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This paper  describes 8 translation  of LOTOS  and 
SDL specific8tion languages into executable 
code, 8s it was prototyped in the  Specification 
and  Progr8mming  Environment  for  Communi- 
cation  Software (SPECS) project under  the 
Research  and  Develo  ment in Advanced 
communications in grope (RACE)  program. 
Both ian  uages  are  translated into a common 
intermedate  representation in the  form of a 
network  of state machines with  both synchronous 
8nd  asynchronous  communic8tions.  By 8 series 
of  tr8nsformations  that make fuii use  of  the 
equivalence  relations  defined  on LOTOS 
processes, this transi8tion  solves uni ue 
probiems  stemming  from  the  highiy  a B stract 
nature  of LOTOS.  The  common intermediate 
representation is mapped into C  code  that  can  be 
executed in a  specific  run-time  environment, 
impiemented on  a UNip-like operating  system. 
SPECS  has also developed a  pragmatic  ap  roach 
to re  resent  impiementabie  daf8  types in t i e  
aigegaic framework  of LOTOS and  SDL,  based 
on 8 set  of  predefined  type  constructors. 

T he introduction of a European integrated 
broadband communications network (IBCN) 

and its associated services requires that a huge 
amount of software be developed. This software 
will have a high degree of complexity, due  to fac- 
tors such as real-time constraints and the distri- 
bution over many processors in a heterogeneous 
environment (multivendor, multicountry, and 
multilanguage). The reliability requirements on 
this software will be as high as on  current tele- 
phone networks. The combination of the charac- 
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teristics of this software is  such that new software 
development methods and tools are needed to 
achieve the required level of quality at an eco- 
nomically justifiable price. Therefore, a set of 
projects has been set up in the European Re- 
search and Development in Advanced Commu- 
nications in Europe (RACE) program, whose ob- 
jective is to define a suitable programming 
infrastructure for the IBCN software. One of these 
projects, Specification and Programming Envi- 
ronment for Communication Software (SPECS), 
has as its primary objective the definition of meth- 
ods and tools for the specification, design,  imple- 
mentation, and testing of telecommunications 
software. A general presentation of the RACE pro- 
gram and the SPECS project can be found  in  Ref- 
erence 1. 

The approach of SPECS is based on the use of 
formal languages very early in the development 
process to overcome the problems stemming 
from the inherent ambiguity of natural language 
and to allow the early application of semantic 
tools on formal s ecifications for their verification 
and validation. ' 9  After an evaluation of currently 
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available formal languages for the specification of 
telecommunication systems and software, SPECS 
has focused on the internationally standardized 
languages, Language of Temporal Ordering Spec- 
ification (LOTOS) and Specification and Descrip- 
tion Language (SDL). In  the SPECS approach, 
these languages are used as broad-spectrum lan- 
guages. They  support  the design and implemen- 
tation activities, in which abstract functional 
specifications, expressed in one of these lan- 
guages, are transformed into implementation-ori- 
ented  descriptions of the system. (SPECS also  sup- 
ports  the mixing of these languages in the 
description of a system.  This  aspect  is  addressed 
in more detail in Reference 4.) These transforma- 
tions  address  the  system  structure as well as  the 
algorithmic parts of the specification. From  the 
implementation-oriented description, implemen- 
tations  are then generated automatically. To 
achieve this goal, SPECS provides translation al- 
gorithms and a prototype of a compiler that trans- 
lates large subsets of SDL and LOTOS into  the pro- 
gramming language C. The design of this compiler 
and the  experience gained in its development are 
the  topics of this paper. 

The architecture of this compiler is outlined in 
Figure 1. It  is  centered around the Implementa- 
tion Common Representation Language (I-CRL), 
based  on a formal model of dynamically config- 
urable  networks of communicating state ma- 
chines, with possibilities for synchronous 
(LOTOS-like) as well as asynchronous (sDL-like) 
communication. The  generated  code relies on a 
specific, but portable, run-time environment  that 
provides facilities for both  synchronous and asyn- 
chronous  interprocess communication. 

The major problems encountered in the definition 
and the development of the  prototype  were  due to 
the  abstract  nature of the  source languages, es- 
pecially LOTOS, which have been designed as 
specification languages. LOTOS provides mecha- 
nisms to express nondeterministic choice-an  im- 
portant  feature to achieve abstractness and im- 
plementation independence. To overcome  the 
inherent inefficiency of a straightforward imple- 
mentation of the powerful communication mech- 
anism of LOTOS (multiway synchronization  with 
value negotiation), specific optimization tech- 
niques had to be developed, e.g., the merging of 
closely coupled processes  into a single state ma- 
chine, and the transformation of tail recursion 
into loops. 
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Figure 1 Compiler  architecture  defined by SPECS 
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The remainder of this  paper  contains an overview 
of LOTOS and SDL, a description of the  translators 
from LOTOS and SDL to I-CRL and  the ensuing 
phase of code generation from I-CRL to C, a dis- 
cussion of the run-time environment  to model the 
concurrency in I-CRL on  the C+ UNIX** level, and 
finally, a discussion of implementation issues. 

LOTOS 
LOTOS has  been developed by  experts in formal 
description techniques within the  International 
Organization for Standardization @SO) as a stan- 
dard language for formal specification of commu- 
nication protocols and, in particular, for Open 
Systems  Interconnection (OSI) protocols. It  is 
based on  the idea that  systems  can  be described 
by defining the temporal ordering of events  that 
are  externally  observable.  The language has two 
components,  one dealing with  the algebraic de- 
scription of data  based on  the algebraic specifi- 
cation language ACT  ONE^ and one  for  the  descrip- 
tion of process  behaviors and interactions  based 
on a modification of the Calculus of Communi- 
cating Systems (CCS)~ with  elements from Com- 
municating Sequential Processes (CSP). ' The Ian- 
guage is defined in Reference 8. 
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Data  are defined by specifying sorts (sets of val- 
ues), typed operator signatures, and equations, 
which can  be  seen  as recursive function defini- 
tions. Semantics for data  descriptions  are  ob- 
tained by combining them  into  one big data  de- 
scription and constructing  the  corresponding  data 
algebra. 

Behavior is described by so-called behavior a- 
pressions. The simplest behavior expressions  are 
stop, which defines a process not able to perform 
any action, and exit, which communicates suc- 
cessful termination possibly with value passing. 
The action-pre$x operator  composes behavior 
with an observable communication or internal (si- 
lent) action. Such communication takes place 
across  interaction  points called gates with  the 
possible exchange of data. This communication is 
synchronous: an executing LoTOS behavior expres- 
sion can only communicate across a gate if there 
exists a partner to do so. Furthermore, during syn- 
chronization, data values may be negotiated. Note 
that in LOTOS there is no direction of exchange of 
data. Other ways of composing behavior are illus- 
trated in the example  below. 

After obtaining a description of behavior with  the 
above  constructs, process definitions allow a 
name to  be given to behavior expressions and to 
make them  dependent on data  variables and gate 
names. Such a name constitutes a simple behav- 
ior expression and is  calledprocess instantiation. 
Process instantiation then makes it possible to 
have  recursive definitions of behavior. A com- 
plete specification is obtained by a set of process 
and data-type definitions and the description of 
the  system behavior in terms of these definitions. 

Semantics  is given to a LOTOS specification by 
first constructing the  data algebra, and then, based 
upon this data model, a process graph or labeled 
transition  system with nodes consisting of behavior 
expressions and edges labeled  with atomic actions. 
Only those nodes that are derivable from the root 
node (the whole specification) by means of deriva- 
tion rules are taken into consideration. 

In  the following example, we describe a timer fa- 
cility as it may be used in the implementation of 
communication protocols to recover from the  loss 
of messages over an unreliable channel. Assume 
each  transmitted message carries a sequence 
number of identification. If there are NumberOf- 
Timers timers, each timer can  control  the  ac- 
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knowledgment for message SeqNo modulo Number- 
OfTimers if there  are not more  than NumberOfTimers 
messages  outstanding  at  any moment. For a de- 
tailed explanation, see e.g., Reference 9. 

The  process TimerBank forks  (creates) a number of 
timer processes.  The  data used here  are  integers 
as defined in a standard library and timer signals 
defined by the  data  type Timersignal. 

1 i brary   Natura l  Number end1 i b 

type  TimerSignal i s  
sorts  TimerSignal  
opns set,  cancel,  expi  red : -> Timersignal 
endtype 

type ExtendedNat i s   N a t u r a l  Number 
opns -Mod- : Nat,  Nat -> Nat; 

NumberOfTimers -> Nat 
eqns f o r a l l  x, y : Nat 

o f s o r t  Nat 
X It y => X Mod y = x; 
X Mod y = (x  + y) Mod y 

endtype 

The  sort Timersignal has  three elements, namely 
set,  cancel , and expi  red, represented as constants 
(nullary operators in LOTOS jargon). The  type 
ExtendedNat extends I n tege r  with the  operation 
Mod, which  is not presented in the SPECS library. 
The two ‘“”s indicate Mod is an  infix operator.  The 
equations given under eqns define the  semantics 
of Mod, the remainder of integer division. Number- 
OfTimers is a constant  whose  value is not defined 
since  there  are no equations  for  this  operator. 

