Advanced Information
Management (AIM):
Advanced database
technology for integrated
applications

The Advanced Information Management (AIM) project
is currently one of the main activities at the IBM Scien-
tific Center in Heidelberg. The main purpose of the
project is to understand the database requirements
and respective solutions for advanced integrated appli-
cations such as computer-integrated manufacturing
and computer-integrated office. These application
areas require an advanced database technology which
is able to manage a large variety of data of various
types in a consistent and efficient way. The underlying
database technology should support not only simple
numbers and simple tables used in business adminis-
tration, but also large complex structured objects, in-
cluding text, image, and voice data, in a uniform way.
This paper describes the background, goals, and ac-
complishments of the AIM project. It also provides an
overview of the design goals, the implementation, and
the underlying concepts of AIM-P, an experimental da-
tabase management system under development in the
AIM project.

dvanced application areas require an advanced

database technology which is able to manage a
large variety of data of various types. By representing
these types of data as “naturally” as possible from
an application point of view, complex mappings
from the data representation used in the application
program to the data representation offered at the
database interface are avoided. This point is impor-
tant if database technology is to become a productiv-

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

by P. Dadam
V. Linnemann

ity aid and not just an integration tool for application
programming. Which representation is natural may
be application-dependent. A system for computer-
aided design (CAD) may use object-oriented data, e.g.,
a computer board x and its related (structured) ob-
jects, and a computer board y and its related objects,
whereas a system for computer-aided manufacturing
(caM) may use data-oriented data, e.g., the type and
number of chips used across all computer boards
regardless of which objects these chips belong to.
This means, in order to be adequate for computer-
integrated manufacturing (CiM), database technology
needs to support different views for one and the same
type of data or object as well as to support a large
variety of different data types in a uniform way.

Today’s database management systems have been
designed with business administration applications
in mind. They are not able to adequately support
application examples such as those outlined above
with respect to data model and efficiency aspects. As

© Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

DADAM AND LINNEMANN 661

Figure 1 Current and desired scenario. Note, one type of DBMS is meant in (B), not necessarily one physical database

containing all the data.

l ISOLATED APPLICATIONS

LD EE

- -~

COMPUTER

TEXT DATA FORMATTED OFFICE ENGINEERING AND GEOGRAPHICAL AND
DATA DATA SCIENTIFIC DATA PICTORIAL DATA
¢ D
3L @pst

-

APPLICATION APPLICATION APPLICATION APPLICATION APPLICATION

PROGRAMS PROGRAMS PROGRAMS PROGRAMS PROGRAMS
OFFICE SPECIAL SPECIAL
SYSTEM SYSTEM SYSTEM

a consequence, a large variety of special-purpose data
management or file systems are currently in use for
each major application area (Figure 1A). These sys-
tems differ in functionality, data representation (data
model, interfaces), real-time behavior (immediate
update versus batch update), transaction manage-
ment, recovery, and security aspects, thus making
the required integration of applications a difficult
task. Powerful database management systems hand-
ling data across the different application areas in a

662 DADAM AND LINNEMANN

uniform and consistent way could improve this sit-
uation (Figure 1B). Very likely no single type of
system will adequately support all application types;
however, a goal would be to cover 80 to 90 percent
of the main application types.

Currently, the area of extended database technology
is quite heavily investigated. In the following, we
review some of the work reported in the literature
that has influenced this project.

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

[| ARPLICATIONS
TEXT DATA FORMATTED OFFICE ENGINEERING AND GEOGRAPHICAL AND
DATA DATA SCIENTIFIC DATA PICTORIAL DATA
X Y

(L e/

IL
[

I
|

Qs

-O

1L
f

COMPUTER /
APPLICATION APPLICATION APPLICATION APPLICATION APPLICATION econ
PROGRAMS PROGRAMS PROGRAMS PROGRAMS PROGRAMS

The xsQL project’ introduced the term complex ob-
Ject into the database world. Using special attributes
(composed_of, component_of), hierarchical struc-
tures can be defined using a flat relational data
model. At run time, these special attributes are used
for collecting directly the tuples that make up a
certain complex object to avoid unnecessary join
operations. As part of the xsQL application program
interface, a dedicated main memory data structure

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

is used to pass the complex object’s tupzle structure
and content to the application program.

Postgres supports procedures consisting of Postquel
statements, as well as procedures written in a con-
ventional programming language such as LISP or
C.>” In this approach, attributes of database tables
may be procedure-valued, i.e., an attribute value
may be a procedure written in Postquel or C. When-

DADAM AND LNNEMANN 663

ever the attribute is accessed, the corresponding pro-
cedure is called. Moreover, the concept of abstract
data types is supported by Postgres, but only as a
low-level representation of an unstructured storage
area. Only the length of the area is given; there is no
strong typing as far as the representation of an ab-
stract data type is concerned. This method is also
used for passing parameters from Postgres to func-
tions written in Lisp or C.°

pROBE"’ distinguishes between entities and func-
tions. Access to the attribute values of an entity is
only provided by invoking the corresponding func-
tion. Functions can be provided by the system or be
user-defined.

The Starburst project'®'' investigates how to design
the database management system (DBMS) architec-
ture so that storage alternatives for relations and
foreign indexes can be supported.

Genesis” and ExoDus” are, in essence, software
engineering tools for configuring a DBMS according
to a given specification. GENESIS relies on database
components whose interfaces have been standard-
ized in such a way that the components become
exchangeable. One goal of EXODUS is to provide
kernel pDBMS facilities and software tools for the
partial generation of application-specific DBMSs. Un-
der the assumption that in the future there will exist
large libraries of application-oriented data types and
respective functions which can be optionally added
to a database kernel (customization), tools such as
GENESIS or EXODUS will be necessary to configure
these systems.

The DASDBS project14 provides a database kernel on
top of which different application-oriented database
interfaces can be provided. Support of nested rela-
tions, nested transactions, query optimization (sup-
porting flat relational views on nested database re-
lations), extensibility, and architectural aspects are
treated in this project.

The PrIMA"® project with its underlying data model
is heavily influenced by the molecular objects ap-
proach.'® It has an sQL-like data manipulation lan-
guage which supports references to model recursive
or arbitrary network-like data structures. Special em-
phasis is given to architectural issues and the proc-
essing of recursive queries.

More information can be found in the literature' "
on projects dealing with object-oriented database

664 DADAM AND LINNEMANN

technology, as well as descriptions of projects’™ >

dealing with the foundations of (extended) relational
technology.

This paper describes the Advanced Information
Management (AIM) project which is currently one of
the main activities at the 1BM Scientific Center in
Heidelberg. The main purpose of the AIM project is
to understand how database technology can serve as
a useful integration tool (see Figure 1B) for integrated
applications such as cIM and computer-integrated
office (c10). This paper also describes the function
and architecture of an experimental database man-
agement system based on the extended NF? (Non
First Normal Form) data model, a relational data
model.

The first section of this paper outlines the back-
ground and goals of the AIM project, followed by a
section that describes the database language and the
underlying data model. Additional sections: show
how the database language can be extended by user-
defined data types and functions; describe the appli-
cation program interface (aP1) that allows the user
to use the system from a programming language;
and detail the system architecture. The paper con-
cludes with a summary and an outlook for future
work.

The Advanced Information Management project

The AIM project began in 1979, combining relational
technology® with a new text indexing technique.”* %
Looking at office-oriented applications, it was dis-
covered that the pure relational data model, even
when complemented with text search capabilities,
was not suitable for modeling complex data objects
such as books, office documents, and forms. On the
other hand, relational database technology-—with its
flexibility for formulating database queries, structur-
ing the results, defining alternative views over stored
tables, and other features—clearly was the direction
to follow. The desire to support structured objects in
a relational way finally led (independent from other
groups like VER8027) to the idea of nested relations.
They were called NF? Relations because the First
Normal Form which requires that attribute values
have to be atomic™ had been dropped. Clearly, the
most critical point in this case was whether this
extended relational model could be put on a theo-
retical basis as equally sound as the original one. At
first the project concentrated primarily on the theo-
retical issues of this data model, especially on its
relationship to the relational design theory (func-

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

tional and multivalued dependencies). This led to
scientific contributions to the theory of nested rela-
tions.” ™ In parallel to this more fundamental re-
search work, conceptual work was begun that aimed
at the development of an extended sQL-like database
language able to deal with the extended relational
data model at the user’s level.”>

In 1982 and 1983 the issue of integration of appli-

cations across formerly isolated application areas, as
outlined earlier in the paper, and the understanding

Complex objects should not be
treated as special cases.

of the related database requirements and problems
became important. It was therefore decided to redi-
rect the research and development activities to look
at database-related issues on a broader scope. The
main objective was to understand the database re-
quirements and how possible solutions for the related
problems could be developed using an experimental
type of DBMS, the Advanced Information Manage-
ment Prototype, called AIM-P.

