IBM Database 2 overview

IBM Database 2 (DB2) is a data base management
system that supports the relational model of data. This
paper presents the major features of DB2 and dis-
cusses its architecture and the relationship of DB2
with the host operating system. These principles are
illustrated by an example.

BM Database 2 (DB2) is a data base management

system that is available in Multiple Virtual Sys-
tems/370 (Mvs/370)! or Multiple Virtual Systems/
Extended Architecture® (Mvs/XA) which supports the
relational model of data.’** The user interface is a
modified form of the Structured Query Language
(sqL),%” which was developed at the 1BM San Jose
Research Laboratory for use in System R,*'0 a re-
search prototype of the relational model.

Access to data is supported concurrently from Cus-
tomer Information Control System/Operating Sys-
tem/Virtual Storage (cics/08/vs),'! Information
Management System/Virtual Storage (1Ms/vs),'? and
Time Sharing Option (1s0) foreground, and TS8O
background. The Query Management Facility (QMF),
a separate product, provides interactive users in the
TSO environment with access to DB2 data and report
generation facilities. Data Extract (DXT), another IBM
product, permits users to extract data from Data
Language/I (DL/1) data bases, Virtual Storage Access
Method (vsam) files, or physical sequential files, and
to enter those data into DB2.

DB2, QMF, and DXT may be installed on an Extended
Architecture (XA) or non-XA MVS system. In the XA
environment, extended virtual storage addressing is
utilized to support additional data buffers and work-
ing storage. This allows DB2 to support additional
concurrent transactions and/or ad hoc query users.

112 HADERLE AND JACKSON

by D. J. Haderie
R. D. Jackson

The architecture of DB2 evolved from System R, 1MS/
vs, and new technology. The Relational Data System
(rRDS), an adaptation from System R, decomposes
and manages the evaluation of each sQL request. The
Data Base Manager (DBM) manages access to stored
data and guarantees its consistency, and the Buffer
Manager (BM) manages the virtual storage buffers
and the transfer of data to and from virtual storage
and Direct Access Storage Devices (DASD).

DB2 provides services to manage the connections
from CICS/08/VS, IMS/VS, and TSO environments, All
work in DB2 is performed within the scope of a
transaction. Transaction recovery is coordinated
within DB2 by a set of protocols that guarantee that
all pB2-managed resources changed by a transaction
are either committed or rolled back, based on the
disposition of the transaction. Log Management ser-
vices provide for the recording of information to
permit recovery. Lock Management services allow
DB2 to determine which transactions can use com-
mon data base resources concurrently and queue
those that cannot. The main data base management
features of pB2 are shown in Figure 1.

This paper, which provides an overview of DB2, first
describes the major features of pB2. The second
section provides an overview of architectural consid-
erations and of the product’s relationship with the
host operating system (Mvs). Finally, we give a view
of the implementation by chronicling the life of a
data base request.

© Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

Figure 1 DB2 overview

Figure2 EMPLOYEE table

Overview of DB2 features

Relational data model. Relational data base concepts
are well defined elsewhere,? but are presented here
as they relate to DB2. Data are represented in the
form of tables (see Figure 2). Each row (record) of a
table consists of a set of columns (fields). All rows of
a given table are of the same form. A base table
defines a stored table (see Figure 3). Each base table
identifies a single table space, which describes a set
of Direct Access Storage Device (DASD) files to be
used for the storage of rows of that table. More than
one base table may identify the same table space.

All operations on data are performed using Struc-
tured Query Language (sQL). The language, which
was initially developed at the 1BM San Jose Research
Laboratory,” has been modified to its present form
for common usage by any IBM product. At present,
sQL/Data Systems (SQL/DS) and DB2 support the SQL
language. Statements in that language may be spec-
ified within COBOL, PL/I, FORTRAN, or Assembler
application programs. An interactive subset of the
language may be specified from a terminal via the
Query Management Facility (QMF) for immediate
execution. The single language permits the defini-
tion, authorization, and manipulation of data. Con-
trol statements (e.g., COMMIT) are specifiable when
DB2 is managing the transaction. In instances where
a transaction is managed by another connection

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

000010 PANGBORN, HARRIET
000020 ALLISON, GAIL

000040 STEPHENSON, WALTER D11
000060 STEPHENSON, SUDY Mi2
BLAKE, BILL

Figure 3 DEPARTMENT table

M12 GRAPHICS CENTER
M08 FACILITIES MAINTENANCE

PLANNING

(such as 1Ms or cIcs), the application must request
those services from the appropriate transaction man-
ager.

The set of data to be retrieved is specified via a
SELECT statement. In its simplest form the statement
identifies every row of the named table for retrieval,
as in the following example:

SELECT NAME, PHONENO
FROM EMPLOYEE

The SELECT statement identifies the table (EMPLOYEE)
and the columns of the table (NAME, PHONENO) to
retrieve. A predicate may be specified as illustrated
by the following example:

SELECT NAME, PHONENO
FROM EMPLOYEE
WHERE DEPTNO = ‘DII’

The effect here is to cause a portion of the rows to
be returned (that is, those rows with the value of D11
in the DEPTNO column). Multiple predicates con-
nected by the Boolean operators OR, AND, and NOT
may also be specified.

The predicate may specify a SELECT from another
table, thereby retrieving a value or a set of values for
comparison, as in the following example:

HADERLE AND JACksoN 113

SELECT NAME, PHONENO
FROM EMPLOYEE
WHERE DEPTNO =
(SELECT DEPTNO
FROM DEPARTMENT
WHERE DEPTNAME = ‘Planning’)

In this SELECT example only those rows in the EM-
PLOYEE table that report to the planning department
are returned.

