204 BuRBECK

Real-time complexity
metrics for Smalltalk
methods

This paper presents the rationale for ubiquitous
and immediate metric feedback on the com-
plexity of Smalltalk methods whenever they

are viewed or changed. It also presents seven
metrics for Smalitalk methods that can be
quickly and easily determined from the code and
are suitable for real-time feedback. For each

of these metrics, there is a description, an
explanation of how it is determined and why it is
related to complexity, and suggestions for how to
improve code that receives a poor rating for the
metric.

Complexity is the relentless enemy of software
engineering. Civil engineers have a saying that
“rust never sleeps.” The comparable maxim in soft-
ware engineering ought to be that “complexity never
sleeps.” It frustrates our efforts to express clear re-
quirements, to create clean designs, and to produce
understandable, maintainable implementations. Cer-
tainly some, perhaps much, of this complexity is in-
herent in the application domain. Additional com-
plexity can be attributed to limitations in the tools
and languages with which we implement software.
Yet all too much complexity is inadvertently intro-
duced by the very software professionals whose job
it is to minimize it.

Rarely does a professional designer or programmer
deliberately add gratuitous complexity to a system.
Complexity creeps into software systems unbid-
den—a little here, a little there—as a result of poorly
informed or hasty choices, small misunderstandings,
poor communications, and subtle failures of fore-
sight. Much of this unbidden complexity would be
avoided if we could spot it as it creeps into our systems.

0018-8670/96/$5.00 © 1996 1BM

by S. L. Burbeck

The traditional policy of obtaining complexity met-
rics at major milestones in a software development
project (or worse yet, at the end of the project) does
not help us to detect creeping complexity. The only
practical choice to be made at major milestones is
to accept or reject the work done thus far. Rework
to reduce complexity usually seems too difficult or
expensive because the system embodies a bewilder-
ing set of interlocking assumptions and trade-offs.
Once complexity has gotten out of control, it takes
control!

What we need are real-time metrics: metrics that are
computed afresh and presented without noticeable
delay each time a change is made. Real-time met-
rics become the complexity equivalent of a smoke
alarm—a complexity detection process that is ever
vigilant and that warns us at the first sign of excess
complexity, rather than one that notifies us after the
fact that the software is hopelessly complex.

Real-time metrics are one example of the kind of
constant software quality management proposed by
Adams and Burbeck in 1992."* They argued that
short cycle-time quality feedback, which has proven
its effectiveness in manufacturing, is equally useful
in software development. They also point out that
quality feedback is not just for managers. Program-
mers need feedback on software quality as much as

©Copyright 1996 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

do managers, and, unlike managers, programmers
can make immediate direct use of such feedback. Af-
ter all, minimizing complexity should be the respon-
sibility of those who best understand the true cost
of complexity: the professional software developers.
To discharge that responsibility, developers need
feedback about the effects of their work. Metric feed-
back is most useful at the time each addition or mod-
ification to the system is made because the alterna-
tives and trade-offs involved in the change are fresh
in the mind of the developer. Immediate feedback
allows developers to continuously and iteratively
manage the complexity of a system as it is built. Expe-
rience with such a system shows that professional de-
velopers welcome such feedback and use it to im-
prove their work.

Issues raised by real-time metric feedback do not
arise or are less important when metrics are divorced
from the minute-by-minute business of software de-
velopment. Such issues include:

e Which metrics should be measured? As with all
forms of performance measurement, you must
choose metrics carefully.® As the saying goes: “Be
careful what you wish for. You might getit.” If we
wish developers to pay attention to real-time met-
rics as they work, it behooves us to ensure that our
metrics measure complexity in a meaningful way.
This requires both a theoretical understanding of
complexity measurement and some empirical study
of the reasonableness of the metrics in real-world
applications.

* Which metrics can be measured? Software com-
plexity takes many forms, not all of which can be
measured meaningfully. Of those measurements
that are meaningful, not all can be computed eas-
ily enough or quickly enough for use in real-time
metrics.

« How should metric feedback be presented to the
developers? Tabular reports such as those avail-
able from traditional metrics tools would quickly
become annoying if they appeared every time a
change was made to the system. Ubiquitous real-
time feedback should be unobtrusive yet informa-
tive. The volume of feedback information should
be very small when complexity is within acceptable
limits, but more detail should be available when
it is needed or desired.

» How are developers expected to reduce complex-
ity when metrics indicate the need? Traditional
metrics reports invite a leisurely assessment of the
options for reducing complexity. In contrast, the
typically rapid pace of software development, and

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

hence of the real-time metric feedback, encour-
ages the developer to immediately rectify a prob-
lem. Experienced developers will usually know how
to do so, but inexperienced developers could eas-
ily be at a loss. Thus, it is important to provide im-
mediately available suggestions for how improve-
ments can be made.

This paper examines these issues in the context of
Smalltalk, one of the two most popular object-ori-
ented programming languages. The second and third
sections discuss what we mean by complexity and how
it is manifested in Smalltalk systems. The fourth sec-
tion reviews the key issues that affect our ability to
measure complexity in Smalltalk systems. The fifth
section discusses the reasons for and the effective-
ness of real-time feedback of metric information. The
sixth section presents seven specific metrics for mea-
suring the complexity of Smalltalk methods. These
metrics have proven to be suitable for real-time feed-
back. Each metric is discussed in terms of its reia-
tionship to complexity, and ways to improve meth-
ods that the metric indicates are too complex. Finally,
the chosen metrics are applied to approximately
35 000 methods in the three major dialects of Small-
talk. The results indicate that it is reasonable to ex-
pect developers to implement very large systems with
relatively few violations of the metric guidelines. The
last section concludes with a discussion of some of
the effects observed in day-to-day use of the tools.

What is complexity?

When we say that a system is complex, we mean, at
the very least, that it has a large number of parts.
But we mean more than that. A beach has a vast
number of grains of sand, yet we usually do not con-
sider sand to be complex. Complex systems have
many different kinds of parts, and the many parts con-
nect to, or interact with, one another in many ways.
Thus, two characteristics of complex systems are nu-
merosity (both of elements and kinds of element) and
interconnectedness. In the case of an object-oriented
{(00) system these notions can be made more con-
crete. We consider an 0O system to be complex when
it consists of many objects (parts) of many classes
(kinds of part) that collaborate (interact) with one
another in many ways.

Numerosity and interconnectedness are the most vis-
ible aspects of complexity, but they do not fully ac-
count for the difficulty we have managing complex-
ity in software engineering. Two other aspects of
complexity must also be taken into account. One—

BURBECK 205

cognitive complexity—has to do with human ability
to understand a system. The other—adaptive com-
plexity—has to do with how systems change or evolve
over time.

Cognitive complexity., Software is a creation of the
human mind, so software complexity must in part
be a cognitive issue. Cognitive complexity is that
which hinders human understanding of how the soft-
ware is designed and constructed and how it func-
tions at run time. Numerosity and interconnected-
ness play a role in cognitive complexity because
people have limited abilities to understand and re-
member the details about and the relationships be-
tween many distinct entities. As we say, “The devil
isin the details.” Nonlinearities also play a role. Peo-
ple tend to reason inaccurately about nonlinear pro-
cesses—even simple ones such as exponential or
combinatoric growth. Modern software systems rou-
tinely involve such a large number of elements in-
terconnected in so many nonlinear ways that human
abilities are inadequate for the task of completely
understanding these systems.

Details come in various forms that challenge human
cognitive abilities differently. There are persons who
cannot remember a 12-digit number but have no
trouble remembering the names of dozens, if not
hundreds, of friends and acquaintances who are en-
meshed in a complex web of personal and business
relationships. We are aided in dealing with the mul-
tiplicity of people and relationships by our ability to
classify much of the detail into categories with sim-
ilar and familiar behavior. For example, we under-
stand much about people in terms of their roles and
responsibilities, job titles, positions in organization
charts, status as employee or customer, and so forth.

Object-oriented analysis and design tends to give rise
to models that mirror much of the familiar under-
standable domain relationships. When an 00 design
is fresh, many of the classes, their responsibilities,
and the messages they understand reflect familiar
aspects of the problem domain. This similarity helps
those working with the system to better understand
its function and reduces the cognitive complexity of
the system. However, the correspondence between
the 0O system and the problem domain requires a
carefully constructed balance of trade-offs among the
desired function of the program, domain require-
ments, platform constraints, and strengths or weak-
nesses of the language and class library. Over time,
changing requirements disrupt these careful trade-
offs, thereby causing changes to the system that

206 BurBeck

stretch the fidelity of the models beyond the break-
ing point. The corresponding growth of cognitive
complexity is slow in the early stages of this pro-
cess and increases rapidly as the models lose touch
with the domain. When that has occurred, judi-
cious refactoring can restore an understandable
correspondence between the model and the new-

Software is a creation of the
human mind, so software complexity
must in part be a cognitive issue.

behavior of the system. Such refactoring reduces
cognitive complexity without necessarily reducing
the number of classes or their interactions.

Adaptive complexity. Although software begins as
an abstract creation in the human mind, once the
idea leaves our minds it takes concrete forms—both
a source code form and an executable form—that
have lives of their own. Software executes in a com-
puter that is indifferent to numerosity and intercon-
nectedness (not to mention cognitive complexity).
As it does so, it reveals behavior not foreseen by its
developers. Source code also has a life of its own.
For example, a class written by one person with one
intent suggests other uses to other team members.
Finally, when the software is released to end users,
it becomes enmeshed in the business or social prob-
lem domain for which it provides a solution. Users
of the software discover unforeseen ways in which
it can be used or could be used if it were just changed
slightly. This notion that software has a life of its own
reflects the fact that software is one element of an
evolving dynamic system, a system that involves the
software, the hardware on which it runs, the people
who develop it, and the people who use it.