The key concept to be evaluated using the experi-
mental database management system was the NF2
data model because of its capability to support hier-
archical structures and tables in a uniform, relational
way. It also has a powerful query capability to treat
the same type of data in both an object-oriented way
and a data-oriented way. However, instead of using
the pure NF? data model, an extended version sup-
porting lists and sets in a more general way was used
and is referred to as the extended Nr? data model.”
Other database-related aspects were studied in addi-
tion to the data model, by using this prototype
model. The goals for the overall system design and
the related research and development effort were
characterized as follows.

Architecture. The pDBMS architecture should support
a workstation—server environment. That is, a central
database server should maintain the shared data
while the actual processing of database objects (data

BM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

or object creation and manipulation) should be per-
formed at workstations (user application front ends).
Special attention should be given to provide ade-
quate data exchange mechanisms between the server
and the workstation in order to reduce the commu-
nication overhead, especially in cases where large
complex objects are involved. In other words, the
overall architecture should support efficient cooper-
ative processing of complex objects in a workstation—-
server environment.

Database language and data model. The database
server should provide a homogeneous view of all the
data (from flat relations to complex objects) to serve
as the integration tool. That is, complex objects
should not be treated as special cases but should be
an integral part of the data model. All, or nearly all,
operations defined for flat data should be applicable
to complex object data as well. The server should
have a relational-like data model with set-oriented,
descriptive query capabilities to reduce the commu-
nication overhead between server and workstation.
The workstation has to use this interface when re-
questing data. The interface that is offered to the
user or application program at the workstation
should be application-dependent.

Extensibility. In the long term, database manage-
ment systems should become more “customizable”
according to the applications’ (users’) needs. Re-
quired functions, such as filter operations to select
the correct objects from the database server, shouid
become part of the query language of the server
rather than being part of the application program of
the workstation which performs the data selection
only after all of the data have already been transmit-
ted. As a first step in this direction, user-defined data
types and functions should be supported by the
database server.

Heidelberg Data Base Language (HDBL)

The following description concentrates on the AIM-P
data model and the corresponding database lan-
guage. Only a brief discussion of this Heidelberg
Data Base Language (HDBL) is given here. A more
comprehensive treatment can be found in the refer-
enced literature.

Data model. The data model supported by AIM-P is
an object-oriented generalization of NF? respectively
nested relations. In the beginning, the AIM project
concentrated on the pure NF?> data model comple-
mented by the concept of ordered relations and by a

DADAM AND LNNEMANN 665

Figure 2 Comparison of AIM-P data model, pure NF?, and relational data model

QL)

LISTS SETS

o]

&ﬂ ATOMIG <,:JJ
VALUES

AIM-P DATA MODEL
{EXTENDED
NF2 DATA MODEL)

RELATI RELATION
sen (SET)
vV
TUPLES TUPLES
ATOMIC
ATOMIC AEs

VALUES

NF2 DATA ’ FIRST
E MODEL NORMAL FORM
DATA MODEL

list of atomic values as attribute values in order to
adequately support numerical vectors, matrices, and
similar constructs. Soon it was discovered that an
orthogonal data model would be much more advan-
tageous, not only from a user’s point of view but
also to ease query processing internally. That is,
atomic types and constructor types should be com-
binable in an easy fashion, so that all resulting types
which can occur based on legal quenes are covered
by the data model. sqL,” for example, is not orthog-
onal in that sense. The flat relational data model on
which sQL is based only knows sets of tuples.

These considerations resulted in a data model design
based on the concepts of constructor types (set, list,
tuple) and atomic types (date, real, integer, Boolean,
character, string [text], surrogate®). All constructor
types can be combined with each other and with
atomic types in an arbitrary way. Moreover, each of
these constructs (constructor types and atomic types)
can occur at every level of an object type. The
attributes of a tuple-valued object, for example, can

666 ©DADAM AND LINNEMANN

be either atomic, set-valued, list-valued, or again
tuple-valued. Objects need not occur as elements of
a table. A list of lists of real values (which is a two-
dimensional matrix) can occur as an element in
another list or set, as an attribute value within a
tuple, or as a single standing object (having an object
name). An object may be even as simple as a single
integer—for example, the highest invoice number
used so far. Figure 2A shows a graphical representa-
tion of this data model; both the Normal Form data
model and the pure NF? data model are special cases
of this more general data model. The data model is
also called the Extended NF? Data Model because it
was developed in an evolutionary manner from the
NF? data model. Implementation issues (for example,
storage structures for extended NF? data objects) are
discussed in Reference 37.

Database language. AIM-P has an sQL-like language
interface, HDBL, but in contrast to SQL, the user of
HDBL is required to explicitly define the type of the
result. In sQL the only result type supported is set of

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

tuples and an expression like

SELECT dno
FROM departments

would always lead to a result table having one col-
umn (unary relation). In HDBL, this would also be a
legal result type, but a set of atomic values would be
valid too. For this reason, HDBL uses the above-
mentioned constructor types to explicitly describe
the desired structure of the result elements (except
that the source structure is to be directly used). It
uses tuple(...) or [...] to define a tuple structure,
list(...) or <...> to define a list structure, and set(...)
or {...} for a set structure. Whether the elements of
the result are unordered or ordered depends on the
source data. If they are ordered, the result is ordered;
otherwise it is unordered. If the result is computed
using join operations, it is ordered if all involved
tables are ordered (lists of tuples); otherwise it is
partially ordered (join between sets and lists of tu-
ples) or unordered (only sets of tuples involved).

In the following, HDBL is described by some exam-
ples. More comprehensive treatments of this lan-
guage can be found in References 40 to 42; its
relationship to the relational algebra and processing
rules are described in References 43 and 44; and a
description of the currently implemented language
features can be found in Reference 45.

The basis for the subsequent examples is a table

partments, illustrated in Table 1. The corresponding
CREATE statement is given in Figure 3. Like classical
SQL, HDBL uses a SELECT-FROM-WHERE (SFW) con-
struct to provide the facilities for expressing projec-
tions, restrictions, and joins. The SFw construct of
HDBL is, however, far more powerful than that of the
original sQL. The examples that follow show this.
The first example shows how to retrieve the whole
manuf depts table.

SELECT x
FROM x IN manuf_depts

The next example retrieves all numerical control (#c)
machines.

SELECT nc

FROM m IN manuf_depts,
cell IN m.manuf_cells,
nc IN cell.nc_mach

This example shows how subtables are retrieved:
A variable m is defined which is bound to
manuf depts. The variable cell depends on m. The
variable ¢, in turn, depends hierarchically on cell. If
all nc-machines are not of interest but only those
with qu greater than 1, a corresponding predicate
can be added to the query as follows:

SELECT nc

FROM m IN manuf_depts,
cell IN m.manuf_cells,
nc IN cell.nc_mach

containing information about manufacturing de- WHERE nc.qu > 1
Table 1 The manuf_depts information in NF? representation
{ manuf_depts }
dno dname { manuf_cells] { staff }
cid { non_nc_mach] { nc_mach } eno function
qu type qu type
15 Shafts C13 1 MLDX 300 1 NRP 5000 1217 NC Programmer
1 MLDX 230 1 Flex 200 1494 NC Programmer
1 Autex 77 1548 Supervisor
1799 Supervisor
C28 1 Varix 92 1 Speedy 5 1852 Laborer
Varix 99 2 Preci 22 1877 Chief
1 Autex 77 1938 Laborer
1941 Laborer
22 Slabs (6311 2 MLDX 300 1 DSX 700 1199 Supervisor
1 JRP 500 1 DSX 800 1292 Chief
1 Autex 35 1385 NC Programmer
1741 Laborer
1855 Laborer

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

DADAM AND LINNEMANN 667

Figure 3 CREATE statement for manuf_depts of Table 1: ...}, <...>, [...] are set, list, and tuple constructors
(alternatively, set (. ..), list (.. .), and tuple (. . .) could be used)

