Experiences with the
IBM SP1

One of the first IBM %arallel processing
computers—the SP1™—and the largest, with 128
nodes, was installed in 1993 at Argonne National
Laboratory. It took only days, not months, to
prepare for and migrate applications to this
parallel supercomputer, demonstrating that high
performance, parallelism, and portability can
coexist. This paper describes the early
experiences with the SP1 at Argonne, which
provide lessons for supercomputer system
designers and users alike. We explore what
features of software technology and system
architecture enabled immediate and successful
use of the SP1. The paper concludes with a brief
indication of why the move to the SP2™ software
environment using the SP2 communication
adapters, the use of the emerging Message-
Passing Interface standard, and the continued
use of the SP1 processors have been successful.

n 1991-1992, the Mathematics and Computer

Science Division at Argonne National Labora-
tory in Chicago, Illinois, began making plans for
achange in its research focus in high-performance
computing. Since 1983 it had carried out research
in many areas of parallel computing and had op-
erated the Advanced Computing Research Facil-
ity (ACRF), home to early versions of parallel com-
puters from a variety of manufacturers. Work with
these machines had been responsible for signifi-
cant contributions to the understanding of parallel
algorithms for many scientific problems and to the
development of tools for enhancing the portabil-
ity of these algorithms. But it was time for a new
direction. The new direction was to involve appli-
cation scientists in the use of this parallel comput-
ing knowledge, in order to demonstrate the cost-
effectiveness of parallel computing for large-scale
scientific problems.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

0018-8670/95/$3.00 © 1995 IBM

by W. D. Gropp
E. Lusk

Such a goal required a different machine acquisi-
tion strategy from that of previous years. Although
some forward-looking application scientists had
used the machines of the ACRF to acquaint them-
selves with parallel computing issues, most had
kept to their traditional supercomputers, simply be-
cause the research machines of the ACRF, suitable
as they were for computer science research, did
not have the computing power necessary for de-
livering research results in the new field of com-
putational science.

Argonne initiated its new machine acquisition strat-
egy by reviewing all the then-current parallel com-
puter vendors and then choosing the newly avail-
able 1BM Scalable POWERparallel Systems™*. The
specific machine acquired, the SP1*, had 128 nodes
(larger than what was officially available at that
time), with custom-designed input/output hard-
ware. It was anticipated that the SP1 would pro-
vide an environment to which existing tools and
applications could be ported quickly, providing
early evidence of its usability as a “first-class sci-
entific instrument.” (In this paper, the term port
is used to refer to the programming changes nec-
essary to allow an application program that runs
on one type of computer to run on another type
of computer.)

©Copyright 1995 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to re-
publish any other portion of this paper must be obtained from
the Editor.

GROPP AND LUSK 249

Figure 1 Communication performance for small
messages for a variety of machines

3
g

ELAPSED TIME

g
e

TIME (MICROSECONDS)
o
g
I3

;

T T y
0 200 400 600 800 1000 1200

T T T T T L

SIZE (BYTES)

-------- 1BM SP1 EUL

= INTEL PARAGON

— == THINKING MACHINES CMS
'''' INTEL TOUCHSTONE DELTA

"""""" MEIKO Cs2

1BM 8Pt EUIH

Alltiming and performance results discussed in this
paper were preliminary results. Little time was
made available for single-user benchmarks; hence,
many of the results are from runs on relatively
small numbers of processors. The results also re-
flect the use of the SP1 communication adaptors
(further described in References 1 and 2).

Several of the sections that follow mention the ex-
ternal user interface (EUI) and the high-perfor-
mance external user interface (EUIH), terms that
are no longer current. EUI was the name of the cus-
tom message-passing library that came with the
Sp1. Due to performance problems (see Figure 1),
the EUI was replaced almost immediately with a
user-space implementation developed at IBM Re-
search, named EUIH.

This paper focuses on the first few months of expe-
rience with the IBM SP1 and concludes with a brief
observation about the migration to the newer SP2*
software, while still using the sp1 hardware. The

250 GROPP AND LUSK

projects reported here consist of tools projects
(summarized in Table 1), reflecting both the port-
ing of existing tools to the SP1 and in some cases
the development of new ones, and application
projects (summarized in Table 2), many of which
use one or more of the tools.

Successful migration to the SP1

It took only a matter of days and not months to
prepare for and move applications to the SP1 par-
allel computer. What was it that made the IBM SP1
such a success? The experiences reported in this
paper provide support for some of the expected
reasons, but also for a few unexpected ones.

The single most important reason that the machine
was effectively used so quickly was that so many
advanced users of parallel computers had already
converted their codes to a portable form in order
to run their applications in a variety of existing en-
vironments. They were supported by a number of
tools that were geared to provide portability among
parallel systems. It has not been found (by this
community) that parallel algorithms must be com-
pletely different on each machine in order to
achieve efficiency. Although some machine-spe-
cific tuning can make a performance difference, the
tuning need not affect the overall design of the pro-
gram. Efficient parallel algorithms can be designed
and coded in a portable way. A variety of porta-
bility tools contributed to the speed with which ap-
plications were moved to the SP1 machine; they are
described in the next section. Use of the message-
passing model in the design of the SP1 meant that
the machine was not very different from existing
parallel machines, and so both tool writers and
users found themselves in a familiar environment.

The use of off-the-shelf hardware and software
components (the IBM RISC System/6000* and the
Advanced Interactive Executive* system, AIX*)
meant that the machine came with many proven
industrial-strength pieces, despite being very new.
This was particularly true of the “single-node” soft-
ware components, such as AIX, the FORTRAN and
C compilers, and the dbx debugger.