Adaptive complexity refers to the way in which the
numerosity and the nonlinear interconnectedness of
software affect the evolution of the system. These
issues are the subject of the relatively new science
of complex adaptive systems. (For an introductory
review, see Waldrop* or Nicolis and Prigogine.”) Re-
searchers in that field view complexity as a poorly
understood but nonetheless objective property of

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

adaptive systems. Software is but one of many such
evolutionary systems.

Complex adaptive systems are ones in which the
number, the nature, the interconnections, or the in-
teractions of the elements in the system are chang-
ing over time in ways that affect and are affected by
the system’s own complex structure, i.e., they feed
back upon themselves. Numerosity and interconnect-
edness play a role in adaptive complexity because
the more elements and interconnections there are,
the more possibilities there are for feedback. Our
intuitions about such systems lead us to expect them
to become increasingly chaotic as the number of
feedback loops grows. Yet the phenomenon that
complexity theorists find common to a wide variety
of complex adaptive systems is self-organizing emer-
gent behavior. That is, complex adaptive systems be-
have in a counter-intuitive manner: order emerges
out of chaos.

Emergent behavior from complexity is ubiquitous in
the world around us at every physical scale and in
many kinds of systems. Molecules emerge from com-
plex interactions between the outer electrons of at-
oms. Ecologies emerge from complex interactions
between various species, geographic features, and
weather. Social organizations (groups, clubs, busi-
nesses, etc.) emerge from complex interactions be-
tween people. Hurricanes emerge from complex
interactions between warm ocean currents, atmo-
spheric humidity and temperature gradients, and
winds. Monopolies and cartels emerge from com-
plex interactions within disordered economic mar-
kets. And highly ordered self-perpetuating patterns
emerge from random initial states in cellular autom-
ata such as John Conway’s game of “Life.”%® The
emergence of each of these macro-level patterns is
thought to be an inherent and inevitable result of
the complexity of the substrate level.

Computing systems are complex adaptive systems in
two quite different realms: their execution environ-
ment and their development environment. Execut-
ing programs involve many interconnected elements
that adapt to the execution environment: memory
usage, compute cycles, file system space, input from
users, and perhaps other programs (especially in net-
worked client-server environments). The macro be-
havior of a running program emerges from these in-
teracting elements. To as large a degree as possible,
the behavior that emerges from a program should
be that which is expected by the developers. But
in complex systems, emergent behavior is seldom if

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

ever completely predictable. Unexpected pernicious
emergent behavior at run time is called a bug. We
strive to reduce unnecessary complexity in part to
reduce unwanted emergent behavior.

Computer programs exist in human-readable form
separately from the form in which they execute. The
many interacting elements of this realm are source
code constructs, design elements, development tools
and environments, and human developers. Through-
out the life cycle of a system, designers and program-
mers add, remove, and change design and source
code elements to adapt the system to changing re-
quirements or changing understanding of existing re-
quirements or existing system behavior, or to both.
These additions and changes depend on the preex-
isting state of the system. Therein lies the feedback
that fuels a complex adaptive system. Some elements
engender others like themselves, e.g., they are used
as patterns or conventions or invite “cut-and-paste”
reuse. Some invite specialization by subclassing (in-
heritance reuse) or reuse in collaborations with new
objects. And some resist change or reuse because
their cognitive complexity makes them difficult to
understand or change. Resistant elements may cause
suboptimal changes to be made elsewhere. These
suboptimal changes tend to increase the complexity
of the elements in which they land. Complex areas
that cannot be avoided tend to become even more
complex because changes to them are more likely
to be made without understanding the cleanest way
to solve the problem. In general, repeated changes
tend to increase complexity and reduce understand-
ability. This sort of self-reinforcing creeping com-
plexity eventually renders the system so brittle that
often it must be abandoned. Real-time metric feed-
back, as proposed here, aims at reducing creeping
complexity during development and maintenance by
making the effect changes have on complexity more
visible.

Complexity in Smalltalk systems

Smalltalk systems are structured at multiple levels
of organization: the web of interacting instances, the
collection of interconnected and interdependent
classes (which are related by a tree of inheritance—
“is-a”—relationships, a web of attribute—“has-a”—
relationships, and a web of collaborations), and the
parallel and partially independent tree of metaclasses
(i.e., the class objects themselves that provide the
class behavior as opposed to the instance behavior
of the class). Often additional organized structures,
such as groups of collaborating abstract classes that

BURBECK 207

form frameworks, are embedded within and across
these other structures. Those who design, build, test,
and maintain the system must explicitly understand
and deal with each of these levels of organization.
Each level hinders or facilitates understanding of the
system in different ways and therefore contributes
its own sort of cognitive complexity. As the system
grows and changes during its initial construction and
later evolves in maintenance phases, each level af-
fects and is affected by this evolutionary process dif-
ferently; therefore, each level contributes differently
to the adaptive complexity of the system.

Methods. Individual methods define the atomic col-
laborations of the system. Their existence in a given
class defines which messages can be sent to objects
of that class, and the code within them defines the
precise series of collaborations that implement the
computation. Each method is a nexus of intercon-
nections (i.e., collaborations) between objects.

The number of objects involved in a method and the
number of collaborations specified in the method
clearly affect the complexity of the method. Meth-
ods most commonly contribute to complexity by do-
ing too much or doing it too procedurally. In addi-
tion, a method may contribute disproportionally to
cognitive complexity if its behavior is awkwardly cho-
sen or poorly named.

Overly long and complex methods tend to resist
change and reuse.’ A disciplined, experienced Small-
talk developer will break up, refactor, and clarify long
complex methods. But the longer and more complex
a method is, the more difficult the task tends to be
and, hence, the more tempting it is to avoid. If the
necessary experience or the discipline, or both, to
simplify long or complex methods is lacking, such
methods tend to get longer and more complex as new
requirements force changes. Thus, complexity be-
gets more complexity. This is the essence of adap-
tive complexity.

Classes and metaclasses. Individual classes contrib-
ute cognitive complexity if they are poorly matched
to the domain (i.e., model it badly), are poorly
named, or define poorly named or poorly factored
methods so that their purpose is obscure. Or a class
can attempt to do too much or too little. Classes con-
tribute to overall numerosity and interconnectedness
by defining attributes (e.g., instance variables) and
methods. Unlike the case of individual methods,
smaller classes are not necessarily better. Classes with
little behavior may be entirely appropriate to the do-

208 BursECK

main, or they may simply be thinly disguised data
structures. In the latter case, they seem simple only
because they are manipulated by other (usually over-
weight) classes that are thinly disguised procedural
programs. The apparent simplicity of such light-
weight data structure classes is illusory if the behav-
ior that must be understood to reuse or change them
resides in other large, overly procedural classes that
are difficult to understand, reuse, or change.

The characteristic way in which classes grow more
complex is by accumulating methods that do not
quite fit with the previous responsibilities of the class.
However, increasing the number of methods in a
class does not necessarily add complexity. For ex-
ample, the number of methods increases when a long,
overly complex method is broken into two or more
simpler methods, yet the result may be a simpler
class. The complexity of the class increases when new
kinds of behavior are added.

Classes themselves are objects that provide class var-
iables and class methods. The majority of classes de-
fine no class variables and implement no class be-
havior. For that reason, programmers (especially
novices) may find class behavior confusing when it
is present. Class variables can add complexity be-
cause they are shared by all instances of the class
and therefore can provide interconnection between
otherwise isolated objects. Class methods do not, in
general, increase connectedness because they are in-
voked only by messages to the class object (and its
subclasses), not to instances of the class. The most
typical class behavior is instance creation and ini-
tialization. Cognitive complexity can arise if the ini-
tialization is not straightforward. Examples of other
types of class behavior are: maintenance of instance
uniqueness (e.g., Symbol or Character) and delega-
tion of instance creation to other classes (usually the
newly created object is an instance of some appro-
priate subclass). In very rare cases, class behavior
modifies the class itself. The class determines the be-
havior of all instances, and that behavior may be
changed programmatically at run time. To do so,
however, dramatically increases both the cognitive
and the adaptive complexity of the system.

Inheritance. Inheritance relationships between
classes affect complexity in ways that may not be ap-
parent from an examination of the individual classes.
A careful examination of the inheritance tree might
show that behavior is misplaced. A couple of classes
might duplicate behavior that could be shared if a
new abstract superclass were created from which they

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

can both inherit. Or a class may do less than it could,
thereby forcing its subclasses to implement more be-
havior than necessary. In both cases the lack of be-
havior (or the lack of behavior in the “right” place)
has the potential for promoting complexity as new
subclasses are added. Experienced developers may
well spot the opportunity for refactoring in these

The cognitive complexity of a
framework depends on how well
matched it is to the needs of
its subclasses.

cases. If not, the flaws in the hierarchy grow as new
classes are added. Thus, the flaws represent adap-
tive complexity.

A more subtle misuse of inheritance occurs when a
class inherits behavior that cannot be used, presum-
ably in order to inherit other behavior that is desired.
This type of inheritance adds substantially to com-
plexity. The developer who chooses such improper
inheritance may clearly understand which inherited
messages must not be used. Subsequent developers
have a difficult task deducing that information.

