A general statement of the problem of dynamic program relocation
1s presented as an aid in describing specific relocaiton principles.

The main purpose of the paper is to review a number of typical
methods of meeting the expanding need for dynamic program reloca-
tion. Although no attempt is made at evaluation, the methods are
descussed in the context of selected computer systems for tutorial
concreteness.

On dynamic program relocation

by W. C. McGee

Recent developments in computer technology have suggested
the feasibility of the time-shared mode of computer operation—
that is, the simultaneous use of a single computer by more than one
user, cach of whom acts as if he were the exclusive user. While
time sharing can often be justified on economic grounds alone,
its biggest attraction seems to lie in providing capabilities beyond
the reach of conventional operating modes, such as conversational
programming, on-line problem solving, and interaction with other
on-line users.

Time sharing poses some significant technical problems for
the system designer. One of the most difficult, the proper allocation
of computer resources, exists in other ¢ erating modes as well,
but has special importance in time sharing because of the fre-
quency and rapidity with which new resource allocations must
be made. To adequately handle resource allocation under these
conditions, it has been necessary to develop new hardware and
programming techniques. One such hardware technique developed
for this purpose is dynamic program relocation.

The purpose of this paper is to trace the evolution of dynamic
program relocation, and to describe a few specific but charac-
teristic dynamic program relocation techniques. In the interests
of brevity, attention will be focused on the subject of dynamic
relocation per se; the closely related system problems of storage

IBM SYSTEMS JOURNAL ° VOL. 4 - NO. 3 * 1965

allocation, sharing of procedures, replacement algorithms, and
the like, will not be treated.

Introduction to relocation

From the user’s viewpoint, a computer facility is a means of
carrying out a procedure on a set of input data. In general, such
a procedure contains references to elements in the input set, to
intermediate results, and to instructions in the procedure itself.
However, before the procedure can be executed on a computer,
these references must be translated into references to specific
parts of the machine. Thus, variables become identified as memory
locations, files as tape drives, and the like. The translation is
equivalent to allocating certain of the machine’s resources to the
procedure. In particular, a portion of the computer’s main memory
—that is, storage from which instructions are executed—must be
allocated to hold the instructions, constants, and intermediate
results of the procedure. The allocation of main memory is, in
principle, no different from the allocation of other resources in
the computer. However, because of main memory’s central role
in the computer process, and because main memory is expensive
and hence should be utilized well, the problem of main memory
allocation deserves special attention.

The translation of problem references into main memory
addresses can be accomplished at three different times:

& When the procedure is prepared as an operable computer
program. The result is an absolute program which is, in effect,
assigned the same resources each time it is run.

When the program is loadéd. This is known as static relocation.
During program execution. This is called dynamic relocation.

The translation of references into main memory addresses is
easily accomplished during program preparation, but has a
significant drawback: it makes it difficult to allocate memory
concurrently to two or more independently written programs.
A necessity for a joint allocation arises, for example, whenever
a main program and several previously written subroutines are
to be combined into a single program; the necessity also arises
whenever independent programs are to be executed together in
order to make better use of certain computer facilities, i.e., in
multiprogramming.

In general, the allocation of memory to independently written
programs can be achieved in two ways: (1) by assembling the
programs together, or (2) by assembling the programs separately,
taking special steps to provide interprogram communication and
to prevent conflicting memory allocation. The first method re-
quires some care to avoid use of the same label for different
objects, but its biggest drawback is that it requires a separate
assembly for each different combination of programs. The second
method requires that the particular combination of programs to
be used and the storage requirements of each program be known,

DYNAMIC PROGRAM RELOCATION

absolute
programs

185

static
relocation

186

information not always available when the programs are written.
Thus, neither (1) nor (2) provides a satisfactory method of allocat-
ing memory to separate programs.

Methods of static relocation were first introduced to overcome
the difficulty of allocating memory concurrently to independently
written programs. In static methods, references to main memory
locations are left untranslated by the assembler/compiler and
are translated into actual addresses only when the program is
loaded for execution. The translation is carried out by the loader,
often called a relocating loader.