The  behavior  is specified by  processes.  The pro- 
cess TimerBank [t] (0) forks NumberOfTimers num- 
ber of Timer processes  that  are in parallel but  do 
not  communicate  with  each  other.  This  is  ex- 
pressed by 

process TimerBank [t] (TimerId : Nat) : noex i t  := 
[TimerId 1 t NumberOfTimers] -> 

( i; TimerBank [t] ( Succ (TimerId))  
I l l  
Timer [t] ( TimerId) ) 

endproc 

“i ” is an  internal  event  that  cannot be observed. 
The actionpreJix operator “;” specifies that  only 
after the  event  has  been  executed  the  process 
may  behave as TimerBank. 
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New  instances of process Timer are forked as long 
as the condition TimerId 1 t NumberOfTimers holds. 
Thus  the  process TimerBank [t] (0) will behave as 
the following process: 

TimerLtI  (0) 1 I I 
(i; Timer[ t ]  (1) 1 I 1 

. . .  I l l  
(i; Timer[ t ]  (NumberOfTimers-1) ) . . .) 

Process Timer is composed of process Id1  eTimer in 
parallel  with process I d e n t i  f i  c a t i  on, both synchro- 
nizing at gate t. Process I d e n t i f i c a t i o n  uniquely 
identifies each timer, and process Id leTimer de- 
scribes that a timer can be canceled or may expire 
after it has been set. 

process  Timer [t] (TimerId : Nat) 
: noex i t  := 

Id leTimer [t] 

I d e n t i f i c a t i o n  [t] (TimerId) 
I [tl I 

endproc 

A process may offer events  at  a  gate possibly as- 
sociated with data values, the notation “?” mean- 
ing any  value of the given sort, and “ ! ’’ only the 
given value. The “?” values may be  constrained 
by  a selection predicate. The enabling operator 
‘‘> >” composes  two behavior expressions in se- 
quence;  the  second behavior is  entered  only  after 
the first behavior has successfully terminated. 
Successful termination is denoted  by ex i  t. “ [ 3 ” 
is a choice between two behaviors. 

process   I den t i f i ca t i on  [t] (MyId : Nat) 
: noex i t  := 

t ? I d  : Nat ? AnySignal : Timersignal 

I d e n t i f i c a t i o n  [t] (MyId) 
endproc (* I d e n t i f i c a t i o n  *) 

process  IdleTimer [t] : noex i t  : = 

[MyId = ( I d  Mod NumberOfTimers)]; 

t ? AnyId : Nat ! set ;  
RunningTimer [t] (AnyId) 

Id leTimer [t] 
> >  

where 

process  RunningTimer [t] (AnyId : Nat) : e x i t  := 
t ! AnyId ! cancel ; e x i t  

i ; t ! AnyId ! e x p i r e d ;   e x i t  
[ I  

endproc (* RunningTimer *) 
endproc (* Id leTimer *) 
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In  the parallel composition Id1  eTimer [t] l[t] I 
I d e n t i f i c a t i o n  [t] (TimerId), bothprocessesmust 
synchronize at gate t. A synchronization  takes 
place if both  processes offer the  same  event for 
that gate, satisfying the associated selection pred- 
icate [TimerId = ( I d e n t i f i e r  Mod NumberOfTimers)] . 
Process RunningTimer is the capability to execute 
action t ! AnyId ! cancel that  cancels  the timer as 
well as to  execute an internal action. However, 
once an action is  chosen,  either  by the environ- 
ment that  is not specified here  or  by  the  process 
itself, in case of the internal action, the  successor 
behavior is determined. The internal action here 
can  be  interpreted as “after  some delay. ” LOTOS 
has no notion of real time; it  is therefore not pos- 
sible to specify  a delay in seconds. Therefore, 
SPECS has  introduced  a notation to associate  a 
duration  with an internal action. 

SDL 

SDL is  the specification language standardized  by 
the  International Telegraph and Telephone Con- 
sultative Committee (CCITT).” It  has  both  a  tex- 
tual and a graphical syntax.  The language is sub- 
ject  to  a four-year revision cycle. The  update in 
1992 will, among others,  contain facilities for ob- 
ject-oriented specifications that  have been par- 
tially developed by the SPECS project. 

Data descriptions  are, as in the  case of LOTOS, 
algebraic specifications based on ACT ONE. Sev- 
eral language constructs  have  been introduced to 
simplify the writing of data  descriptions of which 
the most notable ones  are  the so-called literal 
classes, allowing a  user to define (infinite) classes 
of constants like the usual notation for integers, 
strings, and error values. 

Processes  are the basic building blocks of SDL. 
They  are made up of input and output  statements 
and state elements. Process  descriptions  are  ex- 
tended finite state machines, extended while the 
transition of a  state  to  a next state is not only 
determined by input signals. There is also the no- 
tion of a set of (program-like) variables internal to 
a  process, and decisions that distinguish between 
next states can be taken based upon expressions 
made up out of these internal values. 

With each  process is associated an unbounded 
queue  that  receives incoming signals. Signals are 
messages that  are  sent  between  processes along 
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Figure 2 Some SDL symbols 
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signal routes or channels in the  case of processes 
living in different blocks. They  carry a source and 
destination address and possibly data values. Sig- 
nals are consumed by input statements in the  or- 
der in which they arrive. This implies an asyn- 
chronous communication model between SDL 
processes: a process  deals with a signal as soon as 
it can find the time to  do so, without  setting up 
synchronization  with  other  processes. 

Using the graphical syntax explained in Figure 2, 
Figure 3 shows an example of a simple SDL process. 
When this process ACCUMULATOR comes into exist- 
ence, the variable total is initialized and the pro- 
cess enters the  state IDLE. An add signal instructs it 
to add any further values sent  by the signal val ue to 
its total, while the subtract signal makes it subtract 
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such  values.  Upon reception of a query-reset 
signal, the  process  sends the accumulated value 
by a sum signal and enters again the I D L E  state. 

The  static  structuring mechanism in SDL is  the 
block concept. A division in blocks  represents  the 
static  structure of an SDL system. Blocks, pro- 
cesses,  and  channels  can be subdivided into  sub- 
components.  These  structuring  concepts  support 
the hierarchical decomposition of an SDL system. 

An example of a block diagram is shown in Figure 
4. The block a is composed of two  processes, 
ACCUMULATOR and CLIENT, connected  by  the signal 
routes R 1  and R2. The  process C L I E N T  is  connected 
via  the signal routes R3 and R4 to  the  channels C 1  
and C2. 

SDL also provides a procedure concept, comparable 
to  the classical procedure concept: when a process 
invokes a procedure, it is itself suspended, and con- 
trol returns to the process only when there is a re- 
turn from the procedure call. Furthermore, there is 
some concept of time  in SDL. A special variable 
provides access to system time; it is possible to set 
timers and thus model a certain duration of time. 

A formal semantics  for SDL has  been given in An- 
nex F of Recommendation Z.lOO1o in the  deno- 
tational style, i.e., by interpreting SDL constructs 
in an abstract SDL machine. SPECS has given an 
operational  semantics to part of SDL in the  same 
style as  the official LOTOS semantics: for an SDL 
specification a labeled transition system  is  con- 
structed.  Execution of the specification is then 
performed by stepping through this transition sys- 
tem, as for LOTOS. 

The  SPECS support for data In LOTOS and 
SDL 

Although it is easy  to specify simple data  types in 
the algebraic abstract-data-type  style,  they  re- 
main tedious to  write and require  great  care to 
provide a complete set of equations. Therefore, 
the  task of giving algebraic specifications of data 
is  considered to be a serious problem in the  use of 
LOTOS and SDL and even  tends to be avoided. For 
this  reason and to have a uniform set of data 
types, it was decided that all the languages oc- 
curring in the SPECS architecture should imple- 
ment the  same fixed set of data  types and type 
generators,  each  with a fixed set of predefined 
operators. This set  is  directly modeled on the set 
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Fiaure 3 A simple SDL process 

PROCESS ACCUMULATOR (1 ,l) 

of data  types available in imperative languages. It The  type  schemes enum, array,  record, and 
is comprised of: variant  record 

A set of basic types, e.g., Boolean, integer, ra- 
tional, and character Details on  the implementation of these SPECS data 
The  parameterized  types list, set, and map  types  are given in later  sections of this  paper  on 

Facilities to allow user-defined functions 
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Figure 4 An SDL block diagram 

BLOCK a 

ACCUMULATOR 

I CLIENT 

cn- CHANNELS 
Rn = SIGNAL ROUTES 

c1 
C i  

I-CRL data  part,  translation of data,  and  transla- 
tion of the  data  part. 

Translation to the common  intermediate 
representation 

As stated in the  introduction,  the  Implementation 
Common Representation Language, or I-CRL, 
serves as an  intermediate  layer in the compiler 
architecture.  It  serves two goals. 

