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One of the  first IBM ~arallel processing 
computers-the  SP1  -and  the  largest,  with  128 
nodes,  was  installed in 1993 at Argonne  National 
Laboratory.  It  took only days,  not  months, to 
prepare  for  and  migrate  applications to this 
parallel  supercomputer,  demonstrating  that  high 
performance,  parallelism,  and  portability  can 
coexist.  This  paper  describes the early 
experiences  with  the SP1 at Argonne,  which 
provide  lessons for  supercomputer  system 
designers  and  users  alike.  We  explore  what 
features of  software  technology  and  system 
architecture  enabled  immediate  and  successful 
use of the SP1. The  paper  concludes  with  a  brief 
indication of  why the  move to the SPZW  software 
environment  using the SP2  communication 
adapters,  the  use of the  emerging  Message- 
Passing  Interface  standard,  and  the  continued 
use of the  SP1  processors  have  been  successful. 

I n 1991-1992, the  Mathematics  and  Computer 
Science Division at Argonne National  Labora- 

tory in Chicago, Illinois, began making plans for 
a  change in its  research  focus in high-performance 
computing. Since 1983 it had carried  out  research 
in many  areas of parallel computing and had op- 
erated  the  Advanced Computing Research Facil- 
ity (ACRF), home to  earlyversions of parallel com- 
puters from a  variety of manufacturers.  Work with 
these  machines had been  responsible  for signifi- 
cant  contributions to the  understanding of parallel 
algorithms for  many scientific problems  and  to  the 
development of tools for enhancing  the  portabil- 
ity of these algorithms. But it was time for  a  new 
direction. The new direction  was to involve appli- 
cation  scientists in the  use of this parallel comput- 
ing knowledge, in order  to  demonstrate  the  cost- 
effectiveness of parallel computing for large-scale 
scientific problems. 

Such  a goal required  a different machine acquisi- 
tion strategy from that of previous years. Although 
some forward-looking application scientists had 
used  the  machines of the ACRF to acquaint them- 
selves with parallel computing  issues,  most had 
kept to their traditional supercomputers, simply be- 
cause  the  research  machines of the ACRF, suitable 
as  they  were for computer  science  research, did 
not have  the  computing power necessary for de- 
livering research  results in the new field of com- 
putational  science. 

Argonne initiated its new machine acquisition strat- 
egy by reviewing all the  then-current parallel com- 
puter  vendors  and  then choosing the newly avail- 
able IBM Scalable POWERparakl Systems*.  The 
specific machine acquired,  the w 1 * ,  had 128 nodes 
(larger than  what was officially available at  that 
time),  with custom-designed input/output  hard- 
ware. It  was anticipated  that  the sP1 would pro- 
vide  an  environment to which existing tools  and 
applications could be  ported quickly, providing 
early  evidence of its usability as a “first-class sci- 
entific instrument.”  (In  this  paper,  the termport 
is used to refer  to  the programming changes  nec- 
essary  to allow an application program that  runs 
on  one  type of computer  to  run  on  another  type 
of computer.) 
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Figure 1 Communication  performance for small 
messages  for  a  variety of machines 
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All timing and performance results discussed in this 
paper  were preliminary results.  Little time was 
made available for single-user benchmarks;  hence, 
many of the  results  are from runs on relatively 
small numbers of processors.  The  results  also  re- 
flect the  use of the sP1 communication  adaptors 
(further  described in References 1 and 2). 

Several of the  sections  that follow mention the  ex- 
ternal  user  interface (EUI) and  the high-perfor- 
mance  external  user  interface (EUIH), terms  that 
are no longer current. EUI was  the name of the  cus- 
tom message-passing library  that  came  with  the 
sP1. Due to performance  problems  (see  Figure l), 
the EUI was replaced  almost immediately with a 
user-space implementation developed  at IBM Re- 
search, named EUIH. 

This  paper  focuses on the first few months of expe- 
rience  with  the IBM sP1 and  concludes  with  a brief 
observation  about  the migration to  the newer S P ~ *  
software, while still using the sP1 hardware.  The 
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projects  reported  here  consist of tools  projects 
(summarized in Table l), reflecting both  the  port- 
ing of existing tools to  the sp1 and in some  cases 
the  development of new ones,  and application 
projects (summarized in Table 2), many of which 
use  one or more of the  tools. 

Successful migration to the SP1 

It  took  only  a  matter of days  and  not  months  to 
prepare  for  and  move applications to  the sP1 par- 
allel computer. What was it that  made  the IBM sP1 
such  a  success?  The  experiences  reported in this 
paper provide  support  for  some of the  expected 
reasons,  but also for  a  few  unexpected  ones. 

The single most  important  reason  that  the machine 
was effectively used so quickly was that so many 
advanced  users of parallel computers had already 
converted their codes  to a  portable form in order 
to run their applications in a  variety of existing en- 
vironments.  They  were  supported by a number of 
tools that  were geared to provide portability among 
parallel systems.  It  has  not  been found (by  this 
community)  that parallel algorithms must be com- 
pletely different on each machine in order  to 
achieve efficiency. Although some  machine-spe- 
cific tuning can make a performance difference, the 
tuning need not affect the  overall design of the pro- 
gram. Efficient parallel algorithms can be designed 
and coded in a  portable  way. A variety of porta- 
bility tools  contributed to  the speed with which ap- 
plications were moved to the sp1 machine; they  are 
described in the  next  section. Use of the message- 
passing model in the design of the sP1 meant  that 
the machine was  not very different from existing 
parallel machines, and so both  tool  writers and 
users found themselves in a familiar environment. 