Because memory allocation is performed by the loader, the
particular combination of programs to be loaded together can
be decided just prior to loading. Further, each program can be
assembled independently of the others, provided only that suit-
able conventions are adopted for interprogram communication.

Implicit in static relocation is the assumption that the alloca-
tion of memory to a given program will remain fixed for the dura-
tion of the program execution. This is not always economical.
For example, when a computer is being time-shared among a
number of on-line users, control is typically passed from one
program to the next in round-robin fashion, in order to provide
each user with adequate response to his requests. In general,
then, control will be taken away from a program before its com-
pletion. When the time comes to resume the interrupted program,
the space previously occupied by the program may be occupied
by some other program. Rather than displace the latter, it may
be preferable to allocate a new part of memory to the interrupted
program. Thus, the allocation of memory to a program may
change many times in the course of the program’s execution.

Under the following conditions, it is possible with a relocating
loader to allocate memory to a program each time it is resumed.

o (Condition 1: The program is separable into a data part and

a procedure part; the procedure part is “pure procedure”
(i.e., never modified during execution).
Condition 2: The data part, including the contents of registers
at the time of interrupt, contains no absolute memory addresses.
Condition 3: When the program is interrupted, the data part
must be dumped into auxiliary storage.

If these conditions are met, memory can be reallocated to an
interrupted program by loading, with a relocating loader, the
original copy of the procedure part of the program and the
latest copy of the data part. Some time ean be saved if the data
part is further partitioned into read-only and read-write parts.
Then only the read-write part need be dumped.

Conditions 1 and 3 are not too restrictive. In contemporary
computer design, pure procedures are becoming more prevalent,
and the dumping of an interrupted program is to be expected
in any case. Condition 2, however, is harder to achieve. Among
other things, it limits the use of coding techniques in which

W. C. McGEE

addresses are ‘“‘computed” (e.g., key-to-address transformations),
since the computed addresses must generally be stored, either
in memory or registers, before they are used.

The preceding conventions may be relaxed somewhat by
adopting the convention that a program will be interrupted only
at certain ‘“‘breakpoints” dictated by the program itself. For
example, if interrupts are blocked during the execution of sub-
routines, and if subroutines are written so that they always fetch
their parameters from, and store their results in, external locations,
then subroutines have the attributes of pure procedures, even
though they store intermediate results internally during execution.
As pure procedures, they can be relocated simply by copying
their original versions.

Nevertheless, the relocation of an interrupted program by
methods of static relocation has the significant drawback that
it requires the execution of a fairly elaborate procedure each
time the interrupted program is resumed. If interruptions occur
at a high rate, the time required for resumptions may become
excessive.

Dynamie relocation methods evolve out of attempts to find
a better solution to the problem of reallocating memory to un-
completed programs. In dynamic relocation, the translation of
problem references to main memory addresses is delayed until
the last possible moment, i.e., until access to memory is required
in running the program. Because the program contains no absolute
memory addresses, it is invariant to the actual memory allocation
it receives; it ean be interrupted at any point and reloaded into
a different set of memory locations without modification.

While it solves the problem of reallocation, dynamic relocation
requires special facilities for efficient implementation. Further,
it may have significant implications for the instruction format,
since instructions will, in general, hold untranslated addresses
in a form appropriate to the relocation technique. For these
reasons, the requirements for dynamic relocation should be con-
sidered early in the development of a computer.

When a number of independent programs share main memory,
it is typically required that programs not be allowed to access
the memory allocated to other programs. In other words, each
program’s memory must be protected from the other programs.
Frequently, the techniques used to achieve dynamic relocation
can also be used to effect storage protection. For this reason,
it is expedient to treat the two problems jointly.

Statement of the problem

Before considering some solutions to dynamic relocation, a more
general statement of the problem may be helpful. Such a statement
is best approached by first postulating the general structure of a
program to which main memory is to be allocated. For this
purpose, we draw upon definitions given by Dennis and Glaser."
A program is composed of one or more segments. Formally,

DYNAMIC PROGRAM RELOCATION

dynamic
relocation

storage
protection

188

a segment is an ordered set of computer words in which each word
is identified by a unique word number ©. We will generally assume
that the words of a segment are numbered sequentially, starting
from 0. The number of words in a segment is called segment length.

