
A general statement of the problem of dynamic  program relocation 
i s  presented as a n  aid in describing specijic  relocation  principles. 

The  main  purpose of the paper i s  to  review a  number of typical 
methods of meeting the expanding need for dynamic  program reloca- 
tion.  Although  no  attempt i s  made  at  evaluation,  the  methods are 
discussed in the  context of selected computer  systems for tutorial 
concreteness. 

On dynamic  program  relocation 
by W. C. McGee 

Recent  developments  in  computer  technology  have  suggested 
the feasibility of the time-shared  mode of computer operation- 
that is, the simultaneous use of a single computer  by  more  than  one 
user,  cach of whom acts as if he were the exclusive user.  While 
time  sharing  can  often  be  justified on economic grounds  alone, 
its biggest attraction seems to lie in providing  capabilities  beyond 
the reach of conventional  operating modes, such as conversational 
programming, on-line problem solving, and interaction  with  other 
on-line users. 

Time  sharing poses some  significant  technical  problems for 
the system  designer. One of the most difficult, the proper  allocation 
of computer resources, exists in  other i Cerating  modes as well, 
but  has special importance  in  time  sharing because of the fre- 
quency and  rapidity  with which new resource allocations must 
be  made. To adequately  handle  resource  allocation  under  these 
conditions, it has been necessary to develop new hardware  and 
programming  techniques.  One  such  hardware  technique developed 
for  this purpose is dynamic  program relocation. 

The purpose of this  paper is to  trace  the evolution of dynamic 
program  relocation, and  to describe a few specific but charac- 
teristic  dynamic  program  relocation  techniques. In  the interests 
of brevity,  attention will be focused on  the  subject of dynamic 
relocation per  se; the closely related  system problems of storage 
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the like, will not be treated. 

Introduction to relocation 
From  the user’s viewpoint, a computer facility is a means of 
carrying out a procedure on a set of input  data. In  general, such 
a procedure contains references to elements in the  input  set,  to 
intermediate results, and  to instructions in the procedure itself. 
However, before the procedure can be executed on a computer, 
these references must be translated  into references to specific 
parts of the machine. Thus, variables become identified as memory 
locations, files as  tape drives, and  the like. The translation is 
equivalent to allocating certain of the machine’s resources to  the 
procedure. In  particular,  a  portion of the computer’s main memory 
-that is,  storage from which instructions are executed-must  be 
allocated to hold the instructions,  constants, and intermediate 
results of the procedure. The allocation of main memory is, in 
principle, no different from the allocation of other resources in 
the computer. However, because of main memory’s central role 
in the computer process, and because main memory is expensive 
and hence should be utilized well, the problem of main memory 
allocation deserves special attention. 

The translation of problem references into  main memory 
addresses can be accomplished a t  three different times: 

When the procedure is prepared as  an operable computer 
program. The result is an absolute program which  is, in effect, 
assigned the same resources each time it is run. 
When the program is load6d. This is known as static  relocation. 
During program execution. This is  called dynamic  relocation. 

The translation of references into  main memory addresses is absolute 
easily accomplished during program preparation, but  has a programs 
significant drawback: it nmkes it difficult to allocate memory 
concurrently to two or more independently  written programs. 
A necessity for a  joint allocation arises, for example, whenever 
a main program and several previously written  subroutines are 
to be combined into a single program; the necessity also arises 
whenever independent programs are  to be executed together  in 
order to make better use of certain  computer facilities, i.e., in 
multiprogramming. 

In general, the allocation of memory to independently written 
programs can be achieved in two ways: (1) by assembling the 
programs together, or (2) by assembling the programs separately, 
taking special steps to provide interprogram communication and 
to prevent conflicting memory allocation. The first method re- 
quires some care to avoid use of the same label for different 
objects, but  its biggest drawback is that it requires a separate 
assembly for each different combination of programs. The second 
method requires that  the particular combination of programs to 
be  used and  the storage  requirements of each program be known, 





addresses are  ((computed” (e.g., key-to-address  transformations), 
since the computed  addresses must generally be stored,  either 
in memory or registers, before they  are used. 