The use of high-performance single nodes as a fun-
damental part of the design also eased the porting
of code and contributed to good initial results for
applications. The large memory on each node (128
megabytes in our case) meant that a first stage in
the porting process could be achieved by running

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Table 1 Parallel tools discussed in this paper

BlockSolve
Chameleon
FORTRAN M
MPI

Parallel UNIX tools
PCN

PETSc

p4

SBR

xsp linfo

Parallel sparse, symmetric linear systems

Lightweight and portable message-passing system
Parallel extensions to FORTRAN

Message-Passing Interface draft standard

Parallel versions of ¢p, kill, etc.

Program Composition Notation (a coordination language)
Portable Extensible Tools for Scientific Computing
Portable message-passing and shared-memory library
Numerical parallel linear algebra

Graphic display of EUIH message-passing system

Table 2 Applications discussed in this paper

Computational electromagnetics
Mesoscale weather model
Nuclear structure

Parallel community climate model
Phylogenetic trees
Superconductivity

Theorem prover

Model 3D, arbitrary geometry magnets

Continent-sized weather model

Monte Carlo computation

Global climate model

Program to construct phylogenetic trees from sequence data

Modeling of flux vortices in high-temperature superconductors (three applications)
Distributed associative-commutative theorem prover

the application sequentially on one node. On ma-
chines where the same aggregate memory and com-
puting power is achieved with a larger number of
smaller nodes, this is often impossible, and so ap-
plications must be ported in one step, which re-
quires solving several problems at once.

Some features of the SP1 that contributed to our
decision to acquire it turned out to be much less
important than the above design aspects. This was
particularly true of the new parallel software in-
terface to the machine. The custom EUI message-
passing library was not used by most applications.
Since applications used portability libraries, only
the tools developers needed to know the EUI in-
terface. Environment tools such as the log file dis-
play tool (vt) and the parallel version of dbx (pdbx)
did not play a role, since during most of the period
described here, they did not run on 128-node ma-
chines. In addition, such tools were too tightly cou-
pled to parts of the system we were not using. For
example, no library for producing vt trace records
came with the system, so vt could not be integrated
into portable tools. Finally, the job-scheduling soft-
ware (LoadLeveler*) was perhaps too completely
an off-the-shelf component from the workstation
network world; once the SP1 became heavily used
(which was soon) we needed a scheduler more ap-
propriate for a true supercomputer.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Programming packages and tools

This section describes both new tools developed
for the SP1 and existing tools ported to the SP1, as
well as several numerical libraries and program-
ming packages that were ported to the new sys-
tem.

Graphics tools. Researchers in Argonne’s Mathe-
matics and Computer Science Division (MCS) de-
veloped a tool, named xsp linfo, that displays the
usage of the SP1 when using the EUTH message-pass-
ing system. This tool, written using tct and tk, shows
the partitions in use, each partition being displayed
in a different color, and a list of partitions contain-
ing the username, size, and amount of time the par-
tition has been in use. An example display is shown
in Figure 2.

In addition, each node is represented by a button.
Pushing this button with the mouse can bring up
an x-terminal window (xterm) on that node or show
the load average (depending on which mouse but-
tonisused). The load average reflects all processes,
not just EUIH jobs. The display also shows the num-
ber of the node the mouse is pointing to and the
time when the display was last updated. Using the
tool xsp linfo, users can see how much of the ma-
chine is in use with EUIH jobs and see where their

GROPP AND LUSK 251

Figure 2 A typical display of the EUIH usage of the SP1

@ Sp1 Info [_ ﬂ
Refresh [Quit Large Parts
‘-n*
4= 1 gropp 16 64
2 lusk 32 356
3 freitag 32 1273
= 4 levine 48 12
]
o
o
75 ‘@
Sun Nov 7 14:02:59 CST 1993

Table 3 Parallel UNIX commands

UNIX Parallel
cp pcp
ps Pps
Is pls
find pfind
if (‘test') action ppred
kill pkill
a.out prun...a.out

EUIH jobs are running. It also provides a conve-
nient way to open x-terminal windows on the SP1.

Parallel UNIX tools. Because each node of the SP1
ran a separate copy of AIX and contained a private
disk, users quickly discovered the need to (1) run
various UNIX** tools (such as ps, Is, and cp) on a
set of nodes and (2) to filter the output to show just
the needed data. For example, on a uniprocessor,
a typical query “Is a file present?” is usually an-
swered by using Is flename. On the 128-processor
SP1, however, running Is generated so much out-
put that it was difficult to be sure that the file was
present on all processors. (Piping into the word

252 GROPP AND LUSK

count program, wc, was too severe; if the file was
missing somewhere, the user wanted to know
where.) MCS scientists developed programs to an-
swer such questions in a scalable way, by provid-
ing both an easy way to make a specific inquiry
across the paralle] machine (e.g., the program
ppred) and a graphical display of the output of these
parallel commands (the program pdisp).

Table 3 lists the prototype implementations of some
parallel versions of popular UNIX commands.
These routines (actually shell scripts) use recur-
sive subdivision to execute the UNIX commands
in parallel. They proved particularly important in
distributing executable and shared input data to the
local disks on the nodes. (This project, conceived
as an immediate need on the SP1, subsequently de-
veloped into a more substantial effort.?)

FORTRAN M. FORTRAN M* is a small set of ex-
tensions to FORTRAN that supports a modular ap-
proach to the construction of sequential and par-
allel programs. FORTRAN M programs use channels
to plug together processes that may be written in
FORTRAN M or FORTRAN 77. Processes communi-
cate by sending and receiving messages on chan-
nels. Channels and processes can be created
dynamically, but programs remain deterministic
unless specialized nondeterministic constructs are
used.

FORTRAN M was ported to the SP1, with run-time
support added to allow communication via the
Transmission Control Protocol/Internet Protocol
(TCp/P) over either the switch or the Ethernet. Few
difficulties were encountered beyond the normal
small differences in FORTRAN compilers. (Since
FORTRAN M is a preprocessor that produces FOR-
TRAN 77 code, it is heavily dependent upon the FOR-
TRAN 77 compiler of the target machine.) Several
FORTRAN M applications were also run on the SP1,
including a parallel chromatography simulation and
a parallel smog model.

