
A common compiler
for LOTOS and SDL
specifications

by C. Binding
W. Bouma
M. Dauphin
G. Karjoth
Y. Yang

This paper describes 8 translation of LOTOS and
SDL specific8tion languages into executable
code, 8s it was prototyped in the Specification
and Progr8mming Environment for Communi-
cation Software (SPECS) project under the
Research and Develo ment in Advanced
communications in grope (RACE) program.
Both ian uages are translated into a common
intermedate representation in the form of a
network of state machines with both synchronous
8nd asynchronous communic8tions. By 8 series
of tr8nsformations that make fuii use of the
equivalence relations defined on LOTOS
processes, this transi8tion solves uni ue
probiems stemming from the highiy a B stract
nature of LOTOS. The common intermediate
representation is mapped into C code that can be
executed in a specific run-time environment,
impiemented on a UNip-like operating system.
SPECS has also developed a pragmatic ap roach
to re resent impiementabie daf8 types in t i e
aigegaic framework of LOTOS and SDL, based
on 8 set of predefined type constructors.

T he introduction of a European integrated
broadband communications network (IBCN)

and its associated services requires that a huge
amount of software be developed. This software
will have a high degree of complexity, due to fac-
tors such as real-time constraints and the distri-
bution over many processors in a heterogeneous
environment (multivendor, multicountry, and
multilanguage). The reliability requirements on
this software will be as high as on current tele-
phone networks. The combination of the charac-

668 BINDING ET AL.

teristics of this software is such that new software
development methods and tools are needed to
achieve the required level of quality at an eco-
nomically justifiable price. Therefore, a set of
projects has been set up in the European Re-
search and Development in Advanced Commu-
nications in Europe (RACE) program, whose ob-
jective is to define a suitable programming
infrastructure for the IBCN software. One of these
projects, Specification and Programming Envi-
ronment for Communication Software (SPECS),
has as its primary objective the definition of meth-
ods and tools for the specification, design, imple-
mentation, and testing of telecommunications
software. A general presentation of the RACE pro-
gram and the SPECS project can be found in Ref-
erence 1.

The approach of SPECS is based on the use of
formal languages very early in the development
process to overcome the problems stemming
from the inherent ambiguity of natural language
and to allow the early application of semantic
tools on formal s ecifications for their verification
and validation. ' 9 After an evaluation of currently

Wopyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

P

IBM SYSTEMS JOURNAL, VOL 31, NO 4, lQQ2

available formal languages for the specification of
telecommunication systems and software, SPECS
has focused on the internationally standardized
languages, Language of Temporal Ordering Spec-
ification (LOTOS) and Specification and Descrip-
tion Language (SDL). In the SPECS approach,
these languages are used as broad-spectrum lan-
guages. They support the design and implemen-
tation activities, in which abstract functional
specifications, expressed in one of these lan-
guages, are transformed into implementation-ori-
ented descriptions of the system. (SPECS also sup-
ports the mixing of these languages in the
description of a system. This aspect is addressed
in more detail in Reference 4.) These transforma-
tions address the system structure as well as the
algorithmic parts of the specification. From the
implementation-oriented description, implemen-
tations are then generated automatically. To
achieve this goal, SPECS provides translation al-
gorithms and a prototype of a compiler that trans-
lates large subsets of SDL and LOTOS into the pro-
gramming language C. The design of this compiler
and the experience gained in its development are
the topics of this paper.

The architecture of this compiler is outlined in
Figure 1. It is centered around the Implementa-
tion Common Representation Language (I-CRL),
based on a formal model of dynamically config-
urable networks of communicating state ma-
chines, with possibilities for synchronous
(LOTOS-like) as well as asynchronous (sDL-like)
communication. The generated code relies on a
specific, but portable, run-time environment that
provides facilities for both synchronous and asyn-
chronous interprocess communication.

The major problems encountered in the definition
and the development of the prototype were due to
the abstract nature of the source languages, es-
pecially LOTOS, which have been designed as
specification languages. LOTOS provides mecha-
nisms to express nondeterministic choice-an im-
portant feature to achieve abstractness and im-
plementation independence. To overcome the
inherent inefficiency of a straightforward imple-
mentation of the powerful communication mech-
anism of LOTOS (multiway synchronization with
value negotiation), specific optimization tech-
niques had to be developed, e.g., the merging of
closely coupled processes into a single state ma-
chine, and the transformation of tail recursion
into loops.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, lQS2

Figure 1 Compiler architecture defined by SPECS

LOTOS
SPECIFICATION
LANGUAGE
BASED ON

SDL
SPECIFICATION
LANGUAGE

ASYNCHRONOUS
BASED ON

COMMUNICATION

The remainder of this paper contains an overview
of LOTOS and SDL, a description of the translators
from LOTOS and SDL to I-CRL and the ensuing
phase of code generation from I-CRL to C, a dis-
cussion of the run-time environment to model the
concurrency in I-CRL on the C+ UNIX** level, and
finally, a discussion of implementation issues.

LOTOS
LOTOS has been developed by experts in formal
description techniques within the International
Organization for Standardization @SO) as a stan-
dard language for formal specification of commu-
nication protocols and, in particular, for Open
Systems Interconnection (OSI) protocols. It is
based on the idea that systems can be described
by defining the temporal ordering of events that
are externally observable. The language has two
components, one dealing with the algebraic de-
scription of data based on the algebraic specifi-
cation language ACT ONE^ and one for the descrip-
tion of process behaviors and interactions based
on a modification of the Calculus of Communi-
cating Systems (CCS)~ with elements from Com-
municating Sequential Processes (CSP). ' The Ian-
guage is defined in Reference 8.

BINDING ET AL. 669

Data are defined by specifying sorts (sets of val-
ues), typed operator signatures, and equations,
which can be seen as recursive function defini-
tions. Semantics for data descriptions are ob-
tained by combining them into one big data de-
scription and constructing the corresponding data
algebra.

Behavior is described by so-called behavior a-
pressions. The simplest behavior expressions are
stop, which defines a process not able to perform
any action, and exit, which communicates suc-
cessful termination possibly with value passing.
The action-pre$x operator composes behavior
with an observable communication or internal (si-
lent) action. Such communication takes place
across interaction points called gates with the
possible exchange of data. This communication is
synchronous: an executing LoTOS behavior expres-
sion can only communicate across a gate if there
exists a partner to do so. Furthermore, during syn-
chronization, data values may be negotiated. Note
that in LOTOS there is no direction of exchange of
data. Other ways of composing behavior are illus-
trated in the example below.

After obtaining a description of behavior with the
above constructs, process definitions allow a
name to be given to behavior expressions and to
make them dependent on data variables and gate
names. Such a name constitutes a simple behav-
ior expression and is calledprocess instantiation.
Process instantiation then makes it possible to
have recursive definitions of behavior. A com-
plete specification is obtained by a set of process
and data-type definitions and the description of
the system behavior in terms of these definitions.

Semantics is given to a LOTOS specification by
first constructing the data algebra, and then, based
upon this data model, a process graph or labeled
transition system with nodes consisting of behavior
expressions and edges labeled with atomic actions.
Only those nodes that are derivable from the root
node (the whole specification) by means of deriva-
tion rules are taken into consideration.

In the following example, we describe a timer fa-
cility as it may be used in the implementation of
communication protocols to recover from the loss
of messages over an unreliable channel. Assume
each transmitted message carries a sequence
number of identification. If there are NumberOf-
Timers timers, each timer can control the ac-

670 BINDING ET AL.

knowledgment for message SeqNo modulo Number-
OfTimers if there are not more than NumberOfTimers
messages outstanding at any moment. For a de-
tailed explanation, see e.g., Reference 9.

The process TimerBank forks (creates) a number of
timer processes. The data used here are integers
as defined in a standard library and timer signals
defined by the data type Timersignal.

1 i brary Natura l Number end1 i b

type TimerSignal i s
sorts TimerSignal
opns set, cancel, expi red : -> Timersignal
endtype

type ExtendedNat i s N a t u r a l Number
opns -Mod- : Nat, Nat -> Nat;

NumberOfTimers -> Nat
eqns f o r a l l x, y : Nat

o f s o r t Nat
X It y => X Mod y = x;
X Mod y = (x + y) Mod y

endtype

The sort Timersignal has three elements, namely
set, cancel , and expi red, represented as constants
(nullary operators in LOTOS jargon). The type
ExtendedNat extends I n tege r with the operation
Mod, which is not presented in the SPECS library.
The two ‘“”s indicate Mod is an infix operator. The
equations given under eqns define the semantics
of Mod, the remainder of integer division. Number-
OfTimers is a constant whose value is not defined
since there are no equations for this operator.

The behavior is specified by processes. The pro-
cess TimerBank [t] (0) forks NumberOfTimers num-
ber of Timer processes that are in parallel but do
not communicate with each other. This is ex-
pressed by

process TimerBank [t] (TimerId : Nat) : noex i t :=
[TimerId 1 t NumberOfTimers] ->

(i; TimerBank [t] (Succ (TimerId))
I l l
Timer [t] (TimerId))

endproc

“i ” is an internal event that cannot be observed.
The actionpreJix operator “;” specifies that only
after the event has been executed the process
may behave as TimerBank.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

New instances of process Timer are forked as long
as the condition TimerId 1 t NumberOfTimers holds.
Thus the process TimerBank [t] (0) will behave as
the following process:

TimerLtI (0) 1 I I
(i; Timer[t] (1) 1 I 1

. . . I l l
(i; Timer[t] (NumberOfTimers-1)) . . .)