}I

CREATE manuf_depts
{1 dno : integer,
dname : string(40),
manuf_cells :
{ [cid : string(10),
non_nc_mach :
{ [qu : integer,
type : string(40)]
nc_mach
{ [qu : integer,
type : string(40)] }
11,
staff :
{ [eno : integer,
function : string(40)] }
1}
END

The following example shows how SFw constructs
can be nested. For each manufacturing depart-
ment, only those manufacturing cells that have an
nc_mach of type Flex 200 shall be retrieved:

SELECT [m.dno,
manuf_cells:
(SELECT [cel1.CID, cell.nc_mach]
FROM cell IN m.manuf_cells
WHERE EXISTS (nc IN cell.nc_mach):
nc.TYPE = 'Flex 200')]
FROM m IN manuf_depts

With the same subquery technique, nesting of tables
can also be formulated. Assume two flat tables
MDEPT (dno, dname) and staff (dno, eno, function).
On the basis of these source tables, the manuf depts
table (Table 1) could be partly (only dno, dname,
and staff) constructed using the following HDBL
expression:

SELECT [x.dno, x.dname,
staff :
(SELECT [y.ENO,
y.FUNCTION]
FROM y IN STAFF
WHERE x.dno = y.dno)]
FROM x IN MDEPT

Unnesting of a nested table is formulated similar to
ajoin. As an example, to unnest manuf depts (Table
1) along the path from top to STAFF while retaining

668 DADAM AND LINNEMANN

the dno, dname, eno, and function attributes, the
following HDBL expression could be used:

SELECT [x.dno, x.dname,
y.eno, y.function]
FROM x IN manuf_depts, y IN x.staff

Clearly, HDBL can also be used to modify data. To
delete manufacturing cell C11, for example, the fol-
lowing statement could be used:

DELETE mc

FROM md IN manuf_depts,
mc IN md.manuf_cells

WHERE mc.cid = 'C11!

The quantity of non_nc mach MLDX 300 within
manufacturing cell C13 of department 15 can be
incremented by 1 as follows:

ASSIGN nnc.qu+l

T0 nnc.qu

FROM md IN manuf_depts,
mc IN md.manuf_cells,
nnc IN mc.non_nc_mach

WHERE md.dno = 15 and
mc.cid = 'C13' and
nnc.type = 'MLDX 300'

An insertion of a new manufacturing department
with no manufacturing cells and no staff could be
performed as follows:

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

INSERT
{ [dno: 33,
dname: ‘new_name',
manuf_cells: { },
staff: {}11}

INTO manuf_depts

A more complex table, the robots table, demonstrates
some of the HDBL concepts that go beyond the pure
NF? data model. The corresponding CREATE state-
ments are shown in Figure 4 and Table 2. In addition
to relation-valued attributes, the robots table shows
list valued (axes, dh_matrix) and tuple-valued attri-
butes (kinematics, joint_angle, dynamics). List val-
ued means that the values occurring are ordered, for
example, in the axes attribute. That is, there is a first
axis, a second axis, etc. A tuple-valued attribute,
such as dynamics, contains a composite attribute
value, namely a value for mass and a value for accel.
Thus tuple-valued attributes provide some structur-
ing capabilities like the RECORD concept in many
programming languages. To retrieve all robots which
have a Screw Driver in the set of endeffectors and
which have at least 2 arms, each of which has at least
4 axes, the following query could be issued:

SELECT ro
FROM ro IN robots
WHERE (COUNT(ro.arms) >= 2) AND
(FORALL (ar IN ro.arms):
COUNT(ar.axes) >= 4) AND
(EXISTS {ee IN ro.endeffectors):
ee.function = 'Screw Driver')

User-defined data types and functions

Current query languages for relational databases usu-
ally provide only a fixed set of data types and oper-
ations. It is usually not possible to extend this set by
user-defined data types or functions. This is a major
drawback, especially in advanced applications such
as engineering or office automation. In these areas,
special data types and special functions are needed
quite frequently, e.g., a data type for matrices and a
function for matrix multiplication. Since matrices
and matrix multiplication are not provided in con-
ventional query languages, the user has to model
matrices by low-level constructs, e.g., byte strings,
and write a cumbersome application program in a
conventional programming language to interpret
and to manipulate these byte strings as matrices.
Therefore, a mechanism is needed that allows the
user to define his or her own data types and functions
and to add them to the DBMS so that they can be

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

used within the query language as a normal built-in
function on basic data types.

This need has already been recognized in the Peterlee
Relational Test Vehicle (PRTV*®), which is known as
one of the first running prototypes of a relational
DBMS. The PRTV provides a simple mechanism for
user extensions. The user can define his or her own
procedures (written in PL/1) that can then be used in
query statements and called by the DBMS at run time.
Since PRTV tables are always in First Normal Form,
complex (hierarchical) data structures as procedure
input and output cannot be processed.

In this section, the AIM approach for user-defined
data types and functions is introduced. It is based on
HDBL and its underlying data model.

As opposed to most other projects on extensibility,
AIM-P intentionally does not strictly enforce the ab-
stract data type paradigm. That is, the structure on
which the user-defined functions are operating may
remain visible. By doing so, any instance of a user-
defined data type may be queried and modified using
normal HDBL expressions. Normal HDBL expressions
and user-defined functions can be mixed. Clearly,
the instances of user-defined data types can also be
treated as data capsules which are accessible only by
way of user-provided functions associated with that
type. It was emphasized that no special knowledge
about database internals is required. An example is
given for a visible user-defined data type and related
functions and then for an encapsulated type.

Assume, for example, that a user wants to see all
robots having a dh_matrix whose value of the deter-
minant is 1. Since computing the determinant of a
matrix is a standard function in linear algebra, a
corresponding function can usually be found in a
library of mathematical functions. The connection
between this function and HDBL is made by declar-
ing, e.g., a type for 4 X 4 matrices of real values as
follows:

DECLARE
TYPE dhtype < 4 FIX < 4 FIX REAL >> END

In this example, dhtype is the name of a user-defined
type. It can subsequently be used in other DECLARE
TYPE statements or within CREATE statements to
create new database objects. Now the user can define
the interface of a user-defined function for comput-
ing the determinant as follows:

DECLARE
FUNCTION determinant(matrix: dhtype): REAL

DADAM AND LNNEMANN 669

Figure 4 CREATE statement for robots of Table 2

CREATE robots
{[rob id : STRING (6 FIX),
arms H
{[arm_id :+ STRING (12 FIX),
axes :
<[kinematics
[dh matrix : < 4 FIX < 4 FIX INTEGER >>,
joint_angle
[min : REAL,
max : REAL]],
dynamics :
[mass : REAIL,
accel : REAL]] > 1},
endeffectors :
{[eff _id : STRING (16 FIX),
function : TEXT (1000) 1}]}
END
In order to make this function work, the user or will transform the result of the function back into
system programmer has to program the function AIM-P’s internal representation. A comprehensive
body. In programming the function body, it seems treatment of this subject, including implementation
appropriate to use a general-purpose programming issues and run-time support, can be found in Refer-
language. For AIM-P, Pascal has been selected because ences 47 to 49.
the system itself is implemented in this language. To
allow users to implement their own functions for How the Pascal representation looks can be influ-
their own data types, previously declared using HDBL enced to some extent by specifying HDBL type-com-
declare-type statements, the HDBL types (basic ones piler directives (STANDARD, DENSE). Analogously, the
and user-defined ones) have to be mapped to Pascal Pascal function header is generated automatically.
data structures. As HDBL allows for user-defined For our dhtype example, the Pascal repr%c,entation
types of nearly unlimited structural complexity, a using the DENSE directive would look like:
Pascal representation as a byte string (character
string) with a linearized representation of the HDBL TYPE dhtype$l =
data types would make function implementation RECORD
rather complicated and error prone. Pascal type ACT_ELEM: 8..4;
checking would be practically eliminated when pur- VAL : ARRAY [1..4] OF REAL
suing this approach. END;
dhtype =

For AM-P it was therefore decided to map the atomic RECORD
HDBL data types as well as the HDBL constructor ACT_ELEM: 0..4;
types (set, list, tuple) to corresponding predefined VAL : ARRAY [1..4] OF dhtype$l
Pascal data types. This not only leads to more natural END;
mappings, but also allows the utilization of Pascal’s
strong typing and type checking for the implemen- The Pascal function header for the determinant func-
tation of user-defined functions. In order to avoid tion declared above looks like:
mapping errors from HDBL-type representation to
Pascal-type representation and vice versa, the map- FUNCTION determinant(matrix: dhtype): REAL;
ping is not defined by the user but is provided by a
type compiler which is part of AIM-P’s catalog man- The determinant function can now be programmed
ager. At execution time, before calling a function, in Pascal as follows (assume the existence of a library
AIM-P will automatically map from the AIM-P internal function compute_determ for computing the deter-
representation to the Pascal representation and also minant);

670 DADAM AND LINNEMANN IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

Table 2

The robots table. The attribute axes contains a list (indicated by <. . . >) of tuples and is an ordered relation.