The preceding conventions  may be relaxed somewhat by 
adopting  the convention that a  program will be interrupted only 
a t  certain  “breakpoints”  dictated  by  the program itself. For 

~ example, if interrupts  are blocked during  the execution of sub- 
1 routines, and if subroutines  are  written so that  they always  fetch 
j their  parameters  from,  and  store  their  results  in,  external locations, 

then  subroutines  have  the  attributes of pure  procedures,  even 
~ though  they  store  intermediate  results internally  during execution. 

As pure procedures, they  can be relocated  simply  by copying 
’ their original versions. 

Nevertheless, the relocation of an interrupted  program  by 
methods of static relocation  has the significant drawback that 
it requires the execution of a  fairly  elaborate  procedure  each 
time  the  interrupted  program is resumed. If interruptions occur 
a t  a high rate,  the  time required for resumptions may become 
excessive. 

a better solution to  the problem of reallocating  memory to un- relocation 
completed programs. In  dynamic relocation, the  translation of 
problem references to main  memory  addresses is delayed until 
the  last possible moment, i.e., until access to memory is required 
in  running  the program. Because the program  contains no absolute 
memory addresses, it is invariant  to  the  actual memory  allocation 
it receives; it can be interrupted at  any point  and reloaded into 
a different set of memory  locations  without modification. 

While it solves the problem of reallocation,  dynamic  relocation 
requires special facilities for efficient implementation.  Further, 
it may  have significant implications for the  instruction  format, 
since instructions will, in  general, hold untranslated  addresses 
in a form  appropriate to  the relocation technique. For these 
reasons, the requirements  for  dynamic relocation should be con- 
sidered early in  the development of a  computer. 

When  a  number of independent  programs  share  main  memory, storage 
it is typically  required that programs not be allowed to access protection 
the memory  allocated to other  programs. In  other words, each 
program’s memory must be protected  from  the  other programs. 
Frequently, the techniques used to achieve  dynamic relocation 
can also be used to effect storage  protection. For  this reason, 
it is expedient to  treat  the two  problems  jointly. 

Statement of the problem 
Before considering some solutions to dynamic  relocation,  a more 

1 general statement of the problem may  be helpful.  Such  a statement 
1 is  best  approached by first postulating  the general structure of a 

program to which main  memory is to be allocated. For this 
purpose, we draw  upon definitions given by  Dennis  and G1aser.l 

~ 

Dynamic  relocation  methods evolve out of attempts  to find dynamic 

, 
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The first type permits full access to  the segment in question. 
The second type prohibits writing into  a segment, and is typically 
used to allow two or more programs to share  a comnlon segment 
without the risk of inadvertent  destruction. The  third type, 
which allows writing but prohibits reading, can be useful in some 
program-checkout situations. The  last  type, which prohibits access, 
is generally used to provide complete isolation of independent 
programs.’ 

In  summary, given a number of programs (each of one or 
more segments that have been partitioned  into pages and stored 
in main memory), the function of a dynamic relocation technique 
may be stated  as follows: For each reference (s, i) by program r 
to  the  ith word of segment s, determine if the reference is legitimate 
and, if so, translate  the reference to  the memory location of the 
referent. If the reference is not legitimate, signal a “protection 
exception.” 

Examples of dynamic  relocation 
In this section, we describe some existing and proposed dynamic 
relocation techniques, using the concepts and terminology de- 
veloped in the preceding section. The descriptions will emphasize 
the logical and operational  characteristics of the techniques, 
rather  than  their specific implementations. No attempt is made 
to assess the impact of these techniques on  the performance of 
the computer  in question, or to evaluate the techniques relative 
to one another. 

One of the earliest examples of dynamic relocation is found 
:ase 1 in the optional “multiprogramming package” for the IBM 7O9Ol3 

so named because it provides dynamic relocation and storage 
protection, both of which are useful in a multiprogramming 
mode of operation. 

By  our previous definitions, the 7090 dynamic relocation 
technique can only accommodate programs of a single segment or, 
equivalently, programs bound into a single segment. A program 
thus consists of a single ordered set of 36-bit words, numbered 
consecutively beginning at  0. The length of the program is limited 
by the available amount of main memory, not  by  the relocation 
technique. 