The  use of off-the-shelf hardware  and  software 
components  (the IBM RISC System/6000* and the 
Advanced  Interactive  Executive*  system, AIX*) 
meant  that  the machine came with many  proven 
industrial-strength pieces, despite being very new. 
This was particularly true of the “single-node” soft- 
ware  components,  such as AIX, the FORTRAN and 
C compilers,  and  the dbx debugger. 

The  use of high-performance single nodes as a fun- 
damental  part of the design also eased  the porting 
of code  and  contributed to good initial results  for 
applications. The large memory on each  node (128 
megabytes in our  case)  meant  that  a first stage in 
the porting process could be achieved by running 
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Table 1 Parallel tools discussed  in this paper 

BlockSolve 
Chameleon 
FORTRAN M 
MPI 
Parallel UNIX tools 
PCN 
PETSc 
P4 
SBR 
xsp linfo 

Parallel sparse, symmetric linear systems 
Lightweight and portable message-passing system 
Parallel extensions  to FORTRAN 
Message-Passing Interface draft  standard 
Parallel versions of CP, kill, etc. 
Program Composition Notation (a coordination language) 
Portable Extensible  Tools for Scientific Computing 
Portable message-passing and shared-memory library 
Numerical parallel  linear  algebra 
Graphic display of EUIH message-passing system 

Table 2 Applications  discussed in this paper 

Computational electromagnetics 
Mesoscale weather model 
Nuclear structure 
Parallel community climate model 
Phylogenetic trees 
Superconductivity 
Theorem prover 

Model 3D, arbitrary geometry magnets 
Continent-sized weather model 
Monte Carlo computation 
Global climate model 
Program to construct phylogenetic trees from sequence data 
Modeling of flux vortices in high-temperature superconductors (three applications) 
Distributed associative-commutative theorem prover 

the application sequentially on one  node. On ma- 
chines where  the same aggregate memory and com- 
puting power is achieved with a larger number of 
smaller nodes,  this is often impossible, and so ap- 
plications must be ported in one  step, which re- 
quires solving several  problems  at  once. 

Some  features of the sP1 that  contributed  to  our 
decision to  acquire it turned  out to  be much less 
important  than  the  above design aspects.  This was 
particularly  true of the  new parallel software in- 
terface to  the machine. The  custom EUI message- 
passing library  was  not used by most applications. 
Since applications used portability libraries, only 
the tools  developers  needed  to  know  the EUI in- 
terface.  Environment  tools  such as  the log file dis- 
play tool (vt) and the parallel version of dbx (pdbx) 
did not play  a  role,  since during most of the period 
described  here,  they did not  run  on 128-node ma- 
chines. In addition, such tools were  too tightly cou- 
pled to parts of the  system  we  were  not using. For 
example, no library  for producing vt trace  records 
came with the  system, so vt could not be integrated 
into portable tools. Finally, the job-scheduling soft- 
ware  (LoadLeveler*)  was  perhaps  too  completely 
an off-the-shelf component from the workstation 
network  world;  once  the sp1  became heavily used 
(which was  soon) we  needed  a  scheduler  more ap- 
propriate for a  true  supercomputer. 

Programming packages and tools 

This  section  describes  both new tools developed 
for the sp1 and existing tools  ported to the sP1, as 
well as several numerical libraries  and program- 
ming packages  that  were  ported  to  the new sys- 
tem. 

Graphics tools. Researchers in Argonne’s Mathe- 
matics  and  Computer  Science Division (MCS) de- 
veloped  a tool, named xsp linfo, that displays the 
usage of the sP1 when using the EUJH message-pass- 
ing system. This tool, written using tcl and tk, shows 
the  partitions in use,  each partition being displayed 
in a different color, and  a list of partitions  contain- 
ing the  username, size, and amount of time the  par- 
tition has  been in use. An example display is shown 
in Figure 2. 

In addition, each  node is represented by a  button. 
Pushing this  button  with  the  mouse  can bring up 
anx-terminal window (xterm) on that  node or show 
the load average (depending on which mouse  but- 
ton is  used).  The load average reflects all processes, 
not just EUIH jobs. The display also shows  the num- 
ber of the  node  the  mouse is pointing to  and  the 
time when  the  display was last  updated. Using the 
tool xsp linfo, users  can  see how much of the ma- 
chine is in use with EUIH jobs and see  where their 
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Figure 2 A typical display of the EUIH usage of the SP1 
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Table 3 Parallel UNlX commands 

UNlX Parallel 

CP PCP 
PS PPS 
Is PIS 
find pfind 
if ( I  test’ ) action PPred 
kill pkill 
a.out prun . a.out 

EUIH jobs  are running. It also provides  a  conve- 
nient way  to  open x-terminal  windows on the sp1. 

Parallel UNIX tools. Because  each  node of the sP1 
ran  a  separate  copy of AIX and  contained  a  private 
disk, users  quickly  discovered  the  need to (1) run 
various UNIX** tools  (such as ps, Is, and cp) on a 
set of nodes and (2) to filter the  output  to  show  just 
the needed  data.  For  example, on a  uniprocessor, 
a typical query “Is a file present?” is usually an- 
swered by using Is filename. On the 128-processor 
sP1, however, running Is generated so much  out- 
put  that it was difficult to  be  sure  that  the file was 
present on all processors. (Piping into  the  word 
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count program, wc, was  too  severe; if the file was 
missing somewhere,  the  user  wanted  to  know 
where.) MCS scientists  developed  programs  to an- 
swer  such  questions in a scalable way,  by provid- 
ing both  an  easy  way  to make a specific inquiry 
across  the parallel machine (e.g., the program 
ppred) and a graphical display of the  output of these 
parallel commands  (the program pdisp). 