Process Timer is composed of process Id1 eTimer in
parallel with process I d e n t i f i c a t i on, both synchro-
nizing at gate t. Process I d e n t i f i c a t i o n uniquely
identifies each timer, and process Id leTimer de-
scribes that a timer can be canceled or may expire
after it has been set.

process Timer [t] (TimerId : Nat)
: noex i t :=

Id leTimer [t]

I d e n t i f i c a t i o n [t] (TimerId)
I [tl I

endproc

A process may offer events at a gate possibly as-
sociated with data values, the notation “?” mean-
ing any value of the given sort, and “ ! ’’ only the
given value. The “?” values may be constrained
by a selection predicate. The enabling operator
‘‘> >” composes two behavior expressions in se-
quence; the second behavior is entered only after
the first behavior has successfully terminated.
Successful termination is denoted by ex i t. “ [3 ”
is a choice between two behaviors.

process I den t i f i ca t i on [t] (MyId : Nat)
: noex i t :=

t ? I d : Nat ? AnySignal : Timersignal

I d e n t i f i c a t i o n [t] (MyId)
endproc (* I d e n t i f i c a t i o n *)

process IdleTimer [t] : noex i t : =

[MyId = (I d Mod NumberOfTimers)];

t ? AnyId : Nat ! set ;
RunningTimer [t] (AnyId)

Id leTimer [t]
> >

where

process RunningTimer [t] (AnyId : Nat) : e x i t :=
t ! AnyId ! cancel ; e x i t

i ; t ! AnyId ! e x p i r e d ; e x i t
[I

endproc (* RunningTimer *)
endproc (* Id leTimer *)

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

In the parallel composition Id1 eTimer [t] l[t] I
I d e n t i f i c a t i o n [t] (TimerId), bothprocessesmust
synchronize at gate t. A synchronization takes
place if both processes offer the same event for
that gate, satisfying the associated selection pred-
icate [TimerId = (I d e n t i f i e r Mod NumberOfTimers)] .
Process RunningTimer is the capability to execute
action t ! AnyId ! cancel that cancels the timer as
well as to execute an internal action. However,
once an action is chosen, either by the environ-
ment that is not specified here or by the process
itself, in case of the internal action, the successor
behavior is determined. The internal action here
can be interpreted as “after some delay. ” LOTOS
has no notion of real time; it is therefore not pos-
sible to specify a delay in seconds. Therefore,
SPECS has introduced a notation to associate a
duration with an internal action.

SDL

SDL is the specification language standardized by
the International Telegraph and Telephone Con-
sultative Committee (CCITT).” It has both a tex-
tual and a graphical syntax. The language is sub-
ject to a four-year revision cycle. The update in
1992 will, among others, contain facilities for ob-
ject-oriented specifications that have been par-
tially developed by the SPECS project.

Data descriptions are, as in the case of LOTOS,
algebraic specifications based on ACT ONE. Sev-
eral language constructs have been introduced to
simplify the writing of data descriptions of which
the most notable ones are the so-called literal
classes, allowing a user to define (infinite) classes
of constants like the usual notation for integers,
strings, and error values.

Processes are the basic building blocks of SDL.
They are made up of input and output statements
and state elements. Process descriptions are ex-
tended finite state machines, extended while the
transition of a state to a next state is not only
determined by input signals. There is also the no-
tion of a set of (program-like) variables internal to
a process, and decisions that distinguish between
next states can be taken based upon expressions
made up out of these internal values.

With each process is associated an unbounded
queue that receives incoming signals. Signals are
messages that are sent between processes along

BINDING ET AL. 671

Figure 2 Some SDL symbols

INITIAL STATE

STATE S

ANY STATE

RECEPTION OF SIGNAL SIG

EMISSION OF SIGNAL SIG

TEXTUAL PART

signal routes or channels in the case of processes
living in different blocks. They carry a source and
destination address and possibly data values. Sig-
nals are consumed by input statements in the or-
der in which they arrive. This implies an asyn-
chronous communication model between SDL
processes: a process deals with a signal as soon as
it can find the time to do so, without setting up
synchronization with other processes.

Using the graphical syntax explained in Figure 2,
Figure 3 shows an example of a simple SDL process.
When this process ACCUMULATOR comes into exist-
ence, the variable total is initialized and the pro-
cess enters the state IDLE. An add signal instructs it
to add any further values sent by the signal val ue to
its total, while the subtract signal makes it subtract

672 BINDING ET AL.

such values. Upon reception of a query-reset
signal, the process sends the accumulated value
by a sum signal and enters again the I D L E state.

The static structuring mechanism in SDL is the
block concept. A division in blocks represents the
static structure of an SDL system. Blocks, pro-
cesses, and channels can be subdivided into sub-
components. These structuring concepts support
the hierarchical decomposition of an SDL system.

An example of a block diagram is shown in Figure
4. The block a is composed of two processes,
ACCUMULATOR and CLIENT, connected by the signal
routes R 1 and R2. The process C L I E N T is connected
via the signal routes R3 and R4 to the channels C 1
and C2.

SDL also provides a procedure concept, comparable
to the classical procedure concept: when a process
invokes a procedure, it is itself suspended, and con-
trol returns to the process only when there is a re-
turn from the procedure call. Furthermore, there is
some concept of time in SDL. A special variable
provides access to system time; it is possible to set
timers and thus model a certain duration of time.

A formal semantics for SDL has been given in An-
nex F of Recommendation Z.lOO1o in the deno-
tational style, i.e., by interpreting SDL constructs
in an abstract SDL machine. SPECS has given an
operational semantics to part of SDL in the same
style as the official LOTOS semantics: for an SDL
specification a labeled transition system is con-
structed. Execution of the specification is then
performed by stepping through this transition sys-
tem, as for LOTOS.

The SPECS support for data In LOTOS and
SDL

Although it is easy to specify simple data types in
the algebraic abstract-data-type style, they re-
main tedious to write and require great care to
provide a complete set of equations. Therefore,
the task of giving algebraic specifications of data
is considered to be a serious problem in the use of
LOTOS and SDL and even tends to be avoided. For
this reason and to have a uniform set of data
types, it was decided that all the languages oc-
curring in the SPECS architecture should imple-
ment the same fixed set of data types and type
generators, each with a fixed set of predefined
operators. This set is directly modeled on the set

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

Fiaure 3 A simple SDL process

PROCESS ACCUMULATOR (1 ,l)

of data types available in imperative languages. It The type schemes enum, array, record, and
is comprised of: variant record

A set of basic types, e.g., Boolean, integer, ra-
tional, and character Details on the implementation of these SPECS data
The parameterized types list, set, and map types are given in later sections of this paper on

Facilities to allow user-defined functions

IBM SYSTEMS JOURNAL VOL 31, NO 4, 1992 BINDING ET AL. 673

Figure 4 An SDL block diagram

BLOCK a

ACCUMULATOR

I CLIENT

cn- CHANNELS
Rn = SIGNAL ROUTES

c1
C i

I-CRL data part, translation of data, and transla-
tion of the data part.

Translation to the common intermediate
representation

As stated in the introduction, the Implementation
Common Representation Language, or I-CRL,
serves as an intermediate layer in the compiler
architecture. It serves two goals.

1. It supports the decomposition of the two trans-
lations, LOTOS to C with the run-time environ-
ment (RTE) and SDL to C with the RTE, into two
complementary phases.

A first phase transforms the communication
and concurrency semantics of the source
language into an execution-oriented model,
but stays within the semantic world of la-
beled transition systems. It is thus possible
to define and check the formal correctness of
this translation phase.
A second phase maps the execution-oriented
model onto a specific programming language
(C) and the supporting run-time functions. It
handles the problems introduced by the lim-

itations of the programming language and the
finiteness of the machines on which the gen-
erated code will be eventually executed.

2. It factors out the part that is common to these
two translations, so that it needs to be defined
and implemented only once. Specifically, the
second translation phase described above is
common to the LOTOS and SDL translators.

The design of the I-CRL has been based on pre-
vious work of one of the authors" on the com-
pilation of LOTOS specifications. The model has
been extended and adapted to also cover seman-
tic aspects of SDL and the data part of both lan-
guages.

The I-CRL is composed of two independent, but
interrelated parts, the data part and the control
part. These are presented in the next two sec-
tions.

The I-CRL data part. The I-cRL data part is a
simple version of a functional language, concep-
tually located between the algebraic abstract data
types of LOTOS and SDL, and imperative program-
ming languages. The main features are:

Referential transparency-a function that has
no side-effects
Support for basic data types and static struc-
tures-Boolean, integer, rational, character,
array, record, and variant record
Support for dynamic data structures-list, set,
map-that come with a rich set of predefined
operators

Unlike most functional programming languages,
I-CRL does not provide higher-order functions nor
pattern matching facilities, as these were not nec-
essary for the building of the compiler.

