
Next  generation 
air traffic  control 
automation 

The  automatia In of  air traffic control (ATC) 
applications has  challenged the technologies 
traditionally used  for building and  testing  large 
data  processing  systems. These systems  are 
characterized  by  complex  applications,  extensive 
external  and  user  interfaces,  and rapidly 
changing functional requirements.  The  Advanced 
Automation  System  (AAS)  of  the Federal Aviation 
Administration combines high availability, 
extensibility, and  extraordinary functionality into 
a single distributed system,  running at multiple 
locations. By  requirement,  the  AAS must  execute 
continuously without error, without interruption 
for  upgrades or maintenance,  and with the 
complete trust and  confidence of  air traffic 
controllers using it at  over  twenty  centers. Each 
ATC center  uses  the  same application software 
coupled with varying quantities of  hardware  and 
an  extensive base  of  data to tailor  the  center 
to  its unique  geography  and  operational 
procedures. In this paper,  we describe  the 
characteristics and  architecture of the AAS  and 
focus on key  mechanisms  of availability and 
extensibility. 

T he  primary  objective of air traffic control 
(ATC) is to  provide  separation  services  for 

aircraft  that are flying in controlled  airspace, or 
where  poor visibility prevents pilots from main- 
taining visual separation. Aircraft are separated 
from  one  another  and from terrain  hazards.  Since 
pilots (in some  cases  assisted by cockpit  comput- 
ers) fly the  aircraft,  an  important  element of air 
traffic control is the  transfer of requests from pi- 
lots  to  controllers  and  the  transfer of clearances 
from ATC controllers'  to pilots. 
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Air traffic contrc 11 is a  closed-loop  activity in 
which pilots state  an  intent by filing  flight plans. 
Controllers  then plan traffic  flow based  on  the  to- 
tal number of  flight plans and, when possible, give 
clearance to pilots to fly according  to  their  plans. 
When planning conflicts arise,  controllers  resolve 
them by clearing pilots to fly alternatives  to  their 
plans to avoid the conflicts. If unpredicted  atmo- 
spheric  conditions  (e.g., wind speed or direction) 
or pilot actions  cause  deviations  from conflict- 
free planned routings,  controllers  issue  clear- 
ances  for  tactical  maneuvers  that  solve  any  re- 
sultant  problem,  albeit  not  necessarily in a way 
that  furthers  the pilot's goal of reaching the 
planned destination at a  certain  time. 

Planning conflicts arise when multiple aircraft  re- 
quire  the  same  resource  at  the  same  time. Arrival 
and  departure time on  runways,  and  convergence 
on  ground-based navigation aids  at the same al- 
titude,  frequently  cause conflicts. Bad weather 
can  further  constrain  these  resources, aggravat- 
ing contention.  In  addition,  aircraft  operating  at 
different speeds  must be accommodated  sequen- 
tially in crowded  areas  around  airport  terminals. 
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Automation  has  provided  controllers with tools to 
improve  the  use of these limited resources, while 
increasing the  assurance  that safe separation is 
maintained.  However,  the  introduction  and  evo- 
lution of automation  has not been  easy.  It  requires 
complex infrastructures  for  communications  and 
surveillance, plus large investments in data  pro- 
cessing  equipment  and  workstations. 

Even  more  problematic is the need for aircraft to 
be  equipped with communications  and navigation 

The AAS supports all aspects 
of air traffic  control with  an 

integrated  suite of applications. 

equipment.  Private pilots and  owners of small air- 
craft value their  independence  and by law have 
the  same rights to  use  airports  and navigation aids 
as commercial and public carriers.  Therefore, 
ATC system  modernization  must be implemented 
in such  a way that  users  are  not  required  to up- 
grade  their  equipment  and are not unduly con- 
strained in their use of exhaustible  resources. 

Notwithstanding  such  considerations, some air- 
space is necessarily  restricted to aircraft with 
specified equipment or capabilities and  requires 
ATC clearances to  be  entered.  This  airspace in- 
cludes  the  busiest terminal areas  and all airspace 
above 18000 feet.  Separation  services  must still 
be  provided by controllers in  all areas when nec- 
essary  due  to conditions of poor visibility, so long 
as  the pilot has a compass  and a radio  and  has  the 
appropriate navigation skills. 

The  Advanced  Automation  System (AAS) is being 
implemented by the Air Traffic Control Division 
of Loral  Federal  Systems  under  contract  to  the 
Federal Aviation Administration (FAA). Prior  to 
the AAS, ATC automation  consisted of two inde- 
pendent  systems,  one  for  use in terminal areas 
where  speeds  are low and  density is high, the 
other  for  use in en  route flight phases  where 
speeds  are high and  maneuvers are infrequent. 
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Both environments  require  radar  surveillance, 
but information about  desired flight plan routes 
can be less useful in terminal areas  where ma- 
neuvering is frequently  tactical  and  the primary 
goal is either  to land the  aircraft or  to  depart  the 
terminal area.  For  these  reasons,  the  two  systems 
evolved differently and are not  compatible with 
respect  to  procedures,  equipment,  software, or 
facilities. 

