Next generation
air traffic control
automation

The automation of air traffic control (ATC)
applications has challenged the technologies
traditionally used for building and testing large
data processing systems. These systems are
characterized by complex applications, extensive
external and user interfaces, and rapidly
changing functional requirements. The Advanced
Automation System (AAS) of the Federal Aviation
Administration combines high availability,
extensibility, and extraordinary functionality into
a single distributed system, running at multiple
locations. By requirement, the AAS must execute
continuously without error, without interruption
for upgrades or maintenance, and with the
complete trust and confidence of air traffic
controllers using it at over twenty centers. Each
ATC center uses the same application software
coupled with varying quantities of hardware and
an extensive base of data to tailor the center

to its unique geography and operational
procedures. In this paper, we describe the
characteristics and architecture of the AAS and
focus on key mechanisms of availability and
extensibility.

he primary objective of air traffic control

(ATC) is to provide separation services for
aircraft that are flying in controlled airspace, or
where poor visibility prevents pilots from main-
taining visual separation. Aircraft are separated
from one another and from terrain hazards. Since
pilots (in some cases assisted by cockpit comput-
ers) fly the aircraft, an important element of air
traffic control is the transfer of requests from pi-
lots to controllers and the transfer of clearances
from ATC controllers! to pilots.
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Air traffic control is a closed-loop activity in
which pilots state an intent by filing flight plans.

Controllers then plan traffic flow based on the to-
tal number of flight plans and, when possible, give
clearance to pilots to fly according to their plans.
When planning conflicts arise, controllers resolve
them by clearing pilots to fly alternatives to their’
plans to avoid the conflicts. If unpredicted atmo-
spheric conditions (e.g., wind speed or direction)
or pilot actions cause deviations from conflict-
free planned routings, controllers issue clear-
ances for tactical maneuvers that solve any re-
sultant problem, albeit not necessarily in a way
that furthers the pilot’s goal of reaching the
planned destination at a certain time.

Planning conflicts arise when multiple aircraft re-
quire the same resource at the same time. Arrival
and departure time on runways, and convergence
on ground-based navigation aids at the same al-
titude, frequently cause conflicts. Bad weather
can further constrain these resources, aggravat-
ing contention. In addition, aircraft operating at
different speeds must be accommodated sequen-
tially in crowded areas around airport terminals.
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Automation has provided controllers with tools to
improve the use of these limited resources, while
increasing the assurance that safe separation is
maintained. However, the introduction and evo-
lution of automation has not been easy. It requires
complex infrastructures for communications and
surveillance, plus large investments in data pro-
cessing equipment and workstations.

Even more problematic is the need for aircraft to
be equipped with communications and navigation

The AAS supports all aspects
of air traffic control with an
integrated suite of applications.

equipment. Private pilots and owners of small air-
craft value their independence and by law have
the same rights to use airports and navigation aids
as commercial and public carriers. Therefore,
ATC system modernization must be implemented
in such a way that users are not required to up-
grade their equipment and are not unduly con-
strained in their use of exhaustible resources.

Notwithstanding such considerations, some air-
space is necessarily restricted to aircraft with
specified equipment or capabilities and requires
ATC clearances to be entered. This airspace in-
cludes the busiest terminal areas and all airspace
above 18000 feet. Separation services must still
be provided by controllers in all areas when nec-
essary due to conditions of poor visibility, so long
as the pilot has a compass and a radio and has the
appropriate navigation skills.

The Advanced Automation System (AAS) is being
implemented by the Air Traffic Control Division
of Loral Federal Systems under contract to the
Federal Aviation Administration (FAA). Prior to
the AAS, ATC automation consisted of two inde-
pendent systems, one for use in terminal areas
where speeds are low and density is high, the
other for use in en route flight phases where
speeds are high and maneuvers are infrequent.
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Both environments require radar surveillance,
but information about desired flight plan routes
can be less useful in terminal areas where ma-
neuvering is frequently tactical and the primary
goal is either to land the aircraft or to depart the
terminal area. For these reasons, the two systems
evolved differently and are not compatible with
respect to procedures, equipment, software, or
facilities.

The AAS provides the FAA with an automation
infrastructure usable in both environments. To
optimize availability, communications, and ca-
pacity, the system will first be installed at each of
20 en route centers. Each of these installed sys-
tems will provide support for between 25 and 100
ATC sectors. A sector controls a volume of air-
space and specified approach or departure func-
tions, or both the airspace and the functions to-
gether.