Dh_matrix is also list valued, but the elements of this list are lists again forming a list of lists (in this case a 4x4
matrix). Kinematics and dynamics are tuple valued attributes (indicated by [. . .]) of the (ordered) axes relation.
Joint_angle, in turn, is a tuple valued attribute of kinematics.

{ robots }
rob_id { arms] { endeffectors }
arm_id < axes > eff_id function
[kinematics] [dynamics]
< dh_matrix > [joint_angle] mass | accel
min max
Robl left <1, 0, 0, 1 > -180 180 50.0 1.0 E200 Gripper
<0, 0, 1, 0>
<0, -1, 0, 100 > E150 Welder
<0, 0, 0, 1>
E180 Screw Driver
<1 0, 0, 70 > -250 60 37.25 2.0
<0, 1, O 0 >
<0, 0, 1, 20 >
<0, 0, 0, 1 >
<0, 0, 1, 0 > -80 250 10.4 6.0
<1l 0, 0, 40 >
<0, 1, 0, -10 >
<0 0 0, 1>
<0, -1, 0, 0> -180 180 2.0 6.0
<0, 1, 0, 0 >
<0 0, 1, 0>
<0, 0, O, 1>
right
Rob2 left
FUNCTION determinant(matrix: dhtype): REAL; SELECT r
FROM r IN robots

VAR local: ARRAY [1..4, 1..4] OF REAL;
VAR i,j: INTEGER;
BEGIN

FOR i:=1 TO 4 DO

FOR j:=1 70 4 DO
local[i,j]:= matrix.val[i).val[j];

determinant := compute_determ(local,4)

END

After compiling the determinant function and link-
ing it to the system, it can be used in arbitrary HDBL
expressions wherever a REAL value is allowed as a
result-type expression. For example, one can retrieve
all robots having a dh_matrix whose determinant
equals 1 by the following HDBL query:

1BM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

WHERE EXISTS(ar IN r.arms):
EXISTS(ac IN ar.axes):
determinant (ac.kinematics.dh_matrix) = 1

A user-defined function may even be as simple as a
square root function that does not require any new
type because only real values are involved. There-
fore, a square root function can be declared as fol-
lows:

DECLARE FUNCTION square_root(r:REAL): REAL

The Pascal implementation is very simple:

DADAM AND LINNEMANN

671

FUNCTION square_root(r:REAL): REAL;
BEGIN

square_root := sqrt(r)
END

Another example is the introduction of a data type
coMPLEX for complex arithmetic. Assume that an
abstract data type COMPLEX is desired where the user
need not see the internals of a value of type COMPLEX
but may use COMPLEX values only by functions. This
can be done by declaring a type to be encapsulated,
In this case, the system enforces the condition
whereby instances of this type are accessible only by
way of functions associated with that type. In this
way, the representation can be changed without hav-
ing to change the queries. A type COMPLEX can be
declared as follows:

DECLARE TYPE COMPLEX
[re:REAL, im: REAL]
ENC END

The keyword ENC means that COMPLEX is an encap-
sulated type. The corresponding Pascal type would
be:

TYPE COMPLEX =
RECORD
re: REAL;
im: REAL
END

The complex arithmetic now is defined by functions,
for example:

DECLARE

FUNCTION compl_make(rl,r2:REAL): COMPLEX;
DECLARE

FUNCTION compl_add{cl,c2: COMPLEX): COMPLEX;
DECLARE

FUNCTION compl_negate(c:COMPLEX): COMPLEX;

The corresponding Pascal implementation is very
simple:

FUNCTION comp} _make(rl,r2: REAL): COMPLEX;
VAR result: COMPLEX;
BEGIN
result.re := rl;
result.im = r2;
compl_make := result
END;

672 DADAM AND LINNEMANN

FUNCTION compl_add(cl,c2: COMPLEX): COMPLEX;
VAR result: COMPLEX;
BEGIN
result.re :
result.im :
compl_add :
END;
FUNCTION compl_negate(c:COMPLEX): COMPLEX;
VAR result: COMPLEX;

cl.re + c2.re;
cl.im + ¢c2.im;
result

BEGIN
result.re = -c.re;
result.im = -c.im
compl_negate := result
END;

The data type COMPLEX can now be used within any
CREATE statement for creating database objects. With
the help of the functions, values of type COMPLEX
can be used within HDBL queries.

All structure types which can be created using the
type mechanism of HDBL are always also valid HDBL
types. Consequently, user-defined types can also oc-
cur, e.g., on the left side of an assignment expression,
on its right side, or they can be input for a subsequent
step. The type and function mechanism has become
an integral feature of the data model and language
of AIM-P.

On-line and application program interface

AIM-P supports an on-line interface for ad hoc queries
as well as an application program interface. The on-
line interface accepts input of HDBL statements (data
definition, query, data manipulation, type and func-
tion definition) and offers facilities for querying the
catalogs (object catalog, type catalog, function cata-
log), for editing and retrieving stored queries and for
browsing query results, It also supports user-pro-
vided display functions for user-defined data types.

The AM-P application program interface (apI) fol-
lows the same philosophy as System R* and
sQL/ps.”® An API pre-compiler takes API language
statements embedded in the source code of the ap-
plication program and translates them into respec-
tive subroutine calls to the API run-time system and
appropriate type and variable declarations (mainly
for parameter passing) of the target host program-
ming language.’! The API language constructs can be
roughly divided into two groups: declarative state-
ments and operational statements. These language
constructs will be summarized with the help of some
selected examples. More detailed descriptions of this
language can be found in References 52 and 53.

BM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

Figure 5 Examples of DECLARE statements

$INCLUDE celltup

BEGIN DECLARE DATA;

type
staff type = record
eno : integex;
funct : string(30)
end;

END DECLARE DATA;

BEGIN DECLARE CURSOR;

FROM x IN manuf depts;
DECLARE CURSOR d_cursor
DECLARE CURSOR ¢_cursor
DECLARE CURSOR s cursor FOR

END DECLARE CURSOR; ‘

/* embedding of PASCAL representation for CELLTUP */

staff arr type = array (1..50] of staff type;

CELLTUP; /* variable of user defined data type CELLTUP */

var
dno : integer;
dname : string(10):;
complex_cell data
staff 1 staff arx type;
staff_ info : AIM RESULT DESCR;

DECLARE RESULT manudept FOR UPDATE FROM QUERY_ STATEMENT
SELECT [x.dno, x.dname, x.manuf cells, x.staff]

" FOR manuf_cells
staff

WITHIN
WITHIN
WITHIN

manudept ;
d_cursor;
d_cursor;

The declarative statements are used to describe da-
tabase objects (DECLARE RESULT), the application
program variables that take values of the database
objects (DECLARE DATA), and cursors for navigating
within objects (DECLARE CURSOR); see Figure 5. In
addition, there are also statements for exception
handling (see Figure 6).

Cursors are declared using DECLARE CURSOR state-
ments. In contrast to System R or sQL/DS, which
support only flat relations, AIM-P cursors are ordered
in a hierarchy. In Figure 5 (based on Table 1)
c_cursor and s_cursor depend on d_cursor. That is,
c¢_cursor can only operate on those manufacturing
cells belonging to the manufacturing department on
which d_cursor is currently positioned. Besides defin-
ing the scope of dependent cursors, a cursor also
gives access to the data elements at its level. That is,
d_cursor provides access to attributes dno (atomic),
dname (atomic), manuf cells (set-valued), and staff
(set-valued); ¢ _cursor provides access to attributes
cid (atomic), non_nc_mach (set-valued), and
nc_mach (set-valued).

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

The operational statements are used to drive the API
by way of an application program. In essence, there
are query-execution- and update-propagation-re-
lated statements, cursor-related statements, and ses-
sion- and transaction-oriented statements. To open
a session (connect to the database), a BEGIN SESSION
statement that provides a user identification and a
password has to be issued. Transactions can subse-
quently be started with BEGIN TRANSACTION and
closed using a COMMIT TRANSACTION Or ABORT
TRANSACTION statement. Finally, a session can be
closed with an END SESSION.