In  allocating main memory to  a program, no provision is 
made for partitioning the program into pages. Instead, con- 
secutive words of the program are simply loaded into consecutive 
memory locations. The correspondence between program word i 
and memory location y is given by 

y = B + ( i - 4 ,  

where ,8 is the origin of the program, that is, the lowest-numbered 
location allocated to  the program, and a is the word number 
of the word stored a t  p. The word number a is usually chosen 
to be  zero. 

The translation of program references is effected through  a 
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7-bit relocation  register which holds the integer 6 = (/3 - a)/256. 
The selection of an origin ,6 is limited  by  the  requirement  that 
6 be an  integer. A 15-bit reference i-which may come either 
from an  instruction or the instruction counter-is translated  to 
a 15-bit  memory  location y by  adding  the  contents of the reloca- 
tion register to  the seven high-order bits of i (and  ignoring any 
carry).  Thus, 

y = i + ( 6  x 27 = i + p* x 2.) = p + (i - a) .  

For example, if word 0 of a program is stored a t  location 2048. 
that is, a = 0 and p = 2048, the relocation  register would be 
loaded with 

2048 - 0 
6 =  

256 
= 8.  

In  this case, a reference to word 10 would be translated  to loca- 
tion  value 
y = 10 + (8 X 256) = 2058. 

The multiprogramming  package  provides  storage  protection 
through  two 7-bit registers  holding a lower bound x and  an upper 
bound x .  A translated Iocation  value y is considered valid  only if 
28x 5 y I 2*2. 

If m programs  are  sharing  main memory, the supervisor 
program  must  arrange for the time-sharing of the relocation 
register and bounds  registers among  the  various programs. The 
effect of the storage-protect  feature is to give  each  program 
read-write access to  any word within  itself, and no access to 
any word  outside of itself. The access matrix [ t i j ]  of our general 
problem statement  thus becomes an m X m matrix  in which 

t . .  = read-write”  for i = j 
2 1  read  nor  write”  for i # j. 

A salient  feature of the  Ferranti ATLAS computer,  as described case 2 
by  Kilburn  et al.,4 is a large  “main  memory” whose locations 
appear to be  randomly accessible, but which is, in  fact, composed 
of a  relatively  small  random access core store  and a  large amount 
of drum storage.  References to words in core storage  are effected in 
a manner  described below; references to words in  drum  storage 
cause an  interrupt  to occur and a supervisor  program to copy the 
desired word from  drum to core storage,  after which the reference 
is  completed in a  normal  manner. A given word in  the program 
may  thus  appear  in  many different core locations in  the course 
of program  execution. To avoid retranslating  the  program  each 
time a group of words  is placed in core, a dynamic  relocation 
technique  is used. 

The ATLAS dynamic  relocation  technique treats a program 
as a single segment. A program  may be of any length up  to 2’’ 



For core-storage allocation  purposes, the program  is  parti- 
tioned into pages of 512 words each. The page  number  and  line 
number of a given word are given by  the eleven high-order and 
nine low-order bits,  respectively, of the 20-bit word number. 

Core  storage is similarly  partitioned  into blocks of 512 loca- 
tions each, and programs are allocated to core storage by placing 
pages in blocks. (In ATLAS terminology, blocks are “pages” and 
pages are  “blocks”; here we follow the terminology of Reference  1.) 
Associated with each block k ( k  = 0, I, . . .) is an  11-bit page 
register which holds the page  number p ( k )  of the page  currently 
assigned to  that block. Thus, a core store of  214 words is partitioned 
into 214/2’ = 32 blocks, and can  accommodate up  to  thirty-two 
program pages a t  one time. 

A  reference to a word of a  program is made  by  means of 
its 20-bit word number i. The reference is  translated  by first 
extracting  the  page  number p and line number 1 from i, and 
then comparing p to  the page  number  in  each of the page  registers. 
If a match is found  in  page register k, then k is concatenated 
with the line number 1 to form the desired  location y. Thus 
y = (k X 29) + I, 
where k is  such that 
P = P@). 
If no  matching  page  number is found in  the  page registers, an  
interrupt occurs and  the supervisor reads  the  required page  from 
drum storage  into an available block of core  storage, possibly 
displacing another page, and places the new page  number  in 
the block’s page  register. Translation  then proceeds as  in  the 
case of matching  page  numbers. 

