Porting DPPX from the
IBM 8100 to the

IBM ES/9370:
Installation and testing

This paper describes the software tools, testing activi-
ties, and testing methods that were used to port the
DPPX/SP operating system from its original implemen-
tation on the IBM 8100 Information System to its new
implementation on the IBM ES /9370 Information Sys-
tem.

he porting of the Distributed Processing Pro-

gramming Executive System Product (DPPX/SP)
operating system, which was originally designed to
run on the 1BM 8100 Information System, to the
DPPX/370 operating system which runs on IBM ES/9370
hardware, moved an operating system from one
hardware architecture to another.

To accomplish the port, four basic steps had to be
completed:

1. A new compiler, the PL/DS2 compiler, had to be
developed to generate System/370 Assembler in-
structions from prL/DS (Programming Language
for Distributed Systems) source code.

2. The machine-dependent components of the DPPX
operating system had to be redesigned and re-
written to accommodate the new hardware.

3. The machine-independent components of DPPX
had to be recompiled with the new compiler.

4. The new machine-dependent components and
the recompiled machine-independent compo-
nents had to be installed and tested on the ES/9370
hardware.

124 BOEHM, PALMIOTTI, AND ZINGARETTI

by G. E. Boehm
A. M. Palmiotti
D. P. Zingaretti

These four steps took approximately 30 months to
complete, with the most time spent on installing and
testing the new and recompiled components.

Much attention was given to the testing effort of
porting DPPX because of the unique problem that
testing had to address: How to take the redesigned
machine-dependent components of DPPX, mix them
with the recompiled components, install them and
test them on ES/9370 hardware, and assure that
DPPX/370 running on an ES/937¢ would work with a
quality rating equal to, or better than, DPPX/SP run-
ning on an 8100.

The solution was to divide the project into stages,
start at the bottom, work to the top, and test it along
the way.

Staging the installation and testing of DPPX/370

The layered architecture of DPPX, which is described
in Reference 1, lent itself to the installation and
testing of the ported code in a “staged approach.”
The overall strategy of the staged approach was to
divide the system into its basic components, identify

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

the dependencies that existed between them, and
implement them in sequence from the bottom up in
a series of seven stages. The early stages contained
the low-level supervisor function that was needed to
support the higher-level functions that were to come
in later stages. Figure 1 illustrates this staged ap-
proach.

A stage was the vehicle that was used to build, plan,
test, and manage the code being ported and the
resources needed to do it. Each stage was assigned to
a manager who was responsible for developing and
executing a stage plan. The stage plan showed the
major system functions to be implemented and their

Each spin had its own
characteristics.

duration. The plan also showed, at a high level, the
logical sequence in which the various system func-
tions would have to become available so that the
system could be built from the bottom up.

Beginning with the first stage, planning sessions were
held to resolve several interrelated concerns. The
detailed functional content of a stage was evaluated,
with consideration given to dependencies between
functions of that stage. Module sizings (that is, lines
of code) and functional verification testing plans
were reviewed with an eye on project schedules.
Current assumptions were examined for conflicts
with the latest project plans, and any other outstand-
ing questions applicable to the stage were resolved
as necessary. In addition, suggestions for quality and
productivity improvements were considered.

With the introduction of the critical supervisor and
1/0 functions, there were a lot of dependencies be-
tween functions. As a result, the development of
stages 1 through 3 occurred in a fairly sequential
manner. Each function being introduced into a stage
had one or more dependencies on other functions
preceding it in the same stage. Thus there was little

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

parallel development. Any slippage in introducing a
critical function would directly impact subsequent
functions coming in.

At the end of stage 3 a very important checkpoint
occurred: The system successfully 1PLed from the
system residence direct access storage device (SYSRES
DAsD) and supported a user logging on and accessing
a DASD data set. With this level of function now
available for use, new function was more easily
introduced in stages 4 through 7. There were far
fewer dependencies between the new functions com-
ing in, which allowed more parallel development
and easier testing to occur.

But even though installation and testing was viewed
and tracked as occurring in discrete stages, it actually
occurred as a “continuous integration” of function.

DPPX/370 spins. To introduce multiple functions
in a stage, stages were divided into spins.

A DPPX/370 spin combined DPPX/370 software com-
ponents to make up the DPPX/370 operating system.
Spins, generated about every two weeks by the build
department, contained different levels of function.
The final product, DPPX/370, was not fully realized
until spin 40; however, the birth of DPPX/370 began
with spin 1, which contained the foundation for the
later spins.

Figure 2 shows the diversity of software components
contained in a spin. Each spin had its own charac-
teristics. Early spins were weighted with many indi-
vidual modules and scaffolding to provide primitive
function. Later spins were weighted with full-func-
tion components and applications. There were also
spins that contained only fixes to previous spins,
with no new function being added. Figure 3 shows
the relationship between spins, stages, time, and
function.

Library structure. To introduce multiple modules,
components, and applications in a spin, code had to
be segregated into different library levels.

The Project Development Library (ppL) software
development tool was used to manage the building
of multiple modules into spins for testing. PDL allows
multiple versions of the operating system parts to be
stored and accessed by other developers.

Developers who were ready to make their code avail-
able to other developers promoted it to their depart-

BOEHM, PALMIOTTI, AND ZNGARETTI 125

Figure 1 The staged approach

STAGE 7--THE REST

X.25 AND TOKEN-RING NETWORK SUPPORT
SERVICE UTILITIES

COBOL PREPROCESSOR AND COMPILER
ASSEMBLER MACROS

STAGE 6--INSTALLATION AND MIGRATION

INSTALLATION AND MIGRATION UTILITIES
ENHANCED DATA MANAGEMENT

COBOL RUN-TIME LIBRARY

CROSS SYSTEM PRODUCT

REMOTE JOB ENTRY

SORT/MERGE

STAGE 5--HOST INTERACTION

HOST COMMUNICATIONS
ATTENTION HANDLING
BATCH PROCESSING

PERFORMANCE ADVISOR

STAGE 4--RECOVERY

ERROR HANDLING

SUPERVISOR RECOVERY
COMMUNICATIONS RECOVERY
DATA MANAGEMENT RECOVERY
PROBLEM DETERMINATION AIDS
DATABASE FUNCTIONS
INTERACTIVE FUNCTIONS

STAGE 3~-LOGON

ADDITIONAL. SUPERVISOR SERVICES
MORE DATA MANAGEMENT FUNCTION
FULL FUNCTION IPL
COMMUNICATIONS

TRACE . ’

DUMP .

