A procedure 1s given for computation of e* using tables of coefficients
of the economized approximating polynomial over a range of positive
and negative x. A related procedure that uses conilinued fractions is
also discussed.

The exponential function was selected to test the effectiveness of table
lookup methods in the computation of elementary functions. The
number of multiplications or divisions required of standard methods
1s compared with the number required when table lookup is employed.

Computation of e* with the use of large tables
by Kurt Spielberg

With the availability of continually increasing amounts of core
storage, one might reasonably expect a trend toward programs
which take advantage of large tables to reduce execution times.
Examples of areas in which large tables have already been found
necessary for the attainment of reasonable computation times
are: large-scale weather forecasting, neutron transport and dif-
fusion calculations, and bubble chamber analyses.

In this paper we investigate the effectiveness of large tables
in the computation of the elementary function ¢”. A number of
suitably efficient approximations developed by means of Cheby-
shev techniques are given, so that the reader has a choice of various
table sizes. The approximations are mainly economized poly-
nomials (in the sense of References 1, 2, 3), but some continued-
fraction approximations are provided for application in ‘“‘short-
arithmetie” routines.

The allocation of additional storage to tables is economically
justified if it yields a sufficient reduction in computing time.
Therefore, the table lookup procedure is compared with a standard
procedure*'® that uses polynomials or continued fractions over a
relatively large domain. Tables of modest size, say 256 entries,
reduce the number of multiplications required in the central loop
of the program from approximately 10 or 11 to 5 for high-precision
and from 5 or 6 to 2 for low-precision subroutines.
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Techniques similar to the one described in this paper have
undoubtedly been used before, but only in conjunction with very
small tables.

We may assume that the argument is given in normalized
floating point form

x=0bf where <f<1

Here, b denotes the base of the number system, s the exponent
(usually given in the characteristic of the floating-point number)
and f the fraction. For the 1BM 704, 709, 7090, 7094, we have b = 2;
for sysTEM/360, b = 16.

The reduction of the domain of x, which is fairly large, to a
small domain in a derived variable is usually accomplished by
multiplication of the argument with log, ¢. Thus,

ex — bzlogbe — blM:hF’ — be;(:F’ (1)
where —1<F <1 or O<F<l1

Here M stands for an integral part of zlog,e and F for the
remaining fractional part. The domain of F, for which an approx-
imation to b” must be found, can easily be made to correspond
to either (—1, 1) or (0, 1).

Even for the hexadecimal base of the sysTEM/360, the choice
b = 21s of interest because one may wish to utilize approximations
for 27 or 277 only, rather than for 16" or 16~". However, it then
becomes necessary to examine the integer M modulo 4, e.g., by

2M.2F' — 24N+i'2lf‘ — 16N'2F'2i (2)

the multiplications with 2° ({ = 0, 1, 2, or 3) being executed
explicitly. The multiplication with 16" is, of course, accomplished
by addition of N to the characteristic of 27, when the latter is
available in floating-point hexadecimal format.

The choice b = 16 in Equation 1 has the merit of avoiding
the clumsy procedure in Equation 2, but leads to the necessity
of obtaining a good approximation to 16" in, say, (0, 1). In general,
for a given degree of accuracy, approximations to b” require an
increasing number of coefficients as b increases.

We consider the functions b5*" = 5**"™ in the interval
0 < F < 1, the argument F (for example, m binary digits or bits)
being decomposed into the first n bits, denoted by y, and the
remaining m — n bits, denoted by 4. The table consists of the
value of b**, stored at the left endpoints

y. = (i — 1A A=2" 1=1,2,-.-,2°

which describe a partitioning of [0, 1) into 2" subintervals.®
Expanding b*“** about a typical point y;, we have:

biF = pr kz; e &)
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oo = (£1)* 75 (log, b)*

where 4 can be taken as a non-negative difference of F and y,,
0<hr<2"=A

Let Ay stand for the absolute error (in magnitude) committed
when the power series Y v_, ¢;h" is approximated, say in accord-
ance with a Chebyshev economization procedure,’** by an N
term polynomial > Y2 ah*. The relative error in b*" is then
given, after cancellation of *"*, by Ry = A4 ,/b*". An upper bound

on Ry for a given value of n is evidently given by:
Ry(n) < Ayb®

The factor b* approaches 1 as n increases.
In the case of rapidly decreasing ¢, we can obtain a good
estimate for Ay, and with it an approximation for Ry(n) as

