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This  paper  describes the software  tools,  testing  activi- 
ties,  and  testing  methods that were  used to port  the 
DPPXISP operating  system  from  its  original  implemen- 
tation on the  ISM 8700 lnformation  System to its  new 
implementation  on  the IBM ES/9370 lnformation  Sys- 
tem. 

T he porting of the Distributed Processing Pro- 
gramming Executive  System Product (DPPX/SP) 

operating system,  which  was  originally  designed to 
run  on  the IBM 8100 Information System, to the 
D P P X / ~ ~ O  operating system  which runs on IBM ES/9370 
hardware, moved an operating system from one 
hardware architecture to another. 

To accomplish the  port, four basic steps had to be 
completed: 

1. A new compiler, the PLIDSZ compiler, had to be 
developed to generate System1370  Assembler in- 
structions from PL/DS (Programming Language 
for Distributed Systems) source code. 

2. The machine-dependent components of the DPPX 
operating system had to be redesigned and re- 
written to accommodate  the new hardware. 

3. The machine-independent components of DPPX 
had to be recompiled with the new compiler. 

4. The new machine-dependent components  and 
the recompiled machine-independent compo- 
nents had to be installed and tested on  the E S / W ~ O  
hardware. 

These four steps took approximately 30 months  to 
complete, with the most time spent on installing and 
testing the new and recompiled components. 

Much attention was  given to  the testing effort  of 
porting DPPX because of the  unique problem that 
testing had to address: How to take the redesigned 
machine-dependent components of DPPX, mix them 
with the recompiled components, install them and 
test them  on ~ ~ 1 9 3 7 0  hardware, and assure that 
D P P X ~ ~ O  running on  an ~ ~ 1 9 3 7 0  would work with a 
quality rating equal to,  or better than, DPPX/SP run- 
ning on an 8 100. 

The solution was to divide the project into stages, 
start at  the  bottom, work to  the  top,  and test it along 
the way. 

Staging  the  installation  and  testing of DPPX/370 

The layered architecture of DPPX, which  is described 
in Reference 1, lent itself to  the installation and 
testing of the ported code in  a “staged approach.” 
The overall  strategy  of the staged approach was to 
divide the system into its basic components, identify 
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the dependencies that existed  between them,  and 
implement them in sequence from the  bottom  up  in 
a series  of  seven  stages. The early  stages contained 
the low-level supervisor function that was  needed to 
support the higher-level functions that were to come 
in  later  stages.  Figure 1 illustrates this staged ap- 
proach. 

A stage was the vehicle that was  used to build, plan, 
test, and manage the code being ported and  the 
resources  needed to  do it. Each  stage  was  assigned to 
a manager  who was responsible for developing and 
executing a stage plan. The stage plan showed the 
major system functions to be implemented and their 

Each spin had its own 
characteristics. 

duration, The plan also  showed, at a high  level, the 
logical  sequence in which the various system func- 
tions would  have to become available so that  the 
system  could be built from the  bottom up. 

Beginning  with the first  stage, planning sessions  were 
held to resolve  several interrelated concerns. The 
detailed functional content of a stage  was evaluated, 
with consideration given to dependencies between 
functions of that stage. Module sizings (that is, lines 
of code) and functional verification testing plans 
were  reviewed with an eye on project schedules. 
Current assumptions were examined for conflicts 
with the latest project plans, and any other outstand- 
ing questions applicable to  the stage  were  resolved 
as  necessary. In addition, suggestions for quality and 
productivity improvements were considered. 

With the introduction of the critical supervisor and 
110 functions, there were a lot of dependencies be- 
tween functions. As a result, the development of 
stages 1 through 3 occurred in a fairly sequential 
manner. Each function being introduced into a stage 
had one or more dependencies on  other functions 
preceding  it in the same stage. Thus there was little 

parallel development. Any  slippage in introducing a 
critical function would directly impact subsequent 
functions coming in. 

At the  end of  stage 3 a very important checkpoint 
occurred: The system  successfully IPLed from the 
system  residence direct access  storage device (SYSRES 
DASD) and supported a user  logging on and accessing 
a DASD data set. With this level  of function now 
available for use,  new function was more easily 
introduced in stages 4 through 7. There were far 
fewer dependencies between the new functions corn- 
ing in, which  allowed more parallel development 
and easier testing to occur. 

But  even though installation and testing was  viewed 
and tracked as occurring in discrete stages,  it actually 
occurred as a “continuous integration” of function. 

DPPX/370 spins. To introduce multiple functions 
in a stage,  stages  were divided into spins. 

A ~ ~ ~ ~ 1 3 7 0  spin combined ~ ~ ~ ~ 1 3 7 0  software com- 
ponents to make up  the ~ ~ ~ ~ 1 3 7 0  operating system. 
Spins, generated about every  two  weeks by the build 
department, contained different levels  of function. 
The final product, ~ ~ ~ ~ 1 3 7 0 ,  was not fully  realized 
until spin 40; however, the birth of DPPX1370 began 
with spin 1, which contained the  foundation for the 
later spins. 

Figure 2 shows the diversity of software components 
contained in a spin. Each spin had its own charac- 
teristics.  Early spins were  weighted  with many indi- 
vidual modules and scaffolding to provide primitive 
function. Later spins were  weighted with full-func- 
tion components  and applications. There were also 
spins that contained only fixes to previous spins, 
with no new function being added. Figure 3 shows 
the relationship between spins, stages, time, and 
function. 

Library structure. To introduce multiple modules, 
components, and applications in a spin, code had to 
be  segregated into different library levels. 

The Project Development Library (PDL) software 
development tool was used to manage the building 
of multiple modules into spins for testing. PDL allows 
multiple versions of the operating system parts to be 
stored and accessed  by other developers. 

