
Next generation
air traffic control
automation

The automatia In of air traffic control (ATC)
applications has challenged the technologies
traditionally used for building and testing large
data processing systems. These systems are
characterized by complex applications, extensive
external and user interfaces, and rapidly
changing functional requirements. The Advanced
Automation System (AAS) of the Federal Aviation
Administration combines high availability,
extensibility, and extraordinary functionality into
a single distributed system, running at multiple
locations. By requirement, the AAS must execute
continuously without error, without interruption
for upgrades or maintenance, and with the
complete trust and confidence of air traffic
controllers using it at over twenty centers. Each
ATC center uses the same application software
coupled with varying quantities of hardware and
an extensive base of data to tailor the center
to its unique geography and operational
procedures. In this paper, we describe the
characteristics and architecture of the AAS and
focus on key mechanisms of availability and
extensibility.

T he primary objective of air traffic control
(ATC) is to provide separation services for

aircraft that are flying in controlled airspace, or
where poor visibility prevents pilots from main-
taining visual separation. Aircraft are separated
from one another and from terrain hazards. Since
pilots (in some cases assisted by cockpit comput-
ers) fly the aircraft, an important element of air
traffic control is the transfer of requests from pi-
lots to controllers and the transfer of clearances
from ATC controllers' to pilots.

I IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

by A. S. Debelack
J. D. Dehn
L. L. Muchinsky
D. M. Smith

Air traffic contrc 11 is a closed-loop activity in
which pilots state an intent by filing flight plans.
Controllers then plan traffic flow based on the to-
tal number of flight plans and, when possible, give
clearance to pilots to fly according to their plans.
When planning conflicts arise, controllers resolve
them by clearing pilots to fly alternatives to their
plans to avoid the conflicts. If unpredicted atmo-
spheric conditions (e.g., wind speed or direction)
or pilot actions cause deviations from conflict-
free planned routings, controllers issue clear-
ances for tactical maneuvers that solve any re-
sultant problem, albeit not necessarily in a way
that furthers the pilot's goal of reaching the
planned destination at a certain time.

Planning conflicts arise when multiple aircraft re-
quire the same resource at the same time. Arrival
and departure time on runways, and convergence
on ground-based navigation aids at the same al-
titude, frequently cause conflicts. Bad weather
can further constrain these resources, aggravat-
ing contention. In addition, aircraft operating at
different speeds must be accommodated sequen-
tially in crowded areas around airport terminals.

Wopyright 1995 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

0018-8670/95/$3.00 0 1995 IBM DEBELACK ET AL. 63

Automation has provided controllers with tools to
improve the use of these limited resources, while
increasing the assurance that safe separation is
maintained. However, the introduction and evo-
lution of automation has not been easy. It requires
complex infrastructures for communications and
surveillance, plus large investments in data pro-
cessing equipment and workstations.

Even more problematic is the need for aircraft to
be equipped with communications and navigation

The AAS supports all aspects
of air traffic control with an

integrated suite of applications.

equipment. Private pilots and owners of small air-
craft value their independence and by law have
the same rights to use airports and navigation aids
as commercial and public carriers. Therefore,
ATC system modernization must be implemented
in such a way that users are not required to up-
grade their equipment and are not unduly con-
strained in their use of exhaustible resources.

Notwithstanding such considerations, some air-
space is necessarily restricted to aircraft with
specified equipment or capabilities and requires
ATC clearances to be entered. This airspace in-
cludes the busiest terminal areas and all airspace
above 18000 feet. Separation services must still
be provided by controllers in all areas when nec-
essary due to conditions of poor visibility, so long
as the pilot has a compass and a radio and has the
appropriate navigation skills.

The Advanced Automation System (AAS) is being
implemented by the Air Traffic Control Division
of Loral Federal Systems under contract to the
Federal Aviation Administration (FAA). Prior to
the AAS, ATC automation consisted of two inde-
pendent systems, one for use in terminal areas
where speeds are low and density is high, the
other for use in en route flight phases where
speeds are high and maneuvers are infrequent.

64 DEBELACK ET AL.

Both environments require radar surveillance,
but information about desired flight plan routes
can be less useful in terminal areas where ma-
neuvering is frequently tactical and the primary
goal is either to land the aircraft or to depart the
terminal area. For these reasons, the two systems
evolved differently and are not compatible with
respect to procedures, equipment, software, or
facilities.

The AAS provides the FAA with an automation
infrastructure usable in both environments. To
optimize availability, communications, and ca-
pacity, the system will first be installed at each of
20 en route centers. Each of these installed sys-
tems will provide support for between 25 and 100
ATC sectors. A sector controls a volume of air-
space and specified approach or departure func-
tions, or both the airspace and the functions to-
gether.

ATC automation evolution

The AAS supports all aspects of air traffic control
with an integrated suite of applications that sup-
port radar-based and flight-plan-based surveil-
lance, prediction, and resolution. Radar reports
are used to generate aircraft track estimates of
position, altitude, velocity, and acceleration that
support surveillance and short-term separation
assurance. Flight plans are used to create trajec-
tories consisting of predicted position, altitude,
velocity, and time for the entire route of flight and
are also used to support planning and dynamic
rerouting. Figure 1 illustrates this relationship be-
tween data sources and several ATC applications.

