Event-driven network
topology monitoring
function

This paper discusses the design of a topology
management application. The application
monitors the topology of point-to-point networks
in which each network node is required to
contain only local trunk information. To build
and continuously update the topology map,
information must be collected from network
nodes. The challenge is to do this in real time
without adversely consuming network
bandwidth. By defining a clear set of conditions
to determine whether polling or event monitoring
should be used, this design makes it possible to
realize the advantage of monitoring network
topology by processing events. With the use of
event monitoring, first, consumption of network
bandwidth by network management traffic can
be significantly reduced compared to a pure
polling approach, and second, the topology map
represents a continuous topology history.

One of the challenges of network management
is how to help a network operator conceptu-
alize the layout of the network and call attention to
adverse status changes in a fast and accurate man-
ner. A modern network could be a collection of voice,
video, or data processing devices connected by com-
munication lines. As the network complexity in-
creases, it becomes more difficult to conceptualize
how the various pieces are laid out. One way to help
an operator visualize the layout is to display a to-
pology map showing each node and the connections
that exist among them. To this end, a prototype ' has
been built using virtual-world technology to provide
three-dimensional input and output capabilities to
facilitate the management tasks.

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

0018-8670/96/$5.00 © 1996 IBM

by W. Chao
W. Tsun

This topology map must reflect the actual network
topology and its current status in real time as accu-
rately as possible so that an operator can respond
quickly to possible network trouble spots. This re-
quirement is most evident in current and future
broadband networks where an outage could impact
many end-to-end connections. In addition, each con-
nection may suffer the loss of large amounts of in-
formation before the source can be suspended or an
alternate path can be established to reroute traffic.

To build and continuously update the topology map,
information must be collected from each network
node. The challenge is to obtain the information in
real time without adversely consuming network
bandwidth. The simple polling approach to gather
network information results in a severe problem by
wasting network bandwidth.? This problem is espe-
cially a concern in wide area networks (WANs), where
recurring transmission line expenses directly affect
the cost of network operation. Bandwidth used by
network management traffic comes at the expense
of user bandwidth. Even in broadband networks,
such as asynchronous transfer mode (ATM) networks,
minimizing management bandwidth usage is a con-
cern. It is evident in the ATM Forum’s requirement
for ILMI (interim local management interface)? traf-
fic to be less than 1 percent of line capacity. Since
topology monitoring is but one part of the overall

©Copyright 1996 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

CHAO AND TSUN 25

management function, it is necessary to minimize
traffic generated by the topology application.

This paper presents a design for a topology manage-
ment application (TMA) that monitors point-to-point
networks in which each node contains only informa-
tion concerning its neighboring nodes. This design
simplifies the implementation of the node and thus
reduces its costs. Existing monitoring applications
for point-to-point networks utilize either polling or
event monitoring. This paper introduces a method
of interchangeably using polling- and event-moni-
toring modes to maintain an accurate and up-to-date
topology map while minimizing network manage-
ment traffic. The design favors event monitoring and
resorts to polling monitoring only when conditions
for event monitoring are not satisfied.

In a point-to-point network, typically seen in a WAN,
one link or trunk directly connects two network
nodes. The trunk connection established between
two nodes is not shared with other nodes. Because
of transmission line costs, each node has a relatively
small number of trunk connections. In some point-
to-point network architectures, each node maintains
an updated copy of the entire network topology.
Therefore, topology monitoring can be performed
by collecting information from just one network node
or two to verify the integrity of the information. One
example is a feature of IBM NetView* called Ad-
vanced Peer-to-Peer Networking* Topology and Ac-
counting Manager (APPNTAM).* The agent applica-
tion in a network node is able to provide a manager
with the entire APPN backbone from its point of view.
The APPNTAM exploits event monitoring, but unlike
the design presented in this paper, it requires each
network node to have a full topology.

