
Advanced Information
Management (AIM):
Advanced database
technology for integrated
applications

by P. Dadam
V. Linnemann

The Advanced Information Management (AIM) project
is currently one of the main activities at the IBM Scien-
tific Center in Heidelberg. The main purpose of the
project is to understand the database requirements
and respective solutions for advanced integrated appli-
cations such as computer-integrated manufacturing
and computer-integrated oifice. These application
areas require an advanced database technology which
is able to manage a large variety of data of various
types in a consistent and efficient way. The underlying
database technology should support not only simple
numbers and simple tables used in business adminis-
tration, but also large complex structured objects, in-
cluding text, image, and voice data, in a uniform way.
This paper describes the background, goals, and ac-
complishments of the AIM project. It also provides an
overview of the design goals, the implementation, and
the underlying concepts of AIM-P, an experimental da-
tabase management system under development in the
AIM project.

A dvanced application areas require an advanced
database technology which is able to manage a

large variety of data of various types. By representing
these types of data as “naturally” as possible from
an application point of view, complex mappings
from the data representation used in the application
program to the data representation offered at the
database interface are avoided. This point is impor-
tant if database technology is to become a productiv-

ity aid and not just an integration tool for application
programming. Which representation is natural may
be application-dependent. A system for computer-
aided design (CAD) may use object-orienteddata, e.g.,
a computer board x and its related (structured) ob-
jects, and a computer board y and its related objects,
whereas a system for computer-aided manufacturing
(CAM) may use data-oriented data, e.g., the type and
number of chips used across all computer boards
regardless of which objects these chips belong to.
This means, in order to be adequate for computer-
integrated manufacturing (CIM), database technology
needs to support different views for one and the same
type of data or object as well as to support a large
variety of different data types in a uniform way.

Today’s database management systems have been
designed with business administration applications
in mind. They are not able to adequately support
application examples such as those outlined above
with respect to data model and efficiency aspects. As

Q Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

DADAM AND UNNEMANN 661 IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989

Figure 1 Current and desired scenario. Note, one type of DBMS is meant in (B), not necessarily one physical database
containing all the data.

L TEXT DATA 1’

u
COMPUTER f

1 DATA 1 FORMATTED 7 P8

kl T

OFFICE
DATA I

kl
T

ENGINEERINQ AND
SCIENTIFIC DATA

kl
T

1 PICTORIAL DATA I GEOGRAPHICAL AND

I U

T
I I I I

a consequence, a large variety of special-purpose data
management or file systems are currently in use for
each major application area (Figure 1A). These sys-
tems differ in functionality, data representation (data
model, interfaces), real-time behavior (immediate
update versus batch update), transaction manage-
ment, recovery, and security aspects, thus making
the required integration of applications a difficult
task. Powerful database management systems hand-
ling data across the different application areas in a

uniform and consistent way could improve this sit-
uation (Figure 1B). Very likely no single type of
system will adequately support all application types;
however, a goal would be to cover 80 to 90 percent
of the main application types.

Currently, the area of extended database technology
is quite heavily investigated. In the following, we
review some of the work reported in the literature
that has influenced this project.

662 DADAM AND LINNEMANN IBM SYSTEMS JWRNAL. VOL 28. NO 4. 1989

COMPUTER 7

j-I P8

cl
T

OFFICE

kl
T

I SCIENTIFIC DATA I I I PICTORIAL DATA
ENGINEERING AND GEOGRAPHICAL AND I

I I

11
T

f

kl
T

b The XSQL project' introduced the term complex ob-
ject into the database world. Using special attributes
(composed-of, component-of), hierarchical struc-
tures can be defined using a flat relational data
model. At run time, these special attributes are used
for collecting directly the tuples that make up a
certain complex object to avoid unnecessary join
operations. As part of the XSQL application program
interface, a dedicated main memory data structure

is used to pass the complex object's tu9le structure
and content to the application program.

Postgres supports procedures consisting of Postquel
statements, as well as procedures written in a con-
ventional programming language such as LISP or
C.3" In this approach, attributes of database tables
may be procedure-valued, i.e., an attribute value
may be a procedure written in Postquel or C. When-

IBM SYSTEMS JOURNAL, VOL 28. NO 4, 1989

1
DADAM AND UNNEMANN 663

ever the attribute is accessed, the corresponding pro-
cedure is called. Moreover, the concept of abstract
data types is supported by Postgres, but only as a
low-level representation of an unstructured storage
area. Only the length of the area is given; there is no
strong typing as far as the representation of an ab-
stract data type is concerned. This method is also
used for passing paramettrs from Postgres to func-
tions written in LISP or C.

 PROBE*'^ distinguishes between entities and func-
tions. Access to the attribute values of an entity is
only provided by invoking the corresponding func-
tion. Functions can be provided by the system or be
user-defined.

The Starburst investigates how to design
the database management system (DBMS) architec-
ture so that storage alternatives for relations and
foreign indexes can be supported.

GENESIS” and EXODUS'^ are, in essence, software
engineering tools for configuring a DBMS according
to a given specification. GENESIS relies on database
components whose interfaces have been standard-
ized in such a way that the components become
exchangeable. One goal of EXODUS is to provide
kernel DBMS facilities and software tools for the
partial generation of application-specific DBMSS. Un-
der the assumption that in the future there will exist
large libraries of application-oriented data types and
respective functions which can be optionally added
to a database kernel (customization), tools such as
GENESIS or EXODUS will be necessary to configure
these systems.

The DASDBS projectI4 provides a database kernel on
top of which different application-oriented database
interfaces can be provided. Support of nested rela-
tions, nested transactions, query optimization (sup-
porting flat relational views on nested database re-
lations), extensibility, and architectural aspects are
treated in this project.

The PRIMA” project with its underlying data model
is heavily influenced by the molecular objects ap-
proach.I6 It has an SQL-like data manipulation lan-
guage which supports references to model recursive
or arbitrary network-like data structures. Special em-
phasis is given to architectural issues and the proc-
essing of recursive queries.

More information can be found in the literaturel7-I9
on projects dealing with object-oriented database

664 DADAM AND LINNEMANN

technology, as well as descriptions of projects20-22
dealing with the foundations of (extended) relational
technology.

This paper describes the Advanced Information
Management (AIM) project which is currently one of
the main activities at the IBM Scientific Center in
Heidelberg. The main purpose of the AIM project is
to understand how database technology can serve as
a useful integration tool (see Figure 1 B) for integrated
applications such as CIM and computer-integrated
office (CIO). This paper also describes the function
and architecture of an experimental database man-
agement system based on the extended NF’ (Non
First Normal Form) data model, a relational data
model.

The first section of this paper outlines the back-
ground and goals of the AIM project, followed by a
section that describes the database language and the
underlying data model. Additional sections: show
how the database language can be extended by user-
defined data types and functions; describe the appli-
cation program interface (API) that allows the user
to use the system from a programming language;
and detail the system architecture. The paper con-
cludes with a summary and an outlook for future
work.

The Advanced Information Management project

The AIM project began in 1979, combining relational
technology23 with a new text indexing t e ~ h n i q u e . ~ ~ - ~ ~
Looking at office-oriented applications, it was dis-
covered that the pure relational data model, even
when complemented with text search capabilities,
was not suitable for modeling complex data objects
such as books, office documents, and forms. On the
other hand, relational database technology-with its
flexibility for formulating database queries, structur-
ing the results, defining alternative views over stored
tables, and other features-clearly was the direction
to follow. The desire to support structured objects in
a relational way fiylly led (independent from other
groups like VERSO) to the idea of nested relations.
They were called N F ~ Relations because the First
Normal Form whgh requires that attribute values
have to be atomic had been dropped. Clearly, the
most critical point in this case was whether this
extended relational model could be put on a theo-
retical basis as equally sound as the original one. At
first the project concentrated primarily on the theo-
retical issues of this data model, especially on its
relationship to the relational design theory (func-

IBM SYSTEMS JOURNAL, VOL 28. NO 4, 1989

tions.29-32 In parallel to this more fundamental re-
search work, conceptual work was begun that aimed
at the development of an extended SQL-like database
language able to deal with the extended relational
data model at the user’s leve1.33-36

In 1982 and 1983 the issue of integration of appli-
cations across formerly isolated application areas, as
outlined earlier in the paper, and the understanding

B

Complex objects should not be
treated as special cases.

b of the related database requirements and problems
became important. It was therefore decided to redi-
rect the research and development activities to look
at database-related issues on a broader scope. The
main objective was to understand the database re-
quirements and how possible solutions for the related
problems could be developed using an experimental
type of DBMS, the Advanced Information Manage-
ment Prototype, called AIM-P.

1 The key concept to be evaluated using the experi-
mental database management system was the NF*
data model because of its capability to support hier-
archical structures and tables in a uniform, relational
way. It also has a powerful query capability to treat
the same type of data in both an object-oriented way
and a data-oriented way. However, instead of using
the pure N F ~ data model, an extended version sup-
porting lists and sets in a more general way was use$
and is referred to as the extended N F ~ data model.
Other database-related aspects were studied in addi-
tion to the data model, by using this prototype
model. The goals for the overall system design and
the related research and development effort were
characterized as follows.