Data may be retrieved from multiple tables with a
single statement, as shown in the following example:

SELECT NAME, DEPTNAME
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.DEPTNO = DEPART-
MENT.DEPTNO
ORDER BY DEPTNAME

This example illustrates a join of rows from the two
tables, EMPLOYEE and DEPARTMENT. A resultant row
from the SELECT contains the NAME of an employee
and the associated DEPTNAME of the department to
which the employee belongs. The selected rows are
returned in ascending sequence on the DEPTNAME
values, as specified by the ORDER BY clause.

Functions are provided that operate on a set of data
values. For example, the sum function may be spec-
ified in a select clause [SELECT sum(column name)]
that identifies a column in the table. For the rows in
the table identified by the SELECT predicate, the val-
ues in the specified column are added together and
returned by the sum function.

The INSERT statement places a single row in a table
or identifies a set of rows in another table (using a
SELECT) to copy into the target table. The DELETE
and UPDATE statements delete and modify one or
more rows, respectively. The DELETE and UPDATE
statements may identify the set of rows using a
SELECT clause or they may optionally operate on a
single row after it has been retrieved.

In an application program, the SELECT statement is
associated with a cursor. The application program
OPENs the cursor and iteratively issues the FETCH
statement, which returns one row for each FETCH
request. In an interactive query environment (QMF),
the user specifies the above SELECTs, and the inter-
active query application effects the retrieval using
OPEN and FETCH.

114 HAoERLE AND JACKSON

Access to data. Rows are stored in DASD data sets.
Data are written in 4K blocks, called pages, which
correspond to the operating system page size. Data

An index may give beneficial
performance in processing a join
and many other SQL query forms.

can be accessed by sequentially reading all the data
in a table space, applying predicates, and returning
only selected rows.

Sequential scanning techniques are inefficient for
queries that retrieve only a few rows in a large table
space. Users may define one or more indexes on a
base table using sQL, thereby identifying a set of
column names and ordering information. For ex-
ample, CREATE INDEX DEPTIX ON DEPARTMENT
(DEPTNO ASC) defines an index on the department
table, ordering the values of the DEPTNO column in
ascending sequence.

Each index resides in its own data set separate from
the table data. For each row in the table, an entry
exists in the index that contains the ordering column
values from the row and the address of the data
record. Each index is maintained current with the
data, thus providing fast access for queries that are
predicated by the index columns or request the data
to be returned in an order that matches the index
ordering. The use of an index may give beneficial
performance in processing a join and many other
SQL query forms.

In all cases, DB2 determines the method for evaluat-
ing a query and, thus, whether an index is to be used.

Data independence. If the data must be ordered, and
a matching index does not exist, DB2 sorts the data.
An index may be added that maintains the order
desired by the query. In this case, DB2 accesses the
data via the index, without having to sort the results.

Users cannot specify usage of an access path directly.
Furthermore, DB2 can resolve any query using table
space scans only. This allows the installation the
flexibility of tuning the system without affecting
application code, because the applications are insen-
sitive to the existence of indexes.

BM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

Authorization, Authorization of users to data and
applications s an integral capability of the DB2 sys-
tem. The creator of a table may identify a set of users
who may access the table for retrieval or update.
One or more VIEWS may be defined on a table or set
of tables. The VIEw statement that follows contains
a SELECT statement referring to the EMPLOYEE table,
naming a set of columns and containing a WHERE
clause that determines which rows are observable via
the VIEW.

DEFINE VIEW PLANNING_EMP AS
SELECT EMPNO, NAME
FROM EMPLOYEE
WHERE DEPTNO = ‘DI’

Inasmuch as the result of an sQL query is itself a
table, the VIEw name may be used as a table name

The construction of an application
includes encoding SQL statements
in one or more programs.

in any SQL statement. By granting other users access
to data via a viEw, rather than directly to the base
table itself, users may restrict access to a subset of
the rows and columns of the table. VIEWs may be
created on other VIEWs.

The viIEw mechanism extends the notion of data
independence, thereby permitting queries to be in-
dependent of the current stored table(s). If a base
table is split into two tables, a VIEW that joins the
two new tables may give the appearance of the
original table. By using the original table name as
the VIEW name, existing queries may be salvaged.
Data are not changed, however, by using a VIEW that
joins tables.

The DB2 catalog. The DB2 catalog is a set of tables
that are created and maintained by DB2. These tables
describe all the objects that DB2 manages. This de-
scription includes data definitions (e.g., tables and
columns) and authorization data. Authorized users
may query the catalog using SQL.

IBM SYSTEMS JOURNAL, VOL 23. NO 2, 1984

Application processing. The construction of an ap-
plication includes encoding SQL statements in one or
more programs. DB2 provides a process developed
for System R that extracts the SQL statements from
the application programs prior to their compilation
and decomposes the statements into a form that is
more efficient for processing at statement execution.
This process is incorporated within language pre-
processors that are provided as part of DB2, the DB2
sQL Precompiler, and the DB2 BIND Processor.

Each sQL application source program must be pre-
compiled using the appropriate DB2 language pre-
processor. The sQL source statements are extracted,
placed in an Operating System (0s) file, and replaced
in the host-language programs with control transfer
statements that are understood by the host language.
At statement execution, control is transferred to DB2,
thereby providing the identification of the statement
to be executed and the host-language variables and
data locations (e.g., addresses into which data are to
be selected) to use.

At precompilation, there is no communication with
pB2. This permits users to precompile and compile
SQL application programs on processors without de-
pendence on the availability of the pB2 data base
management subsystem.

After extracting each sQL statement from the appli-
cation source program, the preprocessor parses each
SQL statement to ensure syntactic validity. Option-
ally, names in the statement are checked for correct
context usage. For example, table names are specified
where table names should be specified. A function
called DCLGEN is provided by DB2 to extract table
definitions from the DB2 catalog and produce host-
language declarations. These declarations can be in-
cluded in the application program for documenta-
tion. They also provide the description of the data
bases needed by the preprocessor to check referenced
object names.