The segment itself is given a segment name s. Except that
each segment of a program must have a different name, the form
of the segment name is not critical for our purposes.

By means of segment name and word number, one can refer
unambiguously to any word in any segment. In particular, a
reference to word 7 of segment s will have the form of the couple
(s, 7).

From the programmer’s point of view, a segment is any
portion of a program which may be written and compiled or
assembled more or less independently of the rest of the program.
A segment may consist entirely of instructions, entirely of data,
or of both instructions and data. Examples of segments are:
main programs, subroutines, lists of channel commands, and
data arrays.

Before a program can be used, a correspondence must be
established between the words of the program and certain loca-
tions in main memory. This correspondence is used to load the
program into main memory and to translate program references
into corresponding memory location values. In most computers,
memory locations are identified by a single sequence of integers
y = 0,1, --- . Thus a correspondence must be established between
a set of program words with identifiers of the form (s, 7) and a
set of memory locations with identifiers of the form .

Given such a correspondence, it is the function of a dynamic
relocation technique to translate each program reference en-
countered during program execution into a corresponding memory
location value. Program references requiring translation may come
from a number of sources. The principal source, of course, is the
instruction sequence. Other sources include the instruection
counter, which holds the identifier of the instruction currently
being executed, and the input/output channels which refer,
independently of the instruction sequence, to parts of the program
being respecified by an input operation or copied by an output
operation. If any of these sources is accessible to a program,
the reference should be given to the program only in its untrans-
lated form, thus avoiding any possible dependence on the current
memory allocation. For example, a “link branch” type of in-
struction should store the “return address” in the form (s, %)
rather than as the corresponding location value ¥, since the latter
may change in the event the program is relocated. Sources which
are not normally accessible to a program (e.g., channels, which
are usually managed by the supervisor) may, if more convenient,
maintain references in their absolute form.

To simplify the translation process, a number of dynamic
relocation techniques assume that the various segments of a
program have been bound into a single segment prior to execu-

W. C. McGEE

190

The first type permits full access to the segment in question.
The second type prohibits writing into a segment, and is typically
used to allow two or more programs to share a common segment
without the risk of inadvertent destruction. The third type,
which allows writing but prohibits reading, can be useful in some
program-checkout situations. The last type, which prohibits access,
is generally used to provide complete isolation of independent
programs.®

In summary, given a number of programs (each of one or
more segments that have been partitioned into pages and stored
in main memory), the function of a dynamic relocation technique
may be stated as follows: For each reference (s,) by program r
to the 7th word of segment s, determine if the reference is legitimate
and, if so, translate the reference to the memory location of the
referent. If the reference is not legitimate, signal a ‘“protection
exception.”

Examples of dynamic relocation

In this section, we describe some existing and proposed dynamic
relocation techniques, using the concepts and terminology de-
veloped in the preceding section. The descriptions will emphasize
the logical and operational characteristics of the techniques,
rather than their specific implementations. No attempt is made
to assess the impact of these techniques on the performance of
the computer in question, or to evaluate the techniques relative
to one another.

One of the earliest examples of dynamic relocation is found
in the optional “multiprogramming package’ for the IBM 7090,’
so named because it provides dynamic relocation and storage
proteetion, both of which are useful in a multiprogramming
mode of operation.

By our previous definitions, the 7090 dynamic relocation
technique can only accommodate programs of a single segment or,
equivalently, programs bound into a single segment. A program
thus consists of a single ordered set of 36-bit words, numbered
consecutively beginning at 0. The length of the program is limited
by the available amount of main memory, not by the relocation
technique.

In allocating main memory to a program, no provision is
made for partitioning the program into pages. Instead, con-
secutive words of the program are simply loaded into consecutive
memory locations. The correspondence between program word ¢
and memory location y is given by

y=8+4+G~—a),

where 8 is the origin of the program, that is, the lowest-numbered
location allocated to the program, and « is the word number
of the word stored at 8. The word number « is usually chosen
to be zero.

