


Techniques  similar to  the one described in  this  paper  have 
undoubtedly been used before, but only  in conjunction with  very 
small  tables. 

We may assume that  the  argument is given in normalized 
floating  point  form 

wh ere - < f < l  X = b"f 1 
b -  

Here, b denotes the base of the  number  system, s the exponent 
(usually  given in  the  characteristic of the floating-point  number) 
and f the fraction. For the IBM 704, 709, 7090, 7094, we have b = 2; 

The reduction of the domain of x, which is fairly large, to  a 
small  domain  in a derived  variable  is  usually accomplished by 
multiplication of the  argument  with log, e .  Thus, 

for SYSTEM/360, b = 16. 

e" = b z l Q g b e  - - b""F = b M b f P  (1) 

where - l < F < l  or O < F < l  

Here M stands for an  integral  part of xlog,e and F for the 
remaining  fractional part.  The domain of F ,  for  which an approx- 
imation  to b F  must be  found,  can  easily  be  made to correspond 
to either (- 1, 1) or (0, 1). 

Even  for  the hexadecimal  base of the SYSTEM/~~O,  the choice 
b = 2 is of interest  because  one  may wish to utilize  approximations 
for 2F or 2-F only, rather  than  for 16F or 16-F. However, it  then 
becomes necessary to examine the integer M modulo 4, e.g., by 

2M.2" = 24Ni-i.2" = 16".2F.2< 

the multiplications with 2i (i = 0, 1, 2, or 3) being executed 
explicitly. The multiplication  with 16N is, of course, accomplished 
by  addition of N to  the characteristic of 2F,  when the  latter is 
available  in  floating-point  hexadecimal format. 

The choice b = 16 in  Equation 1 has the merit of avoiding 
the clumsy  procedure in  Equation 2, but leads to  the necessity 
of obtaining  a good approximation  to 16F in, say, (0, 1). In  general, 
for a  given degree of accuracy,  approximations  to bF require an 
increasing  number of coefficients as b increases. 

We consider the functions b*F - - b * ( " + h )  in  the  interval 
0 5 F < 1, the  argument F (for example, m binary digits or bits) 
being decomposed into  the first n bits,  denoted  by y, and  the 
remaining ~ t t  - n bits,  denoted  by h. The  table consists of the 
value of b'", stored at  the left  endpoints 

(2)  

yi = (i - 1)A A = 2"'; i = 1, 2 ,  . . , 2" 

which describe a partitioning of [0, 1 )  into 2" subintervals.' 
Expanding b f ( u f h )  about a  typical  point yi, we have: 



where h can be taken  as a  non-negative difference of F and y%, 

O < h < 2 " ' = A  

Let AN stand for the  absolute error  (in  magnitude)  committed 
when the power series zkm_,, ckhk is approximated,  say  in  accord- 
ance  with a Chebyshev  economization  by an N 
term polynomial ~~~~ a,hk. The relative  error  in biF is then 
given, after cancellation of b*"', by R N  = A,/b*h. An upper  bound 
on R, for a given  value of n is evidently given by: 

R,(n) 5 A,bA 

The factor bA approaches 1 as n increases. 

estimate for A,, and  with it an  approximation for RN(n) as 
In  the case of rapidly  decreasing c k  we can  obtain a good 

R5 1 2 - 2 N + 1 C  N 2-"N 11 A I (4) 

This  can be seen as follows. Introduce  the  variable x by  means 
of x = h/A,  so that  the domain of z is [0, 1). Under  this  trans- 
formation, the power series in  Equation 3 goes into a power 
series ~ ( x ) ,  

To economize x(x) we replace, in principle, the powers of z by 
the  appropriate  shifted Chebyshev  polynomials pi(z) and discard 
all terms  for which i 2 N .  The error A,  is essentially  given by 
the leading term discarded, which in view of 
xN = 21-z,[pN(4 + . . .] 
becomes 

~ 2 1 - z N ~ , ( x ) c , A N  1 5 121-2Nc,ANI 

From  Equation 4 we can  construct  Table 1 which gives R,(n) 
as a function of n and N .  This  table allows a quick estimate 
of the number of coefficients required  in the approximation poly- 
nomial  for a given  number of table  entries  and a specified relative 
error.  For small  values of N and n, the entries  are  not  very reliable, 
since the ck may  not decrease sufficiently rapidly  with  increasing k.  
For  the case b = 16, we set 

/e1 1 = log, 16 = 2.77258  87222 39781 23766 8928 . . . 
The approximations  given  in  this  paper were obtained  from 
Chebyshev  expansions  in T,(x), valid in -1 5 z 5 +l. This 
approach  was chosen because a  computer  program, IB CTR, was 
a ~ a i l a b l e . ~  Basically, the program  generates and  tests polynomial-, 
rational-, and continued-fraction  approximations f*(z) to given 
polynomials f(x) in -CY _< x 5 CY, with a arbitrary.  The poly- 
nomial f ( z )  consists of a sufficiently large  number of terms of 
the power series of the function considered. 
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Table 1 Relative  error  as  a  function of 71 and 11' 

n 
"_ 

4 

8 

9 

10 

11 

12 

13 

14 



Table 2 Polynomial  approximations to 16* 

First set of N numbers:  approximation  coefiients, ao, al, a2, ' . ' 
Second set of N numbers:  increments, Aao, Aa1, Aaz, . 
Third set of N numbers: .,first coeficients of power  series, a:, a:, a:, . . . 