The AAS provides the FAA with an automation 
infrastructure  usable in both  environments.  To 
optimize availability, communications,  and ca- 
pacity, the system will first be installed at  each of 
20 en  route  centers.  Each of these installed sys- 
tems will provide  support  for  between 25 and 100 
ATC sectors.  A  sector  controls  a volume of air- 
space  and specified approach or  departure func- 
tions, or both the  airspace  and  the  functions  to- 
gether. 

ATC automation  evolution 

The AAS supports all aspects of air traffic control 
with an integrated suite of applications  that  sup- 
port  radar-based  and flight-plan-based surveil- 
lance,  prediction,  and  resolution.  Radar  reports 
are used to  generate  aircraft track estimates of 
position,  altitude,  velocity,  and  acceleration  that 
support  surveillance  and  short-term  separation 
assurance. Flight plans are used to  create trajec- 
tories consisting of predicted  position,  altitude, 
velocity,  and time for  the  entire  route of  flight and 
are also used to  support planning and  dynamic 
rerouting.  Figure 1 illustrates  this  relationship  be- 
tween  data  sources  and  several ATC applications. 

Correlation associates  radar  returns with tracks, 
using either  discrete  beacon IDS broadcast by on- 
board transponders or by matching predicted  and 
actual  positions.  These  returns are used to  update 
three Kalman’ filters,  each  tuned  to  address dif- 
ferent ATC requirements.  The  horizontal display 
tracker, a distributed  four-state  extended Kalman 
filter, provides  accurate position predictions to 
support  correlation  and display of aircraft veloc- 
ity.  The  two-state altitude  tracker has been 
adapted  to  process highly quantized, noisy data 
from on-board  barometric  pressure  transponders. 
This tracker  supports  correlation, display of 
climb rate,  and conflict alert.  The  centralized sep- 
aration  assurance  horizontal  tracker, a five-state 
extended Kalman filter, provides  accurate veloc- 
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Figure 1 ATC applications  and  related  data 

\-I CONFLICTnERRAIN ALERT 

ity and  acceleration  estimates to support regis- 
tration  and  track-based conflict alert. 

Registration compares  the  centralized  track 
states with reported  positions from multiple ra- 
dars to estimate range and  azimuth bias from each 
radar.  This calculation uses  a  least  squares  esti- 
mator to minimize the  discrepancy  between  radar 
reports  and  the  centralized position estimate.  The 
resulting bias corrections may then be applied to 
incoming radar  reports and used as an indication 
of radar  health. 

Conflict alert predicts  loss of separation between 
an  aircraft  and  other  aircraft,  restricted  airspaces, 

or minimum safe altitudes. Because velocity esti- 
mates fluctuate, counts of predicted separation vi- 
olations are kept over several track updates to de- 
termine the likelihood of a violation  with confidence 
of up to 99 percent and warning times of 30 to 120 
seconds. When a violation is predicted, conflict res- 
olution advisories are provided to  the controller, 
suggesting clearances that will increase separation 
without introducing additional problems. Track, 
alert, and advisory data  are paired with  flight  plan 
entries and superimposed over navigation and radar 
weather maps on  a situation display. 

Flight plans contain  the planned route of  flight 
expressed  as  a  sequence of defined fix positions 
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and  coded  routes. Trajectory  modeling uses  these 
positions with filed cruise  altitudes  and  speeds, 
aircraft  performance  characteristics,  and wind 
and  temperature  estimates  to build a  predicted 
trajectory  for the entire  route of flight. The  tra- 
jectory is recalculated as flight plan amendments 
are entered to accommodate pilot requests or 
controller planning. Conformance monitoring 
compares  these  predictions with radar-based po- 
sition  reports. If the  radar position falls outside of 
the appropriate  conformance  bounds  for  the pre- 
dicted  position  and  maneuver  characteristics of 
the  aircraft, reconformance adjusts  the  trajectory 
to remove  the  discrepancy and, if possible, re- 
vises the modeling assumptions used to build the 
inaccurate  trajectory. The resulting trajectories 
are used by problem  detection to predict  potential 
loss of separation  between  aircraft 8 to 20 minutes 
before  separation violations occur, with accept- 
able  false  alarm  and missed alert  ratios. Problem 
detection  also  checks  for  aircraft with restricted 
airspace  problems  and  for noncompliance with 
resource  allocation  schedules  created by the AAS 
or by external traffic management systems. Au- 
tomated  problem resolution (APR) resolves all 
three problem types. 