Developers  who  were  ready to  make their code avail- 
able to  other developers promoted it to their depart- 
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Figure 1 The  staged  approach 
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Figure 2 A spin 

1 Y 
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1 ment library. This made common subroutines, mod- 
ules, and control blocks that  must be linked into  one 
load module, and messages that must be built into 
message data sets,  accessible by everyone in  the 
department. 

The highest  level  of the library contained the oldest 
and most stable version of the code which formed 
the base  of the operating system.  Lower  levels con- 
tained changes to the modules in  the base  version 

b 
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and new code that was added for later spins. To 
create a new spin, the old levels  were promoted to 
the next higher library level,  with the highest library 
level containing a collection of well-tested spins. 

By keeping  several library levels with different ver- 
sions of code, developers chose the appropriate level 
for their use. Thus, developers who needed a stable 
version picked a higher library level to begin their 
access. A developer who needed the latest version of 
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Figure 3 Spins and stages 
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common code picked a lower  level that was  less 
stable but contained the latest changes. 

Figure 4 shows the  structure of the development 
library. The arrows show the direction code was 
promoted. As code was successfully tested, it was 
promoted to  the more stable library levels. 

Parallel  libraries. To develop and  implement  in 
parallel, parallel library structures were needed to 
segregate the function. 

In the early  stages,  because the low-level hardware- 
related components were being developed, all the 
testing was done by simulating the System/370 hard- 
ware on  a VM system. However, separate VM systems 
were  used for developing the code and testing the 
code. This ensured that testing would not affect the 
development environment and provided more flex- 
ibility  in  test  system configuration. 

To provide an efficient means to test the various 
spins built within a stage, executable object code 
from the development libraries was automatically 
copied to  the PDL libraries which  were set up  on the 
test system. 
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The availability of parallel libraries ensured that 
testing could continue on a stable base at  the same 
time integration testing was being done  on new 
functions. vM-based testing tools allowed the devel- 
opers to select the desired level  of operating system 
executable code to use, and performed a simulated 
IPL. The testers chose the  appropriate level  based on 
the function they were dependent on  and  the level’s 
stability. 

Once the system became stable and could be IPLed, 
the parallel libraries were no longer needed. Build 
tools were  used to load the system onto test  disks, 
the developers added their code to be tested, and IPL 
was executed through VM.  The development librar- 
ies,  however, continued to provide controlled sharing 
of the operating system code. 

Functional  verification 

Functional verification testing is part of the software 
development process  used by the DPPX organization 
to provide quality code to its customers. Tradition- 
ally, functional verification (FV) is a test, or group of 
tests,  whose purpose is to verify that  the functional 
operation of a module, from an  internal perspective, 
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is correct. An FV test is performed by exercising  every 
functional variation of a module with  valid and 
invalid data  to ensure that the data are processed 
correctly. 

FV testing  as performed by DPPX development in- 
cludes  test activities that are frequently thought of as 
unit test, FV test, and component test. Thus, FV 
testing is applied not only to individual modules but 
to groups of modules that are combined to provide 
services  or functions (such as command processors) 
and whose external characteristics must be  verified. 
Functional verification  is performed by the program- 
mers who  own the modules being ported during a 
stage. 

During the early  stages, FV testing helped  verify the 
correct operation of the new development compiler. 

The testing ensured that recompiled modules per- 
formed the same function on  an ~ ~ 1 9 3 7 0  that they 
had on an 8100. In general, however, modules that 
were only to be recompiled were not scheduled for 
extensive FV testing. The bulk of FV testing was 
performed on new modules that provided new func- 
tion on  the ES/9370, and on rewritten modules which 
were changed to accommodate the new hardware. 

Functional verification  of D P P X / ~ ~ O  provided for the 
detection of several  classes of software errors (bugs) 
which  follow. 

Compiler bugs and user  error bugs. FV testing of 
D P P X ~ ~ O  provided the first “live” test of the new 
compiler, which was developed in parallel with 
D P P X ~ ~ O .  It would come as no surprise, then,  to see 
some compiler errors surface. But compiler errors 
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were by far the hardest bugs to detect, analyze, and 
correct. This difficulty was due,  in  part, to  the lack 
of experience the DPPX organization had with the 
differences  between 8 100 and ES/9370 architectures, 
with System/370 assembly instructions, and with 
recognizing compiler bugs. 

Compiler bugs  were  very important because  of the 
far-reaching effect  they could have. Once it was 
recognized that compiler bugs  were being encoun- 
tered, the first burst of debugging  energy was put on 
determining the “type” of bug encountered. If it 

During  the  early  stages of testing 
DPPX/370, tool bugs were almost as 
difficult as compiler  bugs to detect 

and  analyze. 

appeared to be a compiler bug, the bug was trans- 
ferred to  a “compiler debug team,“  that would either 
identify the bug as a compiler bug or  a “user error 
bug.” A user error bug  is a bug that was generated 
because of the architectural differences between the 
8 100 and  the ES/WO. They were  usually  fixed by 
either declaring some variable with different attri- 
butes or recoding some logic to accomplish the same 
task  with different instructions. When true compiler 
bugs  were discovered, the entire library of tested 
code had to be recompiled with the fixed compiler 
and retested. 

Compiler bugs  were most prevalent during  the first 
three stages  of the porting project; after stage 3, they 
were  rarely encountered. 