Chameleon. Message passing is a common method
for writing programs for distributed memory par-
allel computers. Unfortunately, the lack of a stan-
dard for message passing has hampered the
construction of portable and efficient parallel pro-
grams. In an attempt to remedy this problem, a
number of groups have developed their own mes-
sage-passing systems, each with its own strengths
and weaknesses. Chameleon’ is a second-gener-
ation system of this type. Rather than replacing

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

these existing systems, Chameleon is meant to sup-
plement them by providing a uniform way to ac-
cess many of these systems. Chameleon’s goals are
to (1) be very lightweight (have low overhead), (2)
be highly portable, and (3) help standardize pro-
gram startup and the use of emerging message-
passing operations such as collective operations
on subsets of processors. Chameleon also provides
a way to port programs written using other mes-
sage-passing libraries (such as PICL or Intel NX) to
other systems, including collections of worksta-
tions. This feature was used by the global climate
model (discussed later) to port to the SP1.

Chameleon was ported to the SP1 with no problems
other than the need to statically link FORTRAN pro-
grams. Both an EUI and EUIH port were provided,
as well as a TCP/IP port using the p4 message-pass-
ing system (discussed later) that uses TCP/1P. The
EUIH port provided a simplified startup mechanism
that eliminated the need for having the user invoke
the program with the shell script cotb0.

Using a timing program in Chameleon called twin,
MCS researchers tested communication between
pairs of processors. The program selects message
sizes adaptively in order to capture discontinuities
in the behavior of the message-passing system. Fig-
ure 1 compares the performance on several differ-
ent machines. The SP1 shows a distinct disconti-
nuity at 128 bytes. This is due to the fact that (the
preproduction version of) EUI switches to a differ-
ent protocol for longer messages, thereby signif-
icantly adding to the latency of longer messages.
The Intel Touchstone DELTA results also show a
discontinuity (at 480 bytes); this reflects the mes-
sage packet size (minus the header) used on the
DELTA. The performance for long messages for a
variety of machines is shown in Figure 3. These
results show that one can expect good DELTA per-
formance compared with other massively parallel
processors for communication-intensive programs
that use EUIH.

Successive band reduction. Successive band reduc-
tion (SBR) is an approach for orthogonally reduc-
ing matrices to condensed form, thereby allowing
for the use of matrix-matrix (BLAS-3) kernels. Spe-
cial instances of SBR are the tridiagonal and Hes-
senberg reductions used in various eigensolvers.
In addition, SBR supports general band reduction,
which is needed for banded eigenvalue scenarios.
A modified SBR approach is also used in the PRISM
(parallel research on invariant subspace methods)

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Figure 3 Communication performance for long
messages for a variety of machines. All SP1
results use the switch. Data for the CM5 is
unavailable for messages of this length.

BANDWIDTH

[os)
o

.........

RATE (MBYTES/SEC)
8 b 8
Li e b bt i3 141143+ 1 34130331185 01.031

-
W

pey
(=4

5 ey
10000 20000

SIZE (BYTES)

