The SP2 High-
Performance Switch

The heart of an IBM SP2™ system is the High-
Performance Switch, which is a low-latency, high-
bandwidth switch‘l;%g network that binds together
RISC System/6000° processors. The switch
incorporates a unique combination of topology
and architectural features to scale aggregate
bandwidth, enhance reliability, and simplify
cabling. It is a bidirectional multistage
interconnect subsystem driven by a common
oscillator, and delivers both data and service
packets over the same links. Switching elements
contain a dynamically allocated shared buffer for
storing blocked packet flits. The switch is
constructed primarily from switching elements
(the Vulcan switch chip) and adapters (the SP2
communication adapter). The SP2 communication
adapter uses a variety of techniques to improve
bandwidth and offload communication tasks from
the node processor. This paper examines the
switch architecture and presents an overview of
its support software.

he High-Performance Switch for an 1BM sp2*

is a low-latency, high-bandwidth switching
network that binds together RISC System/6000*
processors. The switch is designed to provide near-
constant bandwidth per processor for alarge range
of system sizes. The SP2 is available in configura-
tions of from 4 to 128 processors, with systems of
up to 512 processors available by special request.
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The dominant goals for the SP2 communication sub-
system are scalability, modularity, and ease of in-
tegration with the processing nodes. The objective
for scalability is a network that linearly increases
its aggregate bandwidth as the number of nodes
increases, while maintaining low average latency
for message transmission. (In this paper nodes are
defined as processors or input/output servers that
are the source or destination of messages over the
High-Performance Switch. For Sp2 systems, all
nodes contain a RISC System/6000 processor.) Fault
tolerance is an integral element of scalability, be-
cause the large potential size of these networks en-
sures that faults and errors will occur. The goal for
modularity is to provide cost-effective networks
for small systems that function as building blocks
for larger systems. Finally, we required the ability
to quickly integrate (attach to) the latest proces-
sor technology. Considerations here include
achievable user-to-user bandwidth and latency and
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the complexity of communication protocol design.
The SpP2 communication adapter—the interface be-
tween a RISC System/6000 and the switching ele-
ments of the network—provides several features
that optimize the bandwidth of the processor-to-
network connection and reduce the message pro-
cessing overhead for the processor.

The choice of topology—the pattern in which net-
work devices are connected to provide communi-
cation—is one factor in achieving both scalability
and modularity. There are a variety of topologies
that have been chosen for connecting existing com-
mercial parallel systems, as well as hundreds pro-
posed in the literature.

At one extreme, bus-based systems are well suited
to connecting small numbers of nodes, but are lim-
ited by a total bus bandwidth that does not increase
as more processors are added. Bus-based solutions
also suffer from the electrical disadvantages of
more signal drops and longer transmission paths
as processors are added. They are therefore not
appropriate for connecting hundreds of nodes.

To overcome bus scalability problems, massively
parallel processors (MPPs) use point-to-point inter-
connection networks: their networks are con-
structed by connecting switching elements by
point-to-point links (where each link connects only
two devices). In this paper, a switching element
is defined to be a device with multiple input and
output ports that forwards packets arriving at an
input port to a desired output port. (Messages are
typically broken into smaller units called packets.
In the sP2 Switch, each packet is self-routing: be-
sides containing message data, it contains sufficient
information for the network to route the packet to
its intended destination.) Furthermore, switching
elements are assumed to be nonblocking; that is,
if a packet arriving at an input port x is destined
for a particular output porty, and no other received
packets are destined for y, then this packet may
be immediately forwarded toy, regardless of other
received packets.

A particularly advantageous network would con-
nect every node to a single large switching element,
and would thus provide nonblocking communica-
tion between all pairs of nodes. However, given
n nodes, switching elements cannot be constructed
to connect a large number of nodes because their
internal complexity increases proportionally ton ?,
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and their number of input and output ports increases
proportionally to 7.

Therefore, in MPPs, scalable bandwidth is achieved
by interconnecting multiple small switching ele-
ments via point-to-point links. »* In the SP2 Switch,
these links are bidirectional, comprising two chan-
nels for communicating data in both directions
simultaneously. The aggregate bandwidth of an
MPP is typically scaled by increasing the number
of switching devices in the network, in a manner
dependent upon the chosen topology.

An SP2 system, an example of which is shown in
Figure 1, employs a unique combination of features
to attain the Sp2 goals for scalability, modularity,
and processor integration. Its topology is a bidi-
rectional multistage interconnection network,
which scales bandwidth linearly while providing
redundancy that increases with system size. The
network is driven by a common oscillator, remov-
ing clock boundaries inside the network and result-
ing in improved reliability. This common clock is
also the key to providing a common time of day
across the entire network, visible at the user level
at each processor. Service and diagnostic opera-
tions utilize the same links as data traffic, lever-
aging the power and redundancy of the switch net-
work and reducing the number of components.

The switching element of the network—the Vul-
can switch chip—contains a large shared dynam-
ically allocated buffer for storing blocked packets.
The switch chip implements a powerful flow con-
trol technique we call buffered wormhole routing
to minimize latency and maximize throughput.
Packets that encounter no contention inside the
switch chip traverse the chip in a few cycles, while
those that are blocked are temporarily stored in
the central buffer.