Software tool bugs. During the early  stages of testing 
DPPX/370, tool bugs  were almost as difficult as com- 
piler  bugs to detect and analyze. The reason for the 
difficulty was because of the close coupling between 
the tools to build, load, and execute the D P P X / ~ ~ O  
code and  the code itself.  Also, a mix  of  skills  was 
required to analyze tool problems. Those familiar 
with the tools had minimum knowledge  of the inter- 
nals of D P P X / ~ ~ ~  and those familiar with D P P X / ~ ~ O  
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had minimum knowledge  of the  internals of the 
tools. As the programmers became more familiar 
with the tools and  the test bed, tool bugs  were more 
easily detected and fixed. 

Scaflolding bugs and D P P X I J ~ O  code bugs. Scaffolding 
and D P P X ~ O  code bugs, in contrast to compiler and 
tool bugs,  were more readily identifiable with a spe- 
cific function or area of D P P X / ~ ~ O  code, making them 
the easiest to detect, analyze, and fix. The majority 
of  bugs  fell into this class. 

FV test  bed. To support functional verification, sim- 
ulated System/370 hardware was provided by the 
virtual machine (VM) operating system, which  exe- 
cuted D P P X / ~ ~ O  code as a guest (that is, second-level) 
operating system. Special considerations had to be 
made to accommodate this testing environment 
since D P P X / ~ ~ O  is not designed to function as a guest 
operating system. 

VM was  used as the FV test bed for the following 
reasons: 

VM was available before the real hardware. The 
porting effort  began eight months before the ~s /9370  
hardware was available for testing D P P X ~ ~ O  code. 
Delaying testing until ES/WO hardware was available 
would  have  delayed the availability of the operating 
system. 

VM capacity was available in larger quantities  than 
the real hardware. For  the  duration of the project, 
only  seven ~s /9370  computers were available to 85 
development programmers to  port over a million 
lines of code. 

In the early  stages, before sufficient D P P X ~ ~ O  func- 
tion was available to provide a test bed on  the real 
hardware, 15 multisession terminals were available 
to  the programmers and testers of a stage to test their 
code. Multisession support  (one  terminal supporting 
four different sessions at  the same time) was required 
because of the software tools used to test the ported 
code on VM. 

In the later stages, multisession support was provided 
via RLSS and VM/Virtual Telecommunications Ac- 
cess Method (VTAM), which  allowed the DPPX pro- 
grammers to test their code from their office termi- 
nals. 

VM provided the capability to do parallel testing of 
D P P X I ~ ~ O  function. The  main aspect of a stage  was 
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that it identified the primitive or h d e v e l  DPPX/370 
function that  had  to be available to support  the 
higher-level functions  and applications. But  although 
a dependency existed between the low- and high- 
level function, both levels could  be tested at  the same 
time, in parallel. Parallel testing was accomplished 
by using scaffolded code to simulate  function, shared 
VM minidisks to allow multiple system versions to 
exist simultaneously, and special software tools, de- 
veloped by the DPPX organization. 

Several software tools played an  important role in 
the porting of the DPPX operating system. Build tools 
were  used to: build, load, and execute primitive 
versions of DPPX for testing before sufficient support 
was available for a  normal IPL; create ~ p P X / 3 7 0  sys- 
tem resident (SYSRES) volumes from specification 
files; and place SYSRES images onto IPLable fixed block 
architecture disks for testing. 

Aside from the build tools, there was a software 
debugging tool, described in  the next section, that 
became critical to  the timely completion of FV test- 
ing. 

DPPX/370 running  on VM remained  the  primary FV 
test bed for most of the  porting effort. However, all 
code was eventually tested on  the ~ s / 9 3 7 0  hardware 
during  independent  component and system tests. 

Common verification tool. When reviewing the  de- 
bugging requirements for DPPX/370, several issues had 
to be considered. Foremost was the  nature of the 
operating system  itself. DPPX/370 is designed to  run 
on a machine with the  architecture of a System/370, 
and  a debugging tool was needed that would make 
accessible  all the features of a System/370-style op- 
erating system: general-purpose registers, control reg- 
isters,  real and virtual addressing, condition codes, 
and program status words (PSWS). Since DPPX/370 is 
an operating system, the debugging tool would re- 
quire different characteristics from typical single- 
program debuggers. 

Several approaches to debugging were considered, 
including the use  of debugging facilities on  the target 
hardware itself. This was not satisfactory because of 
the lack  of test hardware as explained earlier. An- 
other consideration was to build a test version of the 
DPPX/370 system so it  could be lPLed as  a guest 
operating system running on VM/SP. With  this  ap- 
proach, any debugging facilities ofcp (VMISP’S control 
program) would be available. But another drawback 
emerged: CP’S debugging facilities are  too low  level 
to meet our development productivity objectives. 
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To address productivity, another debugging tool, 
Source Level Debug (SLD), was considered. It allowed 
one  to debug programs at  the source, or  program 
code, level. However, there were more drawbacks 
since SLD fell short  in  three significant areas: 

It supported  the debugging of individual CMS pro- 
grams, but D P P X / ~ ~ O  is an operating system that 
does not  run  under CMS. 
It did  not  support  the  programming language that 
was being used for D P P X / ~ ~ O .  
It provided little support  to debug at  an assembler 
code level. 

These shortcomings were unfortunate since the  other 
features provided by SLD would increase debugging 
productivity considerably. 

In the  end, it was decided to combine  some  functions 
of SLD with new debugging functions written by our 
own tools department.  This would provide, among 
other things, the necessary support for debugging 
non-cMs programs (our most critical requirement) 
and  the ability to debug assembler code. It would 
also provide the ability to test from one’s own office 
terminal,  eliminating  any  dependence  on  actual 
ES/9370 hardware  in  the early stages  of testing. 

This special implementation of SLD was the  tool 
called Common Verification Tool (CVT), an in-house 
tool not shipped with the D P P X / ~ ~ O  licensed program. 