Collaboration. Two related collaboration webs are
involved in an 0O application: the web of collabo-
rating classes and the web of specific collaborations
between instances that accomplish a computation.
In the Booch method of OO analysis and design, "
the former is described with class diagrams and the
latter with object diagrams and interaction diagrams.
Collaboration complexity has to do with how exten-
sive and tangled these webs may be and how “nat-
urally” they model the interactions in the problem
domain.

The webs determined by the attributes (i.e., instance
variables and class variables) of the classes are gen-
erally subwebs of the collaboration webs because an
object usually has collaborators that are not at-
tributes (e.g., they are passed to the object as mes-
sage arguments). These subwebs of “containment”
contribute complexity that is distinct from that of the
collaboration web whenever webs of objects must be
exported or imported from external databases, e.g.,

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

in client/server environments. OO databases can man-
age persistent storage of webs of objects with arbi-
trary references to one another, although not always
without performance implications. But the most
common case in commercial OO systems is that in
which webs of objects must be stored in and retrieved
from relational databases. The constraints imposed
by the requirements of relational models add to the
cognitive complexity of a system when they conflict
with principles of good 00 design.

Frameworks. Frameworks are webs of abstract classes
that are meant to be extended by subclassing to fit
the specific requirements of the application. What
differentiates frameworks from other abstract classes
is that concrete subclasses are intended to special-
ize a specific set of abstract collaborations between
the inheritance trees that descend from each of the
abstract classes in the basic framework. In large mea-
sure, frameworks exist to provide important inher-
itable collaborations. Their impact on complexity
therefore involves issues of both inheritance and col-
laboration.

The cognitive complexity of a framework depends
on how well matched it is to the needs of its sub-
classes. A good framework that is easy to understand
can anchor a large set of subclasses. Such a match
tends to lower the overall cognitive complexity of the
set of subclasses in the framework because they share
a stereotypical collaboration. However, it may in-
crease adaptive complexity because a change that af-
fects one of the abstract collaborations can ripple in
unforeseen ways to all the subclasses that inherit
from the framework.

Interactions between levels. The complexity within
each of these levels clearly contributes to the over-
all complexity of a Smalltalk system. Just as impor-
tantly, the relationship between the levels also con-
tributes to the complexity. Since changes to the
system usually affect more than one level, the effect
of a change on overall complexity can be difficult to
assess. In some cases complexity within one level can
be reduced without impacting other structures.
Poorly written methods, for instance, can often be
made simpler with no changes outside the method
itself. Occasionally, we may be able to refactor a sys-
tem in a way that simplifies more than one level at
once—perhaps one or more classes are seen to be
superfluous and disappear entirely, while code that
relied on those classes becomes simpler as well. More
often, however, refactoring reduces complexity at
one level by judiciously adding complexity to another.

BURBECK 209

A new class may be added to allow simplification of
methods or collaborations elsewhere, or an abstract
class may be added to simplify many of the classes
that inherit from the new abstract class. Either case
raises the complexity of the class hierarchy. Addi-
tion of a new framework may increase complexity
at many levels in exchange for a slower rate of growth
in complexity as future specializations of the frame-
work are added.

Understanding these issues well enough to measure
the effects of changes that move complexity from one
level to another is, at best, a distant possibility. For
the foreseeable future, we must trust the explicit re-
distribution of complexity to the judgment and expe-
rience of skilled people. The only plausible near-term
goal is to measure complexity within these levels.

Measuring complexity

Our experience with everyday measurement of the
physical world tempts us to assume that once we un-
derstand a particular notion of complexity, it is a
straightforward matter to measure it. That assump-
tion stems from our experience with measurements
of simple physical properties such as length or mass.
We are aware of potential problems with measure-
ment accuracy, but we take for granted the mean-
ingfulness of notions such as “average length” or
“twice the mass.” Even in the physical world, though,
measurement is not always so simple. Hardness is
a readily measurable property of physical objects, and
it is meaningful to say that one substance is harder
than another. Color, too, is measurable. Yet the no-
tions of “twice as hard” or “average color” are mean-
ingless. When we step away from the physical world,
measurement often becomes even more problematic.
Consider the well-known difficulties of measuring hu-
man intelligence or product quality. The problem is
that the underlying empirical properties of color,
hardness, intelligence, or quality do not behave com-
patibly with all of the properties of numbers.

The theory of measurement has long been the sub-
ject of rather deep theoretical study that aims to rig-
orously characterize the properties of empirical
structures required to support meaningful numeric
manipulation. ' The empirical structures of interest
here are software structures such as methods, classes,
inheritance hierarchies, and the like. We wish to map
these structures into numerical representations so
that we can discuss and reason about one aspect of
software, its complexity, in isolation from the many
other aspects of the software. The difficulty is that

210 BuRBECK

numbers can be assigned to empirical structures in
infinitely many ways. Some are useful, and others
are not. The theory of measurement provides a
framework within which to choose among these nu-
merical representations. Before we leap into mea-
suring software complexity, it is worth considering
the issue of just what we can expect to learn from
such measurements.

Metrics and meaningfulness. Both the properties of
the empirical structures and the way in which we
choose to map them into numbers determine how
we can use the resulting measurements. For an at-
tribute of software (e.g., complexity) to be measured
in a meaningful way, it must exhibit properties that
can be mapped consistently into analogous proper-
ties of the number system. ™

To meaningfully compare different chunks of soft-
ware in terms of which is more complex, the mea-
sure must map chunks of software into numbers so
that the ordering relationship of the “natural com-
plexity” of the software maps appropriately into the
natural ordering of numbers (i.e.,x <=y). Such map-
ping requires that we be able to say which of two
software artifacts is more complex than the other.
More formally, for any two artifacts A and B, we must
be able to say either that artifact A is at least as com-
plex as artifact B, or that artifact B is at least as com-
plex as artifact A. And if both statements are true,
the two artifacts must be of equal complexity. The
natural order of complexity must also be transitive:
if artifact A is at least as complex as artifact B and
artifact B is at least as complex as artifact C, then
it must be the case that artifact A is at least as com-
plex as artifact C. An empirical structure that
obeys these necessary ordering relationships can be
mapped into an ordinal scale. That is, a number can
be chosen for each artifact such that the natural or-
der of the numbers agrees with the natural order of
the complexity of the structures.

It is another deceptively large step from meaning-
fully answering the question of which artifact is “more
complex” to answering the question of “how much
more complex?” The first question simply requires
that the mapping not violate the numeric ordering
relation. The second question, in essence, requires
that the mapping preserve the much stronger rela-
tionship of numeric addition. To preserve this re-
lationship we need a clear notion of what it means
to combine, or concatenate, two chunks of software
into a single chunk for which it can be assumed that:

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

» The complexity of the concatenation of any two
artifacts is at least as large as the complexity of ei-
ther artifact alone (monotonicity).

s The complexity of the concatenation of any two
artifacts is independent of the order in which they
are concatenated (commutativity).

s The complexity of the concatenation of any three
artifacts is independent of which pair is concate-
nated first (associativity).

These properties ensure that the operation of concat-
enating two software artifacts maps into the oper-
ation of adding their complexity measures. If the em-
pirical structure supports an ordinal scale and also
supports additive concatenation, it becomes an in-
terval scale. Interval scales support computation of
the familiar statistics that rely on addition, such as
means, standard deviations, and correlations. Ordi-
nal scales do not.

To make statements such as “artifact A is twice as com-
plex as artifact B,” the notion of zero must be mean-
ingful. Zero implies that there can be software artifacts
with no complexity. It also implies that the concate-
nation of artifact A with artifact B has the same com-
plexity as artifact A, if and only if artifact B has no com-
plexity. The presence of an identifiable zero point
transforms an interval scale into a ratio scale.

The above qualitative statements about complexity
are examples of a set of properties that support
meaningful measurement. They provide enough of
a theoretical foundation to decide, for any partic-
ular notion of complexity, what sort of measurement
scale can be supported. Others may be more suit-
able in some cases. "

In the field of software measurement, Weyuker '¢ was
one of the first to propose “desirable properties of
complexity measures.” She discusses nine properties
that she thought software complexity metrics ought
to have. But she only proposed them as a starting
point for further study. She made no claims that these
propertics form a consistent axiom system that is ei-
ther necessary or sufficient as a foundation for new
complexity measures. As it turns out, they are not
sufficient and have been shown to be internally in-
consistent.'” Some recent papers present a somewhat
more rigorous discussion of the theoretical issues of
the measurement of complexity. '**

Meaningful Smalltalk metrics. The many levels of

complexity in OO software present challenges for
those who seek to create comprehensive complexity

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

metrics. These levels are fundamentally different
from one another. Some do not support even a lin-
ear ordering relationship. Others support ordering
but not concatenation operations.

Within individual methods, orderings can be estab-
lished in many sensible ways. It does not stretch cred-
ibility too much to assume that concatenation
amounts to appending code from one method to that
of a second method (even though that may be se-
mantically meaningless in most cases). This kind of
concatenation is analogous to the measurement of
length where concatenation amounts to placing two
physical objects end-to-end for the purpose of mea-
suring their combined length. Given this sort of con-
catenation, the method-level metrics proposed later
in this paper satisfy the ordering and concatenation
requirements of a ratio scale.