Table 3 lists the prototype implementations of some 
parallel versions of popular UNIX commands. 
These  routines  (actually shell scripts)  use  recur- 
sive subdivision to  execute  the UNIX commands 
in parallel. They  proved  particularly  important in 
distributing executable and shared input data  to  the 
local disks on the  nodes.  (This  project,  conceived 
as an immediate need on the sP1, subsequently de- 
veloped  into  a  more  substantial e f f ~ r t . ~ )  

FORTRAN M. FORTRAN M4 is a small set of ex- 
tensions to FORTRAN that  supports  a modular ap- 
proach  to  the  construction of sequential and par- 
allel programs. FORTRAN M programs use channels 
to plug together  processes  that  may  be  written in 
FORTRAN M or FORTRAN 77. Processes communi- 
cate  by sending and receiving messages on chan- 
nels. Channels and processes  can  be  created 
dynamically, but  programs remain deterministic 
unless specialized nondeterministic constructs  are 
used. 

FORTRAN M was ported to  the SP1, with run-time 
support  added  to allow communication via  the 
Transmission  Control  Protocol/Internet  Protocol 
(TCPDP) over either the switch or  the Ethernet.  Few 
difficulties were  encountered  beyond  the normal 
small differences in FORTRAN compilers. (Since 
FORTRAN M is a  preprocessor  that  produces FOR- 
TRAN 77 code, it is heavily dependent upon the FOR- 
TRAN 77 compiler of the target machine.) Several 
FORTRAN M applications were  also  run  on  the sP1, 
including a parallel chromatography simulation and 
a parallel smog model. 

Chameleon. Message passing is a  common  method 
for writing programs  for  distributed  memory  par- 
allel computers.  Unfortunately,  the  lack of a  stan- 
dard for message passing has  hampered  the 
construction of portable  and efficient parallel pro- 
grams. In an  attempt to remedy  this problem, a 
number of groups  have developed their own mes- 
sage-passing  systems,  each with its  own  strengths 
and  weaknesses.  Chameleon5 is a  second-gener- 
ation system of this  type.  Rather  than replacing 
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these existing systems, Chameleon is meant to  sup- 
plement them by providing a uniform way  to  ac- 
cess  many of these systems. Chameleon's goals are 
to (1) be  very lightweight (have low overhead), (2) 
be highly portable,  and (3) help standardize  pro- 
gram startup  and  the  use of emerging message- 
passing operations  such as collective operations 
on subsets of processors. Chameleon also provides 
a way  to port  programs  written using other  mes- 
sage-passing  libraries (such as PICL or Intel NX) to 
other  systems, including collections of worksta- 
tions.  This  feature was used by  the global climate 
model (discussed  later) to port  to  the sP1. 

Chameleon was ported  to  the sP1 with no problems 
other  than  the need to  statically link FORTRAN pro- 
grams. Both an EUI and EUIH port  were  provided, 
as well as a TCPIIP port using the p4 message-pass- 
ing system  (discussed  later)  that  uses TCPIIP. The 
EUIH port provided a simplified startup mechanism 
that eliminated the  need  for having the  user invoke 
the program with the shell script cotb0. 

Using a timing program in Chameleon called twin, 
MCS researchers  tested  communication  between 
pairs of processors. The program selects message 
sizes  adaptively in order  to  capture discontinuities 
in the behavior of the message-passing system. Fig- 
ure 1 compares  the  performance on several differ- 
ent machines. The sp1 shows  a  distinct  disconti- 
nuity  at 128 bytes.  This is due  to  the  fact  that  (the 
preproduction  version of) EUI switches  to  a differ- 
ent  protocol for longer messages,  thereby signif- 
icantly adding to  the  latency of longer messages. 
The  Intel  Touchstone DELTA results  also  show  a 
discontinuity  (at 480 bytes);  this reflects the mes- 
sage  packet  size (minus the  header) used on the 
DELTA. The  performance  for long messages  for  a 
variety of machines  is  shown in Figure 3. These 
results  show  that  one  can  expect good DELTA per- 
formance  compared  with  other  massively parallel 
processors  for communication-intensive programs 
that use EUIH. 

Successive band reduction. Successive band reduc- 
tion (SBR) is an  approach  for  orthogonally  reduc- 
ing matrices to condensed  form,  thereby allowing 
for  the  use of matrix-matrix (BLAS-3) kernels.  Spe- 
cial instances of SBR are  the tridiagonal and  Hes- 
senberg  reductions  used in various eigensolvers. 
In addition, SBR supports general band  reduction, 
which  is  needed for banded eigenvalue scenarios. 
A modified SBR approach is also used in the PRISM 
(parallel research on invariant  subspace  methods) 
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Figure 3 Communication  performance  for  long 
messages  for  a  variety  of  machines. All SP1 
results  use  the  switch.  Data  for  the  CM5 is 
unavailable for  messages  of this  length. 
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project  for  the  development of a  scalable parallel 
eigenvalue solver. The SBR code  is intended for dis- 
tributed  memory multiple-instruction, multiple- 
data (MIMD) parallel machines. PRISM uses  the Cha- 
meleon programming system, discussed in the pre- 
vious  section,  and  support for parallel operations 
on disjoint node  subsets  that is critical in exploit- 
ing the multiple levels of parallelism in the algo- 
rithm. 