The two main concepts in the data part are sorts
and Operators. Sorts denote sets of values. The
Sorts BOOL, INTEGER, RATIONAL, and CHAR (the
ASCII character set) are predefined, together with
a set of operators on them denoting the usual
functions, such as addition and subtraction. Sort
constructors provide the means to define new
sorts. The enumeration sort constructor ENUM
provides the means to define a sort with a finite set
of values. The sort constructors ARRAY, RECORD,
and VARRECORD (variant-record) have the same
meaning as in conventional programming lan-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1002

guages such as PASCAL. The sort constructors
LIST, SET, and MAP provide support for frequently
used dynamic data structures. Even though I-CRL
does not contain the notion of pointer, any kind
of dynamic data structure, e.g., binary trees or
cyclic data structures, can be represented using
variant records together with the possibility of
recursive sort definitions. Sorts defined with
these sort constructors are equipped with a set of
predefined operators on them. The sorts of all the
expressions occurring in an I-CRL specification
must be declared, e.g., the following declares
i n t l i st as a list of integers:

(SORT-DCL intlist (L IST INTEGER))

Operators denote a mapping from tuples of input
values to an output value. Operators take a k e d
number of arguments and are strongly typed;
each operator has a list of input sorts and one
output sort. Semantically, operators denote ei-
ther a constant value (in case the input sort list is
empty), or a mapping from one sort (in case the
input sort list has one element) or the Cartesian
product of two or more sorts (in case the input
sort list has two or more elements) to the output
sort.

In the following simple example, the operator
square is defined on the rationals by.square (x) =
x - x. The OP-DCL clause defines the input sort list
and the output sort. Next, x is defined as the for-
mal parameter, and then the result of the operator
is given as the application of the predefined func-
tion mu1 t i p l y .

(OP-DEF
(OP-DCL square (RATIONAL) RATIONAL)

(OP-APP mu1 t i p l y (x x)))
(x)

An operator can be defined recursively, i.e., the
expression defining an operator may contain an
application of the operator itself. Recursion is fre-
quently used, especially since the I-CRL data part
contains no loop construct that is essentially non-
functional, because it relies on destructive assign-
ment.

Expressions can be constructed in the usual way,
using literals, operator applications, and simple
control structures, such as i f . . . then . . . else.
Expressions occur not only in operator defini-
tions, but also in the control part of I-CRL, de-
scribed in the next section.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

The I-CRL control part. The I-CRL control part
defines a dynamic network of communicating
state machines, where state machines serve as
processes as well as procedures. In the way pro-
cesses are composed and communicate, I-CRL fol-
lows an algebraic approach, as first proposed by
Milner for CCs,‘j and more specifically the LOTOS
model. The LOTOS concept of gates has been gen-
eralized, however, to include queued asynchro-
nous communication and shared variables. Also,
a supplementary process creation mechanism has
been added that reflects the way processes are
created in SDL.

State machines. State machines, more precisely
extended finite state machines, are the basic com-
ponents of I-CRL. An automaton that embodies
the imperative programming concept of assign-
ment statements gives them an operational struc-
ture.” State machines have the combined func-
tionality of regular LOTOS processes, i.e., those
that consist of a finite number of control states,
and of SDL processes.

A state machine can be viewed as a collection of
rules R = {rl, . . . , r,} on some set of state
variables V = { v l , . . . , v,}. Each variable is
typed, i.e., it has a specific sort. The set of pos-
sible assignments of values to the state variables
constitutes the set of data states. Each rule ri is
of the form (j,p) :(j ’ , c) and defines that from
control state j the state machine can perform an
action a and thereby enter control state j ’ pro-
vided the enabling predicatep is true under the
current assignment of the state variables. Fur-
thermore, c , a statement on the state variables, is
executed and may change the values of some
state variables. Thereby, a rule defines a class of
transitions. In addition, a state machine has an
initialization statement co that assigns initial val-
ues to the local variables in V, and an initial con-
trol state j ,, .
Associated with a stack, state machines may be
invoked as procedures and return a vector of val-
ues on successful termination. A procedure is a
state machine that has variables as parameters.
The variables may be passed either by value or by
reference. When a state machine performs a call
command, its behavior becomes the behavior of
the state machine of the procedure, where the
formal parameters have been replaced by the ac-
tual parameters passed with the call command,
until the state machine procedure terminates.

BINDING ET AL. 675

Processes. A sequential process is a state ma-
chine that is augmented with a (possible empty)
set of input signals and a (possible empty) set of
timers. Its behavior is determined by the associ-
ated state machine. When created, a process has
an implicit queue attached to it that accepts sig-
nals of the types listed in the input signals list.
The timers behave as in SDL.

There are three constructors to build complex
systems from sequential processes. State ma-
chines can be composed in parallel to form a net-

Translation to I-CRL
is different for
data types and
control parts.

work of processes. Such networks are dynamic,
as state machines may create new processes. A
special form of parallel composition is supported
by the disabling operator. Further, gates can be
introduced opening a new scope. Communication
over these gates is only possible within this scope.

Processes can communicate synchronously,
asynchronously, or through shared variables.
Synchronous communication actions consist of
multiple and “bidirectional” experiment offers at
interaction points called gates. An associated se-
lection predicate may impose constraints on the
values to be received in the input offers. More
than two parties may engage in this communica-
tion scheme. Asynchronous communication, des-
ignated by send and receive, does not cause the
sending process to wait. The receive operation
dequeues a message (called signal) from the input
queue of the process, if one is present; otherwise
it causes the receiving process to wait until a mes-
sage arrives or until some Boolean expression,
possibly involving global variables, becomes true.

There is also an internal action that allows a pro-
cess to proceed on its own without synchroniza-
tion with other processes. As a parameter it takes
a time value that specifies a delay and thus pro-

676 BINDING ET AL.

vides a time-out facility. The process interacts
with a timer by executing set-timer and reset-
timer commands, as in SDL.

Commands. In addition, a number of special ac-
tions allow a state machine to modify its environ-
ment. The call command pushes the state ma-
chine’s current state on the stack and executes a
procedure as a subroutine. The fork and create
commands allow a state machine to create new
processes, with and without an input queue.

From LOTOS to I-CRL

The translation from LOTOS to I-CRL is composed
of two parts: the first maps LOTOS data specifi-
cations onto the I-CRL data part, exploiting spe-
cific compiler directives; the second maps LOTOS
behavior expressions onto extended finite state
machines, the basic units of I-CRL.

Translation of data. In LOTOS, it is not possible to
support some of the SPECS data types directly,
specifically type schemes like records and arrays.
Therefore, it was decided to implement the SPECS
data types by means of special compiler direc-
tives, called pragmas. We will introduce these
pragmas through examples.

LOTOS pragmas. LOTOs pragmas have been
implemented as special comments denoted by
“(*$” and “$*)” bracket pairs. They are divided
into sort pragmas and operation pragmas. For ba-
sic data types, no pragma is needed; they are im-
plemented as a special library of basic types. We
describe the data types introduced in the LOTOS
example in the earlier LOTOS section again, this
time using pragmas.

First, we recognize that the type Timersignal can
be implemented as a simple enumerated type, and
use the enum pragma, expressing this.

type Timersignal i s
sorts Timersignal (*$ enum 3 $*)

(* Timersignal i s an enumerated type *)
(* w i th th ree va lues *)

(* These are the values o f the type *)
opns set, cancel, expired : -> Timersignal

endtype

To implement the type ExtendedNat, we use the
library type Integer. In fact the integers contain
more data values, but have the advantage that

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

they are a standard type in all imperative lan-
guages. Moreover, the SPECS implementation of
the integers already contains the functions 1 t and
mod. So, 1 t does not have to be declared at all,
while the pragma for Mod indicates that this is a
user-defined renaming of the standard library
function mod (in fact, this pragma could also be
empty, because LOTOS is not case-sensitive).

1 i brary In teger end1 i b

type ExtendedNat i s I n tege r
opns -Mod- (*$ mod $*) : Nat, Nat -> Nat;
(* user renaming o f the standard *)
(* func t i on mod *)

NumberOfTimers : -> Nat
endtype

In our example we assume that NumberOfTimers has
been given a value elsewhere.

Note that we no longer need the equations defin-
ing the semantics of the data, because the seman-
tics are now defined by mapping these types to the
same types at the I-CRL level (using the pragmas).
The function declarations remain necessary,
however, to preserve the static semantic correct-
ness of the LOTOS specification.

On the I-CRL level, the same set of data types and
type schemes has been implemented, so pragmas
are used to generate the corresponding type on
the I-CRL level. In our first example this leads to
the sort declaration:

(SORT-DCL
TimerSi gnal
(ENUM set cancel expired))

The second example is even simpler, because no
new sorts are introduced by this type declaration,
and only operators that are predefined, or a user
renaming of a predefined operator are allowed.
Predefined operators need not be explicitly de-
clared at the I-CRL level, and the user renaming is
resolved during translation, i.e., every use of the
function Mod at the LOTOS level is translated to the
use of the predefined function mod at the I-CRL
level. So, this declaration does not generate any
I-CRL code.

A more elaborate example declares a variant
record with two variants. Types Cal l i ng, Cal l ed,

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

and Module are supposed to have been defined pre-
viously. The type Boolean is predefined.

t y p e P r i m i t i v e i s
Cal l ing, Cal led, Module, Boolean

so r t s
P r i m i t i v e (*$ rec vars 2 $*)

opns
CON-RQ (*$ mkrec 3 var 1 $*) :

CON-RP (*$ mkrec 1 var 2 $*) :
Call ing, Called, Module -> P r i m i t i v e

Module -> P r i m i t i v e

ca l l i ng -o f (*$ sel 1 var 1 $*) :
P r i m i t i v e -> C a l l i n g

module-of (*$ sel 3 var 1, sel 1 var 2 $*) :
P r i m i t i v e -> Module

i s-con-rq (*$ i s v a r 1 $*I ,
is-con-rp (*$ i s v a r 2 $*) :

P r i m i t i v e -> boo1

endtype

The compilation of the sort pragma (*$ rec vars 2 $*)
leads to the following sort declaration on the I-CRL
level:

(SORT-DCL P r i m i t i v e
(VARRECORD

(VARIANT-DEF CON-RQ
(
(FIELD-DEF

XS-vl-f lXPrimi ti ve-op Ca l l i ng)
(FIELD-DEF

XS-vl-f2XPrimi

XS-vl-f3XPrimi
(FIELD-DEF

(VARIANT-DEF CON-RP
(
(FIELD-DEF

XS-v2-f lXPri mi

t

t

t

ive-op Cal led)

ive-op Module)))

ive-op Module)) I))

The translation of operator pragmas is rather
straightforward, with the exception of the multiple
selector pragma (the module-of operator in the
above example). This is translated to a case state-
ment (McCarthy expression, in I-CRL terminology).