The peripheral component of the network, the SP2
communication adapter (shown in Figure 1), is the
interface between a RISC System/6000 processor
and a switching element on a node. The SP2 com-
munication adapter uses a variety of techniques to
improve bandwidth and offload communication
tasks from the node processor. It contains its own
microprocessor, providing flexibility in protocol
implementation.

In this paper we examine the architecture and im-

plementation of the sp2 High-Performance Switch,
beginning with the basic elements of the network
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Figure 1 An example of a 16-node SP2 system

A

MICRO CHANNEL

RISC
SYSTEM/6000

PROCESSOR

SP2
COMMUNICATION [¢—» ( P7 ) 4——P

)
3
3
h 4

ADAPTER

A

P0-P15 = PROCESSOR 0-15

D = SWITCHING ELEMENT

3
o
X

and then building up to large topologies. The prop-
erties of an SP2 channel are first described, followed
by a profile of the Vulcan switch chip and a dis-
cussion of the SP2 communication adapter. We fin-
ish our network description by examining the
chosen family of Sp topologies and providing sim-
ulation results that support our claims of scalable
network bandwidth. We conclude with an over-
view of the switch support software.

SP2 Switch channel properties

Each sp2link contains two channels carrying pack-
ets in opposite directions between two network de-
vices. In this section we examine the communi-
cation protocol and other properties of an SP2
Switch channel. First we present an overview of
the sp2 packet flow control strategy (the method
by which packets are blocked or allowed to pro-
ceed without loss of packet data). We then describe
the common oscillator for the network, which is
crucial to the understanding of the channel proto-
col, followed by a brief explanation of the individ-
ual channel signals.
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Packet flow control. SP2 packet flow control is re-
lated to wormhole routing.* In wormhole routing,
flow control is performed on units that are smaller
than packets: flow-control digits, or flits. The head
(first flit) of the packet advances immediately
through each switching element unless it is blocked
by contention for an output port, and succeeding
flits of the packet advance in pipelined fashion be-
hind the head. This immediate forwarding mini-
mizes the latency per switching element. When the
packet head is blocked, all flits of the packet are
buffered in place until the output port is free. Thus,
a single blocked packet may be blocked in place
across many switching elements.

Sp2 flow control improves on this scheme by al-
lowing succeeding packet flits (for Sp2 a flit is one
byte) to advance as far as the switching element
that contains the blocked packet head. The cen-
tral queue for the Vulcan switch chip is the primary
mechanism for this advancement, allocating as
much storage as possible for the succeeding flits
of the blocked packet. Often the entire blocked
packet can be stored within a single switching el-
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Figure 2 Switch ports connected by a channel
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ement, freeing links that would have remained al-
located and idle for wormhole routing. There is no
requirement, however, that a switching element
that accepts a packet header be able to buffer the
entire packet, as required in virtual cut-through
flow control.* To emphasize these advantages over
ordinary wormhole routing, we call the sp2 flow
control buffered wormhole routing.

Common network oscillator. All SP2 Switch hard-
ware is synchronous, and the entire network uses
a clock from a common 40 megahertz (MHz) oscil-
lator. At the hardware level, this improves the re-
liability of the switch hardware by eliminating clock
boundaries. But the results are visible to both op-
erating system and user as well. Each processor
node (on its SP2 adapter) maintains a local time-
of-day register in synchronism with other nodes,
without concern that its time of day will drift with
respect to the other nodes.

This Sp2 global time provides a simple and ex-
tremely accurate solution to the well-known dis-
tributed clock synchronization problem:* how to
align the separate time-of-day clocks as closely as
possible throughout the system. Global time also
offers advantages in fault detection, performance
monitoring, and debugging. Link error checking
is performed on a time basis, rather than a per-
packet basis, permitting errors to be detected in
specific time boundaries. A global event trace of
a parallel application can be synthesized from lo-
cal traces maintained at each node. Time stamps
provide for proper sequencing of database trans-
actions.

It would be awkward for a large system if synchro-
nous operation meant that clock and data cables
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had to be cut to restricted lengths in order to pre-
serve timing relationships. In fact, clock and data
cables on SP2 machines can have arbitrary lengths
through a combined hardware and software mech-
anism we call funing. The longest cable length is
set by electrical considerations and by a protocol
maximum of 15bits in transit on a cable at one time.
With tuning it is not necessary to adjust the phase
of the common oscillator signal received by each
device. Instead, each device adjusts the phase of
data, using adjustable delay elements. The tuning
mechanism, ® which measures cable length electri-
cally, also facilitates the accurate synchronization
of the time-of-day clocks in the nodes.” In SP2, this
mechanism is software-controlled and is contained
in the Worm software package discussed in the sec-
tion on support software.

To avoid the common oscillator becoming a single
point of failure for the SP2 Switch, there are mul-
tiple available oscillators in the network, and there
is redundancy in the repowering network that de-
livers this clock to all network devices. One of the
multiple oscillators is selected as the master and
is made available to the entire network via extra
signals within the SP2 link cables.

Channel protocol. In the SP2 Switch, packet trans-
mission and flow control is accomplished via tag
and token signals, shown in Figure 2. An active
tag indicates a valid packet flit formed by 8 bits of
data. Each output port begins operation with 31
tokens, which correspond to the 31 available flit-
sized buffer spaces in the FIFO (first-in-first-out)
queue for the downstream input port. For each
packet flit transmitted by the output port, the out-
put port decrements its token count. For each cy-
cle in which the input port transfers a flit out of its
input FIFO queue, the input port sends a token back
to the output port via the token signal. As long as
the output port token count is nonzero, the port
can transmit packet flits.