1. It supports  the  decomposition of the  two  trans- 
lations, LOTOS to C  with  the run-time environ- 
ment (RTE) and SDL to C with the RTE, into  two 
complementary  phases. 

A first phase  transforms  the  communication 
and  concurrency  semantics of the  source 
language into an execution-oriented model, 
but stays within the  semantic world of la- 
beled transition  systems. It is thus  possible 
to define and check  the formal correctness of 
this  translation  phase. 
A second  phase  maps the execution-oriented 
model onto a specific programming language 
(C) and  the  supporting run-time functions. It 
handles  the  problems  introduced by the lim- 

itations of the programming language and  the 
finiteness of the  machines  on which the gen- 
erated  code will be  eventually  executed. 

2. It  factors  out  the  part  that is common  to  these 
two translations, so that it needs  to  be defined 
and implemented only  once. Specifically, the 
second  translation  phase  described  above is 
common to  the LOTOS and SDL translators. 

The design of the I-CRL has  been  based  on  pre- 
vious  work of one of the  authors"  on  the  com- 
pilation of LOTOS specifications. The model has 
been  extended and adapted to also  cover  seman- 
tic  aspects of SDL and  the  data  part of both lan- 
guages. 

The I-CRL is  composed of two independent,  but 
interrelated  parts, the  data  part  and  the  control 
part.  These  are  presented in the next  two  sec- 
tions. 

The I-CRL data part. The I-cRL data  part  is  a 
simple version of a  functional language, concep- 
tually located  between  the algebraic abstract  data 
types of LOTOS and SDL, and  imperative  program- 
ming languages. The main features are: 

Referential transparency-a function  that  has 
no side-effects 
Support for basic  data  types  and  static  struc- 
tures-Boolean, integer,  rational,  character, 
array,  record,  and  variant  record 
Support for dynamic  data structures-list, set, 
map-that come with a rich set of predefined 
operators 

Unlike  most functional programming languages, 
I-CRL does  not  provide higher-order functions  nor 
pattern  matching facilities, as these  were  not  nec- 
essary  for  the building of the compiler. 

The  two main concepts in the  data  part  are sorts 
and Operators. Sorts denote  sets of values. The 
Sorts BOOL, INTEGER, RATIONAL, and CHAR (the 
ASCII character  set)  are predefined, together  with 
a  set of operators  on them  denoting  the  usual 
functions,  such as addition and subtraction.  Sort 
constructors  provide  the  means  to define new 
sorts.  The  enumeration  sort  constructor ENUM 
provides the  means  to define a  sort  with  a finite set 
of values.  The  sort  constructors ARRAY, RECORD, 
and VARRECORD (variant-record)  have  the  same 
meaning as in conventional programming lan- 
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guages such  as PASCAL. The  sort  constructors 
LIST, SET, and MAP provide support for frequently 
used dynamic data  structures.  Even though I-CRL 
does not contain the notion of pointer,  any kind 
of dynamic data  structure, e.g., binary trees  or 
cyclic  data  structures,  can  be  represented using 
variant  records  together with the possibility of 
recursive  sort definitions. Sorts defined with 
these  sort  constructors  are equipped with  a  set of 
predefined operators  on them. The  sorts of all the 
expressions  occurring in an I-CRL specification 
must  be  declared, e.g., the following declares 
i n t l  i st  as a list of integers: 

(SORT-DCL intlist (L IST   INTEGER) )  

Operators  denote  a mapping from tuples of input 
values to an output  value.  Operators  take  a k e d  
number of arguments and are strongly typed; 
each  operator  has  a list of input sorts and one 
output  sort. Semantically, operators  denote ei- 
ther  a  constant  value (in case  the input sort list is 
empty),  or  a mapping from one  sort (in case  the 
input sort list has  one  element) or the  Cartesian 
product of two or more  sorts (in case  the input 
sort list has two or more  elements)  to the output 
sort. 

In the following simple example, the  operator 
square is defined on  the  rationals  by.square (x) = 
x - x. The OP-DCL clause defines the input sort list 
and the  output  sort.  Next, x is defined as the  for- 
mal parameter, and then  the result of the  operator 
is given as  the application of the predefined func- 
tion mu1 t i p l y .  

( OP-DEF 
( OP-DCL square ( RATIONAL ) RATIONAL ) 

( OP-APP mu1 t i  p l y  ( x x ) ) ) 
( x )  

An operator  can  be defined recursively, i.e., the 
expression defining an operator may contain an 
application of the  operator itself. Recursion is fre- 
quently used, especially since  the I-CRL data  part 
contains no loop  construct  that  is essentially non- 
functional, because it relies on destructive assign- 
ment. 

Expressions  can  be  constructed in the usual way, 
using literals, operator applications, and simple 
control  structures,  such as i f .  . . then . . . else. 
Expressions  occur  not  only in operator defini- 
tions, but  also in the  control  part of I-CRL, de- 
scribed in the  next  section. 
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The I-CRL control part. The I-CRL control  part 
defines a dynamic network of communicating 
state machines, where  state machines serve  as 
processes as well as procedures.  In the way  pro- 
cesses  are composed and communicate, I-CRL fol- 
lows an algebraic approach, as first proposed by 
Milner for CCs,‘j and more specifically the LOTOS 
model. The LOTOS concept of gates  has  been gen- 
eralized, however, to include queued asynchro- 
nous communication and  shared variables. Also, 
a  supplementary  process  creation mechanism has 
been added that reflects the  way  processes  are 
created in SDL. 

State machines. State machines, more precisely 
extended finite state machines, are  the  basic com- 
ponents of I-CRL. An automaton  that embodies 
the imperative programming concept of assign- 
ment statements gives them an operational  struc- 
ture.”  State machines have  the combined func- 
tionality of regular LOTOS processes, i.e., those 
that  consist of a finite number of control  states, 
and of SDL processes. 

A  state machine can be viewed as a collection of 
rules R = {rl, . . . , r,} on some set of state 
variables V = { v l ,  . . . , v,}. Each  variable is 
typed, i.e., it has  a specific sort.  The set of pos- 
sible assignments of values  to  the  state  variables 
constitutes  the set of data states. Each rule ri is 
of the form (j,p) :( j ’ , c )  and defines that from 
control  state j the  state machine can perform an 
action a and thereby  enter  control  state j ’  pro- 
vided the enabling predicatep is true under the 
current assignment of the  state variables. Fur- 
thermore, c ,  a  statement  on  the  state  variables, is 
executed and may change the  values of some 
state  variables.  Thereby,  a rule defines a  class of 
transitions. In addition, a  state machine has an 
initialization statement co that assigns initial val- 
ues to the local variables in V, and an initial con- 
trol state j ,, . 
Associated with  a  stack,  state machines may be 
invoked as procedures and return  a  vector of val- 
ues  on  successful termination. A  procedure is a 
state machine that  has  variables as parameters. 
The  variables may be passed  either by value or  by 
reference. When a  state machine performs a call 
command, its behavior becomes  the behavior of 
the  state machine of the  procedure,  where  the 
formal parameters  have been replaced by  the  ac- 
tual parameters passed with  the call command, 
until the  state machine procedure terminates. 
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Processes. A sequential process is a state ma- 
chine  that is augmented with a (possible empty) 
set of input signals and a (possible empty)  set of 
timers. Its behavior is determined by  the  associ- 
ated  state machine. When created, a process  has 
an implicit queue  attached to it that  accepts sig- 
nals of the  types listed in the input  signals list. 
The timers behave as in SDL. 

There  are  three  constructors  to build complex 
systems from sequential  processes.  State ma- 
chines  can be composed in parallel to form a net- 

Translation to I-CRL 
is different for 
data types  and 
control  parts. 

work of processes.  Such  networks  are dynamic, 
as  state machines may create new processes. A 
special form of parallel composition is  supported 
by  the disabling operator.  Further,  gates  can  be 
introduced opening a new scope. Communication 
over  these  gates  is  only possible within this  scope. 

Processes  can communicate synchronously, 
asynchronously, or through shared  variables. 
Synchronous communication actions  consist of 
multiple and “bidirectional” experiment offers at 
interaction  points called gates. An associated  se- 
lection  predicate may impose  constraints on  the 
values to be received in the input offers. More 
than  two  parties may engage in this communica- 
tion scheme. Asynchronous communication, des- 
ignated by send and receive, does not cause  the 
sending process  to wait. The receive operation 
dequeues a message (called signal) from the input 
queue of the  process, if one  is  present;  otherwise 
it causes  the receiving process to wait until a mes- 
sage arrives or until some Boolean expression, 
possibly involving  global variables, becomes true. 

There  is  also an internal  action that allows a pro- 
cess  to proceed on  its  own  without  synchroniza- 
tion with  other  processes. As a parameter it takes 
a time value  that specifies a delay and thus pro- 
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vides a time-out facility. The  process  interacts 
with a timer by executing set-timer and reset- 
timer commands, as in SDL. 