Similarly there are pragmas to describe list, set,
map, and array declarations on the LOTOS level,
as well pragmas to describe the predefined func-

BINDING ET AL 677

tions on these types. Finally, a special pragma
allows the user to construct user-defined func-
tions with equations to describe the semantics of
these functions.

Translation of control. In order to achieve an ef-
ficient implementation of LOTOS specifications,
inherent parallelism involving complex multiway
synchronization is reduced. For this purpose,
closely connected parallel processes of finite con-
trol state space are merged into a single state ma-
chine. Loosely connected processes can be mapped
on a network of state machines, thus avoiding in-
terleaving expansion. l3 The compiler detects pro-
cesses that are dynamically created and compiles
them into separate state machines. However, the
user can also identify additional processes that
should be implemented as single state machines.

The translation proceeds as follows: After check-
ing syntax and static semantics, the LOTOS spec-
ification is further simplified-either to replace
run-time expensive LOTOS operators by simpler
ones or to ease the translation into state ma-
chines, e.g., by reducing the number of different
operators. Further, all occurrences of dynamic
process creation are replaced by afork command.
The next pass transforms the LOTOS processes
into a network of state machines, expressed in
I-CRL. Using a chart construction technique, a
state machine is built directly from the syntax tree
of the corresponding LOTOS process. Optimiza-
tions on the state machines are performed in the
fourth pass: removing unused variables and use-
less assignments, replacing variables by con-
stants, internal step removal, etc.

State machine construction. Milner introduced
extended automata called charts.14 In a chart, a
state may be labeled by zero or more process
identifiers; a process identifier X indicates states
at which the behavior of the chart may be ex-
tended by substitution of another chart for X .
Based on this model, we have developed a trans-
lation method for LOTOS processes. ’’ Milner’s la-
bels have been extended to carry not only process
identifiers, but also information on the update of
data variables and a predicate making the contin-
uation conditional.

For each LoTOS operator, there is a correspond-
ing operation on charts. The final state machine is
obtained in an “inside-out” way, building the ma-
chine bottom-up from the leaves of the LOTOS

678 BINDING ET AL.

syntax tree. The LOTOS process stop, which is
incapable of communicating, becomes a state ma-
chine with one state but without any transition.
Similarly, the translation of a LOTOS process in-
stantiationX[g,, . . . , g,](tl, . . . , t,) results in
the same chart except that an extension stores the
effect of parameter passing in the form of a par-
allel assignment statement.

There are operations to prefix a transition to a
state machine or to glue together the roots of state
machines. However, the most interesting opera-
tion is recursion resolving. When the body of pro-
cess X has been completely built, then each ex-
tension with process name X in the chart will be
replaced by the derivations and extensions (ex-
cept X) of the root of the chart.

Example. Translating the LoTOS specification
from the section on LOTOS, the compiler recog-
nizes that the process TimerBank recursively in-
stantiates itself on the left of the parallel operator
and replaces the parallel operator in TimerBank by
a fork command. Then the corresponding state
machines are separately constructed for pro-
cesses TimerBank and Timer.

I-CRL process TimerBank is a state machine with
only one state. It executes the action create
(Timer(Timer1d)) together with the statement
TimerId := Succ(Timer1d) as long as condition
TimerId I t NumberOfTimers is true.

The process Timer is defined as the parallel com-
position of the processes IdleTimer and Identi-
fi cati on. Its translation requires, therefore, that
the processes IdleTimer and Identification be
translated first. We describe the translation of
IdleTimer, as it illustrates several issues of our
state machine construction algorithm. First, a
machine for process RunningTimer has to be con-
structed. This state machine can easily be derived
from the LOTOS specification and is shown in Fig-
ure 5A with the following notational conventions.
The nodes of the graph represent states of the
state machine; the shaded circle indicates the ini-
tial state. The edges represent transitions and are
labeled with the corresponding action.

Then the compiler builds a machine for Id1 eTimer.
First, a new initial state is created with transition
t ?AnyId !set leading to the former initial state of
RunningTimer. This leads to the graph shown in
Figure 5B. Next, the sequential composition of

IBM SYSTEMS JOURNAL, VOL 31. NO 4, 1992

Figure 5 An example of the construction of a state machine

el = t ?Anyid !cancel 6
e2= t ?Anyld !expired ,, . , ,.

i i

IdleTimer

the two processes, expressed by the enabling initial state. This leads to the graph shown in
operator “>>”, is resolved by redirecting the Figure 5C. Finally, after collapsing states that
two exit transitions to the state labeled I d1 eTimer. are connected by internal actions only and where
The edge label e x i t is replaced by i. Then, the the originating state has no other transitions, we
compiler resolves the recursive call of Id1 eTimer get for process Id1 eTimer the state machine shown
by merging the node labeled Id leTimer with the in Figure 5D.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992 BINDING ET AL. 679

Once the state machines for IdleTimer and Iden-
ti f i ca t i on have been built, the process Timer can
be translated. Its normal translation would con-
sist in two parallel processes. However, to im-
prove the efficiency of the code to be generated,
we could add a pragma (see the section on trans-
lation of data in “From LOTOS to I-CRL”) to re-
quest the compiler to further merge the state ma-
chines for process Id leTimer and I d e n t i f i c a t i o n .
Because the state machine for process I den t i f i ca-
t i on has only one transition, the size of the resulting
state machine would be the same. By this means,
the translation would remove the composition op-
erators “) I ” and ‘‘> >” used to express the decom-
position of constraints.

From SDL to I-CRL

From a semantic point of view, there is no real
gap between SDL and I-CRL; the basic I-CRL pro-
cesses are extended finite state machines like SDL
processes, and I-CRL supports the asynchronous
communication paradigm of SDL. Thus, there is
no conceptual difficulty to translate the basic con-
cepts of SDL to I-CRL. However, I-CRL is simpler
than SDL in several domains, e.g., hierarchical
structuring mechanisms. The translator has to
take care of these differences. It turns out that the
combination of these many small differences
makes the definition of the translator a nontrivial
task.

Since its first versions in the 1970s, SDL has grad-
ually been enriched with a certain number of con-
structs that make the language easier to use in
various situations, but that makes the tooling of
the language expensive. Therefore the full SDL
Recommendation” is not supported by the com-
piler; a few nonessential language extensions are
not covered. As explained earlier in the section on
the SPECS support for data, only a restricted form
of the SDL data part is supported. The subset of
SDL that is supported is quite large and covers all
the essential points of the language.

The translation from SDL to I-CRL is done in two
steps. First, the SDL specification is flattened or
transformed into more basic constructs, then the
flattened SDL specification is translated into
I-CRL.

The SDL recommendation defines a certain num-
ber of constructs of the language (called addi-
tional concepts in the recommendation) in terms

680 BINDING ET AL.

of the primitive constructs of the language. Some
of these additional constructs have a direct coun-
terpart in I-CRL, and are therefore not flattened.
The other additional concepts are flattened, fol-
lowing the rules defined in the recommendation.
In order to simplify the symbol tables later on in
the translation process, names are made unique
within each scope unit.

Translation of the data part. SDL provides direct
support for most of the SPECS data types and con-
structors, either through its library of predefined
data or through specific language constructs. For
the support of the definition of enumerated sorts
and variant records, the syntax of SDL had to be
extended. The following example shows how a
variant record can be expressed using the SPECS
extensions to SDL:

NEWTYPE P r i m i t i v e
VARSTRUCT

VARIANT CON-RQ;
c a l l i ng-of C a l l i ng;
c a l l ed-of Ca l l ed;
modul e-of Modul e;

modul e-of Module;
VARIANT CON-RP;

ENDNEWTYPE;

Most SDL type definitions, introduced by the
NEWTYPE clause, map straightforwardly into I-CRL
sort definitions. For the definition of a new op-
erator f, the following restricted format of SDL
equations is to be used:

y l==e , , . . . , ym==em, cl, . . . , cp ==>
f (x l , . . . , x ,) = = e ;

where: xl, . . . , x, are the formal parameters of
the operator f and must be pairwise distinct; e is
the resulting expression. cl, . . . , cp (p 2 0) is
a list of conditions. y l , . . . , y , (rn 2 0) are
auxiliary variables that may not be circularly de-
fined.

The same restrictions on the format of axioms
apply to LOTOS.

For the translation to I-CRL, all the equations de-
fining one operator are grouped together into a
case expression, with one case per equation. The
conjunction of the translation of the conditions
cl, . . . , cp makes up the condition of the corre-
sponding case. The auxiliary variables y l , . . . ,

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

y , are rendered through a LET construct, a spe-
cific I-CRL construct for the definition of local syn-
onyms.

Translation of the control part. Two points of the
translation algorithm are highlighted in this sec-
tion: the representation of the static SDL system
structure in I-CRL, and the translation of the sDL
state machine.