Prior to executing an application, the user must
define a plan, using an on-line bB2 command called
BIND that identifies all the SQL programs (by naming
the os files containing the extracted SQL statements)
that may be invoked while processing the applica-
tion. BIND saves each statement source string in the
DB2 catalog. Each statement is checked for proper
syntax. For nonmanipulative statements, the parsed
statement representation is stored in the system data
base for use at statement execution.

HADERLE AND JACKSON 115

For a manipulative statement, all objects named in
the statement are resolved to ensure that they are
defined to DB2 and are used in the correct context
(e.g., table name and column names in tables). If
tables or columns have not yet been defined, the
binding of the statement can be deferred until state-
ment execution. If this option is chosen, however,
the statement will be bound at each transaction
execution that uses the statement. Also, the definer
of the plan is checked for proper authority to execute
the statement. Various methods for performing each
statement are determined and the least-cost method
is selected. This includes selecting access paths to the
data, such as by way of an index. Executable code
and structures are generated and stored in the system
data base for use at statement execution, and each
statement’s dependencies on objects and authoriza-
tion are registered in the DB2 catalog. If a dependent
object is dropped or if authorization is revoked, the
generated output of the plan definition becomes
invalidated. A request for its execution causes the
statements (which had previously been saved in the
DB2 catalog) of the plan to be rebound automatically
for execution.

This process, called binding, allows DB2 to minimize
the cost of executing each statement by performing
the operation just described only once, rather than
each time an application is processed. SQL is not
simply interpreted; it is parsed and acted upon. In
some cases, code sequences are formed and saved
for execution-time processing.

Query processing. DB2 and QMF query processing
capabilities use a dynamic sQL facility provided
within DB2. The sQL statement PREPARE passes the
user’s query (which is also an SQL statement) to DB2
at execution. The statement is prepared for execution
using the previously described process, but omitting
the registration of dependencies. The results of PRE-
PARE are generated code and structures to be used
when the prepared SQL statement is executed, and
information describing data which must be supplied
on statement execution. An example of the latter
might be the location in which to place the selected
data. sQL statements processed in this fashion are
called dynamic SQL.

Data integrity. DB2 provides complete integrity of
data bases with the following forms of recovery: Unit
of Recovery, emergency restart, and media recovery.

Unit of Recovery. All DB2 data bases are recoverable.
On the first request from an application that changes

116 HADERLE AND JACKSON

a data base, DB2 creates a Unit of Recovery (UR). The
UR persists until the application commits, aborts, or
terminates the process. If the application terminates
the process, DB2 or the host transaction manager
determines the disposition of the UR, i.e., whether to
commit or abort the changes.

Until disposition of the Unit of Recovery, all changes
are visible to the changing application only. Further,
no changes are written to DASD until information
has been recorded in a recovery log that permits DB2
to undo the changes. This is required because DB2
may write the data to DASD prior to the termination
of the UR. Also, to guarantee successful commit and

All data base operations can be
performed while DB2 is operational.

reconstruction of the data following a media failure,
information has been recorded in a recovery log that
permits DB2 to redo the changes. This information
is placed on a physical log before DB2 agrees to
commit the changes.

Emergency restart. A catastrophic error can occur
that causes DB2 to terminate abnormally. Cata-
strophic errors might be power or hardware failures.
When DB2 is started, it recognizes its prior state from
the recovery log, and thus it initiates recovery. All
data bases are recovered up to the point of failure
minus the activity from any Units of Recovery that
had not been committed up to that point.

Media recovery. When an error related to the DB2
data base external storage media has occurred, the
user can initiate media recovery procedures for each
table space, file, or a portion of the table space for
which errors have been detected. Generally, the user
must back up table spaces on a periodic basis, using
a DB2 utility service called image copy. The initial
image copy copies all the data in the table space or
portion of the table space to another data set, and
registers in DB2 catalog tables the name of the data
set to which the data were copied and the current

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

position in the recovery log. The user can submit
subsequent image copy requests that copy all the
data or only data that have changed since the prior
1mage copy request. Copies of the changed data are
called incremental image copies. These are also reg-
istered in the DB2 catalog. When recovery is required,
the user invokes the RECOVER utility, which consults
the catalog, restores the data to the latest complete
image copy, adds subsequent incremental image cop-
ies, and applies recovery log changes from the point
of the last image copy to the present.

Availability. All data base operations can be per-
formed while DB2 is operational. That is, no data
base operation requires DB2 to be terminated. These
include all of the traditional data base administration
activities:

e Data base tables may be defined or deleted. Exist-
ing tables may be modified by adding new col-
umns. (While these activities are being performed,
applications may access unrelated tables.)

e New applications may be introduced to DB2, and
old applications may be modified without inter-
rupting other applications.

¢ Data backup retrieves the data from a table space
and copies them to another data set. All backup
may be performed concurrently with access and
alteration of the data.

e Data recovery requires exclusive use of the table
space. The image copies and the log are used to
recreate the data. All other table spaces are acces-
sible during recovery.

e Data reorganization may be performed to store
the physical data in a specified sequence. This may
provide better performance for queries that con-
form to the sequence. Reorganization requires
exclusive use of the table space that contains the
data being reorganized, but other processing of
unrelated data may occur.

The recovery log, which is integral to the perform-
ance, availability, and integrity of data bases, consists
of a set of data sets that reside on pASD. These data
sets are called the active log. When a data set becomes
full, it is archived to tape or mass storage. The data
set is eligible for reuse when the archive process is
through. Meanwhile, DB2 selects the next data set of
the active log set for logging on-line data. Multiple
levels of storage provide fast logging for applications,
relegating data to less costly storage as it ages.