ATC automation evolution

The AAS supports all aspects of air traffic control
with an integrated suite of applications that sup-
port radar-based and flight-plan-based surveil-
lance, prediction, and resolution. Radar reports
are used to generate aircraft rrack estimates of
position, altitude, velocity, and acceleration that
support surveillance and short-term separation
assurance. Flight plans are used to create trajec-
tories consisting of predicted position, altitude,
velocity, and time for the entire route of flight and
are also used to support planning and dynamic
rerouting. Figure 1 illustrates this relationship be-
tween data sources and several ATC applications.

Correlation associates radar returns with tracks,
using either discrete beacon IDs broadcast by on-
board transponders or by matching predicted and
actual positions. These returns are used to update
three Kalman? filters, each tuned to address dif-
ferent ATC requirements. The horizontal display
tracker, a distributed four-state extended Kalman
filter, provides accurate position predictions to
support correlation and display of aircraft veloc-
ity. The two-state altitude tracker has been
adapted to process highly quantized, noisy data
from on-board barometric pressure transponders.
This tracker supports correlation, display of
climb rate, and conflict alert. The centralized sep-
aration assurance horizontal tracker, a five-state
extended Kalman filter, provides accurate veloc-
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Figure 1 ATC applications and related data
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ity and acceleration estimates to support regis-
tration and track-based conflict alert.

Registration compares the centralized track
states with reported positions from multiple ra-
dars to estimate range and azimuth bias from each
radar. This calculation uses a least squares esti-
mator to minimize the discrepancy between radar
reports and the centralized position estimate. The
resulting bias corrections may then be applied to
incoming radar reports and used as an indication
of radar health.

Conflict alert predicts loss of separation between
an aircraft and other aircraft, restricted airspaces,
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or minimum safe altitudes. Because velocity esti-
mates fluctuate, counts of predicted separation vi-
olations are kept over several track updates to de-
termine the likelihood of a violation with confidence
of up to 99 percent and warning times of 30 to 120
seconds. When a violation is predicted, conflict res-
olution advisories are provided to the controller,
suggesting clearances that will increase separation
without introducing additional problems. Track,
alert, and advisory data are paired with flight plan
entries and superimposed over navigation and radar
weather maps on a situation display.

Flight plans contain the planned route of flight
expressed as a sequence of defined fix positions
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and coded routes. Trajectory modeling uses these
positions with filed cruise altitudes and speeds,
aircraft performance characteristics, and wind
and temperature estimates to build a predicted
trajectory for the entire route of flight. The tra-
jectory is recalculated as flight plan amendments
are entered to accommodate pilot requests or
controller planning. Conformance monitoring
compares these predictions with radar-based po-
sition reports. If the radar position falls outside of
the appropriate conformance bounds for the pre-
dicted position and maneuver characteristics of
the aircraft, reconformance adjusts the trajectory
to remove the discrepancy and, if possible, re-
vises the modeling assumptions used to build the
inaccurate trajectory. The resulting trajectories
are used by problem detection to predict potential
loss of separation between aircraft 8 to 20 minutes
before separation violations occur, with accept-
able false alarm and missed alert ratios. Problem
detection also checks for aircraft with restricted
airspace problems and for noncompliance with
resource allocation schedules created by the AAS
or by external traffic management systems. Au-
tomated problem resolution (APR) resolves all
three problem types.

The maneuvers generated by APR must meet com-
plex constraints and optimality criteria to pro-
duce operationally suitable maneuvers that return
aircraft to their requested flight profile. These ma-
neuvers must not only resolve known problems
without introducing new ones, but must also do
so while minimizing the impact on the pilot and
the air traffic control system. Several methods
are being developed to produce near-optimal
maneuvers with acceptable computational over-
head.

A heuristic search definition inductively classifies
and ranks all possible maneuvers by using known
information about the problem and making as-
sumptions about the success and characteristics
of maneuvers that have not been generated. As
the list of maneuver classes is traversed to gen-
erate the required number of maneuvers, the
search order and class definitions are modified
using information gained from previous maneu-
ver generation attempts.