B STAGE 2--SYSTEM RESIDENCE VOLUME

STAGE 1--THE BASICS

126 BOEHM, PALMIOTTI, AND ZINGARETTI

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

Figure 2 A spin

PREVIOUS SPIN

A\ 4

\ 4

SCAFFOLDING

\ 4

FIXES
MODULES
SCAFFOLDING

ment library. This made common subroutines, mod-
ules, and control blocks that must be linked into one
load module, and messages that must be built into
message data sets, accessible by everyone in the
department.

The highest level of the library contained the oldest
and most stable version of the code which formed
the base of the operating system. Lower levels con-
tained changes to the modules in the base version

1BM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

and new code that was added for later spins. To
create a new spin, the old levels were promoted to
the next higher library level, with the highest library
level containing a collection of well-tested spins.

By keeping several library levels with different ver-
sions of code, developers chose the appropriate level
for their use. Thus, developers who needed a stable
version picked a higher library level to begin their
access. A developer who needed the latest version of

BOEHM, PALMIOTTI, AND ZINGARETTI {27

Figure 3 Spins and stages

FUNCTION SPIN 40
SPIN 39

SPIN 37

SPIN 36
[J

®

[J
SPIN 1
SPIN 10
SPIN 8
SPIN 7
SPIN 7
SPIN 6
SPIN 4
SPIN 3
SPIN 3
SPIN 1

TIME

common code picked a lower level that was less
stable but contained the latest changes.

Figure 4 shows the structure of the development
library. The arrows show the direction code was
promoted. As code was successfully tested, it was
promoted to the more stable library levels.

Parallel libraries. To develop and implement in
parallel, parallel library structures were needed to
segregate the function.

In the early stages, because the low-level hardware-
related components were being developed, all the
testing was done by simulating the System/370 hard-
ware on a VM system. However, separate VM systems
were used for developing the code and testing the
code. This ensured that testing would not affect the
development environment and provided more flex-
ibility in test system configuration.

To provide an efficient means to test the various
spins built within a stage, executable object code
from the development libraries was automatically
copied to the PDL libraries which were set up on the
test system.

128 BOEHM, PALMIOTTI, AND ZINGARETTI

The availability of parallel libraries ensured that
testing could continue on a stable base at the same
time integration testing was being done on new
functions. vM-based testing tools allowed the devel-
opers to select the desired level of operating system
executable code to use, and performed a simulated
1PL. The testers chose the appropriate level based on
the function they were dependent on and the level’s
stability.

Once the system became stable and could be I1PLed,
the parallel libraries were no longer needed. Build
tools were used to load the system onto test disks,
the developers added their code to be tested, and 1PL
was executed through vMm. The development librar-
ies, however, continued to provide controlled sharing
of the operating system code.

Functional verification

Functional verification testing is part of the software
development process used by the DPPX organization
to provide quality code to its customers. Tradition-
ally, functional verification (Fv) is a test, or group of
tests, whose purpose is to verify that the functional
operation of a module, from an internal perspective,

IBM SYSTEMS JOURNAL. VOL 29, NO 1, 1990

Figure 4 Development library structure

N

LIBRARY LEVEL 1

STABLE
LIBRARY

LIBRARY LEVEL 2

CROSS-
DEPARTMENT
LIBRARY

DEPARTMENT B

DEPARTMENT A

DEPARTMENT C

DEPARTMENT D DEPARTMENTAL

LIBRARY

DEVELOPERS
PRIVATE
LIBRARY

is correct. An Fv test is performed by exercising every
functional variation of a module with valid and
invalid data to ensure that the data are processed
correctly.

Fv testing as performed by pDpPX development in-
cludes test activities that are frequently thought of as
unit test, Fv test, and component test. Thus, Fv
testing is applied not only to individual modules but
to groups of modules that are combined to provide
services or functions (such as command processors)
and whose external characteristics must be verified.
Functional verification is performed by the program-
mers who own the modules being ported during a
stage.

During the early stages, Fv testing helped verify the
correct operation of the new development compiler.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

The testing ensured that recompiled modules per-
formed the same function on an ES/9370 that they
had on an 8100. In general, however, modules that
were only to be recompiled were not scheduled for
extensive Fv testing. The bulk of Fv testing was
performed on new modules that provided new func-
tion on the ES/9370, and on rewritten modules which
were changed to accommodate the new hardware.

Functional verification of DPPX/370 provided for the
detection of several classes of software errors (bugs)
which follow.

Compiler bugs and user error bugs. Fv testing of
DPPX/370 provided the first “live” test of the new
compiler, which was developed in parallel with
DPPX/370. It would come as no surprise, then, to see
some compiler errors surface. But compiler errors

BOEHM, PALMIOTTI, AND ZNGARETT 129

were by far the hardest bugs to detect, analyze, and
correct. This difficulty was due, in part, to the lack
of experience the DPPX organization had with the
differences between 8100 and ES/9370 architectures,
with System/370 assembly instructions, and with
recognizing compiler bugs.