To allow for the possibility of recovery log media
failure, DB2 provides dual logging. That is, the entire

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

Figure 4 DB2 EARLY code resident in MVS

INITIALIZATION

SYSTEM COMMANDS

TASK/MEMORY TERM

IDENTIFY

log (active and archive) may be duplicated. When
access to one log copy encounters an 1/0 error, DB2
accesses the data on the other copy.

Architectural considerations

DB2 as an MVS subsystem. At MVs initialization,
DB2 EARLY code resident in Mvs is invoked, as shown
in Figure 4. DB2 EARLY code establishes DB2 as an
MVS subsystem, which makes DB2 eligible to receive
notification of certain system events and provides an
interface whereby applications may locate and com-
municate with pB2. The EARLY code receives all
system commands by way of the Mvs Subsystem
Interface (ss1). The EARLY code can accept or reject
each command, thereby permitting other subsystems
to process them. DB2 commands are identified by a
unique first character that is specifiable by the in-
stallation (e.g., —DISPLAY DATABASE). The overall
architectural structure shown in Figure 5 is now
presented functionally.

The EARLY code listens for a START DB2 command,
which causes the initiation of the loading process
and activating the code (called the DB2 subsystem
code). This provides all of the data base management
services. Two address spaces are created: (1) one
space for system service components (those with no
dependency on data bases), and (2) the other space
for data base components. Successful initialization
of the components is followed by restart processing,
which disposes of any work that was in progress at
the prior termination of DB2, thereby ensuring that
data are consistent.

After the subsystem has been started, the EARLY code
supporting command functions passes the inter-

HADERLE AND Jackson {17

Figure 5 DB2 structural overview

cepted commands directly into the command proc-
essing functions of the subsystem. During the period
of time when the subsystem is being started, the
EARLY code queues commands, thus making them
available to the subsystem when it is ready to process
them.

Before an application or another subsystem (such as
IMs or cIcS) can perform any data base activity, a
line of communication must be established between
it and the DB2 subsystem. DB2 code residing in the
application address space (called attachment code)
receives data base requests directly from the appli-
cation. The attachment locates the DB2 subsystem
via the Subsystem Interface (ss1) and establishes a
line of communication by directing an IDENTIFY
request to the EARLY code. When the DB2 subsystem
is stopped, the EARLY code responds negatively to
the request and optionally queues a notify message
to be subsequently returned to the requestor after
the subsystem is started. Once the subsystem has
been started, IDENTIFY requests are passed to it, and
connection processing is begun.

After a connection has been established, EARLY code
monitors that application environment for terminat-
ing conditions by listening for task and memory
termination events, If the application terminates be-
fore disconnecting and disposing of any outstanding
unit of recovery established with DB2, the termina-
tion event handlers perform the necessary work.

118 HADERLE AND JACKSON

The majority of the code and control structures that
provide on-line access and management of data re-
side in one of the two subsystem address spaces. This
packaging is the result of three major influences.

DB2 manages concurrent access to data by multiple
applications, The reliability of pB2 does not depend
on the reliability of any application that uses DB2
services. The isolation of vital control structures in
address spaces apart from applications isolates DB2
itself from failures in those address spaces and from
their availability.

Also, a lack of virtual storage in the non-Mvs/Xa
environment prevents any new product from making
large claims for storage common to all address spaces
or storage in an application address space. The on-
line DB2 code, without considering control structures,
exceeds three megabytes, a quantity not generally
available in non-Mvs/xA application address spaces.

Finally, some work performed by the subsystem is
not directly related to any application and may be
scheduled and managed under tasks within the sub-
system. For example, the log archive function is
automated and managed within the subsystem. It is
performed asychronously with respect to application
work under a subsystem task.

The creation of two address spaces rather than one
simply provides additional virtual storage, which is
necessary in the non-Mvs/XA environment.

Dispatching work. Multiple address space configu-
rations demand an efficient mechanism for cross-
address-space transfer of control and transfer of data.
This is provided by Mvs cross-memory services cou-
pled with processor instructions that support multi-
ple address spaces. Three distinct address spaces may
be distinguished by control registers.

The first, designated as home, 1s the address space
that contains the dispatching unit [i.e., Task Con-
trol Block (TCB) or Service Request Block (SRB)]. The
dispatching of work honors the priority of this ad-
dress space and the relative priority of the execution
unit in it. The second address space, designated as
primary, is used by the processor to fetch instruc-
tions. Unless specified, all data are also fetched and
stored from this address space. The third address
space, designated as secondary, is sometimes used by
the processor to fetch and store data. If secondary
addressing has been enabled or if certain instructions
that explicitly specify the usage of secondary address-
ing are executed, the processor addresses data via the

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

secondary address space. In this case, one may exe-
cute a single instruction (i.e., MVCP or MvCS), which
moves data between primary and secondary address
spaces.

Using this technology, DB2 executes an application’s
request under that application’s execution unit.
When it is necessary to execute code in one of the
DB2 address spaces, a Program Call (pc) instruction
is issued that causes primary addressing (instruction
fetch) to change to the appropriate DB2 address space.
This retains priorities already established for appli-
cations in the system. Further, it avoids dispatching
time to establish addressability to code in another
address space. This process is illustrated in Figure 6.

Some Mvs functions (e.g., scheduler allocation) can-
not operate within a cross-memory environment.
That is, they require that home and primary address
space be the same. When it is necessary to perform
such a function, bB2 suspends work on the current
execution unit and initiates processing under a task
or SRB in a DB2 address space. This is called execution
unit switching. Use of such functions is infrequent.

Isolation from errors. Certain vital processing must
complete without failure to prevent making data or
the entire subsystem unavailable. This includes the
process of committing and backing out application
changes. Should these processes fail, either the
changed resources become inaccessible until they can
be recovered, or, if the resources cannot be isolated,
the subsystem terminates to prevent loss of data
integrity. Termination is triggered so that the restart
process, performed when DB2 is initialized, processes
the recovery log and brings all data and units of
recovery to a consistent state.