This token methodology permits the use of long
links without loss of link bandwidth—no immedi-
ate acknowledgment is required for each flit; thus
flits and tokens are traversing the link in opposite
directions simultaneously. For long links, data and
tokens are pipelined on the link—new data and to-
ken signals are placed on the link every cycle. To
maintain peak bandwidth for a link with a p cycle
propagation delay, the input port must contain a
buffer of at least size 2p. This buffer size handles
the worst-case scenario in which p flits and p to-
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kens are in transit simultaneously. With the 31-flit
input port buffers of the Vulcan switch chip, this
corresponds to a limit of p < 15 for SP2 links (al-
though electrical concerns may place more restric-
tive limits on the maximum link length).

Network operation is divided into 64-cycle frames
via the common time of day at each network de-
vice, and two cycles out of each frame are used
to send error detection codes. This time-based er-
ror detection mechanism permits timely error de-
tection and accurate fault isolation even for
dropped packets (e.g., from unplugged or severed
cables or from loss of power in a network device).
In addition, node software may embed additional
error detection information within each packet, to
be checked upon arrival at the destination node.

Packets, shown in Figure 3, vary in length up to
255 flits. The first flit holds the total packet length,
in flits. The next flit or flits contain route informa-
tion. The rest of the packet is message data. The
length and route fields of the packet are often re-
ferred to as the packet header. Long messages are
split into multiple packets that are =255 flits for
transmission.

The Vulcan switch chip

The basic switching element of the SP2 High-Per-
formance Switch is the Vulcan switch chip, shown
in Figure 4. This chip contains eight input ports
and eight output ports, each of which is one byte
(one flit) wide, and each port can process one flit
per cycle. The chip has a clock speed of 40 MHz,
and therefore can receive up to 320 megabytes per
second (MB/s) of packet data, and can transmit a
maximum of 320 MB/s. Between the input and out-
put ports is a crossbar for transferring packets that
encounter no contention for their desired output
port, and a large (1 kilobyte, or KB) dynamically
allocated shared buffer called the central queue for
storing the flits of packets that cannot proceed be-
cause of contention. This section describes these
Vulcan switch chip features in detail. To describe
the traversal of a packet through a switch chip, we
again refer to Figure 3. When the header of a packet
arrives at an input port, the first flit of the route
field is inspected to determine the desired output
port; arequest is then made to this output port for
forwarding through the chip crossbar. Each route
flit embeds two 3-bit route fields and a selector bit
that indicates which of the route fields holds the
current route. Each route field is the 3-bit binary
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Figure 3 The SP2 Switch packet
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encoding of the desired output port, 0-7. After the
second route field has been used, the route flit is
thrown away and the packet length field is decre-
mented. Hence, no route flits remain in the packet
when it reaches its final destination.

If the output port grants the request from the in-
put port, the packet flits are immediately forwarded
through the flit-wide crossbar to the output port.
This is the low-latency path through the switch
chip, and typically requires only five cycles (125
nanoseconds) from the time the first packet flit is
received at the input port until this flit is transmit-
ted out of the output port. An output port is granted
to a packet for the duration of the packet.

If the output port request is not granted, the packet
flits are temporarily stored in the central queue.
Requests from two or more input ports for the same
idle output port are handled on a least-recently-
served basis. A request will also be denied if an
output port is currently allocated by a packet from
another input port, or allocated by a packet that
has been stored within the central queue (i.e., pack-
ets within the central queue have priority over
other packets).

The central queue actually maintains eight
queues—each of these queues is a dynamically al-
located FIFO queue, one for each output port. By
dynamic, we indicate that the central queue con-
tains one shared pool of buffer space that is allo-
cated to input ports as requested. Busier input ports
can use a larger portion of the central queue than
lightly loaded input ports. Similarly, if packets from
several input ports are destined for the same out-
put port, then the queue assigned to that output
portmight consume a large portion of the total cen-
tral queue buffer. This dynamic behavior typically
improves network performance by allocating more
resources to busier ports in the network.
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Figure 4 Vulcan switch chip organization
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This central queue organization effectively results
in output port buffering, because packets are ef-
fectively queued at the output ports when blocked.
This type of buffering is known to be superior® to
the more prevalent input port buffering. Input port
buffering suffers from head-of-the-line blocking, in
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which a blocked packet in the input port FIFO queue
stalls the progress of succeeding packets that may
be destined for idle output ports.

The central queue is implemented as a dual port
memory—it can perform one write and one read
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Figure 5 SP2 communication adapter
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per cycle. In the worst case, each input port can
be forwarding packet data to the central queue
simultaneously. To match the maximum possible
bandwidth from the input ports, it is necessary to
write eight flits per cycle into the central queue.
Thus, each input port queues a chunk of eight flits
(a process called deserialization) before request-
ing service from the central queue, and writes the
entire chunk in one cycle when the request is
granted. Conversely, a serialization process occurs
at the output port to convert an eight-flit central
queue chunk read into the flit-wide data stream that
is sent from the output port. Simultaneous requests
from input ports (or output ports) are arbitrated
by the central queue on a least-recently-served
basis.