Compiler bugs were very important because of the
far-reaching effect they could have. Once it was
recognized that compiler bugs were being encoun-
tered, the first burst of debugging energy was put on
determining the “type” of bug encountered. If it

During the early stages of testing
DPPX/3170, tool bugs were almost as
difficult as compiler bugs to detect
and analyze.

appeared to be a compiler bug, the bug was trans-
ferred to a “compiler debug team,” that would either
identify the bug as a compiler bug or a “user error
bug.” A user error bug is a bug that was generated
because of the architectural differences between the
8100 and the ES/9370. They were usually fixed by
either declaring some variable with different attri-
butes or recoding some logic to accomplish the same
task with different instructions. When true compiler
bugs were discovered, the entire library of tested
code had to be recompiled with the fixed compiler
and retested.

Compiler bugs were most prevalent during the first
three stages of the porting project; after stage 3, they
were rarely encountered.

Software tool bugs. During the early stages of testing
DPPX/370, tool bugs were almost as difficult as com-
piler bugs to detect and analyze. The reason for the
difficulty was because of the close coupling between
the tools to build, load, and execute the DPPX/370
code and the code itself. Also, a mix of skills was
required to analyze tool problems. Those familiar
with the tools had minimum knowledge of the inter-
nals of DPPX/370 and those familiar with DPPX/370

130 BOEHM, PALMIOTTI, AND ZINGARETTI

had minimum knowledge of the internals of the
tools. As the programmers became more familiar
with the tools and the test bed, tool bugs were more
easily detected and fixed.

Scaffolding bugs and pppx|370 code bugs. Scaffolding
and DPPX/370 code bugs, in contrast to compiler and
tool bugs, were more readily identifiable with a spe-
cific function or area of DPPX/370 code, making them
the easiest to detect, analyze, and fix. The majority
of bugs fell into this class.

FV test bed. To support functional verification, sim-
ulated System/370 hardware was provided by the
virtual machine (vM) operating system, which exe-
cuted DPPX/370 code as a guest (that is, second-level)
operating system. Special considerations had to be
made to accommodate this testing environment
since DPPX/370 is not designed to function as a guest
operating system.

vM was used as the Fv test bed for the following
reasons:

vM was available before the real hardware. The
porting effort began eight months before the ES/9370
hardware was available for testing DPPX/370 code.
Delaying testing until ES/9370 hardware was available
would have delayed the availability of the operating
system.

VM capacity was available in larger quantities than
the real hardware. For the duration of the project,
only seven ES/9370 computers were available to 85
development programmers to port over a million
lines of code.

In the early stages, before sufficient DpPX/370 func-
tion was available to provide a test bed on the real
hardware, 15 multisession terminals were available
to the programmers and testers of a stage to test their
code. Multisession support (one terminal supporting
four different sessions at the same time) was required
because of the software tools used to test the ported
code on vMm.

In the later stages, multisession support was provided
via RLSS and VM/Virtual Telecommunications Ac-
cess Method (vTam), which allowed the DPPX pro-
grammers to test their code from their office termi-
nals.

vM provided the capability to do parallel testing of
DPPx/370 function. The main aspect of a stage was

BM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

that it identified the primitive or low-level DPPX/370
function that had to be available to support the
higher-level functions and applications. But although
a dependency existed between the low- and high-
level function, both levels could be tested at the same
time, in parallel. Parallel testing was accomplished
by using scaffolded code to simulate function, shared
vM minidisks to allow multiple system versions to
exist simultaneously, and special software tools, de-
veloped by the DPPX organization.

Several software tools played an important role in
the porting of the bPPX operating system. Build tools
were used to: build, load, and execute primitive
versions of DPPX for testing before sufficient support
was available for a normal IPL; create DPPX/370 Sys-
tem resident (SYSRES) volumes from specification
files; and place SYSRES images onto IPLable fixed block
architecture disks for testing.

Aside from the build tools, there was a software
debugging tool, described in the next section, that
became critical to the timely completion of Fv test-
ing.

DPPX/370 Tunning on vM remained the primary Fv
test bed for most of the porting effort. However, all
code was eventually tested on the ES/9370 hardware
during independent component and system tests.

Common verification tool. When reviewing the de-
bugging requirements for DPPX/370, several issues had
to be considered. Foremost was the nature of the
operating system itself. DPPX/370 is designed to run
on a machine with the architecture of a System/370,
and a debugging tool was needed that would make
accessible all the features of a System/370-style op-
erating system: general-purpose registers, control reg-
isters, real and virtual addressing, condition codes,
and program status words (PSws). Since DPPX/370 is
an operating system, the debugging tool would re-
quire different characteristics from typical single-
program debuggers.

Several approaches to debugging were considered,
including the use of debugging facilities on the target
hardware itself. This was not satisfactory because of
the lack of test hardware as explained earlier. An-
other consideration was to build a test version of the
DPPX/370 system so it could be 1PLed as a guest
operating system running on vmysp. With this ap-
proach, any debugging facilities of cp (vM/sP’s control
program) would be available. But another drawback
emerged: CP's debugging facilities are too low level
to meet our development productivity objectives.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1930

To address productivity, another debugging tool,
Source Level Debug (SLD), was considered. It allowed
one to debug programs at the source, or program
code, level. However, there were more drawbacks
since sLD fell short in three significant areas:

« It supported the debugging of individual cMs pro-
grams, but DPPX/370 is an operating system that
does not run under CMS.

» It did not support the programming language that
was being used for DPPX/370.

» It provided little support to debug at an assembler
code level.

These shortcomings were unfortunate since the other
features provided by SLD would increase debugging
productivity considerably.

In the end, it was decided to combine some functions
of sLD with new debugging functions written by our
own tools department. This would provide, among
other things, the necessary support for debugging
non-CMS$ programs (our most critical requirement)
and the ability to debug assembler code. It would
also provide the ability to test from one’s own office
terminal, eliminating any dependence on actual
ES/9370 hardware in the early stages of testing.