CVT provided debugging capabilities which were rich 
in  function and easy to use. The primary  functions 
provided by CVT include: 

Pausing at specific program locations  through the 

Interrupting program execution or wait states 
Displaying or altering the  contents of storage, 

Stepping through  machine  instructions 
Logging the debug session and scrolling the session 

Repeating command sequences 

In addition to these functions,  a  certain amount of 
additional debug capability is available by using any 
of several CP commands.  These CP commands  can 
be  used simultaneously with CVT, thus giving the 
tester greater capability for addressing a given prob- 
lem. 

The  structure of CVT requires an interface to Virtual 
Machine  Communication Facility (VMCF),  a  com- 

use  of breakpoints 

registers, and  the PSW 

listing 
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ponent of the VM/SP operating system which permits 
information exchange between VM userIDs. In addi- 
tion, code had to be added to three areas in  the 
D P P X / ~ ~ O  supervisor to  accommodate  the needs of 
CVT for initialization, program and external interrupt 
handling, and  the program contents of system stor- 
age. 

Independent  component  tests 

Philosophy. Independent component test (ICT) tests 
all the  components  in a system from an external 
perspective. ICT looks at each component  in  the 
system and tries to use it or break it as a customer 
would. Independent means  that  the people planning 
and executing the tests are totally unrelated to  the 
component being tested. This independence gives 
the benefit  of simulating a customer environment. 
The tester really becomes a customer and must use 
customer-like documentation  to learn and use the 
functions provided by a component. 

ICT usually has two parts which  begin after develop- 
ment has completed its FV tests: a regression test 
which  verifies that  the system has not regressed since 
the last  release and a new function test which verifies 
that  the new function added to  the system  works 
according to  the  documentation  that will be provided 
to  the customer. 

Risks and concerns. ICT addressed the primary con- 
cerns, from a testing perspective, with porting code 
from the 8 100 to  the ~ s p 3 7 0 :  

1. Would the code generated by the new compiler 
perform the same function on  the ES/WO that  it 
did on  the 8 1 OO? 

2. Would the performance of the system increase 
when  going from 8100 architecture to ES/~VO 
architecture? 

3. Could customers migrate their applications easily 
from 8 100s to E S ~ ~ ~ O S ?  

4. Would timing and stress-related problems show 
up because of the difference  between the ES/WO 
and 8 100 architectures? 

Types of tests. The ICT effort, like the development 
effort, was accomplished in seven  stages and  the 
function of the ICT group actually went beyond a 
typical independent component test. The ICT group 
was responsible for performing the following  tests. 

During stages 1 through 3, there was no terminal 
support in the system and ICT could not test the 

system like an external user. To avoid wasting time, 
and to achieve as much test  coverage as possible, ICT 

To avoid  wasting  time,  and  to 
achieve  as much test  coverage as 

possible, ICT carried out 
stage  validation  tests. 

carried out stage validation (sv) tests. The emphasis 
of  the sv test was to test system support for customer 
applications as early as possible. 

sv tests  were performed by putting hooks and stops 
in system code and simulating multiple-user envi- 
ronments. System dumps were taken to verify cor- 
rect operation. 

Within each stage  were multiple spins. Spin valida- 
tion tests were simply a “bucket” or subset of test 
cases, that  had successfully completed on previous 
spins. When a new spin was made available, this 
bucket was executed to ensure that  the system had 
not regressed.  After  new tests were completed suc- 
cessfully, they were added to the test bucket. 

As development progressed through the stages, com- 
piler problems were discovered and fixed. The only 
way to really ensure that these fixes did  not cause 
problems with  previously compiled code was to to- 
tally recompile the code in  the system to  that point. 
Once the system  was recompiled on  the “fixed” 
compiler, the system was handed over to the ICT 
team to  run compiler regression (CR) tests. 

The CR test bucket was created by doing an analysis 
of the available components  and determining the 
kind of coding techniques that were  used to develop 
them. The most “compiler stressful” components 
were  selected and a subset of the ICT test cases  was 
re-executed  with the “fixed” compiler. Once these 
tests completed successfully, the “fixed” compiler 
became the “only” compiler and  the porting effort 
continued. 
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As the stages  progressed, more and more compo- 
nents became  available to ICT. After a  component 
was “ I C T ~ ~ , ”  it became part of a multiple  components 
in stress (MCS) test. Buckets  of automated tests were 
created by using many components together in the 
most  stressful situation that could be created. These 
buckets  were  like a stressful  regression  test and were 
used  extensively in stage 7 after all the code was in 
the system. MCS buckets were  used as availability 
tests and many times ran over the weekends to 
ensure that  the system  was stable and could remain 
operational for extended periods of time. MCS tests 
will continue to be  valuable  regression tests for future 
releases. 

B 

Planning for ICT. The “test group” of three senior- 
level DPPX programmers was responsible for devel- 
oping the basic,  high-level ICT plan. Other experi- 

review and discuss the preliminary high-level plans. 