As long as the central queue is not full, each input
port can continue to receive flits at full bandwidth.
When the central queue fills, input ports with flits
destined for the central queue will not be able to
empty their input FIFO queues, and eventually a
lack of tokens will cause the associated upstream
output port to be blocked.

The SP2 processor communication adapter

In SP2 systems, processor nodes are attached to
the switching elements of the network via commu-
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nication adapters. The SP2 communication adapter,
illustrated in Figure 5, offloads communication
tasks from the node processor. Its primary func-
tion is to move data between the node memory and
the sp2 Switch. It incorporates an Intel i860** mi-
croprocessor, with 8 MB of four-way interleaved
dynamic random access memory (DRAM), for com-
munications coprocessing. The SP2 adapter at-
taches to the Micro Channel*, and uses the bus
master function of the Micro Channel and stream-
ing capabilities for an 80 MBys peak rate. The Mi-
cro Channel, a standard bus used for connecting
peripherals to IBM workstations and personal com-
puters, provided an interface that was known at
SP2 design time, and was guaranteed to remain sta-
ble over a variety of RISC System/6000 processor
releases. Faster communication could have been
achieved (over using the Micro Channel) by inter-
facing the SP2 communication adapter to an inter-
nal machine bus, but at the expense of longer de-
sign time and incompatibility with future RISC
System/6000 machines. The decision to use the ex-
isting Micro Channel was also a major contributor
to the short time interval between the introduction
of the first IBM POWER2* workstation and the avail-
ability of the first SP2 system.

The SP2 adapter connects the i860 bus to one out-
put port and one input port of the switch network

STUNKEL ET AL. 191




via a chip called the memory and switch manage-
ment unit (MSMU).° The MSMU contains a 2K byte
FIFO queue for each port. These FIFO queues are
memory mapped, as are various other registers that
provide control for and status about transmitted
and received packets. A set of programmable in-
terrupts is provided for events such as packet re-
ception, FIFO queue space threshold recognition,
and error detection. As the MSMU abbreviation im-
plies, this chip also serves as the memory control-
ler for the i860 bus, generating and checking the
error correction code for the memory words and
performing DRAM refreshes.

Data transfers involve two buses—the Micro Chan-
nel and the i860 bus. The SP2 adapter joins these
buses with a 64-bit-wide, 4 KB bidirectional FIFO
queue (bidi FIFO), 2 KB to and from the Micro Chan-
nel. Each interbus data transfer then has two com-
ponents: Micro Channel to and from the bidi FIFO,
and i860 bus to and from the bidi FiFo. Indepen-
dent state machines manage the two parts of the
transfer—the left-hand direct memory access
(DMA) engine for the Micro Channel and bidi FIFO;
the right-hand DMA engine for the i860 bus. The
adapter also provides a bidi FIFO bypass that al-
lows the RISC System/6000 processor to address
the i860 bus directly using programmed input/out-
put instructions, giving the main processor direct
access to adapter memory. Address protection on
the adapter protects sensitive global data structures
from modification by users.

The i860 initiates all DMA transfers, a process that
begins when the i860 writes a header to the bidi
FIFO. A header describes an operation to be ex-
ecuted by the DMA engine. On the Micro Channel
side, the left-hand engine extracts the header when
it reaches the head of the bidi FIFO and performs
the requested operation. The right-hand engine
monitors the writing of the header on the i860 bus
and performs right-hand DMA as required.

For receiving data from the network the i860 writes
the header, and then the right-hand DMA engine
takes control of the i860 bus and transfers network
data into the bidi FIFO. Hardware ensures that the
i860 is taken off its bus immediately after writing
to the bidi FIFO and remains off the bus until the
right-hand DMA completes. When the header
reaches the head of the bidi FIFO, the left-hand en-
gine decodes it and transfers the data in the bidi
FIFO onto the Micro Channel.
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For sending data to the network the i860 writes a
header requesting data from the Micro Channel.
When the header reaches the head of the bidi FIFO,
the left-hand engine initiates a transfer into the bidi
FIFO and indicates completion by incrementing a
count in hardware. In response, the i860 writes a
header, which initiates a right-hand DMA transfer
from the bidi FIFO to the MSMU. Since only the i860
initiates DMA actions, and DMA requests are per-
formed in the order that they are issued, the i860
always knows which completed transfers are wait-
ing at the bidi FIFO i860 port and how long each
transfer is.

The SP2 adapter incorporates a cyclic redundancy
check generator and checker on the i860 port of
the bidi FIFO, and this port is protected by parity.

Unidirectional bandwidth through the Sp2 adapter
is approximately 35 MB/s for POWER2 nodes. This
bandwidth is equivalent to the switch link capac-
ity, considering packet overheads such as error de-
tection codes, sequencing, and route flits. The bi-
directional bandwidth (simultaneously sending and
receiving) for the current message-passing software
ranges up to 48 MBys, constrained mostly by Micro
Channel degradation for short transfers. In addi-
tion to increasing bandwidth, offloading data trans-
fer frees the RISC System/6000 to perform compu-
tation. On the fastest available SP2 processor nodes,
about 25 percent of the processor remains avail-
able during bidirectional communication, and
about 40 percent during sends, though not all ap-
plications can exploit this.