This special implementation of SLD was the tool
called Common Verification Tool (CVT), an in-house
tool not shipped with the DPPX/370 licensed program.

cvt provided debugging capabilities which were rich
in function and easy to use. The primary functions
provided by cvT include:

~ Pausing at specific program locations through the
use of breakpoints

& Interrupting program execution or wait states

» Displaying or altering the contents of storage,
registers, and the pSw

« Stepping through machine instructions

~ Logging the debug session and scrolling the session
listing

&~ Repeating command sequences

In addition to these functions, a certain amount of
additional debug capability is available by using any
of several cp commands. These CP commands can
be used simultaneously with cvT, thus giving the
tester greater capability for addressing a given prob-
lem.

The structure of CVT requires an interface to Virtual
Machine Communication Facility (VMCF), a com-

BOEHM, PALMIOTTI, AND ZNGARETTI 131

ponent of the vM/sp operating system which permits
information exchange between vM userIDs. In addi-
tion, code had to be added to three areas in the
DPPX/370 supervisor to accommodate the needs of
cvt for initialization, program and external interrupt
handling, and the program contents of system stor-
age.

Independent component tests

Philosophy. Independent component test (ICT) tests
all the components in a system from an external
perspective. ICT looks at each component in the
system and tries to use it or break it as a customer
would. Independent means that the people planning
and executing the tests are totally unrelated to the
component being tested. This independence gives
the benefit of simulating a customer environment.
The tester really becomes a customer and must use
customer-like documentation to learn and use the
functions provided by a component.

ICT usually has two parts which begin after develop-
ment has completed its Fv tests: a regression test
which verifies that the system has not regressed since
the last release and a new function test which verifies
that the new function added to the system works
according to the documentation that will be provided
to the customer.

Risks and concerns. ICT addressed the primary con-
cerns, from a testing perspective, with porting code
from the 8100 to the ES/9370:

1. Would the code generated by the new compiler
perform the same function on the E$/9370 that 1t
did on the §100?

2. Would the performance of the system increase
when going from 8100 architecture to ES/9370
architecture?

3. Could customers migrate their applications easily
from 8100s to ES/9370s?

4. Would timing and stress-related problems show
up because of the difference between the ES/9370
and 8100 architectures?

Types of tests. The 1cT effort, like the development
effort, was accomplished in seven stages and the
function of the I1CT group actually went beyond a
typical independent component test. The ICT group
was responsible for performing the following tests.

During stages 1 through 3, there was no terminal
support in the system and ICT could not test the

132 BOEHM, PALMOTT, AND ZINGARETT!

system like an external user. To avoid wasting time,
and to achieve as much test coverage as posstble, I1CT

To avoid wasting time, and to
achieve as much test coverage as
possible, ICT carried out
stage validation tests.

carried out stage validation (sv) tests. The emphasis
of the Sv test was to test system support for customer
applications as early as possible.

Sv tests were performed by putting hooks and stops
in system code and simulating multiple-user envi-
ronments. System dumps were taken to verify cor-
rect operation.

Within each stage were multiple spins. Spin valida-
tion tests were simply a “bucket” or subset of test
cases, that had successfully completed on previous
spins. When a new spin was made available, this
bucket was executed to ensure that the system had
not regressed. After new tests were completed suc-
cessfully, they were added to the test bucket.

As development progressed through the stages, com-
piler problems were discovered and fixed. The only
way to really ensure that these fixes did not cause
problems with previously compiled code was to to-
tally recompile the code in the system to that point.
Once the system was recompiled on the “fixed”
compiler, the system was handed over to the iCT
team to run compiler regression (CR) tests.

The CR test bucket was created by doing an analysis
of the available components and determining the
kind of coding techniques that were used to develop
them. The most “compiler stressful” components
were selected and a subset of the ICT test cases was
re-executed with the “fixed” compiler. Once these
tests completed successfully, the “fixed” compiler
became the “only” compiler and the porting effort
continued.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

As the stages progressed, more and more compo-
nents became available to ICT. After a component
was “ICTed,” it became part of a multiple components
in stress (Mcs) test. Buckets of automated tests were
created by using many components together in the
most stressful situation that could be created. These
buckets were like a stressful regression test and were
used extensively in stage 7 after all the code was in
the system. MCS buckets were used as availability
tests and many times ran over the weekends to
ensure that the system was stable and could remain
operational for extended periods of time. MCS tests
will continue to be valuable regression tests for future
releases.

Planning for ICT. The “test group” of three senior-
level DPPX programmers was responsible for devel-
oping the basic, high-level 1CT plan. Other experi-
enced programmers were frequently consulted to
review and discuss the preliminary high-level plans.

The first step in determining how to test DPPX/370
was to divide the entire system into logical areas of
test. These areas were called environments and 15
emerged. It is not necessary to discuss all 15, but
some examples follow:

s coBoL to verify the COBOL instruction set

s Program prep to verify the components that a
customer would need to prepare and execute a
program, such as the editor, interactive map defi-
nition (IMD), format management, various com-
pilers, and the linkage editor

s Problem determination to verify trace facilities,
dump facilities, error reporting, and summariza-
tion

s Connectivity to verify all device support that was
announced, such as displays, printers, controllers,
modems, and pass-through operating systems

s Communications to verify the ability of DPPX/370
to communicate with peer systems and host ap-
plications

s Migration to verify the commands, tools, and
procedures that customers need to migrate their
applications from DPPX/SP t0 DPPX/370

s Performance to verify that the performance of the
system was improved over the 8100

The components to be tested in each environment
were mapped against the stage when the component
would be available, and then a schedule of 1CT start
times for each environment was created. Based on
when the environment test could start and an esti-
mate of how large the environment would be, a

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1930

planning phase was projected to precede each envi-
ronment test. During the planning phase, detailed
test plans and test cases were written for execution
in the test phase.