Ry(n) =~ 277V cy27"Vp? | 4)

This can be seen as follows. Introduce the variable & by means
of x = h/A, so that the domain of z is [0, 1). Under this trans-
formation, the power series in Equation 3 goes into a power
series x(x),

2okt = 2 aaft = x@)

To economize x(x) we replace, in principle, the powers of = by
the appropriate shifted Chebyshev polynomials 7';(z) and discard
all terms for which ¢ > N. The error Ay is essentially given by
the leading term discarded, which in view of

2 = 2Ty () 4 -]
becomes
121V (R)enAY | S 1207 e A

From Equation 4 we can construct Table 1 which gives Ry(n)
as a function of n and N. This table allows a quick estimate
of the number of coeflicients required in the approximation poly-
nomial for a given number of table entries and a specified relative
error. For small values of N and n, the entries are not very reliable,
since the ¢; may not decrease sufficiently rapidly with increasing k.
For the case b = 16, we set

le.| = log. 16 = 2.77258 87222 39781 23766 8928 - - -

The approximations given in this paper were obtained from
Chebyshev expansions in 7,(z), valid in —1 < 2 < 1. This
approach was chosen because a computer program, IB CTR, Was
available.® Basically, the program generates and tests polynomial-,
rational-, and continued-fraction approximations f*(z) to given
polynomials f(z) in —a < z < «, with a arbitrary. The poly-
nomial f(z) consists of a sufficiently large number of terms of
the power series of the function considered.
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Table 1 Relative error as a function of 1 and ¥V

N o2
number of
2 3 4 5 6 table entries

(2) (4 () (8 10
224 322 350 .307 .219
6y (8 (A1 (14) a7
741669 .453 .246 110
Gy (9 (12) (16) (19)
184 831 .282 762 .172
6) (9 13) A7) (21
459 103 .175 .238 .268
(6) (10) (14) (19) (23)
11 JA15 129 109 740 417
(M () (18) (20) (25)
12 286 .162 .684 .231 .652
(8) (12) (17) (22) (26)
13 716202 427 723 102
(8) (13) (18) (23) (28)
14 179252 267 .226 .159

( ) Number of leading zeros

Given the approximation f*(z) in —a < 2z < @, we have to
shift the interval to [0, A = 2a] by means of the linear trans-
formation

h=z4+a—>0<h< A= 2 5)

(16M* = 16%-(167)* 6)

If the absolute error in (16°)* is denoted by A, the absolute
error in (16")* becomes 16°-A. However, 16* is quite close to 1
for the ranges considered.

In Tables 2, 3, 4, and 5 we give the coeflicients a;, 7 = 0, 1,
-+, N, of a set of polynomial approximations to 16". They were
selected to be useful in the two ranges of accuracy which are
of most interest in the sysTeM/360 context. The long range and
short range arithmetic floating-point words of sysTEM/360 have
fractions of 56 and 24 bits respectively. Even for normalized
arguments, the three leading bits may be zero, so that we will
be interested in approximations of relative error between 277
and 27 (0.7 - 107" and 0.56 - 107'°) and between 27*° and
272 (0.3 - 107" and 0.24 - 107°), respectively. In the first range,
the given coefficients were computed in floating-point double-
precision mode on the 704. Since this arithmetic mode has no
more than 54 significant bits, sufficient computational accuracy
cannot be expected. For this contingency we are in a position
to give ‘‘increments” Aa; (the primary output of 1B ¢TtrR) which
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Table 2 Polynomial approximations to 16"

First set of N numbers: approximation coefficients, aq, a1, a2, - - -
Second set of N numbers: increments, Aaq, Aai, Adg, +»+
Third set of N numbers: first coefficients of power series, a3, a3, a3, - - -

n=8 N=6 R =(@17).110*

.99999 99999 99999 9 2.7725 88722 23980 1 3.8436 24111 28507 3.5522 63020 64986
2.4622 08432 35539 5 1.3727 71781 50757 O

.34086 50235 53789 (16) —.87806 55976 11774 (13) 77780 95084 19347 (10) — 28297 06962 41580 (07)
36134 25338 63430 (05) (16773 26288 78453 (05