The translation of program references is effected through a

W. C. McGEE

7-bit relocation register which holds the integer § = (8 — «)/256.
The selection of an origin 8 is limited by the requirement that
8 be an integer. A 15-bit reference +—which may come either
from an instruction or the instruction counter—is translated to
a 15-bit memory location y by adding the contents of the reloca-
tion register to the seven high-order bits of ¢ (and ignoring any
carry). Thus,

y=i+wx2%=r+@;ax?)=ﬁ+@—®-

For example, if word 0 of a program is stored at location 2048,
that is, « = 0 and B = 2048, the relocation register would be
loaded with

_ 2048 -0 _
256

In this case, a reference to word 10 would be translated to loca-
tion value

y = 10 4+ (8 X 256) = 2058.

The multiprogramming package provides storage protection
through two 7-bit registers holding a lower bound x and an upper
bound z. A translated location value y is considered valid only if
2%z <y < 2%.

If m programs are sharing main memory, the supervisor
program must arrange for the time-gharing of the relocation
register and bounds registers among the various programs. The
effect of the storage-protect feature is to give each program
read-write access to any word within itself, and no access to
any word outside of itself. The access matrix [¢;,] of our general
problem statement thus becomes an m X m matrix in which

8 8.

= “read-write” for ¢ = j
* “neither read nor write”’ for ¢ = j.

A salient feature of the Ferranti ATLAs computer, as described
by Kilburn et al.,* is a large “main memory”’ whose locations
appear to be randomly accessible, but which is, in fact, composed
of a relatively small random access core store and a large amount
of drum storage. References to words in core storage are effected in
a manner described below; references to words in drum storage
cause an interrupt to occur and a supervisor program to copy the
desired word from drum to core storage, after which the reference
is completed in a normal manner. A given word in the program
may thus appear in many different core locations in the course
of program execution. To avoid retranslating the program each
time a group of words is placed in core, a dynamic relocation
technique is used.

The ATrAs dynamic relocation technique treats a program
as a single segment. A program may be of any length up to 2%
(approximately one million) 48-bit words. Words are numbered
sequentially beginning with 0.

DYNAMIC PROGRAM RELOCATION

For core-storage allocation purposes, the program is parti-
tioned into pages of 512 words each. The page number and line
number of a given word are given by the eleven high-order and
nine low-order bits, respectively, of the 20-bit word number.

Core storage is similarly partitioned into blocks of 512 loca-
tions each, and programs are allocated to core storage by placing
pages in blocks. (In ATLAS terminology, blocks are “pages” and
pages are “blocks’’; here we follow the terminology of Reference 1.)
Associated with each block £ (k = 0, 1, ---) is an 11-bit page
register which holds the page number p(k) of the page currently
assigned to that block. Thus, a core store of 2'* words is partitioned
into 2'*/2° = 32 blocks, and can accommodate up to thirty-two
program pages at one time.

A reference to a word of a program is made by means of

its 20-bit word number ¢. The reference is translated by first
extracting the page number p and line number [from 2, and
then comparing p to the page number in each of the page registers.
If a match is found in page register k, then & is concatenated
with the line number ! to form the desired location y. Thus
y=(kX2)+1,
where k is such that
p = p(k).
If no matching page number is found in the page registers, an
interrupt occurs and the supervisor reads the required page from
drum storage into an available block of core storage, possibly
displacing another page, and places the new page number in
the block’s page register. Translation then proceeds as in the
case of matching page numbers.

Although the technique makes no explicit provision for
segmented programs, the effects of segmenting can be obtained
through the judicious use of page numbers in writing/compiling
programs. The range of available page numbers (0 to 2047)
makes it feasible to assign sets of pages to different users or uses
on g more or less permanent basis: system routines might use
pages 0-500, User 4 pages 501-1500, etc.

Perhaps the first instance of dynamic relocation in which
multiple-segment programs- are accommodated is found in the
Burroughs B5000 computer. As described by Lonergan and King,®
a B5000 program may contain as many as 1024 segments. FEach
segment, composed of 48-bit words, may represent instructions,
data, control information, and the like. The words of a segment
are numbered serially beginning at 0.