Other types of networks have a different architec-
ture and therefore require a different monitoring ap-
plication. For instance, stations within a local area
network (LAN) segment, Ethernet, or token ring are
all connected to one another through shared trans-
mission media. Another example is based on Trans-
mission Control Protocol/Internet Protocol (TCP/IP)
networks. Using 1p-based services, a monitoring ap-
plication can discover and present a topology map
showing IP subnets connected by IP gateways. IP hosts
within an IP subnet can also be shown. However, the
actual connectivity among all IP hosts within a sub-
net is generally not available to the application, un-
less the application is designed to understand the un-
derlying subnet technology. Therefore, these two

26 CHAO AND TSUN

architectures do not lend themselves to the design
discussed in this paper.

In this paper, the management environment consist-
ing of the managed network, the management sta-
tion, and related application programs is shown first.
Then the management information required at the
network nodes is explained. In the next section, poll-
ing and event monitoring are defined and compared.
Then conditions for switching between polling and
event monitoring are presented. After that, details
on how event monitoring works are discussed. Fi-
nally, some implementation details and future ex-
tensions are given.

Management environment

The management environment consists of a manage-
ment station (MS) and a managed network. The man-
agement station provides management platform
services such as a graphical user interface (GUI), da-
tabase, and communication support. The TMA is an
application program running on the management
station. It uses platform services to perform the fol-
lowing: process network operator commands, com-
municate with the managed network, retrieve
management information, present the topology in
graphical form, and display network status informa-
tion. This information can be made available to other
management functions such as accounting, connec-
tion, and performance. On the basis of the functions
it performs, the topology management application
is also referred to as manager in this document.

The managed network consists of nodes and trunks
connecting the nodes. Each node in the network has
a special management application called an agent
running locally. The main functions supported by an
agent are as follows: maintain real-time management
information related to the networking functions of
the node, respond to a manager’s request for infor-
mation retrieval, and emit unsolicited notifications
when defined events such as a trunk outage occur.

The relationship between a manager and an agent
is similar to a client/server relationship in which the
manager is the client and the agent is the server. In
most cases, a server is activated first and requires no
client information or client presence to become op-
erational. Once it is operational, it waits to provide
services to its clients. A client is usually activated with
some information about the server and cannot per-
form meaningful tasks until a server is available. The
agent application is typically activated as part of the

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Figure 1 Management environment

MANAGEMENT
STATION
MANAGEMENT
= =
= =
— E
e | —
= — =
=
% MANAGED
 —— NETWORK

I

startup procedure of the network node. However,
it may be stopped and reactivated at any time inde-
pendent of the manager. It also does not require any
information about the manager. The job of the agent
is to make a set of supported management informa-
tion, also called the management information base
(MIB), available to the manager upon request. Con-
figuration information such as network node ad-
dresses is required by the manager to establish a con-
nection with each agent. If a manager is interested
in subscribing to unsolicited notifications, it must in-
form each agent of the manager’s address and spec-
ify the type of information of interest. It should ter-
minate its subscription when the node is no longer
of interest to avoid unwanted notifications from en-
tering the network.

A manager needs to establish a connection with each
agent in order to exchange information. Since the
manager is external to the network, one of the nodes
must be assigned as the gateway. All communica-
tion between manager and agents must go through
the gateway (see Figure 1). The connection between
the manager and the gateway need not be direct.

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

(This extension is not within the scope of this pa-
per.) If the gateway fails, another node may be ac-
tivated to take over. However, only one gateway is
in a network at any one time for a given manager.
This condition does not preclude another manage-
ment station from using the same or different node
as its gateway.

Figure 1 shows how a manager relies on the gate-
way node and the managed network to exchange in-
formation with its agents. If any part of the managed
network fails or if the gateway node becomes dys-
functional, communication between the manager
and parts or all of the network may be cut off. These
situations need to be taken into account when de-
signing a TMA.