Communication protocols are important because
of their impact on message bandwidth and latency.
The SP2 communication adapter presents many in-
teresting trade-offs to the communication proto-
col designer, and we now highlight some of these
trade-offs. Protocol designers are granted flexibil-
ity in investigating different protocol strategies via
the on-board i860 processor. The 8 MB of on-board
memory accommodates protocols that require
large amounts of local message buffering.

The primary goal of the communication protocol
is to provide reliable low-latency and high-band-
width data transmission, as elaborated in the fol-
lowing list:

e Provide the lowest possible latency from send-

ing applications to receiving applications for a
single user. This implies user access to the
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adapter, since kernel calls add too much over-
head.

¢ Minimize the RISC System/6000 overhead for
sending and receiving messages. This is espe-
cially important for larger messages, where data
transmission can be overlapped with processing.

¢ Provide a guaranteed message delivery for the
user that implies recovery from network failures
and detection of node outages.

¢ Ensure that unbalanced or misbehaving applica-
tions do not block other message traffic both from
the same node and from other nodes.

s Provide a flexible mechanism for flow control ap-
plications where flow control is an issue. This
includes supporting unexpected traffic such as
seen in client/server models of computing as well
as unbalanced and unpredictable communication
patterns as seen in simulations.

Maximizing bandwidths for the network and Mi-
cro Channel requires careful orchestration of DMA
with the protocol on the i860 and the RISC Sys-
tem/6000. One extreme is to only use the i860 to
initiate DMA between the network and RISC Sys-
tem/6000 storage. The other extreme is to code the
860 to handle the message-passing calls directly.
An intermediate position is to code the 860 to
present a set of virtual channels to the protocol
layer on the main processor. Since the i860 has a
slower clock cycle, much smaller cache, and
greater cycles per instruction, some protocol jobs
might be executed faster using only the main pro-
cessor, avoiding synchronization overhead. How-
ever, most protocols do not require large amounts
of code, and the code tends to be very control-in-
tensive (conditionals are frequently encountered).
This makes the smaller cache of the i860 less of a
disadvantage, and reduces the advantage of the
RISC System/6000 branch prediction, bringing rel-
ative processor power closer than might be ex-
pected.

The switch channel and Micro Channel are roughly
equal in raw sustainable bandwidth (both about 77
MB;s), and the i860 bus bandwidth is approximately
double that (160 MBys). Thus about half of the i860
bus bandwidth must be used for DMA transfers,
leaving the i860 with the remaining 80 MB/s to query
MSMU and DMA status, load and store packet head-
ers in the MSMU, initiate DMA, and handle cache
line fetches and storebacks. It is therefore ex-
tremely beneficial to organize the i860 code so that
the protocol ““fits” in the i860 instruction cache dur-
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ing right-hand DMA. The following four operations
can be active on the adapter at the same time:

¢ Right-hand DMA

s Left-hand DMA

* MSMU switch access

* 1860 protocol execution

The i860 must alternate between handling out-
bound and inbound traffic so as to keep both the
MSMU and the bidi FIFO from being full or empty
for long periods, if there is communication pend-
ing. To do this it must switch between code sec-
tions at unpredictable times. When this occurs, a
penalty must be paid in terms of register usage.
That is, much of the i860 register stack must be
saved and restored on each switch, even if no func-
tion call is involved.

Summarizing the discussion, the SP2 communica-
tion adapter offloads communication tasks from the
RISC System/6000 processor in a reliable manner.
The adapter provides the capability to send and
receive messages at the full network link band-
width, which is approximately 35 MB/s when includ-
ing the effects of error detection and other types
of packet overhead. Current message-passing soft-
ware has achieved a combined bandwidth of 48
MB/s for simultaneously sending and receiving mes-
sages. The message latency of the product-level
SP2 message-passing software is about 39 micro-
seconds, which includes both sending and receiv-
ing overhead.™

SP2 system topology

The system network topology is crucial to the SP2
communication subsystem goals of low-latency,
high-bandwidth, fault-tolerant communication. To
support high-bandwidth communication, a desir-
able topology scales aggregate bandwidth linear-
ly; that is, the system network delivers total com-
munication traffic that is proportional to the
number of nodes in the system. As nodes are added
to such a system, the network bandwidth also
grows proportionally.

A well-known network type, the multistage inter-
connection network (MIN)!? can provide scalable
aggregate bandwidth using switching elements with
asmall, fixed number of ports. These networks add
switching “stages” to increase aggregate band-
width as the number of nodes increases. MINs are
particularly attractive because of their ability to lin-
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Figure 6 Alternate representations of an eight-input port, eight-output port switching element
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early scale bisection bandwidth, a common and re-
alistic indicator of aggregate network capacity. Bi-
section bandwidth is the maximum possible
bandwidth across a minimum network bisection,
where a bisection “cuts” the network into two
parts containing an equal number of nodes.