Table  4  shows  some  early  performance  results of 
the SBR code  when applied to  the  Hessenberg  re- 
duction of a full matrix. N is the  matrix  size, nb 
is  the block size used in the  reduction of the ma- 
trix  to b subdiagonal bands, Time is the  elapsed 
time in seconds,  and Gflops (gigaflops) is the  sus- 
tained double-precision  performance in billions of 
floating-point operations  per  second on 16 nodes 
of the sP1. These  runs used the EUIH transport  layer 
and the  vendor-supplied b1as.a library. As the ta- 
ble indicates,  codes exploiting matrix-matrix  ker- 
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Table 4 Results  for  successive  band  reduction (SBR) 
code  applied to a  full  matrix 

Matrix Block Subdiagonat 
Size SIze 
(N) 

Bands 
(nb) (4 Time Gflops 

1000 1 20 19.9 0.233 
1020 15  15 11.5 0,412 
2000 1 20 164.1 0.227 
2000 10  10 63.1 0.582 
3000 1 10 512.5 0.246 
3ROO 15  15 165.4 0.798 
4000 20 20 346.0 0.849 

nels (nb > 1) perform much  better  than  codes 
based on matrix-vector  kernels (nb = 1). In par- 
ticular, using a blocked algorithm, one  can  reduce 
a 3000 X 3000 matrix to a bandwidth of 15, roughly 
in the  same time that  one  can tridiagonalize a 2000 
x 2000 matrix,  even though the former  operation 
takes  three times as  many floating-point opera- 
tions. 

Message-Passing  Interface. Message-Passing Inter- 
face (MPI) is a message-passing standard  library in- 
terface  developed by a  group of parallel computer 
vendors  and  users. A partial implementation of the 
standard as of May 1993 was implemented and  run 
on the sP1. Subsequently, the MPI standard  was 
completed  (see  References 6,7),  and  multiplever- 
sions  were  made available on  the sP1. All made ef- 
ficient use of the  High-Performance Switch and 
were  comparable  to IBM'S fastest  message-pass- 
ing library products. Aportable  version  that allows 
porting from a very large number of machines and 
workstation networks to the sP1 is described in Ref- 
erence 8. 

Program  Composition  Notation. Program Compo- 
sition  Notation (PCN)93'0 is a  system for develop- 
ing and  executing parallel programs. It  comprises 
a high-level programming language, tools  for  de- 
veloping and debugging programs in this language, 
and  interfaces to FORTRAN and  C  that allow the  re- 
use of existing code in multilingual parallel pro- 
grams. 

The network  version of PCN (net-PCN) was  ported 
to the SP1. Run-time support  was  added  to PCN to 
allow communication to use TCP/IP over  either  the 
sP1 High-Performance Switch or  the  Ethernet.  Sev- 
eral PCN applications were  also  run on the SP1, in- 
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cluding the massively parallel mesoscale model 
(discussed in a  later  section). 

Libraries  for  scientific  computing. Two libraries that 
were designed at Argonne to assist in the  devel- 
opment of parallel scientific software  were  ported 
to  the sp1. 

Portable Ektensible Tools for Scientific Comput- 
ing. Portable  Extensible  Tools  for Scientific Com- 
puting (PETSC) is a package of routines aimed 
primarily at the solution of partial differential equa- 
tions. PETSC is designed to  match  advanced algo- 
rithms  to new and existing applications by taking 
an  object-oriented  approach to the design of the 
routines. For example, the  iterative  accelerators 
that  are  part of PETSC" allow the  user  to  specify 
all of the  vector  operations  as well as matrix-vec- 
tor  product and preconditioning. Thus,  these  iter- 
ative  methods can be used with nontraditionalvec- 
tors,  such as  vectors generated by adaptive 
refinement algorithms, or  vectors distributed 
across  a  distributed  memory parallel computer. 
PETSC also includes  a  number of packages  that aid 
in writing parallel programs. One of these is Block- 
Comm, a package for communicating blocks of 
data between processors.  Another is a parallel gen- 
eral (nonsymmetric) linear system  solver using it- 
erative  methods. l1 

All of the parallel communication in PETSc is done 
with Chameleon; hence, porting PETSC required no 
special effort, with the exception of the FORTRAN 
library. A version of PETSC that  can  take  advan- 
tage of the IBM Engineering and Scientific Subrou- 
tine  Library (ESSL) was developed;  because PETSc 
is object  oriented,  users  can  take  advantage of 
these  changes by relinking rather  than rewriting 
code. 

BlockSolve. BlockSolve" is a  software  library  of 
applications used  for solving large, sparse  systems 
of linear equations  on massively parallel comput- 
ers.  The  matrices  must  be  symmetric  but may have 
an arbitrary sparsity  structure. BlockSolve is a por- 
table  package  that is compatible with  several dif- 
ferent message-passing paradigms including EUIH 
but  not EUI. 

Researchers used Chameleon to  port BlockSolve 
easily to  the IBM sP1. (It should be  noted,  however, 
that BlockSolve need be compiled only with the 
options  compatible with the message-passing par- 
adigm and  architecture on which it  will be used.) 
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The  p4  system. The p4 parallel programming sys- 
tem13,14 is  a  library of message-passing applications 
that  runs on a wide variety of parallel computers 
and  workstations  and  has  been used routinely on 
networks of RISC System/6000 machines. 

The C  part of p4 compiled and linked without al- 
teration on the sp1, using all parameters from the 
RISC System/6000 version.  Programs  written in C 
that had been compiled and linked for the RISC Sys- 
ted6000 network using p4 also  ran unchanged; the 
phylogenetic  tree application (see  section  later in 
this  paper  with  same  name) is in this  category. 