The maximum length of a segment is determined by the
facilities provided for referring to words within a segment. KEs-
sentially, two methods are provided in the B5000:

I. To refer to words in the control segment (that is, the segment
in which control resides), a positive or negative displacement
A7 relative to the current instruction word may be specified.

W. C, McGEE

Such references are intended only for locating the next in-
struction to be executed, not for fetching or storing data.
The maximum value of the displacement is 1024.

. To refer generally to any word in the program, a 10-bit segment
name s and a 10-bit word number 7 may be specified. The
segment name is specified in the instruction; in fact, it occupies
ten of the twelve bits of the “syllable,” the B5000 equivalent
of an instruction. The word number, on the other hand,
is held in an implicitly designated register, where it must have
been placed by a previous instruction.

The 10-bit word number limits to 1024 words the length of
segments whose words may be individually addressed in Method II.
In view of Method I, however, an instruction segment can be
of any length, provided that it is always entered at one of its
first 1024 words, and that it nowhere branches forward or back-
ward more than 1024 words.

No provision is made for partitioning segments into pages.
Each segment s is assigned a set of sequential memory locations
starting at location 8(s).

For purposes of translating displacement references, the loca-
tion ¢ of the current instruction word is maintained in a program
counter. The location of the referent is given simply by ¢ + A,
and is generally used to respecify ¢. In particular, the next in-
struction word sequence is located by specifying A7 = 1.

To translate references of the form (s, 7), a program reference
table (PRT) is maintained in main memory for each program r.
The table, which contains a maximum of 1024 one-word entries,
is stored starting at an arbitrary location b(r). The entries are
fully accessible to the program and may be used for a variety
of purposes. In particular, any entry may be used to hold a
segment descriptor which contains, among other things, the loca-
tion of the first word G8(s) and the length A(s) of segment s.

Translation is effected by adding the segment name s to the
base b(r) of the PRT to locate the descriptor for segment s.
The segment base 8(s) is then added to the word number ¢ (held
in the accumulator stack) to give the location of the referent.
That is, y = B(s) + <.

Each time such a translation is made, the word number 2
is compared to the segment length A(s) in the segment descriptor.
If 7 > A(s), a protection exception is signaled.

In most dynamic relocation schemes, once the location of
the referent has been obtained and used to access memory, it is
discarded. The B5000 instruction set, however, in some cases
necessitates retention of y in the stack, so that it may be used
directly by subsequent operations. For example, storing is ac-
complished by the “store” syllable, which itself has no provision
for referring to program words; this instruction assumes that
an appropriate translated location is already in the stack. Since
translated locations are placed in the stack, where they are readily

DYNAMIC PROGRAM RELOCATION

194

accessible to a program, care must be taken not to use them in
such a way as to make the program location-dependent.

The main memory addressing technique of sYsTEM/360 permits
a restricted form of dynamic program relocation without changes
to the standard system. The method, which requires the observance
of more programming conventions than necessary for the hard-
ware-implemented relocation technique described in Case 5, may
be of interest in its own right. The basic idea has already been
discussed in the literature.’®

In sysTEM/360, references to main memory typically take the
form of a triple (d, j, k), where d is a 12-bit “displacement,”
§ is the 4-bit designator of a general register holding a 24-bit
“index,” and k is the 4-bit designator of a general register holding
a 24-bit “‘base.” The memory location to be aceessed is determined
by computing its effective address from the relation

y=d+ (B;) + (B,

where R; and R, are the general registers identified by j and %,
respectively, and parentheses denote ‘“content of.” The means
for performing this summation will be referred to as the effective-
address mechanism.

This form of addressing is employed to minimize the number
of instruction bits required to address main memory. In particular,
the maximum memory (2** bytes) can be addressed with only
sixteen bits—twelve for the displacement and four for the base
designator (assuming the latter have been previously placed in
the general registers).