The static hierarchical structuring mechanisms
of SDL have no equivalent at the I-CRL level. In
I-CRL, a process can send a message to any other
process, provided it knows its process identifier.
In SDL, a process can send a signal only to those
processes to which it is connected via a signal
path. SDL provides several levels of anonymous
addressing; thus the knowledge of the destination
process is not required. To cope with these dif-
ferences between SDL and I-CRL, a static connec-
tivity table is computed during the compilation
process. For each process type P , each signals and
each signal route r connected to P, it indicates the
possible destination process types for the signal s
sent by P on r. For the example in Figure 4, this
table would contain the following entries:

. . .
(accumulator, sum, R 1) -> client
(client, add, R2) -> accumulator
(client, subtract, R 2) -> accumulator
. . .
At execution time, a dynamic table that con-
tains-for each process type-the set of process
identifiers of all the active processes of that type,
is maintained. Thus the SDL signal routes and
channels are not explicitly modeled by active
components in I-cRL. The effect is better execu-
tion performance, at the price of more expensive
compilations.

Most SDL behavior concepts (such as process,
procedure, and variable) map directly to equiva-
lent I-CRL concepts. Due to the complexity of the
state transitions in SDL, states cannot be mapped
one-to-one from SDL to I-CRL. Auxiliary states
have to be introduced in I-CRL in various places,
which correspond to the points between the ac-
tions in an SDL transition. All the SDLINPUTstate-
ments leaving a state are grouped together in a
single I-CRL RECEIVE command. The SDL process
creation command CREATE is translated into the
I-CRL create command and an update is per-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

formed on the global dynamic process identifier
table mentioned in the previous paragraph.

From I-CRL to C

This translation is described in two parts: the data
part and the control part.

Translation of data. In I-CRL, data are described in
a functional way, whereas C is a procedural pro-
gramming language. Thus, the problem addressed
is in the area of implementation of functional pro-
gramming languages, a domain that received
much attention in the last few years (see e.g.,
Reference 15). As this area was not our main do-
main of interest, a simple and straightforward ap-
proach was taken for the compilation of the I-CRL
data part. We assume that a product version of
the compiler would implement the various opti-
mization strategies developed elsewhere and doc-
umented in the literature.

Sorts. The basic I-CRL data sorts are mapped to
basic C types. User-defined I-CRL sorts are rep-
resented as dynamically allocated data structures
and are declared as pointers to an element of this
structure. Simple data structures have been used
to represent all the sort constructors. Lists, sets,
and maps are represented as simply linked lists.
Variant records are represented as a union of all
the variants, grouped together with an enum field
to indicate which variant is represented; arrays
are represented as arrays. A possible enhance-
ment would be to provide a choice between sev-
eral implementations and to let the user select
one, via design annotations in SDL or LOTOS, de-
pending on time and space performance criteria.

Operators. I-CRL operators are mapped to C func-
tions. For each user-defined sort, an implemen-
tation of the predefined operators is generated by
adapting C templates. The I-CRL constructs for
expressions map straightforwardly to C, using the
C conditional operator exp ? exp .- exp, and the C
comma operator.

In the setting of dynamically allocated structures,
an important issue is memory management. Care
has to be taken that allocated memory is freed
when no longer in use. A simple approach was
chosen: a function is responsible for freeing the
memory allocated to its arguments. Common
subexpressions are not shared between data
structures; thus, an operator can modify its ar-

BINDING ET AL. 681

guments and reuse their allocated memory if use-
ful.

Translation of control. The state machine concept
of I-CRL allows a straightforward implementation.
Processes and procedures are implemented by C
functions. Therefore, a process instantiation as
well as a procedure call becomes a function call.
Gate names and data values of the process in-
stantiation form the parameters of the C function.

The C function body declares variables for the
internal gates and the local state variables of the
process, followed by statements realizing the ini-
tialization statement and a jump to the initialstate
label.

Each control state, represented by a label, is a
block of statements computing the rules that may
lead from that state. For each rule, the generated
code first checks the local constraints by evalu-
ating theprovided clause. All enabled actions are
passed as event offers to the scheduler. Depend-
ing on the action chosen, their effects will be com-
puted, followed by a jump to the successor con-
trol state.

An excerpt of a translation of an I-CRL specifica-
tion to C with the run-time environment is shown
below.

static void Timer(t, TimerId)
RT-Gate t;
int TimerId;
{ int -s, -last, -cur, -noia;

boo1 ean -ug;
RT-Param -pars-O[21 , -pars-l[21 ;
long -args-O[31, -args-l[31 ;
RT-EventStruct -evt[21 ;
int AnyId;

S1: I* State S1 *I
RT-Setparam(-pars-O[01, 1, RT-Read, &AnyId);
RT-Setparam(-pars-O[11, 16, RT-Write, set(1);
- args-O[01 = (long) &TimerId;
- args-O[13 = (1 ong) &NumberOfTimers;
-args-O[21 = (long) &AnyId;
RT-SetExtEv(-evt[01 , t, "t" , 1, 2, -pars-O,

if (RT-Synch(1, -evt) == RT-Aborted)
-SPA, 3, -args-O, 0, 0, 0);

RT-Termi nate(0, RT-Zombi e) ;
got0 s3;

. . .

682 BINDING ET AL.

menis for parallel piogrammiig languages in gen-
eral'G19 and LOTOS or SDL in particular2@" has
already been discussed in the literature. In all
these efforts, the language compiler assumes an
underlying execution environment that serves as
an intermediary between the compiler-generated
code and the underlying operating system.

Since none of the above environments was avail-
able to us or exactly fitted the I-CRL execution
model, we decided to design and implement our
own LOTOS and SDL specific run-time environ-
ment.

Goals of the run-time environment. The goals of
the run-time environment were the following:

To provide a concrete implementation of the
execution model advocated in the section about
I-CRL. To that effect, active abstractions per-
forming the state machine transitions and the
appropriate communication mechanisms had to
be provided via a programming interface to the
rest of the compilation environment.
To execute on a concrete, physical computing
platform. For reasons of availability and suit-
ability as a prototyping environment, we have
chosen Advanced Interactive Executive*
(AIX*), IBM'S implementation of the UNIX oper-
ating system, to provide the underlying execu-
tion environment. The run-time environment
interfaces, however, are largely independent
from the target platform and could be imple-
mented on top of other execution environ-
ments.

The next two sections describe the overall func-
tionality of the run-time environment, as well as
the implementation of the LOTOS multiway syn-
chronization algorithm and the sDL style message
passing.

Run-time environment functionality. The execu-
tion paradigm for LOTOS and SDL is focused on a
few, fundamental abstractions. Both languages
use processes as active entities that sequentially
execute a piece of program. Processes commu-
nicate asynchronously by sending messages in
SDL, whereas LOTOS advocates a multiway syn-
chronous communication model. Quite naturally,
the following abstractions appear at the run-time
environment interface:

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

ihread executes one extended finite state ma-
chine. LOTOS or SDL processes can thus be
mapped to run-time environment threads.
Gates model LoTOS’s multiway, synchronous
communication paradigm. They provide syn-
chronization abstractions to which individual
threads can submit event offers. These are uni-
fied according to the LOTOS rules for process
synchronization.
Messages support sDL-style asynchronous
communication between individual threads.

I Using these abstractions, we engineered a pro-
gramming interface that is used by the code gen-
eration phase of the compiler: The I-CRL to C
compiler generates C code that invokes the run-
time-environment-provided operations to imple-
ment the operational semantics of the specifica-
tion languages. The generated C code is then
compiled and linked with the run-time environ-
ment C library. Although we only provided one
concrete implementation of this library, it is
hoped that the interface is sufficiently implemen-
tation-independent and could also be supported
on other platforms.

Before presenting the run-time environment pro-
gramming interface in some more detail, a few
additional observations explain the need for hi-
erarchical data structures to implement both
threads and gates.

Since in LOTOS and SDL, processes can dynam-
ically spawn child processes, the internal organi-
zation of the run-time environment organizes
threads in a parent-child hierarchy. This allows
for certain functions not to affect just one thread,
but the entire thread hierarchy for which a given
thread is the root. In particular, this can be used
to implement LOTOS disabling and the SDL
oflspring functionality.

The need for hierarchical data structures also
holds for the implementation of gates: the execu-
tion of LOTOS processes and their subprocesses is
either interleaved or synchronized, thus creating
an arbitrary hierarchy of interleaved and synchro-
nized subprocesses. The following example clar-
ifies the behavior of LOTOS multiway synchroni-
zation and indicates how such synchronization
can be implemented using the well-known and-or
tree data structure.

The expression above yields the synchronization
topology of Figure 6 , assuming that each LOTOS
process is mapped onto one run-time environ-
ment thread. In Figure 6 , we have labeled syn-
chronized processes as and nodes and interleaved
processes as or nodes. The terminal nodes cor-
responding to the LOTOS processes Q,, Po, PI,
Q 2 , Pz, Q 3 , P, are shown as rectangular boxes.
An intuitively straightforward interpretation of
the synchronization is based on an and-or tree
behavior of a gate hierarchy. That is, for an or or
interleave node, any of the present subprocesses
might provide the matching event. For a synchro-
nization or and node in contrary, all subprocesses
must provide a matching event for synchroniza-
tion to occur.