.99999 99999 99999 7 2.7725 88722 23988 9 3.8436 24111 20729 : 3.5522 63048 94693
2.4622 04818 93005 7 1.3727 70104 18128 2

n=9 N=5 R =(15).223*%
.99999 99999 99999 9
2.4689 17769 28121 9

—.11394 38381 43381 (14)
.00499 76719 34894 (06)

1.0000 00000 00000 1
2.4689 16864 28354 6

88722 23783 & 3.8436 24119 31080 5 51538 47731

67967 23492 — 47765 25780 51647 09419 48967 (05)

88722 23355 3.8436 24124 08733 49909 96789

n=10 N =5 R = (17).237*

99999 99999 99999 8 2.7725 88722 23965 24112 34014 60103 36372

2.4655 76924 42791 9

—.35567 57125 06744 (16) .26706 55503 59738 09736 60950 78530 84898

.22594 33280 62708 (06)

.99999 99999 99999 9 2.7725 88722 23939 24112 93670 59696 34587

2.4655 76698 48459 1

n=12 N =4 R = (16).684

199999 99999 99999 8 2.7725 88722 23927 84778 60428
47851 36546 89676 (15) — .89595 70477 35421 72204 12205
.99999 99999 99999 1 2.7725 88722 23891 15442 16393

n=13 N =4 R = (17).427

.99999 99999 99999 9 2.7725 88722 24065 47697 64144 84317 ¢
.29903 12720 91388 (16) —.11198 21947 50693 76185 11990 48984
.99999 99999 99999 8 2.7725 88722 24056 30402 64138 48416

n=18 N =3 R = (17).616

.99999 99999 99999 8 2.7725 88722 61998
—.18486 65106 88162 (16) .96923 10094 94029
.99999 99999 99999 8 2.7725 88722 61102

* Used in testing exponential subroutine
( ) Number of leading zeros

have to be added to the corresponding terms in the power series,
say a7, to give rise to the coefficients of the approximation poly-
nomials:

a; = a; + Aa; @

The a? are the coefficients of the power series of 16%* = 16**7,
after the transformation given in Equations 5 and 6. The a;
can then be computed easily on a desk calculator. The addition
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Table 3 Llower accuracy polynomial approximations to 16*

N approximation coefficients, ao, a1, aq, - - -

n=2 N=286
.99999 98958

n=3 N=28
.99999 99986

n=3 N=5
1.0000 00095

n=4 N=5
1.0000 00003

n=5 N=4
.99999 99809

n=6 N=4
.99999 99988 2.7725 91114

n=7 N=3 R =(07).548
1.0000 00053 2.7724 65732

n=8 N = R = (08).673
1.0000 00007 2.7725 58104

R = (06).220*
2.7726 18480

R = (08).201
2.7725 89515

R = (06).139
2.7725 50756

R = (08).333
2.7725 86526

R = (07).210
2.7726 08210

R = (08).123

3.8422 52315 3.5752 50124

3.8435 50606 3.5547 48806
3.8460 31204 3.4991 82789
3.8439 03933 3.5398 25509
3.8405 18784 3.7099 70193
3.8428 60363 3.6301 53834
3.8855 16414

3.8645 04054

2.2902 30896

2.4244 75201

2.9325 10894

2.6861 00767

1.9405 89840

1.6257 23021

* Used in testing exponential subroutine
( ) Number of leading zeros

of the increments Aa; from Equation 7 produces coeflicients of
sufficient accuracy. It should be noted that this will be necessary
for the leading coefficients only, since the terms of higher order
a,h* will be small because of the smallness of A.

For the convenience of the reader, we give the a? to 16-digit
accuracy whenever the Aaq; are given. In Tables 6 and 7, we also
supply the leading coefficients of the power series expansion of
16*” and a set of powers 16**. These tables are intended to assist
the reader in deciding whether or not his desk-calculator computa-
tions are on the right track.