The statement EVALUATE manudept triggers both the
execution of the query shown in Figure 5 and the
materialization of the result.”* On this result, cursors
can be opened to transfer the data into application
program variables (and vice versa). After having
issued the statement OPEN CURSOR d_cursor, this
cursor and all dependent cursors are open and can
be positioned by MOVE statements.

For transferring data into application program vari-
ables, the GET statement is provided. An example of

DADAM AND LINNEMANN 673

Figure 6 MOVE and GET statements with object-oriented data transfer

WHENEVER END LEAVE;

repeat

repeat

/* program variable complex_cell data

until false;

repeat

/* staff_info.n_units_ret

until false;

until false;

MOVE d_cursor; /* on (next) manufacturing department */
GET d_cursor ATTR_WISE dno, dname INTO dno, dname;

/* here processing of DNO and DNAME in the application program */

MOVE c_cursor; /* on (next) manufacturing cell */
GET c¢_cursor OBJECT WISE INTO complex cell data;

/* one manufacturing cell with all its non-nc machines */
/* and nc machines has now been transferred into */

*/

/* here processing of non-nc machines and nc machines data */

MOVE s -cursor /* on (next) staff member */
GET s_cursor BY 50 TUPLE_WISE INTO staff :

staff info;

/* the actual number of retrieved staff tuples is returned in */

*/

/* here processing of STAFF array in the application program */

/* here additional manuf. department related processing */

using these functions is given in Figure 6. The GET
statements in this figure deserve some further com-
ments; they demonstrate that data transfer can be
performed in several ways:

» The option ATTR_WISE specifies that the atomic
attribute values accessible by the respective cursor
will be transferred into individual application pro-
gram variables (in Figure 6, attributes dno and
dname are transferred into program variables dno
and dname).

» The option TUPLE_WISE tells the system that all
atomic attribute values at the current cursor po-
sition will be taken as a unit (tuple) and be assigned
to a corresponding (type compatible) record
variable. The specification BY n (n > 1) triggers
the transfer of more than one instance (tuple)

674 ©0ADAM AND LINNEMANN

at a time. An optional variable of type
AIM_RESULT_DESCR (see staff_info in Figure 5 and
Figure 6) can be used to tell the user how many
data instances (tuples) have actually been trans-
ferred into the application program.

The option OBJECT_WISE specifies, in contrast to
the keywords TUPLE_WISE and ATTR_WISE, that all
the atomic and nonatomic data at the current
cursor position will be transferred into the appli-
cation program: A complete complex object is
transferred at one time (by a single call to the API
run-time system). Of course, an appropriate pro-
gram variable must be provided to deliver all these
data, especially the nonatomic (set-valued, list-
valued) data. Appropriate type declarations for
these program variables (e.g., CELLTUP in Figure
S) can be obtained from the type compiler of

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

AIM-P in conjunction with the support of user-
defined data types as described in the previous
section (see References 48 and 49 for details).

The WHENEVER clause in Figure 6 is used to specify
exception handling. In this particular case, the hand-
ling of an END condition is specified (LEAVE is a
Pascal/VS statement to leave the current REPEAT . . .
UNTIL loop™).

If a result has been declared FOR UPDATE as in Figure

5, it can be both read and modified. For that, the
cursors must be positioned in the same way as for

AIM-P has been built in a modular
fashion.

reading (GET, FETCH). UPDATE, INSERT, Of DELETE
statements (which are syntactically very similar to
the GET statement) can be issued to modify the
data.”™”® After modification, the PROPAGATE state-
ment is used to transfer the modified or new data
from the workstation (back) to the database server.
This, however, does not mean that the changes are
already committed. At the server site, the modifica-
tions are only performed in the private workspace of
the transaction. It is still necessary for the user to
subsequently perform either a COMMIT or an ABORT.

AIM-P system architecture

The AIM-P architecture is constructed as a client-
server architecture. That is, a database server runs at
a host system and serves a collection of workstations.
This architecture is motivated by a scenario where a
collection of workstations’’ autonomously perform
complex and time-consuming tasks such as design
applications. It is assumed that these applications,
written in a standard programming language, rely
on the services of a central database server. By means
of a high-level query and data manipulation language
(such as HDBL, see earlier section), representations of
objects that may be complex are requested from the
server. After being processed at the workstation,
changed data may be transferred back to the central

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1983

site. Because of the potential complexity and volume
of data, the workstation cooperatively supports the
server in propagating changes back to the central
data repository.

The subsystem running at the workstation consists
of the Result Walk Manager which is a subcompo-
nent of the Complex Object Manager (see Figure 7)
of the AIM-P server, the On-line interface, which
provides an interactive interface for querying the
database and displaying the results, the API precom-
piler, and the API run-time system (see previous
section). The On-line interface, API precompiler and
API run-time system are usually only available at the
workstation. The remainder of this section concen-
trates on the description of the server architecture.

In order to allow system modifications because of
changing requirements or to test new ideas, AIM-P
has been built in a modular fashion (see Figure 7).
The components Buffer Manager, Segment Man-
ager, Catalog Manager, Supervisor, and Communi-
cation Facility perform the usual functions as in any
DBMS. That is, they manage the 1/0 activity from
external storage into the system buffer and vice versa,
handle segment (file) creation, deletion, and free
space bookkeeping, and also supervise the commu-
nication between the virtual DBMS machine and
other virtual or real machines.

The Query Processor is responsible for parsing an
HDBL query, performing query optimization (alge-
braic query optimization and access path selection),
and executing the query (including data manipula-
tion requests). This component is composed mainly
of three major components: the Parser, the Query
Tree Optimizer, and the Query Tree Evaluator (see
Reference 58).

The Index Manager consists, in principle, of two
parts: one handles normal DBMS indexes (such as
B-trees), whereas the other was conceived to handle
the text index.”*”

The Subtuple Manager is responsible for retrieving
subtuples, or records (the basic logical access units
in AIM-P), out of pages and for mapping subtuples to
pages. Subtuples can be very small but can also span
many pages, espemally in cases of long fields. (Time
verswn 9r£1anagement is also done by this compo-
nent.*) In addition, it has been designed to
support the transaction concept. It offers Begin-of-
Transaction (BoT), Commit, and Abort commands
to start a new transaction, to make its updates

DADAM AND LINNEMANN 6§75

Figure 7 Architecture: A central database server is driven by a collection of workstations

| APPLICATIONS

r——-
1
{

APl
RUN-TIME
SYSTEM

WORKSTATION OTHER WORKSTATIONS

CENTRAL DATABASE SERVER

L/
1]
L OBJECT i
gD MANAGESR

[

BUFFER
MANAGER

676 DADAM AND LINNEMANN IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

permanent, or to drop them, respectively. For this
reason, the Subtuple Manager maintains for each
transaction an individual temporary workspace
where all updates are performed. At commit time
the content of this workspace is written to a trans-
action-oriented log file before the updates themselves
are made available to other transactions.

The Complex Object Manager is the only compo-
nent which can determine structure and implemen-
tation. Whereas the Subtuple Manager handles all
subtuples in the same way, the Complex Object
Manager distinguishes between structure subtuples
and data subtuples. Structure subtuples, called mini-
directories in AIM-P terminology, contain structural
information (e.g., parent-child relationships),
whereas data subtuples contain only data (except
some management information such as subtuple
length and null value information).

The Complex Object Manager cooperates very
closely with the Subtuple Manager and with the
Query Processor, or by relieving the latter from
taking care of details about the physical aspects of
data placement and retrieval. In cooperation with
the Subtuple Manager and the Segment Manager,
the Complex Object Manager places the data on
external storage such that data belonging to one
object (complex object, NF? tuple) is stored on con-
tiguous pages, if possible. That is, it directs physical
clustering. Moreover, the Complex Object Manager
also masks the different representations of complex
objects from the Query Processor. In the current
implementation of AIM-P, the three different repre-
sentations that may occur and need to be supported
are database, object buffer, and external.

The database representation is used to represent
database objects on external storage and in the DBMs
system buffer. This structure has been designed to
efficiently support access to any object especially for
processing projection and selection operations, 374361
The object buffer representation is used to represent
the results of a query as well as temporary interme-
diate results. This representation is somewhat more
compact than the database representation and is also
used for the workstation-server cooperation.62 The
third representation is the external representation
of HDBL types in Pascal structures. This representa-
tion is used for supporting user-defined data types
and functions as described earlier. It is also used
for passing query results to application programs if
OBJECT_WISE transfer has been requested (see the
section on on-line and application program inter-
face).