1
50.000

T T T ’ l’ ’lfm
30000 40000 60000 . 70 000

-------- (BM SP1 EUI
———— INTEL PARAGON
~~~~~ INTEL TOUCHSTONE DELTA
--------- MEIKO CS2
JBM SP1 EUIH

project for the development of a scalable parallel
eigenvalue solver. The SBR code is intended for dis-
tributed memory multiple-instruction, multiple-
data (MIMD) parallel machines. PRISM uses the Cha-
meleon programming system, discussed in the pre-
vious section, and support for parallel operations
on disjoint node subsets that is critical in exploit-
ing the multiple levels of parallelism in the algo-
rithm.

Table 4 shows some early performance results of
the SBR code when applied to the Hessenberg re-
duction of a full matrix. N is the matrix size, nb
is the block size used in the reduction of the ma-
trix to b subdiagonal bands, Time is the elapsed
time in seconds, and Gflops (gigaflops) is the sus-
tained double-precision performance in billions of
floating-point operations per second on 16 nodes
of the SP1. These runs used the EUIH transport layer
and the vendor-supplied blas.a library. As the ta-
ble indicates, codes exploiting matrix-matrix ker-

GROPP AND LUSK 253




Table 4 Results for successive band reduction (SBR)
code applied to a full matrix

Matrix Block  Subdiagonal

Size Size Bands )

(N) {nb) ® “Time Gflops
1000 1 20 19.9 0.233
1020 15 15 11.5 0412
2000 1 20 164.1 0,227
2000 10 10 63.1 0.582
3000 1 10 512.5 0.246
3000 15 15 165.4 0.798
4000 20 20 346.0 0.849

nels (nb > 1) perform much better than codes
based on matrix-vector kernels (nb = 1). In par-
ticular, using a blocked algorithm, one can reduce
a 3000 x 3000 matrix to a bandwidth of 15, roughly
in the same time that one can tridiagonalize a 2000
x 2000 matrix, even though the former operation
takes three times as many floating-point opera-
tions.

Message-Passing Interface. Message-Passing Inter-
face (MPI) is a message-passing standard library in-
terface developed by a group of parallel computer
vendors and users. A partial implementation of the
standard as of May 1993 was implemented and run
on the SP1. Subsequently, the MPI standard was
completed (see References 6, 7), and multiple ver-
sions were made available on the SP1. All made ef-
ficient use of the High-Performance Switch and
were comparable to IBM’s fastest message-pass-
ing library products. A portable version that allows
porting from a very large number of machines and
workstation networks to the SP1 is described in Ref-
erence 8.

Program Composition Notation. Program Compo-
sition Notation (PCN)*!? is a system for develop-
ing and executing parallel programs. It comprises
a high-level programming language, tools for de-
veloping and debugging programs in this language,
and interfaces to FORTRAN and C that allow the re-
use of existing code in multilingual parallel pro-
grams.

The network version of PCN (net-PCN) was ported
to the SP1. Run-time support was added to PCN to
allow communication to use TCP/IP over either the
Sp1 High-Performance Switch or the Ethernet. Sev-
eral PCN applications were also run on the SP1, in-

254 GROPP AND LUSK

cluding the massively parallel mesoscale model
(discussed in a later section).

Libraries for scientific computing. Two libraries that
were designed at Argonne to assist in the devel-
opment of parallel scientific software were ported
to the SPI1.

Portable Extensible Tools for Scientific Comput-
ing. Portable Extensible Tools for Scientific Com-
puting (PETSc) is a package of routines aimed
primarily at the solution of partial differential equa-
tions. PETSc is designed to match advanced algo-
rithms to new and existing applications by taking
an object-oriented approach to the design of the
routines. For example, the iterative accelerators
that are part of PETSc!! allow the user to specify
all of the vector operations as well as matrix-vec-
tor product and preconditioning. Thus, these iter-
ative methods can be used with nontraditional vec-
tors, such as vectors generated by adaptive
refinement algorithms, or vectors distributed
across a distributed memory parallel computer.
PETSc also includes a number of packages that aid
in writing parallel programs. One of these is Block-
Comm, a package for communicating blocks of
data between processors. Another is a parallel gen-
eral (nonsymmetric) linear system solver using it-
erative methods. !

All of the parallel communication in PETSc is done
with Chameleon; hence, porting PETSc required no
special effort, with the exception of the FORTRAN
library. A version of PETSc that can take advan-
tage of the IBM Engineering and Scientific Subrou-
tine Library (ESSL) was developed; because PETSc
is object oriented, users can take advantage of
these changes by relinking rather than rewriting
code.

BlockSolve. BlockSolve® is a software library of
applications used for solving large, sparse systems
of linear equations on massively parallel comput-
ers. The matrices must be symmetric but may have
an arbitrary sparsity structure. BlockSolve is a por-
table package that is compatible with several dif-
ferent message-passing paradigms including EUIH
but not EUL

Researchers used Chameleon to port BlockSolve
easily to the 1BM sP1. (It should be noted, however,
that BlockSolve need be compiled only with the
options compatible with the message-passing par-
adigm and architecture on which it will be used.)

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995




The p4 system. The p4 parallel programming sys-
tem'>! is a library of message-passing applications
that runs on a wide variety of parallel computers
and workstations and has been used routinely on
networks of RISC System/6000 machines.

The C part of p4 compiled and linked without al-
teration on the SP1, using all parameters from the
RISC System/6000 version. Programs written in C
that had been compiled and linked for the RISC Sys-
tem/6000 network using p4 also ran unchanged; the
phylogenetic tree application (see section later in
this paper with same name) is in this category.

After the switch and related software were in-
stalled, existing p4 applications were able imme-
diately to use the switch via the TCP/IP interface,
even without EUI. When EUI was available, p4 was
quickly ported to EUI and then to EUIH. The only
changes necessary to move from the EUI version
involved switching to FORTRAN calling sequences.

Applications

Successful porting of a programming package to
a parallel machine was once considered a sufficient
test of the machine. However, as parallel machines
are increasingly being acquired for production
computing, it is more important to test them with
real existing (as opposed to model) applications.
Using the portability tools described previously,
MCs researchers quickly ported and ran a wide va-
riety of applications.

Computational electromagnetics. Computational
electromagnetics is widely used in industrial, re-
search, and defense applications. However, many