The foundation for complexity of a class is not as
firm. Some notions of class complexity support plau-
sible orderings: the number of instance variables (or
class variables) defined or inherited, or both, the
number of methods defined or inherited, or both,
and so forth." But these orderings depend on
whether we take into account only what is defined
by the class or also include what is inherited by the
class. We routinely and casually talk about the com-
plexity of a class in terms of what it defines despite
the fact that a class encompasses everything it in-
herits as well. It is tempting to believe that a class
that defines one instance variable and a couple of
methods is less complex, independent of its place in
the hierarchy, than one that defines more state or
behavior. This belief seems plausible from the per-
spective of cognitive complexity if we are willing to
assume that one already understands its superclasses.
From the perspective of adaptive complexity this
seems much less plausible since the new class inter-
acts with other classes with all its behavior—inher-
ited as well as defined. Consider the following ex-
ample of two actual classes in 1BM Smalltalk:

s Class A defines no instance or class variables, eight
instance methods, and one class method.

« Class B defines no instance or class variables, seven
instance methods, and two class methods.

On the face of it, neither class seems very complex,
and there is little to choose from in deciding which
one is more complex than the other. (Note that we
are ignoring the complexity of the methods them-
selves. In this case neither class has especially com-
plex methods.) Inheritance changes the picture

BURBECK 211

rather dramatically. Class A is Array, which inherits
from Object, Collection, and SequenceableCollection.
Class B is Boolean, which inherits directly from Ob-
Ject. Array inherits a large body of relatively compli-
cated behavior from its superclasses, most of which
is used by arrays. Boolean inherits a number of meth-
ods from Object (more than most programmers re-

The incremental and iterative
development style of Smalitalk
development is well-suited
to real-time method-level metrics.

alize), but very little of the inherited behavior is ever
used. Moreover, inheritance plays an additional role
in this case: Array is a concrete class that stands on
its own, whereas Boolean is an abstract class. The
behavior Boolean implements is meaningless apart
from the behavior of its subclasses: True and False.
There is a case of subtractive inheritance in Boolean
as well: it overrides the class new method to disable
it. When proposing orderings between classes, we
must take issues of inheritance into account.

Inheritance complicates the notion of concatenat-
ing classes as well. Concatenation of two classes that
share the same superclass (i.e., sibling classes) could
be taken to be the creation of a new class with all
the variables and methods defined in either original
class. This concatenation is somewhat analogous to
pouring two liquids into a common container for the
purpose of measuring volume. However, a metric
that is restricted to a family of sibling classes is of
little use. The situation is less straightforward if one
of the two classes descends from the other and over-
rides methods in its superclass. In that case concat-
enation may result in the removal (via override) of
behavior as well as the addition of new behavior.
Concatenation then has aspects of both addition and
subtraction.

Establishing an ordering or concatenation operation
for other aspects of OO software is even more prob-
lematic. We lack obvious candidates for the proper
ordering or sensible concatenation of webs of col-
laborating objects, class-metaclass relationships, in-
heritance trees, or frameworks. We therefore do not

212 BURBECK

and cannot have a theoretically sound way to mea-
sure all of the contributors to the complexity of an
00 system. Hence, the very notion of measuring
overall complexity is inherently meaningless (as oth-
ers have noted on different grounds'**'). The only
levels that seem promising at this time are the
method and class levels, and the class level may well
support no more than ordinal metrics. For the fore-
seeable future, we must be content with the goal of
constructing reasonable measures of the complex-
ity within these tractable levels of organization. This
outcome echoes what Fenton'® proposes: “. .. the
most promising approach is to identify specific at-
tributes of complexity and measure these separately.”

Real-time measurement and feedback

Even a “perfect” complexity metric—one that has
a clear intuitive connection to complexity, theoret-
ical validity, empirical validation, and perfect accu-
racy—cannot by itself reduce the complexity of an
application. Consider the analogy of dieting and
weight loss. The measurement of physical weight
presents no theoretical and few practical difficulties.
Weight measures are certainly empirically valid and
can be as precise as one desires. But as millions of
overweight dieters can attest, the ability to accurately
measure their weight does not much help in weight
reduction. A pound gained or lost is the cumulative
effect of many events and conditions (calories eaten,
calories burned in exercise, metabolic rate, etc.) that
span days. So too with creeping complexity. Feed-
back at the time each decision is made is best rather
than feedback about accumulated decisions that are
difficult to undo. The accumulation of reductions in
local complexity reduces global complexity.

The incremental and iterative development style of
Smalltalk development is well-suited to real-time
method-level metrics. Smalltalk code browsers dis-
play code one method at a time. When methods are
added or changed, each is compiled before moving
on to the next. Since methods are typically small, each
addition or change is done in a few minutes (or some-
times a few seconds). This short period provides the
opportunity to display feedback on the complexity
of new or changed methods very soon after the code
is written. The same complexity assessment can be
applicd as a developer views each existing method.
Since Smalltalk developers typically spend much
more time browsing and reading code than they do
writing code, having real-time metric feedback as
they browse provides an ever-present sense of the

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

complexity of a wide-ranging sample of the code they
are reusing.

A Smalltalk development environment with real-
time metrics was first demonstrated at OOPSLA'92 by
Knowledge Systems Corporation. Whenever the de-
veloper browsed or changed a method, a simple in-
dication of the complexity and readability of the
method automatically appeared in a metric feedback
pane in the browser. Another system with metrics
available upon request was prototyped and described
by Barnes and Swim.? That system does not have
real-time feedback, but it has a “Quality!” menu item
on the primary browser that allows the developer to
easily obtain a metric report for the selected class
or method, or both.

Requirements for real-time metrics. If the kind of
feedback and its manner of presentation are not well-
chosen, real-time metrics could become overbearing
and irritating. In appearance and in content, real-time
metrics must help rather than distract, constrain, or
overwhelm the developer with unasked-for informa-
tion.

The following principles were used to guide us in pro-
viding real-time metric feedback:

e Information should be presented for several met-
rics—no one metric tells the whole story.

¢ Metrics must be rapidly computed—delays are an-
noying.

* Metrics should be presented in a manner that is
ever-present yet unobtrusive so that developers are
always, if subliminally, reminded of their respon-
sibility to manage complexity.

¢ Metrics must be presented in a manner that is im-
mediately interpretable. No thought should be
wasted on metrics unless thought is needed.

* The developer should be concerned with the degree
of complexity only when it exceeds a threshold.

* Metrics should be able to explain themselves. If
the coarse initial feedback indicates a possible
problem, the developer should be able to easily
obtain more detailed information.

Above all, feedback should be advisory. Smalltalk
coding is fine-grained design (i.e., detailed design of
collaborations), and design is a quintessentially hu-
man activity. No metric system can reliably second-
guess an experienced developer. The designer or pro-
grammer must be able to make use of or ignore
complexity feedback according to its value in the cir-
cumstances of the moment. There are circumstances,

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

such as working on a rapid prototype, when the de-
veloper consciously and properly ignores complex-
ity. There are other circumstances (e.g., when brows-
ing methods that have been automatically generated
by tools) where the metric feedback should simply
be ignored.

A system that meets these criteria has been devel-
oped in the IBM North America Object Foundry. The
system works as follows. Whenever a method is dis-
played or changed in any of the browsers, seven met-
rics are computed for the method. The computation
is quick, seldom taking more than a fraction of a sec-
ond. Unless the method is very large (and therefore
far too complex), there is no noticeable delay as the
uscr browses or changes code. The value of each met-
ric is compared to two thresholds. One marks the
upper bound of routinely acceptable complexity for
that metric, and a second larger threshold marks the
point at which the metric signals excessive complex-
ity. This comparison divides the values for each met-
ric into three categories that provide broad guide-
lines within which the programmer can exercise a
great deal of freedom.

For the purpose of visual feedback, the three cat-
egories so defined are denoted by colors: green if the
count is below the warning threshold, yellow if it is
between the warning threshold and the unacceptable
threshold, and red if the count exceeds the unaccept-
able threshold. The use of color satisfies the require-
ment that feedback be immediately interpretable yet
unobtrusive. The visual feedback is displayed in a
small graphic button that has been added to each of
the standard Smalltalk browsers. This button con-
tains a rectangular region that displays a colored sub-
region for each metric. The user may click this but-
ton to obtain a new window that presents more
detailed information about the metrics for the
method. In addition to the colored regions on the
button, a face icon acts as a summary indicator that
smiles if all metrics are green, looks somewhat quiz-
zical if one or more are yellow, and scowls if any are
red. This icon serves as a unified summary of the met-
rics and provides redundant feedback for color-blind
developers.

On request, the system can present “help” informa-
tion for each metric that explains the common mis-
takes that lead to a poor metric together with sug-
gested ways to simplify the code. Also, a “quality”
menu added to the browser provides various choices
for browsing or obtaining a formatted report on all

BURBECK 213

“red” or “yellow” methods in a group of methods
(e.g., all “red” methods in a class).

Defining the thresholds. The choice of thresholds
between the categories is inherently somewhat ar-
bitrary. The thresholds presented in the next section
were evaluated in three ways. First, the chosen
thresholds have been reviewed by more than a dozen
very experienced Smalltalk developers. Legitimate
differences of stylistic opinion generate disagree-
ments with the exact choices for thresholds. Some
argue that one or another threshold should be more
strict on the grounds that many methods will receive
a green evaluation even though they could easily be
written more simply. Others argue for more lenience
on the grounds that certain situations might excuse
usage that exceeds the threshold. However, there is
no consistent opinion that any one threshold is in-
appropriate. Perhaps in the future, “smarter” met-
rics may be able to take more context into account
so that the thresholds can be stricter in the typical
case and more lenient when lenience is warranted.