Commands. In addition, a number of special ac- 
tions allow a state machine to modify its environ- 
ment. The call command pushes  the  state ma- 
chine’s current  state  on  the  stack  and  executes a 
procedure as a subroutine.  The fork and create 
commands allow a state machine to create new 
processes,  with and without an input queue. 

From LOTOS to  I-CRL 

The translation from LOTOS to I-CRL is composed 
of two  parts:  the first maps LOTOS data specifi- 
cations  onto  the I-CRL data  part, exploiting spe- 
cific compiler directives; the  second  maps LOTOS 
behavior expressions onto extended finite state 
machines, the  basic  units of I-CRL. 

Translation of data. In LOTOS, it is not possible to 
support  some of the SPECS data  types directly, 
specifically type  schemes like records and arrays. 
Therefore, it was decided to implement the SPECS 
data  types by means of special compiler direc- 
tives, called pragmas. We will introduce  these 
pragmas through examples. 

LOTOS pragmas. LOTOs pragmas have  been 
implemented as special comments denoted by 
“(*$” and “$*)” bracket pairs. They  are divided 
into sort pragmas and operation pragmas. For ba- 
sic  data  types,  no pragma is needed; they  are im- 
plemented as a special library of basic types. We 
describe  the  data  types  introduced in the LOTOS 
example in the earlier LOTOS section again, this 
time using pragmas. 

First,  we recognize that  the  type Timersignal can 
be implemented as a simple enumerated  type, and 
use  the enum pragma, expressing this. 

type  Timersignal i s  
sorts  Timersignal  (*$ enum 3 $*) 

(* Timersignal i s  an enumerated type *) 
(* w i th   th ree   va lues  *) 

( *  These are  the  values o f  the  type *) 
opns set,  cancel,  expired : -> Timersignal 

endtype 

To implement the  type ExtendedNat, we use  the 
library  type Integer. In  fact  the  integers  contain 
more data  values,  but  have  the  advantage  that 
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they  are a standard  type in all imperative lan- 
guages. Moreover,  the SPECS implementation of 
the  integers  already  contains  the  functions 1 t and 
mod. So, 1 t does not have to be  declared  at all, 
while the pragma for Mod indicates  that  this is a 
user-defined renaming of the  standard library 
function mod (in fact,  this pragma could also be 
empty, because LOTOS is  not case-sensitive). 

1 i brary  In teger  end1 i b 

type ExtendedNat i s  I n tege r  
opns -Mod- (*$ mod $*) : Nat,  Nat -> Nat; 
(* user  renaming o f  the  standard *) 
(* func t i on  mod *) 

NumberOfTimers : -> Nat 
endtype 

In  our example we assume that NumberOfTimers has 
been given a value  elsewhere. 

Note  that we no longer need the  equations defin- 
ing the  semantics of the data, because  the  seman- 
tics  are now defined by mapping these  types to  the 
same  types at the I-CRL level (using the pragmas). 
The function declarations remain necessary, 
however, to preserve  the  static  semantic  correct- 
ness of the LOTOS specification. 

On the I-CRL level, the  same  set of data  types and 
type  schemes  has  been implemented, so pragmas 
are used to generate  the  corresponding  type on 
the I-CRL level. In  our first example this leads to 
the  sort declaration: 

(SORT-DCL 
TimerSi  gnal 
(ENUM set  cancel  expired)) 

The  second example is even simpler, because no 
new sorts  are  introduced by this  type declaration, 
and only  operators  that  are predefined, or a user 
renaming of a predefined operator  are allowed. 
Predefined operators need not  be explicitly de- 
clared  at  the I-CRL level, and the  user renaming is 
resolved during translation, i.e., every  use of the 
function Mod at  the LOTOS level is translated to the 
use of the predefined function mod at  the I-CRL 
level. So, this declaration does  not  generate  any 
I-CRL code. 

A more elaborate example declares a variant 
record with two variants.  Types Cal l  i ng, Cal l  ed, 
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and Module are  supposed to have been defined pre- 
viously. The  type Boolean is predefined. 

t y p e   P r i m i t i v e   i s  
Cal l ing,   Cal led,  Module, Boolean 

so r t s  
P r i m i t i v e  (*$ rec  vars 2 $*) 

opns 
CON-RQ (*$ mkrec  3 var 1 $*) : 

CON-RP (*$ mkrec 1 var  2 $*) : 
Call ing,  Called, Module -> P r i m i t i v e  

Module -> P r i m i t i v e  

ca l l   i ng -o f  (*$ sel  1 var  1 $*) : 
P r i m i t i v e  -> C a l l i n g  

module-of (*$ sel 3 var  1, sel 1 var 2 $*) : 
P r i m i t i v e  -> Module 

i s-con-rq (*$ i s v a r  1 $*I ,  
is-con-rp (*$ i s v a r  2 $*) : 

P r i m i t i v e  -> boo1 

endtype 

The compilation of the sort pragma (*$ rec  vars 2 $*) 
leads to the following sort declaration on the I-CRL 
level: 

( SORT-DCL P r i m i t i v e  
( VARRECORD 

( VARIANT-DEF CON-RQ 
( 
( FIELD-DEF 

XS-vl-f lXPrimi ti ve-op Ca l l  i ng ) 
( FIELD-DEF 

XS-vl-f2XPrimi 

XS-vl-f3XPrimi 
( FIELD-DEF 

( VARIANT-DEF CON-RP 
( 
( FIELD-DEF 

XS-v2-f lXPri mi 

t 

t 

t 

ive-op Cal led ) 

ive-op  Module ) ) )  

ive-op  Module ) ) I ) )  

The translation of operator pragmas is rather 
straightforward, with the exception of the multiple 
selector pragma (the module-of operator in the 
above example). This is translated to a case state- 
ment (McCarthy expression, in I-CRL terminology). 

Similarly there  are pragmas to describe list, set, 
map, and array  declarations  on  the LOTOS level, 
as well pragmas to describe  the predefined func- 
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tions  on  these types. Finally, a special pragma 
allows the  user to construct user-defined func- 
tions with equations to describe  the  semantics of 
these  functions. 

Translation of control. In  order  to  achieve  an ef- 
ficient implementation of LOTOS specifications, 
inherent parallelism involving complex multiway 
synchronization is reduced. For this purpose, 
closely  connected parallel processes of finite con- 
trol state  space  are merged into  a single state ma- 
chine. Loosely connected processes can  be mapped 
on  a network of state machines, thus avoiding  in- 
terleaving expansion. l3 The compiler detects pro- 
cesses that are dynamically created and compiles 
them into separate  state machines. However, the 
user can also identify  additional processes that 
should be implemented as single state machines. 

The translation proceeds as follows: After check- 
ing syntax and static  semantics,  the LOTOS spec- 
ification is  further simplified-either  to replace 
run-time expensive LOTOS operators  by simpler 
ones  or  to  ease  the translation into  state ma- 
chines, e.g., by reducing the number of different 
operators.  Further, all occurrences of dynamic 
process  creation  are replaced by afork command. 
The next  pass  transforms  the LOTOS processes 
into  a  network of state machines, expressed in 
I-CRL. Using a  chart  construction  technique,  a 
state machine is built directly from the  syntax  tree 
of the  corresponding LOTOS process. Optimiza- 
tions  on the  state  machines  are performed in the 
fourth pass: removing unused variables and use- 
less assignments, replacing variables  by  con- 
stants,  internal  step removal, etc. 

State machine construction. Milner introduced 
extended  automata called charts.14 In  a  chart,  a 
state  may  be labeled by  zero or  more  process 
identifiers; a  process identifier X indicates  states 
at which the behavior of the  chart  may  be  ex- 
tended by substitution of another  chart for X .  
Based on  this model, we have developed a  trans- 
lation method for LOTOS processes. ’’ Milner’s la- 
bels  have  been  extended  to  carry  not  only  process 
identifiers, but  also information on  the  update of 
data  variables and a  predicate making the  contin- 
uation conditional. 

For each LoTOS operator,  there is a  correspond- 
ing operation on charts.  The final state machine is 
obtained in an  “inside-out” way, building the ma- 
chine  bottom-up from the  leaves of the LOTOS 
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syntax  tree.  The LOTOS process stop, which is 
incapable of communicating, becomes  a  state ma- 
chine with one  state  but  without  any transition. 
Similarly, the  translation of a LOTOS process in- 
stantiationX[g,, . . . , g,](tl, . . . , t,) results in 
the  same  chart  except  that  an  extension  stores  the 
effect of parameter passing in the form of a  par- 
allel assignment statement. 

There  are  operations to prefix a transition to a 
state machine or  to glue together  the  roots of state 
machines. However,  the most interesting  opera- 
tion is  recursion resolving. When the  body of pro- 
cess X has been completely built, then  each  ex- 
tension with process name X in the  chart will be 
replaced by the  derivations and extensions  (ex- 
cept X) of the  root of the  chart. 