important problems are intractable with conven-
tional techniques and vector supercomputers. For
practical applications, the problem size (such as
the number of degrees of freedom and the number
of unknowns) must be dramatically increased, turn-
around time must be reduced, and solution accu-
racy must be improved. A promising approach for
overcoming these limitations is the use of integral
equation methods (IEMs) implemented on mas-
sively parallel computers.

CORAL is a program that has been used to solve
nonlinear three-dimensional magnetostatics prob-
lems by exploiting such methods. Argonne re-
searchers developed a parallel version of CORAL,
using Chameleon for the message-passing parts of
the program. The systems of linear equations were

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Table 5 Solution time (in seconds) for four problems

Number of Matrices of Order
Processors 579 972 1629 2278
1 952 3127 -
2 507 1245 — -
4 279 767 2571 _—
6 236 — - -
8 — 454 1637 - 3416

solved using the parallel iterative methods in Ar-
gonne’s Parallel Simplified Linear Equation Solv-
ers package, which provides easy access to state-
of-the-art methods for solving systems of linear
equations (see the previous section on libraries for
scientific computing).

Preliminary timings on the IBM SP1 are shown in
Table 5. The table shows solution time in seconds
as a function of the number of processors for four
different problems. The first column is the num-
ber of processors used. The other columns report
total solution time (in seconds) as a function of the
number of processors used for solving four differ-
ent nonlinear problems with matrices of order 579,
972, 1629, and 2278, respectively. These results
show good performance and speedup even on rel-
atively small problems.

Massively parallel mesoscale model. Mesoscale
models of the atmosphere provide short-range
weather forecasts, detailed “what if”* scenarios for
climate change, and research platforms for mod-
eling the generation of storms. One widely used
mesoscale model is the massively parallel meso-
scale model (MPMM), a fine-grained dynamic de-
composition of the Penn State NCAR (National Cen-
ter for Atmospheric Research) mesoscale model
version 5. In MPMM, each set of four horizontal grid
points is represented as a parallel process running
under PCN (discussed previously), providing a
transparent mechanism for redistributing load be-
tween physical processors.

MPMM achieved 700 Mflops (millions of floating-
point operations per second) on 64 processors of
the 1BM SP1. This performance is equivalent to five
times the performance of a single CRAY Y-MP** pro-
cessor. The sp1 offered several features critical to
efficient performance for real-time forecasting and
data assimilation—in particular, the high-band-
width input/output and the large memory capacity

GROPP AND LUSK 2§5




on the processing nodes. The SP1 also provided a
better development environment than other par-
allel systems, in part because each node has a full
UNIX environment.

Monte Carlo calculations of nuclear ground states.
Researchers in Argonne’s Physics Division, in col-
laboration with V. R. Pandharipande of the Uni-
versity of Illinois at Urbana, are computing the

Argonne researchers
quickly ported and ran
a wide variety of
applications.

properties of light (up to 40 neutrons and protons)
nucleiusing realistic two- and three-nucleon inter-
actions. This research involves developing many-
body methods for reliably computing the proper-
ties of a nucleus for complicated forces that are
strongly dependent on the spins and charge states
of the nucleons.

The current approach involves variational calcu-
lations in which one assumes a form for the quan-
tum-mechanical wave function describing a nu-
cleus and then computes the energy of the nucleus
for a given force model. Multidimensional (12 to
120 dimension) integrals are computed by using
Monte Carlo methods. The integrand is expressed
in terms of large complex vectors describing the
spin and charge states of the nucleons. These cal-
culations must be repeated many times to find the
best set of parameters for the assumed form of the
wave function. The longer a given calculation is
allowed to proceed, the smaller the statistical er-
ror from the Monte Carlo integration, and hence
the more refined the determination of the best pa-
rameters.

The first calculations done on the SP1 used a new
nuclear interaction and obtained much better
(when compared with experiment) results for the
binding energy and density profile of oxygen than
previously obtained. The better density results
were specifically attributable to the detailed vari-

256 GROPP AND LUSK

ational searches made possible by the SP1. The
speed of the SP1 also enabled the researchers to
calculate calcium (40 nucleons) for the first time.

The sP1 was the first parallel processor used for
these calculations. Previously, the work had been
performed on single processors of the most pow-
erful Cray computers available. Earlier parallel
computers could not be used because of their small
memories; the calculations require up to 65
megabytes of memory.

The Argonne package p4 was used to implement
the message-passing part of the program. Runs on
128 nodes achieved speedups of 123, or compu-
tational rates of 5.9 Gflops. (One run using 160
nodes achieved 6.5 Gflops, but there were also
other users on some of the nodes.)

Parallel community climate model. The parallel
community climate model (PCCM2) is a message-
passing implementation of the NCAR (National Cen-
ter for Atmospheric Research) Community Climate
Model 2 and is intended for global climate predic-
tion. Development of the parallel model is sup-
ported by the Department of Energy CHAMMP pro-
gram as a collaborative project with Argonne, Oak
Ridge, and NCAR.

In September 1993, PCCM was officially validated
with respect to the sequential version of the com-
munity climate model. The SP1 was used exten-
sively in the validation work because its nodes are
identical to workstation platforms running the pre-
viously validated sequential version.

The model is patch decomposed in two horizontal
dimensions. Spectral transport of all prognostic
variables except moisture is accomplished by par-
allel fast Fourier transforms (FFTs) in the zonal di-
mension and Gaussian quadrature in the me-
ridional dimension, approximating Legendre
transforms. The spectral transport mechanism of
PCCM2 is communication-intensive because inter-
change of data is not confined to the nearest neigh-
bor. A semi-Lagrangian transport scheme is used
for transport of moisture. Modules that compute
atmospheric processes such as convection, radi-
ative transfer, and precipitation are collectively
known within the model as physics. Physics is per-
fectly parallel in PCCM because there are no hor-
izontal data dependencies; however, physics does
present the largest source of inefficiency from load