Architecture. The DBMS architecture should support
a workstation-server environment. That is, a central
database server should maintain the shared data
while the actual processing of database objects (data

I

!EM SYSTEMS JOURNAL. VOL 28. NO 4, 1989

or object creation and manipulation) should be per-
formed at workstations (user application front ends).
Special attention should be given to provide ade-
quate data exchange mechanisms between the server
and the workstation in order to reduce the commu-
nication overhead, especially in cases where large
complex objects are involved. In other words, the
overall architecture should support efficient cooper-
ative processing of complex objects in a workstation-
server environment.

Database language and data model. The database
server should provide a homogeneous view of all the
data (from flat relations to complex objects) to serve
as the integration tool. That is, complex objects
should not be treated as special cases but should be
an integral part of the data model. All, or nearly all,
operations defined for flat data should be applicable
to complex object data as well. The server should
have a relational-like data model with set-oriented,
descriptive query capabilities to reduce the commu-
nication overhead between server and workstation.
The workstation has to use this interface when re-
questing data. The interface that is offered to the
user or application program at the workstation
should be application-dependent.

Extensibility. In the long term, database manage-
ment systems should become more “customizable”
according to the applications’ (users’) needs. Re-
quired functions, such as filter operations to select
the correct objects from the database server, should
become part of the query language of the server
rather than being part of the application program of
the workstation which performs the data selection
only after all of the data have already been transmit-
ted. As a first step in this direction, user-defined data
types and functions should be supported by the
database server.

Heidelberg Data Base Language (HDBL)

The following description concentrates on the AIM-P
data model and the corresponding database lan-
guage. Only a brief discussion of this Heidelberg
Data Base Language (HDBL) is given here. A more
comprehensive treatment can be found in the refer-
enced literature.

Data model. The data model supported by AIM-P is
an object-oriented generalization of N F ~ respectively
nested relations. In the beginning, the AIM project
concentrated on the pure N F ~ data model comple-
mented by the concept of ordered relations and by a

DADAM AND UNNEMANN 665

Figure 2 Comparison of AIM-P data model, pure NF', and relational data model

&-> ATOMIC <-4
VALUES

AIM-P DATA MODEL
(EXTENDED
NF2 DATA MODEL1

RELATION

0 (@I RELATION

TUPLES TUPLES

ATOMIC
VALUES

NF2 DATA
MODEL

ATOMIC
VALUES

DATA MODEL
NORMAL FORM

list of atomic values as attribute values in order to
adequately support numerical vectors, matrices, and
similar constructs. Soon it was discovered that an
orthogonal data model would be much more advan-
tageous, not only from a user's point of view but
also to ease query processing internally. That is,
atomic types and constructor types should be com-
binable in an easy fashion, so that all resulting types
which can occur based on legal queries are covered
by the data model. SQL,~* for example, is not orthog-
onal in that sense. The flat relational data model on
which SQL is based only knows sets of tuples.

These considerations resulted in a data model design
based on the concepts of constructor types (set, list,
tuple) and atomic types (date, real, integer, Boolean,
character, string [text], ~urrogate~~). All constructor
types can be combined with each other and with
atomic types in an arbitrary way. Moreover, each of
these constructs (constructor types and atomic types)
can occur at every level of an object type. The
attributes of a tuple-valued object, for example, can

be either atomic, set-valued, list-valued, or again
tuple-valued. Objects need not occur as elements of
a table. A list of lists of real values (which is a two-
dimensional matrix) can occur as an element in
another list or set, as an attribute value within a
tuple, or as a single standing object (having an object
name). An object may be even as simple as a single
integer-for example, the highest invoice number
used so far. Figure 2A shows a graphical representa-
tion of this data model; both the Normal Form data
model and the pure N F ~ data model are special cases
of this more general data model. The data model is
also called the Extended N F ~ Data Model because it
was developed in an evolutionary manner from the
N F ~ data model. Implementation issues (for example,
storage structures for extended N F ~ data objects) are
discussed in Reference 37.

Database language. AIM-P has an SQL-like language
interface, HDBL, but in contrast to SQL, the user of
HDBL is required to explicitly define the type of the
result. In SQL the only result type supported is set of

666 DADAM AND UNNEMANN IBM SYSTEMS XWRNAL, VOL 28, NO 4, 1989

tuples and an expression like

SELECT dno
FROM departments

would always lead to a result table having one col-
umn (unary relation). In HDBL, this would also be a
legal result type, but a set of atomic values would be
valid too. For this reason, HDBL uses the above-
mentioned constructor types to explicitly describe
the desired structure of the result elements (except
that the source structure is to be directly used). It
uses tuple(...) or I...] to define a tuple structure,
list(...) or e...> to define a list structure, and set(...)
or (...) for a set structure. Whether the elements of
the result are unordered or ordered depends on the
source data. If they are ordered, the result is ordered;
otherwise it is unordered. If the result is computed
using join operations, it is ordered if all involved
tables are ordered (lists of tuples); otherwise it is
partially ordered Cjoin between sets and lists of tu-
ples) or unordered (only sets of tuples involved).

In the following, HDBL is described by some exam-
ples. More comprehensive treatments of this lan-
guage can be found in References 40 to 42; its
relationship to the relational algebra and processing
rules are described in References 43 and 44; and a
description of the currently implemented language
features can be found in Reference 45.

The basis for the subsequent examples is a table
containing information about manufacturing de-

partments, illustrated in Table l . The corresponding
CREATE statement is given in Figure 3. Like classical
SQL, HDBL uses a SELECT-FROM-WHERE (SFW) con-
struct to provide the facilities for expressing projec-
tions, restrictions, and joins. The SFW construct of
HDBL is, however, far more powerful than that of the
original SQL. The examples that follow show this.
The first example shows how to retrieve the whole
manuf-depts table.

SELECT x
FROM x IN manuf-depts

The next example retrieves all numerical control (nc)
machines.

SELECT nc
FROM m I N manuf-depts,

cell I N m.manuf-cel Is,
nc IN cell .nc-mach

This example shows how subtables are retrieved:
A variable m is defined which is bound to
manuf-depts. The variable cell depends on m. The
variable nc, in turn, depends hierarchically on cell. If
all nc-machines are not of interest but only those
with qu greater than 1, a corresponding predicate
can be added to the query as follows:

SELECT nc
FROM m IN manuf-depts,

cell IN m.manuf-cel Is,
nc IN cel1.nc-mach

WHERE nc.qu =. 1

Table 1 The manuf-depts information in NF* representation

dno

15

22

manuf-depts]

dname [manuf-cells] [staff]
1

cid { non-nc-mach] [nc-mach] eno

qu type qu type

Shafts Cl3 1 MLDX 300 1 NRP 5000 1217
1 MLDX 230 1 Flex 200 1494
1 Autex 77 1548

1799
C28 1 Varix 92 1 speedy 5 1852

2 Varix 99 2 Preci 22 1877
1 Autex 77 1938

1941

Slabs c11 2 MLDX 300 1 DSX 700 1199
1 JRP 500 1 DSX 800 1292
1 Autex 35 1385

1741
1855

function

NC Programmer
NC Programmer
Supervisor
Supervisor
Laborer
Chief
Laborer
Laborer

Supervisor
Chief
NC Programmer
Laborer
Laborer

DADAM AND LINNEMANN 667 ISM SYSTEMS JOURNAL, VOL 2 8 , NO 4. 1989

Figure 3 CREATE statement for manuf-depts of Table 1: [. . .], . . . >, [. . .] are set, list, and tuple constructors
(alternatively, set (. . .), list (. . .), and tuple (. . .) could be used)

CREATE manuf-depts
I [dno : i n t e g e r ,

dname : s t r i n g (4 0) ,
manuf-cells :

t [c i d : s t r i n g (l O) ,
non-nc-mach :

I [qu : i n t e g e r ,
t y p e : s t r i n g (4 0)] } ,

nc-mach :
{ [qu : i n t e g e r ,

t y p e : s t r i n g (4 0)] }
1 I ,

I [eno : i n t e g e r ,
s t a f f :

f u n c t i o n : s t r i n g (4 0)] 1
I }

END

The following example shows how SFW constructs
can be nested. For each manufacturing depart-
ment, only those manufacturing cells that have an
nc-mach of type Flex 200 shall be retrieved

SELECT [m.dno,
manuf-cell s:
(SELECT [cell .CID, cell .nc-machl
FROM cell IN m.manuf-cells
WHERE EXISTS (nc IN cell .nc-mach):

nc.TYPE = 'Flex ZOO')]
FROM m IN manuf-depts

With the same subquery technique, nesting of tables
can also be formulated. Assume two flat tables
MDEPT (dno, dname) and sta#(dno, eno, function).
On the basis of these source tables, the manuf-depts
table (Table 1) could be partly (only dno, dname,
and staff) constructed using the following HDBL
expression:

SELECT [x.dno, x.dname,
staff :

(SELECT [y.ENO,
y.FUNCTION]

FROM y IN STAFF
WHERE x.dno = y.dno)]

