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



Figure 3 Distribution of number of temporary  variables  and  arguments 

TEMPORARY  VARIABLES  (TEMPORARIES + ARGUMENTS) 

45 

40 

(I) 
.”“” 

4 

8 

35 

30 

+ 25 
w Z 

g 20 
a 

15 

10 

5 

0 
0 1 2 3 4 5 6 7 

NUMBER OF VARIABLES 

1 

4 
8 

Parenthesized Expr. 
Number of 

Effect on Method Complexity 

x< =5 Green: OK, minimal if any impact 

x> 10 Red: Too complex, refactor 
6<=x<=10 Yellow: Method may need refactoring 

Suggested improvements. The reasons  a  method may 
contain  too many parenthesized expressions include: 

1. Parentheses have been used unnecessarily. 
2. The results of parenthesized  expressions are  re- 

ceiving other messages. 

In  some circumstances  parentheses  not  required by 
syntax may make  code  more  readable.  For  instance, 
long  arithmetic  expressions may look  more  familiar 
with parentheses  that  are  not strictly required by the 
syntax. In most cases, however, excess parentheses 
reflect the programmer’s  confusion or insecurity 
about Smalltalk  parsing  rules. 

If parentheses  are used for excessive nesting of ex- 
pressions, assign intermediate  results  to  temporary 
variables or break  the  method  into  smaller  methods. 

Table 3 Summary  statistics  for  number of temporary 
variables  and  arguments 

Digitalk IBM Visual- 
VOW2 2.0 Smalltalk 2.0 Works 4.1 

Percent Green 94.1 95.1 94.1 
Percent Yellow 4.9 4.1 4.3 
Percent Red 1.0 0.8 1.6 
Largest Value 21 34 37 
Mean 1.38 1.15 1.34 

Analysis of parenthesized expressions in commercial 
systems. Of the 35 000 commercial methods analyzed, 
about 3 percent  have  more  than 5 parenthesized ex- 
pressions,  and  about 1 percent have more  than 10 
parenthesized expressions (Table 4). In  part because 
there is little  room  for  improvement in these  data, 
results with real-time  metric  feedback  were  little dif- 
ferent: We observed that with feedback, 2.3 percent 
of methods have more  than 5 parenthesized  expres- 
sions, and only 0.85 percent have more  than 10. This 
metric will have its largest effect on less-experienced 
programmers who tend to use unneeded  parenthe- 
ses. 

IBM SYSTEMS  JOURNAL,  VOL 35, NO 2, 1996 BURBECK 21 9 



Figure 4 Distribution of number  of  parenthesized  expressions 

PARENTHESIZED  EXPRESSIONS 

B 
m + 40- 

0 
30- 

20 

10 

0 

70 

NUMBER OF PARENTHESES 

The distribution of number of parenthesized expres- 
sions (Figure 4) as well as the summary data show 
a small but systematic tendency for V O S / ~  program- 
mers to use more parenthesized expressions than the 
others. 

Number of explicit  returns. In this subsection, we 
discuss the number of explicit returns metric. 

Description and justification. In addition to  the often 
implicit return at the  end of each method, any  block 
may end with an explicit return from the method. 
This possibility complicates the reader's task in de- 
termining what object the method returns and in 

i 
6 

+ 
0 

"""""~""""". 
I I I I I 
1 2 3 4 5 

Table 4 Summary  statistics  for  number of 
parenthesized  expressions 

Digitalk IBM Visual- 
VOW2  2.0 Smalltalk 2.0 Works 4.1 

Percent Green 95.0  97.8  97.2 
Percent Yellow 2.9 1.6 2.1 
Percent Red 2.0 0.6 0.7 
Largest Value 113 182 39 
Mean 1.2 0.66 0.70 

which circumstances. Most methods should and do 
have a single return, although in some cases the 
method is more readable and understandable if more 
than one  return is used. If more than  a couple are 
needed, the method may need refactoring. 