Correlation associates radar returns with tracks,
using either discrete beacon IDS broadcast by on-
board transponders or by matching predicted and
actual positions. These returns are used to update
three Kalman’ filters, each tuned to address dif-
ferent ATC requirements. The horizontal display
tracker, a distributed four-state extended Kalman
filter, provides accurate position predictions to
support correlation and display of aircraft veloc-
ity. The two-state altitude tracker has been
adapted to process highly quantized, noisy data
from on-board barometric pressure transponders.
This tracker supports correlation, display of
climb rate, and conflict alert. The centralized sep-
aration assurance horizontal tracker, a five-state
extended Kalman filter, provides accurate veloc-

IBM SYSTEMS JOURNAL, VOL 34, NO 1. 1995

Figure 1 ATC applications and related data

\-I CONFLICTnERRAIN ALERT

ity and acceleration estimates to support regis-
tration and track-based conflict alert.

Registration compares the centralized track
states with reported positions from multiple ra-
dars to estimate range and azimuth bias from each
radar. This calculation uses a least squares esti-
mator to minimize the discrepancy between radar
reports and the centralized position estimate. The
resulting bias corrections may then be applied to
incoming radar reports and used as an indication
of radar health.

Conflict alert predicts loss of separation between
an aircraft and other aircraft, restricted airspaces,

or minimum safe altitudes. Because velocity esti-
mates fluctuate, counts of predicted separation vi-
olations are kept over several track updates to de-
termine the likelihood of a violation with confidence
of up to 99 percent and warning times of 30 to 120
seconds. When a violation is predicted, conflict res-
olution advisories are provided to the controller,
suggesting clearances that will increase separation
without introducing additional problems. Track,
alert, and advisory data are paired with flight plan
entries and superimposed over navigation and radar
weather maps on a situation display.

Flight plans contain the planned route of flight
expressed as a sequence of defined fix positions

DEBELACK ET AL. 65 IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

and coded routes. Trajectory modeling uses these
positions with filed cruise altitudes and speeds,
aircraft performance characteristics, and wind
and temperature estimates to build a predicted
trajectory for the entire route of flight. The tra-
jectory is recalculated as flight plan amendments
are entered to accommodate pilot requests or
controller planning. Conformance monitoring
compares these predictions with radar-based po-
sition reports. If the radar position falls outside of
the appropriate conformance bounds for the pre-
dicted position and maneuver characteristics of
the aircraft, reconformance adjusts the trajectory
to remove the discrepancy and, if possible, re-
vises the modeling assumptions used to build the
inaccurate trajectory. The resulting trajectories
are used by problem detection to predict potential
loss of separation between aircraft 8 to 20 minutes
before separation violations occur, with accept-
able false alarm and missed alert ratios. Problem
detection also checks for aircraft with restricted
airspace problems and for noncompliance with
resource allocation schedules created by the AAS
or by external traffic management systems. Au-
tomated problem resolution (APR) resolves all
three problem types.

The maneuvers generated by APR must meet com-
plex constraints and optimality criteria to pro-
duce operationally suitable maneuvers that return
aircraft to their requested flight profile. These ma-
neuvers must not only resolve known problems
without introducing new ones, but must also do
so while minimizing the impact on the pilot and
the air traffic control system. Several methods
are being developed to produce near-optimal
maneuvers with acceptable computational over-
head.

A heuristic search definition inductively classifies
and ranks all possible maneuvers by using known
information about the problem and making as-
sumptions about the success and characteristics
of maneuvers that have not been generated. As
the list of maneuver classes is traversed to gen-
erate the required number of maneuvers, the
search order and class definitions are modified
using information gained from previous maneu-
ver generation attempts.

Maneuvers are constructed by explicitly repre-
senting known constraints in an appropriate ma-
neuver state space. These constraints are pro-
vided by maneuver type definitions, heuristic

66 DEBELACK ET AL.

search assumptions, and the requirement to main-
tain separation between aircraft. They form
boundaries between allowable and unacceptable
maneuvers. Explicit representation within the
state space allows constraints to be iteratively ap-

It is important that the AAS
provide the framework for both
predictable and unpredictable

future functionality.

plied to account for unanticipated interacting air-
craft and refined to account for modeling error in
the constraint representation. Appropriate selec-
tion of the state space basis reduces many opti-
mality criteria to linear functions of the state var-
iables.

If maneuvers of a single aircraft in a single di-
mension cannot resolve the problem, maneuvers
of multiple aircraft or maneuvers in multiple di-
mensions are required. These maneuvers have
many degrees of freedom and are expensive to
optimize in full generality. However, information
gained by the failed maneuver types can be used
to try to resolve the maneuver by building one
maneuver on top of another. Two strategies for
selecting the base maneuver are under investiga-
tion. The first attempts to remove an aircraft from
the closed state space, select a base maneuver
from the freed space, and build a second maneu-
ver to resolve the problem created by the base
maneuver. The second chooses a base maneuver
which, when coupled with the second maneuver
type, will result in a later time of violation. The
second maneuver then has a greater chance of
successfully resolving the first problem.

AAS architecture rationale

Both ATC applications and their underlying com-
puter technology will continue to evolve. There-
fore, it is important that the AAS provide the
framework for both predictable and unpredict-
able future functionality. The system has been

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

designed to be open, to achieve high functional
availability, and to be scalable over a range of
traffic loads and mixes. High availability is espe-
cially important because the failure of a function
means that the efficiency, stress reduction, or
safety provided by that function becomes un-
available, and the controller must manually com-
pensate.