An sp2 network is a type of MIN. The structure of
the network is described starting with the basic
switching elements, and proceeding to the larger
network components derived from them. The sp2
networks are based upon the eight-input, eight-out-
put Vulcan switch chips described earlier. A high-
er-level representation of these switching elements
isshown in Figure 6A. However, in an SP2 network,
each point-to-point link is full-duplex bidirection-
al—each link comprises two channels that carry
data in opposite directions simultaneously. Input
and output ports of each switching element are thus
paired together to connect to an SP2 link. For ex-
ample, input port ( and output port 0 are attached
to the same link, to receive and transmit signals,
respectively. Therefore, in subsequent topology
figures, each link shown has this bidirectional at-
tribute, and input and output ports of each switch-
ing element are paired together as in Figure 6B.
Figure 6C shows yet another bidirectional repre-
sentation of the switching element. This represen-
tation, with four input-output port pairs on either
side of the block, will prove useful for drawing Sp2
networks. All three representations are function-
ally equivalent.

Some entry-level sp2 High-Performance Switch
networks contain exactly one switching element
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mounted on a small board. Up to eight processors
can be attached to each of the bidi ports of the
board via discrete cables that serve as bidirectional
links. SP2 machines with more than eight proces-
sor nodes are always constructed using larger
switch boards. These larger SP2 switch boards con-
tain two fully interconnected columns, or stages,
of four switching elements, as shown in Figure 7.
Note that there is a path between any two exter-
nal links, providing connectivity between up to 32
externally connected devices. These boards are the
building blocks used in constructing larger SP2 net-
works. For supporting large SP2 systems, these
boards are advantageous over the smaller single-
element boards because they incorporate more
links internally and require fewer total boards, in-
creasing network reliability and decreasing cost.

SP2 nodes are grouped into 16-processor units that
are connected to one side of the switch boards (also
called node switch boards because of their prox-
imity to the nodes). Figure 8 displays a 16-proces-
sor SP2 system containing one node switch board.
This figure also illustrates possible shortest-path
routes for packets sent from processor 0 to two des-
tinations. Note that processor 0 can communicate
with processors 1, 2, and 3 by traversing a single
switching element, and to the other 12 processors
by traversing three switching elements.

The 16 unused links on the right side of the node
switch board shown in Figure 8 are used for cre-
ating larger networks in one of two ways: (1) for
systems containing up to 80 nodes, these links con-
nect directly to the right sides of other node switch

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995




Figure 7 The SP2 Switch board

Figure 8 A 16-node SP2 system with example packet
routes from node 0
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boards, and (2) for networks containing more than
80 processors, these links connect to additional
stages of switch boards.

To illustrate the first strategy for connecting sys-
tems of up to 80 nodes, Figure 9 shows the direct
connection of the right-side links of three node
switch boards to form a 48-way system. Example
routes from node 0 to nodes 3, 10, and 35 are
shown. Just as for a 16-way system, packets
traverse one or three switching elements when the
source and destination pair is attached to the same
node switch board. When the pair is attached to
different node switch boards, the shortest-path
routes contain four “hops” (i.e., traverse four
switching elements). For any pair of nodes con-
nected to separate boards in a 48-way system, there
are eight potential paths, providing a high level of
redundancy. One SP2 design goal is to provide at
least four separate paths from any source to any
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destination, except for nodes that are attached to
the same switching element.

Given more than 80 nodes, this strategy of directly
connecting node switch boards fails to provide the
acceptable level of four redundant paths, and strat-
egy two is instituted. Additional switch boards
(termed intermediate switch boards) are cascaded
to the node switch boards, effectively adding more
stages to the network to scale the aggregate band-
width. For example, a 128-way system is shown
in Figure 10. This figure also displays routes from
node 0 to node 31 and node 80. Destinations within
the same 16-way group are reached in one or three
hops as for smaller networks. Destinations not in
this group, but on the same 64-way “side” of the
network, are reached in five hops. It takes six hops
to reach nodes on the opposite side. Note that ev-
ery pair of stages in the network is connected by
an equal number of links, preserving aggregate
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Figure 9 SP2 48-way system interconnection with example packet routes from node 0
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bandwidth. As the size of the SpP2 network in-
creases, so does its maximum redundancy. For ex-
ample, there are 16 five-hop paths from node 0 to
node 63.

These Sp2 topologies are related to “least common
ancestor” and fat-tree networks, *'* in which each
packet travels into the network only until reach-
ing a switching element that is a least common an-
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cestor of both the source and the destination. At
this point it “turns” and travels back toward the
destination. This implies an odd number of hops
(because the turn, which occurs at the midpoint of
the path, is done within a switching element). In
contrast, for many of the SP2 networks (e.g., the
128-way) the midpoint of the longest paths is a link
instead of a switching element, resulting in an even
number of hops. However, both SP2 networks and
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Figure 10 SP2 128-way system interconnection
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Figure 11 Average latency for central queue versus no
central queue for a 16-way system
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messages
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least common ancestor networks are provably
deadlock-free for shortest-path routes, given that
destination nodes guarantee to accept all packets
presented to them by the network. This property
allows packets to traverse any of the redundant
shortest-path routes between pairs of nodes.
Hence, the chance of creating extremely congested
areas in the network (“hot spots””) can be reduced
by spreading packets over various redundant
routes.

Switch performance

In the previous section we made the claim that the
SP2 Switch scales its aggregate bandwidth linearly
as the number of nodes increases. This assertion
is based primarily upon the choice of topology and
on the design of the Vulcan switch chip. In this sec-
tion we present simulation results to judge the scal-
ability assertion by quantifying the effect of the
central queue scheme, and by comparing SP2 to-
pologies to a less scalable topology, the two-dimen-
sional mesh.