FROM x IN MDEPT

Unnesting of a nested table is formulated similar to
a join. As an example, to unnest manuf-depts (Table
1) along the path from top to STAFF while retaining

668 DADAM AND LINNEMANN

the dno, dname, eno, and function attributes, the
following HDBL expression could be used

SELECT [x.dno, x.dname,
y.eno, y.function]

FROM x IN manuf - depts, y IN x.staff

Clearly, HDBL can also be used to modify data. To
delete manufacturing cell C 1 1, for example, the fol-
lowing statement could be used

DELETE mc
FROM md IN manuf-depts,

WHERE mc.cid = 'C11'

The quantity of non-nc-much MLDX 300 within
manufacturing cell C13 of department 15 can be
incremented by 1 as follows:

ASSIGN nnc.qu+l
TO nnc.qu
FROM md IN manuf-depts,

mc IN md.manuf-cells

mc IN md.manuf-cells,
nnc IN mc. non-nc-mach

mc.cid = 'C13' and
nnc.type = 'MLDX 300'

WHERE md.dno = 15 and

An insertion of a new manufacturing department
with no manufacturing cells and no staff could be
performed as follows:

8 M SYSTEMS XWRNAL. VOL 28. NO 4, 1989

INSERT
{ [dno: 33,

dnanie : ' new-name ' ,
manuf-cel ls: { 1.
s t a f f : 0 1)

INTO manuf-depts

A more complex table, the robots table, demonstrates
some of the HDBL concepts that go beyond the pure
N F ~ data model. The corresponding CREATE state-
ments are shown in Figure 4 and Table 2. In addition
to relation-valued attributes, the robots table shows
list valued (axes, dh-matrix) and tuple-valued attri-
butes (kinematics, joint-angle, dynamics). List val-
ued means that the values occurring are ordered, for
example, in the axes attribute. That is, there is a first
axis, a second axis, etc. A tuple-valued attribute,
such as dynamics, contains a composite attribute
value, namely a value for mass and a value for accel.
Thus tuple-valued attributes provide some structur-
ing capabilities like the RECORD concept in many
programming languages. To retrieve all robots which
have a Screw Driver in the set of endefectors and
which have at least 2 arms, each of which has at least
4 axes, the following query could be issued

SELECT r o
FROM r o I N r o b o t s
WHERE (COUNT(ro.arms) >= 2) AND

(FORALL (a r IN ro .a rms) :
COUNT(ar.axes) >= 4) AND

(E X I S T S (ee I N r o . e n d e f f e c t o r s) :
ee . func t ion = ' S c r e w D r i v e r ')

User-defined data types and functions

Current query languages for relational databases usu-
ally provide only a fixed set of data types and oper-
ations. It is usually not possible to extend this set by
user-defined data types or functions. This is a major
drawback, especially in advanced applications such
as engineering or office automation. In these areas,
special data types and special functions are needed
quite frequently, e.g., a data type for matrices and a
function for matrix multiplication. Since matrices
and matrix multiplication are not provided in con-
ventional query languages, the user has to model
matrices by low-level constructs, e.g., byte strings,
and write a cumbersome application program in a
conventional programming language to interpret
and to manipulate these byte strings as matrices.
Therefore, a mechanism is needed that allows the
user to define his or her own data types and functions
and to add them to the DBMS so that they can be

IBM SYSTEMS X)URNAL. VOL 28, NO 4, 1989

used within the query language as a normal built-in
function on basic data types.

This need has already been recognized in the Peterlee
Relational Test Vehicle (P R T P) , which is known as
one of the first running prototypes of a relational
DBMS. The PRTV provides a simple mechanism for
user extensions. The user can define his or her own
procedures (written in PL/I) that can then be used in
query statements and called by the DBMS at run time.
Since PRTV tables are always in First Normal Form,
complex (hierarchical) data structures as procedure
input and output cannot be processed.

In this section, the AIM approach for user-defined
data types and functions is introduced. It is based on
HDBL and its underlying data model.

As opposed to most other projects on extensibility,
AIM-P intentionally does not strictly enforce the ab-
stract data type paradigm. That is, the structure on
which the user-defined functions are operating may
remain visible. By doing so, any instance of a user-
defined data type may be queried and modified using
normal HDBL expressions. Normal HDBL expressions
and user-defined functions can be mixed. Clearly,
the instances of user-defined data types can also be
treated as data capsules which are accessible only by
way of user-provided functions associated with that
type. It was emphasized that no special knowledge
about database internals is required. An example is
given for a visible user-defined data type and related
functions and then for an encapsulated type.

Assume, for example, that a user wants to see all
robots having a dh-matrix whose value of the deter-
minant is 1. Since computing the determinant of a
matrix is a standard function in linear algebra, a
corresponding function can usually be found in a
library of mathematical functions. The connection
between this function and HDBL is made by declar-
ing, e.g., a type for 4 X 4 matrices of real values as
follows:

In this example, dhtype is the name of a user-defined
type. It can subsequently be used in other DECLARE
TYPE statements or within CREATE statements to
create new database objects. Now the user can define
the interface of a user-defined function for comput-
ing the determinant as follows:

DECLARE
FUNCTION determinant (mat r i x: dhtype) : REAL

DADAM AND LINNEMANN 669

Figure 4 CREATE statement for robots of Table 2

CREATE robots
{ [rob id : STRING (6 FIX) ,

arms :

axes
{ [arm-id : STRING (12 F I X) ,

< [kinematics :
[&-matrix : < 4 FIX < 4 F I X INTEGER >>,
joint-angle :

[min : REAL,
max : REAL I I ,

dynamics :
[mass : REAL,
accel : REAL I I > 1 1 ,

endeffectors :
{ [eff-id : STRING (16 F I X) ,

function : TEXT (1000) I)] }
END

670

In order to make this function work, the user or
system programmer has to program the function
body. In programming the function body, it seems
appropriate to use a general-purpose programming
language. For AIM-P, Pascal has been selected because
the system itself is implemented in this language. To
allow users to implement their own functions for
their own data types, previously declared using HDBL
declare-type statements, the HDBL types (basic ones
and user-defined ones) have to be mapped to Pascal
data structures. As HDBL allows for user-defined
types of nearly unlimited structural complexity, a
Pascal representation as a byte string (character
string) with a linearized representation of the HDBL
data types would make function implementation
rather complicated and error prone. Pascal type
checking would be practically eliminated when pur-
suing this approach.

For AIM-P it was therefore decided to map the atomic
HDBL data types as well as the HDBL constructor
types (set, list, tuple) to corresponding predefined
Pascal data types. This not only leads to more natural
mappings, but also allows the utilization of Pascal’s
strong typing and type checking for the implemen-
tation of user-defined functions. In order to avoid
mapping errors from HDBL-type representation to
Pascal-type representation and vice versa, the map-
ping is not defined by the user but is provided by a
type compiler which is part of AIM-P’S catalog man-
ager. At execution time, before calling a function,
AIM-P will automatically map from the AIM-P internal
representation to the Pascal representation and also

DADAM AND LINNEMANN

will transform the result of the function back into
AIM-P’S internal representation. A comprehensive
treatment of this subject, including implementation
issues and run-time support, can be found in Refer-
ences 47 to 49.

How the Pascal representation looks can be influ-
enced to some extent by specifying HDBL type-COm-
piler directives (STANDARD, DENSE). Analogously, the
Pascal function header is generated automatically.
For our dhtype example, the Pascal repryntation
using the DENSE directive would look like:

TYPE dh type$ l =
RECORD

ACT-ELEM: 8 . . 4 ;
VAL : ARRAY [l. .4] OF REAL

END:
dh type =
RECORD

ACT-ELEM: 0..4;
VAL : ARRAY [l. .4] OF d h t y p e s l

END;

The Pascal function header for the determinant func-
tion declared above looks like:

FUNCTION de te rm inan t (ma t r i x : dh type) : REAL;

The determinant function can now be programmed
in Pascal as follows (assume the existence of a library
function compute-determ for computing the deter-
minant):

BM SYSTEMS JOURNAL, VOL 28. NO 4, 1989

Table 2 The robots table. The attribute axes contains a list (indicated by x. . . >) of tuples and is an ordered relation.
Dh-matrix is also list valued, but the elements of this list are lists again forming a list of lists (in this case a 4x4
matrix). Kinematics and dynamics are tuple valued attributes (indicated by [. . . I) of the (ordered) axes relation.
Joint-angle, in turn, is a tuple valued attribute of kinematics.