The maneuvers  generated by APR must meet com- 
plex constraints  and optimality criteria  to pro- 
duce  operationally  suitable  maneuvers  that  return 
aircraft to their  requested flight profile. These ma- 
neuvers  must  not only resolve known problems 
without  introducing new ones, but must also  do 
so while minimizing the  impact  on  the pilot and 
the  air traffic control  system.  Several  methods 
are being developed to produce near-optimal 
maneuvers with acceptable  computational  over- 
head. 

A  heuristic  search definition inductively classifies 
and  ranks all possible  maneuvers by using known 
information about  the problem and making as- 
sumptions  about the  success  and  characteristics 
of maneuvers that have  not been generated. As 
the list of maneuver  classes is traversed  to gen- 
erate  the required  number of maneuvers,  the 
search  order  and  class definitions are modified 
using information gained from previous maneu- 
ver  generation  attempts. 

Maneuvers are  constructed by explicitly repre- 
senting  known  constraints in an  appropriate ma- 
neuver  state  space.  These  constraints are pro- 
vided by  maneuver  type definitions, heuristic 
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search  assumptions,  and  the  requirement to main- 
tain separation  between  aircraft.  They  form 
boundaries  between allowable and  unacceptable 
maneuvers. Explicit representation within the 
state  space allows constraints  to  be iteratively  ap- 

It is  important  that  the AAS 
provide  the  framework for  both 
predictable  and  unpredictable 

future  functionality. 

plied to  account for  unanticipated  interacting air- 
craft  and refined to  account  for modeling error in 
the  constraint  representation.  Appropriate  selec- 
tion of the  state  space  basis  reduces many opti- 
mality criteria to linear  functions of the  state  var- 
iables. 

If maneuvers of a single aircraft in a single di- 
mension cannot  resolve  the  problem,  maneuvers 
of multiple aircraft or maneuvers in multiple di- 
mensions are  required.  These  maneuvers  have 
many degrees of freedom  and are expensive to 
optimize in full generality. However, information 
gained by the failed maneuver  types  can be used 
to  try to resolve  the  maneuver by building one 
maneuver on top of another.  Two  strategies  for 
selecting the  base  maneuver are  under investiga- 
tion.  The first attempts  to  remove  an  aircraft  from 
the  closed  state  space,  select  a  base  maneuver 
from the  freed  space,  and build a second  maneu- 
ver  to  resolve  the problem created by the  base 
maneuver.  The  second  chooses  a  base  maneuver 
which, when coupled with the second  maneuver 
type, will result in a later  time of violation. The 
second maneuver  then  has  a  greater  chance of 
successfully resolving the first problem. 

AAS architecture rationale 

Both ATC applications and  their underlying com- 
puter technology will continue to  evolve.  There- 
fore, it is important  that  the AAS provide  the 
framework  for both predictable  and  unpredict- 
able future  functionality.  The  system  has  been 
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designed to  be  open,  to  achieve high functional 
availability, and  to be scalable  over  a range of 
traffic loads  and mixes. High availability is espe- 
cially important  because  the failure of a  function 
means  that  the efficiency, stress  reduction, or 
safety  provided by  that  function  becomes un- 
available, and  the  controller must manually com- 
pensate. 

Availability is defined by  the FAA as  the  proba- 
bility that  the  system will accurately  respond  to 
controller  or  external  system stimuli within an 
elapsed time that  depends on the  type of input.3 
Generally, radar and display manipulation com- 
mands  require  about  a  one-second  response time, 
and  most planning inputs  require  a  two-to-three- 
second  response time. Delays  beyond  these  val- 
ues  are allowed so long as they  are being expe- 
rienced at no more  than  one  controller position at 
any  one time. Unavailability of the  system  occurs 
when more than  one position simultaneously  ex- 
periences functional response  delays  beyond  the 
maximum allowed values. Simply stated,  the  sys- 
tem is available so long as  the  infrastructure is up 
and providing full services to at least all but  one 
operational position. Allowable service denial 
time is about 3 seconds per year for critical func- 
tions, 32 seconds per year for conflict detection 
functions,  and  about 2.5 minutes per year  for 
planning and  display  data recording functions. 
These allowable unavailabilities translate  into 
system availabilities of  0.9999999,  0.999999, and 
0.999995, respectively. 

Such high-availability requirements are not easily 
attainable or verifiable. It is easy  to verify  that  a 
system  does  not meet them  but difficult to verify 
that it does.4  Furthermore,  they  can  only  be 
achieved (with contemporary  technology) if 
downtime  caused by a  defect  can  be expunged 
from consideration  when  the  defect is corrected. 
Loral’s contract with the FAA requires  that  the 
system  achieve  the  required availability at  the 
time of the  operational  readiness  date of the  last 
site, including the effects of expunging. Addi- 
tional discussion of the AAS availability may  be 
found in Reference 5. 