A second assessment of the thresholds is based on
an analysis of nearly 35000 commercial Smalltalk
methods. The results are reported in the next sec-
tion. These results indicate that the thresholds are
reasonable and do not place undue constraints on
typical commercial-quality code. The analysis cov-
ered the following bodies of code:

* 7768 methods in the Digitalk Inc. vOs/2** version
2.0 image (includes WindowBuilder** code from
Object Share Systems, Inc.)

* 15198 methods in the 1BM Smalltalk version 2.0
image (includes ENvy/Developer** code from Ob-
ject Technology International)

¢ 11 901 methods in the VisualWorks** version 4.1
image from ParcPlace Systems, Inc.

This body of Smalltalk code represents a wide va-
riety of programming styles. It contains code writ-
ten by dozens of programmers from at least five
different companies. Some of the methods in Visu-
alWorks were written by the originators of Small-
talk at Xerox PARC in the 1970s. Many methods in
the base classes (e.g., collections, magnitudes, and
streams) appear in all three images but are imple-
mented differently in each. The analyzed code im-
plements a wide variety of behavior: from graphical
user interface code to operating system and file sys-
tem interface code, from numeric algorithms to text
formatting algorithms, and from code compilation
to version management. The many programmers

214 BURBECK

who wrote the code exhibit quite different styles and
abilities. And some of the methods (often very long
ones) were automatically generated by window lay-
out tools. Despite these many differences in age, au-
thorship, purpose, and polish, the metric analysis
shows that, for most metrics, well over 90 percent
of the methods are “green.” Moreover, despite the
very different origins of the three versions of Small-
talk, all three images show a remarkable similarity
in their metrics.

A third approach for assessing the acceptability of
the thresholds is to examine their effect in actual use.
The real-time metric tool has been used in internal
IBM development projects and in consulting engage-
ments with IBM customers. It is also in routine use
in training new Smalltalk developers. In addition to
the analysis of commercial Smalltalk methods, we
report results from an analysis of 3395 methods writ-
ten by experienced IBM programmers using real-time
metric feedback. Anecdotal evidence, confirmed by
this analysis, shows that the thresholds are low
enough to improve programming practices—even
those of experienced developers—yet they are not
overly constraining.

Since the chosen thresholds are admittedly some-
what arbitrary and experienced programmers occa-
sionally have legitimate arguments for setting them
differently, the question arises as to whether thresh-
olds should be adjustable by the user. We advise
against it. Perhaps no harm would come from allow-
ing programmers to set thresholds more strictly. But
adjustable thresholds are usually requested by pro-
grammers who wish to make the thresholds more le-
nient. These programmers should be reminded that
the goal is not just to pass the metrics thresholds;
it is to reduce complexity. Arguing for more lenient
thresholds is arguing for the general acceptability of
more complex code. Moreover, unless the different
thresholds are adopted by all members of the de-
velopment and test teams, a developer who increased
the thresholds would fool no one but himself. If a
good case can be made for exceeding a threshold
in a particular method, the method need not be
changed. Making a case for accepting a method with
any red metrics should be difficult. But the yellow
threshold is intended to be merely cautionary. Some
methods, perhaps a few percent, are better left with
yellow metrics. The decision to accept such meth-
ods should, however, be an explicit one that the pro-
grammer is willing to defend in a peer code review.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Method-level metrics

A large and growing body of literature on 00O met-
rics is at the class level (see Chidamber and Kem-
merer'® for a good review). In comparison, there are
very few discussions of method-level metrics. This
situation is odd given that class-level metrics are con-
ceptually much more difficult to motivate and un-
derstand than method-level metrics (see the earlier
subsection on meaningful Smalltalk metrics).

Barnes and Swim* address method-level metrics for
the 0O language “Actor.”” They measure McCabe
cyclomatic complexity,? number of lines of code,
number of local variables, number of messages to
self, and number of messages to other objects.

Lorenz and Kidd® discuss five method-level met-
rics and also discuss thresholds that are similar to
our cautionary (yellow) thresholds. They propose
counting the number of message sends (threshold
9), number of statements (threshold 7), lines of ex-
ecutable code (no recommended threshold), and
strings of message sends (no recommended thresh-
old). They prefer to count message sends or state-
ments rather than lines of code on the grounds that
the number of lines of code may be affected more
by stylistic differences. They also propose a “com-
plexity” metric (threshold 65), which is a weighted
sum of occurrences of various kinds of constructs
found in Smalltalk methods, e.g., primitive calls, as-
signments, nested expressions, method arguments,
and temporary variables. This metric is difficult to
justify and interpret because it is based on an un-
supported assumption that the effect of its compo-
nents on complexity is additive and because the
weights are assigned arbitrarily.

We have chosen to provide real-time feedback on
the following seven metrics for each method. Each
is an easily computed indicator of some aspect of
method complexity.

e Number of lines of code

* Number of blocks

* Number of temporary variables and method ar-
guments

* Number of parenthesized expressions

¢ Number of explicit returns

e Number of external assignments

¢ Number of cascaded messages

They are all ratio scales, each of which is intuitively

related to method complexity or readability. No one

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

of them can claim to encompass the notion of method
complexity. Taken together, however, they form a
sieve that catches most excessive structural complex-
ity. None of them addresses the sort of cognitive com-
plexity that results from poorly chosen names for
methods and variables. That sort of complexity must
still be judged by human code reviewers.

The following discussion includes, for each individ-
ual metric, a description of the metric, a brief jus-
tification of its relationship to complexity, the thresh-
old values used to bound the green/yellow/red
categories, a list of common situations that might
lead to excessive complexity, suggested ways to
change offending methods to reduce their complex-
ity, and data on the distribution of measurements
for Digitalk’s vOS/2 version 2.0, IBM’s Smalltalk ver-
sion 2.0, and ParcPlace’s VisualWorks version 4.1.

The text presented below in each of the “descrip-
tion,” “justification,” and “suggested improvements”
subsections is available on line from the metrics tool

in essentially the same form as it appears here.

Number of lines. Two decades of Smalltalk experi-
ence tell us that small is beautiful. Methods should
be small, clearly written implementations of a single-
purpose behavior, i.e., a method should do one thing
and one thing well.® The metric used here counts all
lines, including comments, with the exception that
multiple-line comments are counted as a single line.
This method of counting avoids discouraging good
comments. The longer a method, the more likely it
is to need a multiline explanatory comment. We wish
to encourage the programmer to shorten the method,
not the comment.

Description and justification. The more lines a method
has, the longer it takes a reader to understand it, es-
pecially if the reader must scroll the text because it
does not fit within a typical browser text pane. This
length can inhibit the rapid understanding of the
code necessary for quick browsing, debugging, and
reuse.

Number of Lines Effect on Method Complexity

x<=14 Green: OK, minimal if any impact
15<=x<=26 Yellow: Method may need refactoring
x>26 Red: Too long, refactor

Suggested improvements. The most common reasons
for a method being overly long include:

1. The method contains leftover “first draft” code.

BURBECK 215

2. The method contains too much vertical white
space (i.e., blank lines within the code).
3. The method contains extra comments in the code.

Long methods often signify “first draft” code. When
code is first written for a class or a method, the de-
tails of the code are being discovered as coding
progresses. First-time discovery is usually a messy
process, the details of which tend to obscure pos-
sible simplifications. Often, similar behavior appears
in multiple methods in the class or even in multiple
sections of code within the same method. A second
(or even third) pass is often needed to identify the
common behavior, create new supporting methods
or classes that embody that common behavior, and
then recode the first draft methods to make use of
these new constructions.

Used judiciously, white space can make code more
readable and understandable. However, insertion of
blank lines between sections of code often implies
that those sections ought to be separate methods.

Well-written small methods do not require com-
ments other than a single clearly written method
comment. If a programmer finds the need for other
comments, the method is probably too complex and
should be broken into multiple methods.

Analysis of lines of code in commercial systems. Of
the 35 000 methods analyzed, about 11 percent have
more than 14 lines of code, and about 3.5 percent
have more than 26 lines (Table 1). Thus, even with-
out metric feedback, most methods written by ex-
perienced developers satisfy the metric criteria. Yet
there remains substantial room for improvement on
this metric. Analysis of 3395 methods written by IBM
programmers with the benefit of real-time metric
feedback shows that it can have a substantial ben-
eficial effect: 6 percent of those methods have more
than 14 lines of code, and only 1.2 percent have more
than 26 lines.

Some small stylistic differences between the three
commercial Smalltalk systems appear in the distri-
bution of number of lines of code (Figure 1). Among
small methods—those of six lines or less in length—
VO0S/2 methods tend to be shorter. For methods larger
than seven lines, there is little difference between
the three systems. For all three, the large majority
of methods are seven lines or less.

Number of blocks. In this subsection we discuss the
number of blocks as an indicator of method com-
plexity.

216 BURBECK

Description and justification. The number of control
structures in a given piece of code has long been used
as a measure of the overall complexity of the code.
The number of block constructs in a method can usu-
ally be equated with the number of control struc-
tures in the method.

Number of Blocks Effect on Method Complexity
x<=4 Green: OK, minimal if any impact
S<=x<=7 Yellow: Method may need refactoring
x>7 Red: Too complex, refactor

Suggested improvements. The most common reasons
why methods may contain too many blocks are:

The method is trying to do many different things.
The method implements a case statement.
The method implements a decision tree.

The method traverses a deeply nested object
structure.

L=

If the method has several isolated islands of code,
each of which contains its own independent control
structures (blocks), the method is usually trying to
do too many things. A good rule of thumb in this
case is that a method should do one thing well. Each
island of code in the method should be considered
a candidate for a separate new method.