In the above expression, four processes must thus
communicate over gate g for the synchronization
to take place. The synchronization event can be
established by the following groupings: {Qo, Po,
Q 2 , Pz}, {Qo, Po, Q 3 , P3}, {QI, PI, Qz, or
{Q, , P,, Q 3 , P,} . AI1 other groupings of pro-
cesses do not result in a synchronization.

The main functionality of this run-time environ-
ment library can now be summarized by the fol-
lowing key operations.

Thread creation. The create entry point takes ar-
guments that determine the thread’s stack size, its
entry point, and its initial arguments. An addi-
tional argument indicates whether the thread and
any of its child threads can be disabled through
the disable call (see below). The call returns a
handle to the newly created thread. The newly
created thread becomes the child of its creator
thread, thus creating a thread hierarchy.

Thread termination. A thread and all of its chil-
dren are terminated via a call to the terminate
entry. Thread descriptors are deallocated through
use of the run-time environment’s dispose call. A
parent thread can wait for the termination of one
or all of its children through use of the join call.

Thread disabling. Through a call to the disable
entry, a thread can terminate an entire subhier-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992 BINDING ET AL. 683

Figure 6 Synchronization topology for sample LOTOS expression
~ ~ ~~~~~~~~~~

archy of the thread hierarchy. This call specifi-
cally implements the semantics of the LOTOS
“[>” operator by identifying the subtree of
threads to be terminated. (The marking of such
subtrees occurs during creation of threads.)

Gate creation. To add a new gate node to a (pos-
sibly empty) gate hierarchy, the client may use
the newsa te call. Its arguments include the type
of parallel composition for the processes bound to
that gate node, e.g., interleaved or synchronized,
the parent gate node, and the expected number of
threads to be bound to that gate node. Note that
a new gate node must be created only if the syn-
chronization mode differs from the parent node.
Otherwise, the old and new node have the same
synchronization type and can be combined.

Thread-gate association and disassociation. To
bind one or several threads to a gate, the client
uses the bind call after the gate has been created.
To break the association between a thread and a
given gate, the run-time environment supports
the unbind call. As a side effect of the unbind call,
the gate hierarchy may shrink if an internal gate
hierarchy node becomes childless.

Thread synchronization. When a thread is ready
to submit one or several synchronization offers at
various gates, it uses thesynch call. The call takes

684 BINDING ET AL.

an array of event offer descriptors as its argu-
ment. Each offer is recorded at its gate and the
pending threads are then tested for possible syn-
chronizations. If no gate is ready to synchronize,
the calling thread is suspended until some other
thread offers one of the missing synchronization
opportunities or until a time out associated with
a LOTOS internal event expires. The call’s return
value indicates which event took place.

Message passing. Threads can send messages to
any other thread, where these messages are buff-
ered in a queue associated with the receiving
thread. To receive a message, the receiving
thread invokes the receive operation. Additional
arguments to the receive operation support en-
coding of enabling conditions and the SDL SAVE
concept.

Timer support. SDL support requires the provi-
sion of timers that can be started, tested, and can-
celed.

In addition to the above operations, which are
visible to the compilers, the run-time environ-
ment also provides internal functionality for
thread scheduling and thread synchronization on
condition variables. These are used to implement
the exported functions described above.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

Within the SPECS project, the run-time environ-
ment also supports the mixing of specifications,
i.e., interspecification communication. This is
implemented by allowing the generation of an SDL
type message (or signal) upon occurrence of a
LOTOS event and by mapping specific SDL mes-
sages into LOTOS event offers. The required ex-
tensions to the base run-time environment were
straightforward after the desired semantics had
become clear.

A last class of operations handles UNIX-like input/
output, thus providing means to communicate be-
tween a specification and its environment.

Compiler implementation

We first present the platform on which the com-
piler has been implemented, then highlight spe-
cific aspects of each translation step.

Implementation platform. The LOTOS/SDL to C
compiler is implemented on the development
platform CONCERTO. 25 To introduce CONCERTO,
we need some terminology.

The concrete syntax of a formal language defines
exactly what character sequences are correct ex-
pressions of the language, and associates a con-
crete syntax tree, containing all the terminals, to
them. An abstract syntax tree is a simplified ver-
sion of the concrete syntax tree that contains no
keywords, and abstracts from certain details that
are necessary at the concrete syntax level to guar-
antee the uniqueness of the parsing. To define
certain operations on a language, e.g., transla-
tion, it is easier to operate at the abstract syntax
level than at the concrete one. A formalism is a
language whose concrete and abstract syntaxes
are formally defined using a grammar-like nota-
tion. Aparser breaks up the source program ac-
cording to the grammar into constituent parts and
represents it by its abstract syntax tree. A tree
transformer maps an abstract syntax tree of a
source formalism to an abstract syntax tree of a
target formalism; both formalisms may be the
same. Aprettyprinter generates the concrete syn-
tax of an abstract syntax tree.

CONCERTO has three important components to
support the development of a compiler:

A metalanguage METAL)'^ and pretty printing
metalanguage environment (METAL-PPML), *’ to
define a formalism

IBM SYSTEMS JOURNAL, VOL 31, NO 4. 1992

~

A structure processor, also called virtual tree
processor (vTP), to operate on an abstract syn-
tax tree
A tree transformer (TRANS), to define recursive
tree transformations

A METAL specification defines the grammar of a
formalism of interest, e.g., LOTOS, in a decla-
rative fashion. From a METAL specification,
CONCERTO produces a parser that builds an ab-
stract syntax tree from any correct input program
of the specified formalism. The user can also
specify the printing rules, also called unparsing
rules, in a PPML specification for each node of the
tree. Based on these rules, CONCERTO generates
a pretty printer.

The VTP component provides various kinds of op-
erations that can manipulate the tree. A VTP tree
always belongs to a certain formalism. The orga-
nization of VTP is based on the concepts of objects
and classes. An object of one class can be con-
verted to a compatible object of another class.
The browsing functions enable walks through a
tree without modifying it. Of course, there are
tree construction and modification functions.
There are also pattern matching facilities. A ma-
jor feature is that CONCERTO can provide simul-
taneous support for several formalisms; this is
necessary for the building of a compiler.

TRANS allows the user to concisely specify a map-
ping from one formalism to another one as a set
of abstract syntax tree transformation rules. A
transformation rule consists of a source pattern
and a target pattern. Both patterns may be arbi-
trarily deep and contain tree variables. Variables
in the source pattern are unified with elements of
the input tree that are to be transformed; the
transformation rules are recursively applied to
these variables, and the result is substituted for
occurrences of the variables in the target pattern.
Moreover, it is possible to call arbitrary VTP func-
tions for complex configurations.

LOTOS to I-CRL implementation. The LOTOS to
I-CRL compiler is implemented as a four-pass
compiler. The first pass performs the flattening
function as defined by the ISO standard.* The
static semantics check is also done here. In the
second pass, all parallel expressions that spawn
off a new process are replaced by semantically
equivalent fork commands; the result can then be
mapped directly to I-CRL. The third pass trans-

BINDING ET AL. 685

forms LoTOS abstract syntax trees into I-CRL ab-
stract syntax trees. To implement the recursion
solving, an extra argument-a list of process iden-
tifiers and actual gates-is added to the transla-
tion function. This argument records the history
of process instantiations; thus the compiler can
recognize when the chain of process dependen-
cies is completed. In the fourth pass, some opti-
mizations on the state machines, e.g., copy prop-
agation, are performed.

SDL to I-CRL implementation. The SDL to I-CRL
compiler is implemented in two passes. The first
pass does the flattening as described earlier in the
section “From SDL to I-CRL”; it transforms SDL
into SDL. The second pass transforms SDL into
I-CRL. It has been implemented using the TRANS
tool. The transformation rule of the sDL root node
calls a number of VTP functions that scan the SDL
tree to compute the SDL connectivity table also
described earlier, before yielding an I-CRL tree.
This table is stored in a global variable, which is
referred to in other TRANS rules, e.g., the one de-
fining the translation of the SDL OUTPUT statement.

I-CRL to C with the run-time environment. This
translation is implemented in a single pass. Its
implementation is rather straightforward. The C
formalism provided by CONCERTO is used as tar-
get formalism. A global variable sel-preds is used
to collect all the selection predicates that oc-
curred during the translation. At the end, for ev-
ery element in sel-preds, a function definition is
generated. These definitions are inserted in the
declaration part of the C-tree.

Run-time environment implementation

The run-time environment provides the concrete
execution environment for the compiled LOTOS
and SDL code with IBM’s AIX operating system
environment. In our implementation, threads are
implemented as independently scheduled corou-
tines. Each thread executes on its private stack,
but all threads share the same AIX address space.
One rationale for this implementation choice was
efficiency in thread-related operations: since all
operations are within one AIX address space,
thread creation, scheduling, and destruction only
necessitate a few procedure calls and no trap into
the operating system.

The reason for not using one UNIX process per
thread was efficiency. We could have used UNIX’S

686 BINDING ET AL.

shared-memory primitives to implement message
passing and multiway synchronous communica-
tion, but the costs of these operations, as well as
process management in general, would have been
considerably higher. Another unexplored design
dimension would have been a distributed imple-
mentation of the execution environment. This
would have introduced not only further inefficien-
cies, but also considerably increased develop-
ment complexity. Particularly, the sharing of sDL
process variables and the LOTOS multiway syn-
chronization are hard to implement in a truly dis-
tributed environment. Unless a centralized sched-
uler operating in a distributed environment is used,
the multiway synchronization would indeed require
a two-phase commit protocol-the cost of which
appeared prohibitive.