imbalance.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995




PCCM2 was implemented by using Chameleon
through a compatibility library to PICL, the mes-
sage-passing package under which the code was
originally developed. Before being run on the IBM
SP1, PCCM2 was run on the Intel Touchstone DELTA
and Paragon computers.

PCCM ran at approximately 650 Mflops on the full
SP1 (128 processors) communicating over the EUIH
switch interface. Figure 4 shows the distribution
of run time over the three main components of the
code: spectral transport, semi-Lagrangian trans-
port, and physics. Interprocessor communication
accounted for most of the time spent in the forward
and inverse FFTs, the parallel vector-sum (part of
the Legendre approximation), and initialization for
the semi-Lagrangian transport (SLTINI). The larg-
est computational part of the code is physics, and
the effect of load imbalance can be seen as well.
Despite good overall floating-point performance
(.65 Gigaflops), a considerable fraction of the time
was still taken up with communication and load
imbalance possibly due in part to the absence of
gang scheduling on the SP.

Phylogenetic trees. To better understand organisms
and the evolution and function of the ribosome,
Argonne researchers are developing a phylogenetic
tree that relates the sequences of a small molec-
ular subunit called ribosomal RNA in prokaryotic
and eukaryotic microorganisms. This work is con-
ducted in collaboration with scientists from the
University of Illinois Ribosomal Database Project.
A maximum likelihood technique is being used,
which determines the greatest statistical probabil-
ity of the sequence of evolution. The technique,
originally implemented by Felsenstein, ’* was en-
hanced by University of Illinois researchers, along
with researchers at Argonne and Kobe University
in Japan, to enable it to analyze large numbers of
organisms on both uniprocessors and massively
parallel systems.

Using the enhanced technique, and capitalizing on
the large memory and exceptional speed of the sys-
tem, the researchers were able to construct a phy-
logenetic tree with more than 2000 organisms.
Since it was not practical to simply make one huge
run and produce a reliable tree, the tree was com-
puted in steps. Initially, a small tree of 473 organ-
isms was composed. New sequences were then in-
serted into the tree, and the resultant tree was
“optimized” by performing thousands of local

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Figure 4 Distribution of work in a PCCM2 environment

PCCM2 PERFORMANCE ON 128-NODE SP1 USING EUHH

0.952 SECONDS / TIME STEP
(648 MFLOPS)
MAIN CODE
COMPONENTS 20%
UNAGCOUNTED
FOR
. td% 3.5% FORWARD FFT
% 1T R 3.8% INVERSE FFT
SPECTRAL
raanseort | (T 5% vector sum

27% 14% SLTINI

SEMI-
LAGRANGIAN 5010 M 00 0
TRANSPORT | HHHH-HHHHAHH

0 O 0 A A

>
%

T 6.5% SLT CORE
H IDLE TIME
3.5% SLT CORE
] y COMPUTE TIME
f 10% PHYSICS IDLE
(LOAD IMBALANCE)

28%

PHYSICS 18% PHYSICS

COMPUTE TIME

maximum likelihood computations (which can pro-
duce local rearrangements within the tree).

Argonne researchers also used the SP1 to gather
data needed to evaluate tools used in conjunction
with the maximum likelihood computation. These
tools, developed at the University of Illinois, com-
pute varying rates of change that occur in phylo-
genetic computations. Over 450 runs were made
on the SP1, each of which consumed between 12
and 36 hours on single nodes.

The phylogenetic tree application unquestionably
consumed the largest number of hours on the SP1
during its first few months at Argonne. The work
was reported in the Journal of Bacteriology,'® with
a full reproduction of the tree.

Superconductivity. Argonne is exploring various as-
pects of the numerical solution of high-tempera-
ture superconductors. Three projects made early

GROPP AND LUSK 287




Table 6 Solution times (seconds per iteration) for three problems

Number of Grid Sizes
Processors 1302 x 10 2582 x 10 5142 x 10
EUIH Sockets EUIH EUIH
1 7.67 15.3 — —
2 4.00 8.19 — —
4 2.16 4.88 8.36 —
8 1.22 3.89 4.66 18.67
16 .60 3.69 2.19 8.27
32 .34 4.11 1.18 4.43
64 .20 4.36 .65 2.23
96 17 o .48 1.57

use of the SP1: the study of the vortex-glass state,
numerical simulation of vortex dynamics, and anal-
ysis of the properties of vortex structures.

Elastic string model. MCS Division computer sci-
entists developed a code for the numerical simu-
lation of the planar motion of a one-dimensional
elastic filament (single vortex) under tension. With
this elastic filament model, avalanche-type behav-
ior was observed when the applied forces were in
the neighborhood of a critical transition value. The
researchers developed other elastic filament mod-
els to explore this so-called self-organized critical-
ity phenomenon. Numerical studies required the
accumulation of statistics from a large number of
events, each involving the solution of a stochastic
differential equation subject to a random initial per-
turbation.

The most difficult calculations occurred for very
small applied forces when the system was in a
“glassy” or “creep” state. The slow dynamics of
the creep state required extremely large amounts
of computer time to establish the asymptotic be-
havior. The calculations were characterized by
large numbers of ensembles (~12 000), each cor-
responding to a random realization of a potential
tilted by an applied force. Even for small forces,
a very large number of spatial points (~75 000)
were needed to resolve the potentials. Since each
realization is independent of the other realizations,
a large number of these jobs was able to be run in
parallel. This work was initially started using a BBN
TC2000** and a Sun SPARCstation** network. The
programs were then ported to the SP1 system, re-
alizing a significant improvement in execution time.
In particular, for some of the most difficult calcu-
lations, with very small applied forces, use of the
SP1 reduced solution time from approximately five

258 GROPP AND LUSK

days (on Sun SPARC workstations) to approxi-
mately 17 hours.

Vortex dynamics. To study the formation and sub-
sequent evolution of magnetic flux vortices and the
influence of random impurities on vortex pinning,
MCS researchers developed a computer model
based on the three-dimensional time-dependent
Ginzburg-Landau (TDGL) equations.

The three-dimensional domain is subdivided into
an array of cells. The code solves numerically for
the complex-valued order parameter (identified
with the vertices of each cell) and the gauge field
(identified with the edges of each cell). The result-
ing equations of motion are solved by using a sin-
gle-time-step forward Euler procedure. The pri-
mary data structures used are four complex, three-
dimensional arrays whose values are updated each
time step according to the equations of motion.

The dynamics were initiated from a doped state in
the presence of an external magnetic field whose