If the method implements a case statement in which
the cases are distinguished by the kind (i.e., class)
of object held by a variable, consider refactoring the
behavior using polymorphism. That is, convert the
block to be executed for each case into a method in
the candidate class. If the cases reflect common states
of the receiver, consider refactoring your design to
use the State Object design pattern.®

If the method implements a decision tree, break up
the decisions into separate methods. Then the orig-
inal method can act as an aggregator for these mi-
cro decisions without containing all the decision
code. This will also make it easier for clients of this
object to reuse the finer-grained behavior in ways
that would be impossible with a single decision tree
method.

If the method traverses a deeply nested object struc-
ture, consider moving the structural navigation code
into new methods in the objects that make up the
structure. Often, this will best be accomplished by
applying the Composite design pattern.?® This ap-
proach will simplify the method as well as add valu-
able behavior to the objects being traversed.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 1 Distribution of number of lines of code
LINES OF CODE
40
s
[
[\

30
@ Y A
o (B A
X I (¥ ANRY
L 25+ | -
s 'I '
LL \
o 2
£ 207 I, /] ‘\ \
5 1 ; \ 3
g [\ .
g 15 5 \
: AN

i/ 1 D
10+ I L= N
;
5 I, \i_;—\a
s T S a—
D A e T e
0 T T I T T T \ \ T T T T T 1
1 3 5 7 9 11 13 15 17 19
NUMBER OF LINES

Analysis of blocks in commercial systems. Of the
35 000 commercial methods analyzed, about 7 per-
cent have more than 4 blocks, and about 3.4 percent
have more than 7 blocks (Table 2). As with the lines
of code metric, there remains substantial room for
improvement on this metric. Metric feedback had
an even stronger effect in this case. Of the 3395 meth-
ods written with the benefit of real-time metrics, only
1 percent of methods have more than 4 blocks, and
only 0.2 percent have more than 7 blocks.

The distribution of number of blocks (Figure 2)
shows remarkably little difference between the three
commercial systems. It also shows the degree to
which polymorphism obviates the need for many con-
trol structures. Two thirds of the methods have no
control structures at all. Another fifth of the meth-
ods have one or two, typically a single “if True:” block
or an “ifTrue:ifFalse:” pair.

Number of temporary variables and arguments. An-
other indicator of method complexity is the number
of temporary variables and arguments.

Description and justification. Arguments and tempo-
rary variables typically hold objects to which mes-

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Table 1 Summary statistics for number of lines of

code
Digitalk IBM Visual-
VOS/2 2.0 Smalitalk 2.0 Works 4.1
Percent Green 87.5 89.0 90.8
Percent Yellow 8.3 7.4 6.5
Percent Red 4.2 3.6 2.7
Largest Value 331 753 111
Mean 8.13 7.89 7.06

sages are sent; i.e., they hold collaborators that
provide behavior for the method. Having many col-
laborators implies too much complexity.

Number of
TempsAndArgs Effect on Method Complexity
x<=4 Green: OK, minimal if any impact
S<=x<=8 Yellow: Method may need refactoring
x>8 Red: Too complex, refactor

Suggested improvements. The two most common rea-
sons why methods use too many temporary varia-
bles or arguments are:

1. The method is trying to do many different things.

BURBECK

217

Figure 2 Distribution of number of blocks

BLOCKS
(2]
[a
o
E
w
o)
[
4
I’
Q
e}
w
o.
——
-~ W e s e
b, Emssemimenioi o
o | | : ‘ T T m' Py
0 1 ; : A A 6 7
NUMBER OF BLOCKS

Table 2 Summary statistics for number of blocks

Digitalk iIBM Visual-
V0S/2 2.0 Smalltalk 2.0 Works 4.1
Percent Green 93.6 92.5 92.1
Percent Yellow 4.0 38 45
Percent Red 2.5 37 34
Largest Value 39 56 38
Mean 1.12 1.15 1.24

2. Several arguments are parts of what should be a
single object.

Too many collaborators often indicate that the
method is trying to do too many things; break up the
method into smaller methods.

Too many arguments often means that a new object
should be designed that encapsulates the arguments;
i.e., create a single collaborator from a group of col-
laborators. The new object then delegates respon-
sibilities to members of the group.

Analysis of temporary variables and arguments in com-
mercial systems. Of the 35 000 commercial methods

218 BURBECK

analyzed, about 5.5 percent have more than 4 tem-
porary variables, and about 1.2 percent have more
than 8 (Table 3). With the benefit of real-time met-
ric feedback, we observed that 0.4 percent of meth-
ods have more than 4 temporary variables, and only
0.03 percent have more than 8.

The distribution of number of temporary variables
and arguments (Figure 3) shows small systematic dif-
ferences between the three commercial systems.
VvOS/2 programmers write fewer methods with no
temporary variables or arguments and more meth-
ods with two than do IBM programmers. The pro-
grammers of the VisualWorks system use a style that
is between that of the other two systems.

Number of parenthesized expressions. We now dis-
cuss the number of parenthesized expressions as an
indicator of method complexity.

Description and justification. The number of paren-
theses can be used as a rough measure of the nest-
edness of a piece of code and is thus an attribute of
the overall complexity of the code.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 3 Distribution of number of temporary variables and arguments

TEMPORARY VARIABLES (TEMPORARIES + ARGUMENTS)
50

€N

[a)]

o)

iy

i

=

L

o

=

z

w

o

o

w

a

NUMBER OF VARIABLES
Number of . Table 3 Summary statistics for number of temporary
Parenthesized Expr. Effect on Method Complexity variables and arguments
x<=5 Green: OK, minimal if any impact - -]
6<=x<=10 Yellow: Method may need refactoring vglg;;alzko sm a:lﬂfk 20 W\grslgsa |4 1
x>10 Red: Too complex, refactor)) ’

Percent Green 94.1 95.1 94.1
Suggested improvements. The reasons a method may gggzgt ;Zgow ‘1‘-3 g-é ‘1‘-2
contain too many parenthesized expressions include: Largest Value 2 34 37
Mean 1.38 1.15 1.34

1. Parentheses have been used unnecessarily.
2. The results of parenthesized expressions are re-
ceiving other messages.

In some circumstances parentheses not required by
syntax may make code more readable. For instance,
long arithmetic expressions may look more familiar
with parentheses that are not strictly required by the
syntax. In most cases, however, excess parentheses
reflect the programmer’s confusion or insecurity
about Smalltalk parsing rules.

If parentheses are used for excessive nesting of ex-
pressions, assign intermediate results to temporary
variables or break the method into smaller methods.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Analysis of parenthesized expressions in commercial
systems. Of the 35 000 commercial methods analyzed,
about 3 percent have more than 5 parenthesized ex-
pressions, and about 1 percent have more than 10
parenthesized expressions (Table 4). In part because
there is little room for improvement in these data,
results with real-time metric feedback were little dif-
ferent: We observed that with feedback, 2.3 percent
of methods have more than 5 parenthesized expres-
sions, and only 0.85 percent have more than 10. This
metric will have its largest effect on less-experienced
programmers who tend to use unneeded parenthe-
ses.

BURBECK 219

Figure 4 Distribution of number of parenthesized expressions

PARENTHESIZED EXPRESSIONS

80

PERCENT OF METHODS

NUMBER OF PARENTHESES

===

Table 4 Summary statistics for number of
parenthesized expressions

Digitalk IBM Visual-
VOS/2 20 Smalltalk 2.0 Works 4.1
Percent Green 95.0 97.8 97.2
Percent Yellow 29 1.6 2.1
Percent Red 2.0 0.6 0.7
Largest Value 113 182 39
Mean 1.2 0.66 0.70

The distribution of number of parenthesized expres-
sions (Figure 4) as well as the summary data show
a small but systematic tendency for v0S/2 program-
mers to use more parenthesized expressions than the
others.

Number of explicit returns. In this subsection, we
discuss the number of explicit returns metric.

Description and justification. In addition to the often
implicit return at the end of each method, any block
may end with an explicit return from the method.
This possibility complicates the reader’s task in de-
termining what object the method returns and in

220 BURBECK

which circumstances. Most methods should and do
have a single return, although in some cases the
method is more readable and understandable if more
than one return is used. If more than a couple are
needed, the method may need refactoring.

Number of
Returns Effect on Method Complexity
x<=2 Green: OK, minimal if any impact
I<=x<=4 Yellow: Method may need refactoring
x>4 Red: Too complex, refactor

Suggested improvements. The two most common rea-
sons that methods may contain too many explicit re-
turns are:

1. The method implements a case statement.
2. The method implements a decision tree.

The method may implement a case statement, each
of which computes its own return value. If the cases
are distinguished by the kind (i.e., class) of object
held by a variable, consider refactoring the behav-
ior using polymorphism. That is, move the return be-
havior into methods in the possible candidate classes
and return the result of sending one message to the

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 5 Distribution of number of explicit returns

EXPLICIT RETURNS

PERCENT OF METHODS

v, |

S v e /G2
- VW

NUMBER OF RETURNS

variable object. If the cases reflect common states
of the receiver, consider refactoring the design to
use the State Object design pattern.®

If the returns come from different branches of a de-
cision tree, often the code can be simplified and the
number of returns reduced by taking advantage of
the fact that the result of an “ifTrue:ifFalse:” mes-
sage is the value of whichever block is executed. A
single return at the beginning of the statement re-
places one in each of the branches. If the number
of returns is simply a result of a large number of de-
cision branches, break up the decisions into sepa-
rate methods, each of which returns the appropri-
ate object. Then the original method can act as an
aggregator for these micro decisions without con-
taining all the decision code. This will also make it
easier for clients of this object to reuse the finer-
grained behavior in ways that would be impossible
with a single decision tree method.