To isolate these operations from termination exter-
nally induced (e.g., job cancel) in certain host envi-
ronments, DB2 switches to an execution unit in the
system services address space to perform the func-
tion. Termination of the application task does not
interrupt the processing of the execution unit per-
forming the must-complete function.

Asynchronous activity. An application event or a
time interval elapse can trigger the initiation of asyn-
chronous work. To affect the scheduling, DB2 places
a work element on a queue and notifies a task in the
subsystem that work exists. Archiving the active
recovery log i1s an example of this class of work.

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

Figure 6 Function invocation

APPLICATION
ADDRESS SPACE

DB2 DATA BASE
ADDRESS SPACE

RELATIONAL,
DA%
SYSTEM - ‘ ’

pB2
LANGUAGE
INTERFACE
MODULE

PROCESS
SQL
REQUEST

Transaction management. DB2 data base services are
available to applications in the supported host envi-
ronments (i.e., TSO, IMS, and CICS) within the frame-
work of a transaction. A transaction is a bounded
set of actions (e.g., data base and data communica-
tions) that must succeed (commit) or fail (abort) as
a unit. The transaction manager notes the start of a
transaction by assigning it a unique identifier in the
system so that all work subject to commitment can
be related to that transaction. The transaction man-
ager also acknowledges the end of the transaction,
which can be signaled by an application request to
commit or abort the work or by the termination of
the application performing the work. When termi-
nation is signaled, the transaction manager coordi-
nates commit and abort by informing all interested
parties of the event so that they may properly dispose
of all scheduled changes to their resources.

IMS and CICS provide transaction management. Each
maintains its own log on which it records transac-
tion-related events. DB2 maintains its own log on
which it records transaction control information
(e.g., the identifier IMs has assigned to a transaction
that pB2 can query after failure to determine dispo-
sition) and data base changes (undo/redo). When
the transaction terminates, IMS and CICS coordinate
the commit or abort for transactions initiated in
their environments among the DL/1 data base man-
ager, the DB2 transaction manager, and the data
communication manager. DB2 is simply a participant

HADERLE AND JACKSON 119

Figure 7 TSO application invocation

and has no knowledge of the other parties. The DB2
transaction manager notifies all interested DB2 com-
ponents of the outcome and ensures their comple-
tion.

Because TSO provides no transaction management,
DB2 assumes those responsibilities in a TSO environ-
ment.

Connection protocols. To establish and manage
transactions, the DB2 subsystem provides a set of
protocols that are implemented in the host attach-
ment code transparent to applications. An IDENTIFY
request is issued prior to any other request to estab-
lish a connection with pB2 and to identify the char-
acteristics of the host environment. This specifica-
tion determines DB2 behavior most notably in the
areas of transaction management (coordinator ver-
sus participant role) and authorization administra-
tion.

When the host environment has been declared,
transactions using DB2 services can begin. Hosts can
support multiple concurrent transactions from the
same address space and execution unit. To tie to-
gether all of the requests and resources associated
with a single transaction, DB2 uses a set of constructs,
collectively called a thread. At transaction initiation
or on the first SQL statement, the attachment invokes
DB2 to create a thread, naming the plan to be used
by the transaction. The plan identifies the total set
of capabilities (SQL statements) that the application
may exercise. The DB2 subsystem creates the struc-
tures it needs to manage the transaction and returns
the anchor address for the thread structures to the
attachment which will provide it as a tag on all sQL
requests associated with this transaction.

To demonstrate this in the TSO environment, Figure
7 gives a list of TsO commands entered to run two
DB2 applications. The DSN command results in an
IDENTIFY to DB2. The subsystem name (DB2PROD) is
provided, since it is possible to have more than one
DB2 subsystem (e.g., test and production) concur-
rently active in Mvs. They cannot share data.

120 HADERLE AND JACKSON

The RUN command names the application program
(appL1) to be given control. The RUN command
handler saves the name of the plan to be used
(ACCOUNT) and gives control to the application pro-
gram. On the first SQL statement issued, the TSO
attachment requests that the DB2 subsystem create a
thread for the named plan. The TS0 attachment then
passes all SQL requests to the DB2 subsystem and
associates them with the created thread.

When the application program (APPL1) terminates,
the thread 1s terminated. The subsequent RUN com-
mand initiates another application (AppL2) with a
different plan. The END command terminates the
DB2 connection.

Concurrency rules. Applications can concurrently
access and change (i.e., insert, update, delete) data
in a table. When an application changes data in a
table, that change is not visible to another applica-
tion until transaction disposition, at which time the
change occurs (commit) or does not occur (abort).
Should a competing application attempt to access
data in a changed and uncommitted state (called
dirty data), that application waits until the disposi-
tion of those data has been made.

Further, when an application retrieves a row with
the intention of updating it (a situation that can be
expressed in sQL), no other application can change
those data until another row has been selected. If
both applications have retrieved the same row with
the intention of updating it and both attempt to
change the data, a deadlock results. This is detected,
and one of the applications is selected for termina-
tion."?

Optionally, the second concurrency rule can be ex-
tended by an application to include all data that have
been accessed. Change by another application of any
data or index entry that has been used by this appli-
cation is prevented until transaction disposition. At
the expense of concurrency, this application may
have the appearance of being the only application
accessing the data.

Locking. The implementation of the concurrency
claims uses locks acquired and released by DB2
through the IMs Resource Lock Manager (IRLM).
Through various specifications of control, the entire
table space or only those pages accessed in the table
space may be locked. In the case of the entire table
space, any change to the table spacé requires its
exclusive use, thus prohibiting concurrent access by

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

other applications. In the case of locking pages ac-
cessed in the table space, the concurrency rules apply
to data pages.