Number of 
Returns Effect on Method Complexity 

x<=2  Green: OK, minimal if any impact 

x>4 Red: Too complex, refactor 
3<=x<=4 Yellow: Method may need refactoring 

Suggested improvements. The two most  common rea- 
sons that methods may contain too many  explicit re- 
turns are: 

1. The method implements a case statement. 
2. The method implements a decision tree. 

The method may implement a case statement, each 
of which computes its  own return value. If the cases 
are distinguished by the kind (i.e., class) of object 
held by a variable, consider refactoring the behav- 
ior  using  polymorphism. That is,  move the return be- 
havior into methods in the possible candidate classes 
and return  the result of sending one message to  the 

220 BURBECK IBM SYSTEMS  JOURNAL, VOL 35, NO 2, 1996 



Figure 5 Distribution of number of explicit  returns 
~~ 

I EXPLICIT  RETURNS 

~ 

NUMBER OF RETURNS 

variable object. If the cases  reflect  common states 
of the receiver, consider refactoring the design to 
use the State  Object design pattern.26 

If the  returns come from different branches of a de- 
cision tree, often the code can be  simplified and the 
number of returns reduced by taking advantage of 
the fact that  the result of an “ifI’rue:ifFalse:” mes- 
sage is the value of whichever  block  is executed. A 
single return at the beginning of the statement re- 
places one in  each of the branches. If the number 
of returns is  simply a result of a large number of de- 
cision branches, break up  the decisions into sepa- 
rate methods, each of which returns  the appropri- 
ate object. Then  the original method can  act as an 
aggregator for these micro  decisions without con- 
taining all the decision code. This will also make it 
easier for clients of this object to reuse the finer- 
grained behavior in  ways that would be impossible 
with a single  decision tree method. 

Analysis of explicit  returns in commercial systems. Note 
that these statistics are for explicit returns only. No 
attempt was made to account for implicit returns of 
self at the  end of the method. 

Table 5 Summary  statistics for number of explicit 
returns 

Digitalk IBM Visual- 
VOW2  2.0 Smalltalk  2.0 Works 4.1 

Percent Green 96.9  96.0 96.3 
Percent Yellow 2.5 2.9 2.8 
Percent Red 0.6 1.0 0.9 
Largest Value 13 17 21 
Mean 0.77  0.88  0.79 

Of the 35 000 commercial methods analyzed, about 
3.7 percent have more than 2 explicit returns, and 
about 0.9 percent have more than 4 explicit returns 
(Table 5) .  With the benefit of real-time metric feed- 
back, we observed that 0.8 percent of methods have 
more than 2 explicit returns, and only 0.06 percent 
have more than 4 explicit returns. 

The distribution of number of explicit returns (Fig- 
ure 5 )  shows that  the programmers of IBM Smalltalk 
tend to have one explicit return more often than  do 
the others. An informal examination of code sug- 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



Figure 6 Distribution of number of external assignments 

EXTERNAL  ASSIGNMENTS 

.”“” 

20- 

10- 

0 I I I I 
0 1 2 3 4 

NUMBER OF ASSIGNMENTS 

Table 6 Summary  statistics  for  number of external 
assignments 

Digitalk IBM Visual- 
VOS/2  2.0 Smalltalk 2.0 Works 4.1 

Percent Green 95.5  97.8  93.8 
Percent Yellow 3.4 1.6 4.3 
Percent Red 1.1  0.6 1.8 
Largest Value 26 21 35 
Mean 0.26  0.15  0.49 

gests that this  result is due to a tendency  in IBM Small- 
talk to explicitly returnselfrather  than to rely on the 
implicit return of self. 

Number of external assignments. Another metric of 
method  complexity is the number of external  assign- 
ments. 

Description and justification. This metric is a code 
complexity standard based on the number of exter- 
nal assignments in a method (that is, assignments to 
variables other than temporary variables). Assign- 

ments tovariables other than the method’s own tem- 
porary variables may create linkages that  are diffi- 
cult to understand. If so, they add to  the overall 
complexity of the class or  the system. The scope of 
the variables being set is  also important. The larger 
the scope, the more impact a change to the variable 
may have, and the more difficult  it  is to understand. 
Instance variables  affect  only one instance, class var- 
iables may  affect  all instances of the class,  and  globals 
may  affect objects anywhere  in the system. 

Number of 
Assignments Effect on Method  Complexity 

x < = l  Green: OK, minimal if any impact 

x>4 Red: Too complex, refactor 
2<=x<=3 Yellow: Method may need refactoring 

Suggested  improvements. The reasons a method may 
contain too many external assignments include: 

1. The method changes the state of many  different 

2. The method implements a complex algorithm. 
3. The method implements a decision tree for set- 

variables. 

ting  variables. 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



If  many variables are being set, the variables may 
represent relatively independent aspects of the  do- 
main model that should be managed by different 
methods, or perhaps even  different  classes. In an ini- 
tialization method, all variables legitimately may be 
initialized at once. Otherwise, independent aspects 
usually should be changed  in separate  “setter” meth- 
ods. Also,  when the variables of a group are natu- 
rally managed together, consider creating a new ob- 
ject that manages that group. 