Because of tight schedules, as many redundancies as
possible had to be removed from the test plan. Tests
needed to be prioritized to distinguish those tests
that needed to be executed from those that should
be executed if time and resources allowed. A test
approach review (TAR) meeting was held for each
component in the system. Each TAR meeting was
attended by at least one member of the test group,
the lead developer for the component, and others
who were familiar with the component. Many times
the others were from the National Service Division
(NSD) or management; they might be people who
had previously left the area or anyone who might be
considered an expert.

Preparation for the TAR meeting involved someone
dividing the component into its functions, subfunc-
tions, associated commands, command operands,
possible error conditions, and PD tools. At the TAR
meeting, the preparation was reviewed and dis-
cussed. The discussion involved:

¢ What are the risks with porting this component?

* How much of the code is “new” versus “recom-
piled?”

s Where were the problems in the past?

» What items were “implicitly” tested just by normal
system execution?

¢ What items would be sufficiently tested by func-
tional verification?

¢ What items needed explicit ICT tests?

¢ Who (what group) would write the explicit tests?

* What items would get no test at all because it was
not deemed necessary?

« Of the items that needed explicit tests, were there
any existing test cases, and, if so, where are they?

¢ What should 1cT do to stress the component?

s Are there any available “regression” tests for the
component?

¢ In what ICT environment should the various items
be tested?

s How large is the icT effort for this component?

¢ When will the component be available to ICT and
how much of it will be available at that time?

From the TAR meeting came an understanding of
what work was needed to be done, who would be
responsible for the work, and when the work needed
to be completed. The basic ICT test plan was created
from these meetings.

BOEHM, PALMIOTTI, AND ZNGARETTI 133

134

Executing and controlling the test effort

As the TAR meetings progressed, a new library struc-
ture called Test Library (TL) was developed that
could hold test cases, test plans, test programs, and
the results of the TAR meetings. The TL also included
automated tools, which could be used to create “test
packages” for each of the 15 environments.

A test team and test team leader were assigned to
each environment. During the planning phase, the
team leaders had several responsibilities: find and
merge existing test cases into the environment’s test

The team leader also worked with
the test coordinator to setup a
tracking mechanism that kept
management informed of the
progress of the test effort.

package; automate and modify existing test cases
where necessary; create test cases that were needed
but did not exist; coordinate the planning and testing
of an environment.

When the execution phase began, the team leader
coordinated the test effort by ensuring that any cor-
rections made to the test cases or programs during
execution were promoted back into the test package
on the TL. The team leader also worked with the test
coordinator to set up a tracking mechanism that
kept management informed of the progress of the
test effort. The test team’s responsibility was to run
all the test cases associated with an environment and
ensure they completed successfully.

In addition to the test teams and test team leaders,
the 1CcT group had one ICT coordinator. The test
coordinator’s responsibility was to understand each
of the 15 test environments and their unique require-
ments. Some environments needed special hardware,
others needed special skills. Some needed special
tools and special configurations. It was the iCT co-
ordinator who was the liaison among the different

BOEHM, PALMIOTTI, AND ZINGARETTI

departments in the organization, ensuring that the
special items were available when a test environment
was to begin.

While being actively involved with the planning and
execution of each of the environments, the test co-
ordinator was also responsible for tracking and re-
porting the progress of the test effort. During the
planning phase, the test coordinator would meet with
the team leader of an environment to determine
what areas are to be tested, who was to perform the
tests, and how long it would take. This information
was tracked graphically by stage and environment.

Measuring and evaluating the results. Problem
tracking and analysis report (PTAR) status meetings
were held frequently with management, and the
PTARs were assessed in terms of their severity and
impact on the testing effort. PTARs that were imped-
ing test progress were given highest priority for being
fixed. These meetings were very successful for in-
forming management where the emphasis was
needed to allow the test to continue smoothly.

After ICT was complete, an assessment of each com-
ponent was made based on the number of problems
found and the amount of code in the component.
When assessment revealed a weak component, rec-
ommendations for extended testing were made to
the system test group.

System test

The previous approach to DPPX system test. In the
days of DPPX/sSP, the goal of system test was to test
the operating system by running in an environment
similar to a customer environment. In effect, system
test was the first customer. The objectives used to
meet this goal were as follows:

1. Combine and test all components as a total sys-
tem.

2. Test the system the way a customer would use it.

3. Put the entire system under stress.

4. Determine and approach system limits.

To meet these objectives customer systems were
obtained that included object code, databases, and
customer-developed command lists (CLISTs). These
systems were used quite extensively by the system
test group in conjunction with “in-house” applica-
tions that testers wrote to test areas not covered by
the customer applications, as well as new functions.
As new DPPX releases were developed, the customer

1BM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

applications were less effective for testing, since they
only addressed old functions.

Since the system test group did not have the source
code for these customer applications, they could not
be modified to take advantage of the new functions
in the system. Also if an error occurred in the appli-

When a failure was introduced, the
system error log, operator log,
and host NetView facility were
checked to verify that accurate

messages were logged.

cation, it was virtually impossible to locate and fix
the problem. This also caused problems with DPPX
problem determination, since the testers were never
sure exactly what the application was doing when
the system error occurred. Many system test envi-
ronments (STEs) had to be written to test specific
functions and areas of the system. By the fourth
release of DPPX/SP, system test had become very
component-oriented rather than system-oriented.

The total systems approach. Today’s method, the
total systems approach, is broken up into three parts:
problem determination (PD), contracted efforts, and
end-user systems (EUS).