Indexes are stored on 4K pages, which can be sub-
divided by the definer of the index into smaller units
called subpages. If an entire table space is locked,
the index is protected by that lock. If data pages are
being locked, access and change of an index entry
are protected by locking the index subpage on which
that entry resides for the duration expressed by the
concurrency claims.

Write ahead log. All changes subject to commitment

use logging as an integral part of guaranteeing data
integrity. When data are changed, log information is

The transaction coordinator
determines the disposition of the
transaction.

written that allows DB2 to make the change (redo) or
reverse the change (undo). The data cannot be writ-
ten until the log information is recorded on external
media.

After recording them, the data can be written. If the
transaction aborts, the data changes can be reversed
from the information in the log. Should the system
or DB2 terminate before the transaction finishes, DB2
can redo committed changes and undo aborted
changes from the log information when DB2 is re-
started.

Transaction disposition. The transaction coordinator
determines the disposition of the transaction and
informs all participants of this decision. Environ-
mental considerations (e.g., application abnormal
termination) or application direction may lead to
the initial decision to commit or abort. Since any
participant may have similar environmental con-
cerns (e.g., they abnormally terminated during a
request) that preclude them from committing, the
two-phase commit protocol is employed by all co-
ordinators to determine transaction disposition.

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

If the coordinator’s initial decision is to commit, all
participants are notified of the intention to commit
(Commit Phase 1). Commit Phase 1 is considered to
be a vote collection and preparation phase. Each
participant must declare whether to agree to commit.
The effect of one negative vote is that nobody com-
mits changes and the transaction is aborted. Each
participant agreeing to continue with the commit
process must guarantee to commit the changes, while
still being capable of reversing the transaction’s effect
if a negative vote is cast by some other participant.
DB2 provides this guarantee by ensuring that all log
information is recorded on external media (not just
in the virtual storage log buffer) before returning to
the coordinator. Once a participant has returned a
positive vote, the participant must await receipt of
the total vote outcome relative to the transaction
before continuing.

For a participant, the period of time between return-
ing a positive vote and receiving the total vote out-
come is called INDOUBT. Only the coordinator knows
whether all votes have been received and whether an
outcome has been determined. If DB2 terminates
prior to casting a vote at Commit Phase 1, pB2 aborts
the transaction at DB2 restart. If asked later by the
coordinator for a Commit Phase 1 vote, pB2 will
reply negatively. If DB2 terminates after casting a
vote at Commit Phase | and prior to receiving and
recording the outcome (INDOUBT), DB2 queries the
coordinator at DB2 restart to determine the transac-
tion disposition. If the coordinator is not present,
DB2 locks all of the changed data to prevent access
and resolve its disposition when the coordinator
issues an IDENTIFY and provides the disposition of
INDOUBT transactions.

The coordinator records the outcome and ensures
that it is on external media before continuing. If the
outcome is positive, the coordinator is responsible
again for notifying the participants of the beginning
of this phase. Commit Phase 2 is considered to be a
must-complete notification and processing phase.
The participants must prepare to make the new,
committed form of the recoverable objects accessible
to subsequent transactions and must forget the prior
object form.

DB2 records the outcome (Commit Phase | or abort)
on its own log to provide autonomy for restart and
media recovery. That is, DB2 does not have to ask
the coordinator for transaction disposition informa-
tion, except for those INDOUBT. If the disposition is
abort, the changes are reversed using logged infor-

HADERLE AND JACKSON 121

mation. At the end of commit or abort, all data locks
can be freed, because the data are in a clean state.

Authorization. Access to data and applications
(plans) is controlled by the DB2 authorization mech-
anism, which uses the authorization identifier of the

Access to data and applications is
controlled by the DB2 authorization
mechanism.

requestor to determine whether access privileges are
allowed. The authorization identifier may be sup-
plied by iMs or cics. Both eflvironments assume
responsibility for protecting the authorization iden-
tifiers and controlling their usage. In TS0, the au-
thorization identifier may be supplied by an instal-
lation-provided exit, or it defaults to the TSO user
identifier, usage of which is controlled by TSO.

The privilege of passing authorization identifiers is
restricted to iMs and cics. Each connecting environ-
ment tells DB2 its connection type through IDENTIFY.
To prevent unauthorized IDENTIFY requests, an in-
stallation can control who can connect to DB2 and
what connection type they are permitted to use
through the Resource Access Control Facility (RACF).

Processing an SQL statement

The implementation of data base management in
pB2 is demonstrated by sketching the processing for
a data base request. In discussing this demonstration,
we refer to the sQL flow shown in Figure 8.

Binding. Data base activity ranges from planned
applications that are executed many million times
over the same set of data to ad hoc queries that
execute once. The pB2 bind process accommodates
both environments. Application SQL statements are
bound once. The product of the bind is saved and
used for every application execution, thereby amor-
tizing the cost of bind across the statement’s repeated
execution. At the same time, the bind process per-
mits an application to construct and submit an SQL
statement for immediate binding and execution. In

122 HADERLE AND JACKSON

short, all SQL statements are bound when the plan is
defined, except for dynamic SQL statements, which
are bound when submitted at execution time via the
PREPARE statement.

In the bind process, all statements are parsed. As
described previously, manipulative statements are
bound further, thereby producing executable code
and data structures tailored to the statement that is
used at execution. Definition, authorization, and
control statements use the parsed output interpre-
tively at execution, rather than generated code. The
expected savings that would result from any further
reduction of these statement types do not warrant
the cost and complexity of such a reduction.

DB2 invocation. The results of the plan creation are
saved in a system data base for recall at application
execution. When a thread is created by the attach-
ment, a private version of the named plan is made
available in the data base address space, in anticipa-
tion of the first SQL request.

Having created or located the correct thread, the
attachment passes control to the Subsystem Services
(sss) via a Program Call (pc), thus causing a switch
to DB2 state (supervisor) and key.