Maneuvers are constructed by explicitly repre-
senting known constraints in an appropriate ma-
neuver state space. These constraints are pro-
vided by maneuver type definitions, heuristic
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search assumptions, and the requirement to main-

 tain separation between aircraft. They form

boundaries between allowable and unacceptable
maneuvers. Explicit representation within the
state space allows constraints to be iteratively ap-

It is important that the AAS
provide the framework for both
predictable and unpredictable

future functionality.

plied to account for unanticipated interacting air-
craft and refined to account for modeling error in
the constraint representation. Appropriate selec-
tion of the state space basis reduces many opti-
mality criteria to linear functions of the state var-
iables. '

If maneuvers of a single aircraft in a single di-
mension cannot resolve the problem, maneuvers
of multiple aircraft or maneuvers in multiple di-
mensions are required. These maneuvers have
many degrees of freedom and are expensive to
optimize in full generality. However, information
gained by the failed maneuver types can be used
to try to resolve the maneuver by building one
maneuver on top of another. Two strategies for
selecting the base maneuver are under investiga-
tion. The first attempts to remove an aircraft from
the closed state space, select a base maneuver
from the freed space, and build a second maneu-
ver to resolve the problem created by the base
maneuver. The second chooses a base maneuver
which, when coupled with the second maneuver
type, will result in a later time of violation. The
second maneuver then has a greater chance of
successfully resolving the first problem.

AAS architecture rationale

Both ATC applications and their underlying com-
puter technology will continue to evolve. There-
fore, it is important that the AAS provide the
framework for both predictable and unpredict-
able future functionality. The system has been
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designed to be open, to achieve high functional
availability, and to be scalable over a range of
traffic loads and mixes. High availability is espe-
cially important because the failure of a function
means that the efficiency, stress reduction, or
safety provided by that function becomes un-
available, and the controller must manually com-
pensate.

Availability is defined by the FAA as the proba-
bility that the system will accurately respond to
controller or external system stimuli within an
elapsed time that depends on the type of input.?
Generally, radar and display manipulation com-
mands require about a one-second response time,
and most planning inputs require a two-to-three-
second response time. Delays beyond these val-
ues are allowed so long as they are being expe-
rienced at no more than one controller position at
any one time. Unavailability of the system occurs
when more than one position simultaneously ex-
periences functional response delays beyond the
maximum allowed values. Simply stated, the sys-
tem is available so long as the infrastructure is up
and providing full services to at least all but one
operational position. Allowable service denial
time is about 3 seconds per year for critical func-
tions, 32 seconds per year for conflict detection
functions, and about 2.5 minutes per year for
planning and display data recording functions.
These allowable unavailabilities translate into
system availabilities of 0.9999999, 0.999999, and
0.999995, respectively.

Such high-availability requirements are not easily
attainable or verifiable. It is easy to verify that a
system does not meet them but difficult to verify
that it does.* Furthermore, they can only be
achieved (with contemporary technology) if
downtime caused by a defect can be expunged
from consideration when the defect is corrected.
Loral’s contract with the FAA requires that the
system achieve the required availability at the
time of the operational readiness date of the last
site, including the effects of expunging. Addi-
tional discussion of the AAS availability may be
found in Reference 5.

The requirements for adaptability result from the
wide range of operational environments in which
the system must execute. This situation has thrust
a large amount of table-driven functionality into
the design. The requirement for extensibility, as
mentioned earlier, has forced the use of industry
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standards; this approach is drastically different
from that used in the predecessor system, where
high availability was achieved through the use of
special-purpose proprietary interfaces and com-
ponents.

One final point about the architecture: It was es-
tablished between 1984 and 1988 as the result of
a competitive procurement between the IBM and
Hughes Corporations (IBM’s Federal Systems
Company was acquired by Loral in 1994). Since
the system would not be entering the formal test
phase until 10 years after establishment of the
architecture, the hardware available in the mid-
1980s would clearly not serve as the ultimately
deployed hardware. This condition meant that the
software architecture, baselined in 1988, would
have to be flexible enough to be implemented on
then-current hardware (a contract requirement)
and on future hardware (on which more compet-
itive costs would be based).