Availability is defined by the FAA as the proba-
bility that the system will accurately respond to
controller or external system stimuli within an
elapsed time that depends on the type of input.3
Generally, radar and display manipulation com-
mands require about a one-second response time,
and most planning inputs require a two-to-three-
second response time. Delays beyond these val-
ues are allowed so long as they are being expe-
rienced at no more than one controller position at
any one time. Unavailability of the system occurs
when more than one position simultaneously ex-
periences functional response delays beyond the
maximum allowed values. Simply stated, the sys-
tem is available so long as the infrastructure is up
and providing full services to at least all but one
operational position. Allowable service denial
time is about 3 seconds per year for critical func-
tions, 32 seconds per year for conflict detection
functions, and about 2.5 minutes per year for
planning and display data recording functions.
These allowable unavailabilities translate into
system availabilities of 0.9999999, 0.999999, and
0.999995, respectively.

Such high-availability requirements are not easily
attainable or verifiable. It is easy to verify that a
system does not meet them but difficult to verify
that it does.4 Furthermore, they can only be
achieved (with contemporary technology) if
downtime caused by a defect can be expunged
from consideration when the defect is corrected.
Loral’s contract with the FAA requires that the
system achieve the required availability at the
time of the operational readiness date of the last
site, including the effects of expunging. Addi-
tional discussion of the AAS availability may be
found in Reference 5.

The requirements for adaptability result from the
wide range of operational environments in which
the system must execute. This situation has thrust
a large amount of table-driven functionality into
the design. The requirement for extensibility, as
mentioned earlier, has forced the use of industry

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

standards; this approach is drastically different
from that used in the predecessor system, where
high availability was achieved through the use of
special-purpose proprietary interfaces and com-
ponents.

One final point about the architecture: It was es-
tablished between 1984 and 1988 as the result of
a competitive procurement between the IBM and
Hughes Corporations (IBM’S Federal Systems
Company was acquired by Loral in 1994). Since
the system would not be entering the formal test
phase until 10 years after establishment of the
architecture, the hardware available in the mid-
1980s would clearly not serve as the ultimately
deployed hardware. This condition meant that the
software architecture, baselined in 1988, would
have to be flexible enough to be implemented on
then-current hardware (a contract requirement)
and on future hardware (on which more compet-
itive costs would be based).

AAS architecture derivation

Experience with prior high-availability real-time
systems such as the predecessor ATC system and
the space shuttle ground and on-board systems
has shown that software can compensate for poor
hardware availability, but no amount of hardware
can compensate for poor software availability.
The required availability for the AAS could be met
easily if software were not included in the equa-
tion. However, with software included, it was
clear that recovery times were the most critical
factors, given the predicted failure rates. If re-
covery could be made fast enough so that output
from in-process threads could be recovered or
reproduced within the required response time,
the interruption would not subtract from the un-
availability budget of the system. Since the sys-
tem is distributed and each processor has large
amounts of memory, restarts of even single pro-
cessors could not be allowed in the recovery time
line. In fact, no matter how small the individual
recovery units of software were made, there was
not enough time to perform a software unit restart
while remaining within budget. Therefore, a com-
bination of mechanisms was required:

1. A standby copy of each application program
must be loaded and ready to run in a processor
different from the one for the primary copy.

2. The standby copy must either maintain or be
capable of quickly constructing the necessary

DEBEIACK ET AL. 67

internal state so that on being given primary
responsibility, it could resume interactions
with clients and servers of the failed primary.

3. Individual application programs must be hid-
den from their clients so that their processor
location can be dynamically changed without
causing interruption to the clients.

4. There cannot be a centralized recovery man-
ager since such a program would be a single
point of failure that could use many years of
budget in a single failure.

These mechanisms placed constraints on both the
hardware and software architectures.

Software architecture. The software architecture
is based on data and constrained by network and
processor bandwidth. Functions are collected
into modules on the basis of the data they need,
but in such a way that the transfer of messages
between modules never assumes that the modules
will reside in the same processor. Each module is
designed to be the primary owner of certain sys-
tem data and to provide the services or functions
that use that data. Some processing threads re-
quire several modules to be run sequentially. In
some cases slowly changing data that support a
large number of functions are replicated among
two or more modules. One module is designated
as the owner and manages and distributes
changes to the data. Every module, anywhere in
a thread, must always produce a response to an
input even if other modules that serve it do not
respond to service requests. At the boundary of
the system this response may be a message reject,
but internally, away from boundaries, the module
must save sufficient state so that the thread may
be restarted when the unavailable module is re-
turned to service.

Dividing the system into a few large modules re-
duces the bandwidth and queuing latencies but
requires larger processors. It also means that the
standby copy of the module maintains larger
amounts of data and therefore requires longer
transition times when switched from standby to
primary. In contrast, creating many smaller mod-
ules increases bandwidth and thread times and
leads to replication of more data, which in turn
increases complexity. Many trade-offs were
made to determine the optimum partitioning of
data and function, and in some cases the parti-
tioning is still being modified as system develop-
ment proceeds.