The requirements for adaptability  result from the 
wide range of operational  environments in which 
the system  must  execute.  This  situation  has  thrust 
a large amount of table-driven functionality  into 
the design. The requirement for extensibility, as 
mentioned earlier, has forced  the  use of industry 
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standards;  this  approach is drastically different 
from that used in the  predecessor  system,  where 
high availability was achieved through  the  use of 
special-purpose  proprietary  interfaces and com- 
ponents. 

One final point about  the  architecture:  It was  es- 
tablished between 1984 and 1988 as  the result of 
a  competitive  procurement  between  the IBM and 
Hughes  Corporations (IBM’S Federal  Systems 
Company was acquired by Loral in 1994). Since 
the  system would not be entering  the formal test 
phase until 10 years after  establishment of the 
architecture,  the  hardware available in the mid- 
1980s would clearly not  serve  as  the ultimately 
deployed hardware.  This condition meant  that  the 
software  architecture, baselined in 1988, would 
have to  be flexible enough  to  be implemented on 
then-current  hardware (a contract  requirement) 
and  on  future  hardware (on which more  compet- 
itive costs would be based). 

AAS architecture derivation 

Experience  with prior high-availability real-time 
systems  such as  the  predecessor ATC system  and 
the  space  shuttle ground and on-board  systems 
has  shown  that  software  can  compensate  for poor 
hardware availability, but no amount of hardware 
can  compensate  for  poor  software availability. 
The  required availability for  the AAS could be  met 
easily if software  were  not included in the  equa- 
tion. However,  with  software included, it was 
clear  that  recovery times were  the  most  critical 
factors, given the  predicted failure rates. If re- 
covery could be made fast enough so that  output 
from in-process  threads could be  recovered  or 
reproduced within the required  response time, 
the  interruption would not  subtract from the un- 
availability budget of the  system.  Since  the sys- 
tem is distributed and each  processor  has large 
amounts of memory,  restarts of even single pro- 
cessors could not be allowed in the  recovery time 
line. In  fact, no matter how small the individual 
recovery  units of software  were  made,  there was 
not enough time to perform a  software unit restart 
while remaining within budget. Therefore,  a com- 
bination of mechanisms was required: 

1. A  standby  copy of each application program 
must be loaded and  ready  to  run in a  processor 
different from the  one  for  the  primary  copy. 

2. The  standby  copy  must  either maintain or  be 
capable of quickly constructing the necessary 
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internal  state so that on being given primary 
responsibility, it could resume  interactions 
with clients  and  servers of the failed primary. 

3.  Individual application programs must be hid- 
den  from  their  clients so that  their  processor 
location  can  be dynamically changed without 
causing interruption to  the clients. 

4. There  cannot  be a centralized  recovery man- 
ager  since  such  a program would be a single 
point of failure  that could use many years of 
budget in a single failure. 

These mechanisms placed constraints  on both the 
hardware  and  software  architectures. 

Software architecture. The  software  architecture 
is based  on  data  and  constrained by network  and 
processor  bandwidth.  Functions are collected 
into modules on  the basis of the  data  they  need, 
but in such a way that  the  transfer of messages 
between  modules  never  assumes  that  the modules 
will reside in the  same  processor.  Each module is 
designed to  be  the primary owner of certain sys- 
tem  data  and  to  provide  the  services  or  functions 
that use that  data. Some  processing  threads  re- 
quire  several modules to be run  sequentially.  In 
some  cases slowly changing data  that  support  a 
large number of functions are replicated among 
two  or more modules. One module is designated 
as  the  owner  and manages and  distributes 
changes to  the  data.  Every module,  anywhere in 
a  thread,  must  always  produce  a  response to an 
input even if other modules that  serve it do not 
respond  to  service  requests. At the  boundary of 
the  system  this  response may be  a message reject, 
but  internally,  away  from  boundaries,  the module 
must  save sufficient state so that  the  thread may 
be restarted when the unavailable module is re- 
turned to service. 

Dividing the  system  into  a  few large modules re- 
duces  the  bandwidth  and queuing latencies but 
requires larger processors.  It also means  that  the 
standby  copy of the module maintains larger 
amounts of data  and  therefore  requires longer 
transition  times when switched  from  standby  to 
primary.  In  contrast,  creating many smaller mod- 
ules increases  bandwidth  and  thread times and 
leads  to replication of more data, which in turn 
increases  complexity. Many trade-offs were 
made to determine  the optimum partitioning of 
data  and  function,  and in some  cases  the  parti- 
tioning is still being modified as system develop- 
ment proceeds. 
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Figure 2 shows  the  software partitioning cur- 
rently being implemented and how it was  derived. 
External  interfaces  and  related  functions are 
shown  at  the  top.  General  categories of applica- 
tion processing are shown in the middle,  and the 
actual application modules are shown  at  the  bot- 
tom. For each  application  module, an indication 
is given as  to  whether  that module is centralized 
for  the whole system,  distributed by external in- 
terface or  radar,  or distributed by workstation. 
Two centralized modules are subdivided such 
that  they  appear as a single server  to clients,  but 
such  that  the workload is spread among them. 
This distribution is referred  to as load  distribution 
and allows small processors  to  be used  but  does 
not improve availability. Note  that so long as  one 
radar application and  one  console  application  set 
are running (and assuming that  the  infrastructure 
is available), some level of system  service is being 
provided.  Controllers may monitor  the  current 
airspace  situation  even if none of the  centralized 
modules is executing. 