Subsystem Services keeps a record of each applica-
tion currently executing code in the DB2 address
spaces. If the DB2 subsystem is to be stopped, sss
prohibits new arrivals and waits for all work depend-
ent on the DB2 address spaces and control structures
to cease before permitting the stop processing to
occur. This provides an orderly reporting to the
application of the event. sss then verifies that the
application is authorized to use the thread; i.e., a
thread is not named for another application. Finally,
the request is routed to the Relational Data Services
(RDS) component of DB2.

RDS provides a small layer of code, called the sQL
Program Request Handler (SQL PRH), that operates
in the application address space and effects a primary
address space switch to the pB2 data base address
spaca where the rest of the RDS function operates.
MVS continues to use the application address space
(home) for dispatching priorities. The processor uses
the DB2 data base address space for fetching instruc-
tions and general data references.

On entry in the data base address space, RDS moves

program variable values required by DB2 (e.g., a
program variable may be used in an sQL predicate)

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

Figure 8 SQL flow

ATTACHMENTS

from the application address space to the DB2 data
base address space. This isolates all other code in
other components from addressing mode consider-
ations when using the data.

Data definitional structures. To help understand the
flow from this point we divert to a presentation of
the data definitional structure and responsibilities.
Data description is layered, which strongly separates
an application’s view of data from the actual data
on storage media. Data are stored in VSAM data sets,
the descriptions of which reside external to DB2 in a
vSAM catalog. The DB2 table space provides the logi-
cal description of the space (e.g., size of the pages)
for mapping these attributes to the physical reposi-
tory (alist of data set names). This separation permits
media changes (e.g., changing device types) without
disturbing logical descriptions.

To minimize the burden of data set maintenance on
users and data base administrators, DB2 defines and
deletes data sets if desired. One or more groups of
DASD volumes, called storage groups, may be defined
to DB2. When a table space or index is defined, the
user may identify a storage group for DB2 to use to
acquire space when defining or extending the defi-
nition of data sets for the table space or index. The
user need not invoke Access Method Services (AMS)
to create data sets for the physical repository.

Stored data representation (internal) is separated
from user and application perception {external). The
definition of a base table generates both descriptions
and identifies the data repository by naming a table

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

LOG
MANAGER
(LM)

BUFFER
MANAGER
(BM)

space. Stored data contain control information and
field values. The control information includes a table
identifier that precedes each stored record: for ex-
ample, to distinguish records from different tables
when more than one table is defined in the same
table space.

Field values may differ in form from the external
value. Numeric data values are always converted to
forms that neutralize the data, making nonarith-
metic comparisons valid for a single data type (i.e.,
packed decimal, floating point, and binary). This
conversion minimizes data search time by eliminat-
ing data type sensitivity in the search function.

External perception of data is in the form of a table,
1.e., a set of data values of specified data types. Data
may be materialized from a single stored table or
multiple stored tables. Application data types may
differ from stored data types. The SQL SELECT state-
ment coupled with the target data types into which
the data are to be selected is the external view of
data.

The separation of descriptions provides an architec-
ture that is responsive to change at each level, thereby
minimizing disturbance to other levels. This sepa-
ration 1s also reflected in DB2 component structures.

Relational data services. Relational Data Services
(RDS) is responsible for matenalizing the external
views of data from stored data. For each manipula-
tive SQL statement, a procedure is developed for
deriving the external data. The access path, scan or

HADERLE AND JACKSON 123

index, and method for evaluating queries are chosen.
The generated code reflects these choices and invokes
the Data Manager (DM) to retrieve or alter the stored
data.

Evaluations of joins, user-specified ORDER BY clauses,
and other features require data to be ordered. If no
index is available that meets the criteria for ordering,
RDS extracts and orders the data. RDS uses its own
sort function, which is tailored to the DB2 environ-
ment (cross memory), and uses space suballocated
from a common system table space that is dedicated
to sorting for intermediate storage. The function
supports concurrent sorts from multiple transac-
tions.

Management of stored data. The Data Manager
manages all stored data by providing access to data
and by using a sequential scan or index, as specified
by its invoker. The DB2 catalog and other system
table spaces are organized for hashed access and can
contain records from multiple tables that are related
by links. The Data Manager provides hash and link
access to accommodate these formats.

The Data Manager provides a set of operators to
alter (i.e., insert, delete, modify) data one record at
a time. When data are altered, all indexes and links
are automatically updated. The Data Manager also
guarantees all data consistency claims by locking
data, using the IRLM. Changes to data are guaranteed
by logging information using the Log Manager (LM).
The information enables DB2 to recreate committed
changes and reverse aborted changes.

The Data Manager accesses data by identifying the
desired page within the table space or index to the
Buffer Manager (BM). If the data are to be changed,
the Buffer Manager is informed, so that it knows
that it is to write the page when all updates have
finished.

Buffer management. The Buffer Manager manages
pools of virtual storage (buffers) in the data base
address space that holds data and index pages. The
Buffer Manager directs the vsam Media Manager to
transfer data and index pages between media storage
and virtual storage. The goal is to minimize the time
that any request must wait for data while meeting
an installation-specified goal for the time it takes to
recover from a subsystem or system failure.

Multiple threads can reference the same page in the
buffer pool concurrently. The Data Manager serial-

124 HADERLE AND JACKSON

izes updates by locking data to be altered, thus
preventing access to it by any other threads. Since
index pages are serialized at the subpage level, mul-
tiple transactions may be updating the same index
page concurrently. The Buffer Manager tracks this

In general, page writing is
asynchronous with respect to
applications.

activity and writes a page only when it is in a
consistent state (i.e., all changes are committed or
backed out).

Pages are retained in the buffer pool even though no
outstanding claims exist for their usage. Unused
pages are aged out of the pool as the demand for
pages exceeds the unassigned buffers. The buffer pool
is always searched for a requested page before ac-
cessing data from stored media.