By viewing the role played by the base designator a little
differently, the sysTeEM/360 addressing technique can be made
to perform the function of dynamic relocation. To see this, let k

designate segment s of a program, and the “indexed displacement”
d + (R;) designate a byte within that segment. In sYSTEM/360,
our generic term ‘“‘word” becomes “byte.” If we assume that
general register k& holds the segment base (the location of the
first byte of the designated segment), then it is clear that the
existing effective-address mechanism will perform the translation
required for dynamic relocation:

y=d+ ®R)+ R
4+ (&)

byte location of first
number ¢z byte of segment s

The technique is subject to limitations in the structure of
of programs that can be accommodated. First, although segments
may in principle be of any length up to the maximum capacity
of memory, the byte number in a segment must be expressed
in the form d -+ (R;). Except for data arrays that can be con-
veniently addressed by indexing, this restriction will in practice
tend to limit segments to the number of bytes addressable by d,
viz., 4096. Of course, if a segment exceeds 4096 bytes, it may be
broken into segments of a more convenient size.

W. C. McGEE

Second, if a one-one correspondence were established between
segments and general registers holding segment bases, the number
of segments permitted in a program would be unacceptably low,
especially in view of the fact that the general registers are also
used for other purposes. It is clear, therefore, that at least some
of the general registers need to hold different segment bases at
different times. This can be accomplished by allowing programs
to establish the base of any segment in any register during the
execution of the program. For instance, the program could execute
the following sequence (expressed in sYSTEM/360 assembler
notation):

sSvC ke
DC H'ryry

Here SVC is the supervisor call operation, & is a code identifying
this particular type of supervisor eall, DC is the ‘“define constant”
assembler instruction, r, designates the general register into
which a base is to be loaded, and r, designates the general register
holding the “name” of a segment. The supervisor would respond
by placing the segment base in the designated register and return-
ing control to the program. For each active program, the supervisor
would of course keep a list of the registers that contain segment
bases, together with the corresponding segment names. Whenever
a segment is relocated, the supervisor would scan these lists
for a matching segment name and wherever a match is found,
substitute the new base for the old base.

The method requires that a segment be stored in consecutive
memory locations (i.e., consist of a single page). This short-
coming is offset to some extent by the freedom for selecting
any byte location as the segment base. This permits tighter
segment packing than if segments were constrained to start at
certain fixed locations.

As noted above, the method uses the effective-address mech-
anism of the system/360 to effect the translation required for
dynamic relocation. Certain sysTEM /360 instruetions, however, do
not use the effective-address mechanism in referring to memory.
For example, in the BRANCH ON CONDITION instruction in the
RR format (BCR), the 24-bit branch address is obtained directly
from a specified general register. Such ‘“‘computed’” addresses may
be generated in any manner. In particular, they may be generated
by certain instructions that deposit translated addresses in the
general registers, e.g. BRANCH AND LINK. In the method under
discussion, such addresses cannot in general be used since they
make a program dependent upon absolute memory locations; an
effective address stored in memory at point A in the program
for use at point B may be rendered useless if the program is
interrupted and relocated between point 4 and point B. (By
the same reasoning, segment bases deposited by the supervisor
in the general register should not be stored away by the program.)

DYNAMIC PROGRAM RELOCATION

One solution to this problem is to require computed addresses
to take the form (s,) where s is, say, an 8-bit segment name,
and 7 is the 24-bit byte number within the segment. The sYSTEM /360
instructions that generate and use computed addresses can then
be replaced by supervisor calls, assuming that the supervisor
carries out any necessary translation. For example, BCR r,, 7,
would be replaced by

SVC kscr
DC Hir,r,

where r, now contains both a segment number and a byte number.
The supervisor would compute the corresponding memory location
and then branch to this location or to the point of call, according
as the condition specified by r, were satisfied or not.

Finally, this method makes no provision for storage protection,
which would presumably be accomplished through the sysTEM/360
storage-protect feature. This feature requires that portions of
a program to be protected in the same manner lie in one or more
2048-byte blocks with fixed (but not necessarily contiguous)
locations. Because of this, the ability to designate arbitrary
locations as segment bases would be limited to a certain extent.
The feature provides three of the four access types defined above,
viz., read-write, read only, and neither read nor write.

Read-write protection is achieved by giving each program
a 4-bit “key’” that matches the 4-bit “lock” on each block to
which the program is to have read-write access. The latter two
types of access are met by ensuring a mismatch between a pro-
gram’s key and the locks of blocks into which writing is to be
inhibited. An additional “fetch protect’’ bit is added to the lock
on each block; if this bit is 0, read-only access results, and if
it is 1, access is prohibited. Within the constraints implied by
this technique, access types may be assigned independently to
each program-segment pair.