Example. Translating the LoTOS specification 
from the  section on LOTOS, the compiler recog- 
nizes that  the  process TimerBank recursively in- 
stantiates itself on  the left of the parallel operator 
and replaces  the parallel operator in TimerBank by 
a fork command. Then  the  corresponding  state 
machines are  separately  constructed for pro- 
cesses TimerBank and Timer. 

I-CRL process TimerBank is  a  state machine with 
only  one  state.  It  executes  the action create 
(Timer(Timer1d)) together  with  the  statement 
TimerId := Succ(Timer1d) as long as condition 
TimerId I t  NumberOfTimers is true. 

The  process Timer is defined as  the parallel com- 
position of the  processes IdleTimer and Identi- 
fi cati on. Its translation requires, therefore,  that 
the  processes IdleTimer and Identification be 
translated first. We describe  the translation of 
IdleTimer, as it illustrates  several  issues of our 
state machine construction algorithm. First,  a 
machine for process RunningTimer has  to  be  con- 
structed.  This  state  machine  can easily be derived 
from the LOTOS specification and is  shown in Fig- 
ure 5A with  the following notational conventions. 
The  nodes of the  graph  represent  states of the 
state machine; the  shaded circle indicates  the ini- 
tial state.  The edges represent  transitions and are 
labeled with  the  corresponding action. 

Then  the compiler builds  a machine for Id1 eTimer. 
First,  a new initial state  is  created  with transition 
t ?AnyId !set leading to  the former initial state of 
RunningTimer. This  leads to  the  graph shown in 
Figure 5B. Next,  the  sequential composition of 
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Figure 5 An  example of the  construction of a  state  machine 

el = t ?Anyid !cancel 6 
e2= t ?Anyld !expired ,, . , ,. 

i i 

IdleTimer 

the two processes,  expressed by the enabling initial state.  This  leads to the graph shown in 
operator “>>”, is resolved by redirecting the Figure 5C. Finally, after collapsing states  that 
two exit transitions to the  state labeled I d1  eTimer. are  connected by internal  actions  only and where 
The edge label e x i t  is replaced by i. Then,  the the originating state  has  no  other  transitions,  we 
compiler resolves  the  recursive call of Id1  eTimer get for process Id1  eTimer the  state machine shown 
by merging the  node labeled Id leTimer with the in Figure 5D. 
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Once  the  state machines for IdleTimer and Iden- 
ti f i ca t  i on have been built, the  process Timer can 
be  translated. Its normal translation would con- 
sist in two parallel processes.  However, to im- 
prove  the efficiency of the  code to  be generated, 
we could add a pragma (see  the  section on trans- 
lation of data in “From LOTOS to I-CRL”) to re- 
quest  the compiler to  further merge the  state ma- 
chines for process Id leTimer and I d e n t i f i c a t i o n .  
Because the  state machine for process I den t  i f i ca- 
t i  on has only one transition, the size of the resulting 
state machine would be the same. By this means, 
the translation would remove the composition op- 
erators “ ) I ”  and ‘‘> >” used to express the decom- 
position of constraints. 

From SDL to I-CRL 

From a semantic point of view, there  is no real 
gap  between SDL and I-CRL; the  basic I-CRL pro- 
cesses are  extended finite state machines like SDL 
processes, and I-CRL supports  the  asynchronous 
communication paradigm of SDL. Thus,  there  is 
no conceptual difficulty to translate  the  basic con- 
cepts of SDL to I-CRL. However, I-CRL is simpler 
than SDL in several domains, e.g., hierarchical 
structuring mechanisms. The  translator  has to 
take  care of these differences. It  turns  out  that  the 
combination of these  many small differences 
makes  the definition of the  translator a nontrivial 
task. 

Since  its first versions in the 1970s, SDL has grad- 
ually been enriched  with a certain number of con- 
structs  that make the language easier to use in 
various  situations, but that  makes  the tooling of 
the language expensive.  Therefore  the full SDL 
Recommendation”  is  not  supported by the com- 
piler; a few nonessential language extensions  are 
not  covered. As explained earlier in the  section on 
the SPECS support for data,  only a restricted form 
of the SDL data  part  is  supported.  The  subset of 
SDL that  is  supported is quite large and covers all 
the essential points of the language. 

The translation from SDL to I-CRL is done in two 
steps.  First,  the SDL specification is flattened or 
transformed into more basic  constructs,  then  the 
flattened SDL specification is translated  into 
I-CRL. 

The SDL recommendation defines a certain num- 
ber of constructs of the language (called addi- 
tional  concepts in the recommendation) in terms 

680 BINDING ET AL. 

of the primitive constructs of the language. Some 
of these additional constructs  have a direct coun- 
terpart in I-CRL, and are  therefore  not flattened. 
The  other additional  concepts are flattened, fol- 
lowing the  rules defined  in the recommendation. 
In  order  to simplify the  symbol  tables  later on in 
the translation process, names are  made unique 
within each  scope unit. 

Translation of the  data  part. SDL provides  direct 
support for most of the SPECS data  types and con- 
structors,  either through its  library of predefined 
data or through specific language constructs. For 
the  support of the definition of enumerated sorts 
and variant  records,  the  syntax of SDL had to be 
extended. The following example shows  how a 
variant  record  can be expressed using the SPECS 
extensions to SDL: 

NEWTYPE P r i m i t i v e  
VARSTRUCT 

VARIANT CON-RQ; 
c a l l  i ng-of C a l l  i ng; 
c a l l  ed-of Ca l l  ed; 
modul e-of Modul e; 

modul e-of  Module; 
VARIANT CON-RP; 

ENDNEWTYPE; 

Most SDL type definitions, introduced by the 
NEWTYPE clause, map straightforwardly into I-CRL 
sort definitions. For  the definition of a new op- 
erator f, the following restricted format of SDL 
equations is to be used: 

y l==e , ,  . . . , ym==em,  cl, . . . , cp ==> 
f ( x l , .  . . , x , ) = = e ;  

where: xl, . . . , x, are  the formal parameters of 
the operator f and must be pairwise distinct; e is 
the resulting expression. cl, . . . , cp ( p  2 0) is 
a list of conditions. y l ,  . . . , y ,  (rn 2 0) are 
auxiliary variables  that may not be circularly de- 
fined. 

The  same  restrictions on the format of axioms 
apply to LOTOS. 

For the translation to I-CRL, all the  equations  de- 
fining one  operator  are grouped together  into a 
case  expression,  with  one  case  per equation. The 
conjunction of the  translation of the conditions 
cl, . . . , cp  makes up the condition of the  corre- 
sponding case.  The auxiliary variables y l ,  . . . , 
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y ,  are  rendered through a LET construct, a spe- 
cific I-CRL construct for the definition of local syn- 
onyms. 

Translation of the  control  part. Two  points of the 
translation algorithm are highlighted in this sec- 
tion: the  representation of the  static SDL system 
structure in I-CRL, and  the translation of the sDL 
state machine. 

The  static hierarchical structuring mechanisms 
of SDL have no equivalent at the I-CRL level. In 
I-CRL, a process  can  send a message to any  other 
process, provided it knows  its  process identifier. 
In SDL, a process  can  send a signal only to those 
processes to which it is connected via a signal 
path. SDL provides  several levels of anonymous 
addressing; thus  the knowledge of the  destination 
process  is not required. To cope  with  these dif- 
ferences  between SDL and I-CRL, a static  connec- 
tivity table is computed during the compilation 
process. For each process type P ,  each signals and 
each signal route r connected to P,  it indicates the 
possible destination process types for the signal s 
sent  by P on r. For the example  in Figure 4, this 
table would contain the following entries: 

. . .  
(accumulator, sum, R 1 )  -> client 
(client, add, R2)  -> accumulator 
(client,  subtract, R 2 )  -> accumulator 
. . .  
At execution time, a dynamic table  that  con- 
tains-for each  process type-the set of process 
identifiers of all the  active  processes of that  type, 
is maintained. Thus  the SDL signal routes and 
channels  are not explicitly modeled by active 
components in I-cRL. The effect is  better  execu- 
tion performance, at  the  price of more expensive 
compilations. 

Most SDL behavior concepts  (such as process, 
procedure, and variable)  map directly to equiva- 
lent I-CRL concepts. Due to the complexity of the 
state  transitions in SDL, states cannot be mapped 
one-to-one from SDL to I-CRL. Auxiliary states 
have to  be introduced in I-CRL in various places, 
which correspond  to  the  points  between  the  ac- 
tions in an SDL transition. All the SDLINPUTstate- 
ments leaving a state  are  grouped together in a 
single I-CRL RECEIVE command. The SDL process 
creation command CREATE is translated  into  the 
I-CRL create command and an  update is per- 
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formed on  the global dynamic process identifier 
table mentioned in the previous paragraph. 

From I-CRL to C 

This translation is described in two parts: the  data 
part and the  control  part. 