The first step in determining how to test DPPX/370 
was to divide the entire system into logical areas of 
test.  These areas were called environments and 15 
emerged. It is not necessary to discuss  all 15, but 
some examples  follow: 

COBOL to verify the COBOL instruction set 
Program prep to verify the  components  that  a 
customer would  need to prepare and execute a 
program,  such as the editor, interactive map defi- 
nition (IMD), format management, various com- 
pilers, and  the linkage editor 
Problem determination to verify trace facilities, 
dump facilities, error reporting, and summariza- 
tion 
Connectivity to verify  all  device support that was 
announced, such as displays, printers, controllers, 
modems, and pass-through operating systems 
Communications to verify the ability of ~ ~ ~ ~ 1 3 7 0  
to communicate with  peer  systems and host ap- 
plications 
Migration to verify the commands, tools, and 
procedures that customers need to migrate their 

Performance to verify that  the performance of the 

B enced programmers were frequently consulted to 

R 

R applications from Dppx/sp to DPPX/~IO 

system  was improved over the 8 100 

The components to be tested in each environment 
were mapped  against the stage  when the  component 
would  be  available, and then a schedule of ICT start 
times for  each environment was created. Based on 
when the environment test could start  and  an esti- 
mate of  how  large the  environment would be, a 

planning phase was projected to precede each envi- 
ronment test. During the planning phase, detailed 
test plans and test  cases  were written for execution 
in  the test phase. 

Because  of tight schedules, as many redundancies as 
possible had to be removed from the test plan. Tests 
needed to be prioritized to distinguish those tests 
that needed to be executed from those that should 
be  executed if time and resources allowed. A test 
approach review (TAR) meeting was held for each 
component in the system.  Each TAR meeting was 
attended by at least one member of the test group, 
the lead developer for the  component,  and others 
who  were familiar with the  component. Many times 
the others were from the National Service  Division 
(NSD) or management; they  might  be  people who 
had  previously  left the area or anyone who  might  be 
considered an expert. 

Preparation for the TAR meeting involved someone 
dividing the  component  into its functions, subfunc- 
tions, associated commands,  command operands, 
possible error conditions, and PD tools. At the TAR 
meeting, the preparation was  reviewed and dis- 
cussed. The discussion involved: 

What are the risks  with porting this component? 
How much of the code is “new” versus “recom- 

Where  were the problems in the past? 
What items were “implicitly” tested just by normal 

What items would  be  sufficiently tested by func- 

What items needed explicit ICT tests? 
Who (what group) would  write the explicit tests? 
What items would get no test at all  because it was 
not deemed necessary? 
Of the items that needed  explicit  tests,  were there 
any existing  test  cases, and, if so, where are they? 
What should ICT do  to stress the  component? 
Are there any available “regression” tests for the 

In  what ICT environment should the various items 

How  large  is the ICT effort  for this component? 
When will the component be available to ICT and 
how much of it will  be available at  that time? 

piled?” 

system execution? 

tional verification? 

component? 

be tested? 

From the TAR meeting came an understanding of 
what  work  was  needed to be done, who  would  be 
responsible for the work, and when the work needed 
to be completed. The basic ICT test plan was created 
from these meetings. 

B 
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Executing  and  controlling  the  test  effort 

As the TAR meetings progressed, a new library struc- 
ture called Test Library (TL) was developed that 
could hold  test  cases, test plans, test programs, and 
the results of the TAR meetings. The TL also included 
automated tools, which could be  used to create “test 
packages” for each of the 15 environments. 

A test team and test team leader were  assigned to 
each environment. During the planning phase, the 
team leaders  had  several  responsibilities:  find and 
merge  existing  test  cases into  the environment’s test 

The  team  leader  also  worked with 
the  test coordinator to set  up  a 
tracking  mechanism  that kept 
management  informed of the 

progress of the  test  effort. 

package; automate  and modify existing test cases 
where  necessary; create test  cases that were  needed 
but did not exist; coordinate the planning and testing 
of an  environment. 

When the execution phase began, the team leader 
coordinated the test  effort by ensuring that  any cor- 
rections made to  the test cases or programs during 
execution were promoted back into  the test  package 
on  the TL. The team leader also worked  with the test 
coordinator to set up  a tracking mechanism that 
kept management informed of the progress of the 
test  effort. The test  team’s responsibility was to  run 
all the test  cases  associated  with an  environment  and 
ensure they completed successfully. 

In addition to  the test teams and test team leaders, 
the ICT group had one ICT coordinator. The test 
coordinator’s responsibility was to understand each 
of the 15 test environments and their unique require- 
ments. Some environments needed  special hardware, 
others needed  special  skills. Some needed  special 
tools and special configurations. It was the ICT co- 
ordinator who was the liaison among  the different 
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departments in the organization, ensuring that  the 
special items were available when a test environment 
was to begin. 

While  being  actively involved with the planning and 
execution of each of the environments, the test co- 
ordinator was also responsible for tracking and re- 
porting the progress of the test  effort. During the 
planning phase, the test coordinator would meet with 
the team leader of an  environment  to  determine 
what areas are to be tested, who  was to perform the 
tests, and how long it would take. This information 
was tracked graphically by stage and  environment. 

Measuring and evaluating  the results. Problem 
tracking and analysis report (PTAR) status meetings 
were  held frequently with management, and  the 
PTARS were  assessed in  terms of their severity and 
impact on  the testing effort. PTARS that were imped- 
ing test  progress  were  given  highest priority for being 
fixed. These meetings were  very  successful for in- 
forming management where the emphasis was 
needed to allow the test to  continue smoothly. 

After ICT was complete, an assessment of each com- 
ponent was made based on the  number of problems 
found and  the  amount of code in the  component. 
When assessment revealed a weak component, rec- 
ommendations for extended testing were made  to 
the system  test group. 

System  test 

The previous  approach to DPPX system test. In the 
days of DPPX/SP, the goal  of  system  test  was to test 
the operating system by running in an  environment 
similar to a customer environment. In  effect,  system 
test was the first customer. The objectives used to 
meet this goal  were as follows: 

1. Combine and test  all components as a total sys- 

2. Test the system the way a customer would use it. 
3. Put  the entire system under stress. 
4. Determine and approach system limits. 