A hardware dynamic relocation technique has been provided
in the sysTtem/360 MoDEL 67.” This technique will accommodate
programs of as many as sixteen segments each with each segment
containing a maximum of 2*° bytes. The bytes of a segment are
numbered sequentially starting from O.

Program references of the form (s,) are contained in the
24-bit effective address normally used to address memory. The
four high-order bits are interpreted as the segment number s, and
the twenty low-order bits as the byte number ¢ within the segment.
This same interpretation holds regardless of the source of the
effective address, be it the effective-address mechanism, the
instruction counter, or whatever. It is clear that in addressing
the program from an instruction, the reference (s, z) must be
fabricated through the effective address mechanism. A con-
venient, but by no means unique, way of doing this is to place
the integer s X 2% in the general register (k) normally used

W. C. McGEE

for the base, and to use the remaining address components (d and j)
to fabricate the word number 7. Provided the latter does not
exceed 2°°, the effective-address mechanism will then generate
the reference in the required format.®

The technique permits segments to be partitioned into pages
of at most 4096 bytes each. The first 4096 bytes of a segment
comprise the first page, the next 4096 bytes comprise the next
page, and so forth. As a result, the page and line numbers of a
byte are given by the eight high-order and twelve low-order
bits, respectively, of the 20-bit byte number.

Main memory is similarly partitioned into 4096 blocks each
of 4096 consecutive bytes. Blocks are numbered serially from 0,
so that the block number of location y is given by the twelve
high-order bits of .

A segment is stored in memory by placing each page in a
different block. Pages of less than 4096 lines are stored from
the beginning of the block, and any unused portions of the block
are ignored. The blocks allotted to a given segment need not be
contiguous.

The translation of program references into corresponding
memory locations is accomplished with the aid of a fable register
and two types of tables stored in main memory—segment tables
and page tables. A separate segment table is provided for each
program; the table contains an entry for each segment of the
program. A separate page table is in turn provided for each
entry in a segment table.

The table register is loaded by the supervisor prior to relin-
quishing control to a given program r. In addition to control
bits of no concern here, the table register contains

o an origin a,(r)
o a length A\ (r)

In the context of program r, the origin is the location of the
first byte of the segment table, and the length is the number
of entries in the segment table.

Segment table entries are stored in such a way that the location
of an entry ecan be simply computed from the segment table
origin and the corresponding segment number. Each segment
table entry contains

o the origin ay(r, s) of the page table for segment s of program r
e the length N, (r, s) of this page table
e a one-bit segment availability flag ¢(r, s)

The page table for segment s of the program r contains an
entry for each page of this segment. The entries are so stored
that the location of an entry can be computed directly from
the page table origin and the corresponding page number. Each
page table entry contains

o the block number b(r, s, p) of the memory block assigned to
this page

DYNAMIC PROGRAM RELOCATION

198

¢ a 1-bit page availability flag f(r, s, p)

The translation of a program reference (s,) from program r
proceeds as follows:

(1) Segment number s and segment table origin «;(r) are combined
to locate the proper segment table entry.

(2) If ¢(r, s) = 1, indicating that this segment is not available, the
supervisor is called; otherwise, the translation proceeds.

(3) A page number p and a line number [are derived from byte
number 2. The page number and the page table origin a,(r, s)
are combined to locate the proper page table entry.

(4) If f(r, s, p) = 1, indicating that this page is not available, the
supervisor is called ; otherwise, the translation proceeds.

(5) The block number b(r, s, p) is concatenated with the line
number [to form the memory location of the referent.’

Memory protection is provided in two distinet ways. First,
the translation implies that a legitimate block number be obtained
on every memory reference. These block numbers come from
the page table, which is set up by the supervisor to correspond
to the current memory allocation. Thus, a program cannot gain
access to any block not represented in its segment/page tables.
In translating each reference, moreover, if segment or page
number exceeds segment table length or page table length, re-
spectively, a protection exception is signaled.