I

[robots] r
l- T rob-id [endeffectors] (arms]

< axes > F function eff-id

E200

E150

E180

arm-id

[klnematics 1 I [dynamics 1
T < dh-matrix > 1 joint-angle I mass accel -

max

180 50.0 1 .o
min

Rob1 left < 1, 0, 0, 1 >
< 0, 0, 1 , 0 >
< 0, -1, 0, 1 0 0 >
< 0, 0, 0, 1 >

-180 Gripper

Welder

Screw Driver
-250

-80

< 1, 0, 0, 70 >
< 0, 1, 0, 0 >
< 0, 0, 1 , 20 >
< 0, 0, 0, 1 >

< 0, 0, 1 , 0 >
< 1, 0, 0, 40 >
< 0, 1, 0, -10 >
< 0, 0, 0, 1 >

< 0, -1, 0, 0 >
< 0, 1 , 0, 0 >
< 0, 0, 1 , 0 >
< 0, 0, 0, 1 >

-180

right

Rob2 left

FUNCTION determinant(matrix: dhtypej: REAL;
VAR local: ARRAY [1..4, 1..4] OF REAL;
VAR i ,j: INTEGER;
BEGIN

FOR i:=l TO 4 DO
FOR j:=1 TO 4 DO

local[i,j]:= matrix.val[i].val[jl;
determinant := compute_determ(loca1,4)

END

After compiling the determinant function and link-
ing it to the system, it can be used in arbitrary HDBL
expressions wherever a REAL value is allowed as a
result-type expression. For example, one can retrieve
all robots having a dh-matrix whose determinant
equals 1 by the following HDBL query:

SELECT r
FROM r IN robots
WHERE EXISTS(ar IN r.arms):

EXISTS(ac IN ar.axes):
determinant(ac.kinematics.dh-matrix) = 1

A user-defined function may even be as simple as a
square root function that does not require any new
type because only real values are involved. There-
fore, a square root function can be declared as fol-
lows:

DECLARE FUNCTION square-root (r:REAL) : REAL

The Pascal implementation is very simple:

DADAM AND UNNEMANN 671 BM SYSTEMS XWRNAL, VOL 28. NO 4, 1989

FUNCTION square-root(r:REAL): REAL;
BEGIN

END

Another example is the introduction of a data type
COMPLEX for complex arithmetic. Assume that an
abstract data type COMPLEX is desired where the user
need not see the internals of a value of type COMPLEX
but may use COMPLEX values only by functions. This
can be done by declaring a type to be encapsulated.
In this case, the system enforces the condition
whereby instances of this type are accessible only by
way of functions associated with that type. In this
way, the representation can be changed without hav-
ing to change the queries. A type COMPLEX can be
declared as follows:

square-root := s q r t (r)

DECLARE TYPE COMPLEX
[re:REAL, im: REAL]

EIC END

The keyword ENC means that COMPLEX iS an encap-
sulated type. The corresponding Pascal type would
be:

TYPE COMPLEX =
RECORD

re: REAL;
im: REAL

END

The complex arithmetic now is defined by functions,
for example:

DECLARE
FUNC

DECLARE
FUNC

DECLARE
FUNC

The co
simple:

ION compl_rnake(rl,r2:REAL): COMPLEX;

ION compl-add(cl,cZ: COMPLEX): COMPLEX:

ION compl-negate(c:COMPLEX): COMPLEX:

responding Pascal implementation is very

FUNCTION compl_make(rl,r2: REAL): COMPLEX;
VAR r e s u l t : COMPLEX:
BEGIN

resu
resu
c omp

END;

1 t . r e := rl;
1 t . im := r2;
1-make := r e s u l t

672 DADAM AND LINNEMANN

FUNCTION cornpl_add(cl,c2: COMPLEX): COMPLEX:
VAR r e s u l t : COMPLEX;
BEG1 N

resu l t . re := c l . r e t c2.re;
r e s u l t . i m := c l . i m t c2.im;
compl-add := r e s u l t

END;
FUNCTION compl-negate(c:COMPLEX): COMPLEX;
VAR r e s u l t : COMPLEX:
BEGIN

r e s u l t . r e := -c.re;
r e s u l t . i m := -c.im;
compl-negate := r e s u l t

END ;

The data type COMPLEX can now be used within any
CREATE statement for creating database objects. With
the help of the functions, values of type COMPLEX
can be used within HDBL queries.

All structure types which can be created using the
type mechanism of HDBL are always also valid HDBL
types. Consequently, user-defined types can also oc-
cur, e.g., on the left side of an assignment expression,
on its right side, or they can be input for a subsequent
step. The type and function mechanism has become
an integral feature of the data model and language
Of AIM-P.

On-line and application program interface

AIM-P supports an on-line interface for ad hoc queries
as well as an application program interface. The on-
line interface accepts input of HDBL statements (data
definition, query, data manipulation, type and func-
tion definition) and offers facilities for querying the
catalogs (object catalog, type catalog, function cata-
log), for editing and retrieving stored queries and for
browsing query results. It also supports user-pro-
vided display functions for user-defined data types.

The AIM-P application program interface (API) fol-
lows tlg same philosophy as System R'O and
SQLIDS. An API pre-compiler takes API language
statements embedded in the source code of the ap-
plication program and translates them into respec-
tive subroutine calls to the API run-time system and
appropriate type and variable declarations (mainly
for parameter passing) of the target host program-
ming lang~age.~' The API language constructs can be
roughly divided into two groups: declarative state-
ments and operational statements. These language
constructs will be summarized with the help of some
selected examples. More detailed descriptions of this
language can be found in References 52 and 53.

BM SYSTEMS JOURNAL, VOL 28. NO 4, 1989

Figure 5 Examples of DECLARE statements

%INCLUDE celltup / * embedding of PASCAL representation for CELLTUP */

BEGIN DECLARE DATA;
type

staff-type = record
eno : integer;
funct : string(30)

end;

staff-arr-type = array [1..50] of staff-type;

var
dn0 : integer;
dname : string(l0) ;
complex-cell-data : CELLTUP; / * variable of user defined data type CELLTUP */
staff : staff-arr-type;
staff-info : AIM-RESULT-DESCR;

END DECLARE DATA;

BEGIN DECLARE CURSOR;
DECLARE RESULT manudept FOR UPDATE FROM QUERY-STATEMENT

SELECT [x.dno, x.dnarne, x.manuf-cells, x.staff]
FROM x IN rnanuf-depts;

DECLARE CURSOR d-cursor WITHIN manudept:

DECLARE CURSOR s-cursor FOR staff-
DECLARE CURSOR c-cursor FOR manuf cells WITHIN d-cursor;

WITHIN d-cursor;
END DECLARE CURSOR;

The declarative statements are used to describe da-
tabase objects (DECLARE RESULT), the application
program variables that take values of the database
objects (DECLARE DATA), and cursors for navigating
within objects (DECLARE CURSOR); see Figure 5 . In
addition, there are also statements for exception
handling (see Figure 6) .

Cursors are declared using DECLARE CURSOR state-
ments. In contrast to System R or SQL/DS, which
support only flat relations, AIM-P cursors are ordered
in a hierarchy. In Figure 5 (based on Table 1)
c-cursor and s-cursor depend on d cursor. That is,
c-cursor can only operate on thosemanufacturing
cells belonging to the manufacturing department on
which d-cursor is currently positioned. Besides defin-
ing the scope of dependent cursors, a cursor also
gives access to the data elements at its level. That is,
d-cursor provides access to attributes dno (atomic),
dname (atomic), manuf-cells (set-valued), and st&
(set-valued); c-cursor provides access to attributes
cid (atomic), non-nc-much (set-valued), and
nc-mach (set-valued).

The operational statements are used to drive the API
by way of an application program. In essence, there
are query-execution- and update-propagation-re-
lated statements, cursor-related statements, and ses-
sion- and transaction-oriented statements. To open
a session (connect to the database), a BEGIN SESSION
statement that provides a user identification and a
password has to be issued. Transactions can subse-
quently be started with BEGIN TRANSACTION and
closed using a COMMIT TRANSACTION or ABORT
TRANSACTION statement. Finally, a session can be
closed with an END SESSION.

The statement EVALUATE manudept triggers both the
execution of the query shoKn in Figure 5 and the
materialization of the result. On this result, cursors
can be opened to transfer the data into application
program variables (and vice versa). After having
issued the statement OPEN CURSOR d-cursor, this
cursor and all dependent cursors are open and can
be positioned by MOVE statements.
For transferring data into application program vari-
ables, the GET statement is provided. An example of