For any combination of n and N, the constants in the tables

are given in the order a,, a,, <<+ , ay_1; Ao, Ay, -+, Aly_;;
ag, @, -+ , ax_;. The fact that the first coefficients a,, Aa,, aj
do not, in general, satisfy Equation 7 reflects, in the author’s
estimation, the inaccuracy of the double-precision arithmetic
utilized in arriving at the table entries. Digits in parentheses
denote the number of leading zeros after the decimal point.
Finally, Table 8 gives continued fraction approximations to
16*%, for low-precision subroutines. Here z lies in the interval
—A/2 < 2 < A/2. The transformation to 0 < A < A is trivial
and can be left to the reader. It would not be meaningful to give
continued fraction approximations for the larger precision range
of interest, since again the double-precision arithmetic used in
arriving at these approximations was not accurate enough. In
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Table 4 Polynomial approximations to 167

First set of N numbers: approximation coefficients, ao, @1, @, * -+
Second set of N numbers: increments, Aay, Aai, Aas, -« -
Third set of N numbers: first coefficients of power series, a, a3, a3, -« -

n=8 N =6 R =(17.109*
.99999 99999 99999 8
2.4622 08686 50661 3

—2.7725 88722 23976
~—1.3579 84301 98948 8

3.8436 28563 —3.5522 62889 02641

33772 37682 39469 (16)
.36069 08954 34581 (05)

—.87032 74451
—.16592 58152

87467
13235

(13)
05

77153 77960 —.28112 51574 66996

99999 99999 99999 8
2.4622 05079 59766 0

—2.7725 88722 23967 3
—1.3579 82642 73133 6

3.8436 20848 7 —3.5522 62860 91390

n=9 N =5 R =(15.221*

199999
2.4555

11343
.90011

99999
2.4555

99999 99999 7
84189 95559 8

42174 27525 (14)
01627 60475 (06)

99999 99998 6
83289 84543 5

~2.7725

— 42598

—2.7725

23784 !

12399

23358

3.8436

47603

3.8436

24103

86521

24098

41591

92820

65553

—3.5522

—.16267

—3.5522

51583

46640

49956

72241

40865

97577

n =10
99999
2.4589

.35487
22533

99999
2.4589

N =5 R = (17).237*

99999 99999 7
10142 70730 7

94305 64288 (16)
23899 75764 (06)

99999 99999 7
09917 37491 7

—2.7725

—.26651

—2.7725

88722

39290

88722

23965

17594

23939

3.8436

.59555

3.8436

24110

22948

24109

35329

14314

—3.5522

—.40679

—3.5h22

60109

75042

59702

01936

86287

22185

n =12
199999
47825
.99999

N =4 R = (16).683

99999 99999 6
92242 87784 (15)
99999 99999 1

—2.7725
— 89555
—2.7725

23082
62224
22187

23927
14529
23891

-3 .5510
—.25423
—3.5510

60917
13796
60891

n =13
.99999
.29895
.99999

N =4 R = (17)427
99999 99999 8

17625 91314 (16)
99999 99999 8

—2.7725
—.11195
—2.7725

88722
73253
88722

23866
37243
23754

48861
54901
31644

-3 .5516
— .63568
—3.5516

61878
60142
61872

n =18
.99999
.18486
.99999

N =3 R = (17) 616

99999 99999 8
51257 19881 (16)
99999 99999 8

—2.7725
—.96922
—2.7725

88722
75924
88722

20170
12394
20101

03785
33393
03785

* Used in testing exponential subroutine
( ) Number of leading zeros

the case of continued fractions, the calculations are too complex
to allow a modification of the coeflicients on a desk calculator.
The given approximations have the form

16** =

for N = 7. The coeflicients are given in the order H,, Gy, H,, Gy -+ -,
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Table 5 Lower accuracy polynomial approximations to 167"

N approxzimation coefficients, ao, a1, ds, - - -

n=2 N=6
.99999 99452
n=3 N=6
.99999 99990

n=3 N=35
.99999 99305

n=4 N =25
.99999 99977

n=5 N=414
.99999 99823

n=6 N=4

.99999 99989

R

R

R =

R =

R

R

= (06) 110*
2.7725 72806
= (08).156
2.7725 88143

(07).932
7725 60734

= (08).279
2.7725 86836

= (07).193
2.7725 70608

= (08).118
7725 86416

3.8428 71828

3.8435 69674

.8418 15544

3.8433 81565

3.8407 14159

3.8428 84780

.5391 74835

3.5503 87128

3.5110 95049

3.5413 09708

-3

-3

.4020 57667

4762 47221

n=17 N=3 R =(07).535
.99999 99476 —2.7724 67787

n=8 N=3 R =(08).666
.99999 99934 —2.7725 58361

3.8022 57809

3.8828 75667

2.3579 84098

2.4328 37713

2.0735 98339

2.2587 32506

—.97029 49200

—1.1495 59772

* Used in testing exponential subroutine
() Number of leading zeros

the upper and lower signs correspond to 16"* and 16™* respec-
tively. The approximation to 16** for n = 5, N = 4, however,
has the form