After  the  switch  and  related  software  were in- 
stalled,  existing p4 applications  were  able imme- 
diately to use  the  switch  via  the TCP/IP interface, 
even  without EUI. When EUI was available, p4 was 
quickly  ported  to EUI and then to EUIH. The  only 
changes  necessary  to  move from the EUI version 
involved switching to FORTRAN calling sequences. 

Applications 

Successful porting of a programming package to 
a parallel machine was once considered a sufficient 
test of the machine. However, as parallel machines 
are increasingly being acquired for production 
computing, it is  more  important  to  test  them  with 
real existing (as  opposed  to model) applications. 
Using the  portability  tools  described  previously, 
MCS researchers  quickly  ported  and  ran  a  wide  va- 
riety of applications. 

Computational  electromagnetics. Computational 
electromagnetics  is widely used in industrial,  re- 
search,  and  defense applications. However,  many 
important  problems  are  intractable  with  conven- 
tional techniques and vector supercomputers. For 
practical applications, the problem size  (such as 
the number of degrees of freedom  and  the  number 
of unknowns) must be dramatically increased, turn- 
around time must  be  reduced,  and  solution  accu- 
racy  must  be improved. A promising approach  for 
overcoming  these limitations is the use of integral 
equation  methods (IEMS) implemented on mas- 
sively parallel computers. 

CORAL is a program that  has  been used to  solve 
nonlinear three-dimensional magnetostatics  prob- 
lems by exploiting such  methods. Argonne re- 
searchers  developed  a parallel version of CORAL, 
using Chameleon for the  message-passing  parts of 
the program. The  systems of linear equations  were 

Table 5 Solution  time  (in  seconds)  for  four  problems 

Number of Matrices of Order 
Processors 57g 972  1629  2278 

1 952 3127 
2  507  1245 
4 279  767  2571 
6 236 - - - 
8 - 454 1637 3415 

- - 
- - 

- 

solved using the parallel iterative  methods in Ar- 
gonne’s Parallel Simplified Linear  Equation  Solv- 
ers package, which provides easy  access  to  state- 
of-the-art  methods  for solving systems of linear 
equations  (see the previous  section on libraries  for 
scientific computing). 

Preliminary timings on the IBM SP1 are  shown in 
Table 5. The  table  shows solution time in seconds 
as a  function of the  number of processors  for four 
different problems. The first column is the num- 
ber of processors  used.  The  other  columns  report 
total  solution time (in seconds)  as  a  function of the 
number of processors used for solving four differ- 
ent nonlinear problems with matrices of order 579, 
972,  1629, and 2278, respectively.  These  results 
show good performance  and  speedup  even  on rel- 
atively small problems. 

Massively  parallel  mesoscale  model. Mesoscale 
models of the  atmosphere  provide  short-range 
weather  forecasts, detailed “what  if”  scenarios  for 
climate change,  and  research  platforms  for  mod- 
eling the  generation of storms. One widely used 
mesoscale model is the massively parallel meso- 
scale  model (MPMM), a fine-grained dynamic  de- 
composition of the Penn State NCAR (National Cen- 
ter for Atmospheric  Research)  mesoscale model 
version 5.  In MPMM, each  set of four horizontal grid 
points is represented as a parallel process running 
under PCN (discussed previously), providing a 
transparent mechanism for  redistributing  load  be- 
tween physical processors. 

MPMM achieved 700  Mflops (millions of floating- 
point operations  per  second) on 64 processors of 
the IBM sP1. This  performance is equivalent to five 
times the performance of a single CRAY Y-MP** pro- 
cessor. The sP1 offered several  features critical to 
efficient performance  for real-time forecasting  and 
data assimilation-in particular, the high-band- 
width  input/output  and  the large memory  capacity 
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on  the processing  nodes.  The sP1 also  provided  a 
better  development  environment  than  other  par- 
allel systems, in part  because  each  node  has  a full 
UNIX environment. 

Monte  Carlo  calculations of nuclear  ground  states. 
Researchers in Argonne’s Physics Division, in col- 
laboration with V. R. Pandharipande of the Uni- 
versity of Illinois at Urbana,  are  computing  the 

Argonne researchers 
quickly ported and  ran 

a wide variety of 
applications. 

properties of light (up to 40 neutrons  and  protons) 
nuclei using realistic two- and  three-nucleon  inter- 
actions.  This  research  involves developing many- 
body  methods for reliably computing  the  proper- 
ties of a nucleus for  complicated  forces  that  are 
strongly  dependent  on the spins and charge  states 
of the nucleons. 

The  current  approach involves variational  calcu- 
lations in which one assumes  a form for  the  quan- 
tum-mechanical wave  function describing a nu- 
cleus and then  computes  the  energy of the  nucleus 
for  a given force model. Multidimensional (12 to 
120 dimension) integrals  are  computed by using 
Monte  Carlo  methods.  The integrand is expressed 
in terms of large complex  vectors describing the 
spin and charge states of the  nucleons.  These cal- 
culations  must  be  repeated  many  times to find the 
best  set of parameters  for  the  assumed form of the 
wave function. The longer a given calculation is 
allowed to proceed,  the smaller the  statistical  er- 
ror from the  Monte  Carlo  integration,  and  hence 
the  more refined the  determination of the  best pa- 
rameters. 

The first calculations  done  on  the sP1 used a new 
nuclear  interaction  and  obtained much better 
(when compared with experiment)  results  for  the 
binding energy and density profile of oxygen  than 
previously  obtained.  The  better  density  results 
were specifically attributable to  the detailed vari- 
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ational searches made possible by  the sP1. The 
speed of the sP1 also enabled  the  researchers to 
calculate calcium (40 nucleons)  for  the first time. 