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

For a more comprehensive discussion of the AIM-P
architecture refer to References 43 and 44.

Summary, status, and outlook

The AIM project is a research and development effort
of the Heidelberg Scientific Center to better under-

AIM-P is based on the concept
of nested relations.

stand the requirements of database technology for
integrated applications. AIM-P, the research prototype
under development at the Scientific Center, is based
on the concept of nested relations. The experiences
from applications or analytical studies with the Ex-
tended NF? Data Model, e.g., in the areas of real
estate in4foormation systems,3¢ cléaemical informa;c}ggg
systems, geometric modeling, ~ and CAD/CAM

are very promising and give a high degree of confi-
dence that this data model shows the correct direc-
tion for future database management systems.

The first version of AIM-P that was nearly complete
became operational at the end of 1986. Since then,
the system has been installed at various places within
and outside of 1BM for research and study purposes.
The current implementation status (Release 2.0) sup-
ports the following:

e Flat and nested relations, both unordered and
ordered. Legal attribute types are atomic, flat, and
nested relations, and lists or sets of atomic values.
Sets of sets or lists of lists are not yet supported.
A large subset of HDBL is operational, but only
rudimentary query optimization is currently per-
formed. View support is still missing.

Access to historical data in ASOF®’ fashion

Access to HDBL facilities both in on-line mode and
through the application program interface
Support of user-defined data types and functions
Support of textual data (text search capabilities)
Workstation-server support

Basic transaction support (abort or commit) in a
single-user environment

DADAM AND LINNEMANN 6§77

In this brief description of the project, only a few
aspects of the overall AIM project effort could be
highlighted. System features such as time version
support (which has been deeply integrated into
AIM-P#33%6%) the integration of text search capabili-
ties, and the important aspect of cooperative proc-
essing in a workstation-server environment" "> were
not discussed in this paper. Also, joint research ac-
tivities with partners at the University of Darmstadt
in the area of workstation—-server cooperatlon 62,6869
at the University of Hagen on engineering des1gn
versmn support,’®’! and with our partners in the
R’D’ project’? at the University of Karlsruhe in the
area of robotics and abstract data types #6,49,64,66.73-76
have significantly influenced and contributed to our
work but were not covered in this paper.

Conceptual work has been started to improve the
query processing of AIM-P by integrating indexes
for extended NF tables and to develop rules for
query transformation and optimization. In addition,
work has been started on sorting and duplicate
elimination’””’ (that will provide the basis for the
support of recursive queries’-#?), and also on object-
oriented concurrency control techniques. 8384

Our main target, however, remains the understand-
ing of database requirements in advanced, integrated
application areas. We therefore will increase the
number of case studies performed in such areas using
our prototype. Direction and emphasis of our future
research and development work will, as in the past,
be heavily influenced by the requirements and open
problems discovered in these areas.

Acknowledgments

The development of AIM-P was (and is) a cooperative
effort of 1BM scientists, visiting scientists, and stu-
dents. In addition to the authors, the AIM-P group
presently consists of R. Erbe, J. Giinauer, U. Herr-
mann (a doctoral student), U. Kessler (a visit-
ing scientist), K. Kiispert, V. Obermeit, P. Pistor,
E. Roman, and N. Siidkamp. Prior project members
who have made major contributions to the AIM-p
development are V. Lum, who managed the project
from September 1982 to August 1985, and
G. Walch, as well as our visiting scientists F. Ander-
sen, H.-D. Werner, and J. Woodfill. The basic re-
search work performed by H.-J. Schek (manager of
the AM department prior to V. Lum) and
G. Jaeschke prior to this project has provided the
stimulating factor and was an important part of the
theoretical basis for the whole development effort.

678 DADAM AND LINNEMANN

In addition, much valuable conceptual work for
AIM-P or AIM-P-related problems has also been per-
formed by our visiting scientists H. Blanken,
B. Hansen, M. Hansen, G. Saake, M. R. Scalas,
H.-J. Schneider, J. Teuhola, R. Traunmiiller,
H. Wedekind, and L. Wegner. All of these con-
tributions are gratefully acknowiedged. The authors
want to thank K. Kuspert, P. Pistor, and E. Roman
for carefully reading an earlier version of this paper
and giving valuable suggestions which helped to
improve the presentation. Thanks also to R. Erbe
and G. Saake for their comments.

Cited references and notes

1. R. L. Haskin and R. A. Lorie, “On extending the functions of
a relational database system,” Proceedings of the ACM SIG-
MOD Conference, Orlando, FL (June 1982), pp. 207-212.

2. R. Lorie and W. Plouffe, “Complex objects and their use in
design transactions,” Proceedings of the Engineering Design
Applications Stream, ACM-IEEE Data Base Week, San Jose,
CA (May 1983), pp. 115-121.

3. L. A. Rowe and M. Stonebraker, “The Postgres data model,”
Proceedings of VLDB, Brighton, UK (September 1987), pp.
83-96.

4. M. Stonebraker, J. Anton, and E. Hanson, “Extending a
database system with procedures,” ACM Transactions on Da-
tabase Systems 12, No. 3, 350-376 (September 1987).

5. M. Stonebraker, “Inclusion of new types in relational data
base systems,” Proceedings of the Second International Con-
ference on Data Engineering, Los Angeles (February 1986),
pp. 262-269.

6. M. Stonebraker and L. A. Rowe, “The design of Postgres,”
Proceedings of the ACM SIGMOD Conference, Washington
(1986), pp. 340-355.

7. M. Stonebraker et al., “Quel as a data type,” Proceedings of
the ACM SIGMOD Conference, Boston (June 1984), pp. 208-
214,

8. D. Dayal, F. Manola, A. Buchman, U. Chakravarthy, D
Goldhirsch, S. Heiler, J. Orenstein, and A. Rosenthal, “Sim-
plifying complex objects: The PROBE approach to modelling
and querying them,” Informatik-Fachberichte 136, 17-37,
Springer-Verlag, Berlin (1987).

9. D. Goldhirsch and J. A. Orenstein, “Extensibility in the
PROBE database system,” Data Engineering 10, No. 2, 24—
31 (June 1987).

10. P. Schwarz, W. Chang, J. C. Freytag, G. Lohman, J. Mc-
Pherson, C. Mohan, and H. Pirahesh, “Extensibility in the
Starburst database system,” Proceedings of the 1986 IEEE
International Workshop on Object Oriented Database Sys-
tems, Pacific Grove, CA (1986), pp. 85-93.

11. B. Lindsay, J. McPherson, and H. Pirahesh, “A data manage-
ment extension architecture,” Proceedings of the ACM SIG-
MOD Conference, San Francisco (May 1987), pp. 220-227.

12. D. S. Batory et al., GENESIS: A Reconfigurable Database
Management System, TR-86-07, Department of Computer
Science, University of Texas at Austin (March 1986).

13. M. J. Carey, D. J. DeWitt, D. Frank, G. Graefe, M. Murali-
krishna, J. E. Richardson, and E. J. Shekita, “The architecture
of the EXODUS extensible DBMS,” Proceedings of the 1986
IEEE International Workshop on Object Oriented Database
Systems, Pacific Grove, CA (1986), pp. 52-65.

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

3L

. H.-B. Paul, H.-J. Schek, M. H. Scholl, G. Weikum, and U.

Deppisch, “Architecture and implementation of the Darm-
stadt database kernel system,” Proceedings of the ACM SIG-
MOD Conference, San Francisco (May 1987), pp. 196-207.

. T. Harder, K. Meyer-Wegener, B. Mitschang, and A. Sikeler,

“PRIMA—A DBMS prototype supporting engineering appli-
cations,” Proceedings of VLDB 87, Brighton, UK (1987), pp.
433-442.

D. S. Batory and A. P. Buchmann, “Molecular objects, ab-
stract data types and data models: A framework,” Proceedings
of VLDB 84, Singapore (August 1984), pp. 172-184.

K. R. Dittrich, “Object oriented database systems: The notion
and the issues,” Proceedings of the 1986 IEEE International
Workshop on Object Oriented Database Systems, Pacific
Grove, CA (1986), pp. 2-6.

A. Albano, L. Cardelli, and R. Orsini, “Galileo: A strongly-
typed, interactive conceptual language,” ACM Transactions
on Database Systems 10, No. 2, 230-260 (June 1985).