e _ G
16 —Ho—l-Az—l—z_,_Hl
where 4 is listed in last place.

All approximations were generated by the 1B ¢TR program
from functions of the form f(ax), where —1 < z < 1 and

2

They were compared with the power series at 100 equispaced
points in —1 < 2 < 1. In all cases the errors did not exceed
the a priori estimates computed by 1B cTr. The errors (the R’s)
quoted in the tables, take the transformations in Equations 5
and 6 into account. In the case of the continued fractions, the
error estimates are somewhat too pessimistic. The user of the
approximations will find them to be as much as five to ten times
more accurate.
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Table 6 Power series coefficients of 16**

1.00000
+2.77258
3.84362
+3.55226
2.46224
+1.36535
.63092

The approximations indicated in the tables by an asterisk
were used for testing purposes in exponential subroutines for
sYsTEM/360. These subroutines were tested in various ranges of
the argument at 100 points for each range. The absolute error
of (1 — €% *)* which can easily be shown to be as much as
R* 4+ R7, was taken as a measure of the error (the terms R*
represent the relative error for ¢ when the approximation of
16** is used). For the other approximations, several spot checks
were made using a desk caleulator. In all cases, the results were
found to be as accurate as could be expected. That is, the errors
were either less than B™ 4+ R~, or could be explained by inac-
curacies in the table entries.

The appendices reproduce assembly listings of two sysTEM /360
codes for ¢ which illustrate some of the logical procedures neces-
sary for the table lookup. In programming the tests described
above, the inversions were suppressed.

A word of caution about the construction of the table is in
order. It is clear that the results of the loockup subroutines will be
no more accurate than the table entries. In general, computing
these entries on the sysTim /360 for use in the lookup subroutines is
not quite adequate due to accumulation of round-off error. For
convenience, nonetheless, the table entries were calculated on
sysTEM /360 with the aid of the 7090 sUPPAK simulator. Therefore,
for the more precise approximations, the tests cannot be considered
conclusive as far as the last 2 digits are concerned. This difficulty
did not arise for the less precise approximations of Tables 3, 5,
and 8.

In order to assess the efficiency of the table lookup approx-
imations, we compare them with standard approximations for 27
in the interval —1/2 < z < 1/2. The choice of 2° (rather than 167)
for the standard approximations is indicated because of faster
convergence of the power series. This choice leads, as already
discussed, to some coding difficulties which should be at least
as great as those encountered in the table-lookup procedure
advocated in this paper.

As a measure of efficiency, we may safely take P, (or Pp),
the number of multiplications (or divisions) required in coding
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Table 7 Powers of 16: 16™*

A =2

(1) .3125
(1) .15625

(2) .78125

(2) 39062 5

2) 19531 25
(3) 97656 25
(3) 48828 125
(3) 24414 0625
(3) 12207 03125
(4) 61035 15625

[l e Y
—CY =3 e = DD U1 = N

( ) Number of leading zeros

Table 8 Continued fraction approximations to 16™*

Order of coefficients forn = 2,83, 4,7, 8: H,, Gi, Hy, Gy, - --
FOT’I’L=5: Ho, G],Hl,A

n=2 N=7 R =(08).523 R = (08).192
— 98915 47947 11220 =8.5732 34616 60475  =4.3206 87747 97325 6.5159 25907 06117
+.39311 70161 43720 (02) 1.3011 89733 82176  ==.30338 30795 90640 (02)

n=23 N=25 Rl =(06).141 R®= (07).827
1.0015 03444 34067 +4.3373 01763 73720  =2.1650 36834 86781 1.5620 03161 78210
= 54184 54955 71694 (03)
n=4 N=5 R =(08).409 R = (08).256
1.0003 75482 03752 +£4.3303 87266 57632  =2.1645 16326 84734 1.5612 70867 60306
=.13540 10062 99561 (03)

n=25 N=4 Rl = (07).560 R*= (08).639*
—3.5001 17190 31934 +4.8604 12033 22660 =1.0820 63582 +=1.3862 40087 95073

n="7 N=3 R =(06.18 R = (07).268
—.99999 51122 68675 +1.4426 98566 05509  =.72135 10450

n=8 N =3 R =(07)232 R = (08)333*
—.99999 87781 25393 =1.4426 95922 24857  =.72134 84018