68 DEBELACK ET AL.

Figure 2 shows the software partitioning cur-
rently being implemented and how it was derived.
External interfaces and related functions are
shown at the top. General categories of applica-
tion processing are shown in the middle, and the
actual application modules are shown at the bot-
tom. For each application module, an indication
is given as to whether that module is centralized
for the whole system, distributed by external in-
terface or radar, or distributed by workstation.
Two centralized modules are subdivided such
that they appear as a single server to clients, but
such that the workload is spread among them.
This distribution is referred to as load distribution
and allows small processors to be used but does
not improve availability. Note that so long as one
radar application and one console application set
are running (and assuming that the infrastructure
is available), some level of system service is being
provided. Controllers may monitor the current
airspace situation even if none of the centralized
modules is executing.

Hardware architecture. The hardware architec-
ture is distributed in several ways, driven by re-
quirements for availability and extensibility and
by processor capacity. An overview of the archi-
tecture is shown in Figure 3. One set of central
processors is attached to a set of local area net-
works (LANS) such that each processor can com-
municate with the others without involving bridges.
ATC applications that cannot or should not be dis-
tributed are executed on these processors. Two
copies (primary and standby) of each application
module are loaded in any two of the processors.

Communications between the AAS and external
systems utilize gateway processors on another
set of LANs. External interfaces are connected
through modem splitters such that each interface
is terminated at two different gateway processors.
For each interface, there is an interface process-
ing module that is preloaded in both of the pro-
cessors that connect to that interface. One copy
of the module is primary, the other is standby.
Interfaces to radars are handled in the same way
as external systems but have their own set of
LANs .

Controller workstations each contain a worksta-
tion processor and a display generator. Up to 80
of these processors are attached to a set of LANs.
A typical facility will have two or three such sets,
and more are possible. Workstations are opera-