We rely on simulation rather than system measure-
ment because we are making performance compar-
isons to theoretical alternatives. In addition, we
are interested in evaluating the performance of the
network hardware separately from the complex ef-
fect of software message-passing protocols and
their embedded end-to-end flow control mecha-
nisms. Lastly, we can stress the network to a
greater degree in simulation than in the real sys-
tem. However, system measurements presented
within other papers in this special issue'*® give
additional evidence of scalable performance.

The simulations are based upon a model of the Vul-
can switch chip that closely mimics its register-
level operation. Nodes are assumed to break mes-
sages into packets—satisfying the 255-byte packet
size limit of the switch—and to transmit each
packet into an infinite bidi FIFO at the node inter-
face to the switching network. We assume that
message flits are immediately pulled from the net-
work upon arrival at a node. We simulated with
random message traffic for varying message sizes.
Destinations are chosen uniformly, with exponen-
tially distributed message transmission times. La-
tency results include queuing time at the source
node.

First, we investigate the effect of the dynamically
allocated central queue. The Vulcan switch chip
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contains a 31-byte bidi FIFO at each input port, and
a 1 KB central queue, for a total of 1272 bytes of
storage. We compare the Vulcan design to a
switching element with no central queue, but con-
taining 159-byte bidi FIFOs at each input port, giv-
ing an equal amount of total buffer space. Figure
11 displays the average latencies encountered by
messages with each type of switching element for
a 16-node system. Simulations were conducted for
input loads varying from 0.1 t0 0.9 of the maximum
bandwidth each node could drive into the network,
and for two message sizes: 100 bytes and 500 bytes.
Results are displayed only for simulations that did
not saturate the network. The central queue sim-
ulations saturate at higher bandwidths and provide
lower average latency for a given input load. The
superior performance of the central queue is due
to two factors: the “output buffering” effect re-
ferred to earlier, and the ability of the dynamic al-
location scheme to present more buffer space to
heavily used ports.

Lastly, we judge topological scalability by com-
paring the relative performance of a 16-way and
a 128-way SP2 topology with a 16-way and a 49-
way two-dimensional mesh. We assume minimal
dimension-order routing for the meshes,? which is
a common way of avoiding mesh or torus dead-
lock in which packets travel first in the x direction,
and then in the y direction. Figure 12 displays the
latency results for 100-byte messages. The 16-way
systems achieve lower latencies until saturation,
and saturate at higher input load than the large sys-
tems. The 49-way mesh system saturates much
lower load than the 128-way SP2, because it has lim-
ited bisection bandwidth. A 128-way mesh would
perform significantly worse than the 49-way mesh
for random loads. The higher large system laten-
cies are partly a result of the increased number of
average hops to reach a randomly chosen desti-
nation. In the 16-way SP2 topology, packets
traverse three or less switching elements, while the
128-way contains six-level paths. The increased
levels have two effects: (1) an addition of about five
cycles of minimum latency per hop, which is the
major difference at the 0.1 input load, and (2) more
sites at which to encounter packet contention, a
factor which increases with system load.

Figure 13 shows 500-byte message simulations that
provide qualitatively similar results. These larger
messages are more stressful on the SP2 network (or
on any network) because the randomness of the
traffic within localized areas of the network is ef-
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Figure 13 Average message latency for 500-byte
messages
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fectively reduced, presumably causing “hot spots™
to spawn more often and to last longer. Again, the
smaller networks achieve lower latency for lighter
loads, but saturate in the same bandwidth range,
bolstering the claim of scalable bandwidth.
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Network performance above the saturation load
is also of interest. Average latency is not mean-
ingful above saturation, however, because packet
queuing time at the source goes to infinity when
the network cannot dispose of packets as fast as
they arrive. Output bandwidth, though, remains
valid, and indicates maximum sustainable band-
width. Figure 14 shows received traffic versus in-
put traffic for 500-byte messages on SP2 networks
and meshes. Until saturation, each line is straight
with a slope of 1. After saturation, output band-
width levels off. The figure shows a dramatic dif-
ference between the saturation bandwidths of the
49-way mesh and the other systems, yet the 128-
way SP2 topology maintains almost as much band-
width as the 16-way SP2.

To summarize, the characteristics of the Vulcan
switch chip and the SP2 topology choices combine
to provide systems with near linear bandwidth scal-
ing for a large range of system sizes.

Support software

Switch service operations provide functions such
as initialization of switch chips and adapters and
determination of acceptable packet routes. For the
SP2 Switch network, these service operations use
the same links used for the packet data transfer.
The data and service activities occur during dif-
ferent modes of switch operation, known as run
mode for data transfer and service mode for ser-
vice. The entire network can be scheduled to syn-
chronously move into and out of the service mode.
The mechanism for achieving these mode changes
is not detailed here.

The software that explores and initiates the switch
and controls the switch during network service is
called the “Worm” for reasons that will be appar-
ent shortly. Another crucial element of the service
software is the route table generator (RTG). The
RTG, using information on the network state gath-
ered by the Worm, calculates packet routes for
each active source-destination pair of nodes in the
system.

This section introduces the protocol used during
the service mode, and then presents an overview
of the Worm and RTG software.