The problem determination part of system test had
basically remained the same from 8100 testing to
ES/9370. Tests were designed to introduce permanent
and intermittent hardware and software errors to
determine the capability of DPPX/370 to recognize,
properly diagnose, and report the error. Hardware
bug points were obtained from the Endicott ES/9370
engineers. These bug points were the physical address
of pins on cards within the ES/9370 processor which,
when grounded, would simulate an actual card fail-
ure. These failures included memory errors, adapter
errors, and processor errors. When a failure was
introduced, the system error log, operator log, and
host NetView™ facility were checked to verify that
accurate messages were logged. Effectiveness testing

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

was included as part of the PD testing. In these test
cases a person who was computer literate, but not
DPPX literate, was asked to perform basic tasks on
the computer. Certain errors would be introduced
into the system as the subject was executing these
tasks. The subject was timed to see how long it took
to identify the exact cause of the problem. Only the
messages in the operator and error logs, NetView,
and the ppPX support manuals could be used for
problem determination. A test was marked success-
ful when a problem was identified, and in some cases
resolved, within 30 minutes,

Certain isolated test efforts were contracted outside
of IBM. Some communications tests were also run at
1BM locations in Germany and Japan. The test plans
were written by the actual testers and were reviewed
and approved by system test members before the
start of testing. A system test department member
monitored all of these tests and reported at the
weekly staff meetings. The test locations were se-
lected based on their knowledge of the function,
their interest (which stemmed from customer re-
quirements), and their test bed facilities. For exam-
ple, X.25 testing was performed in Germany, since
our German customers have a strong requirement
for X.25 communications support.

The third part was the key to the success of this
system test effort. Current customer system environ-
ments were used to simulate, in our lab, the daily
activities of the customer. Using these systems al-
lowed the testing of migration, usability, and equiv-
alence.

The EUS test was broken up into six phases: (1) obtain
a customer system, (2) learn, combine, and promote,
(3) migrate, (4) execute, (5) expand, and (6) test
system under stress and perform unstructured tests.

The first two represented the preparation for system
test, whereas the remaining four were actual testing
phases.

Preparation. System test’s goal and objectives were
not changed with this new approach, but the meth-
ods for meeting the objectives were. In order to meet
the objectives more effectively, it was necessary to
find the best customer systems available to use in
the test.

The general requirements of each customer were
determined before approaching them for testing. The
department members and management identified
the following requirements.

BOEHM, PALMIOTTI, AND ZNGARETTI 135

DPPX application source code. It was crucial that the
group receive the application source code for all parts
of the application that were not written in Cross
Systems Product. All cOBOL had to be run through
the preprocessor and compiler, and any other appli-
cations would have to be rewritten (for example,
PL/DS and assembler applications).

CLISTs, panels, command facility extension (CFE)
scripts, and user ID definitions. All parts of the sys-
tem, written or modified by the customer, were
necessary to run their application.

DPPX databases and transactions. Test data and the
customer-defined transactions were crucial to exe-
cuting the complete customer application.

Application documentation. We felt that any infor-
mation the customer could supply us in the form of
data-logic flow diagrams and manuals would help us
learn how the application runs and how to run the
application.

In order to duplicate the operating environment
completely, it was important to have host source
code that communicates with DPPX, host databases
and transactions, and host application documenta-
tion. However, due to the complexity and hardware
dependencies of the host applications, it was virtually
impossible to obtain this material.

With the requirements known, it was decided that
obtaining three customer systems would be sufficient
for the system test effort.

Applications were selected from three different busi-
ness environments (an auto parts inventory system,
an insurance claims processing system, and a plant
maintenance and control system) which, when com-
bined, would use most of the components of the
operating system. It was also a requirement that at
least one customer application be written primarily
in COBOL and at least one be written primarily in
Cross System Product.

Once the three customers and 1BM had come to an
agreement concerning the terms and conditions of
the project, contracts were written up and signed,
and key people from the system test department
visited the customer sites to learn the system and
understand the running environment.

Once the customer application arrived it was im-
mediately loaded on an 8100 to verify that all the

136 BOEHM. PALMIOTTI, AND ZINGARETTI

parts were present. The department was divided into
three teams, each consisting of one senior depart-
ment member and one junior member. Each team
was responsible for a customer system, and the senior
members were jointly responsible for creating a
fourth combined system which consisted of all three
customer applications.

The team members spent approximately one month
familiarizing themselves with their customer system.
They documented procedures for starting and run-
ning the application. These documents, along with
the documentation received from the customer, were
used to create Teleprocessing Network Simulator
(TPNS) scripts that would be used for multithread
and stress testing. This familiarization period was
also important for planning which parts of the system
would be migrated to the ES/9370.

Test Library (TL) was used for the archiving of the
customer application parts. The tool resided on a
virtual memory (VM) system. The testers scanned the
customer system and transferred the customer-spe-
cific parts to TL. All parts likely to cause a problem
when merged into the combined system were docu-
mented.

An installation process was developed for each sys-
tem to simplify the installation of a customer system
from TL to an 8100. This installation process con-
sisted of running CLISTs that created all of the data-
bases, and set up environments and device defini-
tions. Installation instructions were written to guide
the tester, and any specific hardware and software
requirements were identified.

The final phase of system test preparation was to
preprocess and compile the COBOL applications, and
perform any needed rewrite of other applications.
The Mvs COBOL 11 preprocessor and compiler were
used in this phase. This proved to be the most tedious
and time-consuming task. It was found that the old
DPPX COBOL compiler was not as strict about adher-
ing to the standard COBOL programming rules. In
many cases programs that compiled without error
with the DPPX compiler were not compiling with the
MVS COBOL compiler. Work had to be done to modify
the DPPX COBOL applications. Applications written
in other languages such as bPPX Assembler and PL/DS
also had to be rewritten in either coBoL, Cross
System Product, or System/370 Assembler. In two
cases the customer sent a team of their developers to
aid in the rewriting of the applications. This proved
mutually beneficial for obvious reasons. Once this

IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1980

work was completed, both the 8100 applications and
the rewritten ES/9370 applications were transferred to
TL for archiving. We were now ready to start system
test.