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995


~~~ 

Figure 2 Software  architecture  decomposition 

CONFLICT  ALERT  RADAR DATA 
PROCESSING ,e 

FPSM  SRF TM lTF  

ARDM 

LOAD-DISTRIBUTED 

SVDM 

CE" 
W E  COPY PER ONE COPY PER 
RnDAR WORKSTAM 

NAMES OF I~D~VIDUAL ATC APPLGATION PROGRAMS: 

TPF,  TRF, WXDM, SPC,  ATM,  CIP, AND LDM 
FPSM,  ARDM,  ADM, SVDM, SRF,  SPF, TM, FPS, lTF, 

tionally grouped  into  suites of one  to  four,  oper- 
ated by a  team of controllers. Within each  suite, 
the  workstation  applications  are completely re- 
dundant  across all workstations in the  group. All 
track  control  and  display  data integration appli- 
cations  run in each  workstation  processor. 

As shown in Figure 3,  each of these LAN sets is 
interconnected via bridges to a  set of backbone 
rings. Much of the traffic of the  system is between 
primary and  standby  copies of each  application, 
which are constrained  to be on  the  same LAN sets. 
Most radar  and communication data,  however, 
move between the  gateway LANS and the work- 
station or  central  processors.  Also, display re- 

cording data from the  workstation  processors  are 
transferred from their LANS to  the  central  proces- 
sor LANs. 

The  system  also  contains  additional  gateway  and 
central  processors  to  use  for  test  and training ac- 
tivities. These  processors  are  attached  to  a single 
set of LANS, which are in turn  attached  to a sep- 
arate  set of backbone rings. A subset of the  work- 
stations of the facility are bridged to both sets of 
backbone rings so that  they  can  be  used  either  for 
test and training or  for live operations. 

This hardware  architecture  was  chosen for sev- 
eral  reasons: 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 DEBELACK ET AL. 69 



Figure 3 AAS hardware  architecture 

APPROXIMATELY 70 
WORKSTATION 
PROCESSORSPER 
ACCESS RING SET 

... 

1 

New  subsystems may be added  independently 
of existing subsystems by providing their own 
LAN sets bridged to  the backbones. 
Availability and reliability of the  backbone is 
high because so few  stations  are  connected 
(bridges only). 
The configuration lends itself to pooling at  the 
FAA's technical  center (discussed later),  where 
mimics of up  to  four  sites must be simulta- 
neously configurable. 

The  collection of LANS described  above are re- 
ferred  to  as  the primary  network. Each of the  four 

LANS is assigned one of four  data  types by the 
network manager of the  system.  One is always  a 
spare;  the  other  three  are  for  point-to-point,  radar 
multicast,  and display recording.  The point-to- 
point LAN is also used for  certain  nonradar mul- 
ticasts. 

A  separate backup  network carries  the  data  that 
are needed in modes with the highest availability. 
This single LAN connects all processors involved 
in these  functions. Bridges and multiple access 
ring sets are not used here for simplicity and to 
separate the implementations as much as possible. 

70 DEBELACK ET AL. IBM  SYSTEMS  JOURNAL,  VOL 34, NO 1, 1995 



Figure 4 Software  availability  architecture 

I I 1 AVAILABLE  DISTRIBUTED  SYSTEM 
REDUNDANT LANs PROVIDE  A  HIGHLY 

t- 
BACKUP NETWORK 

~!~~ 
PROCESSOR n 

I I 

A  SECOND LAN PROVIDES  PROTECTION - 
AGAINST  FAULTY  MANAGEMENT 
OF THE PRIMARY LANS 

- 

I 

PROCESSOR  GROUPS  IDENTIFY 
SIMILARLY  CONFIGURED  PROCESSORS 
WHERE  ALTERNATE  COPIES OF 
APPLICATION  ADDRESS  SPACES  MAY 
BE LOADED 

I DEBELACK ET AL. 71 

I 
I I h I  i 

EACH GROUP  CONTAINS  SEVERAL 
OPERATIONAL UNITS PRELOADED, WITH 
ONE  ADDRESS  SPACE OF EACH OU 
DESIGNATED AS THE PRIMARY 

I 1 

SOFTWARE  REDUNDANCY IS PROVIDED 
BY  SWITCHING  AN OU FROM ITS 
PRIMARY  ADDRESS  SPACE  TO ITS 
STANDBY  ADDRESS  SPACE 

I I 

/ 

PRIMARY  NETWORK 
AAS HIGH-AVAILABILITY  EXTENSIONS 

OPEN  SYSTEM  PROTOCOLS 

COMMERCIAL O/S BASE kg  POIN^ POIN^ IN^ 
B (RADAR  MULTICAST) 
R (RECORDING) i 

AAS architecture  implementation 

The  architectural  concepts being implemented in 
the AAS are shown in Figure 4 and  are now de- 
scribed.  This implementation promotes  the high 
availability and extensibility of the  system.  It  also 
allows selected  components  to  be upgraded as 
newer technologies mature. (This is one of the 
difficult problems facing the builders of highly 
complex systems  that may take many years  to 
complete.  State-of-the-art technology at the be- 
ginning of system  development may be run-of- 
the-mill at  the  end.  The AAS approach  to  this 
problem is similar to  other architectures: build a 
layered  system with well-defined interfaces  so 
that  the technology supporting a particular  layer 

IBM  SYSTEMS  JOURNAL, VOL 34, NO 1.  1995 

can be changed without affecting other  parts of 
the  system.) 

Each LAN in the primary network is a 16-megabit 
token ring. The backup  network  consists of a  set 
of Ethernet  segments  connected by repeaters 
(forming a single logical LAN). Different network 
protocols6 are used on the  two  networks  to avoid 
a common mode failure of the  communication 
protocols. FDDI (Fiber  Distributed  Data  Inter- 
face) and CDDI (Copper  Distributed  Data  Inter- 
face) have  recently  been  explored as  alternate 
media technologies. 

The  target  processors  have  changed  over  time as 
technology has  changed. Originally, a combina- 



tion of IBM RT PCS* and System/390* processors 
was selected.  Currently  the IBM RISC Sys- 
tem/6000*  is being used for all processors in the 

Application  redundancy is 
built upon  the processor group 

concept. 

system.  It  was  chosen  for  its wide range of  mem- 
ory  sizes  and  processor  speeds,  for its floating- 
point performance (many of the complex appli- 
cation  algorithms,  such as trajectory modeling, 
make  heavy  use of floating-point numbers),  and 
for  its  use of a uNIx**-compatible operating  sys- 
tem, AIX*, the Advanced  Interactive  Executive*. 
(The use of a commercial  operating  system allows 
us to introduce new processor technology with 
little or no change  to  the  application  programs.) 

Once a network topology was  chosen  that  pro- 
vided redundant  data  paths  between  processors, 
the availability mechanisms for  the application 
software  were designed. Processor  groups pro- 