IBM SYSTEMS JOURNAL, VOL 28. NO 4. 1989 DADAM AND UNNEMANN 673

I

Figure 6 MOVE and GET statements with object-oriented data transfer
~~~~ 

WHENEVER  END  LEAVE; 

repeat 
MOVE  d-cursor; /*  on (next)  manufacturing  department */ 
GET d-cursor  ATTR-WISE dno,  dname  INTO  dno,  dname; 

/ *  here  processing  of  DNO  and  DNAME  in  the  application  program * /  

repeat 
MOVE c-cursor; /*  on (next)  manufacturing  cell */  

GET c-cursor  OBJECT-WISE INTO complex-cell-data; 

/ *  one  manufacturing  cell  with  all  its  non-nc  machines */  
/*  and nc machines  has  now  been  transferred  into */ 
/*  program  variable complex-cell-data */  

/ *  here processing  of  non-nc  machines  and  nc  machines  data * /  

until  false; 

repeat 
MOVE s-cursor /*  on (next) staff  member */  
GET s-cursor  BY 50 TUPLE-WISE  INTO  staff : staff-info; 

/ *  the actual  number  of  retrieved  staff  tuples  is  returned  in * /  
/ *  staff-inf0.n-units-ret */  

/ *  here processing  of  STAFF  array in the  application  program * /  

until  false; 

/ "  here  additional manuf.  department  related  processing */  

until  false; 

using  these functions is  given in Figure 6. The GET 
statements in this  figure  deserve  some further com- 
ments;  they demonstrate that data transfer  can  be 
performed in several  ways: 

The option ATTR-WISE specifies that the atomic 
attribute values  accessible  by the respective  cursor 
will  be transferred into individual  application  pro- 
gram  variables  (in  Figure 6, attributes dno and 
dname are  transferred into program  variables dno 
and dname). 
The option TUPLE WISE tells the system that all 
atomic attribute d u e s  at the current cursor po- 
sition will  be taken  as a unit (tuple) and be  assigned 
to a corresponding  (type  compatible)  record 
variable. The specification BY n (n > 1) triggers 
the  transfer of more than one instance  (tuple) 

at a time.  An optional variable of type 
AIM-RESULT-DESCR (see st&-info in Figure 5 and 
Figure 6) can be  used to tell the user  how  many 
data instances (tuples) have  actually  been trans- 
ferred into the application  program. 
The option OBJECT-WISE specifies, in contrast to 
the keywords TUPLE-WISE and ATTR-WISE, that all 
the atomic and nonatomic data at the current 
cursor  position will  be transferred into the appli- 
cation program: A complete  complex  object  is 
transferred at one time (by a single  call to the API 
run-time system). Of course, an appropriate pro- 
gram  variable  must  be  provided to deliver  all  these 
data, especially the nonatomic (set-valued,  list- 
valued) data. Appropriate  type  declarations  for 
these  program  variables  (e.g., CELLTUP in Figure 
5 )  can  be obtained from the type  compiler of 

674 DADAM AND LINNEMANN IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989 



AIM-P in conjunction with the support of user- 
defined data types  as  described in the previous 
section  (see  References 48 and 49 for  details). 

The WHENEVER clause in Figure 6 is  used to specify 
exception  handling. In this particular case, the hand- 
ling of an END condition is  specified (LEAVE is a 
Pascal/VS !!atement to leave the current REPEAT . . . 

If a result  has  been  declared FOR UPDATE as in Figure 
5 ,  it can  be both read and modified. For that, the 
cursors  must be positioned in the same way as for 

UNTIL loop ). 

AIM-P has  been built  in a modular 
fashion. 

reading (GET, FETCH). UPDATE, INSERT, Or DELETE 
statements  (which  are  syntactically very similar to 
the statement) can  be  issued to modify the 
data. After  modification, the PROPAGATE State- 
ment is  used to transfer the modified  or new data 
from the workstation (back) to the database server. 
This,  however,  does not mean that the changes are 
already committed. At the server  site, the modifica- 
tions are  only  performed  in the private  workspace  of 
the transaction. It is still  necessary  for the user to 
subsequently  perform either a COMMIT or an  ABORT.'^ 

AIM-P system architecture 

The AIM-P architecture is constructed as a client- 
server  architecture. That is, a database server runs at 
a host  system and serves a collection of workstations. 
This architecture is  motivzged  by a scenario where a 
collection of workstations autonomously perform 
complex and time-consuming tasks such as  design 
applications. It is assumed that these applications, 
written in a standard programming  language, rely 
on the  services of a central database  server. By means 
of a high-level query and data manipulation language 
(such  as HDBL, see earlier  section), representations of 
objects that may  be  complex are requested  from the 
server.  After  being  processed at the workstation, 
changed data may  be  transferred  back to the central 

IBM  SYSTEMS  JOURNAL, VOL 28, NO 4, 1989 

site.  Because  of the potential complexity and volume 
of data, the workstation cooperatively supports the 
server in propagating  changes  back to the central 
data repository. 

The subsystem running at the workstation  consists 
of the Result  Walk  Manager  which is a subcompo- 
nent of the Complex  Object  Manager  (see  Figure 7 )  
of the AIM-P server, the On-line interface,  which 
provides an interactive interface  for  querying the 
database and displaying the results, the API precom- 
piler, and the API run-time system  (see  previous 
section). The On-line interface, API precompiler and 
API run-time system  are  usually  only  available at the 
workstation. The remainder of this section concen- 
trates on the description of the server architecture. 

In order to allow  system  modifications  because  of 
changing requirements or  to test new ideas, AIM-P 
has  been  built in a modular fashion  (see  Figure 7). 
The components Buffer Manager,  Segment Man- 
ager,  Catalog  Manager,  Supervisor, and Communi- 
cation Facility  perform the usual functions as in any 
DBMS. That is, they  manage the 1/0 activity  from 
external  storage into the system  buffer and vice  versa, 
handle segment  (file) creation, deletion, and free 
space  bookkeeping, and also  supervise the commu- 
nication  between the virtual DBMS machine and 
other virtual or real  machines. 

The Query  Processor is responsible  for  parsing an 
HDBL query, performing query optimization (alge- 
braic  query optimization and access path selection), 
and executing the query (including data manipula- 
tion requests). This component is composed  mainly 
of three major components: the Parser, the Query 
Tree Optimizer, and the Query Tree Evaluator (see 
Reference 58). 

The Index  Manager  consists, in principle, of  two 
parts: one handles normal DBMS indexes (such as 
B-trees), whery!$he other was conceived to handle 
the text  index. 

The Subtuple Manager is responsible  for  retrieving 
subtuples, or records (the basic  logical  access units 
in AIM-P), out of  pages and for mapping subtuples to 
pages. Subtuples can be  very small but can also span 
many pages,  especially in cases  of  long  fields. (Time 
version management is also done by this compo- 

support the transaction concept. It offers  Begin-of- 
Transaction (BOT), Commit, and Abort commands 
to start a new transaction, to make its updates 

nent.43,59,60 ) In addition, it has  been  designed to 

)ADAM AND LINNEMANN 675 



Figure 7 Architecture: A central database server  is driven by  a collection of workstations 

WORKSTATION OTHER T K S T A T I O N S  \ 
CENTRAL  DATABASE  SERVER 

I I 

676 DADAM  AND LINNEMANN IBM SYSTEMS JWRNAL. VOL 28, NO 4, 1989 



permanent, or to drop them, respectively. For this 
reason,  the  Subtuple  Manager maintains for  each 
transaction an individual temporary workspace 
where all  updates are performed. At commit time 
the content of this  workspace  is  written to a trans- 
action-oriented log  file  before the updates themselves 
are  made  available to other transactions. 

The Complex  Object  Manager is the only compo- 
nent which can determine structure and implemen- 
tation. Whereas the Subtuple Manager handles all 
subtuples  in the same way, the Complex  Object 
Manager  distinguishes  between structure subtuples 
and data subtuples. Structure subtuples,  called mini- 
directories in AIM-P terminology, contain structural 
information (e.g., parent-child relationships), 
whereas data subtuples contain only data (except 
some  management information such  as subtuple 
length and null  value information). 

The Complex  Object  Manager cooperates very 
closely  with the Subtuple  Manager and with the 
Query  Processor, or by relieving the latter from 
taking  care of details about the physical  aspects  of 
data placement and retrieval. In cooperation with 
the Subtuple  Manager and the Segment  Manager, 