System test activity. The first phase of system test
was migration. Using DPPx/370 Migration: Planning,
each team determined the best method for migrating
its system. Some modifications to the team’s plans
had to be made to verify that all three migration
methods were used (Distributed Systems Executive,
stand-alone DASD dump/restore, and Peer Data
Transfer). The migration tool was loaded on the

The rewritten COBOL Il programs
were compiled on MVS and
transferred down to the ES/9370.

8100, and the teams used DPpx/370 Migration:
Procedures’ to execute the migration process. Tim-
ings were taken throughout this migration phase to
determine how much planning and actual migration
time was needed for these large systems.

The rewritten COBOL 11 programs were compiled on
Mvs and transferred down to the ES/9370. System/370
Assembler code was assembled and transferred to
the ES/9370 systems. A subset of the COBOL programs
was also preprocessed and compiled on the DPPX/370
system.

Finally, a visual inspection of the system was per-
formed to verify that no parts were missing, and the
contents of the 8100 databases were compared with
the corresponding ES/9370 databases to verify that no
corruption had taken place during the migration.
Three methods were used to compare the databases:
(1) if the databases had a record length less than 133,
they could be printed by DPPX and compared, (2) if
they were longer than 132, they were transferred to
vM and compared, or (3) if the customer application
generated detailed reports from the database con-
tents, the 8100 and ES/9370 reports were compared.

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

With the system now completely migrated, it was
time to begin running the customer applications on
the ES/9370. This phase was divided into three basic
parts. First, the application was tested live by the test
team. In some cases this uncovered run-time errors
in the coBoL modules. For the most part, however,
the live testing proved that the migration was ex-
tremely successful. Second, the TPNS script was run
using a single TPNS user to verify the network path
and perform some performance tests. The output of
these tests was compared with that of the same run
on the 8100 system. Third, the number of TPNS users
was increased until the system was running at least
70 percent CPU utilization. At this time more per-
formance tests were run and compared with 8100
tests.

Errors were introduced during TPNS runs to deter-
mine the effect of hardware and software (application
software) errors on the DPPX/370 system while run-
ning the customer applications. These errors in-
cluded disk and SDLC adapter errors, stopping TPNS
before completion (to simulate a communication
break outside the ES/9370), stopping and restarting
environments, submitting looping applications to
batch processing, and powering off and on live de-
vices defined to the system.

Once the team was satisfied with how the application
was running, the team entered the next phase of
system test, to expand the system beyond its current
capabilities, The team determined which functions,
or components, were not currently being executed
by the system. They then modified the system to
incorporate these functions. Basically, these func-
tions were those introduced in Release 4 of DPPX/SP
and DPPX/370 that the customer was not implement-
ing. All customer systems were at DPPX Release 3
level. One customer system was brought to a Release
4 level upon arrival.

The expanded system was then rerun, starting with
the customer application, and starting the new com-
ponents one at a time until the entire expanded
system was running. The objective was to push the
processor to approximately 90 percent utilization
and continue under that stress for long periods of
time without IPLing.

At the same time, the senior team members were
combining the three customer applications on a
single system to run a CPU and I/O intensive stress
test for an extended length (at least 65 continuous
hours). Where necessary, CLISTs and in-house devel-

BOEHM, PALMIOTTI, AND ZNGARETT 137

oped applications were added to stress the system
further. Due to the size and complexity of the new
system, it was impossible to run an equivalent system
on an 8100 and get performance comparisons; how-
ever, some performance tests were run. Also, time
was spent tuning the combined system to maximize
execution time and reduce overhead.

The final phase of system test was called the “un-
structured test period.” After all the test cases had
been executed and all high-severity problems had
either been fixed or a plan was in place to get them
fixed, all department members converged on the
combined system to rerun any tests they felt uncov-
ered the most problems, or to run any new tests that
they were not able to use during the earlier phases
of system test. This has proved in the past to be quite
beneficial, shaking out some smaller problems before
the system goes out to the customer.

Once system test was completed, an exit review
meeting was held by both system test and develop-
ment managers to confirm that the test exit criteria
had been met and all outstanding problems had a
plan in place to be resolved.

Benefits of the new approach

The total systems approach has proved to be bene-
ficial in many ways.

Working with the customer created an atmosphere
of technical exchange. Because of the information
passed to the customer about the migration experi-
ences with their system, the customer was able to
start planning for migration earlier. In many cases
the testers had to work with the customer’s technical
staff to resolve problems.

The department members gained a better under-
standing of how the customer actually uses the DPPX
system. In general, the development and test groups
are isolated from the customer; they really do not
understand the degree of complexity of the customer
applications and how these applications interact with
the DPPX system. By gaining this understanding, they
can better develop and test DPPX.

Prior to this test effort the system test department
members had single areas of expertise where they
would spend most of their time testing. Through this
new method, the testers learned more about the
overall system than would otherwise have been pos-
sible in the same amount of time.

138 BOEHM, PALMIOTTI, AND ZINGARETT)

Since the application source code and documenta-
tion was available, it was much easier to diagnose a
problem and separate system problems from appli-
cation errors. Once it was understood in detail how
the applications functioned, the time needed to ob-
tain the proper data for development to fix a system
problem was reduced significantly. If a problem
needed to be reproduced, the tester was more famil-
iar with what was going on at the time of the error
and was more likely to be able to reproduce the error
and take less time to do so.

The total systems approach proved
to be a great improvement over the
old method of system test.

More components were tested by fewer people earlier
in the test cycle than was possible using the old
method. System test concentrated on a complete
system throughout the test period rather than testing
individual components.

Fewer systems were needed to run this test, com-
pared with the old method, and in general there was
a constant high degree of machine utilization during
the test period. The system was under stress early in
the test cycle.

The combined customer system functioned as an
excellent vehicle for regression testing and fix pack-
age testing. Since the combined customer system
exercises almost every component in the DPPX/370
system, there is no need to spend weeks sifting
through old test plans to create a regression test. It
also stressed the system in a more realistic manner
by having a large number of simulated users execute
real customer applications.