vide protection against processor  failures.  A  set 
of applications is contained within a processor 
group; if one  processor in the  group fails, the ap- 
plication services  that the failed processor  was 
providing are activated in other  processors within 
the  group.  Group management is provided by 
membership  protocols based on synchronized 
processor  clocks  throughout  the  group. (Clock 
synchronization is provided among all processors 
in the facility as a service to applications;  the 
group  protocols only depend  on clock synchro- 
nization within a processor  group.)  Intragroup 
communications are kept simple and efficient by 
constraining all processors in a  group to be on  the 
same LAN set. This  constraint  also  ensures  that 
network  recovery will always be independent of 
group  recovery.  Groups in the AAS architecture 
typically have  three  or  four  processors. 

Application redundancy is built upon  the  proces- 
sor  group  concept.  A single application (corre- 
sponding to  the lowest level in Figure 2; for  ex- 

72 DEBELACK ET AL. 

cutes in two  or more  processors within the same 
processor  group. (An instance of an application 
executing  on  a single processor  is called an ad- 
dress space, because  that  execution  entity  occu- 
pies one virtual address  space  on  the  processor.) 
The collection of address  spaces all running the 
same program within a single processor  group is 
called an operational unit (or OU). This ou im- 
plements  the  software  “module”  introduced  ear- 
lier.  The  manner in which an ou provides  con- 
tinuous  service in spite of processor  or program 
failure  varies  from  application to application  but 
is based on  the following: 

1. The  group  membership  protocols  rank  each 
address  space in the Ou (the highest-ranked 
address  space is the  oldest). 

2. The AAS communication  services  (one of the 
high-availability extensions built on  top of the 
commercial operating  system  base) deliver 
messages destined specifically for  the ou (as 
opposed  to messages broadcast  to all address 
spaces) to  the highest-ranked address  space. 

3. The AAS communication services  provide  re- 
liable methods  to send the  same  message  to all 
address  spaces in an OU. 

Given these  services,  applications  use  either tight 
or loose synchronization to maintain a  consistent 
state in  all address  spaces. With tight synchroni- 
zation, all address  spaces  receive  the  same input 
(from a  broadcast,  for  example)  and  calculate  and 
store  any  updates to  the retained state  data. With 
loose  synchronization, only the  primary  address 
space  receives  the input and  calculates  state 
changes;  these  changes are  sent to all other  ad- 
dress  spaces in the o ~ .  When loose  synchroni- 
zation is  used,  additional  protocols are used to 
recover from the  potential  loss of the  last  state 
data  update  after  a failure of the  primary  address 
space. Tight synchronization  techniques  use  less 
resource at recovery  time;  loose  synchronization 
techniques use less resource during normal steady 
state processing. 

Additional constraints are placed on inter-OU 
message traffic to prevent  transactions  from  span- 
ning ou boundaries. (Spanning would reduce ou 
independence  and  require cross-ou backup log- 
ic.)  Every ou in a  processing  thread  must be able 
to commit its state  changes  before  the  thread can 
proceed to  the next OU. 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 



Extensions  to  the  basic program-to-program 
communication mechanisms (such as TCP/IP sock- 
ets  or ISO sessions)  provide application commu- 
nication between ous. These AAS network man- 
agement techniques allow fast switching of 
communication traffic when a  processor or appli- 
cation  address  space fails and allow the first order 
recovery  to  take  place  without  a  centralized name 
server.  Two  separate  techniques  are used in order 
to  keep  the  failure modes of the  two  networks as 
independent as possible: 

1. On the  primary  network,  every application ad- 
dress  space  registers with a centralized name 
server during initialization. When a  connec- 
tion is desired  between  the  address  space of 
one ou and  another OU, the name server re- 

tination OU. Connections are then established 
between  the  source  address  space  and all des- 
tination address  spaces.  Each  address  space in 
the  source ou goes through  the  same initial- 
ization logic, thereby establishing connections 
between all source ou address  spaces and all 
destination ou address  spaces. 

2. On the  backup  network, all connections are 
established through a discovery method. When 
an  address space desires communication with 
another ou, the requestor broadcasts a message 
to all processors on  the network. Those proces- 

ou return a message with the processor ID and 
address space name of the address space of the 
destination ou to  the requestor. TCP/IP sockets 
are then created with each of the address spaces 
of the destination OU. 

I 

I turns  the list of all address  spaces in the  des- 

I sors containing address spaces in the destination 

During recovery from an  address  space  failure, 
the  necessary  network  connections  are already in 
place (which speeds  recovery time and eliminates 
the need for  the  centralized name server during 
this  crucial  recovery  period). 

I These  services  enable application designers  to 
build fault-tolerant  applications. Additional dis- 
tributed  operating  system  functions and single 
processor  services  (such  as  processor-wide 
locks, message queuing, data logging, error  re- 
porting,  and checkpointing) complete  the defini- 
tion of the  application  address  space  operating 
environment. As shown in Figure 4, a single pro- 
cessor configuration may contain many applica- 
tion address  spaces.  Because  applications  are iso- 
lated from any  particular configuration by the 

I IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 

high-availability extensions,  this configuration 
can be changed at any time during system  exe- 
cution. 

System  adaptation  and  support 

Support  for  the geographically dispersed AAS field 
installations is the responsibility of the FAA Tech- 