AAS architecture derivation

Experience with prior high-availability real-time
systems such as the predecessor ATC system and
the space shuttle ground and on-board systems
has shown that software can compensate for poor
hardware availability, but no amount of hardware
can compensate for poor software availability.
The required availability for the AAS could be met
easily if software were not included in the equa-
tion. However, with software included, it was
clear that recovery times were the most critical
factors, given the predicted failure rates. If re-
covery could be made fast enough so that output
from in-process threads could be recovered or
reproduced within the required response time,
the interruption would not subtract from the un-
availability budget of the system. Since the sys-
tem is distributed and each processor has large
amounts of memory, restarts of even single pro-
cessors could not be allowed in the recovery time
line. In fact, no matter how small the individual
recovery units of software were made, there was
not enough time to perform a software unit restart
while remaining within budget. Therefore, a com-
bination of mechanisms was required:

1. A standby copy of each application program
must be loaded and ready to run in a processor
different from the one for the primary copy.

2. The standby copy must either maintain or be
capable of quickly constructing the necessary
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internal state so that on being given primary
responsibility, it could resume interactions
with clients and servers of the failed primary.

3. Individual application programs must be hid-
den from their clients so that their processor
location can be dynamically changed without
causing interruption to the clients.

4. There cannot be a centralized recovery man-
ager since such a program would be a single
point of failure that could use many years of
budget in a single failure.

These mechanisms placed constraints on both the
hardware and software architectures.

Software architecture. The software architecture
is based on data and constrained by network and
processor bandwidth. Functions are collected
into modules on the basis of the data they need,
but in such a way that the transfer of messages
between modules never assumes that the modules
will reside in the same processor. Each module is
designed to be the primary owner of certain sys-
tem data and to provide the services or functions
that use that data. Some processing threads re-
quire several modules to be run sequentially. In
some cases slowly changing data that support a
large number of functions are replicated among
two or more modules. One module is designated
as the owner and manages and distributes
changes to the data. Every module, anywhere in
a thread, must always produce a response to an
input even if other modules that serve it do not
respond to service requests. At the boundary of
the system this response may be a message reject,
but internally, away from boundaries, the module
must save sufficient state so that the thread may
be restarted when the unavailable module is re-
turned to service.

Dividing the system into a few large modules re-
duces the bandwidth and queuing latencies but
requires larger processors. It also means that the
standby copy of the module maintains larger
amounts of data and therefore requires longer
transition times when switched from standby to
primary. In contrast, creating many smaller mod-
ules increases bandwidth and thread times and
leads to replication of more data, which in turn
increases complexity. Many trade-offs were
made to determine the optimum partitioning of
data and function, and in some cases the parti-
tioning is still being modified as system develop-
ment proceeds.
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Figure 2 shows the software partitioning cur-
rently being implemented and how it was derived.
External interfaces and related functions are
shown at the top. General categories of applica-
tion processing are shown in the middle, and the
actual application modules are shown at the bot-
tom. For each application module, an indication
is given as to whether that module is centralized
for the whole system, distributed by external in-
terface or radar, or distributed by workstation.
Two centralized modules are subdivided such
that they appear as a single server to clients, but
such that the workload is spread among them.
This distribution is referred to as load distribution
and allows small processors to be used but does
not improve availability. Note that so long as one
radar application and one console application set
are running (and assuming that the infrastructure
is available), some level of system service is being
provided. Controllers may monitor the current
airspace situation even if none of the centralized
modules is executing.

Hardware architecture. The hardware architec-
ture is distributed in several ways, driven by re-
quirements for availability and extensibility and
by processor capacity. An overview of the archi-
tecture is shown in Figure 3. One set of central
processors is attached to a set of local area net-
works (LANs) such that each processor can com-
municate with the others without involving bridges.
ATC applications that cannot or should not be dis-
tributed are executed on these processors. Two
copies (primary and standby) of each application
module are loaded in any two of the processors.

Communications between the AAS and external
systems utilize gateway processors on another
set of LANs. External interfaces are connected
through modem splitters such that each interface
is terminated at two different gateway processors.
For each interface, there is an interface process-
ing module that is preloaded in both of the pro-
cessors that connect to that interface. One copy
of the module is primary, the other is standby.
Interfaces to radars are handled in the same way
as external systems but have their own set of
LANSs.

Controller workstations each contain a worksta-
tion processor and a display generator. Up to 80
of these processors are attached to a set of LANs.
A typical facility will have two or three such sets,
and more are possible. Workstations are opera-
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Figure 2 Software architecture decomposition
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tionally grouped into suites of one to four, oper-
ated by a team of controllers. Within each suite,
the workstation applications are completely re-
dundant across all workstations in the group. All
track control and display data integration appli-
cations run in each workstation processor.