* Used in testing exponential subroutine
() Number of leading zeros
R1, theoretical relative error; R? numerical relative error

the subroutine. The multiplication for the table lookup will be
traded off against the multiplication by 2° shown in Equation 2.
The time of the lookup itself, which requires one access to a
stored table, depends upon the operational context, but usually
will be small.

The following numbers are taken from standard approxima-
tions also produced by 1B crr. (N’ identifies continued fraction
approximations.)
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(17) .
(15) .
(08) . 7 Py
(09) . 7 P
07) . N 6 Py=25
= (08) . N =6 Py=1 P,=2
For the approximations given in this paper, the corresponding
numbers, of course, depend upon the size of the table. We sum-
marize the results as follows:
High precision

When the number of table entries (2") increases from 256 to 8192,
P, is found to decrease from 5 to 3.

Low preciston

When the number of table entries (2") increases from 4 to 256,
P, 1s found to decrease from 5 to 2 and P, from 3 to 1.

For small values of n one would, of course, keep the tables
in high speed memory and could expect closer agreement in
efficiency between the two approaches compared.

CITED REFERENCES AND FOOTNOTE

1. C. Lanczos, Applied Analysis, Prentice Hall, Inc., Englewood Cliffs, New
Jersey, 438-468 (1956).

2. “Tables of Chebyshev polynomials S.(z) and Cu(x),” Applied Mathematics
Series, No. 9, National Bureau of Standards (December 1952).

. K. Spielberg, “The representation of power-series in terms of polynomials,
rational approximations, and continued fractions,” Journal of the Associa-
tion for Compuling Machinery 8, 613-627 (1961).

. K. G. Kogbetliantz, “Computation of e¥ for — o < N < + « using an
electronic computer,” [BM Journal of Research and Development 1, 2,
110-115 (April 1957).

. D. Cantor, G. Estrin, and R. Turn, “Logarithmic and exponential function
evaluation in a variable structure computer,” IRE Transactions on Elec-
tronic Computers EC 11, 155-164 (April 1962).

. The convention used to represent the domain of an argument, say F, is
that (0, 1) indicates 0 < F < 1 and [0, 1) indicates 0 < F < 1.

K. SPIELBERG




Appendix A Test of exponential subroutine with 16"

*
0cs CE 151,MAX
000 BC 2,0(R15) ERROR RETURN, BRANCH ON FIRST OPERAND HIGH
00IF48 79 00 C 0DO CE E1,MIN
001F4C 47 20 C 016 BC 2,CONT BRANCH ON FIRST OPERAND HIGH
001F50 1B 00 SR E1,EL RETURN WITH NORMAL ZERO
001F52 47 FF 0 004 BC 15,4(R15)
001F36  6C 00 C ODS MD E1,LOGE
001F5A 68 20 C OE0 LD F2,ZERO1 ZERO WITH CHARACTERISTIC 64 + 14
00IFSE  2E 20 AWR E2,E1 GENERATES UNNORMALIZED M IN E2
001F60 47 80 C 0A0 BC %,P1 BRANCH ON M ZERO
001F64 60 20 C OBS STD E2 A 44 CONTAINS FIXED POINT M, M CONTAINS
SIGN OF ARGUMENT