nical Center (FAATC) in Atlantic  City,  New  Jer- 
sey.  The FAATC provides capabilities to tailor the 
system of a field site  to  its individual operating 
environment; to perform continual testing of the 
system  (both deployed and new versions);  and  to 
maintain all hardware  and  software  components 
of multiple deployed  system  versions. 

Although all field locations  use  the  same  software 
logic to  control  air traffic, they are dissimilar in 
that  each  has  its own description of airspace vol- 
umes, real and imaginary geographic boundaries, 
navigation aids,  sector  maps,  and AAS system 
configuration. The  use of data  to  cause  each ten- 
ter  to be different from every  other  center is 
termed  the adaptation  data  tailoring process. 
Collection of adaptation  data  and  their  entry  into 
FAATC databases  are  performed by multiple 
groups of specialists.  Data  that are not  site-unique 
(like aircraft  performance  characteristics) are 
managed by FAATC personnel,  whereas local or 
provincial data unique to a field site are managed 
by the  data  specialists of that  site. 

Incorporation of adaptation  data with the ATC 
software logic is performed at  the FAATC using 
contract-developed  support  tools. Combining 
this site-unique  adaptation data with the ATC soft- 
ware modules yields a  system  release  for field 
deployment and on-line execution.  Figure 5 illus- 
trates how adaptation  data  customize  a  system  to 
a specified geographical and  operational  domain. 
For example,  center  maps (a form of geographical 
adaptation) define the  bounds within which the 
center  controllers  exercise  jurisdiction.  These 
maps are  further subdivided into  sector maps for 
the individual controller  teams.  Other  categories 
of geographical, procedural,  and  system config- 
uration  adaptation  data are used to complete  the 
system definition. These  categories include air- 
ways and flight plan fixes, special-use  airspace, 
terrestrial  features  and  hazards, navigation aids, 
aircraft  characteristics,  computer-human  inter- 
face  adaptation,  network topology and  processor 
group configurations, and  controller  workstation 
groupings. 

DEBELACK ET AL. 73 



Figure 5 Software  and  system  adaptation 

SSCC architecture and  the availability of SSCc hardware  resources, 
a  variety of test configurations can  be  created. 

FAATC testing  to verify system  enhancements,  to Configuration fidelity ranges  from  a simple test- 
generate problem resolutions,  and to qualify bed,  to a logical replication of an  actual fielded 
vendor-supplied  software  updates is conducted  system,  to  a maximum stress  setup used for  test- 
within the  System  Support  Computer Complex ing the design limits of the  system.  The ability to 
(SSCC). Depending on  a  tester’s need for fidelity faithfully mimic a field site is especially  important 

74 DEBELACK ET AL. IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 



for predeployment  system testing and problem 
re-creation  efforts. 

sscc hardware  must  be  shared among several 
classes of development  and testing users.  This 
hardware  includes  controller  workstations, sim- 
ulators  that  have  been  developed in lieu of the 
acquisition of production  controller  workstations 
(which are  expensive,  and unnecessary  where 
most  testing is hands-om,  and  other  processors 
used for  gateway  functions. The need to  share 
hardware  has  resulted in the  development of a 
pools of equipment concept  and  a  means of 
switching these pools (refer to Figure 6). Com- 
mon equipment pools can  be  switched among 
mimics to  achieve configuration flexibility with 
fewer  components. 

The number  and  composition of the  hardware 
pools are specified to  address different test  con- 
figuration needs and are implemented in a  manner 
that allows them  to  be switched when and  where 
needed.  Pools, in their simplest representation, 
are sections of a network (actually two  networks, 
because  both  the primary and  the  backup  portions 
exist)  containing  a fixed number of processors. 
Switching occurs at the  network  level, whereby a 
processor pool can  be moved from the  networks 
in one  particular  test configuration to  the net- 
works in a different test configuration. To keep 
the switch costs affordable, the  number of switch 
points  for  each pool has  been limited to  three, 
permitting each pool to have  three possible net- 
work  destinations among the  candidate  test  con- 
figurations. 

Maintenance of AAS systems deployed from the 
sscc to  the field sites  relies heavily on  the  cen- 
tralized resources of the SSCC. In this  respect,  the 
AAS follows the lead of the commercial world. 
Specialized skills,  comprehensive  software de- 
velopment  capabilities,  and  the  extensive use of 
vendor-supplied software  products  drive  the AAS 
and  the SSCC to  a  centralized implementation for 
system  maintenance.  Specialists  at  the  opera- 
tional sites  interface to  the SSCC via telephone 
communications  and  also  use  electronic  network- 
ing and  interactive  sessions  between  the sSCC and 
the field sites.  Data  gathering  for  detected  system 
problems is performed by site-resident  personnel, 
whereas  actual problem resolution  and fix distri- 
bution are sscc tasks.  Electronic browsing of 
site-collected data files  by sscc experts  contrib- 
utes  to  the effectiveness of remote problem de- 

IBM SYSTEMS JOURNAL, VOL 34, NO l ,  1995 

termination activities.  Maintenance of vendor- 
supplied software  products is coordinated 
through the sscc. Product  version  upgrades are 
received at  the sscc and  are  then  converted  into 
load file images for installation and  use by the site 
specialists. 

AAS software is targeted to  execute in many field 
locations, at various  system  release  levels,  and 
with the  appropriate  adaptation data  products of 
the  site.  This  widespread  variation is com- 
pounded by the  quantity of both AAS-developed 
and vendor-supplied software (with common, 
unique,  and function-specific classes of soft- 
ware).  The  need  for  an  effective  and  thorough  set 
of configuration management (CM) controls  is 
mandatory.  The SSCC uses  the  Software Config- 