Management information and topology map

As stated earlier, in a point-to-point network, the
network topology information available at each node
can vary from the entire network topology to only
local connectivity, depending on the architectural de-
sign of the network. The TMA discussed in this pa-

CHAO AND TSUN

27

Table 1 Example of local connectivity information in a
node

Trunk Endpoint Operation Status Partner Endpoint

tl enabled (n2, t1)
2 enabled (n3, t1}
t3 disabled (nd, t1)
t4 disabled —

per is designed to work with network nodes that are
only required to have local connectivity information.
At each node, the agent needs to maintain manage-
ment information related to each of its trunk end-
points. A trunk endpoint is a resource that can be
connected to the trunk endpoint of another node to
form a trunk connection. When a trunk connection
is established, the two trunk endpoints are said to
be in partnership with each other. Each trunk end-
point must contain the following information: its own
name, its node name, the trunk endpoint name of
the partner, the node name of the partner, and the
operational state. At any given time, a trunk end-
point may have valid, invalid, or no partner infor-
mation. Invalid information occurs when the alleged
partner no longer exists or it does not reveal the al-
leged connection. The operational state can be ei-
ther enabled or disabled. A trunk endpoint without
a partner is defined to be disabled. However, an en-
abled trunk endpoint must have a partner. Local con-
nectivity is the collection of all trunk endpoints for
a given node. Using the notation (n, t) to denote a
trunk endpoint t in node n, Table 1 shows an exam-
ple of local connectivity information.

A topology map is a collection of resource informa-
tion presented to the user in graphical form. Re-
sources include nodes, trunk connections, and their
status. The status of a node is either manageable or
unmanageable, depending on whether the agent of
the node is responding to the manager’s manage-
ment requests. The existence of trunk connections
cannot be obtained by merely querying the agents,
since agents are only aware of local connectivity as
described in the previous section. Because trunk end-
points that form trunk connections are located at dif-
ferent nodes, it is possible that the local connectivity
information retrieved from these nodes is inconsis-
tent. For instance, if a trunk connection between two
trunk endpoints fails to function normally, one of
the trunk endpoints may be removed, or it may form
a new trunk connection with a different trunk end-
point. In either case, the partner information in the

28 CHAO AND TSUN

other node will be incorrect. Also, it is possible that
two trunk endpoints have different operational states.
This possibility occurs when each end detects the fail-
ure of the trunk connection at a different time.

When an inconsistency is detected in local connec-
tivity information retrieved from different nodes, the
following rules are used by the manager to resolve
the conflict. A trunk connection is created in the to-
pology map between two manageable nodes if there
is a trunk endpoint at each node with each other end-
point as partner. If the operational state of these two
trunk endpoints is inconsistent, the resulting status
of the trunk connection will be set to disabled. In
other words, the trunk connection in a topology map
will be set to “disabled” as long as one of the trunk
endpoints is reported as disabled. Only when both
trunk endpoints are enabled is a trunk connection
set to “enabled.”

Figure 2 shows an example of a network with the
local connectivity information of each manageable
node and the resulting topology map created by the
manager. For the purpose of illustration, the trunk
endpoints within a node are shown together with the
topology map. In the actual implementation, the to-
pology map may contain only nodes and trunk con-
nections between nodes, and the trunk endpoints
within a node can be shown in a separate window.

Polling monitoring and event monitoring

In order to define polling monitoring, a snapshot
must first be introduced. A snapshot action refers
to the task performed by the manager to obtain a
best effort topology of the network. First, a request
for local connectivity information is sent to all nodes
currently configured in the network. The returned
information is processed and the resultant topology
map is created.

Polling monitoring is an approach that monitors net-
work topology by periodically performing a snapshot.
This mode is the simplest to implement for both man-
ager and agent. The trade-off is that the accuracy of
the topology map depends on the granularity of the
polling interval. As the polling frequency increases,
the accuracy increases. At the same time, more net-
work bandwidth is consumed by management traf-
fic. Therefore, a practical limit is imposed on the
snapshot frequency.

A second approach is to have the manager perform
a snapshot to create an initial topology map. There-

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Figure 2

Topology map and local connectivity information

(n1,t2) t1 (n1,t3)

—_ ‘ t1
(n2,t1) ‘ 2

(n4,12) 2 (n2,t3)

(n3,t1) N <

d

(n3,12) 113 (n2,t1)

B
o lo|o]a

(n3,t4)

(O MANAGEABLE NODE ‘
(O UNMANAGEABLE NODE

[] ENABLED TRUNK qumm © i it ENABLED TRUNK CONNEGTION
I OISABLED. TRUNK ENDPOINT -~~~ DISABLED TRUNK CONNECTION

aciale

14 (n1,t4)

e ENABLED
d DISABLED

after, the agent emits an event whenever changes to
local connectivity are detected. The manager updates
the topology map based on received events. Should
an agent in a reachable node abort without notice,
it will be detected by the agent liveliness mechanism
that is explained within a subsection of the next sec-
tion. This method will be referred to as event mon-
itoring.