Service mode protocol. The channel protocol (de-
scribed in the first section of this paper) used for
passing data from source nodes to destination
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nodes is optimized to minimize packet forwarding
delay. However, this protocol contains no mech-
anism for addressing the individual devices in the
network—nodes are always the intended destina-
tion.

A circuit-switched protocol is used during service
mode to communicate with network devices. In cir-
cuit switching a path is first set up by a control
packet or packets, and succeeding packets traverse
that configured circuit until further control pack-
ets change the circuit. We use the terms service
packet and service message interchangeably, be-
cause service messages are constrained to be no
longer than one packet (<255 bytes) in length. An-
other characteristic of the service mode is that
there is only one node allowed to send the control
packets that configure the network, to avoid the
complexity of managing conflicting circuits in hard-
ware. This service node is arbitrarily selected.

Circuit-switching is advantageous for servicing net-
work devices. First, typically once a circuit is con-
figured to a particular device, many service mes-
sages are passed to and from that device. In fact,
a circuit is often configured as a loop beginning at
the service node, going to a network device such
as a switching element, and then returning to the
service node. This circuit allows the service node
to quickly verify that the service message was suc-
cessfully executed, and can also be used to return
information—substituted into the packet—from
the destination device.

Second, multicasting or broadcasting circuits are
easily constructed with little additional complex-
ity in the switching hardware with the “one ser-
vice node” assumption. The Vulcan switch chip
implements these multicasting circuits by allow-
ing an incoming service packet to be forwarded to
an arbitrary set of output ports (configured by pre-
vious control packets).

The Worm. A major component of the SP2 Switch
network service software is called the Worm. It
executes on the service node (also called the pri-
mary node). The Worm software handles Vulcan
switch chip and adapter initialization, channel tun-
ing,® global time synchronization,’ fault determi-
nation, and diagnostic services for the switch net-
work. The Worm executes only in service mode,
controlling and observing the network by sending
and receiving service messages.
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The Worm is designed to handle arbitrary bidirec-
tional topologies. This provides flexibility for spe-
cial customer requests and allows special-purpose
configurations for diagnostic purposes. An impor-
tant consequence: the nonuniformities caused by
faulty network components are accommodated
easily.

The Worm software is guided by a file that de-
scribes the expected topology. It searches the net-
work in a breadth-first manner, entering status in-
formation about each device and link in an internal
database. This database is subsequently used by
the route table generator (RTG) to generate valid
node-to-node routes.

Route generation. SP2 packet routing is source-
based: the source node places route flits into each
packet, and the switching elements of the network
obey these directives. For each node, a route ta-
ble contains valid routes for each destination. This
route table is updated during system initialization
and after network status changes.

The sp2 routing algorithm, RTG, calculates the
routes required for node-to-node communication
over the SP2 Switch network. The RTG is based on
an older existing IBM SP1* routing algorithm that
provides a single shortest path between each pair
of processor nodes. The shortest path approach
corresponds to traveling from a source to a “least
common ancestor” and back to the destination, as
described in the earlier section on SP2 system to-
pology. We enhanced the SP1 algorithm for Sp2 to
generate four paths between each node pair.

The sp2 Switch network provides a rich set of paths
between node pairs. In such networks, the selec-
tion of the routes is important because of its im-
pact on performance. In an attempt to prevent con-
gestion in the network, the RTG selects routes that
traverse the links and switches in node-to-node
paths in a balanced manner. Furthermore, system
software uses the RTG-generated multiple routes
between each node pair in a “round-robin” fash-
ion to more uniformly utilize the network.

The RTG selects routes only from (deadlock free)
shortest paths. Shortest paths minimize the re-
sources used by packets, reducing network con-
gestion. The RTG uses a modified breadth-first
search algorithm for building a spanning tree rooted
at each source node, and then follows the span-
ning tree paths to find the shortest paths from the
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source node to the rest of the processor nodes. We
added a simple static load balancing strategy to en-
sure that links and switches are included in the se-
lected routes in a balanced manner. The RTG main-
tains a usage counter for each switch chip output
port. The counter indicates how many times the
port has been used during route generation. While
building a spanning tree from a given source node,
each time a source—destination path is found, the
counter is incremented for each output port in the
path. The usage count of the ports determines the
breadth first search order such that, from a given
switch, the RTG algorithm first visits the switches
connected to the least frequently used output
ports.?’

The RTG routes are stored in a route table in the
memory of each processor. The route table ap-
proach enables routing to be done in a topology-
independent fashion, which is important for scal-
ability and fault tolerance. Larger networks of
various topological properties can be implemented
easily without having to change the switch hard-
ware or the routing algorithm, and the RTG routes
around the missing links and switches reported un-
acceptable by the Worm.

Concilusion

The sp2 High-Performance Switch is a low-latency,
high-bandwidth switching network that can scale
aggregate bandwidth for systems containing hun-
dreds of processing nodes. The network is a bidi-
rectional multistage interconnection network and
provides at least four usable redundant paths for
most pairs of communicating nodes. Data and ser-
vice operations share a single network. The net-
work is synchronous, with mechanisms for achiev-
ing a closely synchronized global time visible to
each node. The basic switching element is the Vul-
can switch chip that contains a unique central buff-
ering scheme for reducing the impact of network
contention. The programmable SP2 processor com-
munication adapter provides high bandwidth to and
from a processor and provides the processor
with opportunities to overlap communication and
computation.
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