Translation of data. In I-CRL, data  are described in 
a functional way, whereas C is a procedural  pro- 
gramming language. Thus,  the problem addressed 
is in the  area of implementation of functional pro- 
gramming languages, a domain that received 
much attention in the  last few years  (see e.g., 
Reference 15). As  this  area  was  not  our main do- 
main of interest, a simple and straightforward ap- 
proach  was  taken for the compilation of the I-CRL 
data  part. We assume that a product  version of 
the compiler would implement the  various opti- 
mization strategies developed elsewhere and doc- 
umented in the literature. 

Sorts. The  basic I-CRL data  sorts  are mapped to 
basic C types. User-defined I-CRL sorts  are rep- 
resented as dynamically allocated data  structures 
and are declared as pointers to an element of this 
structure. Simple data  structures  have been used 
to represent all the  sort  constructors.  Lists,  sets, 
and maps  are  represented as simply linked lists. 
Variant records  are  represented as a union of all 
the  variants, grouped together with an enum field 
to indicate which variant is represented;  arrays 
are  represented as arrays. A possible enhance- 
ment would be  to provide a choice between  sev- 
eral implementations and to let  the  user  select 
one,  via design annotations in SDL or LOTOS, de- 
pending on time and  space performance criteria. 

Operators. I-CRL operators  are mapped to C func- 
tions. For  each user-defined sort, an implemen- 
tation of the predefined operators  is  generated  by 
adapting C templates. The I-CRL constructs for 
expressions map straightforwardly to C, using the 
C conditional operator exp ? exp .- exp, and the C 
comma operator. 

In  the  setting of dynamically allocated structures, 
an important issue is memory management. Care 
has to  be taken  that allocated memory is  freed 
when  no longer in use. A simple approach was 
chosen: a function is responsible for freeing the 
memory allocated to its arguments. Common 
subexpressions  are  not  shared  between  data 
structures;  thus,  an  operator  can modify its  ar- 
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guments and reuse their allocated memory if use- 
ful. 

Translation of control. The  state machine concept 
of I-CRL allows a straightforward implementation. 
Processes and procedures  are implemented by C 
functions. Therefore, a process instantiation as 
well as a procedure call becomes a function call. 
Gate  names and data  values of the  process in- 
stantiation form the  parameters of the C function. 

The C function body  declares  variables  for  the 
internal gates and the local state  variables of the 
process, followed by statements realizing the ini- 
tialization statement and a jump to the initialstate 
label. 

Each  control state, represented by a label, is a 
block of statements computing the  rules  that may 
lead from that  state.  For  each rule, the  generated 
code first checks  the local constraints by evalu- 
ating theprovided  clause. All enabled actions  are 
passed as event offers to the  scheduler.  Depend- 
ing on the  action  chosen, their effects will be com- 
puted, followed by a jump to the  successor  con- 
trol  state. 

An excerpt of a translation of an I-CRL specifica- 
tion to C with  the run-time environment is shown 
below. 

static  void  Timer( t, TimerId) 
RT-Gate  t; 
int  TimerId; 
{ int -s,  -last, -cur, -noia; 

boo1  ean -ug; 
RT-Param -pars-O[ 21 , -pars-l[ 21 ; 
long -args-O[ 31, -args-l[ 31 ; 
RT-EventStruct -evt[ 21 ; 
int  AnyId; 

S1: I* State  S1 *I 
RT-Setparam( -pars-O[ 01, 1, RT-Read,  &AnyId); 
RT-Setparam( -pars-O[ 11, 16, RT-Write,  set( 1); 
- args-O[ 01 = (long)  &TimerId; 
- args-O[ 13 = (1 ong)  &NumberOfTimers; 
-args-O[ 21 = (long)  &AnyId; 
RT-SetExtEv( -evt[ 01 , t, "t" , 1, 2, -pars-O, 

if ( RT-Synch( 1, -evt) == RT-Aborted) 
-SPA, 3, -args-O, 0,  0, 0); 

RT-Termi nate( 0, RT-Zombi e) ; 
got0 s3; 

. . .  

682 BINDING ET AL. 

menis for parallel piogrammiig languages in gen- 
eral'G19 and LOTOS or SDL in particular2@" has 
already  been discussed in the  literature. In all 
these efforts, the language compiler assumes an 
underlying execution  environment  that  serves as 
an intermediary  between  the compiler-generated 
code and the underlying operating  system. 

Since  none of the  above  environments  was avail- 
able to us or exactly fitted the I-CRL execution 
model, we decided to design and implement our 
own LOTOS and SDL specific run-time environ- 
ment. 

Goals of the  run-time  environment. The goals of 
the run-time environment  were  the following: 

To provide a concrete implementation of the 
execution model advocated in the  section  about 
I-CRL. To that effect, active  abstractions  per- 
forming the  state  machine  transitions and the 
appropriate communication mechanisms had to 
be provided via a programming interface to  the 
rest of the compilation environment. 
To execute on a concrete, physical computing 
platform. For reasons of availability and suit- 
ability as a prototyping environment, we have 
chosen Advanced Interactive  Executive* 
(AIX*), IBM'S implementation of the UNIX oper- 
ating system,  to provide the underlying execu- 
tion environment. The run-time environment 
interfaces, however,  are largely independent 
from the target platform and could be imple- 
mented on top of other  execution environ- 
ments. 

The  next  two  sections  describe  the overall func- 
tionality of the run-time environment, as well as 
the implementation of the LOTOS multiway syn- 
chronization algorithm and the sDL style message 
passing. 

Run-time  environment  functionality. The execu- 
tion paradigm for LOTOS and SDL is focused on a 
few, fundamental abstractions.  Both languages 
use processes as active entities that sequentially 
execute a piece of program. Processes commu- 
nicate asynchronously by sending messages in 
SDL, whereas LOTOS advocates a multiway syn- 
chronous communication model. Quite naturally, 
the following abstractions  appear at the run-time 
environment interface: 
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ihread  executes  one  extended finite state ma- 
chine. LOTOS or SDL processes  can  thus be 
mapped to run-time environment  threads. 
Gates model LoTOS’s multiway, synchronous 
communication paradigm. They provide syn- 
chronization abstractions to which individual 
threads  can submit event offers. These  are uni- 
fied according to the LOTOS rules for process 
synchronization. 
Messages support sDL-style asynchronous 
communication between individual threads. 

I Using these  abstractions,  we engineered a pro- 
gramming interface  that  is used by  the  code gen- 
eration  phase of the compiler: The I-CRL to C 
compiler generates C code  that  invokes  the run- 
time-environment-provided operations to imple- 
ment the  operational  semantics of the specifica- 
tion languages. The  generated C code is then 
compiled and linked with  the run-time environ- 
ment C library. Although we only provided one 
concrete implementation of this library, it is 
hoped that  the interface is sufficiently implemen- 
tation-independent and could also be supported 
on other platforms. 

Before presenting the run-time environment pro- 
gramming interface in some more detail, a  few 
additional observations explain the need for hi- 
erarchical  data  structures to implement both 
threads and gates. 

Since in LOTOS and SDL, processes  can dynam- 
ically spawn child processes,  the internal organi- 
zation of the run-time environment organizes 
threads in a parent-child hierarchy. This allows 
for certain functions not to affect just  one  thread, 
but  the  entire thread hierarchy for which a given 
thread is the  root.  In  particular,  this  can be used 
to implement LOTOS disabling and the SDL 
oflspring functionality. 

The need for hierarchical data  structures  also 
holds for the implementation of gates: the  execu- 
tion of LOTOS processes and their subprocesses  is 
either interleaved or synchronized, thus creating 
an arbitrary  hierarchy of interleaved and synchro- 
nized subprocesses.  The following example clar- 
ifies the behavior of LOTOS multiway synchroni- 
zation and indicates  how  such  synchronization 
can be implemented using the well-known and-or 
tree  data  structure. 

The expression above yields the  synchronization 
topology of Figure 6 ,  assuming that  each LOTOS 
process  is mapped onto  one run-time environ- 
ment thread.  In Figure 6 ,  we  have labeled syn- 
chronized processes as and nodes and interleaved 
processes as or nodes. The terminal nodes  cor- 
responding to the LOTOS processes Q,, Po, PI, 
Q 2 ,  Pz, Q 3 ,  P, are  shown as rectangular boxes. 
An intuitively straightforward interpretation of 
the  synchronization  is  based  on an and-or tree 
behavior of a  gate hierarchy. That is, for an or or 
interleave node, any of the  present  subprocesses 
might provide the matching event. For a  synchro- 
nization or and node in contrary, all subprocesses 
must provide a matching event  for  synchroniza- 
tion to occur. 

In  the  above  expression, four processes must thus 
communicate over  gate g for the  synchronization 
to  take place. The  synchronization  event  can be 
established by the following groupings: {Qo, Po, 
Q 2 ,  Pz}, {Qo, Po, Q 3 ,  P3}, {QI, PI, Qz,  or 
{Q, , P,, Q 3 ,  P,} .  AI1 other groupings of pro- 
cesses  do not result in a synchronization. 

The main functionality of this run-time environ- 
ment library can now be summarized by  the fol- 
lowing key  operations. 