If the method is implementing a complex algorithm 
that requires many changes to variables, taking the 
trouble to think of  ways to break the complex method 
into two or more simpler methods will  pay dividends 
later in understandability and maintainability. 

If variables are being set differently  in  different 
branches of a decision tree, break up the decisions 
into  separate methods, each of which sets the var- 
iables appropriately. Then  the original method can 
act  as an aggregator for these micro  decisions  with- 
out containing all of the decision code. This will also 
make it easier for clients of this object to reuse the 
finer-grained behavior in  ways that would be impos- 
sible  with a single  decision tree method. 

Analysis of external assignments in commercial systems. 
Of the 35 000 commercial methods analyzed, about 
4.3 percent have more than 1 external assignment, 
and about 1.2 percent have more than  4 external as- 
signments (Table 6). With the benefit of real-time 
metric feedback, we observed that 0.1 percent of 
methods have more than 1 external assignment, and 
only  0.03 percent have more than 4 external assign- 
ments. 

Both the summary data and the distribution of num- 
ber of external assignments (Figure 6)  show the use 
of more external assignments  in V O S I ~  and Visual- 
Works than in IBM Smalltalk. 

Number of cascaded messages. The last metric we 
discuss  is the number of cascaded messages. 

Description and  justification. Cascaded messages, or 
cascades, are sequential messages sent to  the same 
receiver, separated by semicolons.  Excess  cascaded 
messages indicate highly procedural code. Note that 
in some cases a series of messages to one receiver 
is the simplest  and  most  expressive way to implement 
the behavior of the method. In those cases, a series 
of cascaded  messages  is often more readable and un- 
derstandable than alternative coding techniques. 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 

Number of 
Cascades Effect on Method Complexity 

x< =8 Green: OK, minimal if any impact 
9< =x< = 16 Yellow: Method may need refactoring 

x>16 Red: Too complex, refactor 

Suggested improvements. There are three primary rea- 
sons why methods may contain too many cascades. 
These reasons are: 

1. The method is  trying to specify too many  fine- 

2. The method is  initializing  many instance varia- 

3. The method is appending a  pattern of text to a 

grained behaviors. 

bles. 

stream. 

In many  cases a long list of fine-grained behaviors 
can be shortened by noticing  groups of behaviors that 
are naturally meaningful in the domain and there- 
fore are likely to be reused in other methods. Refac- 
tor by adding a method to  the object receiving the 
cascade for each natural group of behaviors; then 
use these methods to replace the groups in the orig- 
inal method. 

One style of initializing objects is to use a cascaded 
series of setter messages. If an object needs to ini- 
tialize more than eight  instance  variables, the method 
complexity  simply reflects a class that is perhaps too 
complex. Consider simplifying the class. 

Adding  text to a stream (e.g., in a  “printon:” method) 
often involves  many cascaded messages  combining 
“nextPutAll:” with “cr”. In many  cases the method 
could  be shortened and made less complicated and 
more readable by creating and  using  new methods, 
each of which appends a meaningful portion of the 
output. 

Analysis of cascades in commercial systems. Of the 
35  000 commercial methods analyzed,  only 1 percent 
have more than 8 cascades, and about 0.4 percent 
have more than 16 cascades (Table 7). Here again 
there is little room for improvement on this metric 
with experienced Smalltalk programmers. Results 
with the benefit of real-time metric feedback are es- 
sentially the same. This is another case where the 
effect  of the metrics will be  larger  on  less-experienced 
programmers. 

Both the summary data and the distribution of num- 
ber of cascades (Figure 7) show that VisualWorks 

BURBECK 223 



Figure 7 Distribution of number of cascaded messages 

CASCADES 

100 

‘. 

NUMBER OF CASCADES 

Table 7 Summary  statistics  for  number of cascaded 
messages 

Digitalk IBM Visual- 
VOW2 2.0 Smalltalk 2.0 Works 4.1 

Percent  Green 98.5  98.9  99.8 
Percent Yellow 0.7  0.4 0.1 
Percent Red 0.8 0.5 0.1 
Largest Value 346  255 60 
Mean 0.52  0.39 0.11 

programmers use cascades more sparingly than do 
the others. 