the Complex  Object  Manager  places the data on 
external  storage  such that data belonging to  one 
object  (complex  object, N F ~  tuple) is  stored on con- 
tiguous pages,  if  possible. That is, it directs physical 
clustering.  Moreover, the Complex  Object  Manager 
also  masks the different representations of complex 
objects  from the Query  Processor. In the current 
implementation of AIM-P, the three different  repre- 
sentations that may occur and need to be supported 
are  database,  object  buffer, and external. 

The database representation is  used to represent 
database  objects on external storage and in the DBMS 
system  buffer. This structure has  been  designed to 
efficiently support access to any object  especially  for 
processing projection and selection  operation^.^',^^^^' 
The object buffer representation is  used to represent 
the results of a query  as well as temporary interme- 
diate  results. This representation is  somewhat more 
compact than the database representation and is also 
used  for the workstation-server cooperation.62 The 
third representation is the external representation 
of HDBL types in Pascal structures. This representa- 
tion is  used for supporting user-defined data types 
and functions as  described  earlier.  It  is  also  used 
for passing query  results to application programs if 
OBJECT-WISE transfer  has  been  requested  (see the 
section on on-line and application program inter- 
face). 

IBM  SYSTEMS  JOURNAL, VOL 28, NO 4, 1989 

For a more comprehensive  discussion of the AIM-P 
architecture refer to References 43 and 44. 

Summary,  status,  and  outlook 

The AIM project is a research and development effort 
of the Heidelberg  Scientific Center to better under- 

AIM-P is based on the  concept 
of nested  relations. 

stand the requirements of database technology  for 
integrated applications. AIM-P, the research prototype 
under development at the Scientific Center, is  based 
on the concept of nested  relations. The experiences 
from applications or analytical studies with the Ex- 
tended N F ~  Data Model,  e.g., in the areas of real 
estate information systems,36  chemical information 
~ystems,~' geometric  modeling,63 and C A D / C A M ~ ~ +  
are very promising and give a high  degree  of  confi- 
dence that this data model  shows the correct  direc- 
tion for future database management systems. 

The first  version  of AIM-P that was nearly complete 
became operational at the end of 1986. Since then, 
the system  has  been  installed at various  places  within 
and outside of IBM for  research and study purposes. 
The current implementation status (Release 2.0) sup- 
ports the following: 

Flat and nested relations, both unordered and 
ordered. Legal attribute types are atomic, flat, and 
nested  relations, and lists  or  sets of atomic values. 
Sets of sets  or  lists of  lists  are not yet supported. 
A large  subset of HDBL is operational, but only 
rudimentary query optimization is currently per- 
formed. View support is  still  mi;?ing. 
Access to historical data in ASOF fashion 
Access to HDBL facilities both in on-line mode and 
through the application program interface 
Support of  user-defined data types and functions 
Support of textual data (text  search  capabilities) 
Workstation-server support 
Basic transaction support (abort or commit) in a 
single-user environment 

DADAM  AND LINNEMANN 677 



In this brief  description of the project,  only a few 
aspects of the overall AIM project  effort could be 
highlighted.  System  features  such  as time version 
support (which  has  been  deeply integrated into 
A I M - P ~ ~ + ~ ~ ~ ~ ~ ) ,  the integration of text  search  capabili- 
ties, and the important aspect of cooperative  proc- 
essing in a workstation-server en~i ronment~~’~’  were 
not discussed in this paper.  Also, joint research  ac- 
tivities  with partners at the University of  Damst:$; 
in the area of workstation-server cooperation, 
at the University of Hagen on engineering  design 
version ~upport,~O,~’ and with our partners in the 
R’D’ project7* at the University of Karlsruhe in the 
area of robotics and abstract data types 
have  significantly  influenced and contributed to  our 
work but were not covered in this paper. 

Conceptual work  has  been started to improve the 
query processing of AIM-P by integrating indexes 
for  extended NF’ tables and to develop  rules  for 
query transformation and optimization. In addition, 
work has  been started on sorting and duplicate 

(that will provide the basis  for the 
support of recursive q u e r i e ~ ~ ~ - ~ ~ ) ,  and also on object- 
oriented concurrency control 

Our main target,  however, remains the understand- 
ing of database requirements in advanced, integrated 
application areas. We therefore will increase the 
number of  case studies performed in such areas using 
our prototype. Direction and emphasis of our future 
research and development work  will, as in the past, 
be  heavily  influenced by the requirements and open 
problems  discovered in these  areas. 

Acknowledgments 

The development of AIM-P was (and is) a cooperative 
effort of IBM scientists,  visiting  scientists, and stu- 
dents. In addition to the authors, the AIM-P group 
presently  consists of  R.  Erbe, J. Gunauer, U. Herr- 
mann  (a doctoral student), U.  Kessler (a visit- 
ing  scientist),  K. Kuspert, V. Obermeit, P.  Pistor, 
E. Roman, and N. Sudkamp. Prior project members 
who  have made major contributions to the AIM-P 
development are V. Lum, who  managed the project 
from  September 1982 to August 1985, and 
G. Walch,  as well as our visiting  scientists F. Ander- 
sen, H.-D. Werner, and J. Woodfill. The basic  re- 
search  work  performed by H.-J.  Schek (manager of 
the AIM department prior to V. Lum) and 
G. Jaeschke prior to this project  has  provided the 
stimulating factor and was an  important part of the 
theoretical basis  for the whole development effort. 

48,49,64,66,73-76 

678 DADAM AND LINNEMANN 

In addition, much valuable conceptual work  for 
AIM-P or AIM-P-related problems has also been  per- 
formed by our visiting  scientists H. Blanken, 
B. Hansen, M. Hansen, G. Saake, M. R. Scalas, 
H.-J. Schneider, J. Teuhola, R. Traunmiiller, 
H. Wedekind, and L.  Wegner.  All  of  these con- 
tributions are gratefully  acknowledged. The authors 
want to thank K. Kuspert, P. Pistor, and E. Roman 
for  carefully  reading an earlier  version  of this paper 
and giving  valuable  suggestions  which  helped to 
improve the presentation. Thanks also to R.  Erbe 
and G.  Saake  for their comments. 

Cited  references and  notes 

1. R.  L. Haskin and R. A. Lone, “On extending the functions of 
a relational database system,” Proceedings  of the  ACM  SIG- 
MOD Conference, Orlando, FL (June 1982), pp.  207-212. 

2. R. Lone and W. Plouffe, “Complex objects and their use in 
design transactions,” Proceedings  of the Engineering Design 
Applications Stream, ACM-IEEE Data Base Week, San Jose, 
CA (May 1983),  pp.  115-121. 

3. L. A.  Rowe and M. Stonebraker, “The Postgres data model,” 
Proceedings of VLDB, Brighton, UK (September 1987), pp. 

4.  M. Stonebraker, J. Anton, and E. Hanson, “Extending a 
database system  with procedures,” ACM Transactions on Da- 
tabase Systems 12, No. 3,  350-376 (September 1987). 

5. M. Stonebraker, “Inclusion of  new types in relational data 
base  systems,” Proceedings  of the Second International Con- 
ference on Data Engineering, Los  Angeles (February 1986), 

6.  M. Stonebraker and L. A. Rowe, “The design  of  Postgres,” 
Proceedings  of the  ACM  SIGMOD Conference, Washington 

7. M. Stonebraker et al., “Que1 as a data type,” Proceedings  of 
theACMSIGMOD Conference, Boston (June 1984),  pp.  208- 
2 14. 

8. D. Dayal, F. Manola, A. Buchman, U. Chakravarthy, D. 
Goldhirsch, S. Heiler, J. Orenstein, and A. Rosenthal, “Sim- 
plifying  complex  objects: The PROBE approach to modelling 
and querying them,” Informatik-Fachberichte 136, 17-37, 
Springer-Verlag,  Berlin ( 1987). 

9. D. Goldhirsch and  J. A. Orenstein, “Extensibility in the 
PROBE database system,” Data Engineering 10, No. 2,  24- 
31 (June 1987). 

10. P. Schwan, W. Chang, J. C. Freytag, G. Lohman, J. Mc- 
Pherson, C. Mohan, and H. Pirahesh, “Extensibility in the 
Starburst database system,” Proceedings  of the 1986 IEEE 
International Workshop on Object Oriented Database Sys- 
tems, Pacific Grove, CA (1986), pp.  85-93. 

11. B. Lindsay, J. McPherson, and H. Pirahesh, “A data manage- 
ment extension architecture,” Proceedings  of the  ACM  SIG- 
MOD Conference, San Francisco (May 1987), pp. 220-227. 

12. D. S. Batory et al., GENESIS:  A Reconfigurable Database 
Management System, TR-86-07, Department of Computer 