Thread creation. The create entry point takes  ar- 
guments that  determine  the thread’s stack  size,  its 
entry point, and its initial arguments. An addi- 
tional argument indicates  whether  the  thread and 
any of its child threads  can be disabled through 
the disable call (see below). The call returns  a 
handle to the newly created  thread.  The newly 
created  thread  becomes  the child of its  creator 
thread,  thus  creating  a  thread  hierarchy. 

Thread termination. A thread and all of its chil- 
dren  are terminated via  a call to  the terminate 
entry.  Thread  descriptors  are deallocated through 
use of the run-time environment’s dispose call. A 
parent  thread  can wait for the termination of one 
or all of its children through use of the join call. 

Thread disabling. Through a call to  the disable 
entry,  a  thread  can  terminate an entire subhier- 
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Figure 6 Synchronization  topology  for  sample LOTOS expression 
~ ~ ~~~~~~~~~~ 

archy of the thread hierarchy. This call specifi- 
cally implements the  semantics of the LOTOS 
“[>” operator  by identifying the  subtree of 
threads to be terminated. (The marking of such 
subtrees  occurs during creation of threads.) 

Gate  creation. To add a new gate  node to a (pos- 
sibly empty)  gate hierarchy, the client may  use 
the newsa te  call. Its arguments include the type 
of parallel composition for  the  processes bound to 
that gate node, e.g., interleaved or synchronized, 
the  parent  gate node, and the  expected number of 
threads to be bound to that  gate node. Note  that 
a new gate  node must be created  only if the  syn- 
chronization mode differs from the  parent node. 
Otherwise, the old and new node have  the  same 
synchronization  type and can  be combined. 

Thread-gate association and disassociation. To 
bind one  or  several  threads to a gate,  the client 
uses  the bind call after the  gate  has  been  created. 
To break  the association between a thread and a 
given gate, the run-time environment  supports 
the unbind call. As a side effect of the unbind call, 
the  gate  hierarchy may shrink if an internal  gate 
hierarchy  node  becomes childless. 

Thread synchronization. When a thread is ready 
to submit one or several  synchronization offers at 
various  gates, it uses  thesynch call. The call takes 
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an array of event offer descriptors as  its argu- 
ment. Each offer is  recorded  at  its  gate and the 
pending threads  are  then  tested  for possible syn- 
chronizations. If no gate  is  ready to synchronize, 
the calling thread  is  suspended until some other 
thread offers one of the missing synchronization 
opportunities or until a time out  associated  with 
a LOTOS internal event expires. The call’s return 
value  indicates  which  event  took place. 

Message  passing. Threads  can send messages to 
any  other  thread,  where  these  messages  are buff- 
ered in a queue  associated  with  the receiving 
thread. To receive a message, the receiving 
thread  invokes  the receive operation. Additional 
arguments to the  receive  operation  support  en- 
coding of enabling conditions and the SDL SAVE 
concept. 

Timer support. SDL support  requires  the provi- 
sion of timers  that  can be started,  tested,  and  can- 
celed. 

In addition to the  above  operations, which are 
visible to the compilers, the run-time environ- 
ment also  provides internal functionality for 
thread scheduling and thread  synchronization on 
condition variables. These  are used to implement 
the  exported  functions described above. 
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Within the SPECS project, the run-time environ- 
ment also supports  the mixing of specifications, 
i.e., interspecification communication. This is 
implemented by allowing the generation of an SDL 
type message (or signal) upon occurrence of a 
LOTOS event  and  by mapping specific SDL mes- 
sages  into LOTOS event offers. The required ex- 
tensions to the  base run-time environment  were 
straightforward after the desired semantics had 
become clear. 

A last class of operations handles UNIX-like input/ 
output,  thus providing means to communicate be- 
tween  a specification and its  environment. 

Compiler  implementation 

We first present  the platform on which the com- 
piler has been implemented, then highlight spe- 
cific aspects of each translation step. 

Implementation platform. The LOTOS/SDL to C 
compiler is implemented on  the development 
platform CONCERTO. 25 To introduce CONCERTO, 
we need some terminology. 

The concrete  syntax of a formal language defines 
exactly  what  character  sequences  are  correct  ex- 
pressions of the language, and associates  a  con- 
crete  syntax  tree, containing all the terminals, to 
them. An abstract  syntax  tree is  a simplified ver- 
sion of the  concrete  syntax  tree  that  contains  no 
keywords,  and  abstracts from certain details that 
are  necessary  at  the  concrete  syntax level to guar- 
antee  the  uniqueness of the parsing. To define 
certain  operations on a language, e.g., transla- 
tion, it is easier to  operate  at  the  abstract  syntax 
level than at  the  concrete one. A formalism is a 
language whose  concrete  and  abstract  syntaxes 
are formally defined using a grammar-like nota- 
tion. Aparser breaks up the  source program ac- 
cording to  the grammar into  constituent  parts and 
represents it by its abstract  syntax  tree. A tree 
transformer maps an abstract  syntax  tree of a 
source formalism to an abstract  syntax  tree of a 
target formalism; both formalisms may be  the 
same. Aprettyprinter generates the concrete  syn- 
tax of an abstract  syntax  tree. 

CONCERTO has  three  important  components  to 
support  the development of a compiler: 

A metalanguage   METAL)'^ and pretty printing 
metalanguage environment (METAL-PPML), *’ to 
define a formalism 
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A structure  processor, also called virtual  tree 
processor (vTP), to  operate  on  an  abstract  syn- 
tax  tree 
A tree  transformer (TRANS), to define recursive 
tree transformations 

A METAL specification defines the grammar of a 
formalism of interest, e.g., LOTOS, in a decla- 
rative fashion. From a METAL specification, 
CONCERTO produces  a  parser  that builds an ab- 
stract  syntax  tree from any  correct input program 
of the specified formalism. The  user  can  also 
specify the printing rules, also called unparsing 
rules, in a PPML specification for each node of the 
tree. Based on  these rules, CONCERTO generates 
a  pretty  printer. 

The VTP component  provides  various kinds of op- 
erations  that  can manipulate the tree. A VTP tree 
always belongs to a  certain formalism. The orga- 
nization of VTP is based on the  concepts of objects 
and classes. An object of one  class  can be con- 
verted  to  a compatible object of another  class. 
The browsing functions enable walks through a 
tree  without modifying it. Of course,  there  are 
tree  construction and modification functions. 
There  are  also  pattern matching facilities. A ma- 
jor  feature is that CONCERTO can provide simul- 
taneous  support  for  several formalisms; this is 
necessary for the building of a compiler. 

TRANS allows the  user  to concisely specify a map- 
ping from one formalism to another  one as a  set 
of abstract  syntax  tree  transformation rules. A 
transformation rule consists of a  source  pattern 
and a target pattern. Both patterns may be arbi- 
trarily deep and contain  tree  variables. Variables 
in the  source  pattern  are unified with elements of 
the input tree  that  are to  be transformed;  the 
transformation rules  are recursively applied to 
these variables, and the result is substituted for 
occurrences of the  variables in the target pattern. 
Moreover, it is possible to call arbitrary VTP func- 
tions for complex configurations. 

LOTOS to I-CRL implementation. The LOTOS to 
I-CRL compiler is implemented as a  four-pass 
compiler. The first pass performs the flattening 
function as defined by  the ISO standard.*  The 
static  semantics  check is also done here. In  the 
second  pass, all parallel expressions  that  spawn 
off a new process  are replaced by semantically 
equivalent fork commands; the result can  then be 
mapped directly to I-CRL. The third pass  trans- 
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forms LoTOS abstract  syntax  trees  into I-CRL ab- 
stract  syntax  trees.  To implement the  recursion 
solving, an extra argument-a list of process iden- 
tifiers and actual gates-is added to the  transla- 
tion function. This argument records  the  history 
of process instantiations; thus  the compiler can 
recognize when  the chain of process  dependen- 
cies is completed. In the  fourth  pass, some opti- 
mizations  on  the  state machines, e.g., copy prop- 
agation, are performed. 

SDL to I-CRL implementation. The SDL to I-CRL 
compiler is implemented in two passes.  The first 
pass  does  the flattening as described earlier in the 
section  “From SDL to I-CRL”; it transforms SDL 
into SDL. The  second  pass  transforms SDL into 
I-CRL. It  has  been implemented using the TRANS 
tool. The transformation rule of the sDL root  node 
calls a number of VTP functions that  scan  the SDL 
tree  to  compute  the SDL connectivity table also 
described earlier, before yielding an I-CRL tree. 
This table is  stored in a global variable, which is 
referred to in other TRANS rules, e.g., the one de- 
fining the translation of the SDL OUTPUT statement. 

I-CRL to C  with the run-time environment. This 
translation is implemented in a single pass. Its 
implementation is  rather  straightforward.  The C 
formalism provided by CONCERTO is used as tar- 
get formalism. A global variable sel-preds is used 
to collect all the selection predicates  that  oc- 
curred during the translation. At the  end, for ev- 
ery element in sel-preds, a function definition is 
generated.  These definitions are inserted in the 
declaration part of the  C-tree. 