To meet these objectives customer systems were 
obtained that included object code, databases, and 
customer-developed command lists (CLISTS). These 
systems  were  used quite extensively by the system 
test group in conjunction with “in-house” applica- 
tions that testers wrote to test areas not covered by 
the customer applications, as well as new functions. 
As  new DPPX releases  were developed, the customer 

tem. 
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applications were  less  effective for testing, since they 
only  addressed  old functions. 

Since the system  test group did not have the source 
code for these customer applications, they could not 
be  modified to take advantage of the new functions 
in the system. Also if an error occurred in the appli- 

When a  failure  was  introduced,  the 
system  error  log,  operator  log, 
and  host  NetView  facility  were 
checked to  verify  that  accurate 

messages  were  logged. 

cation, it was virtually impossible to locate and fix 
the problem. This also  caused problems with DPPX 
problem determination, since the testers were never 
sure exactly  what the application was doing when 
the system error occurred. Many system  test envi- 
ronments (STES) had to be written to test specific 
functions and areas of the system. By the fourth 
release  of D P P X ~ P ,  system  test  had become very 
component-oriented rather than system-oriented. 

The total systems approach. Today's method, the 
total systems approach, is broken up  into three parts: 
problem determination (PD), contracted efforts, and 
end-user  systems (EuS). 

The problem determination part of system  test had 
basically remained the same from 8 100 testing to 
E S ~ Y O .  Tests  were  designed to  introduce permanent 
and intermittent hardware and software errors to 
determine the capability of ~ ~ ~ ~ 1 3 7 0  to recognize, 
properly  diagnose, and report the error. Hardware 
bug points were obtained from the Endicott ~~19370 
engineers.  These  bug points were the physical address 
of pins on cards within the ~~19370 processor  which, 
when grounded, would simulate an actual card fail- 
ure.  These  failures included memory errors, adapter 
errors, and processor errors. When a failure was 
introduced, the system error log, operator log, and 
host NetView" facility  were checked to verify that 
accurate messages  were  logged.  Effectiveness testing 
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was included as part of the PD testing. In these test 
cases a person who was computer literate, but  not 
DPPX literate, was asked to perform basic tasks on 
the computer. Certain errors would be introduced 
into  the system as the subject was executing these 
tasks. The subject was timed to see  how long it took 
to identify the exact cause  of the problem. Only the 
messages in  the operator and error logs,  NetView, 
and  the DPPX support manuals could be  used for 
problem determination. A test  was marked success- 
ful  when a problem was identified, and in some cases 
resolved, within 30 minutes. 

Certain isolated  test  efforts  were contracted outside 
of IBM. Some communications tests were also run  at 
IBM locations in Germany  and  Japan.  The test plans 
were written by the actual testers and were  reviewed 
and approved by system  test members before the 
start of testing. A system  test department member 
monitored all of these tests and reported at  the 
weekly  staff meetings. The test locations were  se- 
lected  based on their knowledge of the function, 
their interest (which stemmed from customer re- 
quirements), and their test  bed  facilities. For exam- 
ple, X.25 testing was performed in Germany, since 
our  German customers have a strong requirement 
for X.25 communications  support. 

The third part was the key to the success  of this 
system  test  effort. Current customer system environ- 
ments were  used to simulate, in our lab, the daily 
activities of the customer. Using these systems al- 
lowed the testing of migration, usability, and equiv- 
alence. 

The EUS test was broken up  into six  phases: (1) obtain 
a customer system, ( 2 )  learn, combine, and promote, 
(3) migrate, (4) execute, (5) expand, and (6) test 
system under stress and perform unstructured tests. 

The first two represented the preparation for system 
test,  whereas the remaining four were actual testing 
phases. 

Preparation. System test's goal and objectives  were 
not changed with this new approach, but the meth- 
ods for meeting the objectives were. In order to meet 
the objectives more effectively, it was necessary to 
find the best customer systems available to use in 
the test. 

The general requirements of each customer were 
determined before approaching them for testing. The 
department members and management identified 
the following requirements. 
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DPPX application source code. It was crucial that  the 
group receive the application source code for all parts 
of the application that were not written in Cross 
Systems Product. All COBOL had to be run through 
the preprocessor and compiler, and  any  other appli- 
cations would have to be rewritten (for example, 
PL/DS and assembler applications). 

CLISTS, panels,  command  facility  extension (cFE) 
scripts, and user ID dejnitions. All parts of the sys- 
tem, written or modified by the customer, were 
necessary to  run their application. 

DPPX databases and transactions. Test data and  the 
customer-defined transactions were crucial to exe- 
cuting the complete customer application. 

Application documentation. We felt that any infor- 
mation the customer could supply us in  the form of 
data-logic flow diagrams and  manuals would help us 
learn how the application runs  and how to  run the 
application. 

In order to duplicate the operating environment 
completely, it was important  to have  host source 
code that communicates with DPPX, host databases 
and transactions, and host application documenta- 
tion. However, due to the complexity and hardware 
dependencies of the host applications, it was virtually 
impossible to obtain this material. 

With the requirements known, it was decided that 
obtaining three customer systems would be sufficient 
for the system  test  effort. 

Applications were  selected from three different busi- 
ness environments (an auto parts inventory system, 
an insurance claims processing system, and  a  plant 
maintenance and control system) which, when com- 
bined, would  use most of the  components of the 
operating system. It was also a requirement that  at 
least one customer application be written primarily 
in COBOL and  at least one be written primarily in 
Cross  System Product. 

Once the three customers and IBM had  come to  an 
agreement concerning the  terms  and conditions of 
the project, contracts were written up  and signed, 
and key people from the system test department 
visited the customer sites to learn the system and 
understand the  running  environment. 