Science, University of Texas at Austin (March 1986). 

13. M. J.  Carey, D. J. DeWitt, D. Frank, G. Graefe, M. Murali- 
krishna, J. E. Richardson, and E.  J. Shekita, “The architecture 
of the EXODUS extensible  DBMS,” Proceedings of the 1986 
IEEE International Workshop on Object Oriented Database 
Systems, Pacific Grove, CA (1986), pp.  52-65. 

83-96. 

pp.  262-269. 

(1986), pp. 340-355. 

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989 



D 

14.  H.-B. Paul, H.J.  Schek,  M.  H.  Scholl, G. Weikum, and U. 
Deppisch, “Architecture and implementation of the Darm- 
stadt database kernel system,” Proceedings  of the  ACM SIG- 

15. T. Harder, K. Meyer-Wegener, B. Mitschang, and A. Sikeler, 
“PRIMA-A  DBMS prototype supporting engineering appli- 
cations,” Proceedings of VLDB  87, Brighton, UK (1987), pp. 

16.  D. S. Batory and A. P. Buchmann, “Molecular objects, ab- 
stract data types and  data models: A framework,” Proceedings 
of VLDB 84, Singapore  (August  1984),  pp.  172-184. 

17. K. R. Dittrich, “Object oriented database systems: The notion 
and the issues,” Proceedings  of the I986 ZEEE International 
Workshop on Object Oriented Database Systems, Pacific 
Grove, CA (1986), pp. 2-6. 

18. A. Albano,  L.  Cardelli, and R. Orsini, “Galileo: A strongly- 
typed, interactive conceptual language,” ACM Transactions 
on Database Systems 10, No. 2,230-260 (June 1985). 

19. J. Mylopoulos, Ph. A. Bernstein, and H. K. T. Wong,  “A 
language  facility  for  designing database-intensive applica- 
tions,” ACM Transactions on Database Systems 5, No.  2, 
185-207 (June 1980). 

20.  M. H. Scholl and H.-J. Schek,  Editors, Theory and Applica- 
tions of Nested Relations and Complex Objects (workshop 
material), International Workshop, Darmstadt, West Ger- 
many (April 1987). 

21. S. Abiteboul, P. C. Fischer,  H.-J.  Schek, Editors, “Nested 
relations and complex objects,” Lecture Notes in Computer 
Science 361, Springer-Verlag,  Berlin (1 989). 

22. G. Ozsoyoglu, Z. M.  Ozsoyoglu, and V. Matos, “Extending 
relational algebra  with  set-valued attributes and aggregate 
functions,” ACM Transactions on Database Systems 12, No. 
4,  566-592 (December 1987). 

23. M. M. Astrahan et al., “System R Relational approach to 
database management,” ACM Transactions on Database Sys- 
tems 1, No. 2, 97-137 (June 1976). 

24.  H.-J.  Schek, “The reference string indexing method,” Proceed- 
ings on Information Systems Methodology (G. Bracchi,  P.  C. 
Lockemann, Editors), Venice,  Italy,  1978, Lecture Notes in 
Computer Science65, Springer-Verlag,  Berlin (1978), pp.  432- 
459. 

25. D. Kropp, H.-J.  Schek, and G. Walch, “Text field indexing,” 
Proceedings  of the Meeting of the German Chapter of the  ACM 
on Data Base Technology (J. Niedereichholz, Editor), Bad 
Nauheim, West Germany, September 1979,  Teubner-Verlag, 
Stuttgart (1979), pp.  101-115. 

26. D. Kropp and  G. Walch,  “A graph-structured text-field index 
based on word fragments,” Information Processing and Man- 
agement 17(6), 363-376 (198 1). 

27. F. Bancilhon, P. Richard, and M.  Scholl, “On line processing 
of compacted relations,” Proceedings  of VLDB 82, Mexico 
(September  1982),  pp.  263-269. 

28. E. F. Codd, “A relational model of data for large shared data 
banks,” Communications of the ACM 13, No. 6 ,  377-387 and 
70-94 (June 1970). 

29. G. Jaeschke, An Algebra  of  Power Set Type Relations, Tech- 
nical Report TR 82.12.002,  Heidelberg  Scientific Center, IBM 
Corporation, Heidelberg,  West Germany (December 1982). 

30. G. Jaeschke and H.-J.  Schek, “Remarks on the algebra  of non 
first normal form relations,” Proceedings  of the  ACM  SIG- 
ACT-SIGMOD  Symposium on Principles  of Data Base Sys- 
tems, Los  Angeles  (March  1982),  pp.  124-138. 

31. G. Jaeschke, Nonrecursive Algebra for Relations with Relation 
Valued Attributes, Technical Report TR 85.03.001,  Heidel- 
berg  Scientific Center, IBM Corporation, Heidelberg,  West 
Germany (March 1985). 

P MOD Conference, San Francisco (May  1987),  pp.  196-207. 

433-442. 

D 

D 

D 

D 

IBM SYSTEMS JOURNAL, VOL 28, NO 4, 1989 

D 

32. G. Jaeschke, Recursive Algebra for  Relations with Relation 
Valued Attributes, Technical Report TR 85.03.002,  Heidel- 
berg  Scientific Center, IBM Corporation, Heidelberg,  West 
Germany (March 1985). 

33. H.-J.  Schek and P. Pistor, “Data structures for an integrated 
database management and information retrieval system,” Pro- 
ceedings of the VLDB Conference, Mexico (September 1982). 

34. B. Hansen, M. Hansen, and P. Pistor, Formal Specijication of 
the  Syntax and Semantics of a High Level User Interface to 
an Extended NF’ Data Model (unpublished, 1982). 

35.  P. Pistor, B. Hansen, and M. Hansen, “An SQL-like query 
interface for the NF2 model,” in Znformatik-Fachberichte 72, 
Springer-Verlag (1983), pp.  134-147 (in German). 

36.  L. Griindig and P. Pistor, “Real estate information systems 
and their requirements for database interfaces,”  in Informatik 
Fachberichte 72, Springer-Verlag (1983), pp.  61-75 (in Ger- 
man). 

37.  P. Dadam, K. Kiispert, F. Andersen, H. Blanken, R. Erbe,  J. 
Giinauer, V. Lum, P. Pistor, and  G. Walch, “A DBMS  pro- 
totype to support extended N$ relations: An integrated view 
on flat  tables and hierarchies,” Proceedings  of the  ACM SIG- 
MOD Conference, Washington (May 1986), pp. 356-367. 

38. SQLIData  System, Application Programming, SH24-50  18-2, 
IBM Corporation (August  1983);  available through IBM 
branch offices. 

39. Surrogates (references) are not supported in the current im- 
plementation. 

40.  P. Pistor and R. Traunmiiller, A Database Language for  Sets, 
Lists, and Tables, Technical Report TR 85.10.004,  Heidelberg 
Scientific Center, IBM Corporation, Heidelberg,  West Ger- 
many (October 1985). 

4 1, P. Pistor and R. Traunmiiller, “A database language  for  sets, 
lists, and tables,” Informution Systems 11(4), 323-336 (1986). 

42.  P.  Pistor and F. Andersen, “Designing a generalized N g  
model with an SQL-type interface,” Proceedings  of VLDB 86, 
Kyoto, Japan (August 1986), pp.  278-288. 

43.  P. Pistor, “The advanced information management prototype: 
Architecture and language interface overview” (invited talk), 
Proceedings of 3rd Journees Bases de Donnees Avancees, Port- 
Camargue, France (May  1987),  pp. 1-20. 

44.  P.  Pistor and P. Dadam, “The advanced information manage- 
ment prototype,” Lecture Notes in Computer Science 361, 
Springer-Verlag,  Berlin (1989), pp.  3-26. 

45.  F.  Andersen, V. Linnemann, P. Pistor, and N. Siidkamp, 
Advanced Information Management Prototype:  User Manual 
for the Online Interface of the Heidelberg Data Base Language 
(HDBL) Prototype Implementation, Technical Note TN 86.01, 
Heidelberg  Scientific Center, IBM Corporation, Heidelberg, 
West Germany (February 1988). 

46. S. J.  P. Todd, “The Peterlee Relational Test Vehicle-A 
system  overview,” IBM  Systems Journal 15, No.  4,  285-308 
(1976). 

47.  A. Kemper, K. Kiispert, V. Linnemann, and M. Wallrath, 
Pascal Structures for  HDBL Types: Layout,  Naming Conven- 
tions, Storage Allocation, and Usage in Functions, Technical 
Note TN 87.05,  Heidelberg  Scientific Center, IBM Corpora- 
tion, Heidelberg,  West Germany (October 1987). 

48.  P. Dadam, K. Kiispert, N. Siidkamp, R. Erbe, V. Linnemann, 
P. Pistor, and G. Walch, “Managing complex  objects in RZDZ,” 
in HECTOR, Heterogeneous Computers Together, Volume IZ, 
Basic Projects, Springer-Verlag,  Berlin (1988), pp.  304-331. 

49. V. Linnemann, K. Kiispert, P. Dadam, P. Pistor, R. Erbe, A. 
Kemper, N. Siidkamp, G. Walch, and M. Wallrath, “Design 
and implementation of an extensible database management 
system supporting user defined data types and functions,” 

DADAM  AND LINNEMANN 679 



Proceedings  of VLDB 88, Los  Angeles (AugustISeptember 

50. D.  D. Chamberlin et al., “Support for repetitive transactions 
and ad  hoc  queries  in  System R,” ACM Transactions on 
Databasesystems 6,  No. I ,  70-94 (March 1981). 

1988),  pp.  294-305. 

5 1. Currently only  Pascal  is supported. 
52.  R. Erbe, N. Siidkamp, and G. Walch, Advanced Information 

Management Prototype, Application Program Interface User 
Manual, Technical Note TN 88.03,  Heidelberg  Scientific  Cen- 
ter, IBM Corporation, Heidelberg,  West Germany (November 
1988). 

53. R. Erbe, N. Siidkamp, and G. Walch, “An application pro- 
gram  interface  for a complex  object database,” Proceedings of 
the 3rd International Conference on Data and Knowledge 

54. The EVALUATE and OPEN CURSOR statements are not 
Bases, Jerusalem (June 1988). 

55.  PASCALIVS Language Reference Manual, 3rd Edition, Pro- 
shown in Figure 6. 

gram  No. 5796-PNQ (1985); available through IBM branch 
offices. 

56.  K.  Kiispert, U. Herrmann, R. Erbe, and P. Dadam, “The 
recovery  manager  of the advanced information management 