Polling versus event monitoring. Event monitoring
has the following advantages over polling monitor-
ing:

1. The manager need not perform snapshots as fre-
quently as required in polling monitoring while
maintaining a more accurate topology map. Man-
agement traffic is reduced because unnecessary
snapshots are not performed. In addition, the
bandwidth consumption used to transport a to-
pology change event is significantly less than that
required by a network-wide snapshot request or
response.

2. A continuous network topology history may be

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

maintained as opposed to a sequence of samples.
In event monitoring, if no event is received, the
network experiences no change. In polling mon-
itoring, if consecutive snapshots result in two iden-
tical topology maps, it cannot be asserted that a
network change has not occurred. This informa-
tion may be critical to other management func-
tions (e.g., accounting) that are inherently con-
tinuous.

In event monitoring, it is critical for all topology
change events to be received by the manager. A man-
agement protocol can provide reliable transport of
events once sent, as described in Reference 5. How-
ever, there is no guarantee that all the agents will
always be able to report local connectivity changes.
Consider the case when an agent application aborts.
If the networking functions of the node continue to
operate and all the trunk endpoints remain enabled,
their partner endpoints in adjacent nodes will not
detect any failure. Hence, no topology events are
emitted from the adjacent nodes. The manager will
not be made aware of the absent agent until another

CHAO AND TSUN 29

snapshot is performed. Before the snapshot, the lo-
cal connectivity is subject to change. A possible sce-
nario is that a new trunk endpoint is created in the
agentless node and subsequently forms a trunk con-
nection with a new node. Since no event is emitted
and the new node will not be contacted by the man-
ager as to where to send information, the topology
map will not be updated to include the new trunk
connection and the new node. Subsequently, any
other nodes activated and connected to the new node
will not be discovered either. The inconsistency be-
tween the map and the actual network topology that
should be seen by the manager will not be corrected
until another snapshot is performed, which will not
happen if the manager is waiting for events. It is as
though a blind spot exists in the network. Thus, event
monitoring may not be feasible at all times.

Switching between polling and event monitoring. In
order to take advantage of event monitoring and en-
sure the correctness of the resulting topology map,
it is necessary to switch between polling and event
monitoring.

When topology monitoring is started, a snapshot is
performed to create an initial topology map. The
manager then evaluates whether conditions are con-
ducive to event monitoring. If not, polling monitor-
ing will be used, and snapshot actions are performed
periodically to create topology maps. At the end of
each snapshot, the conditions for event monitoring
are reevaluated.

How event monitoring works

Once in event monitoring, the manager will update
the topology map based on received events to main-
tain the topology history. In addition, the manager
needs to constantly determine if event monitoring
should be continued. If not, the monitoring mode
must return to polling. In this section we discuss the
following:

* Definition of reachability

¢ Conditions for event monitoring

* A mechanism called agent liveliness query

* Kinds of events that are reported to the manager
by agents

* How these reported events are used by the man-
ager

Definition of reachability. A node isreachable if there
is an enabled path between the manager and the

30 cHAO AND TSUN

node; otherwise, it is unreachable. Note that this def-
inition is independent of the agent.

Conditions for event monitoring. At the end of a
snapshot, the status of each node is either manage-
able or unmanageable, depending on whether the
local connectivity of the node is successfully re-
trieved. A node is manageable if both of the follow-
ing statements are true:

1. The node is reachable.
2. The agent in the node is actively running.

Otherwise, a node is unmanageable. Since all the con-
nections between manager and agents use paths that
go through the management gateway, a node un-
reachable from the gateway is also unreachable from
the manager. In cases where statement 1 is false,
these nodes are disconnected from the manager, and
no further update from them is possible until they
become connected again. That part of the topology
map will be shown with markings that indicate that
the information could be out-of-date. In cases where
statement 2 is false, an incorrect topology map would
be created if event monitoring is used. A scenario
was given in the last section to illustrate the prob-
lem. As long as there is one such unmanageable node
in the network, it is possible that the manager will
lose events from that node without being aware of
the situation. Therefore, both of the following con-
ditions have to be true for the manager to use event
monitoring:

Condition 1. The gateway node is manageable.