Conclusions 

Experience report. The real-time metrics tools have 
been in  use  since April 1995  within the IBM 00 Con- 
sulting Practice and since August 1995  in the Small- 
talk training course in IBM Education and Training. 
It is too soon to draw conclusions about the long- 
term effect  of real-time metrics on creeping  complex- 
ity. But some short-term effects are clear. 

We  have found that experienced developers readily 
accept the metrics and easily  make  small adjustments 
to their coding habits so that “yellow methods” are 
uncommon and “red methods” very rare. Experi- 
enced Smalltalk developers already tend  to write 
small,  low-complexity methods that  are easy to read. 
The metrics proposed here  are in accordance with 
those practices, so  most often the metric feedback 
on the developers’ code will be all green. In that case, 
the metric feedback is a positive reinforcement to 
their good habits. In the infrequent cases where the 
metrics are not green, experienced developers typ- 
ically  modify their code immediately. The result is 
a small but consistent improvement in the quality of 
their code. The accumulation of these small  improve- 
ments can  have a substantial impact on a large proj- 
ect. 

In some situations, e.g., working  rapidly on a pro- 
totype, experienced developers deliberately accept 
overly  complex code. When they later revisit and 
clean up the code, the developers use the metrics to 
quickly  find the problem areas. They click through 
the methods in the browser, glancing at the color of 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



the  metric feedback  for  each one,  or they  use the 
batch  search  options provided with the metrics tools. 

Real-time  metric  feedback  has  a much larger  impact 
on inexperienced  developers who tend  not to follow 
the good design and  coding  conventions of experi- 
enced  developers. In  some cases they may not have 
accepted  and  integrated the view that small is beau- 
tiful. In  other cases they may still write complex 
“C-like” procedural  code  because  they have not fully 
made  the transition to  the 00 paradigm. For  these 
people,  the initial  experience of the  metric feedback 
is not  as  congenial.  They typically see yellow or red 
feedback, or both, on a  substantial  portion of their 
methods.  Not surprisingly, their first reaction  to  the 
metric  feedback  tends to  be  to challenge the  met- 
rics rather  than  to modify their  code. If they  work 
with more experienced developers who can give them 
guidance,  this  resistance  soon subsides, and  they 
quickly learn how to simplify their  methods.  With- 
out such  guidance the transition  can be frustrating. 
Although  the  more  detailed  metric  report with its 
on-line  self-explanatory  help  information provides 
useful guidance, the on-line  help is most effective as 
a  reminder  about applying techniques  learned  else- 
where. It is not  intended to  be  the sole source of guid- 
ance. 

The use of real-time  metrics  tools in a team setting 
has beneficial effects on  team dynamics and  prac- 
tices. Because the  metric feedback is visible to  other 
members of the  team  and  to  the project  manager, 
most programmers, out of professional pride,  devote 
extra effort to avoid yellow feedback in their  code 
and go to great lengths to avoid red feedback. In  team 
situations,  this visibility creates  a  subtle shift from 
pride in speed of development to  pride in code  qual- 
ity. Since a higher-quality work product  reduces  time 
lost to rework  and  bug fixing, the  end result  tends 
to  be of a  higher quality without slowing the  pace 
of development.  Real-time  metrics  also affect for- 
mal  and  informal  cooperative  work  practices. The 
formal  process of code reviews is both  more effec- 
tive and less burdensome  because reviewers focus 
more  on substantive review and less on style review. 
The self-explanatory metrics also provide  a way to 
integrate new Smalltalk developers, especially inex- 
perienced  ones,  into an ongoing  team.  Seasoned 
team  members  often  can simply remind  junior  mem- 
bers  to  “keep  the lights green”  rather  than critique 
their  code in detail. In this way, the  start-up  burden 
that newcomers  place on  the rest of the  team is re- 
duced.  It  also  tends  to  reduce  clashes  over stylistic 
differences and individual preferences. 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 