uration  and  Library Management (SCLM) product 
for mainframe-targeted software,  and  the Config- 
uration Management Version Control (CMVC) 
product  for RISC System/6000-targeted software. 
Together with specialized tools  and  procedures, 
these  products  provide  the  essential  ingredients 
for  the CM solution. All logic and  data modules 
created during software  development, used for 
system  testing,  and  extracted for system  release 
generation  reside in sscc databases  under  formal 
CM authority. 

Summary 

The AAS has  demonstrated its ability to meet  the 
stringent performance  and reliability require- 
ments in configurations with as many as 230 
nodes under a variety of failure  scenarios. The 
same architecture  handles  systems with as  few as 
six processors.  Throughout  the  protracted  devel- 
opment  phase, during which thousands of indi- 
vidual requirements  have  changed, the basic ar- 
chitecture  has remained constant. 

In  this  paper, we have  discussed  the  system  ar- 
chitectural  considerations  involved in building 
and testing a  particular  system  (an  air traffic con- 
trol  system)  that  must be responsive, highly avail- 
able,  and  extensible: Commercial technologies 
were used wherever possible to allow for  tech- 
nology insertion  over  the life of the system (which 
is one  form of extensibility). A distributed  archi- 
tecture allowed for  horizontal  growth  and  redun- 
dancy.  Several unique structures  were  devel- 
oped, making use of that  distributed  architecture, 
to accommodate  the commercial components 

DEBELACK ET AL. 75 



Figure 6 SSCC architecture 

REAL  AND  SIMULATED 
CONTROLLER  WORKSTATIONS 
ARE  ELECTRONICALLY 
GROUPEDANDTHUSARE 
SWITCHABLE  AS  GROUPS 
AMONG  THE  SITE  MIMICS. 
THIS  REDUCES  THE 
REQUIRED  FLOOR  SPACE 

THE TEST FACILITY. 
AND COST OF MAINTAINING 

76 DEBELACK ET AL. IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 



rent size and  futuie function. 

*Trademark  or registered trademark of International  Business 
Machines Corporation. 

**Trademark  or registered trademark of X/Open Co.  Ltd. or 
U.S.  Department of Defense. 

Cited  references  and  notes 

I .  In this paper,  “controllers” will be used to refer to  air 
traffic controllers. 

2. The Kalman filter is the minimum mean squared linear 
estimator. 

3. A. Avizienis and D. Ball,  “On  the  Achievement of a 
Highly Dependable and  Fault-Tolerant Air Traffic Control 
System,” Computer 20, No. 2, 84-89 (February 1987). 

4. R. W. Butler and G. B. Finelli, “The Infeasibility of Quan- 
tifying the Reliability of Life-Critical  Real-Time  Soft- 
ware,” IEEE Transactions on Software Engineering 19, 
No. 1, 3-12 (January 1993). 

5 .  F.  Cristian, R.  D.  Dancey,  and  J.  D.  Dehn,  “Fault Tol- 
erance in the Advanced  Automation System,” 2Orh In- 
ternational  Conference on Fault-Tolerant  Computing 
(June 1990), pp. 6-17. 

6. The I S 0  (International  Organization for Standardization) 
seven-layer stack is used  for  the primary  network.  TCPiIP 
(Transmission Control Protocol/Internet  Protocol) is used 
for the backup  network. 

7. The choice of Ada was  not  strictly  dictated by the FAA. 
However, when  design  began (in the  mid-l980s),  Ada  was 
the only  language that satisfied their language require- 
ments.  Many features of  Ada (separate package specifi- 
cations,  standard language definitions across all plat- 
forms,  exception handling semantics) make it appropriate 
for a  large,  fault-tolerant system.  Even with the  current 
emphasis on  object-oriented  languages such as C++,  
these  Ada  features may still make it the  proper language 
for  such highly available systems. 

Accepted for publication  August 5 ,  1994. 

Drew Debelack Loral  Federal  Systems, 9221 Corporate 
Boulevard,  Rockville,  Maryland 20850 (electronic  mail: 
debelack@lfs.loral.com). Mr. Debelack is a staff engineer, 
scientist in the  Advanced Automation System Algorithm De- 
sign Department.  He received  his  B.S. degree in physics and 
B.A. degree in mathematics at  the University of Texas  at 
Austin in 1987. He  joined  the IBM Federal  Systems Company 
in 1987 and  transferred to Loral with its acquisition of Federal 
Systems in 1994. 

Jonathan D. Dehn Loral  Federal  Systems, 9221 Corporate 
Boulevard,  Rockville,  Maryland 20850 (electronic  mail: 
dehn@lfs.loral.com). Mr.  Dehn is a  senior  technical staff 
member  and Certified Senior UT Architect  for Loral’s FAA 
Air T r ~ c  Control  Systems.  He received his ScB  and  ScM 
degrees in computer  science from  Brown  University in  1975 
and 1977, respectively.  He  joined  the IBM Federal  Systems 
Company in  1977 and  transferred  to  Loral in 1994 when it 
acquired Federal  Systems.  For  the last 10 years, he has con- 

IBM SYSTEMS JOURNAL, VOL 34, NO i, 1995 

Lawrence L. Muchinsky Loral  Federal Systems, 9221 Cor- 
porate  Boulevard,  Rockville,  Maryland  20850. Mr. Muchin- 
sky is a senior systems engineer on the Advanced Automation 
System project. He is the chief engineer for  the  System Sup- 
port  Computer Complex. He  joined IBM in 1965 as  an  asso- 
ciate programmer, and  has been  involved in design and im- 
plementation  activities for  several large  real-time systems, 
including the  Goddard Real  Time System,  the  National Air- 
space  System 9020 project,  and  the  Ground  Based  System  for 
Shuttle.  He  transferred  to  Loral with its  acquisition of Federal 
Systems in 1994. Mr.  Muchinsky  received  a B.S.  degree in 
mathematics from  St.  Francis College of Loretto, Pennsylva- 
nia in  1962. 

Donald M.  Smith Loral Federal  Systems, 9221 Corporate 
Boulevard,  Rockville,  Maryland 20850 (electronic  mail: 
donald@lfs.loral.com). Mr.  Smith is a senior technical staff 
member, and Certified Senior  I/T  Architect  for  Loral’s  FAA 
and Worldwide Air Traffic Control  Systems. He received his 
B.S.  degree in electrical  engineering from  the University of 
Washington in  1965. He  joined the  IBM Federal  Systems 
Company in 1965 and  transferred  to  Loral with the acquisition 
of Federal  Systems in  1994. Mr. Smith has a background 
in software architectures  for high-availability  man-rated 
systems. 

Reprint Order  No. (3321-5558. 

DEBELACK ET AL. 77 