As shown in Figure 3, each of these LAN sets is
interconnected via bridges to a set of backbone
rings. Much of the traffic of the system is between
primary and standby copies of each application,
which are constrained to be on the same LAN sets.
Most radar and communication data, however,
move between the gateway LANs and the work-
station or central processors. Also, display re-
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cording data from the workstation processors are
transferred from their LANs to the central proces-
SOr LANs.

The system also contains additional gateway and
central processors to use for test and training ac-
tivities. These processors are attached to a single
set of LANs, which are in turn attached to a sep-
arate set of backbone rings. A subset of the work-
stations of the facility are bridged to both sets of
backbone rings so that they can be used either for
test and training or for live operations.

This hardware architecture was chosen for sev-
eral reasons:
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Figure 3 AAS hardware architecture
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* New subsystems may be added independently
of existing subsystems by providing their own
LAN sets bridged to the backbones.

* Availability and reliability of the backbone is
high because so few stations are connected
(bridges only).

» The configuration lends itself to pooling at the
FAA’s technical center (discussed later), where
mimics of up to four sites must be simulta-
neously configurable.

The collection of LANs described above are re-
ferred to as the primary network. Each of the four
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LANs is assigned one of four data types by the
network manager of the system. One is always a
spare; the other three are for point-to-point, radar
multicast, and display recording. The point-to-
point LAN is also used for certain nonradar mul-
ticasts.

A separate backup network carries the data that
are needed in modes with the highest availability.
This single LAN connects all processors involved
in these functions. Bridges and multiple access
ring sets are not used here for simplicity and to
separate the implementations as much as possible.
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Figure 4 Software availability architecture
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AAS architecture implementation

The architectural concepts being implemented in
the AAS are shown in Figure 4 and are now de-
scribed. This implementation promotes the high
availability and extensibility of the system. It also
allows selected components to be upgraded as
newer technologies mature. (This is one of the
difficult problems facing the builders of highly
complex systems that may take many years to
complete. State-of-the-art technology at the be-
ginning of system development may be run-of-
the-mill at the end. The AAS approach to this
problem is similar to other architectures: build a
layered system with well-defined interfaces so
that the technology supporting a particular layer
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can be changed without affecting other parts of
the system.)

Each LAN in the primary network is a 16-megabit
token ring. The backup network consists of a set
of Ethernet segments connected by repeaters
(forming a single logical LAN). Different network
protocols® are used on the two networks to avoid
a common mode failure of the communication
protocols. FDDI (Fiber Distributed Data Inter-
face) and cpbI (Copper Distributed Data Inter-
face) have recently been explored as alternate
media technologies.

The target processors have changed over time as
technology has changed. Originally, a combina-
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tion of IBM RT PCs* and System/390* processors
was selected. Currently the IBM RISC Sys-
tem/6000* is being used for all processors in the

Application redundancy is
built upon the processor group
concept.

system. It was chosen for its wide range of mem-
ory sizes and processor speeds, for its floating-
point performance (many of the complex appli-
cation algorithms, such as trajectory modeling,
make heavy use of floating-point numbers), and
for its use of a UNIX**-compatible operating sys-
tem, AIX*, the Advanced Interactive Executive*.
(The use of a commercial operating system allows
us to introduce new processor technology with
little or no change to the application programs.)

Once a network topology was chosen that pro-
vided redundant data paths between processors,
the availability mechanisms for the application
software were designed.’ Processor groups pro-
vide protection against processor failures. A set
of applications is contained within a processor
group; if one processor in the group fails, the ap-
plication services that the failed processor was
providing are activated in other processors within
the group. Group management is provided by
membership protocols based on synchronized
processor clocks throughout the group. (Clock
synchronization is provided among all processors
in the facility as a service to applications; the
group protocols only depend on clock synchro-
nization within a processor group.) Intragroup
communications are kept simple and efficient by
constraining all processors in a group to be on the
same LAN set. This constraint also ensures that
network recovery will always be independent of
group recovery. Groups in the AAS architecture
typically have three or four processors.