n = 8 N = 6 R = (17).110* 

2.4622 08432 35539 5 
.99999 99999 99999 9 

,34086 50235 53789 (16) 
,36134 25338 63430 (05) 

.99999 99999 99999 7 
2.4622 04818 93005 7 

n = 9 N = 5 R = (15).223* 
.99999  99999  99999 9 

2.4689 17769  28121 9 

-.11394 38381 43381  (14) 
.go499  76719  34894  (06) 

1.0000 00000 00000 1 
2.4689 16864  28354 6 

2.7725 88722  23980 1 
1.3727 71781  50757 0 

-.Si806 55976  11774 (13) 
.16773  26288  78453 (05) 

2 7725  88722  23988 9 
1.3727 70104  18128 2 

2.7725 88722  23783 5 

,42774 67967  23492  (11) 

2.7725 88722  23355 8 

3.8436 24111  28507 4 

,77780 95084  19347 (10) 

3.8436 24111  20729 3 

."____ 

3.8436 24119  31080 5 

-.47765 25780  51647 (08) 

3.8436 24124  08733 1 

3.5522 63020  64986 0 

- ,28297 06962  41580 (07) 

3.5522 63048  94693 0 

___ 

3.5522 51538  47731 5 

.16285 09419  48967  (05) 

3.5522 49909  96789 5 

n = 10 N = 5 R = (17).237* 
,99999 99999  99999 8 2.7725 88722  23965 9 3.8436 24112  34014 7 3.5522 60103  36372 8 
2.4655 76924  42791 9 

-.35567 57125  06744 (16) ,26706 55503  59738  (12) - ,59656 09736  60950 (09) ,40701 78530  84898 (06) 
,22594 33280  62708 (06) 

,99999 99999  99999 9 2.7725 88'722  23939 2 3.8436 24112  93670 8 
2.4655 76698  48459 1 

3.5522 59696  34587 5 

n = 12 N = 4 R = (161.684 
,99999 99999  99999 8 2.7725 88722  24874 0 3.8436 23927  84778 0 3.5534 65449  60428 9 
,47851 36546  89676  (15) - ,89595 70477  02938  (11) .36693  35421  72204 (07) 
.99999  99999  99999 1 2.7725 88722  25770 0 3.8436 23891  15442 6 3.5534 65424  16393 7 

.25440  35275  12205 (07) 

n = 13 N = 4 R = (17).427 
.99999  99999  99999 9 
.29903  12720  91388  (16) -.11198 21947  52305 (11) 

2.7725 88722  24090 0 3.8436 24065  47697 4 3.5528 64144  84317 3 
,91729  50693  76185 (08) 

,99999  99999  99999 8 
,63590 11990  48984 (OS) 

2.7725 88722  24202 0 3.8436 24056  30402 4 3.5528 64138  48416 1 
~~~~~ ~ 

n = 18 N = 3 R = (17).616 
,99999 99999  99999 8 2.7725 88722  21070 3 3.8436 44437  61998 1 

-.I8486 65106  88162  (16) ,96923 10094  58279 (11) ,89576 28133  94029 (11) 
,99999 99999  99999 8 2.7725 88722  20101 1 3.8436 44437  61102 4 

* Used in testing exponential subroutine 
( ) Number of leading zeros 

have  to be added to  the corresponding terms  in the power  series, 
say at, to give rise to  the coefficients of the approximation poly- 
nomials : 

ai = a: + Aai (7) 

The a9 are  the coefficients of the power series of 16*" = 16**", 
after  the transformation given in  Equations 5 andy'6. The ai 
can then be computed easily on a desk calculator. The addition 
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A 2- 16+A 
"~ ~ " _ _ _ _ _ _  

(1)  ,3125  1.09050 77326 65258 
(1) ,15625 1.04427 37824 27414 
(2) .78125 1.02189 71486 54117 
(2) ,39062 5 1.01088 92860 51700 
(2) .19531 25 1.00542 99011 12803 
(3) ,97656 25 1.00271 12750 50202 
(3) ,48828  125 1.00135 47198 92108 
(3) ,24414 0625 1.00067 71306 93066 
(3) ,12207 03125 1.00033 85080 52682 
(4) .61035 15625 1.00016 92397 05302 

16- A 
_______""___ 

,91700 40432 04671 2 
,95760 32806 98573 6 
,97857 20620 87700 1 
.98922 80131 93975 5 
.99459 94234 83633 2 
.99729 60560 85470 1 
.99864 71128 90970 1 
,99932 33275 02650 7 
,99966 16064 96243 6 
,99983 07889 31929 1 



R = (15) .22 N = 11 P ,  = 10 

R = (08) .19 N = 7 P ,  = 6 

R = (09) .47 N‘ = 7 P,  = 3 

R = (07) .78 N = 6 P ,  = ti 

R = (08) .79 N‘ = 6 P ,  = 1 P, = 2 

For the  approximations given in  this paper, the corresponding 
numbers, of course, depend upon the size of the  table. We su111- 

marize the results  as follows: 

High precision 
When the number of table  entries (2”) increases  from 256 to 8192, 
P ,  is found  to decrease  from 5 to 3. 

Low precision 
When  the  number of table  entries (2”)  increases from 4 to 256, 
P ,  is found  to decrease from 5 to 2 and P,  from 3 to 1. 

For small  values of n one would, of course, keep the  tables 
in high  speed  memory and could expect closer agreement in 
efficiency between the two  approaches  compared. 
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that (0, 1) indicates 0 < F < 1 and [O, 1) indicates 0 5 F < 1. 
6. The convention Ilsed to represent the domain of an  argument,  say F, is 
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