Concerns with the new approach. There were two
major concerns that arose from management about
this new approach. There was a serious concern that
the test group may inadvertently become concerned
with the customer applications rather than with the

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1980

system itself. Management felt that it was possible
that the testers would spend more time trying to
understand what the application was doing rather
than how the system was functioning under the
application. To avoid this, all system test plans were
inspected by peers, management, and key devel-
opers. Also, weekly status of tests completed and
planned for the following week was provided to
management.

There was also a concern that error testing would
not be performed to the degree it was done in the
past. This concern was addressed by having the
testers document in their test plans all errors they
planned on introducing into the system. Thus cov-
erage could easily be evaluated. The problem deter-
mination test, which introduced a variety of hard-
ware and software errors, was also documented and
inspected.

Directions. The total systems approach proved to be
a great improvement over the old method of system
test. Many problems that were not found in com-
ponent testing were uncovered and a number of
customer-application-dependent problems were
found. These problems would not have been found
under the old method of testing. DPPX/370 was ex-
posed to a customer system environment from the
start of system test. This provided us with a stable
system earlier in the development cycle.

We are exploring other opportunities which will
involve the customer even more in the development
cycle, including involving the customer in more test
efforts and possibly development and design efforts.

Summary

The development approach taken by the Distributed
Systems Programming (DSP) organization was key to
the successful port of DPPX/SP to DPPX/370 for many
reasons. Programmer productivity was optimized by
staging the development activities, by having a test
bed before the actual hardware was available, and by
providing the developers with tools to simplify de-
bugging. A stable DPPX/370 system was attained very
early in the development cycle by testing DPPX/370
at every stage rather than waiting for all development
activity to complete. The component tests were ex-
ecuted by testers other than the component devel-
opers. This exposed documentation and usability
problems, in addition to functional errors, which
otherwise may not have been found. The use of
customer application environments in system test

IBM SYSTEMS JOURNAL, VOL 29, NO 1, 1990

permitted greater and more realistic test coverage
and required fewer resources than normal.

The DsP organization is continually investigating
new ways to improve its approach to systems devel-
opment.

Acknowledgments

This paper, a summary of information documented
in a series of internal technical reports, is due in no
small part to the contributions of a number of our
colleagues. Their work has provided a wealth of
information from which to draw. We wish to ac-
knowledge the work of Bob Abraham, Lou Fitzpat-
rick, John Forsythe, Garth Godfrey, and Brian
Goadrich.

NetView is a trademark of International Business Machines Cor-
poration.

Cited references

1. R. Abraham and B. F. Goodrich, “Porting DPPX from the
IBM 8100 to the IBM ES/9370: Feasibility and Overview,”
IBM Systems Journal 29, No. 1, 90-105 (1990, this issue).

2. DPPX/370 Migration: Planning, GC23-0641, IBM Corpora-
tion; available through IBM branch offices.

3. DPPX/370 Migration: Procedures, GC23-0669, IBM Corpora-
tion; available through IBM branch offices.

Gerald E. Boehm /BM Kingston Programming Laboratory,
Neighborhood Road, Kingston, New York 1240]1. Mr. Boehm is a
staff programmer in the Distributed Systems Build, Release, and
Tools department in IBM’s Kingston Programming Laboratory.
He joined IBM in 1973 as a junior programmer in the Distributed
Computing Facility project in Poughkeepsie, New York. In 1977
he transferred to Kingston and joined the DPPX development
project. He has participated in design, code, test, and inspection
activities for the DPPX linkage editor and stand-alone in-
put/output processor. Mr. Boehm accepted a 19-month assign-
ment in Sweden to help develop procedures, tools, and test cases
for the DPPX/APL project. Since 1983 he has been involved with
the design and implementation of automated procedures to im-
prove various DPPX development activities. He earned his B.S.
in physics from St. Francis College, Loretto, Pennsylvania, and an
M.S. in computer science from Pennsylvania State University. He
received training as a computer system operator while in the
United States Air Force.

Arthur M. Paimiotti /BM Kingston Programming Laboratory,
Neighborhood Road, Kingston, New York 12401. Mr. Palmiotti is
a project programmer in the Distributed Systems Test department
in IBM’s Kingston Programming Laboratory. He joined IBM in
1984 as a junior associate programmer and concentrated his efforts
on testing device attachment and support. Since 1985 he has been
an active member of the DPPX 1/O council which determines

BOEHM, PALMIOTTI, AND ZNGARETTH 139

what devices can be supported and identifies development and test
requirements. Other responsibilities include system test planning,
stress testing, and customer system testing. Mr. Palmiotti received
his B.S. in mathematics and computer science at the State Uni-
versity of New York at New Paltz in 1983.

David P. Zingaretti /BM Kingston Programming Laboratory,
Neighborhood Road, Kingston, New York 12401. Mr. Zingaretti is
an advisory programmer in the Distributed Systems Programming
Development department in IBM’s Kingston Programming Lab-
oratory. He joined IBM in 1981 to work in DPPX communications
networking. From 1981 through 1986 he developed DPPX oper-
ating system enhancements with primary emphasis on the com-
mand facilities, environment management, DASD queue and
X.25 components. From 1986 to 1988 he was responsible for
porting various DPPX components from the 8100 Information
System to the 9370 Information System. Mr. Zingaretti earned his
B.S. in accounting from King’s College, Wilkes-Barre, Pennsyl-
vania, in 1975 and an M.B.A. in information systems technology
from Marywood College, Scranton, Pennsylvania, in 1983.

Reprint Order No. G321-5390.

140 BOEHM, PALMIOTTI, AND ZINGARETTI IBM SYSTEMS JOURNAL, VOL 28, NO 1, 1930