The scheduling of run-time-provided threads is
explicit, i.e., we do not implement preemptive
context switching as this would have required a
reentrant implementation of the standard C librar-
ies. Therefore, threads are only rescheduled at
well-defined entry points to the run-time environ-
ment.

Most aspects of the thread-related functionality
are straightforward to implement and do not differ
notably from other UNIX implementations of
lightweight threads.

SDL-style message passing can be implemented in
a straightforward way: threads have an associ-
ated message queue into which a sender deposits
a message. The receiving process simply de-
queues that message and processes it as indicated
by the SDL state machine. Since all threads op-
erate in one AIX address space, message passing
is simply implemented by copying in shared mem-
ory. The support for the SDL SAKE construct is
provided by having the compiler generate a bit
pattern that indicates the types of messages that
shall be saved or received.

The implementation of LOTOS-Style multiway syn-
chronization with possibilities of value matching,
value generation, or value passing, however, was of
greater challenge.

As shown in the section on run-time environment
functionality, LOTOS event unification can be
mapped onto an and-or tree data structure. Indi-
vidual threads propose a set of events, which are
described as structures containing the necessary

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

information for value matching, value passing, or
value generation. After a thread proposes a new
set of events, the run-time environment attempts
to solve the and-or tree in a bottom-up fashion. At
each layer of the tree, event unification is at-
tempted. This involves matching the data param-
eters of individual events according to the LOTOS
rules for value matching, value generation, and
value passing.

Once a set of events with matching data values
has been found within a subtree, the run-time
environment invokes possible selection predi-
cates for which the compiler generated the cor-
responding C functions. It is only when the events
satisfy these selection predicates that events are
propagated upward in the tree, otherwise a new
combination of event offers is explored. If no
combination of event offers succeeds, the algo-
rithm fails and no synchronization of threads
occurs.

Value generation during the event unification is
based on random value generation. We have not
implemented a more general constraint-solving
algorithm that would interpret the selection pred-
icates as a set of constraints to be solved and
assign suitable values to unbound variables dur-
ing event unification. If event unification fails be-
cause of unsatisfied selection predicates, a warn-
ing message is generated.

The interpretation of the gate hierarchy as an
and-or tree determines the inherent complexity of
the event unification algorithm. Without taking
into account selection predicates, complexity of
the algorithm is then nondeterministically poly-
nomial (NP-complete). 31 Selection predicate evalu-
ation makes the event unification undecidable for
the most general case.

The run-time environment only provides minimal
support for data. It assumes that all data values
are represented as 32-bit entities, i.e., either as
32-bit values or as pointers to multiword, heap-
allocated structures. This allows for uniform
treatment of data within the run-time environ-
ment. The data operations are implemented
through regular C macros or functions, generated
by the data part of the I-CRL to C compiler.

Event unification for LOTOS and SDL message pass-
ing requires that client-program-defined, sort-spe-
c8c functions be installed in the run-time environ-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

ment during initialization. Thus, the compiler
generates some code to install such sort-specific
routines for equality testing, random value gener-
ation, copying, and deallocation in internal look-up
tables. These are then invoked when necessary.
This approach represents another case in which
tight coupling between the run-time environment
and the code-generation phase was necessary.

The run-time environment as described has been
implemented on IBM’s RISC System/6000* family
of processors, on IBM RT* (RISC technology)
workstations, as well as on the SUN-3** architec-
ture. With the exception of three assembler rou-
tines needed for thread context switching, all the
code is written in C. The overall library is ap-
proximately 10000 lines of moderately com-
mented C code.

Conclusion

We have designed translations from SDL and
LOTOS to a procedural programming language,
augmented with specific run-time support. We
have shown that it is feasible to map the abstract
language LoTOS to an execution-oriented model
consisting of communicating state machines,
which is also a natural target for SDL. This inter-
mediate representation allows the sharing of code
generation for LoTOS and SDL and allows the in-
tegration of mixed specifications. This approach
has already been applied to programming lan-
guages, e.g., the IBM PL.8 compiler,32 but is new
for specification languages.

LOTOS specifications are quite often written in the
constraint-oriented specification style. This style
structures the system specification into a set of
parallel processes, each expressing an indepen-
dent system property. However, existing LOTOS
compilers20,21 map LOTOS processes on C func-
tions, which are executed as coroutines. Accord-
ingly, the structure of the generated code closely
resembles the architecture of the LOTOS specifi-
cation. In particular, the process structure as
given by the parallel, enabling, and disabling op-
erators is not changed. We have achieved an ef-
ficient implementation of these specifications by
reducing the inherent parallelism.

As there are no efficient implementation tech-
niques for general algebraic data specifications,
we introduced a set of basic types and type con-
structors into the two specification languages.

BINDING ET AL. 687

This contrasts with other LOTOS and SDL compil-
ers (e.g., References 21 and 23), which oblige the
user to implement the data functions. It turned
out that our approach also simplifies the task of
specifying data algebraically.

The use of a high-level language-engineering plat-
form has several advantages over the more clas-
sical approach that uses lexical analyzer and
parser generators such as LEX and YACC (avail-
able on most UNIX platforms). Parsers, unparsers
and syntax-directed editors were generated auto-
matically from the grammar of the specification
languages. The internal representation of the ab-
stract syntax trees was predefined and encapsu-
lated by a rich set of access functions; this eased
the distributed development of the compiler over
three sites. Before being implemented, the com-
pilers had been specified in a VDM-like notation; 33

the derivation of the implementation was simpli-
fied by the use of a high-level transformation lan-
guage and support tool (TRANS). The drawback
was a rather long learning period, due to the com-
plexity of the platform.

The compiler described in this paper can already
be used for the validation of a formal specification
in a rapid prototyping approach, as advocated for
example in Boehm’s spiral model for software de-
velopment,34 which includes prototyping as a
means of risk reduction. To increase the ade-
quacy of the compiler for the generation of prod-
uct code, the following items require further
work. For the data part, the user should be al-
lowed to choose between several implementa-
tions of the dynamic data structures (list, map,
set), depending on the nonfunctional constraints,
such as performance and reliability. It should also
be possible to refer to existing libraries of C type
and function definitions. For the behavior part,
pragmas defining communication with the envi-
ronment should be introduced. Thus, the sending
of an SDL signal to the environment or the syn-
chronization on a LOTOS gate could trigger the call
of a specific C function, realizing, for example, an
input/output operation. In the current version of
the compiler, the user has to write C functions
realizing this mapping and to integrate them man-
ually into the generated code in order to obtain
this effect.

Acknowledgments
The work presented in this paper was carried out
as part of the SPECS project, to which many peo-

688 BINDING ET AL.

pori from the RACE program of the European
Communities. Georg Karner, Heinz Saria, and
Sylvia Suchanek from Alcatel Austria-ELIN
Research Center, Yves TrCmolet from GSI-TECSI
(France), Palle Christensen, Bo Bichel Nplrbaek,
and Anders Olsen from TFL (Denmark), and
Didier Dupuy d’hgeac, Bertrand Gruson, and
Richard Ngo-si-xuyen from IBM France partici-
pated with the authors in the development of the
prototype described in this paper.

The work in this paper was supported by the Eu-
ropean Community’s SPECS RACE R1046 project.
The paper reflects the views of the authors.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of UNIX Systems Lab-
oratories, Inc., or Sun Microsystems, Inc.

Cited references

1. M. Dauphin, M. M. Marques, A. P. Mullery, and P. Ro-
dier, “The European Telecommunications Research and
Development Program RACE and Its Software Project
SPECS,” ZBM Systems Journal 31, No. 4,649-667 (1992,
this issue).

2. R. Reed, W. Bouma, M. M. Marques, and J. Evans,
“Methods for Service Software Design,” Proceedings of
the Eighth International Conference on Software En@’-
neering for Telecommunications Systems and Services,
London (1992), pp. 127-134.

3. B. Blanchard, M. Dauphin, B. Gruson, and S. Simon,
“SPECS: un Environnement de Specification et de Pro-
grammation pour les Systbmes de Tblbcommunications,”
Proceedings of the Fourth International Conference on
Software Engineering and Its Applications, EC2, TOU-
louse, France (December 1991), pp. 88-112 (in French).

4. H. Saria, H. Nirschl, and C. Binding, “Mixing LOTOS
and SDL Specifications,” K. R. Parker and G. A. Rose,
Editors, Proceedings of the Fourth International Confer-
ence on Formal Description Techniques, Elsevier Sci-
ence Publishers B.V., Amsterdam (1992), pp. 425439.

5 . H. Ehrig and B. Mahr, Fundamentals ofAlgebraic Spec-
ification I: Equations and Initial Semantics, II: Module
Specifications and Constraints, Springer-Verlag, N Y ,
EATCS Monograph (1985, 1990).

6. R. Milner, Communication and Concurrency, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1989).

7. C. A. R. Hoare, Communicating Sequential Processes,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1985).

8. Information Processing Systems-Open Systems Znter-
connection-LOTOS-A Formal Description Technique
Based on the Temporal Ordering of Observational Be-
haviour, International Standard 8807, ISO, Geneva (Feb-
ruary 1989).

9. A. S. Tanenbaum, Computer Networks, second edition,
Prentice-Hall International Editions, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1989).

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

10. Functional Spcifcation and Description Language,
(SDL), CCI’IT Blue Books Volume X-Fascicle X., Rec-
ommendation 2.100 and Annexes A, B, C, D, and E,
Geneva (1989).