Run-time  environment  implementation 

The run-time environment provides  the  concrete 
execution  environment for the compiled LOTOS 
and SDL code  with IBM’s AIX operating  system 
environment. In  our implementation, threads are 
implemented as independently scheduled corou- 
tines. Each  thread  executes  on  its  private  stack, 
but all threads  share the same AIX address  space. 
One rationale for this implementation choice  was 
efficiency  in thread-related  operations:  since all 
operations  are within one AIX address  space, 
thread  creation, scheduling, and destruction  only 
necessitate a few procedure calls and no  trap  into 
the operating system. 

The  reason for not using one UNIX process  per 
thread  was efficiency.  We could have used UNIX’S 
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shared-memory primitives to implement message 
passing and multiway synchronous communica- 
tion, but  the  costs of these  operations, as well as 
process management in general, would have  been 
considerably higher. Another unexplored design 
dimension would have  been a distributed imple- 
mentation of the  execution environment. This 
would have  introduced not only  further inefficien- 
cies,  but  also  considerably  increased develop- 
ment complexity. Particularly, the sharing of sDL 
process  variables and the LOTOS multiway syn- 
chronization are hard to implement in a truly dis- 
tributed environment. Unless a centralized sched- 
uler operating in a distributed environment is used, 
the multiway synchronization would indeed require 
a two-phase commit  protocol-the cost of which 
appeared prohibitive. 

The scheduling of run-time-provided threads  is 
explicit, i.e., we  do not implement preemptive 
context switching as this would have required a 
reentrant implementation of the  standard C librar- 
ies. Therefore,  threads  are  only rescheduled at 
well-defined entry  points to the run-time environ- 
ment. 

Most aspects of the  thread-related functionality 
are straightforward to implement and do not differ 
notably from other UNIX implementations of 
lightweight threads. 

SDL-style message passing can  be implemented in 
a straightforward way: threads  have an associ- 
ated message queue  into which a sender  deposits 
a message. The receiving process simply de- 
queues  that message and processes it as indicated 
by  the SDL state machine. Since all threads  op- 
erate in one AIX address  space, message passing 
is simply implemented by copying in shared mem- 
ory.  The  support for the SDL SAKE construct  is 
provided by having the compiler generate a bit 
pattern  that  indicates  the  types of messages that 
shall be saved or received. 

The implementation of LOTOS-Style multiway syn- 
chronization with possibilities of value matching, 
value generation, or value passing, however, was of 
greater challenge. 

As shown in the  section on run-time environment 
functionality, LOTOS event unification can  be 
mapped onto an and-or tree  data  structure. Indi- 
vidual threads  propose a set of events,  which  are 
described as  structures containing the  necessary 
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information for value matching, value passing, or 
value generation. After a thread proposes a new 
set of events,  the run-time environment attempts 
to solve  the and-or tree in a bottom-up fashion. At 
each layer of the  tree,  event unification is at- 
tempted. This involves matching the  data param- 
eters of individual events according to the LOTOS 
rules for value matching, value generation, and 
value passing. 

Once a set of events with matching data  values 
has  been found within a subtree,  the run-time 
environment invokes possible selection predi- 
cates for which the compiler generated the  cor- 
responding C functions. It is only when  the  events 
satisfy  these selection predicates  that  events  are 
propagated upward in the  tree,  otherwise a new 
combination of event offers is explored. If no 
combination of event offers succeeds,  the algo- 
rithm fails and no synchronization of threads 
occurs. 

Value generation during the  event unification is 
based on random value generation. We have not 
implemented a more general constraint-solving 
algorithm that would interpret  the selection pred- 
icates as a set of constraints to  be solved and 
assign suitable  values to unbound variables  dur- 
ing event unification. If event unification fails be- 
cause of unsatisfied selection predicates, a warn- 
ing message is generated. 

The  interpretation of the  gate  hierarchy  as  an 
and-or tree  determines  the  inherent complexity of 
the  event unification algorithm. Without taking 
into  account selection predicates, complexity of 
the algorithm is then nondeterministically poly- 
nomial  (NP-complete). 31 Selection predicate evalu- 
ation makes the event unification undecidable for 
the most general case. 

The run-time environment only provides minimal 
support for data.  It  assumes  that all data  values 
are  represented as 32-bit entities, i.e., either as 
32-bit values or  as pointers to multiword, heap- 
allocated structures.  This allows for uniform 
treatment of data within the run-time environ- 
ment.  The  data  operations  are implemented 
through regular C macros or functions, generated 
by  the  data  part of the I-CRL to C compiler. 

Event unification  for LOTOS and SDL message pass- 
ing requires that client-program-defined, sort-spe- 
c8c functions be installed  in the run-time environ- 
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ment  during  initialization. Thus, the compiler 
generates some code to install such sort-specific 
routines for equality testing, random value gener- 
ation,  copying,  and  deallocation  in internal look-up 
tables. These are then invoked when necessary. 
This approach represents another case in which 
tight  coupling between the run-time environment 
and the code-generation phase was necessary. 

The run-time  environment as described has  been 
implemented on IBM’s  RISC System/6000* family 
of processors,  on IBM RT* (RISC technology) 
workstations, as well as on the SUN-3** architec- 
ture. With the  exception of three assembler rou- 
tines  needed for thread  context switching, all the 
code is written in C. The overall library is ap- 
proximately 10000 lines of moderately com- 
mented C code. 

Conclusion 

We have designed translations from SDL and 
LOTOS to a procedural programming language, 
augmented with specific run-time support. We 
have shown that it is feasible to map the  abstract 
language LoTOS to an execution-oriented model 
consisting of communicating state machines, 
which is also a natural target for SDL. This inter- 
mediate representation allows the sharing of code 
generation for LoTOS and SDL and allows the in- 
tegration of mixed specifications. This approach 
has already  been applied to programming lan- 
guages, e.g., the IBM PL.8 compiler,32 but is new 
for specification languages. 

LOTOS specifications are quite often  written in the 
constraint-oriented specification style. This style 
structures  the  system specification into a set of 
parallel processes,  each expressing an indepen- 
dent  system  property.  However, existing LOTOS 
compilers20,21 map LOTOS processes on C func- 
tions, which are  executed  as  coroutines.  Accord- 
ingly, the  structure of the  generated  code closely 
resembles the  architecture of the LOTOS specifi- 
cation. In particular, the  process  structure as 
given by the parallel, enabling, and disabling op- 
erators is not changed. We have achieved an ef- 
ficient implementation of these specifications by 
reducing the inherent parallelism. 

As there  are no efficient implementation tech- 
niques for general algebraic data specifications, 
we introduced a set of basic  types and type  con- 
structors  into  the two specification languages. 
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This  contrasts  with  other LOTOS and SDL compil- 
ers (e.g., References 21 and 23), which oblige the 
user to implement the  data  functions.  It  turned 
out  that  our  approach also simplifies the  task of 
specifying data algebraically. 

The  use of a high-level language-engineering plat- 
form has  several  advantages  over  the  more  clas- 
sical  approach that  uses lexical analyzer  and 
parser  generators  such as LEX and YACC (avail- 
able on most UNIX platforms). Parsers,  unparsers 
and  syntax-directed  editors were generated  auto- 
matically from the grammar of the specification 
languages. The internal  representation of the  ab- 
stract  syntax  trees  was predefined and  encapsu- 
lated by a rich set of access  functions;  this  eased 
the  distributed  development of the compiler over 
three  sites.  Before being implemented,  the com- 
pilers had been specified in a VDM-like notation; 33 

the  derivation of the implementation was simpli- 
fied by  the  use of a high-level transformation lan- 
guage and  support  tool (TRANS). The drawback 
was a  rather long learning period, due  to  the com- 
plexity of the platform. 

The compiler described in this  paper  can  already 
be used for  the  validation of a formal specification 
in a rapid prototyping  approach, as advocated  for 
example in Boehm’s spiral model for  software  de- 
velopment,34 which includes  prototyping as a 
means of risk  reduction. To increase  the  ade- 
quacy of the compiler for  the  generation of prod- 
uct  code, the following items require further 
work.  For  the  data  part,  the  user should be al- 
lowed to  choose  between  several implementa- 
tions of the  dynamic  data  structures (list, map, 
set),  depending  on the nonfunctional  constraints, 
such  as  performance  and reliability. It should also 
be  possible to refer to existing  libraries of C type 
and  function definitions. For  the  behavior  part, 
pragmas defining communication  with the envi- 
ronment  should  be  introduced.  Thus, the sending 
of an SDL signal to  the environment or  the syn- 
chronization  on  a LOTOS gate could trigger the call 
of a specific C  function, realizing, for  example,  an 
input/output  operation.  In  the  current  version of 
the compiler, the  user  has to write  C  functions 
realizing this mapping and  to integrate  them man- 
ually into the generated  code in order  to obtain 
this effect. 
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