Analysis of explicit returns in commercial systems. Note
that these statistics are for explicit returns only. No
attempt was made to account for implicit returns of
self at the end of the method.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Table 5 Summary statistics for number of explicit

returns
Digitalk IBM Visual-
VOS/2 2.0 Smalltalk 2.0 Works 4.1

Percent Green 96.9 96.0 96.3
Percent Yellow 2.5 29 2.8
Percent Red 0.6 1.0 0.9
Largest Value 13 17 21

Mean 0.77 0.88 0.79

Of the 35 000 commercial methods analyzed, about
3.7 percent have more than 2 explicit returns, and
about (.9 percent have more than 4 explicit returns
(Table 5). With the benefit of real-time metric feed-
back, we observed that 0.8 percent of methods have
more than 2 explicit returns, and only 0.06 percent
have more than 4 explicit returns.

The distribution of number of explicit returns (Fig-
ure 5) shows that the programmers of 1BM Smalltalk
tend to have one explicit return more often than do
the others. An informal examination of code sug-

BURBECK 221

Figure 6 Distribution of number of external assignments

EXTERNAL ASSIGNMENTS
100
|
42}
=]
]
X ;
E v'!v
=
L
]
[
Z
L
O
&
o
0 : — —_--i e
0 1 2 3 4 5
NUMBER OF ASSIGNMENTS
Table 6 Summary statistics for number of external ments to variables other than the method’s own tem-
assignments porary variables may create linkages that are diffi-
Digitalk IBM Visual- cult to upderstand. If so, they add to the overall
VOS/2 2.0 Smalitalk 2.0 Works 4.1 complexity of the class or the system. The scope of
the variables being set is also important. The larger
Percent Green 95.5 97.8 93.8 the scope, the more impact a change to the variable
Percent Yellow 3.4 1.6 4.3 may have, and the more difficult it is to understand.
Percent Red 1.1 0.6 1.8 Inst iabl fect onl inst |
Largest Value % 21 35 Instance variables affect only one instance, class var-
Mean 0.26 0.15 0.49 iables may affect all instances of the class, and globals
may affect objects anywhere in the system.
Number of
Assignments Effect on Method Complexity
gests that this result is due to a tendency in IBM Small- <=1 Green: OK, minimal if any impact
talk to eXphCltly return S€lfrather than to rely onthe 2L =x<=3 Yellow: Method may need refact()ring
implicit return of self. x>4 Red: Too complex, refactor
Number of external assignments. Another metric of Suggested improvements. The reasons a method may
method complexity is the number of external assign- contain too many external assignments include:
ments.
1. The method changes the state of many different
Description and justification. This metric is a code variables.
complexity standard based on the number of exter- 2. The method implements a complex algorithm.
nal assignments in a method (that is, assignments to 3. The method implements a decision tree for set-
variables other than temporary variables). Assign- ting variables.

222 BURBECK IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

If many variables are being set, the variables may
represent relatively independent aspects of the do-
main model that should be managed by different
methods, or perhaps even different classes. In an ini-
tialization method, all variables legitimately may be
initialized at once. Otherwise, independent aspects
usually should be changed in separate “setter” meth-
ods. Also, when the variables of a group are natu-
rally managed together, consider creating a new ob-
ject that manages that group.

If the method is implementing a complex algorithm
that requires many changes to variables, taking the
trouble to think of ways to break the complex method
into two or more simpler methods will pay dividends
later in understandability and maintainability.

If variables are being set differently in different
branches of a decision tree, break up the decisions
into separate methods, each of which sets the var-
iables appropriately. Then the original method can
act as an aggregator for these micro decisions with-
out containing all of the decision code. This will also
make it easier for clients of this object to reuse the
finer-grained behavior in ways that would be impos-
sible with a single decision tree method.

Analysis of external assignments in commercial systems.

Of the 35 000 commercial methods analyzed, about
4.3 percent have more than 1 external assignment,
and about 1.2 percent have more than 4 external as-
signments (Table 6). With the benefit of real-time
metric feedback, we observed that 0.1 percent of
methods have more than 1 external assignment, and
only 0.03 percent have more than 4 external assign-
ments.

Both the summary data and the distribution of num-
ber of external assignments (Figure 6) show the use
of more external assignments in VOS/2 and Visual-
Works than in IBM Smalltalk.

Number of cascaded messages. The last metric we
discuss is the number of cascaded messages.

Description and justification. Cascaded messages, or
cascades, are sequential messages sent to the same
receiver, separated by semicolons. Excess cascaded
messages indicate highly procedural code. Note that
in some cases a series of messages to one receiver
is the simplest and most expressive way to implement
the behavior of the method. In those cases, a series
of cascaded messages is often more readable and un-
derstandable than alternative coding techniques.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Number of
Cascades Effect on Method Complexity
x<=8 Green: OK, minimal if any impact
9<=x<=16 Yellow: Method may need refactoring
x>16 Red: Too complex, refactor

Suggested improvements. There are three primary rea-
sons why methods may contain too many cascades.
These reasons are:

1. The method is trying to specify too many fine-
grained behaviors.

2. The method is initializing many instance varia-
bles.

3. The method is appending a pattern of text to a
stream.

In many cases a long list of fine-grained behaviors
can be shortened by noticing groups of behaviors that
are naturally meaningful in the domain and there-
fore are likely to be reused in other methods. Refac-
tor by adding a method to the object receiving the
cascade for each natural group of behaviors; then
use these methods to replace the groups in the orig-
inal method.

One style of initializing objects is to use a cascaded
series of setter messages. If an object needs to ini-
tialize more than eight instance variables, the method
complexity simply reflects a class that is perhaps too
complex. Consider simplifying the class.

Adding text to a stream (e.g., in a “printOn:” method)
often involves many cascaded messages combining
“nextPutAll:” with “cr”. In many cases the method
could be shortened and made less complicated and
more readable by creating and using new methods,
each of which appends a meaningful portion of the
output.

Analysis of cascades in commercial systems. Of the
35 000 commercial methods analyzed, only 1 percent
have more than 8 cascades, and about 0.4 percent
have more than 16 cascades (Table 7). Here again
there is little room for improvement on this metric
with experienced Smalltalk programmers. Results
with the benefit of real-time metric feedback are es-
sentially the same. This is another case where the
effect of the metrics will be larger on less-experienced
programmers.

Both the summary data and the distribution of num-
ber of cascades (Figure 7) show that VisualWorks

BURBECK 223

Figure 7 Distribution of number of cascaded messages

CASCADES

100

PERCENT OF METHODS

NUMBER OF CASCADES

Table 7 Summary statistics for number of cascaded

messages
Digitalk IBM Visual-
VOS/2 2.0 Smalltalk 2.0 Works 4.1
Percent Green 98.5 98.9 99.8
Percent Yellow 0.7 04 0.1
Percent Red 0.8 0.5 0.1
Largest Value 346 255 60
Mean 0.52 0.39 0.11

programmers use cascades more sparingly than do
the others.

Conclusions

Experience report. The real-time metrics tools have
been in use since April 1995 within the 1BM 00 Con-
sulting Practice and since August 1995 in the Small-
talk training course in IBM Education and Training.
It is too soon to draw conclusions about the long-
term effect of real-time metrics on creeping complex-
ity. But some short-term effects are clear.

224 BURBECK

We have found that experienced developers readily
accept the metrics and easily make small adjustments
to their coding habits so that “yellow methods” are
uncommon and “red methods” very rare. Experi-
enced Smalltalk developers already tend to write
small, low-complexity methods that are easy to read.
The metrics proposed here are in accordance with
those practices, so most often the metric feedback
on the developers’ code will be all green. In that case,
the metric feedback is a positive reinforcement to
their good habits. In the infrequent cases where the
metrics are not green, experienced developers typ-
ically modify their code immediately. The result is
a small but consistent improvement in the quality of
their code. The accumulation of these small improve-
ments can have a substantial impact on a large proj-
ect.

In some situations, e.g., working rapidly on a pro-
totype, experienced developers deliberately accept
overly complex code. When they later revisit and
clean up the code, the developers use the metrics to
quickly find the problem areas. They click through
the methods in the browser, glancing at the color of

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

the metric feedback for each one, or they use the
batch search options provided with the metrics tools.

Real-time metric feedback has a much larger impact
on inexperienced developers who tend not to follow
the good design and coding conventions of experi-
enced developers. In some cases they may not have
accepted and integrated the view that small is beau-
tiful. In other cases they may still write complex
“C-like” procedural code because they have not fully
made the transition to the OO paradigm. For these
people, the initial experience of the metric feedback
is not as congenial. They typically see yellow or red
feedback, or both, on a substantial portion of their
methods. Not surprisingly, their first reaction to the
metric feedback tends to be to challenge the met-
rics rather than to modify their code. If they work
with more experienced developers who can give them
guidance, this resistance soon subsides, and they
quickly learn how to simplify their methods. With-
out such guidance the transition can be frustrating.
Although the more detailed metric report with its
on-line self-explanatory help information provides
useful guidance, the on-line help is most effective as
a reminder about applying techniques learned else-
where. It is not intended to be the sole source of guid-
ance.