Hardware architecture. The  hardware  architec- 
ture is distributed in several  ways,  driven by re- 
quirements  for availability and  extensibility  and 
by processor  capacity. An overview of the  archi- 
tecture is shown in Figure 3.  One  set of central 
processors is attached  to  a  set of local area  net- 
works (LANS) such  that  each  processor  can  com- 
municate with the  others without involving bridges. 
ATC applications that cannot or should not be dis- 
tributed are executed on  these  processors.  Two 
copies (primary and standby) of each application 
module are loaded in any two of the processors. 

Communications between  the AAS and  external 
systems utilize gateway  processors  on  another 
set of LANs. External  interfaces are connected 
through modem splitters  such  that  each  interface 
is terminated at  two different gateway  processors. 
For  each  interface,  there is an interface  process- 
ing module that is preloaded in both of the  pro- 
cessors  that  connect  to  that  interface.  One  copy 
of the module is primary,  the  other is standby. 
Interfaces  to  radars are handled in the same  way 
as external  systems  but  have  their own set of 
LANs . 

Controller  workstations  each  contain  a  worksta- 
tion processor  and  a display generator.  Up  to 80 
of these  processors are  attached  to a set of LANs. 
A typical facility will have  two or  three such sets, 
and more are possible.  Workstations are  opera- 
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Figure 2 Software  architecture  decomposition 
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tionally grouped  into  suites of one  to  four,  oper- 
ated by a  team of controllers. Within each  suite, 
the  workstation  applications  are completely re- 
dundant  across all workstations in the  group. All 
track  control  and  display  data integration appli- 
cations  run in each  workstation  processor. 

As shown in Figure 3,  each of these LAN sets is 
interconnected via bridges to a  set of backbone 
rings. Much of the traffic of the  system is between 
primary and  standby  copies of each  application, 
which are constrained  to be on  the  same LAN sets. 
Most radar  and communication data,  however, 
move between the  gateway LANS and the work- 
station or  central  processors.  Also, display re- 

cording data from the  workstation  processors  are 
transferred from their LANS to  the  central  proces- 
sor LANs. 

The  system  also  contains  additional  gateway  and 
central  processors  to  use  for  test  and training ac- 
tivities. These  processors  are  attached  to  a single 
set of LANS, which are in turn  attached  to a sep- 
arate  set of backbone rings. A subset of the  work- 
stations of the facility are bridged to both sets of 
backbone rings so that  they  can  be  used  either  for 
test and training or  for live operations. 

This hardware  architecture  was  chosen for sev- 
eral  reasons: 
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Figure 3 AAS hardware  architecture 
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New  subsystems may be added  independently 
of existing subsystems by providing their own 
LAN sets bridged to  the backbones. 
Availability and reliability of the  backbone is 
high because so few  stations  are  connected 
(bridges only). 
The configuration lends itself to pooling at  the 
FAA's technical  center (discussed later),  where 
mimics of up  to  four  sites must be simulta- 
neously configurable. 

The  collection of LANS described  above are re- 
ferred  to  as  the primary  network. Each of the  four 

LANS is assigned one of four  data  types by the 
network manager of the  system.  One is always  a 
spare;  the  other  three  are  for  point-to-point,  radar 
multicast,  and display recording.  The point-to- 
point LAN is also used for  certain  nonradar mul- 
ticasts. 

A  separate backup  network carries  the  data  that 
are needed in modes with the highest availability. 
This single LAN connects all processors involved 
in these  functions. Bridges and multiple access 
ring sets are not used here for simplicity and to 
separate the implementations as much as possible. 
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Figure 4 Software  availability  architecture 
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AAS architecture  implementation 

The  architectural  concepts being implemented in 
the AAS are shown in Figure 4 and  are now de- 
scribed.  This implementation promotes  the high 
availability and extensibility of the  system.  It  also 
allows selected  components  to  be upgraded as 
newer technologies mature. (This is one of the 
difficult problems facing the builders of highly 
complex systems  that may take many years  to 
complete.  State-of-the-art technology at the be- 
ginning of system  development may be run-of- 
the-mill at  the  end.  The AAS approach  to  this 
problem is similar to  other architectures: build a 
layered  system with well-defined interfaces  so 
that  the technology supporting a particular  layer 
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can be changed without affecting other  parts of 
the  system.) 