Once the customer application arrived it was im- 
mediately loaded on  an 8100 to verify that all the 
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parts were present. The  department was divided into 
three teams, each consisting of one senior depart- 
ment member and  one  junior member. Each team 
was responsible for a customer system, and  the senior 
members were jointly responsible for creating a 
fourth combined system  which consisted of  all three 
customer applications. 

The team members spent approximately one  month 
familiarizing themselves with their customer system. 
They documented procedures for starting and  run- 
ning the application. These documents, along with 
the  documentation received from the customer, were 
used to create Teleprocessing Network Simulator 
(TPNS) scripts that would  be  used for multithread 
and stress testing. This familiarization period was 
also important for planning which parts of the system 
would  be migrated to  the ES/9370. 

Test Library (TL) was  used for the archiving of the 
customer application parts. The tool resided on  a 
virtual memory (VM) system. The testers scanned the 
customer system and transferred the customer-spe- 
cific parts  to TL. All parts likely to cause a problem 
when  merged into  the combined system were docu- 
mented. 

An installation process was developed for each sys- 
tem to simplify the installation of a customer system 
from TL to  an 8100. This installation process con- 
sisted  of running CLISTS that created all  of the  data- 
bases, and set up environments  and device defini- 
tions. Installation instructions were written to guide 
the tester, and any specific hardware and software 
requirements were identified. 

The final phase of  system  test preparation was to 
preprocess and compile the COBOL applications, and 
perform any needed rewrite of other applications. 
The MVS COBOL 11 preprocessor and compiler were 
used in this phase. This proved to be the most tedious 
and time-consuming task. It was found  that  the old 
DPPX COBOL compiler was not as strict about adher- 
ing to  the  standard COBOL programming rules. In 
many cases programs that compiled without error 
with the DPPX compiler were not compiling with the 
MVS COBOL compiler. Work had to be done to modify 
the DPPX COBOL applications. Applications written 
in other languages such as DPPX Assembler and PL/DS 
also had to be rewritten in either COBOL, Cross 
System Product, or System/370 Assembler. In two 
cases the customer sent a team of their developers to 
aid in the rewriting of the applications. This proved 
mutually beneficial for obvious reasons. Once this 
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TL for archiving. We were now ready to  start system 
test. 

b System test activity. The first phase of  system tes; 
was migration. Using ~PPxl37oMigration: Planning, 
each team determined the best method for migrating 
its  system. Some modifications to the team’s plans 
had to be made to verify that all three migration 
methods were  used (Distributed Systems Executive, 
stand-alone DASD dump/restore,  and Peer Data 
Transfer). The migration tool was loaded on the 

The  rewritten COBOL II programs 
were  compiled on MVS and 

transferred down to the ES/9370. 

8 100, and, the teams used D P P X I ~ ~ O  Migration: 
Procedures to execute the migration process. Tim- 

determine how much planning and  actual migration 
time was needed  for these large systems. 

P ings  were taken throughout  this migration phase to 

The rewritten COBOL 11 programs were compiled on 
MVS and transferred down to the ~s/9370. System/370 
Assembler code was assembled and transferred to 
the ~s/9370 systems. A subset of  the COBOL programs 
was also  preprocessed and compiled on  the D P P X / ~ ~ O  
system. 

Finally, a visual inspection of the system was per- 
formed to verify that  no  parts were  missing, and  the 

the corresponding ~~19370 databases to verify that  no 
corruption had taken place during  the migration. 
Three methods were  used to compare  the databases: 
( I )  if the databases had a record length less than 133, 
they could be printed by DPPX and  compared, (2) if 
they  were  longer than 132, they were transferred to 
VM and compared, or (3) if the  customer application 
generated detailed reports from the database con- 
tents, the 8 100 and ~ ~ 1 9 3 7 0  reports were compared. 

D contents of the 8 100 databases were compared with 
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With the system now completely migrated, it was 
time to begin running  the  customer applications on 
the ES19370. This phase was divided into three basic 
parts. First, the application was tested live  by the test 
team.  In  some cases this uncovered run-time  errors 
in the COBOL modules. For  the most part, however, 
the live testing proved that  the migration was  ex- 
tremely successful. Second, the TPNS script was run 
using a single TPNS user to verify the network path 
and perform some performance tests. The  output of 
these tests was compared with that of the  same  run 
on the 8 100 system. Third,  the  number of TPNS users 
was increased until the system was running at least 
70 percent CPU utilization. At this  time  more per- 
formance tests were run  and  compared with 8 100 
tests. 

Errors were introduced  during TPNS runs  to deter- 
mine  the effect  of hardware and software (application 
software) errors 01; the ~ ~ ~ ~ 1 3 7 0  system while run- 
ning the  customer applications. These errors in- 
cluded disk and SDLC adapter errors, stopping TPNS 
before completion (to  simulate  a  communication 
break outside the  ES/WO), stopping and restarting 
environments,  submitting looping applications to 
batch processing, and powering off and  on live de- 
vices defined to the system. 

Once the team was  satisfied with how the application 
was running,  the team entered the next phase of 
system  test, to expand the system beyond its current 
capabilities. The team determined which functions, 
or components, were not currently being executed 
by the system. They then modified the system to 
incorporate these functions. Basically, these func- 
tions were those introduced in Release 4 of DPPX/SP 
and D P P X I ~ ~ O  that  the  customer was not  implement- 
ing. All customer systems were at DPPX Release 3 
level. One  customer system was brought to a Release 
4 level upon arrival. 

The expanded system  was then  rerun, starting with 
the customer application, and  starting  the new com- 
ponents one at a  time until the  entire expanded 
system was running.  The objective was to push the 
processor to approximately 90 percent utilization 
and  continue  under  that stress for long periods of 
time without IPLing. 