strength was adjusted so that the material was in
the mixed state. The material was modeled with
a pair of planar defects (twin boundaries) running
diagonally through the sample. Inhomogeneities in
the twin boundaries were modeled with random
point defects embedded in the twin boundaries.

To parallelize the program, the researchers parti-
tioned the array of cells (grid) among the proces-
sors. Each processor was responsible for updat-
ing all the cells in the subgrid contained in its
memory. The update step for each cell required
values from neighboring cells. In order to commu-
nicate these values between processors, the Block-
Comm package (previously discussed) was used.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995




Table 7 Comparison of the CPU and elapsed times for three different cases

Number of Intel DELTA
Processors CPU Elapsed

IBM SP1 (EUIH) IBM SP1 (p4)

.CPU Elapsed CPU

Elapsed

307.67 308.00
160.26 160.00
79.33 80.00
43.13 43.00

203.89 205.46 203.90
86.09 86.75 81.26
37.54 37.61 33.29 112.46
21.33 21.50 17.94 196.09
12.75 12.97 — —

205.29
118.44

Preliminary timings on the IBM SP1 are shown in Ta-
ble 6. The first column is the number of processors
used. The other columns report time per iteration (in
seconds) as a function of the number of processors
for grid sizes of 130 x 130 x 10, 258 x 258 x 10, and
514 x 514 x 10, respectively. EUIH in a column in-
dicates IBM’s EUIH message-passing software was
used in conjunction with the High-Performance
Switch. For comparative purposes, the smallest
problem was also run using a version of the p4 mes-
sage-passing software that used UNIX sockets to com-
municate over an external Ethernet network that also
connects the processors.

Vortex structures. To find optimal vortex solutions
within the three-dimensional anisotropic Ginzburg-
Landau model, MCS researchers developed a par-
allel code that uses the limited-memory BFGS
(Broyden-Fletcher-Goldfarb-Shanno) algorithm. "’

Parallelization was achieved through a simple
three-dimensional domain decomposition scheme
in which the global domain was partitioned across
an arbitrary number of processors. The commu-
nication between processors was carried out by us-
ing the Chameleon parallel software package. The
portability of the Chameleon primitives enabled the
code to be run on a variety of parallel platforms,
using several different parallel communication par-
adigms, without any coding changes.

The code was used to study various properties of
uniaxial superconductors such as the lower critical
field and the anomalous “vortex-chain” state. Ta-
bles 7 and 8 give performance comparisons for a se-
lection of three different cases: (1) the Intel Touch-
stone DELTA, (2) the IBM SP1 running EUIH, and (3)
the IBM SP1 running p4. All cases are for 100 BFGS
iterations with a constant global domain size of 32
X 32 x 32 for Table 7, and a constant local domain
size of 16 x 16 X 16 for Table 8. The superlinear
speedup in the SP1 results in Table 7 was most likely

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Table 8 Comparison of the CPU and elapsed time for
two cases

Intel DELTA IBM SP1

(EUIH)
Elapsed

Number of
Processors

CPU Elapsed

73.71  74.00 . 16.01
76.27  76.00 . 17.90
77.85  78.00 . 19.49
79.33  80.00 . 21.57
80.57  81.00 . 22.98

caused by cache effects. Also note the CPU time col-
umn from the SP1 (p4) results; these show very good
performance in a time-shared environment, even
though the elapsed time performance is relatively
poor. Table 8 shows the performance as the local do-
main size is held fixed and the number of unknowns
grows proportionally with the number of processors.
The results suggest that the local domain is too small
(only 4096 mesh points) for the SP1. This conclusion
is consistent with the faster speed of the processors
with respect to the communication than for the Intel
DELTA, and emphasizes why the large per-node
memory is an important feature of the spi.

Parallel theorem prover. A parallel distributed
memory theorem prover (the distributed associa-
tive-commutative theorem prover, or dac) was
ported to the sP1 with no problems. The code had
initially been developed on the Sequent Computer
Corporation Symmetry system and a network of
Sun Microsystem processors using p4. Therefore,
once p4 itself was ported to the SP1, dac simply had
to be recompiled and linked.

The code was used on the SP1 to solve a bench-
mark problem in theorem proving, namely, that a
ring where x* = x for allx is commutative. Single-
node performance was excellent, despite the lack
of floating-point operations in dac.

GROPP AND LUSK 259




Figure 5 Bandwidth for an SP1 with SP2
communication adaptors

RATE (MBYTES/SEC)

L I | I ' | — I Y
400 0 800 000 1200 000
200 000 600 000 1000 000

SIZE (BYTES)

SP2 USER SPACE MPL
SP2 TCP/iP OVER THE SWITCH

Figure 6 Latencies for small messages on SP1 with
SP2 communication adaptors

g
o

1500 el

TIME (MICROSECONDS)

1000 L

500 _/

0 1 L
0 200
SIZE (BYTES)

y u T T
400 600 800 1000 1200

-------- SP2 TCP/IP OVER ETHERNET
SP2 TCP/IP OVER THE SWITCH
SP2 USER SPACE MPL

260 GROPP AND LUSK

Summary

The SP1 proved to be an excellent system for a va-
riety of applications. Having a full version of UNIX
on each node allowed for easy ports. The large
memory on each node provided one-node execu-
tion as a useful step in the porting process. Fur-
thermore, the use of tools such as Chameleon and
p4 made it possible to port diverse applications
quickly.

After the first few months, the pace of moving new
applications to the machine increased. Many of the
early applications quickly shifted to “production™
mode, no longer functioning as research projects
in computing but delivering new scientific results
in their application areas. The work in structural
biology and in nuclear physics is particularly note-
worthy.

Since the time covered by the original reporting of
these experiences in an Argonne technical report, '
development of the sp1 facility at Argonne and the
programming environment has flourished. In terms
of hardware, the biggest change has been the in-
stallation of the SP2 communication adaptors, al-
lowing much greater bandwidth (see Figure 5). We
now run the SP2 software although we still have
SP1 nodes. Figure 6 shows latency for short mes-
sages on the upgraded machine. The architecture
has proven flexible enough to accommodate cus-
tom changes, such as integration of our Model
970Bs, large RISC System/6000s originally designed
to be connected only by fiber channel and Ether-
net to the SP1 nodes, into the switch “fabric” by
installing SP2 communication adapters in them.
(This makes our machine a sort of “home-brew”
SP2.) The SP2 communication adapters are faster
(up to five times faster) and “smarter” (such as al-
lowing overlap between communication and com-
putation using direct memory access) than the SP1
communication adapters.

This new release 2 implementation of MPL has re-