Condition 2. All the unmanageable nodes are un-
reachable.

It is trivial to determine whether condition 1 is met.
But if there is any unmanageable node in the net-
work, how can a manager determine whether an un-
manageable node is unmanageable due to statement
1 or statement 2 being false? The answer lies in the
local connectivity information of the neighboring
nodes. Consider the following test when all local con-
nectivity information has been collected.

1. An unmanageable node m and a manageable
node n are given.

2. If there exists a trunk endpoint t in node n such
that (n, t) is enabled and has a partner trunk end-
point in node m, it follows that node m is reach-
able from the manager.

3. Thus node m violates condition 2.

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Figure 3 Detecting a reachable but unmanageable node

ni

t1Je

[2.ty

(O MANAGEABLE NODE
() UNMANAGEABLE NODE

{7} ENABLED TRUNK ENDPOINT
I DISABLED TRUNK ENDPOINT

e ENABLED
d DISABLED

wmeers ENABLED TRUNK CONNECTION
——~=—— DISABLED TRUNK CONNECTION

Note that this test is insufficient for identifying all
reachable but unmanageable nodes. Consider an ex-
ample shown in Figure 3. In this network, node nl
is the gateway node for the manager and is manage-
able. The local connectivity information of nl can
be retrieved by the manager. Nodes n2 and n3 are
both unmanageable because their agents are not ac-
tive; therefore, the local connectivity information of
these nodes is not available to the manager. The re-
sulting topology map of a snapshot will look like the
picture in Figure 3. With use of the above test, node
n2 will be recognized by the manager as reachable
because an enabled trunk connection exists between
node nl and n2. If an enabled trunk exists between
node n2 and n3, node n3 is also reachable from the
manager. However, this trunk will not be detected
by the manager because the local connectivity infor-
mation of neither node n2 nor n3 is available to the
manager. But it can be shown that given a manage-
able gateway node, at least one of the reachable but
unmanageable nodes can be detected by using the
above test if any exist in the network.

Figure 2 shows a topology map that satisfies event-
monitoring conditions if node n4 is not the gateway.
Note that even though node n2 has a trunk endpoint
whose partner is n4, it is disabled; therefore, it does
not violate condition 2.

Figure 4 shows a topology map created by a snap-
shot. Node n1 is the gateway and node n4 is unman-
ageable but reachable from the manager through
node n3. Event-monitoring conditions are not sat-

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

isfied; therefore, polling monitoring must be used.
Note that in this case it is still useful to display a trunk
connection between node n3 and n4 even though it
cannot be verified with the agent in n4.

In summary, given that the gateway node is manage-
able, all agents of manageable nodes are active, and
all unmanageable nodes are not reachable (i.e., dis-
connected from the manager), event monitoring
should be used. If any agent of the manageable nodes
becomes inactive or if any unmanageable nodes be-
come reachable but with an inactive agent, polling
monitoring should be used.

Agent liveliness query. While in event monitoring,
the manager needs all agents residing in manage-
able nodes to be continuously present. Otherwise,
if any agent aborts, or aborts and reactivates, there
exists a period of time when a reachable unmanage-
able node exists, and events may be lost. It is pos-
sible to design a protocol among agents so that agent
failure could be detected and reported by other
agents. However, the lack of standard protocol
among agents and the complexity to the agent makes
this approach less attractive. This topology manage-
ment application chooses an alternative solution that
is simpler and equally robust.

When event monitoring is started, the manager pe-
riodically queries the agent liveliness from all cur-
rently manageable nodes. In each query, the man-
ager polls the agent start time or anything that is
updated each time the agent is restarted. For exam-

CHAO AND TSUN 31

Figure 4 A topology map where event monitoring is not used

e t

(n1,t2}

2 (n2,t1)

(n4,2)

3 n3,11)

14

o o (e o

(n3))

e MAMGEABLE NODE
O UNMANAGWLE NQDE

ple, a local time stamp indicating the agent activa-
tion time or a counter that keeps the number of times
activated will serve this purpose. In cases where the
agent fails to function normally but does not abort,
¢.g., when an event cannot be forwarded, the start
time must also be updated to indicate the interrup-
tion of normal agent function. If any of the manage-
able nodes do not respond to the query, or if the re-
turned value in any response is different from that
of the previous query, switching to polling monitor-
ing is made immediately by performing a snapshot.