Although the technique  makes  no explicit provision  for 
segmented  programs, the effects of segmenting  can  be  obtained 
through  the judicious use of page  numbers  in  writing/compiling 
programs. The range of available  page  numbers (0 to 2047) 
makes it feasible to assign sets of pages to different  users  or uses 
on a more or less permanent basis:  system  routines  might use 
pages 0-500, User A pages 501-1500, etc. 

Perhaps  the first  instance of dynamic  relocation in which 
multiple-segment programs.  are  accommodated is found  in the 
Burroughs B5000 computer. As described by Lonergan and  King,5 
a B5000 program may  contain  as  many as 1024 segments. Each 
segment, composed of 48-bit words, may  represent  instructions, 
data, control  information, and  the like. The words of a  segment 
are  numbered serially beginning a t  0. 

The maximum  length of a  segment is determined  by  the 
facilities  provided  for  referring to words  within a segment. Es- 
sentially,  two  methods are provided in  the B5000: 

I. TO refer to words in the control  segment (that is, the segment 
in which control resides), a positive or negative  displacement 
A i  relative to  the  current  instruction word may be specified, 
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Such references are  intended only for locating the  next in- 
struction  to be executed, not for fetching or storing data. 
The maximum value of the displacement is  1024. 

11. To refer generally to  any word in the program, a 10-bit segment 
name s and a 10-bit word number i may be specified. The 
segment name is  specified in the  instruction; in  fact, it occupies 
ten of the twelve bits of the “syllable,” the B5000 equivalent 
of an instruction. The word number, on the other  hand, 
is held in  an implicitly designated register, where it must  have 
been placed by  a previous instruction. 

The 10-bit word number limits to 1024 words the length of 
segments whose  words may be individually addressed in Method 11. 
In view of Method I, however, an instruction segment can be 
of any  length, provided that  it is always entered at one of its 
first 1024  words, and that it nowhere branches forward or back- 
ward more than 1024 words. 

No provision is made for partitioning segments into pages. 
Each segment s is assigned a set of sequential memory locations 
starting a t  location p(s). 

For purposes of translating displacement references, the loca- 
tion c of the current  instruction word  is maintained in a program 
counter. The location of the referent is given simply by c + Ai, 
and is generally used to respecify c.  In particular, the next in- 
struction word sequence is located by specifying Ai = 1. 

To translate references of the form (s, i), a program  reference 
table (PRT) is maintained  in  main memory for each program r .  
The  table, which contains  a maximum of 1024  one-word entries, 
is stored  starting at   an arbitrary location b(r) .  The entries are 
fully accessible to  the program and may be used for a  variety 
of purposes. In particular, any  entry may be  used to hold a 
segment descriptor which contains, among other things, the loca- 
tion of the first word p(s) and  the  length X(s) of segment s. 

Translation is  effected by  adding the segment name s to  the 
base b(r) of the PRT to locate the descriptor for segment s. 
The segment base p(s) is then  added to  the word number i (held 
in the accumulator  stack) to give the location of the  referent. 
That is, y = p ( s )  + i. 

Each  time such a  translation is made, the word number i 
is compared to  the segment length X(s) in the segment descriptor. 
If i 2 X(s), a protection exception is signaled. 

In  most dynamic relocation schemes,  once the location of 
the referent has been obtained and used to access memory, it is 
discarded. The B5000 instruction  set, however, in some  cases 
necessitates retention of y in the stack, so that it may be used 
directly  by subsequent operations. For example, storing is ac- 
complished by the “store” syllable, which  itself has no provision 
for referring to program words; this  instruction assumes that 
an appropriate  translated location is already  in the  stack. Since 



accessible to  a program, care must be taken  not  to use them in 
such a way as to make the program location-dependent. 