Each LAN in the primary network is a 16-megabit 
token ring. The backup  network  consists of a  set 
of Ethernet  segments  connected by repeaters 
(forming a single logical LAN). Different network 
protocols6 are used on the  two  networks  to avoid 
a common mode failure of the  communication 
protocols. FDDI (Fiber  Distributed  Data  Inter- 
face) and CDDI (Copper  Distributed  Data  Inter- 
face) have  recently  been  explored as  alternate 
media technologies. 

The  target  processors  have  changed  over  time as 
technology has  changed. Originally, a combina- 



tion of IBM RT PCS* and System/390* processors 
was selected.  Currently  the IBM RISC Sys- 
tem/6000*  is being used for all processors in the 

Application  redundancy is 
built upon  the processor group 

concept. 

system.  It  was  chosen  for  its wide range of  mem- 
ory  sizes  and  processor  speeds,  for its floating- 
point performance (many of the complex appli- 
cation  algorithms,  such as trajectory modeling, 
make  heavy  use of floating-point numbers),  and 
for  its  use of a uNIx**-compatible operating  sys- 
tem, AIX*, the Advanced  Interactive  Executive*. 
(The use of a commercial  operating  system allows 
us to introduce new processor technology with 
little or no change  to  the  application  programs.) 

Once a network topology was  chosen  that  pro- 
vided redundant  data  paths  between  processors, 
the availability mechanisms for  the application 
software  were designed. Processor  groups pro- 
vide protection against processor  failures.  A  set 
of applications is contained within a processor 
group; if one  processor in the  group fails, the ap- 
plication services  that the failed processor  was 
providing are activated in other  processors within 
the  group.  Group management is provided by 
membership  protocols based on synchronized 
processor  clocks  throughout  the  group. (Clock 
synchronization is provided among all processors 
in the facility as a service to applications;  the 
group  protocols only depend  on clock synchro- 
nization within a processor  group.)  Intragroup 
communications are kept simple and efficient by 
constraining all processors in a  group to be on  the 
same LAN set. This  constraint  also  ensures  that 
network  recovery will always be independent of 
group  recovery.  Groups in the AAS architecture 
typically have  three  or  four  processors. 

Application redundancy is built upon  the  proces- 
sor  group  concept.  A single application (corre- 
sponding to  the lowest level in Figure 2; for  ex- 
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cutes in two  or more  processors within the same 
processor  group. (An instance of an application 
executing  on  a single processor  is called an ad- 
dress space, because  that  execution  entity  occu- 
pies one virtual address  space  on  the  processor.) 
The collection of address  spaces all running the 
same program within a single processor  group is 
called an operational unit (or OU). This ou im- 
plements  the  software  “module”  introduced  ear- 
lier.  The  manner in which an ou provides  con- 
tinuous  service in spite of processor  or program 
failure  varies  from  application to application  but 
is based on  the following: 

1. The  group  membership  protocols  rank  each 
address  space in the Ou (the highest-ranked 
address  space is the  oldest). 

2. The AAS communication  services  (one of the 
high-availability extensions built on  top of the 
commercial operating  system  base) deliver 
messages destined specifically for  the ou (as 
opposed  to messages broadcast  to all address 
spaces) to  the highest-ranked address  space. 

3. The AAS communication services  provide  re- 
liable methods  to send the  same  message  to all 
address  spaces in an OU. 

Given these  services,  applications  use  either tight 
or loose synchronization to maintain a  consistent 
state in  all address  spaces. With tight synchroni- 
zation, all address  spaces  receive  the  same input 
(from a  broadcast,  for  example)  and  calculate  and 
store  any  updates to  the retained state  data. With 
loose  synchronization, only the  primary  address 
space  receives  the input and  calculates  state 
changes;  these  changes are  sent to all other  ad- 
dress  spaces in the o ~ .  When loose  synchroni- 
zation is  used,  additional  protocols are used to 
recover from the  potential  loss of the  last  state 
data  update  after  a failure of the  primary  address 
space. Tight synchronization  techniques  use  less 
resource at recovery  time;  loose  synchronization 
techniques use less resource during normal steady 
state processing. 