This mechanism allows the manager to ensure cor-
rectness while in event monitoring. The additional
cost compared to pure event monitoring is the ex-
pense of polling the agent liveliness information.
However, there is still a significant saving in network
management traffic compared to a pure polling
method. Consider the following:

1. The information for each query response is con-
siderably less than the local connectivity informa-
tion. There is only one small piece of informa-

32 CHAO AND TSUN

tion regardless of how many trunk endpoints a
node contains.

2. Only currently manageable nodes are queried.
The saving is directly related to the percentage
of unmanageable nodes.

3. The frequency of agent liveliness queries need not
be as high as that for local connectivity queries
when the agent applications are relatively stable.

4. The above reasons become more significant as the
size of the network increases.

It should be noted that if nodes are designed in such
away that the networking function terminates when-
ever the agent aborts, an unmanageable node is al-
ways unreachable from the manager. Therefore, the
conditions for event monitoring are always met, and
the liveliness query mechanism is not needed at all.
However, it may be impractical to design manage-
ment functions based on this assumption, since it is
unlikely that real products would sacrifice network
availability for a simpler management function de-
sign.

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Figure 5 Topology map before nodes become disconnected

n3 ‘ nS

t1 n1,t2)

o

(n1,t3) . t1 e (n2,§4)

n2,t) (n4.12)

t2 n2,13)

t3 (n3,t1) (n3.t2)

B
oo oo

t4

| n3.14)

@St)i e

e
d

t3 d n2,t1)
d (n1,14)

O MANAGEABLENODE (] ENA
(O UNMANAGEABLE NODE

s’ ENABLED TRUNK CONNEGTION
i DISABLED TRUNK CONNECTION

@ - ENABLED
d DISABLED

Trunk endpoint events. In event monitoring, the
manager will only update the topology map when
events are received. These four trunk endpoint
events are of interest: create, delete, enable, and dis-
able. To simplify the design of the agent, a trunk end-
point is created with disabled status and no partner.
Under these conditions, a create event does not af-
fect the set of existing trunk connections present in
the network. When it forms a trunk connection with
another trunk endpoint, an enable event carrying the
partner information is emitted. A trunk endpoint
should only allow deletion when its status is disabled,;
therefore, a disable event will always precede a de-
lete event. When a delete event is received, the trunk
endpoint is removed. If a trunk connection is an-
chored on one end by this trunk endpoint, it is re-
moved from the topology map.

The processing of create and delete events is straight-
forward. Enable and disable events, however, require
additional processing. A disable event may result
from a failed trunk connection. This failure may
cause a network partition. An enable event may re-

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

connect a partition or be an indication that a new
node has joined the network. A disable event is pro-
cessed as follows:

Upon receipt, check the operational status of the
corresponding trunk connection. If status is en-
abled, change it to disabled.

Because the connection between the management
station and each agent goes through the gateway, an
agent must be reachable from the gateway in order
to communicate with the manager. Each time a trunk
connection changes from enabled to disabled, a
reachability tree, using the shortest path tree algo-
rithm® with the gateway node as root, is computed
to determine whether any node has become discon-
nected from the manager. All disconnected nodes
that are currently manageable are marked as unman-
ageable because they are not reachable from the
manager. The trunk connections between two dis-
connected nodes or between one manageable node
and one disconnected node will still be displayed in
their state just prior to being disconnected. A dif-

CHAO AND TSUN 33

Figure 6 Topology map after nodes become disconnected

nt n2 n3 nS
tl d — t | e {n,12) It e n143) [1 e [mwm
2 d (n2,t1) 2 d (n4.t2} 2 d (n2,t3)
t3 e (n3,t1) t3 d (n3,t2) 13 d (n2,t1)
t4 e | (314 t4 e | (5) § 14 d | (4
(C) MANAGEABLE NODE {1 ENABLED TRUNK ENDPOINT e ENABLED TRUNK CONNECTION e ENABLED
() UNMANAGEABLE NODE [JJil DISABLED TRUNK ENDPOINT - DISABLED TRUNK CONNECTION d DISABLED

~———— TRUNK OF DISCONNECTED NODE

ferent color or style is used to indicate the informa-
tion is out-of-date. Updates to that part will not be
possible until at least one of the disconnected nodes
becomes connected again.