The main memory addressing technique of SYSTEM/360 permits 
case 4 a restricted form of dynamic program relocation without changes 

to  the standard system. The method, which requires the observance 
of more programming conventions than necessary for the hard- 
ware-implemented relocation technique described in Case 5, may 
be of interest  in its own right.  The basic idea has  already been 
discussed in the  literature.6 

In   SYSTEM/^^^, references to main memory typically  take the 
form of a  triple (dl j ,  k ) ,  where d is a 12-bit “displacement,” 
j is the 4-bit designator of a general register holding a 24-bit 
(‘index,’’ and k is the 4-bit designator of a general register holding 
a 24-bit ‘(base.” The memory location to be  accessed is determined 
by computing  its effective address from the relation 

where Ri and Rk are  the general registers identified by j and k,  
respectively, and parentheses  denote  “content of.” The means 
for performing this  summation will  be referred to  as  the effective- 
address  mechanism. 

This form of addressing is employed to minimize the number 
of instruction  bits required to address main memory. In particular, 
the maximum memory (224 bytes) can be addressed with only 
sixteen bits-twelve for the displacement and four for the base 
designator (assuming the  latter have been previously placed in 
the general registers). 

By viewing the role played by the base designator a little 
differently, the S Y S T E M / ~ ~ O  addressing technique can be made 
to perform the function of dynamic relocation. To see this,  let k 
designate segment s of a program, and  the “indexed displacement” 
d + (Ri) designate a  byte  within that segment. In SYsTEM/360, 
our generic term “word” becomes (‘byte.” If we assume that 
general register k holds the segment base (the location of the 
first byte of the designated segment), then  it is clear that  the 
existing effective-address mechanism will perform the translation 
required for dynamic relocation : 

Y = d + (ai) + (Rh) . - LY- 

byte location of first 
number i byte of segment s 

The technique is subject to limitations  in the  structure of 
of programs that can be accommodated. First,  although segments 
may in principle be of any length up  to  the maximum capacity 
of memory, the  byte number  in a segment must be expressed 
in the form d + (Ri). Except for data  arrays  that can be  con- 
veniently addressed by indexing, this  restriction will in  practice 
tend  to limit segments to  the number of bytes addressable by dl 
viz., 4096. Of course, if a segment exceeds  4096 bytes, it may be 
broken into segments of a more convenient size. 
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Second, if a one-one correspondence were established between 
segments and general registers holding segment bases, the number 
of segments permitted in a program would be unacceptably low, 
especially in view of the fact that  the general registers are also 
used for other purposes. It is clear, therefore, that  at least some 
of the general registers need to hold different segment bases a t  
different times. This can be accomplished by allowing programs 
to establish the base of any segment in any register during the 
execution of the program. For instance, the program could execute 
the following sequence (expressed in SYSTEM/~BO assembler 
notation) : 

svc k,, 

DC H ’rl, rz’ 

Here SVC is the supervisor call operation, k,, is a code identifying 
this  particular  type of supervisor call, DC is the “define constant” 

1 assembler instruction, r1 designates the general register into 
which a base is to be loaded, and r2 designates the general register 

~ holding the “name1’ of a segment. The supervisor would respond ‘ by placing the segment base in the designated register and  return- 
ing control to  the program. For each active program, the supervisor 
would of course keep a list of the registers that contain segment 
bases, together  with the corresponding segment names. Whenever 
a segment is relocated, the supervisor would scan these lists 
for a  matching segment name and wherever a match is found, 
substitute  the new base for  the old base. 

The method requires that a segment be stored in consecutive 
memory locations (i.e., consist of a single page). This  short- 
coming  is  offset to some extent  by the freedom for selecting 
any  byte location as  the segment base. This  permits  tighter 
segment packing than if segments were constrained to  start at 
certain fixed locations. 