In general, page writing is asynchronous with respect
to applications. At commit time, the DB2 log is
forced, which ensures that the data can be recreated
at restart time if there is a problem that terminates
DB2. Pages are written primarily on the basis of
demand for buffers that exceeds the available supply.
Using the Write-Ahead-Log protocol, the Buffer
Manager ensures that the log records that guarantee
data consistency have been externalized prior to
writing a buffer.

Installations specify checkpoint intervals to balance
subsystem recovery time with the performance of
the subsystem. With no other guidelines, the Buffer
Manager delays writing a highly accessed page until
DB2 termination. If the subsystem fails, the page is
reconstructed from the log during restart. The
amount of log processing required is a key determi-
nant of the time it takes to make the subsystem
receptive to new work. Checkpoint, which is sched-
uled on the basis of installation-specified log activity
limits, signals to DB2 resource managers the desire to
schedule and complete work in progress. This re-

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

duces the amount of log processing requried at re-
start. The Buffer Manager participates in checkpoints
by attempting to initiate writes for committed
changes. Those buffers that cannot be written be-
cause they are in an inconsistent state are marked to
be written the next time they reach a consistent state.

Concluding remarks

DB2 provides relational data base management in the
MVSs environment. Provision for data independence
acknowledges the inevitability of change while main-
taining a consistent interface to programs and users
not requiring those changes. This protects the pro-
gramming investment and improves usability. The
design of DB2 anticipates growth and changes to DB2
itself. The linkage mechanism, differentiation of re-
sponsibility in data base definitional constructs, and
other principles of the design make B2 receptive to
change for tomorrow while offering function for
today.

Cited references

I. W. W, Chiu and W. M. Chow, “A performance model of
MVS,” IBM Systems Journal 17, No. 4, 444-462 (1978).

2. A. Padegs, “System/370 Extended Architecture: Design con-
siderations,” IBM Journal of Research and Development 27,
No. 3, 198-205 (May 1983).

3. E. F. Codd, “Relational database: A practical foundation for
productivity,” Communications of the ACM 25, No. 2, 109-
117 (February 1982).

4. C. J. Date, An Introduction to Database Systems, Third Edi-
tion, Addison-Wesley Publishing Company, Reading, MA
(1981).

5. G. Sandberg, “A primer on relational data base concepts,”
IBM Systems Journal 20, No. 1, 23-40 (1981).

6. D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P.
Griffiths, R. A. Lorie, J. W. Mehl, P. Reisner, and B. W.
Wade, “SEQUEL 2: A unified approach to data definition,
manipulation, and control,” IBM Journal of Research and
Development 20, No. 6, 560-575 (November 1976).

7. IBM DATABASE 2, Introduction to SQL, GC26-4082, IBM
Corporation; available through IBM branch offices.

8. M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.
Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lorie,
P. R. McJones, J. W. Mehl, G. R. Putzolu, 1. L. Traiger, B.
W. Wade, and V. Watson, “System R: A relational approach
to data base management,” ACM Transactions on Database
Systems 1, No. 2, 97-137 (June 1976).

9. M. W, Blasgen, M. M. Astrahan, D. D. Chamberlin, J. N.
Gray, W. F. King, B. G. Lindsay, R. A. Lorie, J. W. Mehl, G.
R. Putzolu, M. Schkolnick, P. G. Selinger, D. R. Slutz, H. R.
Strong, I. L. Traiger, B. W. Wade, and R. A. Yost, “System
R: An architectural overview,” IBM Systems Journal 20, No.
1, 44-62 (1981).

10. D. D. Chamberlin et al., “A history and evaluation of System
R,” Communications of the ACM 14, No. 10, 632-646 (Oc-
tober 1981).

11. D.J. Eade, P. Homan, and J. H. Jones, “CICS/VS and its role
in Systems Network Architecture,” IBM Systems Journal 16,
No. 3, 258-286 (1977).

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

12. W. C. McGee, “The Information Management System IMS/
VS,” IBM Systems Journal 16, No. 2, 84-168 (1977).

13. J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger,
Granularity of Locks and Degrees of Consistency in a Shared
Data Base, North-Holland Publishing Co., New York (1976).

Reprint Order No. G321-5213.

Donald J. Haderle IBM General Products Division, Santa Teresa
Laboratory, P. O. Box 50020, San Jose, California 95150. Mr.
Haderle joined IBM in 1968 as a programmer to develop operating
systems for use in process control. After work on the 1800 Multi-
programming Executive (MPX) and a prototype for support of
point of sales, Mr. Haderle shifted his efforts to data access methods
and data base management systems. In 1972, he was the technical
leader for the development of common data access method services
for OS/VS2 MVS. In 1977 he joined the team to develop the
Database 2 (DB2) data base management system. Mr. Haderle,
currently a senior programmer at the Santa Teresa Laboratory, is
continuing work on the DB2 product. He received a B.A. in
economics from the University of California, Berkeley, in 1967.

Robert D. Jackson IBM General Products Division, Santa Teresa
Laboratory, P. O. Box 50020, San Jose, California 95150. Mr.
Jackson is a senior programmer at the Santa Teresa Laboratory.
Hejoined the IBM Data Processing Division in 1966 after receiving
a B.S. in mathematics from San Jose State University. During his
IBM career, Mr. Jackson has been associated with systems design
and development, working in the I/O supervisor area of OS/VS2
MVS and later concentrating on Advanced Data Systems. He
joined the DB2 project at its inception and has held both technical
and management positions within the project. During 1983, Mr.
Jackson was on assignment to the Installation Support Center,
Greenford, England, where he participated in introducing the DB2
product to customer accounts. Mr. Jackson is currently working
in Advanced Data Systems at the Santa Teresa Laboratory.

HADERLE AND JACKSON 125