The sP1 was  the first parallel processor used for 
these  calculations.  Previously,  the  work had been 
performed on single processors of the  most  pow- 
erful Cray  computers available. Earlier parallel 
computers could not  be used because of their small 
memories; the  calculations  require  up  to 65 
megabytes of memory. 

The Argonne package p4 was used to implement 
the message-passing part of the program. Runs on 
128 nodes achieved speedups of 123, or compu- 
tational rates of  5.9  Gflops. (One  run using 160 
nodes achieved 6.5 Gflops, but  there  were  also 
other  users  on  some of the nodes.) 

Parallel  community  climate  model. The parallel 
community climate model (PCCM2) is a message- 
passing implementation of the NCAR (National Cen- 
ter for Atmospheric Research) Community Climate 
Model 2  and is intended for global climate predic- 
tion. Development of the parallel model is sup- 
ported by  the  Department of Energy CHAMMP pro- 
gram as a collaborative project with Argonne, Oak 
Ridge, and NCAR. 

In  September 1993, PCCM was officially validated 
with respect  to  the  sequential  version of the com- 
munity climate model. The sP1 was used exten- 
sively in the validation  work  because  its  nodes  are 
identical to workstation platforms running the  pre- 
viously  validated  sequential  version. 

The model is patch  decomposed in two horizontal 
dimensions. Spectral  transport of  all prognostic 
variables  except  moisture  is accomplished by par- 
allel fast  Fourier  transforms (Fms) in the zonal di- 
mension and  Gaussian  quadrature in the me- 
ridional dimension, approximating Legendre 
transforms. The spectral  transport mechanism of 
PCCM2 is communication-intensive because  inter- 
change of data is not confined to  the nearest neigh- 
bor. A semi-Lagrangian transport  scheme  is used 
for transport of moisture. Modules that  compute 
atmospheric  processes  such as convection, radi- 
ative  transfer, and precipitation  are collectively 
known within the model as physics. Physics  is  per- 
fectly parallel in PCCM because  there  are  no hor- 
izontal data  dependencies;  however,  physics  does 
present  the largest source of inefficiency from load 
imbalance. 
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PCCM2 was implemented by using Chameleon 
through  a compatibility library  to PICL, the mes- 
sage-passing package under which the  code was 
originally developed. Before being run  on  the IBM 
SP1,  PCCM2 was run on the  Intel  Touchstone DELTA 
and Paragon computers. 

PCCM ran  at  approximately 650 Mflops on  the full 
S P l ( l 2 8  processors) communicating over  the EUIH 
switch interface. Figure 4 shows  the distribution 
of run time over  the  three main components of the 
code:  spectral  transport, semi-Lagrangian trans- 
port,  and  physics.  Interprocessor communication 
accounted  for  most of the time spent in the forward 
and  inverse FITS, the parallel vector-sum  (part of 
the  Legendre approximation), and initialization for 
the semi-Lagrangian transport (SLTINI). The larg- 
est computational  part of the  code  is  physics,  and 
the effect of load imbalance can  be  seen as well. 
Despite good overall floating-point performance 
(.65 Gigaflops), a  considerable  fraction of the time 
was still taken up with communication and load 
imbalance possibly due in part  to  the  absence of 
gang scheduling on the SP. 

Phylogenetic  trees. To better  understand organisms 
and  the evolution and function of the  ribosome, 
Argonne researchers  are developing a phylogenetic 
tree  that  relates  the  sequences of a small molec- 
ular subunit called ribosomal RNA in prokaryotic 
and  eukaryotic microorganisms. This  work is con- 
ducted in collaboration with scientists from the 
University of Illinois Ribosomal Database Project. 
A maximum likelihood technique is being used, 
which  determines  the  greatest  statistical probabil- 
ity of the  sequence of evolution. The technique, 
originally implemented by Felsenstein, l5 was  en- 
hanced by University of Illinois researchers, along 
with researchers at Argonne and Kobe  University 
in Japan,  to  enable it to analyze large numbers of 
organisms on both  uniprocessors  and massively 
parallel systems. 

Using the  enhanced  technique, and capitalizing on 
the large memory and exceptional speed of the  sys- 
tem,  the  researchers  were  able to  construct a  phy- 
logenetic tree with more  than 2000 organisms. 
Since it was not practical to simply make one huge 
run and produce  a reliable tree,  the  tree  was  com- 
puted in steps. Initially, a small tree of 473 organ- 
isms was composed. New  sequences  were  then in- 
serted  into  the  tree,  and  the  resultant  tree  was 
“optimized” by performing thousands of local 
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Figure 4 Distribution of work in a PCCMS environment 
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maximum likelihood computations (which can pro- 
duce local rearrangements within the  tree). 

Argonne researchers  also used the sP1 to  gather 
data  needed to evaluate  tools used in conjunction 
with the maximum likelihood computation.  These 
tools, developed at  the  University of Illinois, com- 
pute  varying  rates of change  that  occur in phylo- 
genetic  computations.  Over 450 runs  were made 
on the sP1, each of which consumed  between 12 
and 36 hours on single nodes. 

The phylogenetic tree application unquestionably 
consumed  the largest number of hours  on  the sP1 
during its first few  months  at Argonne. The  work 
was reported in the Journal ofBacteriology, l6 with 
a full reproduction of the tree. 