placed EUIH, providing high performance in the
product software, but those using the portability
libraries did not see any changes in their codes.
Since the time covered by our earlier experiences,
the MPI (Message-Passing Interface) standard’ has
emerged as an industry-wide portable library spec-
ification, and most new applications at Argonne are
being written in MPI. Two implementations of MPI

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995




are available to users on our SP1. Both are as ef-
ficient as the “native” MPL library.

Utilization of the machine has been enhanced by
anew job scheduler developed at Argonne, ° which
ensures exclusive access to nodes for users for en-
hanced parallel performance. Some of its features
are being considered for later versions of the IBM
scheduling software.

Finally, visibility of the machine and its doc-
umentation have been enhanced by making use
of the World Wide Web in the Internet. Current
information on our machine and all aspects of
its operation can be found at http://www.mcs.
anl.gov/spl.

Acknowledgments

Many people contributed to the individual sections
of this document. We thank in particular Christian
Bischof, Kimmo Forsman, Lori Freitag, Lauri
Kettunen, Gary Leaf, David Levine, William Mc-
Cune, John Michalakes, Ross Overbeek, Mario
Palumbo, Steven Pieper, Paul Plassmann, Xiaobai
Sun, and Steven Tuecke.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of X/Open Co., Ltd.,
Cray Research, Inc., Bolt Beranek and Newman, Inc., or Sun
Microsystems, Inc.

Cited references

1. C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A.
Bender, D. G. Grice, P. Hochschild, D. J. Joseph,
B. J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and
P. R. Varker, “The SP2 High-Performance Switch,” IBM
Systems Journal 34, No. 2, 185-204, (1995, this issue).

2. M. Snir, P. Hochschild, D. D. Frye, and K. J. Gildea, “The
Communication Software and Parallel Environment of the
IBM SP2,” IBM Systems Journal 34, No. 2, 205-221 (1995,
this issue).

3. W. Gropp and E. Lusk, “Scalable UNIX Tools on Parallel
Processors,” Proceedings of the 1994 Scalable High Per-
formance Computing Conference, IEEE (1994), pp. 56—
62.

4. 1. Foster, R. Olson, and S. Tuecke, Programming in For-
tran M, Technical Report ANL-93/26, Revision 1, Argonne
National Laboratory (1993).

5. W. D. Gropp and B. F. Smith, Chameleon Parallel Pro-
gramming Tools Users Manual, Technical Report ANL-
93/23, Argonne National Laboratory (March 1993).

6. The Message-Passing Interface Forum, “MPI: A Message
Passing Interface,” Proceedings of Supercomputing 93,
IEEE Computer Society Press (November 1993), pp. 878—
883.

7. The Message-Passing Interface Forum, “MPI: A Message-

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Passing Interface Standard,” International Journal of Su-
percomputer Applications 8, No. 3/4 (1994).

8. W. Gropp and E. Lusk, An Abstract Device Definition to
Support the Implementation of a High-level Message-Pass-
ing Interface, Technical Report MCS-P342-1193, Argonne
National Laboratory (1993).

9. 1. Foster, R. Olson, and S. Tuecke, “Productive Parallel
Programming: The PCN Approach,” Scientific Program-
ming 1, No. 1, 51-66 (Fall 1992).

10. 1. Foster and S. Tuecke, Parallel Programming with PCN,
Technical Report ANL-91/32, Rev. 2, Argonne National
Laboratory (1991).

11. W.D. Gropp and B. F. Smith, Users Manual for KSP: Da-
ta-Structure-Neutral Codes Implementing Krylov Space
Methods, Technical Report ANI.-93/30, Argonne National
Laboratory (August 1993).

12. M. T. Jones and P. E. Plassmann, “An Efficient Parallel
Iterative Solver for Large Sparse Linear Systems,” Pro-
ceedings of the International Mathematics Association
Workshop on Sparse Matrix Computations: Graph The-
ory Issues & Algorithms, Minneapolis, MN, University of
Minnesota (1991).

13. R. Butler and E. Lusk, “Monitors, Messages, and Clus-
ters: The p4 Parallel Programming System,” Journal of Par-
allel Computing. To appear.

14. R. Butler and E. Lusk, “Monitors, Messages, and Clus-
ters: The p4 Parallel Programming System,” Parallel Com-
puting 20, 547-564 (1994).

15. 1. Felsenstein, Phylip Manual Version 3.3, University of
California, Berkeley, CA 94720 (1990).

16. G.L. Olsen, C. R. Woese, and R. Overbeek, “The Winds
of (Evolutionary) Change: Breathing New Life into Micro-
biology,” Journal of Bacteriology 176, No. 1, 1-6 (Janu-
ary 1994).

17. D.C.Liuand]. Nocedal, “On the Limited Memory BFGS
Method for Large-scale Optimization,” Mathematical Pro-
gramming 45B, 503-528 (1989).

18. W. Gropp, Early Experiences with the IBM SPI and the
High-Performance Switch, Technical Report ANL-93/41,
Argonne National Laboratory (1993).

19. D. Lifka, M. Henderson, and K. Rayl, Users Guide to the
ANL SP Scheduling System, Technical Report ANL/MCS-
TM-201, Argonne National Laboratory (1994).

Accepted for publication December 19, 1994.

Willlam D. Gropp Mathematics and Computer Science Divi-
sion, Argonne National Laboratory, 9700 South Cass Ave., Ar-
gonne, lllinois 60439-4844 (electronic mail: gropp@mcs. anl.gov).
Dr. Gropp is a computer scientist in the Mathematics and Com-
puter Science Division at Argonne National Laboratory and Dep-
uty Scientific Director of Argonne’s High-Performance Comput-
ing Research Facility. After receiving his Ph.D. in computer
science from Stanford University in 1982, he held the positions
of assistant (1982-1988) and associate (1988-1990) professor in
the Computer Science Department of Yale University. In 1990,
he joined the Numerical Analysis group at Argonne. His research
interests are in adaptive methods for PDEs, software for scien-
tific computing, and parallel computing. His current projects in-
clude an implementation of the Message-Passing Interface stan-
dard, domain decomposition techniques for solving PDEs, and
research into programming models for parallel architectures.

Ewing Lusk Mathematics and Computer Science Division,
Argonne National Laboratory, 9700 South Cass Ave., Argonne,

GROPP AND LUSK

261




Hllinois 60439-4844 (electronic mail: lusk@mcs.anl.gov).
Dr. Lusk is a senior computer scientist in the Mathematics and
Computer Science Division at Argonne National Laboratory
and Scientific Director of Argonne’s Advanced Computing Re-
search Facility. After receiving his Ph.D. in mathematics at the
University of Maryland in 1970, he served first in the Math-
ematics Department and later in the Computer Science Depart-
ment at Northern Illinois University before joining the Auto-
mated Reasoning group at Argonne in 1982. His research
interests are in automated theorem proving, logic programming,
and parallel computing. His current projects include an imple-
mentation of the Message-Passing Interface standard and re-
search into programming models for parallel architectures.

Reprint Order No. G321-5567.

262 GROPP AND LUSK IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995