J. Mylopoulos, Ph. A. Bernstein, and H. K. T. Wong, “A
language facility for designing database-intensive applica-
tions,” ACM Transactions on Database Systems 5, No. 2,
185-207 (June 1980).

M. H. Scholl and H.-J. Schek, Editors, Theory and Applica-
tions of Nested Relations and Complex Objects (workshop
material), International Workshop, Darmstadt, West Ger-
many (April 1987).

S. Abiteboul, P. C. Fischer, H.-J. Schek, Editors, “Nested
relations and complex objects,” Lecture Notes in Computer
Science 361, Springer-Verlag, Berlin (1989).

G. Ozsoyoglu, Z. M. Ozsoyoglu, and V. Matos, “Extending
relational algebra with set-valued attributes and aggregate
functions,” ACM Transactions on Database Systems 12, No.
4, 566-592 (December 1987).

M. M. Astrahan et al., “System R: Relational approach to
database management,” ACM Transactions on Database Sys-
tems 1, No. 2, 97-137 (June 1976).

H.-J. Schek, “The reference string indexing method,” Proceed-
ings on Information Systems Methodology (G. Bracchi, P. C.
Lockemann, Editors), Venice, Italy, 1978, Lecture Notes in
Computer Science 65, Springer-Verlag, Berlin (1978), pp. 432-
459,

D. Kropp, H.-J. Schek, and G. Walch, “Text field indexing,”
Proceedings of the Meeting of the German Chapter of the ACM
on Data Base Technology (J. Niedereichholz, Editor), Bad
Nauheim, West Germany, September 1979, Teubner-Verlag,
Stuttgart (1979), pp. 101-115.

D. Kropp and G. Walch, “A graph-structured text-field index
based on word fragments,” Information Processing and Man-
agement 17(6), 363-376 (1981).

F. Bancilhon, P. Richard, and M. Scholl, “On line processing
of compacted relations,” Proceedings of VLDB 82, Mexico
(September 1982), pp. 263-269.

E. F. Codd, “A relational model of data for large shared data
banks,” Communications of the ACM 13, No. 6, 377-387 and
70-94 (June 1970).

G. Jaeschke, An Algebra of Power Set Type Relations, Tech-
nical Report TR 82.12.002, Heidelberg Scientific Center, IBM
Corporation, Heidelberg, West Germany (December 1982).
G. Jaeschke and H.-J. Schek, “Remarks on the algebra of non
first normal form relations,” Proceedings of the ACM SIG-
ACT-SIGMOD Symposium on Principles of Data Base Sys-
tems, Los Angeles (March 1982), pp. 124-138.

G. Jaeschke, Nonrecursive Algebra for Relations with Relation
Valued Attributes, Technical Report TR 85.03.001, Heidel-
berg Scientific Center, IBM Corporation, Heidelberg, West
Germany (March 1985).

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

32.

33.

34

3s5.

36.

37.

38.

39.

40.

41,

42.

43,

44,

45,

46.

47.

48.

49.

G. Jaeschke, Recursive Algebra for Relations with Relation
Valued Attributes, Technical Report TR 85.03.002, Heidel-
berg Scientific Center, IBM Corporation, Heidelberg, West
Germany (March 1985).

H.-J. Schek and P. Pistor, “Data structures for an integrated
database management and information retrieval system,” Pro-
ceedings of the VLDB Conference, Mexico (September 1982).
B. Hansen, M. Hansen, and P. Pistor, Formal Specification of
the Syntax and Semantics of a High Level User Interface to
an Extended NF’ Data Model (unpublished, 1982).

P. Pistor, B. Hansen, and M. Hansen, “An SQL-like query
interface for the NF* model,” in Informatik-Fachberichte 72,
Springer-Verlag (1983), pp. 134-147 (in German).

L. Griindig and P. Pistor, “Real estate information systems
and their requirements for database interfaces,” in Informatik
Fachberichte 72, Springer-Verlag (1983), pp. 61-75 (in Ger-
man).

P. Dadam, K. Kispert, F. Andersen, H. Blanken, R. Erbe, J.
Giinauer, V. Lum, P. Pistor, and G. Walch, “A DBMS pro-
totype to support extended NF relations: An integrated view
on flat tables and hierarchies,” Proceedings of the ACM SIG-
MOD Conference, Washington (May 1986), pp. 356-367.
SQL/Data System, Application Programming, SH24-5018-2,
IBM Corporation (August 1983); available through IBM
branch offices.

Surrogates (references) are not supported in the current im-
plementation.

P. Pistor and R. Traunmiiller, 4 Database Language for Sets,
Lists, and Tables, Technical Report TR 85.10.004, Heidelberg
Scientific Center, IBM Corporation, Heidelberg, West Ger-
many (October 1985).

P. Pistor and R. Traunmiiller, “A database language for sets,
lists, and tables,” Information Systems 11(4), 323-336 (1986).
P. Pistor and F. Andersen, “Designing a generalized N.
model with an SQL-type interface,” Proceedings of VLDB 86,
Kyoto, Japan (August 1986), pp. 278-288.

P. Pistor, “The advanced information management prototype:
Architecture and language interface overview” (invited talk),
Proceedings of 3rd Journées Bases de Données Avancées, Port-
Camargue, France (May 1987), pp. 1-20.

P. Pistor and P. Dadam, “The advanced information manage-
ment prototype,” Lecture Notes in Computer Science 361,
Springer-Verlag, Berlin (1989), pp. 3-26.

F. Andersen, V. Linnemann, P. Pistor, and N. Sidkamp,
Advanced Information Management Prototype: User Manual
Jor the Online Interface of the Heidelberg Data Base Language
(HDBL) Prototype Implementation, Technical Note TN 86.01,
Heidelberg Scientific Center, IBM Corporation, Heidelberg,
West Germany (February 1988).

S. J. P. Todd, “The Peterlee Relational Test Vehicle—A
system overview,” IBM Systems Journal 15, No. 4, 285-308
(1976).

A. Kemper, K. Kispert, V. Linnemann, and M. Wallrath,
Pascal Structures for HDBL Types: Layout, Naming Conven-
tions, Storage Allocation, and Usage in Functions, Technical
Note TN 87.05, Heidelberg Scientific Center, IBM Corpora-
tion, Heidelberg, West Germany (October 1987).

P. Dadam, K. Kispert, N. Siidkamp, R. Erbe, V. Linnemann,
P. Pistor, and G. Walch, “Managing complex objects in RZDZ,”
in HECTOR, Heterogeneous Computers Together, Volume II,
Basic Projects, Springer-Verlag, Berlin (1988), pp. 304-331.
V. Linnemann, K. Kiispert, P, Dadam, P. Pistor, R. Erbe, A.
Kemper, N. Siidkamp, G. Walch, and M. Wallrath, “Design
and implementation of an extensible database management
system supporting user defined data types and functions,”

DADAM AND LNNEMANN B79

50.

51.
. R. Erbe, N. Siidkamp, and G. Walch, Advanced Information

53.

54,

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Proceedings of VLDB 88, Los Angeles (August/September
1988), pp. 294-305.

D. D. Chamberlin et al., “Support for repetitive transactions
and ad hoc queries in System R,” ACM Transactions on
Database Systems 6, No. 1, 70-94 (March 1981).

Currently only Pascal is supported.

Management Prototype, Application Program Interface User
Manual, Technical Note TN 88.03, Heidelberg Scientific Cen-
ter, IBM Corporation, Heidelberg, West Germany (November

1988).

R. Erbe, N. Siidkamp, and G. Walch, “An application pro-
gram interface for a complex object database,” Proceedings of
the 3rd International Conference on Data and Knowledge
Bases, Jerusalem (June 1988).

The EVALUATE and OPEN CURSOR statements are not
shown in Figure 6.

PASCAL/VS Language Reference Manual, 3rd Edition, Pro-
gram No. 5796-PNQ (1985); available through IBM branch
offices.

K. Kiispert, U. Herrmann, R. Erbe, and P. Dadam, “The
recovery manager of the advanced information management
prototype,” Proceedings of Reliability ‘89, Brighton, UK (June

1989), pp. 3B/4/1-11.

Within this context a workstation can be either a physically
separate machine (e.g., a dedicated engineering workstation
with graphics device) or just another virtual machine running
on the same host computer as the database server.

V. Lum, P. Dadam, R. Erbe, J. Glinauer, P. Pistor, G. Walch,
H.-D. Werner, and J. Woodfill, “Design of an integrated
DBMS to support advanced applications,” Proceedings of the
International Conference on Foundations of Data Organiza-
tion (invited talk), Kyoto, Japan (May 1985), pp. 21-31.