Superconductivity. Argonne is exploringvarious as- 
pects of the numerical solution of high-tempera- 
ture  superconductors.  Three  projects made early 
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Table 6 Solution  times  (seconds  per  iteration)  for  three  problems 

Number of Grid  Sizes 
Processors 1302 X 10 25a2 X 10 5142 X 10 

EUlH Sockets EUlH EUlH 

1 7.67 15.3 
2 4.00 8.19 
4 2.16 4.88 
8 1.22 3.89  4.66 18.67 

16 .60 3.69  2.19 8.27 
32 .34 4.11 1.18 4.43 
64 .20 4.36 .65 2.23 
96 .17 - .48 1.57 

- __ 
- - 

8.36 - 

use of the sP1: the  study of the  vortex-glass  state, 
numerical simulation of vortex dynamics, and anal- 
ysis of the  properties of vortex structures. 

Elastic  string  model. MCS Division computer sci- 
entists developed a  code  for  the numerical simu- 
lation of the planar motion of a one-dimensional 
elastic filament (single vortex)  under tension. With 
this  elastic filament model, avalanche-type  behav- 
ior was observed  when  the applied forces  were in 
the neighborhood of a critical transitionvalue.  The 
researchers  developed  other  elastic filament mod- 
els to explore  this so-called self-organized critical- 
ity phenomenon. Numerical studies  required  the 
accumulation of statistics from a large number of 
events,  each involving the solution of a  stochastic 
differential equation subject to a random initial per- 
turbation. 

The most difficult calculations  occurred for very 
small applied forces  when  the  system  was in a 
“glassy”  or  “creep”  state.  The slow dynamics of 
the  creep  state required extremely large amounts 
of computer time to establish  the  asymptotic  be- 
havior. The  calculations  were  characterized by 
large numbers of ensembles (-12 OOO), each  cor- 
responding to a  random realization of a potential 
tilted by  an applied force.  Even for small forces, 
a very large number of spatial  points (-75 000) 
were  needed  to  resolve  the potentials. Since  each 
realization is independent of the  other realizations, 
a large number of these jobs was able to  be run in 
parallel. This  work  was initially started using a BBN 
TC2000** and  a  Sun SPARCstation** network.  The 
programs  were  then  ported to the sp1 system,  re- 
alizing a significant improvement in execution time. 
In particular, for some of the  most difficult calcu- 
lations, with very small applied forces,  use of the 
sP1 reduced solution time from approximately five 
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days  (on  Sun SPARC workstations) to approxi- 
mately 17 hours. 

Vortex dynamics. To  study  the formation and sub- 
sequent evolution of magnetic fluxvortices and the 
influence of random impurities on  vortex pinning, 
MCS researchers  developed  a  computer model 
based on  the  three-dimensional  time-dependent 
Ginzburg-Landau (TDGL) equations. 

The  three-dimensional domain is subdivided into 
an  array of cells. The  code  solves numerically for 
the complex-valued order  parameter (identified 
with the  vertices of each cell) and  the gauge field 
(identified with the edges of each  cell).  The result- 
ing equations of motion are solved by using a  sin- 
gle-time-step forward Euler  procedure.  The pri- 
mary  data  structures used are four complex, three- 
dimensional arrays  whose  values are updated  each 
time step according to  the  equations of motion. 

The  dynamics  were initiated from a  doped  state in 
the  presence of an  external magnetic field whose 
strength was adjusted so that  the material was in 
the mixed state.  The material was modeled with 
a pair of planar  defects (twin boundaries) running 
diagonally through the sample. Inhomogeneities in 
the twin boundaries  were modeled with  random 
point defects  embedded in the twin boundaries. 

To parallelize the program, the  researchers  parti- 
tioned the  array of cells (grid) among the  proces- 
sors.  Each  processor  was  responsible for updat- 
ing  all the cells in the subgrid contained in its 
memory. The  update step for  each cell required 
values from neighboring cells. In  order  to commu- 
nicate thesevalues between processors,  the Block- 
Comm package  (previously  discussed) was used. 
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Table 7 Comparison  of  the  CPU  and  elapsed  times for three  different  cases 
I 

Number of 
Processors 

Intel  DELTA 
CPU  Elapsed 

IBM SP1  (EUIH) 
CPU  Elapsed 

IBM SP1 (p4) 
CPU  Elapsed 

1 _. __ 203.89  205.46  203.90  205.29 
2 307.67  308.00  86.09  86.75  81.26  118.44 
4  160.26  160.00  37.54  37.61  33.29  112.46 
8  79.33  80.00  21.33  21.50  17.94  196.09 

16  43.13  43.00 12.75 12.97 - - 

Preliminary timings on  the IBM sP1 are shown in Ta- 
ble 6. The first column is the number of processors 
used. The other columns report time per iteration (in 
seconds) as a function of the number of processors 
for grid sizes of  130 X 130 x 10,258 X 258 X 10,  and 
514 x 514 x 10, respectively. EUIH in a column in- 
dicates IBM’s EUIH message-passing software was 
used in conjunction with the High-Performance 
Switch. For comparative purposes, the smallest 
problem was also run  using a version of the p4 mes- 
sage-passing software that used UNIX sockets to com- 
municate over an external Ethernet network that also 
connects the processors. 

Vortexstmctures. To find optimal vortex solutions 
within the three-dimensional anisotropic Ginzburg- 
Landau model, MCS researchers  developed a par- 
allel code  that  uses  the limited-memory BFGS 
(Broyden-Fletcher-Goldfarb-Shanno) algorithm. l7 

Parallelization was  achieved through a simple 
three-dimensional domain decomposition scheme 
in which the global domain was partitioned  across 
an  arbitrary  number of processors.  The commu- 
nication between  processors  was carried out by us- 
ing the Chameleon parallel software package. The 
portability of the Chameleon primitives enabled the 
code  to  be run  on a variety of parallel platforms, 
using several different parallel communication par- 
adigms, without  any coding changes. 