Additional constraints are placed on inter-OU 
message traffic to prevent  transactions  from  span- 
ning ou boundaries. (Spanning would reduce ou 
independence  and  require cross-ou backup log- 
ic.)  Every ou in a  processing  thread  must be able 
to commit its state  changes  before  the  thread can 
proceed to  the next OU. 
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Extensions  to  the  basic program-to-program 
communication mechanisms (such as TCP/IP sock- 
ets  or ISO sessions)  provide application commu- 
nication between ous. These AAS network man- 
agement techniques allow fast switching of 
communication traffic when a  processor or appli- 
cation  address  space fails and allow the first order 
recovery  to  take  place  without  a  centralized name 
server.  Two  separate  techniques  are used in order 
to  keep  the  failure modes of the  two  networks as 
independent as possible: 

1. On the  primary  network,  every application ad- 
dress  space  registers with a centralized name 
server during initialization. When a  connec- 
tion is desired  between  the  address  space of 
one ou and  another OU, the name server re- 

tination OU. Connections are then established 
between  the  source  address  space  and all des- 
tination address  spaces.  Each  address  space in 
the  source ou goes through  the  same initial- 
ization logic, thereby establishing connections 
between all source ou address  spaces and all 
destination ou address  spaces. 

2. On the  backup  network, all connections are 
established through a discovery method. When 
an  address space desires communication with 
another ou, the requestor broadcasts a message 
to all processors on  the network. Those proces- 

ou return a message with the processor ID and 
address space name of the address space of the 
destination ou to  the requestor. TCP/IP sockets 
are then created with each of the address spaces 
of the destination OU. 

I 

I turns  the list of all address  spaces in the  des- 

I sors containing address spaces in the destination 

During recovery from an  address  space  failure, 
the  necessary  network  connections  are already in 
place (which speeds  recovery time and eliminates 
the need for  the  centralized name server during 
this  crucial  recovery  period). 

I These  services  enable application designers  to 
build fault-tolerant  applications. Additional dis- 
tributed  operating  system  functions and single 
processor  services  (such  as  processor-wide 
locks, message queuing, data logging, error  re- 
porting,  and checkpointing) complete  the defini- 
tion of the  application  address  space  operating 
environment. As shown in Figure 4, a single pro- 
cessor configuration may contain many applica- 
tion address  spaces.  Because  applications  are iso- 
lated from any  particular configuration by the 
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high-availability extensions,  this configuration 
can be changed at any time during system  exe- 
cution. 

System  adaptation  and  support 

Support  for  the geographically dispersed AAS field 
installations is the responsibility of the FAA Tech- 
nical Center (FAATC) in Atlantic  City,  New  Jer- 
sey.  The FAATC provides capabilities to tailor the 
system of a field site  to  its individual operating 
environment; to perform continual testing of the 
system  (both deployed and new versions);  and  to 
maintain all hardware  and  software  components 
of multiple deployed  system  versions. 

Although all field locations  use  the  same  software 
logic to  control  air traffic, they are dissimilar in 
that  each  has  its own description of airspace vol- 
umes, real and imaginary geographic boundaries, 
navigation aids,  sector  maps,  and AAS system 
configuration. The  use of data  to  cause  each ten- 
ter  to be different from every  other  center is 
termed  the adaptation  data  tailoring process. 
Collection of adaptation  data  and  their  entry  into 
FAATC databases  are  performed by multiple 
groups of specialists.  Data  that are not  site-unique 
(like aircraft  performance  characteristics) are 
managed by FAATC personnel,  whereas local or 
provincial data unique to a field site are managed 
by the  data  specialists of that  site. 

Incorporation of adaptation  data with the ATC 
software logic is performed at  the FAATC using 
contract-developed  support  tools. Combining 
this site-unique  adaptation data with the ATC soft- 
ware modules yields a  system  release  for field 
deployment and on-line execution.  Figure 5 illus- 
trates how adaptation  data  customize  a  system  to 
a specified geographical and  operational  domain. 
For example,  center  maps (a form of geographical 
adaptation) define the  bounds within which the 
center  controllers  exercise  jurisdiction.  These 
maps are  further subdivided into  sector maps for 
the individual controller  teams.  Other  categories 
of geographical, procedural,  and  system config- 
uration  adaptation  data are used to complete  the 
system definition. These  categories include air- 
ways and flight plan fixes, special-use  airspace, 
terrestrial  features  and  hazards, navigation aids, 
aircraft  characteristics,  computer-human  inter- 
face  adaptation,  network topology and  processor 
group configurations, and  controller  workstation 
groupings. 
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Figure 5 Software  and  system  adaptation 

SSCC architecture and  the availability of SSCc hardware  resources, 
a  variety of test configurations can  be  created. 

FAATC testing  to verify system  enhancements,  to Configuration fidelity ranges  from  a simple test- 
generate problem resolutions,  and to qualify bed,  to a logical replication of an  actual fielded 
vendor-supplied  software  updates is conducted  system,  to  a maximum stress  setup used for  test- 
within the  System  Support  Computer Complex ing the design limits of the  system.  The ability to 
(SSCC). Depending on  a  tester’s need for fidelity faithfully mimic a field site is especially  important 
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for predeployment  system testing and problem 
re-creation  efforts. 

sscc hardware  must  be  shared among several 
classes of development  and testing users.  This 
hardware  includes  controller  workstations, sim- 
ulators  that  have  been  developed in lieu of the 
acquisition of production  controller  workstations 
(which are  expensive,  and unnecessary  where 
most  testing is hands-om,  and  other  processors 
used for  gateway  functions. The need to  share 
hardware  has  resulted in the  development of a 
pools of equipment concept  and  a  means of 
switching these pools (refer to Figure 6). Com- 
mon equipment pools can  be  switched among 
mimics to  achieve configuration flexibility with 
fewer  components. 