Application redundancy is built upon the proces-
sor group concept. A single application (corre-
sponding to the lowest level in Figure 2; for ex-
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ample, the Tactical Predictions Functions, or
TPF) is an Ada** program.’ This program exe-
cutes in two or more processors within the same
processor group. (An instance of an application
executing on a single processor is called an ad-
dress space, because that execution entity occu-
pies one virtual address space on the processor.)
The collection of address spaces all running the
same program within a single processor group is
called an operational unit (or OU). This OU im-
plements the software “module” introduced ear-
lier. The manner in which an OU provides con-
tinuous service in spite of processor or program
failure varies from application to application but
is based on the following:

1. The group membership protocols rank each
address space in the OU (the highest-ranked
address space is the oldest).

2. The AAS communication services (one of the
high-availability extensions built on top of the
commercial operating system base) deliver
messages destined specifically for the OU (as
opposed to messages broadcast to all address
spaces) to the highest-ranked address space.

3. The AAS communication services provide re-
liable methods to send the same message to all
address spaces in an OU.

Given these services, applications use either tight
or loose synchronization to maintain a consistent
state in all address spaces. With tight synchroni-
zation, all address spaces receive the same input
(from a broadcast, for example) and calculate and
store any updates to the retained state data. With
loose synchronization, only the primary address
space receives the input and calculates state
changes; these changes are sent to all other ad-
dress spaces in the OU. When loose synchroni-
zation is used, additional protocols are used to
recover from the potential loss of the last state
data update after a failure of the primary address
space. Tight synchronization techniques use less
resource at recovery time; loose synchronization
techniques use less resource during normal steady
state processing.

Additional constraints are placed on inter-OU
message traffic to prevent transactions from span-
ning oU boundaries. (Spanning would reduce OU
independence and require cross-OU backup log-
ic.) Every OU in a processing thread must be able
to commit its state changes before the thread can
proceed to the next OU.
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Extensions to the basic program-to-program
communication mechanisms (such as TCP/IP sock-
ets or ISO sessions) provide application commu-
nication between OUs. These AAS network man-
agement techniques allow fast switching of
communication traffic when a processor or appli-
cation address space fails and allow the first order
recovery to take place without a centralized name
server. Two separate techniques are used in order
to keep the failure modes of the two networks as
independent as possible:

1. Onthe primary network, every application ad-
dress space registers with a centralized name
server during initialization. When a connec-
tion is desired between the address space of
one OU and another OU, the name server re-
turns the list of all address spaces in the des-
tination OU. Connections are then established
between the source address space and all des-
tination address spaces. Each address space in
the source OU goes through the same initial-
ization logic, thereby establishing connections
between all source OU address spaces and all
destination OU address spaces.

2. On the backup network, all connections are
established through a discovery method. When
an address space desires communication with
another OU, the requestor broadcasts a message
to all processors on the network. Those proces-
sors containing address spaces in the destination
OU return a message with the processor ID and
address space name of the address space of the
destination OU to the requestor. TCP/IP sockets
are then created with each of the address spaces
of the destination OU.

During recovery from an address space failure,
the necessary network connections are already in
place (which speeds recovery time and eliminates
the need for the centralized name server during
this crucial recovery period).

These services enable application designers to
build fault-tolerant applications. Additional dis-
tributed operating system functions and single
processor services (such as processor-wide
locks, message queuing, data logging, error re-
porting, and checkpointing) complete the defini-
tion of the application address space operating
environment. As shown in Figure 4, a single pro-
cessor configuration may contain many applica-
tion address spaces. Because applications are iso-
lated from any particular configuration by the
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high-availability extensions, this configuration
can be changed at any time during system exe-
cution.

System adaptation and support

Support for the geographically dispersed AAS field
installations is the responsibility of the FAA Tech-
nical Center (FAATC) in Atlantic City, New Jer-
sey. The FAATC provides capabilities to tailor the
system of a field site to its individual operating
environment; to perform continual testing of the
system (both deployed and new versions); and to
maintain all hardware and software components
of multiple deployed system versions.

Although all field locations use the same software
logic to control air traffic, they are dissimilar in
that each has its own description of airspace vol-
umes, real and imaginary geographic boundaries,
navigation aids, sector maps, and AAS system
configuration. The use of data to cause each cen-
ter to be different from every other center is
termed the adaptation data tailoring process.
Collection of adaptation data and their entry into
FAATC databases are performed by multiple
groups of specialists. Data that are not site-unique
(like aircraft performance characteristics) are
managed by FAATC personnel, whereas local or
provincial data unique to a field site are managed
by the data specialists of that site.