To illustrate a trunk endpoint disabled event that
results in a network partition, consider the example
shown in Figure 5. It is the same network as shown
in Figure 2 with the following additions: a manage-
able node n5, two enabled trunk endpoints (n5,t1)
and (n2,t4), and a resulting trunk connection be-
tween n2 and n5. The local connectivity information
from each manageable node and the resulting to-
pology map from a snapshot are shown in the fig-
ure. Since event monitoring conditions are met, the
manager will be in event-monitoring mode.

Given that the picture is the current topology map
and that event monitoring is in effect, a trunk end-
point disabled event from (n1,t2) is then received
by the manager. The manager will proceed as fol-
lows. First, the status of the trunk connection be-
tween (nl,t2) and (n2,t1) is set to disabled. Then the

34 cHAO AND TSUN

reachability tree is computed using the gateway node
n1 as root and the status of all trunk connections in
the network. Node n2 and n5 are then identified as
disconnected nodes, and their status is set to unman-
ageable. Any trunk connection with one of the end-
points in n2 or n5 will be marked differently in the
map to indicate its status may be out-of-date. The
resulting topology map is shown in Figure 6. The con-
nectivity information of node n2 and n5 maintained
by the manager is now obsolete.

Enable events are processed as follows:

Upon receipt, verify the partner information car-
ried in the event by checking the status of the part-
ner trunk endpoint. If the partner exists and has
consistent operational status and partner informa-
tion, a trunk connection with enabled status is cre-
ated if one does not already exist.

Discovering nodes. If the partner information in the
enable event indicates that the partner trunk end-
point is currently in an unmanageable node or a new

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

Figure 7 A topology map after discovery procedure is performed

() MANAGEABLE NODE
(©) UNMANAGEABLE NODE

[] ENABLED TRUNK ENDPOINT
B DISABLED TRUNK ENDPOINT

— ENABLED TRUNK CONNECTION
~———— DISABLED TRUNK CONNECTION

node, a discovery procedure is started from that
node. First, the local connectivity information is re-
trieved from the new or unmanageable node. If there
exists a trunk endpoint in the explored node with
enabled status and its partner trunk endpoint is in
another new or unmanageable node, continue ex-
ploration from that node. This procedure is applied
recursively to discover all the unmanageable or new
nodes that have just become manageable as a direct
result of the enable event.

Given the network topology map in Figure 2, where
node nl is the gateway and node n4 is unmanage-
able, Figure 7 shows a resulting topology map after
discovery has completed due to an enable event. The
scenario is as follows:

1. While n4 is unmanageable, a new node n5 is ac-
tivated. A trunk connection is established between
n4 and nS.

2. The agent in n4 reactivates. Once n4 becomes
reachable, it can become manageable.

3. The trunk connection between endpoint (n4, t1)
and (n3, t3) is activated. As a result, the opera-
tional status of (n3, t3) changes from disabled to
enabled with partner (n4, t1). An enable event is
emitted for (n3, t3) and forwarded to the man-
ager from node n3.

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

4. When the manager receives the event, it first
changes the display of the trunk endpoint (n3, t3)
to reflect enabled status. Since the partner of (n3,
t3) is (n4, t1), which is currently unmanageable,
the manager explores n4 to retrieve its local con-
nectivity information. Given that the agent in n4
is active, it confirms its trunk connection with n3
and uncovers another enabled trunk endpoint (n4,
t2) with partner (n5, t1), which is in a new node
nS.

5. The manager continues by exploring node n5. Dis-
covery ends after finding no additional enabled
trunk endpoints in n5. Upon completion, the to-
pology map in Figure 2 is changed to the one in
Figure 7.