Second, the regular memory protection feature of sysTEM /360
is available to guard individual blocks of memory as described
previously. For example, to allow two programs to access a
common segment of, say, a single page, the block number of
this page would be entered in the tables for both programs.
However, the block would be fitted with a lock different from
the key of either program, thus assuring “read-only”’ access to
the block.

Summary comment

In this survey we have limited ourselves to a general statement
of the problem of dynamic relocation, and used this statement
to describe a number of representative dynamic relocation tech-
niques. This approach was used mainly to simplify the exposition.
The problem statement is probably no more ‘“‘general” than the
composite of the techniques presented, and will undoubtedly
require amending as experience with dynamic relocation is gained.
For example, the two-level program structure may prove so
useful in handling unwieldy arrays that it may be desirable to
generalize it to n levels. The sysTeEM/360 relocation technique
described earlier has an obvious generalization for handling such
structures, viz., partition the effective address into n parts,
provide n types of tables, ete.

All of the techniques described here share one important
feature: they enable the user to work with an abstraction of the

W. C. McGEE

real computer which is operationally much simpler than the real
computer. For example, the ATLAs main memory appears to the
user to consist entirely of word-addressable, random-aceess stor-
age, whereas in actuality it need consist of such storage only
in part. Similarly, the main memory of the B5000 may be viewed
as a ‘“‘two-dimensional”’ memory whose addresses have two in-
dependent components, whereas in fact this memory is achieved
with a conventional “one-dimensional’”’ memory and an appro-
priate addressing technique. Such abstractions are coming to be
known as wvirtual machines. The idea behind virtual machines
is not new, being the essence of all programming systems which
tend to mask the real computer from the programmer. As com-
puter operation becomes more complex, the virtual machine
concept will become increasingly important,.

CITED REFERENCES AND FOOTNOTES

1. J. B. Dennis and E. L. Glaser, “The structure of on-line information
processing systems,” Information System Sciences: Proceedings of the
Second Congress, (D. W. Walker, ed.), Spartan Books 1-11 (1965). Also,
J. B. Dennis, “Segmentation and the design of multiprogrammed computer
systems,” IEEE International Convention Record, Part 3, 214-225 (1965).

. A more general statement of the memory protection problem would
recognize different types of access for each program-segment-processor
triple, where ‘“processor”’ denotes the facility requesting access: cpu, 1/0
channel, ete. This would accommodate schemes that protect memory
on cpU accesses, but not on 1/0 accesses. In this paper, we assume that
all 1/0 accesses are controlled by a supervisor program and are, therefore,
irrelevant to “problem program” memory protection.

. 1BM Special Systems Feature Bulletin 122-6641-3, ‘‘1BM 7090 Data Processing
System Multiprogramming Package,” International Business Machines
Corporation, White Plains, New York (June 1963).

. T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner, ‘“One-
level storage system,”” IRE Transactions on Eleciric Computers, EcCII,
223-235 (1962). Also C. H. Devonald and J. A. Fotheringham, ‘“The
ATLAS computer,” Datamation 7, 5, 23-27 (May 1961).

. W. Lonergan and P. King, “Design of the Bs000 system,” Datamation 7,
No. 5, 28-32 (May 1961).

. F. J. Corbat6, “System requirements for multiple access time-shared
computers,”” Mac-TR-3, Project mac, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts.

. This relocation technique is due to G. A. Blaauw and associates. A brief
description of the Model 67 appears in “A new system for time-sharing,”
IBM Computing Report for the Scientist and Engineer 1, No. 1, 8-9 (May
1965), IBM Data Processing Division, White Plains, New York.

. An alternate version of the 360 dynamic relocation technique provides
for the generation of 32-bit effective addresses, of which the twelve high-
order bits are interpreted as segment number, and the twenty low-order
bits again serve as byte number. This version will thus accommodate pro-
grams of up to 4096 segments each.

. In actual implementation, a small associative memory is used to hold
the more frequently accessed relocation table entries. Except for the
consequent increase in translation speed, the actual procedure is equivalent
to that given in the text.

DYNAMIC PROGRAM RELOCATION