OES AD 162, ZLRO2 NORMALIZE M

SDR E1LE2 M 4 F —F = M (MAY BE NEGATIVE)
OE$ : AW F1LZERO2 FIXES POINT OF F AFTER BIT 7
0co STD B1,CL F WITH POINT FIXED
0co NI C1,00 SET CHARACTERISTIC TO ZERO
0co L R1,CL ABSOLUTE VALUE OF F, POINT AFTER BIT 7
010 SRL R1L,16 FIRST 8 BITS OF F(=Y+H) FOR TABLE LOOK
003 SLL R1,3 ADDRESS FULL WORDS (8 BYTES LONG EACH)
0c1 NI C141,C0 SET Y ZERO
0Co oI C1,64 16,0 IN CHAR.,, UNNORMALIZED H FOR POLYN
0Co LD E2,C1 i
OES AD E2,ZERO2 NORMALIZE H
0AS8 : LM R5,R7,XW SET 3 REGISTERS TO 0,8,46
OF0 1D 11,C5

MDR 1112 1VALUATE POLYNOMIAL
0F8 AD E1,C4R5)
05E BXLE R5,R6,P4
240 MD E1,TAB(R1) MULTIPLICATION WITH TABLY VALUES GIVES 16,F
0BY T™M M+1,X'FF’ TEST WHETHER M ZERO
08C BC 5,P6 YES
0BC L R2,M +4 ABSOLUTE VALUE OF M (MAY BE ZERO)
018 SLL R2,24 SHIFT ABS(H) INTO CHARACTERISTIC
0co STE E1,C1
0Co A R2,C1 ADD M TO CHAR. OF 16,F
0Co ST R2,C1
0Co LE E1,C1 FINAL RESULT IF X WAS POSITIVE
0BS ™ M,X'80/ TEST SIGN OF ARGUMENT
00IFDO 47 SF 0 004 BC 8,4(R15) IF POSITIVE , RETURN
001FD4 68 20 118 LD 12,FONE IF NEGATIVE, INVERT
001FD8 2D 20 DDR 12,11
00IFDA 28 C2 LDR 131,12
00IFDC 47 F¥ 0 BC 15,4(R15) RETURN
001FE0 60 00 C STD i) NORMALIZED NON-ZERO NUMBER, SIGN OF ARG.
00IFE4 47 F0 C BC

001F40 79 00
001F44 47 2F

Qaoean

001F68 6A 20
001F6C 2B 02
001F6E 6E 00
001F72 60 00
001F76 94 00
001F7A 58 10
001F7E 88 10
001F82 89 10
001F86 94 00
001F8A 96 40
001F8E 68 20
001F92 6A 20
001F96 98 57
001F9A 68 00
001F9E 2C 02
001FA0 6A 05
001FA4 87 56
001FA8 6C 01
001FAC 91 FF
001FBO 47 50
001FB4 58 20
001FB8 89 20
001FBC 70 00
001FCO 5A 20
001FC4 50 20
001FC8 78 00
001FCC 91 80

QcaaaQaQacaaaCl QO o0 aa aac

* CONSTANTS AND STORAGI

Q00000 X1 EQU
000002 E2 EQU
000004 K3 EQU
000006 E4 QU
000001 Rt BQU
000002 R2 QU
000003 R3 EQU
000004 R4 EQU
000005 RS EQU
000006 16 LEQU
000007 R7 EQU
00000C R12 EQU
00000F R15 EQU

001FES8 00000000 XW Dne

001FEC 00000008 DC

001FFO 00000020 DC

001FF8 M DS

002000 C1 DS

002008 +42. AD000000000000 MAX DC E 173

002010 —42. AD000000000000 MIN DC —173

002018 -+40.50551194AE0BF8 LOGE DC 1.36067376022224085

002020 4E00000000000000 ZERO1 DC X"4E000000000000007 ZERO WITH CHAR. 64414

002028 “4000000000000000 ZERO2 DC X’4000000000000000°

002030 +41.15F6DF8B272590 C5 DC D’1.3872771781507570"

002038 ++41.276534AB4E6DFA C4 DC 1’2, 462208432 95"

002040 +41.38D611BFC7B37E DC D3, 552263020649860)"

002048 +41.3D7F7BFF016221 DC T)'3.843624111285074"

002050 +41.2C5C85FDF47437 DC D’2.772588722239801"

002058 ~+41.,10000000000000 DC D1.C’ ALSO FIRST COEFFICIENT

EJECT

[l IR ISR NI T )

NRY]
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Appendix B Test of exponential subroutine with 167"