prototype,” Proceedings ofReliability 89, Brighton, UK (June 

57.  Within this context a workstation can be either a physically 
separate machine (e.g., a dedicated engineering workstation 
with  graphics  device) or just another virtual machine running 
on the  same  host computer as the database server. 

58. V. Lum, P. Dadam, R. Erbe, J. Giinauer, P. Pistor, G. Walch, 
H.-D.  Werner, and J. Woodfill,  “Design  of an integrated 
DBMS to support advanced applications,” Proceedings  of the 
International Conference on Foundations of Data Organiza- 
tion (invited talk), Kyoto, Japan (May 1985),  pp.  21-31. 

59. P. Dadam, V. Lum, and H.-D. Werner, “Integration of time 
versions into a relational database system,” Proceedings VLDB 
84, Singapore  (August  1984),  pp.  509-522. 

60.  V. Lum, P. Dadam, R. Erbe, J. Giinauer, P. Pistor, G. Walch, 
H.-D.  Werner, J. Woodfill,  “Designing  DBMS support for the 
time dimension,” Proceedings  of the  SIGMOD 84 Conference, 
Boston (June 18-21),  pp.  115-130. 

61. U. Deppisch, J. Giinauer, and G. Walch,  “Storage structures 
and addressing concepts for  complex  objects of the N g  rela- 
tional model,” Proceedings  of the GI Conference on Daten- 
banksysteme f i r  Biiro, Technik und Wissenschaji, Karlsruhe, 
West Germany, March 1985,  Springer-Verlag,  Berlin (1985), 
pp.  441-459  (in German). 

62. K. Kiispert, P. Dadam, and J. Giinauer, “Cooperative object 
buffer management in the advanced information management 
prototype,” Proceedings of VLDB 87, Brighton, UK (Septem- 
ber  1987),  pp.  483-492. 

63. A. Kemper and M. Wallrath, “An  analysis  of geometric mod- 
elling  in  database  systems,” ACM Computing Survey.s 19, No. 
1,47-91 (March 1987). 

64.  R. Dillmann and M. Huck, “R2D2: An integration tool for 
CIM,” in HECTOR, Heterogeneous Computers Together, Vol- 
ume II, Basic Projects, Springer-Verlag,  Berlin (1988), pp. 

65.  M.  Mitchell, National Bureau  of Standards, Automated Man- 
ufacturing  Research  Facility (AMRF), Gaithersburg, private 
communication, Heidelberg (January 1987). 

66. P. Dadam, R. Dillmann, A. Kemper, and P. C. Lockemann, 
“Object oriented data management for  robot programming,” 
Informatik Forschung  und Entwicklung, Springer-Verlag,  Hei- 
delberg 2, 151-170 (1987), (in German). 

67. This AIM-P feature has not been  described  in this paper. More 
on this topic can be found in References  43,  59, and 60. 

1989),  pp.  3B/4/1-I  1. 

355-  372. 

680 DADAM AND LINNEMANN 

68. U. Deppisch, J. Giinauer, K. Kiispert, V. Obermeit, and G. 
Walch, “Considerations about the cooperation between data- 
base  server and workstations,” Proceedings  of the 16th GI 
Jahrestagung, Berlin, October 1986, Informatik-Fachberichte 
126,  Springer-Verlag,  Berlin (1986), pp.  565-580 (in German). 

69. U. Deppisch and V. Obermeit, “Tight database cooperation 
in a server-workstation environment,” Proceedings  of the  7th 
International Conference on Distributed Computing, Berlin 
(September 1987),  pp.  416-423. 

70. P. Klahold, G. Schlageter, and W.  Wilkes, “A general model 
for  version management in databases,” Proceedings  of VLDB 
86, Kyoto, Japan (August  1986),  pp.  319-327. 

71. W.  Wilkes, The Notion of Versions and Its Modelling in 
CADICAM Databases, doctoral dissertation, University of 
Hagen, Department of Mathematics and Computer Science 
(Szeppmber  1987), (in German). 

72. R D stands for Relational Robotics Database with  Extensible 
Data Types and was a joint research project with the robotics 
and database research groups at the University of Karlsruhe 
and the AIM group at the Heidelberg  Scientific Center. 

73. P. Dadam, R. Dillmann, A. Kemper, and P.  C. Lockemann, 
“Object-oriented databases for robot programming,” in HEC- 
TOR, Heterogeneous Computers Together, Volume II, Basic 
Projects, Springer-Verlag,  Berlin (1988), pp.  289-303. 

74. A. Kemper, P. C. Lockemann, and M. Wallrath, “An  object- 
oriented database system  for  engineering applications,” Pro- 
ceedings ofACM-SIGMOD, San  Francisco (May 1987),  pp. 
299-3 1 I .  

75. A. Kemper, M. Wallrath, and M. Diirr, “Object orientation 
in R2D2,” in HECTOR, Heterogeneous Computers Together, 
Volume II, Basic Projects, Springer-Verlag,  Berlin (1988), pp. 

76. A. Kemper, M. Wallrath, M. Diirr, K. Kiispert, and V. Lin- 
nemann, An Object Cache for  Complex Object Engineering 
Databases, Technical Report TR 89.03.005, Heidelberg  Sci- 
entific Center, IBM Corporation, Heidelberg,  West Germany 
(March 1989). 

77. G. Saake, V. Linnemann, P. Pistor, and L,. Wegner, “Sorting, 
grouping, and duplicate elimination in the advanced infor- 
mation management prototype,” Proceedings of VLDB 89, 
Amsterdam, The Netherlands (August  1989). 

78.  K. Kiispert, G. Saake, and L.  Wegner, “Duplicate detection 
and deletion in the extended N$ data model,” Proceedings  of 
the 3rd International Conference on Foundations of Data 
Organization and Algorithms (FODO ’89),  Paris, June 1989, 
Lecture Notes in Computer Science, Vol.  367 (W. Litwin and 
H.-J. Schek, Editors), Springer-Verlag,  Berlin (l989), pp. 83- 
100. 

79. V. Linnemann, “Non first normal form relations and recursive 
queries: An SQL-based approach,” Proceedings  of the 3rd 
IEEE International Conference on Data Engineering, Los 
Angeles (February 1987), pp. 591-598. 

80. V. Linnemann, Optimization of Recursive Queries Over 
Nested Relations by a Differential Technique, Technical Re- 
port TR 87.07.005,  Heidelberg  Scientific Center, IBM Cor- 
poration, Heidelberg,  West Germany (July 1987). 

8 I .  V. Linnemann, Functional Recursion and Complex Objects, 
Technical Report TR 88.12.017, Heidelberg  Scientific Center, 
IBM Corporation, Heidelberg,  West Germany (December 
1988). 

82. V. Linnemann, “Functional recursion based on nested  tables,” 
in Informatik-Fachberichte 204,  408-427 (in German). 

83. U. Herrmann, P. Dadam, K. Kiispert, and  G. Schlageter, 
“Locking of disjoint, non-recursive  complex  objects by object 
and query specific  lock graphs,” in Informatik-Fachberichte 
204,98-113 (in German). 

332-354. 

IBM SYSTEMS JOURNAL, VOL. 28. NO 4, 1989 



84.  U. Henmann, P. Dadam, K.  Kiispert, E. Roman, and  G. 
Schlageter, A Lock Technique for Disjoint and Non-Disjoint 
Complex Objects, Technical Report TR 89.0  1.003,  Heidelberg 
Scientific Center, IBM Corporation, Heidelberg,  West Ger- 
many (January 1989). 

General  references 

T. Harder, Editor, Proceedings Datenbanksystemefir Biiro, Tech- 
nik und Wissenschaji Informatik-Fachberichte 204, Ziirich, Swit- 
zerland,  March  1989,  Springer-Verlag,  Berlin (1989). 
G.  Kruger and G. Muller,  Editors, HECTOR, Heterogeneous 
Computers Together, Volume II, Basic Projects, Springer-Verlag, 
Berlin (1988). 
J. W. Schmidt, Editor, Sprachen f i r  Datenbanken, Informatik- 
Fachberichte 72, Springer-Verlag,  Berlin (1983). 

Peter  Dadam IBM Heidelberg Scientific Center, Tiergartenstrasse 
IS, 0-6900 Heidelberg, Federal Republic of Germany. Dr. Dadam 
is  manager of the Advanced Information Management (AIM) 
project.  He joined IBM in 1982  as a research  staff member and 
became part of the initial design team of  AIM-P  where  he did 
significant portions of the transaction management, concurrency 
control, recovery, time version support, and record management 
subsystems  design.  In  1985,  he  became the manager of the AIM 
project.  He  holds a German diploma degree (comparable to  an 
M.S.  degree) in industrial engineering from the University  of 
Karlsruhe, West Germany, and a doctoral degree in computer 
science  from the University of Hagen,  West Germany. He has 
been chairman of the special interest group on databases of the 
German Informatics Society  since  1987 and is an author or 
coauthor of more than 30 scientific publications. 

Volker  Linnemann IBM Heidelberg Scientific Center, Tiergarten- 
strasse 15, 0-6900 Heidelberg, Federal Republic of Germany. Dr. 
Linnemann is a research  staff member of the Advanced Informa- 
tion  Management  (AIM) project. He joined IBM in 1986 and 
became part of the query processor  design team of  AIM-P. His 
special  interests include data modeling and recursive queries in 
the  context of complex  objects. From 1982 to 1986, he  worked on 
the level  of an assistant  professor at the University of Frankfurt, 
West Germany, where  he specialized  in  recursive queries in data- 
bases. He  holds a German diploma degree (comparable to an MS. 
degree)  in computer science and a doctoral degree in computer 
science  from  the  Technical  University  of  Braunschweig,  West 
Germany. He is an author or coauthor of more than 20  scientific 
publications. 

Reprint Order No. G32 1-538 1. 

IBM SYSTEMS JOURNAL,  VOL 28, NO 4, 1989 DADAM AND UNNEMANN 681 