At the same time, the senior team  members were 
combining the three customer applications on a 
single system to run  a CPU and 110 intensive stress 
test for an extended length (at least 65 continuous 
hours). Where necessary, CLISTS and in-house devel- 
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oped applications were added to stress the system 
further. Due  to  the size and complexity of the new 
system, it was impossible to  run  an equivalent system 
on  an 8 100 and get performance comparisons; how- 
ever, some performance tests were run. Also, time 
was spent tuning  the combined system to maximize 
execution time  and reduce overhead. 

The final phase of  system  test was called the  “un- 
structured test period.” After  all the test cases had 
been executed and all  high-severity problems had 
either been  fixed or  a plan was in place to get them 
fixed,  all department members converged on the 
combined system to rerun any tests they felt uncov- 
ered the most problems, or  to  run any new tests that 
they  were not able to use during the earlier phases 
of system test. This has proved in  the past to be quite 
beneficial, shaking out  some smaller problems before 
the system  goes out to the customer. 

Once system  test was completed, an exit review 
meeting was held by both system test and develop- 
ment managers to confirm that  the test exit criteria 
had  been met and all outstanding problems had a 
plan in place to be resolved. 

Benefits  of  the  new  approach 

The total systems approach has proved to be bene- 
ficial in many ways. 

Working with the customer created an atmosphere 
of technical exchange. Because  of the information 
passed to  the customer about  the migration experi- 
ences  with their system, the customer was able to 
start planning for migration earlier. In many cases 
the testers had to work  with the customer’s technical 
staff to resolve problems. 

The  department members gained a better under- 
standing of  how the customer actually uses the DPPX 
system. In general, the development and test groups 
are isolated from the customer; they  really do not 
understand the degree  of complexity of the customer 
applications and how these applications interact with 
the DPPX system. By gaining this understanding, they 
can better develop and test DPPX. 

Prior to this test  effort the system test department 
members had  single areas of expertise where they 
would spend most of their time testing. Through this 
new method, the testers learned more  about  the 
overall  system than would otherwise have been pos- 
sible in the same amount of time. 
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Since the application source code and  documenta- 
tion was available, it was much easier to diagnose a 
problem and separate system problems from appli- 
cation errors. Once it was understood in detail how 
the applications functioned, the  time needed to ob- 
tain the proper data for development to fix a system 
problem was reduced significantly.  If a problem 
needed to be reproduced, the tester was more famil- 
iar with what was  going on  at  the  time of the  error 
and was more likely to be able to reproduce the  error 
and take less time  to do so. 

The  total  systems  approach  proved 
to be a  great  improvement  over  the 

old  method of system  test. 

More components were tested by fewer  people earlier 
in the test  cycle than was possible  using the old 
method. System  test concentrated on  a complete 
system throughout the test period rather than testing 
individual components. 

Fewer systems were  needed to  run  this test, com- 
pared with the old method, and  in general there was 
a constant high  degree  of machine utilization during 
the test period. The system was under stress early in 
the test  cycle. 

The combined customer system functioned as an 
excellent  vehicle for regression testing and fix pack- 
age testing.  Since the combined customer system 
exercises almost every component  in  the D P P X / ~ ~ O  
system, there is no need to spend weeks  sifting 
through old test plans to create a regression  test. It 
also stressed the system in a more realistic manner 
by having a large number of simulated users execute 
real customer applications. 

Concerns with the new approach. There were two 
major concerns that arose from management about 
this new approach. There was a serious concern that 
the test group may inadvertently become concerned 
with the customer applications rather than with the 
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system  itself. Management felt that it was possible 
that the testers  would spend more time trying to 
understand what the application was doing rather 
than how the system  was functioning under  the 
application. To avoid this, all  system  test plans were 
inspected by peers, management, and key devel- 
opers. Also,  weekly status of tests completed and 
planned for the following week  was provided to 
management. 

There was also a concern that error testing would 
not be performed to the degree  it was done in the 
past. This concern was addressed by having the 
testers document in their test plans all errors they 
planned on introducing into  the system. Thus cov- 
erage could easily be evaluated. The problem deter- 
mination test,  which introduced a variety of hard- 
ware and software errors, was also documented and 
inspected. 

Directions. The total systems approach proved to be 
a great improvement over the old method of system 
test.  Many problems that were not found in com- 
ponent testing  were uncovered and  a  number of 
customer-application-dependent problems were 
found. These problems would not have been found 
under the old method of testing. ~ ~ ~ ~ 1 3 7 0  was ex- 
posed to a customer system environment from the 
start of system test. This provided us with a stable 
system earlier in the development cycle. 

We are exploring other opportunities which will 
involve the customer even more in the development 
cycle, including involving the customer in more test 
efforts and possibly development and design  efforts. 

Summary 

The development approach taken by the Distributed 
Systems Programming (DSP) organization was  key to 
the successful port of DPPXISP to D P P X I ~ ~ O  for many 
reasons. Programmer productivity was optimized by 
staging the development activities, by having a test 
bed  before the actual hardware was available, and by 
providing the developers  with tools to simplify de- 
bugging. A stable D P P X ~ ~ O  system was attained very 
early  in the development cycle  by testing D P P X I ~ ~ O  
at every  stage rather than waiting for all development 
activity to complete. The component tests  were  ex- 
ecuted by testers other than the component devel- 
opers. This exposed documentation  and usability 
problems, in addition to functional errors, which 
otherwise  may not have  been found. The use  of 
customer application environments in system  test 
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permitted greater and more realistic  test  coverage 
and required fewer resources than  normal. 

The DSP organization is continually investigating 
new  ways to improve its approach to systems  devel- 
opment. 
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