Incorporation of adaptation data with the ATC
software logic is performed at the FAATC using
contract-developed support tools. Combining
this site-unique adaptation data with the ATC soft-
ware modules yields a system release for field
deployment and on-line execution. Figure 5 illus-
trates how adaptation data customize a system to
a specified geographical and operational domain.
For example, center maps (a form of geographical
adaptation) define the bounds within which the
center controllers exercise jurisdiction. These
maps are further subdivided into sector maps for
the individual controller teams. Other categories
of geographical, procedural, and system config-
uration adaptation data are used to complete the
system definition. These categories include air-
ways and flight plan fixes, special-use airspace,
terrestrial features and hazards, navigation aids,
aircraft characteristics, computer-human inter-
face adaptation, network topology and processor
group configurations, and controller workstation
groupings.
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Figure 5 Software and system adaptation
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for predeployment system testing and problem
re-creation efforts.

sscCc hardware must be shared among several
classes of development and testing users. This
hardware includes controller workstations, sim-
ulators that have been developed in lieu of the
acquisition of production controller workstations
(which are expensive, and unnecessary where
most testing is hands-off), and other processors
used for gateway functions. The need to share
hardware has resulted in the development of a
pools of equipment concept and a means of
switching these pools (refer to Figure 6). Com-
mon equipment pools can be switched among
mimics to achieve configuration flexibility with
fewer components.

The number and composition of the hardware
pools are specified to address different test con-
figuration needs and are implemented in a manner
that allows them to be switched when and where
needed. Pools, in their simplest representation,
are sections of a network (actually two networks,
because both the primary and the backup portions
exist) containing a fixed number of processors.
Switching occurs at the network level, whereby a
processor pool can be moved from the networks
in one particular test configuration to the net-
works in a different test configuration. To keep
the switch costs affordable, the number of switch
points for each pool has been limited to three,
permitting each pool to have three possible net-
work destinations among the candidate test con-
figurations.

Maintenance of AAS systems deployed from the
sscc to the field sites relies heavily on the cen-
tralized resources of the SSCC. In this respect, the
AAS follows the lead of the commercial world.
Specialized skills, comprehensive software de-
velopment capabilities, and the extensive use of
vendor-supplied software products drive the AAS
and the SSCC to a centralized implementation for
system maintenance. Specialists at the opera-
tional sites interface to the SSCC via telephone
communications and also use electronic network-
ing and interactive sessions between the SSCC and
the field sites. Data gathering for detected system
problems is performed by site-resident personnel,
whereas actual problem resolution and fix distri-
bution are SscC tasks. Electronic browsing of
site-collected data files by SSCC experts contrib-
utes to the effectiveness of remote problem de-
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termination activities. Maintenance of vendor-
supplied software products is coordinated
through the sscc. Product version upgrades are
received at the SSCC and are then converted into
load file images for installation and use by the site
specialists.

AAS software is targeted to execute in many field
locations, at various system release levels, and
with the appropriate adaptation data products of
the site. This widespread variation is com-
pounded by the quantity of both AAS-developed
and vendor-supplied software (with common,
unique, and function-specific classes of soft-
ware). The need for an effective and thorough set
of configuration management (CM) controls is
mandatory. The SSCC uses the Software Config-
uration and Library Management (SCLM) product
for mainframe-targeted software, and the Config-
uration Management Version Control (CMVC)
product for RISC System/6000-targeted software.
Together with specialized tools and procedures,
these products provide the essential ingredients
for the CM solution. All logic and data modules
created during software development, used for
system testing, and extracted for system release
generation reside in SSCC databases under formal
CM authority.

Summary

The AAS has demonstrated its ability to meet the
stringent performance and reliability require-
ments in configurations with as many as 230
nodes under a variety of failure scenarios. The
same architecture handles systems with as few as
six processors. Throughout the protracted devel-
opment phase, during which thousands of indi-
vidual requirements have changed, the basic ar-
chitecture has remained constant.

In this paper, we have discussed the system ar-
chitectural considerations involved in building
and testing a particular system (an air traffic con-
trol system) that must be responsive, highly avail-
able, and extensible. Commercial technologies
were used wherever possible to allow for tech-
nology insertion over the life of the system (which
is one form of extensibility). A distributed archi-
tecture allowed for horizontal growth and redun-
dancy. Several unique structures were devel-
oped, making use of that distributed architecture,
to accommodate the commercial components
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Figure 6 SSCC architecture
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into a system that exhibits state-of-the-art con-
tinuous availability and is extensible both in cur-
rent size and future function.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of X/Open Co. Ltd. or
U.S. Department of Defense.
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