11. G. Karjoth, “Implementing LOTOS Specifications by
Communicating State Machines,” W. R. Cleveland, Ed-
itor, Proceedings of the Third International Conference
on Concurrency Theory, CONCUR ’92, Springer-Verlag,
BerlinWeidelberg (1992), pp. 386400. Lecture Notes in
Computer Science No. 630.

12. G. V. Bochmann and J. Gecsei, “A Unified Model for the
Specification and Verification of Protocols,”Proceedings
of IFIP Congress (1977), pp. 229-234.

13. H. Garavel and J. Sifakis, “Compilation and Verification
of LOTOS Specifications,” Protocol Spec@cation, Test-
ing, and Verification X , Elsevier Science Publishers
B.V., Amsterdam (1990), pp. 359-376.

14. R. Milner, “A Complete Inference System for a Class of
Regular Behaviours,” Journal of Computer and System
Sciences 28, 439466 (1984).

15. S. L. Peyton Jones, The Implementation of Functional
Pmgmmming Languages, Prentice-Hall, Inc., Engle-
wood Cliffs, NJ (1987).

16. T. P. Baker, An Ada Run-Time System Interface, Tech-
nical Report 85-06-05, Department of Computer Science,
University of Washington, Seattle (June 1985).

17. E. W. Olsen and S. B. Whitehill, Ada for Programmers,
Reston Publishing Company, Reston, VA (1983).

18. R. C. Holt, Concurrent Euclid, the UNIX System and
TUNIS, Addison-Wesley Publishing Co., New York
(1983).

19. M. Weiser, A. Demers, and C. Hauser, “The Portable
Common Runtime Approach to Interoperability,” Pro-
ceedings of the Twelfth ACM Symposium on Operating
Systems Principles, Litchfield Park, A Z , ACM SigOps
(December 1989), pp. 11k.122.

20. J. A. Mafias and T. de Miguel, “From LOTOS to C,”
Formal Description Techniques I, K. Turner, Editor,
Elsevier Science Publishers B.V., Amsterdam (1988), pp.
79-84.

21. S . Nomura, T. Hasegawa, and T. Takizuka, “A LOTOS
Compiler and Process Synchronization Manager,” Pro-
tocol Specifcation, Testing, and Verification X , Elsevier
Sciences Publishers B.V., Amsterdam (1990), pp. 165-
184.

22. J. Mafias and T. de Miguel, “The Implementation of a
Specification Language for OS1 Systems,” 1988 Interna-
tional Zurich Symposium on Digitul Communications,
B. Plattner and P. Giinzburger, Editors, IEEE (March

23. V. Encontre, “GEODE: An Industrial Environment for
Designing Real Time Distributed Systems in SDL,”
SDL ’89: The Language at Work, M. M. Marques and
0. Faergemand, Editors, Elsevier Science Publishers
B.V., Amsterdam (June 1989), pp. 105-115.

24. K. Miyake, Y. Shigeta, W. Tanaka, and H. Hasegawa,
“Automatic Code Generation from SDL to C+ + for an
Integrated Software Development Support System,” For-
mal Description Techniques III, E. Vazquez, J. Quemada,
and J. Mafias, Editors (1991), pp. 555-558.

25. E. And& A. Conchon, and P. Andrieu, “Concerto: Bal-
ancing Functionality with Technology,” Proceedings of
Sofhvare Tools Conference, Wembley, June 1990, Blen-
heim, London (1990).

26. G. Kahn, B. Lang, B. M61&se, and E. Morcos, “METAL:

1988), pp. C3.1-C3.5.

I

A Formalism to Specify Formalisms,” Proceedings of
INRZA Seminar, Aussois (April 1983), pp. 169-204.

27. A. Conchon and E. Morcos, “PPML (Pretty Printing
MetaLanguage): A General Formalism to Specify Pretty
Printing,” Proceedings of IFZP ’86, Tenth World Com-
puter Congress, Dublin (1986).

28. C. Binding, “Cheap Concurrency for C,” ACM SIG-
PLAN Notices 20, No. 9, 21-26 (1985).

29. E. C. Cooper and R. P. Draves, C Threads, Technical
Report CMU-CS-88-154, Computer Science Department,
Carnegie Melon University, Pittsburgh (June 1988).

30. Lightweight Process Library, SUN OS Release 4.0 Man-
ual, SUN Microsystems Inc., Mountain View, CA (1987).

31. E. Horowitz and S. Sahni, Fundamentals of Computer
Algorithms, Computer Software Engineering Series,
Computer Science Press, Inc., Rockville, MD (1978).

32.’ M. Auslander and M. E. Hopkins, “An Overview of the
PL.8 Compiler,” Proceedings of the Sisplan ’82 Sympo-
sium on Compiler Writing, ACM (June 23-25, 1982).

33. C. Jones, Systematic Software Development Using
VDM, Prentice-Hall, Inc., Englewood Cliffs, NJ (1986).

34. B. W. Boehm, “A Spiral Model of Software Development
and Enhancement,” IEEE Computer 21, No. 5, 61-72
(1988).

Accepted for publication June 18, 1992.

Carl Binding Union Bank of Switzerland, LHISILHDD-BSZ,
Bahnhofstrasse 45, 8021 Zurich, Switzerland (electronic mail:
bsz%ubszh. uu. ch@chsun. chuug. ch) . Dr. Binding received
the degree of Dipl. El. Ing. ETH from the Swiss Institute of
Technology in Zurich, Switzerland, in 1981, and the degrees
of M.S. (1985) and Ph.D. (1987) in computer science from the
University of Washington, Seattle. From 1989 to 1992 he was
with the IBM Zurich Research Laboratory where he worked
on the compilation and execution of the LOTOS specification
language. Before that he held a position at the Olivetti Re-
search Center, Menlo Park, California, where he was involved
with multimedia user interface system architecture and im-
plementation.

Wiet Bouma PTT Research, Neher Laboratories, P. 0. Box
421, 2260 A K Leidschendam, the Netherlanb (electronic
mail: L.G.Bouma@research.ptt.nl). Mr. Bouma is a senior
project leader at the research laboratory of the Dutch PTT.
After graduating from the University of Amsterdam, he
worked there for several years in research and education,
initially in pure mathematics (differential topology); in 1981 he
switched to a focus on the application of formal logic to com-
puter science, more specifically: Floyd-Hoare Logic, founda-
tions of logic programming, and algebraic methods in seman-
tics. He left the university in 1988 to join PTT Research,
working since then on the SPECS project, first as a project
member and later as a partner leader. Since January 1992 he
has led the P l T team for the RACE-I1 project SCORE (Ser-
vice Creation in an Object-Oriented Reuse Environment).
SCORE is concerned with the development of an environment
to implement the Service Creation Function in the CCITT and
ETSI IN models. His current interests are in making formal
methods in software engineering amenable to human use, and
in the adaptation of temporal logic to the verification of con-
current software.

IBM SYSTEMS JOURNAL VOL 31, NO 4, 1992 BINDING ET AL. 689

Michel Dauphin Compagnie ZBM France, IBM Centre
d’Etudes et Recherches, 06610 La Gaude, France (electronic
mail: dauphin@vnet.ibm.com). Mr. Dauphin is a consultant
on software development processes and tools at the IBM La
Gaude laboratory. He joined IBM in 1984 in the Advanced
Technology department, where he contributed to a develop-
ment and execution environment for fault-tolerant telecom-
munication software. In 1987, he joined the IBM RACE team,
where he participated in the SPECS project in the areas of
semantics, analysis, and implementation of specifications of
telecommunications systems. Since 1991, he has been the
technical coordinator of the SPECS project. He has published
several papers on the application of formal methods and lan-
guages to telecommunications software development. Mr.
Dauphin received his engineering degree from the Ecole Poly-
technique, Paris, in 1984. He won a First Prize in the Inter-
national Mathematical Olympiad in Washington D.C. in 1981.
His main research interests are in discrete mathematics, the-
oretical computer science (especially concurrency), logic pro-
gramming, and formal methods.

Giinter Karjoth IBM Research Division, Zurich Research
Laboratoly, Saumerstrasse 4, 8803 Ruschlikon, Switzerland
(electronic mail: gka@zurich.ibm.com). Dr. Karjoth is a re-
search staff member in the Communications & Computer Sci-
ence department, IBM Research Division, IBM Zurich Re-
search Laboratory. He received his Diplom in computer
science in 1980 and his Ph.D. in 1987 from the University of
Stuttgart, Germany, where he worked as a research scientist
at the Institute of Computer Science from 1980 to 1986. Since
1986, he has been working at the IBM Zurich Research Lab-
oratory on the application of formal methods in the develop-
ment of communication protocols. Dr. Karjoth was actively
involved in the development of the formal description tech-
nique LOTOS in IS0 between 1981 and 1985. In 1986, he was
a visiting scientist at the Swedish Institute of Computer Sci-
ence, Kista, Sweden. His interest is in the modeling of dis-
tributed systems, their validation and implementation.

Yan Yang PTTResearch, NeherLaboratones, P. 0. Box421,
2260 AK Leidschendam, the Netherlands (electronic mail:
Y. Yang@research. ptt.nl). Ms. Yang is a research staff mem-
ber in the Computer Science department of Tele-Informatics
Division of PTT Research, the Netherlands. She received her
master’s degree in mathematics at the Technical University of
Delft, the Netherlands, in 1985. She joined PTT Research in
the same year and has worked on the application of formal
methods, verification and implementation of algebraic speci-
fications, temporal logic, and conformance testing.

Reprint Order No. G321-5492.