The number  and  composition of the  hardware 
pools are specified to  address different test  con- 
figuration needs and are implemented in a  manner 
that allows them  to  be switched when and  where 
needed.  Pools, in their simplest representation, 
are sections of a network (actually two  networks, 
because  both  the primary and  the  backup  portions 
exist)  containing  a fixed number of processors. 
Switching occurs at the  network  level, whereby a 
processor pool can  be moved from the  networks 
in one  particular  test configuration to  the net- 
works in a different test configuration. To keep 
the switch costs affordable, the  number of switch 
points  for  each pool has  been limited to  three, 
permitting each pool to have  three possible net- 
work  destinations among the  candidate  test  con- 
figurations. 

Maintenance of AAS systems deployed from the 
sscc to  the field sites  relies heavily on  the  cen- 
tralized resources of the SSCC. In this  respect,  the 
AAS follows the lead of the commercial world. 
Specialized skills,  comprehensive  software de- 
velopment  capabilities,  and  the  extensive use of 
vendor-supplied software  products  drive  the AAS 
and  the SSCC to  a  centralized implementation for 
system  maintenance.  Specialists  at  the  opera- 
tional sites  interface to  the SSCC via telephone 
communications  and  also  use  electronic  network- 
ing and  interactive  sessions  between  the sSCC and 
the field sites.  Data  gathering  for  detected  system 
problems is performed by site-resident  personnel, 
whereas  actual problem resolution  and fix distri- 
bution are sscc tasks.  Electronic browsing of 
site-collected data files  by sscc experts  contrib- 
utes  to  the effectiveness of remote problem de- 
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termination activities.  Maintenance of vendor- 
supplied software  products is coordinated 
through the sscc. Product  version  upgrades are 
received at  the sscc and  are  then  converted  into 
load file images for installation and  use by the site 
specialists. 

AAS software is targeted to  execute in many field 
locations, at various  system  release  levels,  and 
with the  appropriate  adaptation data  products of 
the  site.  This  widespread  variation is com- 
pounded by the  quantity of both AAS-developed 
and vendor-supplied software (with common, 
unique,  and function-specific classes of soft- 
ware).  The  need  for  an  effective  and  thorough  set 
of configuration management (CM) controls  is 
mandatory.  The SSCC uses  the  Software Config- 
uration  and  Library Management (SCLM) product 
for mainframe-targeted software,  and  the Config- 
uration Management Version Control (CMVC) 
product  for RISC System/6000-targeted software. 
Together with specialized tools  and  procedures, 
these  products  provide  the  essential  ingredients 
for  the CM solution. All logic and  data modules 
created during software  development, used for 
system  testing,  and  extracted for system  release 
generation  reside in sscc databases  under  formal 
CM authority. 

Summary 

The AAS has  demonstrated its ability to meet  the 
stringent performance  and reliability require- 
ments in configurations with as many as 230 
nodes under a variety of failure  scenarios. The 
same architecture  handles  systems with as  few as 
six processors.  Throughout  the  protracted  devel- 
opment  phase, during which thousands of indi- 
vidual requirements  have  changed, the basic ar- 
chitecture  has remained constant. 

In  this  paper, we have  discussed  the  system  ar- 
chitectural  considerations  involved in building 
and testing a  particular  system  (an  air traffic con- 
trol  system)  that  must be responsive, highly avail- 
able,  and  extensible: Commercial technologies 
were used wherever possible to allow for  tech- 
nology insertion  over  the life of the system (which 
is one  form of extensibility). A distributed  archi- 
tecture allowed for  horizontal  growth  and  redun- 
dancy.  Several unique structures  were  devel- 
oped, making use of that  distributed  architecture, 
to accommodate  the commercial components 
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Figure 6 SSCC architecture 

REAL  AND  SIMULATED 
CONTROLLER  WORKSTATIONS 
ARE  ELECTRONICALLY 
GROUPEDANDTHUSARE 
SWITCHABLE  AS  GROUPS 
AMONG  THE  SITE  MIMICS. 
THIS  REDUCES  THE 
REQUIRED  FLOOR  SPACE 

THE TEST FACILITY. 
AND COST OF MAINTAINING 
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rent size and  futuie function. 
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**Trademark  or registered trademark of X/Open Co.  Ltd. or 
U.S.  Department of Defense. 
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