P. Dadam, V. Lum, and H.-D. Werner, “Integration of time
versions into a relational database system,” Proceedings VLDB
84, Singapore (August 1984), pp. 509-522.

V. Lum, P. Dadam, R. Erbe, J. Guinauer, P. Pistor, G. Walch,
H.-D. Werner, J. Woodfill, “Designing DBMS support for the
time dimension,” Proceedings of the SIGMOD 84 Conference,
Boston (June 18-21), pp. 115-130.

U. Deppisch, J. Giinauer, and G. Walch, “Storage structures
and addressing concepts for complex objects of the NF rela-
tional model,” Proceedings of the GI Conference on Daten-
banksysteme firr Biiro, Technik und Wissenschaft, Karlsruhe,
West Germany, March 1985, Springer-Verlag, Berlin (1985),
pp. 441-459 (in German).

K. Kispert, P. Dadam, and J. Giinauer, “Cooperative object
buffer management in the advanced information management
prototype,” Proceedings of VLDB 87, Brighton, UK (Septem-
ber 1987), pp. 483-492.

A. Kemper and M. Wallrath, “An analysis of geometric mod-
elling in database systems,” ACM Computing Surveys 19, No.

1, 47-91 (March 1987).

R. Dillmann and M. Huck, “R’D*: An integration tool for
CIM,” in HECTOR, Heterogeneous Computers Together, Vol-
ume II, Basic Projects, Springer-Verlag, Berlin (1988), pp.
355-372.

M. Mitchell, National Bureau of Standards, Automated Man-
ufacturing Research Facility (AMRF), Gaithersburg, private
communication, Heidelberg (January 1987).

P. Dadam, R. Dillmann, A. Kemper, and P. C. Lockemann,
“Object oriented data management for robot programming,”
Informatik Forschung und Entwicklung, Springer-Verlag, Hei-
delberg 2, 151-170 (1987), (in German).

This AIM-P feature has not been described in this paper. More
on this topic can be found in References 43, 59, and 60.

680 orDAM AND LINNEMANN

68

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

. U. Deppisch, J. Giinauer, K. Kiispert, V. Obermeit, and G.
Walch, “Considerations about the cooperation between data-
base server and workstations,” Proceedings of the 16th GI
Jahrestagung, Berlin, October 1986, Informatik-Fachberichte
126, Springer-Verlag, Berlin (1986), pp. 565-580 (in German).
U. Deppisch and V. Obermeit, “Tight database cooperation
in a server-workstation environment,” Proceedings of the 7th
International Conference on Distributed Computing, Berlin
(September 1987), pp. 416-423.

P. Klahold, G. Schlageter, and W. Wilkes, “A general model
for version management in databases,” Proceedings of VLDB
86, Kyoto, Japan (August 1986), pp. 319-327.

W. Wilkes, The Notion of Versions and Its Modelling in
CAD/CAM Databases, doctoral dissertation, University of
Hagen, Department of Mathematics and Computer Science
(September 1987), (in German).

R’D’ stands for Relational Robotics Database with Extensible
Data Types and was a joint research project with the robotics
and database research groups at the University of Karlsruhe
and the AIM group at the Heidelberg Scientific Center.

P. Dadam, R. Dillmann, A. Kemper, and P. C. Lockemann,
“Object-oriented databases for robot programming,” in HEC-
TOR, Heterogeneous Computers Together, Volume II, Basic
Projects, Springer-Verlag, Berlin (1988), pp. 289-303.

A. Kemper, P. C. Lockemann, and M. Wallrath, “An object-
oriented database system for engineering applications,” Pro-
ceedings of ACM-SIGMOD, San Francisco (May 1987), pp.
299-311.

A. Kemper, M. Wallrath, and M. Diirr, “Object orientation
in R’D%,” in HECTOR, Heterogeneous Computers Together,
Volume I1, Basic Projects, Springer-Verlag, Berlin (1988), pp.
332-354.

A. Kemper, M. Wallrath, M. Dirr, K. Kispert, and V. Lin-
nemann, An Object Cache for Complex Object Engineering
Databases, Technical Report TR 89.03.005, Heidelberg Sci-
entific Center, IBM Corporation, Heidelberg, West Germany
(March 1989).

G. Saake, V. Linnemann, P. Pistor, and 1.. Wegner, “Sorting,
grouping, and duplicate elimination in the advanced infor-
mation management prototype,” Proceedings of VLDB 89,
Amsterdam, The Netherlands (August 1989).

K. Kiispert, G. Saake, and L. Wegner, “Duplicate detection
and deletion in the extended NF* data model,” Proceedings of
the 3rd International Conference on Foundations of Data
Organization and Algorithms (FODO ’89), Paris, June 1989,
Lecture Notes in Computer Science, Vol. 367 (W. Litwin and
H.-I. Schek, Editors), Springer-Verlag, Berlin (1989), pp. 83—
100.

V. Linnemann, “Non first normal form relations and recursive
queries: An SQL-based approach,” Proceedings of the 3rd
IEEE International Conference on Data Engineering, Los
Angeles (February 1987), pp. 591-598.

V. Linnemann, Optimization of Recursive Queries Over
Nested Relations by a Differential Technique, Technical Re-
port TR 87.07.005, Heidelberg Scientific Center, IBM Cor-
poration, Heidelberg, West Germany (July 1987).

V. Linnemann, Functional Recursion and Complex Objects,
Technical Report TR 88.12.017, Heidelberg Scientific Center,
IBM Corporation, Heidelberg, West Germany (December
1988).

V. Linnemann, “Functional recursion based on nested tables,”
in Informatik-Fachberichte 204, 408-427 (in German).

U. Herrmann, P. Dadam, K. Kispert, and G. Schlageter,
“Locking of disjoint, non-recursive complex objects by object
and query specific lock graphs,” in Informatik-Fachberichte
204, 98-113 (in German).

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1988

84. U. Herrmann, P. Dadam, K. Kiispert, E. Roman, and G.
Schlageter, A Lock Technigque for Disjoint and Non-Disjoint
Complex Objects, Technical Report TR 89.01.003, Heidelberg
Scientific Center, IBM Corporation, Heidelberg, West Ger-
many (January 1989).

General references

T. Harder, Editor, Proceedings Datenbanksysteme fur Biiro, Tech-
nik und Wissenschaft Informatik-Fachberichte 204, Ziirich, Swit-
zerland, March 1989, Springer-Verlag, Berlin (1989).

G. Kriger and G. Miiller, Editors, HECTOR, Heterogeneous
Computers Together, Volume II, Basic Projects, Springer-Verlag,
Berlin (1988).

J. W. Schmidt, Editor, Sprachen fir Datenbanken, Informatik-
Fachberichte T2, Springer-Verlag, Berlin (1983).

Peter Dadam /BM Heidelberg Scientific Center, Tiergartenstrasse
15, D-6900 Heidelberg, Federal Republic of Germany. Dr. Dadam
is manager of the Advanced Information Management (AIM)
project. He joined IBM in 1982 as a research staff member and
became part of the initial design team of AIM-P where he did
significant portions of the transaction management, concurrency
control, recovery, time version support, and record management
subsystems design. In 1985, he became the manager of the AIM
project. He holds a German diploma degree (comparable to an
M.S. degree) in industrial engineering from the University of
Karlsruhe, West Germany, and a doctoral degree in computer
science from the University of Hagen, West Germany. He has
been chairman of the special interest group on databases of the
German Informatics Society since 1987 and is an author or
coauthor of more than 30 scientific publications.

Volker Linnemann IBM Heidelberg Scientific Center, Tiergarten-
strasse 15, D-6900 Heidelberg, Federal Republic of Germany. Dr.
Linnemann is a research staff member of the Advanced Informa-
tion Management (AIM) project. He joined IBM in 1986 and
became part of the query processor design team of AIM-P. His
special interests include data modeling and recursive queries in
the context of complex objects. From 1982 to 1986, he worked on
the level of an assistant professor at the University of Frankfurt,
West Germany, where he specialized in recursive queries in data-
bases. He holds a German diploma degree (comparable to an M.S.
degree) in computer science and a doctoral degree in computer
science from the Technical University of Braunschweig, West
Germany. He is an author or coauthor of more than 20 scientific
publications.

Reprint Order No. G321-5381.

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

DADAM AND LNNEMANN 681