Next steps. The work so far only addresses complex- 
ity at  the  method level. For a class-level metric to 
be  suitable  for  real-time  feedback, we must  be  able 
to  compute  the  metric quickly, be  able  to specify 
trustworthy  thresholds, and  be  able  to suggest heu- 
ristics for improving classes that show excessive com- 
plexity. Efforts are in progress to define  and  validate 
class-level metrics  suitable  for  real-time  feedback. 
Efforts are also  underway to develop  real-time  met- 
rics tools  for C+ +. In general, the issues of com- 
plexity in C+ + virtual  functions are similar to those 
within Smalltalk methods.  Even  more similarity may 
exist at  the class level. Because C+ + is inherently 
a  much more complex language than Smalltalk,  it 
has  additional issues that  contribute  to complexity: 
explicit memory  management (i.e., constructors  and 
destructors),  pointers,  multiple  inheritance,  embed- 
ded  objects,  and non-oo constructs mixed in with 
00 constructs. C+ + development  environments are 
also  not  as well integrated  as  those in Smalltalk, so 
presentation of feedback may be  more difficult. How- 
ever, there is no  fundamental  reason why real-time 
feedback  could  not  be  as effective in reducing the 
complexity of C+ + code  as it is with Smalltalk. The 
power of real-time metrics is in emphasizing the need 
to  reduce complexity and in creating  a  tighter syn- 
ergy between  the  development system and  the  de- 
veloper. The details of the metrics or  the language 
do  not  matter as  much  as  the  details of the feedback 
loop: how quick it is, how unobtrusive  it is, and how 
easy it is for  the  developer to use the  feedback  to 
improve the code. 

Summary. Complexity is as mysterious  as  it is costly 
to software  development  organizations. The overall 
complexity of a  software system can  neither  be com- 
prehensively defined nor  measured.  Yet complexity 
does  not  spring, fully formed,  into  otherwise  simple 
software. It grows within the software with the un- 
witting help, or at  least the acquiescence, of the  peo- 
ple who build and  maintain  the software. This growth 
can  be  tamed, if at all, only by constant effort on the 
part of all concerned:  software  developers,  testers, 
maintainers,  and  project  managers. 

We  argue  that  the best way to  reduce  the growth of 
complexity is to use metrics  and  tools that focus  di- 
rectly on  the  incremental addition of complexity. 
Real-time  metric  feedback  makes  the  incremental 
addition of complexity more visible to all concerned 
and  thereby  helps  them  to  reduce its rate of growth. 
This paper  presents metrics  for  Smalltalk  methods 
that can be  computed quickly and  presented  unob- 
trusively. These  metrics  provide useful information 



about method-level complexity that encourages de- 
velopers to modify their behavior in desirable ways. 
Initial experience with the real-time metrics tools 
shows them to be  well accepted. Developers adopt 
the tools willingly, if not enthusiastically. 

Acknowledgments 

The  author would  like to acknowledge  Sam Adams 
(IBM North America Object Foundry) for many 
hours of discussion on the topic of software com- 
plexity  in general and real-time metrics in particu- 
lar. He helped to choose the  appropriate real-time 
metrics and their cutoffs,  and he developed most of 
the user interface and the metric evaluation frame- 
work for the initial prototype of the tool. Steve Gra- 
ham (IBM North America Object Foundry) contrib- 
uted many helpful comments, polished the tool for 
distribution, and ported it to IBM Smalltalk. 

**Trademark  or registered trademark of Digitalk Inc., Object 
Share Systems, Inc., Object Technology International, or Parc- 
Place Systems, Inc. (Digitalk and ParcPlace recently merged to 
form ParcPlace-Digitalk.) 

Cited references 

1. S. S. A d a m  and S. L. Burbeck, “Software Assets by Design,” 
Object Magazine 2, No. 4  (November-December 1992). 

2. S. S. Adams, “Return on Investment: Constant Quality Man- 
agement,” Hotline on Object Technology 4, No. 1, 4-8 (No- 
vember 1992). 

3. T. Bollinger, “What Can Happen  When Metrics Make the 
Call,” IEEE Software 12, No. 1, 15  (January 1995). 

4.  M.  M. Waldrop, Complexity, Simon & Schuster, New York 
(1992). 

5. G. Nicolis and I. Prigogine, Exploring Complexity: An Intro- 
duction, W. H. Freeman, New York (1989). 

6. M. Gardner, “Mathematical  Games: The Fantastic Combi- 
nations of John Conway’s  New Solitaire Game ‘Life’,’’ 
Scientific American 223, No. 4, 120-123 (October 1970). 

7. J. Conway, E. Berlekamp, and  R. Guy, Winning Ways, Ac- 
ademic Press, Inc., New York (1982). 

8. S. Wolfram, “Cellular Automata as Models of Complexity,” 
Nature 311, No. 5985, 419-424 (October 1984). 

9. R. E. Johnson  and B. Foote, “Designing Reusable Classes,” 
Journal of Object-Oriented Programming 1, No. 2,  22-30,  35 
(JuneiJuly 1988). 