As noted above, the method uses the effective-address mech- 
anism of the SYSTEM/%O to effect the translation required for 
dynamic relocation. Certain  SYSTEM/^^^ instructions, however, do 
not use the effective-address mechanism in referring to memory. 
For example, in the BRANCH ON CONDITION instruction in the 
RR format (BCR), the 24-bit branch address is obtained directly 
from a specified general register. Such “computed” addresses may 
be generated in  any  manner. In particular)  they  may be generated 
by certain  instructions that deposit translated addresses in the 
general registers, e.g. BRANCH AND LINK. In  the method under 
discussion, such addresses cannot in general be  used  since they 
make a program dependent upon absolute memory locations; an 
effective address stored in memory a t  point A in the program 
for use a t  point B may be rendered useless if the program is 
interrupted  and relocated between point A and  point B. (By 
the same reasoning) segment bases deposited by the supervisor 
in the general register should not be stored away  by the program.) 
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One solution to  this problem is to require computed addresses 
to take  the form (s, i) where s is, say, an 8-bit segment name, 
and i is the 24-bit byte number within the segment. The sYsTEM/360 

instructions that generate and use computed addresses can then 
be replaced by supervisor calls, assuming that  the supervisor 
carries out  any necessary translation. For example, BCR r,, r2 
would be replaced by 

svc k i l o  

DC H ’rl,rz’ 

where rz now contains  both a segment number  and a byte number. 
The supervisor would compute the corresponding memory location 
and  then  branch  to  this location or to  the point of call, according 
as  the condition specified by r ,  were satisfied or not. 

Finally, this  method makes no provision for storage protection, 
which  would presumably be accomplished through the S Y S T E M / ~ ~ O  

storage-protect  feature.  This feature requires that portions of 
a program to be protected  in the same manner lie in one or more 
2048-byte blocks with fixed (but  not necessarily contiguous) 
locations. Because of this, the ability to designate arbitrary 
locations as segment bases  would be limited to a certain  extent. 
The feature provides three of the four access types defined above, 
viz., read-write, read only, and neither  read nor write. 

Read-write protection is achieved by giving each program 
a 4-bit “key” that matches the 4-bit “lock” on each block to 
which the program is to have read-write access. The  latter two 
types of access are  met  by ensuring a mismatch between a pro- 
gram’s key and  the locks of blocks into which writing is to be 
inhibited. An additional “fetch protect”  bit is added to  the lock 
on each block; if this  bit is 0, read-only access results, and if 
it is 1, access is prohibited. Within the constraints implied by 
this technique, access types  may be assigned independently to 
each program-segment pair. 

A hardware dynamic relocation technique  has been provided 
case 5 in the S Y S T E M / ~ ~ O  MODEL 67.’ This  technique will accommodate 

programs of as  many as sixteen segments each with each segment 
containing a maximum of  2’’ bytes. The bytes of a segment are 
numbered sequentially starting from 0. 

Program references of the form (s, i) are contained in the 
24-bit  effective address normally used to address memory. The 
four high-order bits  are  interpreted  as  the segment number s, and 
the  twenty low-order bits as the  byte number i within the segment. 
This same interpretation holds regardless of the source of the 
effective address, be it the effective-address mechanism, the 
instruction  counter, or whatever. It is clear that  in addressing 
the program from an instruction, the reference (s, i) must be 
fabricated  through the effective address mechanism. A con- 
venient, but  by no means unique, way of doing this is to place 
the integer s x 2’’ in the general register ( k )  normally used 
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for the base, and  to use the remaining address components (d and j) 
to fabricate the word number i. Provided the  latter does not 
exceed 2", the effective-address mechanism will then  generate 
the reference in the required format.' 

The technique permits segments to be partitioned  into pages 
of a t  most 4096 bytes each. The first 4096 bytes of a segment 
comprise the first page, the next 4096 bytes comprise the next 
page, and so forth. As a  result, the page and line numbers of a 
byte  are given by the eight high-order and twelve low-order 
bits, respectively, of the 20-bit byte number. 

Main memory is similarly partitioned into 4096  blocks each 
of 4096 consecutive bytes. Blocks are numbered serially from 0, 
so that  the block number of location y is given by the twelve 
high-order bits of y. 

A segment is stored  in memory by placing each page in a 
different block. Pages of less than 4096 lines are stored from 
the beginning of the block, and  any unused portions of the block 
are ignored. The blocks allotted to a given segment need not be 
contiguous. 