Implementation and future extension

The topology management function outlined in this
paper has been implemented as an application that
runs on top of the NetView for AIX* (Advanced In-
teractive Executive*) management platform.” It uses
Common Management Information Protocol (CMIP)
over TCP/IP (CMOT)?® as the protocol for exchanging
management information between manager and
agents. This design is not restricted to any specific
management protocol. However, it does depend on
an event-forwarding mechanism as defined in Inter-

CHAO AND TSUN 35

national Organization for Standardization (ISO)
management standards.> Some potential enhance-
ments include:

1. Supporting multiple management gateways for a
single manager. Having multiple attachment
points into the network will reduce the chances
of losing contact between manager and agents.

2. Extending the local connectivity information sup-
ported by agents to include information related
to physical connectivity, such as local and remote
port number, associated with a trunk endpoint.
In some environments where a trunk connection
between two nodes is actually established through
an end-to-end connection of another network, this
information would make it possible to display the
integrated topology of both networks.

Conclusion

Though polling for agent liveliness information is still
needed during event monitoring when unmanage-
able nodes are detected, the added cost in terms of
network traffic is relatively low compared with poll-
ing for local connectivity information in polling mon-
itoring. This is true both in terms of the required fre-
quency and the amount of information for each poll.
As the network size increases, the advantages of to-
pology monitoring based on this design become even
more significant.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. L. Crutcher and A. Lazar, “Management and Control for Gi-
ant Gigabit Networks,” IEEE Communications Magazine 7,
No. 6, 62-71 (November 1993).

2. M. Rose, The Simple Book, Prentice-Hall Inc., Englewood
Cliffs, NJ (1991), p. 76.

3. ATM User-Network Interface Specification Version 3.1, ATM
Forum, Worldwide Headquarters, 480 San Antonio Road,
Suite 100, Mountain View, CA 94040-1219 (1994).

4. APPNTAM Feature Implementation Guide Version 2 Release
4, SC31-7050, IBM Corporation (January 1994), pp. 2 and 85;
available through IBM branch offices.

5. Information Technology—Open Systems Interconnection—
Event Report Management Function, CCITT Recommendation
X.734 (1992)|ISO/IEC 10164-5:1992, International Telecom-
munication Union, Geneva, and International Organization
for Standardization, Geneva.

6. D. Bertsekas and R. Gallager, Data Network, Prentice-Hall,
Inc., Englewood Cliffs, NJ (1987), p. 322.

7. NetView for AIX, Programmer’s Guide Version 3, SC31-6238,
IBM Corporation (September 1994); available through IBM
branch offices.

36 cHAO AND TSUN

8. M. Rose, ISO Presentation Services on Top of TCP/IP-Based
Internets, REC 1085, IETF (December 1988); see RFC 1085
on URL http://www.es.net/html-stuff/rfcs.html.

Accepted for publication August 10, 1995.

Wei Chao Hewlett-Packard Corporation, Video Communications
Division, P.O. Box 700713, San Jose, California 95170-0713 (elec-
tronic mail: cwchao@vid.hp.com). Dr. Chao received a Ph.D. de-
gree in electrical engineering from Polytechnic University in 1990.
He joined IBM in August 1990 in Networking Systems Archi-
tecture, working on the design of network management archi-
tectures. From 1992 to March 1994 he was a team leader for the
IBM Nways™ Switch Manager. He then worked on management
applications for multimedia networking systems. He recently
joined the Hewlett-Packard Corporation.

William Tsun IBM Networking Hardware Division, P.O. Box
12195, Research Triangle Park, North Carolina 27709 (electronic
mail: wisun@vnet.ibm.com). Mr. Tsun is a staff programmer. He
received a B.S. degree in electrical engineering from Brigham
Young University in 1987 and an M.S. in computer engineering
from Syracuse University in 1992. He joined IBM in August 1987
in Independent Systems Verification, working on test tools for
the low-end System/390® processors. From 1992 to 1995, he
worked on the IBM Nways Switch Manager.

Reprint Order No. G321-5593.

IBM SYSTEMS JOURNAL, VOL 35, NO 1, 1996