10. G. Booch, Object-OrientedAnalysis and Design with Applica- 
tions, Second Edition, The BenjaminiCummings Publishing 
Co., Redwood City, CA (1994). 

11. D.  H. Krantz, R.  D. Luce, P. Suppes, and A. Tversky, Foun- 
dations of Measurement, Vol. 1, Academic Press, Inc., New 
York (1971). 

12. R.  D. Luce, “Dimensionally Invariant Laws Correspond to 
Meaningful Qualitative Relations,” Philosophy of Science 45, 

13. J.-C. Falmagne and L. Narens, “Scales and Meaningfulness 

14. R. D. Luce and L. Narens, “Classification of Concatenation 

1-16 (1978). 

of Quantitative Laws,” Synthese 55, 287-325 (1983). 

226 BURBECK 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

Measurement  Structures According to Scale Type,” Journal 
of Mathematical Psychology 29, 1-72 (1985). 
L. Narens, Abstract Measurement Theory, The MIT Press, 
Cambridge, MA (1985). 
E. J. Weyuker, “Evaluating Software Complexity Measures,” 
ZEEE Transactions on Software Engineering 14, No. 9,1357- 
1365 (1988). 
H. Zuse, Software Complexity: Measures and Methods, De- 
Gruyter,  Amsterdam (1991). 
S. R. Chidamber  and C. F.  Kemmerer, “A Metrics Suite  for 
Object Oriented Design,” IEEE Transactions on Software En- 
gineering 20, No. 6, 476-493 (June 1994). 
N. Fenton, “Software Measurement:  A Necessary Scientific 
Basis,” ZEEE Transactions on Software Engineering 20, No. 
3,  199-206 (March 1994). 
D. A. Gustafson and B. Prasad, “Properties of Software Mea- 
sures,” in Formal Aspects of Measurement, T. Denvir et al., 
Editors, Springer-Verlag, Inc., New York (1991). 
J. Tian  and M. V. Zelkowitz, “A Formal  Program Complex- 
ity Model and  Its Application,” Journal of Systems Software 
17, No. 3, 253-266 (March 1992). 
M. G. Barnes  and B. R. Swim, “Inheriting Software Metrics,” 
Journal of Object-Oriented Programming 6, No. 7,27-34 (No- 
vember-December 1993). 
C. Duff, “Designing an Efficient Language,” Byte 11, No. 8, 
211-224 (August 1986). 
T. McCabe, “A Complexity Measure,” IEEE Transactions on 
Software Engineering SE-2, No. 4,308-320 (December 1976). 
M. Lorenz and J. Kidd, Object-Oriented SoftwareMetrics, Pren- 
tice Hall  Object-Oriented Series, Prentice  Hall, Englewood 
Cliffs, NJ (1994). 
E. Gamma, R. Helm, R. Johnson,  and J. Vlissides, Design 
Patterns: Elements of Reusable Object-Oriented Software, Ad- 
dison-Wesley Publishing Co., Reading, MA (1995). 

Accepted for publication January 16, 1996. 

Stephen L. Burbeck IBM  North  America, P.O. Box 12195, Re- 
search  Triangle Park, North Carolina 27709 (electronic mail: 
sburbeck@vnet.ibm.com). Dr. Burbeck is a  senior consultant in 
the IBM North  America  Object Foundry group. He received his 
Ph.D. from the University of California at Irvine in mathemat- 
ical psychology  in 1979. In 1980 he became Director of Data Pro- 
cessing and Statistics at  the Linus Pauling Institute of Science 
and Medicine and in 1985 was one of the  founders of the com- 
pany that marketed the first S1nalltalk-80~~ for the IBM PC-AT@. 
During  that period he participated  on the executive committee 
for OOPSLA-86, the first conference on object-oriented program- 
ming systems, languages, and applications. He moved to Apple 
Computer  Corporation in 1988, where he was product manager 
for Apple’s MacAppTM  and  MacSmalltalkTM. In 1990 he moved 
to North  Carolina to become Vice President of Knowledge Sys- 
tems Corporation. He joined IBM in January of 1995. Dr. Bur- 
beck adopted Smalltalk as  the language of choice in 1985. Since 
then he has been involved  with Smalltalk and object-oriented anal- 
ysis and design in the capacity of programmer, designer, man- 
ager, teacherimentor,  and consultant. He has authored  and co- 
authored  papers  on  mathematical sociology, mathematical 
psychology, biochemistryhiophysics, and object technology. 

Reprint Order No. G321-5602. 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 