*

* COMPUTE EX AS EX IF X NEGATIVE, AS ,~X IF X POS.
EXPM  CE E1L,MAXM
BC 2,0(R15) ERROR RETURN, BRANCH ON FIRST OPERAND HIGH
002068 CE 1, MINM
00206C BC 2,CONTM BRANCH ON FIRST OPERAND HIGH
002070 SR E1,EL RETURN WITH NORMAL ZERO
002072 BC 15,4(R15)
002076 CONTM MD ELLOGEM
00207A LD E2,2ERM1 ZERO WITH CHARACTERISTIC 64414
00207E AWR E2,E1 GENERATES UNNORMALIZED M IN E2
002080 BC 8 P1M BRANCHES ON M ZERO
002084 STD E2,MM M-+4 CONTAINS FIXED POINT M, M CONTAINS
SIGN OF ARGUMENT
AD %2, ZERM2 NORMALIZE M
SDR 11,E2 M4F — M = F (MAY BE NEGATIVE)
AW E1,ZERM2 FIXES POINT OF F AFTER BIT 7
STD E1,C1M F WITH POINT FIXED
NI CIM,00 CHARACTERISTIC AN SIGN SET ZERO
L R1,CIM ABSOLUTE VALUE OF T, POINT AFTER BIT 7
SRL R1,16 SHIFT OUT H
SLL R1,3 ADDRISS FULL WORDS (8 BYTES LONG EACH)
NI C1M 41,00 SET Y ZERO
o1 C1M,64 16,0 IN CHAR.,, UNNORMALIZED H FOR POLYN
LD 12,C1A UNNORMALIZED H
AD E2,ZERM2 NORMALIZE H
LM R5,R7,XWM
LD E1,C5M COEFFICIENTS ARK FOR FUNCTION ¥,—X
MDR 11,E2
AD 11,C4M(R5)
BXLE R3,R6,P4M
MD E1,TABM(R1) TABLE CONTAINS VALUES OF 16, —1/236
™ MM -+1,X'FF’ TEST WHETHER M ZERO
BC 5,P6M YiS
0020134 L R2,MM +4 ABSOLUTE VALUL OF M (MAY BE ZERO)
002008 SLL R2,24
0020DC LCR R2,R2 SUBTRACT ABSOLUTE VALUE OF M
0020DE STE E1L,CIM
0020E2 A R2,C1M ADD —)M TO CHAR. TO GENERATE 16, —F —~M
0020E6 ST R2,C1M
0020EA LE E1L,CIM FINAL RESULT IF X WAS NEGATIVE
0020EF MM, X 80" TEST SIGN OF ARGUMENT
0020F2 BC 1,4(R15) IF NEGATIVE, BRANCH
0020F6 %2, FONEM IF POSITIVE, INVERT
0020FA E2,E1
0020FC EL,E2
0020FE 15,4(R15)
002102 E1,MM NORMALIZED NON-ZERO NUMBER, SIGN OR ARG.
002106 15,P3M

002060
002064

ool el

002088
00208C
00208E
002092
002096
00209A
002091
0020A2
0020A6
0020AA
0020AE
002082
0020B6
0020BA
0020BE
0020C0
0020C4
0020C8
0020CC
0020D0

caaaana caecaoaaaceaaan a oo aac

aceaaaaa

* CONSTANTS AND STORAGE

00210C 00000000 XWM  DC A(C)
002110 00000008 DC A(8)
002114 00000020 DC A(32)
002118 MM DS D
002120 C1M DS D
002128 +42.A1000000000000 MAXM  DC D173
002130 —42.AD000000000000 MINM  DC D173
002138 +40.50551DY4A EOBFS LOGEM DC 1/.3606737602222405°
002140 4K00000000000000 ZERM1 DC X4100000000000000"
002148 4000000000000000 - ZERM2 DC X’4000000000000000"
002150 —41.15BA4DBF386B79  C5M DC 1) — 1.357984301989488"
002158 +41.276534EFS7917D C4M DC
002160 —41.3816119C729B5C e 5226288002641 5"
002168 +41.3D7F7DFFO16CI2 Dne 1)3.843624111285639/
002170 —41.2C5C85F DF4737F ne 1) —2.77258R722230761)
002178 +41.10000000000000  FONEH DC DL
002180 TAB ns 2561
002980 TABM DS ;

END TPOO WILL REQUIRE BASE REGISTER
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