The translation of program references into corresponding 
memory locations is accomplished with the  aid of a table register 
and two types of tables stored in main memory-segment tables 
and page tables. A separate segment table is provided for each 
program; the table  contains an  entry for each segment of the 
program. A separate page table is in turn provided for each 
entry in  a segment table. 

The  table register is loaded by the supervisor prior to relin- 
quishing control to a given program r. In  addition to control 
bits of no concern here, the  table register contains 

an origin a,(r) 
a length X,@) 

In  the context of program r, the origin is the location of the 
first byte of the segment table, and  the length is the number 
of entries in  the segment table. 

Segment table  entries  are stored in such a way that  the location 
of an  entry can be simply computed from the segment table 
origin and  the corresponding segment number.  Each segment 
table  entry contains 

the origin a2(r, s) of the page table for segment s of program r 
the length Xz(r, s) of this page table 
a one-bit segment availability flag 4(r, s) 

entry for each page of this segment. The entries are so stored 
that  the location of an  entry can be computed directly from 
the page table origin and  the corresponding page number. Each 
page table  entry contains 

the block number  b(r, s, p )  of the memory block assigned to 



The translation of a program reference (s, i) from program T 

proceeds as follows : 

(1) Segment number s and segment table origin a,(r) are combined 
to locate the proper segment table  entry. 

(2) If +(T, s) = 1, indicating that this segment is not available, the 
supervisor is called; otherwise, the translation proceeds. 

(3) A page number p and a line number 1 are derived from byte 
number i. The page number and  the page table origin a , ( ~ ,  s) 
are combined to locate the proper page table  entry. 

(4) If f(r, s, p )  = 1, indicating that this page is not available, the 
supervisor is called; otherwise, the translation proceeds. 

( 5 )  The block number b(r, s, p )  is concatenated with the line 
number 1 to form the memory location of the referent.’ 

Memory protection is provided in two distinct ways. First, ~ 

the translation implies that a legitimate block number be obtained i 
on every memory reference. These block numbers come from 
the page table, which  is set  up  by  the supervisor to correspond 
to  the  current memory allocation. Thus,  a program cannot gain 
access to  any block not represented in its segment/page tables. 
In translating each reference, moreover, if segment or page 
number exceeds segment table length or page table  length, re- 
spectively, a  protection exception is signaled. 

Second, the regular memory protection  feature of S Y S T E M / ~ ~ O  

is available to guard individual blocks of memory as described 
previously. For example, to allow two programs to access a 
common segment of,  say,  a single page, the block number of 
this page would be entered in the tables for both programs. 
However, the block  would  be fitted with a lock different from 
the key of either program, thus assuring “read-only” access to 
the block. 

Summary  comment 

In this  survey we have limited ourselves to a general statement 
of the problem of dynamic relocation, and used this  statement 
to describe a number of representative dynamic relocation tech- 
niques. This  approach was used mainly to simplify the exposition. 
The problem statement is probably no more “general” than  the 
composite of the techniques presented, and will undoubtedly 
require amending as experience with dynamic relocation is gained. 
For example, the two-level program structure  may prove so 
useful in handling unwieldy arrays that  it may be desirable to 
generalize it to n levels. The S Y S T E M / ~ ~ O  relocation technique 
described earlier has an obvious generalization for handling such 
structures, viz., partition  the effective address into n parts, 
provide n types of tables, etc. 

All of the techniques described here share one important 
feature:  they enable the user to work with an abstraction of the 
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real computer which  is operationally much simpler than  the real 
computer. For example, the ATLAS main memory appears to  the 
user to consist entirely of word-addressable, random-access stor- 
age, whereas in  actuality  it need consist of such storage only 
in part. Similarly, the main memory of the B5000 may be  viewed 
as a “two-dimensional” memory whose addresses have two in- 
dependent components) whereas in  fact  this memory is achieved 
with a conventional “one-dimensional)’ memory and  an appro- 
priate addressing technique. Such abstractions are coming to be 
known as virtual  machines. The idea behind virtual machines 
is not new, being the essence of all programming systems which 
tend to mask the real computer from the programmer. As com- 
puter  operation becomes more complex, the  virtual machine 
concept will  become increasingly important. 
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