The code was used to  study various properties of 
uniaxial superconductors such as the lower critical 
field  and the anomalous “vortex-chain” state. Ta- 
bles 7 and 8 give performance comparisons for a se- 
lection of three different cases: (1) the Intel Touch- 
stone DELTA, (2)  the IBM SP1 running EUIH, and (3) 
the IBM s p 1  running  p4.  All cases  are for 100 BFGS 
iterations with a constant global domain size of  32 
x 32 x 32 for Table 7, and a constant local domain 
size of  16 x 16 X 16 for Table 8. The superlinear 
speedup in the sP1 results in Table 7 was most likely 
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Table 8 Comparison  of  the  CPU  and  elapsed  time  for 
two cases 

Number of Intel  DELTA IBM SPl 
Processors  (EUIH) 

CPU  Elapsed CPU Elapsed 

1  73.71 74.00 15.91 16.01 
2  76.27 76.00 17.71 17.90 
4  77.85 78.00 19.33 19.49 
8 79.33 80.00 21.46 21.57 

16  80.57 81.00 22.75 22.98 

caused by cache effects. Also note the CPU time col- 
umn  from the s p 1  (p4) results; these show very good 
performance in a time-shared environment, even 
though the elapsed time performance is relatively 
poor. Table 8 shows the performance as the local do- 
main size is held  fixed  and the number of unknowns 
grows proportionallywith the number of processors. 
The results suggest that the local domain is too small 
(only 4096 mesh points) for the sP1. This conclusion 
is consistent with the faster speed of the processors 
with respect to  the communication than for the Intel 
DELTA, and emphasizes why  the large per-node 
memory is an important feature of the sp1.  

Parallel theorem prover. A parallel distributed 
memory  theorem  prover  (the  distributed  associa- 
tive-commutative  theorem  prover, or dac)  was 
ported to  the sP1 with no problems. The  code had 
initially been developed on  the  Sequent  Computer 
Corporation  Symmetry  system and a network of 
Sun  Microsystem  processors using p4. Therefore, 
once p4 itself was ported  to  the sP1,  dac simply had 
to  be recompiled and linked. 

The  code  was used on  the sP1 to solve a bench- 
mark problem in theorem proving, namely, that a 
ring wherex3 = x for allx is commutative. Single- 
node  performance was excellent,  despite  the  lack 
of floating-point operations in dac. 
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Figure 5 Bandwidth  for  an SP1 with SP2 
communication  adaptors 
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Summary 

The sP1 proved to  be an  excellent  system for a  va- 
riety of applications. Having  a full version Of UNIX 
on  each  node allowed for easy ports.  The large 
memory  on  each  node provided one-node  execu- 
tion as  a useful step in the porting process.  Fur- 
thermore,  the  use of tools  such as Chameleon and 
p4 made it possible to  port  diverse applications 
quickly. 

After  the first few  months,  the  pace of moving new 
applications to  the machine increased. Many of the 
early  applications quickly shifted to “production” 
mode, no longer functioning as research  projects 
in computing but delivering new scientific results 
in their application areas.  The  work in structural 
biology and in nuclear  physics is particularly  note- 
worthy. 

Since  the time covered by  the original reporting of 
these experiences in an Argonne technical report, l8 

development of the sp1 facility at Argonne and the 
programming environment has flourished. In terms 
of hardware,  the biggest change  has  been  the in- 
stallation of the S P ~  communication adaptors, al- 
lowing much greater bandwidth (see Figure 5) .  We 
now run  the S P ~  software although we still have 
sP1 nodes. Figure 6 shows  latency for short  mes- 
sages on  the upgraded machine. The  architecture 
has  proven flexible enough to accommodate  cus- 
tom changes,  such as integration of our Model 
970Bs7 large RISC System/6000s originally designed 
to  be connected  only by fiber channel and Ether- 
net to  the sP1 nodes,  into  the switch “fabric” by 
installing S P ~  communication adapters in them. 
(This makes  our machine a  sort of “home-brew” 
S P ~ . )  The S P ~  communication  adapters  are  faster 
(up to five times faster)  and  “smarter”  (such  as al- 
lowing overlap  between communication and com- 
putation using direct  memory  access)  than  the sp1 
communication adapters. 

This new release 2 implementation of MPL has  re- 
placed EUIH, providing high performance in the 
product  software,  but  those using the  portability 
libraries did not  see  any  changes in their  codes. 
Since  the time covered by  our earlier experiences, 
the MPI (Message-Passing Interface)  standard’  has 
emerged as  an industry-wide portable  library  spec- 
ification, and most new applications at Argonne are 
being written in MPI. Two implementations of MPI 
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are available to  users  on  our sP1. Both are  as ef- 
ficient as the  “native” MPL library. 

Utilization of the machine has  been  enhanced  by 
a new job scheduler developed at Argonne, l9 which 
ensures  exclusive  access to nodes for users for en- 
hanced parallel performance. Some of its  features 
are being considered  for  later  versions of the IBM 
scheduling software. 

Finally, visibility of the machine and its  doc- 
umentation have  been  enhanced  by making use 
of the World Wide Web in the  Internet.  Current 
information on our machine and all aspects of 
its  operation  can be found at http://www.mcs. 
anl.gov/spl. 
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