The use of real-time metrics tools in a team setting
has beneficial effects on team dynamics and prac-
tices. Because the metric feedback is visible to other
members of the team and to the project manager,
most programmers, out of professional pride, devote
extra effort to avoid yellow feedback in their code
and go to great lengths to avoid red feedback. In team
situations, this visibility creates a subtle shift from
pride in speed of development to pride in code qual-
ity. Since a higher-quality work product reduces time
lost to rework and bug fixing, the end result tends
to be of a higher quality without slowing the pace
of development. Real-time metrics also affect for-
mal and informal cooperative work practices. The
formal process of code reviews is both more effec-
tive and less burdensome because reviewers focus
more on substantive review and less on style review.
The self-explanatory metrics also provide a way to
integrate new Smalltalk developers, especially inex-
perienced ones, into an ongoing team. Seasoned
team members often can simply remind junior mem-
bers to “keep the lights green” rather than critique
their code in detail. In this way, the start-up burden
that newcomers place on the rest of the team is re-
duced. It also tends to reduce clashes over stylistic
differences and individual preferences.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Next steps. The work so far only addresses complex-
ity at the method level. For a class-level metric to
be suitable for real-time feedback, we must be able
to compute the metric quickly, be able to specify
trustworthy thresholds, and be able to suggest heu-
ristics for improving classes that show excessive com-
plexity. Efforts are in progress to define and validate
class-level metrics suitable for real-time feedback.
Efforts are also underway to develop real-time met-
rics tools for C+ +. In general, the issues of com-
plexity in C+ + virtual functions are similar to those
within Smalltalk methods. Even more similarity may
exist at the class level. Because C+ + is inherently
a much more complex language than Smalltalk, it
has additional issues that contribute to complexity:
explicit memory management (i.e., constructors and
destructors), pointers, multiple inheritance, embed-
ded objects, and non-00 constructs mixed in with
00 constructs. C+ + development environments are
also not as well integrated as those in Smalltalk, so
presentation of feedback may be more difficult. How-
ever, there is no fundamental reason why real-time
feedback could not be as effective in reducing the
complexity of C+ + code as it is with Smalltalk. The
power of real-time metrics is in emphasizing the need
to reduce complexity and in creating a tighter syn-
ergy between the development system and the de-
veloper. The details of the metrics or the language
do not matter as much as the details of the feedback
loop: how quick it is, how unobtrusive it is, and how
easy it is for the developer to use the feedback to
improve the code.

Summary. Complexity is as mysterious as it is costly
to software development organizations. The overall
complexity of a software system can neither be com-
prehensively defined nor measured. Yet complexity
does not spring, fully formed, into otherwise simple
software. It grows within the software with the un-
witting help, or at least the acquiescence, of the peo-
ple who build and maintain the software. This growth
can be tamed, if at all, only by constant effort on the
part of all concerned: software developers, testers,
maintainers, and project managers.

We argue that the best way to reduce the growth of
complexity is to use metrics and tools that focus di-
rectly on the incremental addition of complexity.
Real-time metric feedback makes the incremental
addition of complexity more visible to all concerned
and thereby helps them to reduce its rate of growth.
This paper presents metrics for Smalltalk methods
that can be computed quickly and presented unob-
trusively. These metrics provide useful information

BURBECK 225

about method-level complexity that encourages de-
velopers to modify their behavior in desirable ways.
Initial experience with the real-time metrics tools
shows them to be well accepted. Developers adopt
the tools willingly, if not enthusiastically.

Acknowledgments

The author would like to acknowledge Sam Adams
(1BM North America Object Foundry) for many
hours of discussion on the topic of software com-

pl

exity in general and real-time metrics in particu-

lar. He helped to choose the appropriate real-time

m

etrics and their cutoffs, and he developed most of

the user interface and the metric evaluation frame-
work for the initial prototype of the tool. Steve Gra-
ham (1BM North America Object Foundry) contrib-
uted many helpful comments, polished the tool for

di

* %

stribution, and ported it to IBM Smalltalk.

Trademark or registered trademark of Digitalk Inc., Object

Share Systems, Inc., Object Technology International, or Parc-
Place Systems, Inc. (Digitalk and ParcPlace recently merged to
form ParcPlace-Digitalk.)

Cited references

1

2.

10.

11.

12.

13.

226 su

. S.8. Adams and S. L. Burbeck, “Software Assets by Design,”

Object Magazine 2, No. 4 (November-December 1992).

S. 8. Adams, “Return on Investment: Constant Quality Man-

agement,” Hotline on Object Technology 4, No. 1, 4-8 (No-

vember 1992).

. T. Bollinger, “What Can Happen When Metrics Make the
Call,” IEEE Software 12, No. 1, 15 (January 1995).

. M. M. Waldrop, Complexity, Simon & Schuster, New York
(1992).

. G. Nicolis and 1. Prigogine, Exploring Complexity: An Intro-
duction, W. H. Freeman, New York (1989).

. M. Gardner, “Mathematical Games: The Fantastic Combi-
nations of John Conway’s New Solitaire Game ‘Life’,”
Scientific American 223, No. 4, 120-123 (October 1970).

. J. Conway, E. Berlekamp, and R. Guy, Winning Ways, Ac-
ademic Press, Inc., New York (1982).

. S. Wolfram, “Cellular Automata as Models of Complexity,”
Nature 311, No. 5985, 419-424 (October 1984).

. R. E. Johnson and B. Foote, “Designing Reusable Classes,”

Journal of Object-Oriented Programming 1, No. 2, 22-30, 35

(June/July 1988).

G. Booch, Object-Oriented Analysis and Design with Applica-

tions, Second Edition, The Benjamin/Cummings Publishing

Co., Redwood City, CA (1994).

D. H. Krantz, R. D. Luce, P. Suppes, and A. Tversky, Foun-

dations of Measurement, Vol. 1, Academic Press, Inc., New

York (1971).

R. D. Luce, “Dimensionally Invariant Laws Correspond to

Meaningful Qualitative Relations,” Philosophy of Science 45,

1-16 (1978).

J.-C. Falmagne and L. Narens, “Scales and Meaningfulness

of Quantitative Laws,” Synthese 55, 287-325 (1983).

. R. D. Luce and L. Narens, “Classification of Concatenation

RBECK

Measurement Structures According to Scale Type,” Journal
of Mathematical Psychology 29, 1-72 (1985).

15. L. Narens, Abstract Measurement Theory, The MIT Press,
Cambridge, MA (1985).

16. E.J. Weyuker, “Evaluating Software Complexity Measures,”
IEEE Transactions on Software Engineering 14, No. 9, 1357-
1365 (1988).

17. H. Zuse, Software Complexity: Measures and Methods, De-
Gruyter, Amsterdam (1991).

18. S. R. Chidamber and C. F. Kemmerer, “A Metrics Suite for
Object Oriented Design,” IEEE Transactions on Software En-
gineering 20, No. 6, 476—493 (June 1994).

19. N. Fenton, “Software Measurement: A Necessary Scientific
Basis,” IEEE Transactions on Software Engineering 20, No.
3, 199-206 (March 1994).

20. D. A. Gustafson and B. Prasad, “Properties of Software Mea-
sures,” in Formal Aspects of Measurement, T. Denvir et al.,
Editors, Springer-Verlag, Inc., New York (1991).

21. J. Tian and M. V. Zelkowitz, “A Formal Program Complex-
ity Model and Its Application,” Journal of Systems Software
17, No. 3, 253-266 (March 1992).

22. M. G. Barnes and B. R. Swim, “Inheriting Software Metrics,”
Journal of Object-Oriented Programming 6, No. 7,27-34 (No-
vember-December 1993).

23. C. Duff, “Designing an Efficient Language,” Byte 11, No. §,
211-224 (August 1986).

24. T.McCabe, “A Complexity Measure,” IEEE Transactions on
Software Engineering SE-2, No. 4,308 -320 (December 1976).

25. M. Lorenz and J. Kidd, Object-Oriented Sofiware Metrics, Pren-
tice Hall Object-Oriented Series, Prentice Hall, Englewood
Cliffs, NJ (1994).

26. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Ad-
dison-Wesley Publishing Co., Reading, MA (1995).

Accepted for publication January 16, 1996.

Stephen L. Burbeck IBM North America, P.O. Box 12195, Re-
search Triangle Park, North Carolina 27709 (electronic mail:
sburbeck@vnet.ibm.com). Dr. Burbeck is a senior consultant in
the IBM North America Object Foundry group. He received his
Ph.D. from the University of California at Irvine in mathemat-
ical psychology in 1979. In 1980 he became Director of Data Pro-
cessing and Statistics at the Linus Pauling Institute of Science
and Medicine and in 1985 was one of the founders of the com-
pany that marketed the first Smalltalk-80™ for the IBM PC-AT®.
During that period he participated on the executive committee
for OOPSLA-86, the first conference on object-oriented program-
ming systems, languages, and applications. He moved to Apple
Computer Corporation in 1988, where he was product manager
for Apple’s MacApp™ and MacSmalltalk™. In 1990 he moved
to North Carolina to become Vice President of Knowledge Sys-
tems Corporation. He joined IBM in January of 1995. Dr. Bur-
beck adopted Smalltalk as the language of choice in 1985. Since
then he has been involved with Smalltalk and object-oriented anal-
ysis and design in the capacity of programmer, designer, man-
ager, teacher/mentor, and consultant. He has authored and co-
authored papers on mathematical sociology, mathematical
psychology, biochemistry/biophysics, and object technology.

Reprint Order No. G321-5602.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

