An algorithm is given to generate additional input data for simulations
when some, but insufficient, historical data are available. The ad-
ditional data generated are statistically “similar’” to the historical.

Motivation and application of the algorithm are demonstrated by
means of a problem related to the monthly water inflow to Lake
Tiberias which had to be resolved in connection with the ““Israeli
Integrated Water Supply’’ project now under construction.

The algorithm is a variant of a method previously used by Thomas
and Fiering in hydrological studies.

Generation of input data for simulations
by S. Yagil

the problem
in general

Simulation of large projects and of complex processes on digital
computers has become a common practice. Choice of proper input
data for such a simulation nearly always constitutes a serious
problem because of the difficulty in predicting what the actual
data will be when the project or process is put into operation.
Examples are costs and prices (in market simulations and business
games), enemy and own strategy and strength (in war games),
atmospheric and space conditions (in flight simulations), raw
material and power supply (in production simulations), climatic
conditions and water flows (in hydrological and hydroelectric
simulations), ete.

Often the available historical data which could be used are
insufficient for conducting the desired simulation because they
cover too short a period. We are usually tempted to use some
average values obtained from these historical data in our simula-
tion, possibly making some adjustments for known trends. These
average values would pertain to a certain time unit: cost of a
commodity in January, February, ete. (over a set of years) ; average
power supply between 8 and 9, 9 and 10 o’clock ete. (over a set
of days); ete. Note the cyclical character of such historical data
resulting from some natural cycle (24 hours per day, 52 weeks or
12 months per year, ete.).

However, the use of the average values for each time unit in
the cycle is in most cases unacceptable because of the presence of
random fluctuations about those averages. At the other extreme,
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the use of a sequence of random numbers is also unacceptable
because, in general, the data should “resemble’” the historical
ones. Thus, we have the problem of creating a ‘pseudo-random”
sequence of numbers having statistical properties which will be
similar to those of the historical data. The statistical properties
considered will usually be means (averages) and variances (fluctua-
tions) for each time unit and correlations between time units.

A specific example, namely the ‘“‘Israeli Integrated Water
Supply Scheme,” for which the required sequence was generated
on an 1BM 1620 will be used to illustrate the problem and its solu-
tion. This project, now being constructed, is a large water supply
system consisting of a main conduit which delivers water from Lake
Tiberias to the arid southern parts of the country. Along its route
it meets a number of existing smaller projects, each of which
it supplies with water, or draws water from, or both, according
to seasonal water supply, demand and allocation.

The main input into the system is the monthly net inflow into
Lake Tiberias (Table 1) which has been recorded for the past 35

Table 1 Monthly inflows into Lake Tiberias for 35 years in millions of cubic meters

specific
example

Year Oct. Nov. . . Feb. Mar. Apr. May

June

July

Aug.

02
®
o

193.
202.
133.
400.
155.
284.
156.
119
121
216

58.
111.
211.

193.
119
166.
102.
87.
134.
31.
23.
72.

1
2
3
4
5
6
7
8
9

|
| o | wom o i i
WEaIHOIRO oW

R R - L R R R R R Y

46.
43
135
130.

R N R N A A R N R N N R A T Y
R R = R - o o o o = o R e R N R e

CoooocCcocoooo oo o000 0 oo c oo oc0oocoDoo
SR A I A 3 - N N R N N Y
RN R R -1 R A R A A N N T S

e e R A Y L N N
e R - L L R T TS

QO = N et
S OTO0 W B = Ot

| o |
. . . . . . . . . . . . . B . . . . . . . . wa
Y N - Y 3 I R - N N R o N S

-
ST 00 WO

I
= | Ll =l = ]
OCONWHETWIRDONS WD W

e R I O L R L L I N

|
W | =
IS oo

|
> o

R - - R R R N Y - - I N N

|
™ |~ 11
p;opapxporpmmm»—amc:oomw
SRR R R g R =R =2=2-1- 21 - =Y

|
—
=]
=

GENERATION OF SIMULATION INPUT DATA

289




objectives

years. The net inflow is the amount brought in by the Jordan river
all year around and by flood waters in winter only, minus the
amounts lost by evaporation and local pumping. In the peak
summer months the net inflow may be negative.

A 1620 program which simulates the whole system has been
written in cooperation with Water Planning for Israel, Ltd.,
which planned the entire project. The recorded data, covering 35
years, were used for the first runs. However, it was soon felt that
for the purpose of long range planning, additional and larger
sequences would be necessary for more simulation runs.

Monthly means and variances were computed as shown in
Table 2. The correlation coefficients between all pairs of months
were computed as well and are given in Table 3. Upon examination
of Table 3 we note on the diagonal the highly significant correla-
tions between adjacent months (with the exception of October—
November and August—September). Correlations between months
that are two apart (with the exception of October—December,
January—March and July—September) are significant as well. Cor-
relations are also high between each of the winter months Decem-
ber through March and each of the summer months May through
August (with two exceptions).

The reasons for these significant correlations are as follows:

The hydrological year in Israel begins at the start of winter,
ie. in October. Rainfall in the months September through
November is rather erratic. Each may be quite dry or rainy
independently of the other. This is the reason for the low
correlations in this period. Thereafter, the year becomes either
consistently rainy or consistently dry, which accounts for the
high correlations between successive winter months.

A rainy winter in the Jordan valley implies a snowy winter
on Mt. Hermon, providing ample water flow in the summer
thaw. This explains the high correlations between summer and
preceding winter months.

Finally, the correlations between successive summer months
are probably spurious and result from the common correlation
with the previous winter months.

The standard deviation of the total yearly inflows and the
serial correlation between successive years were found to be 201.2
and 0.019. Assuming a normal distribution, this correlation coeffi-
cient is not satistically significant at the 59, level. This means
that the hydrological years are independent of one another.

On the basis of this analysis, it was held desirable to generate
a synthetic sequence of monthly inflows into Lake Tiberias,
covering 400 years and having the following statistical properties:

s The total yearly inflows would be uncorrelated.

& The variance of the total yearly inflows would be close to the
historical one.

% The monthly means and variance would be close to the his-
torical ones.
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Table 2 Monthly mean inflows and their standard deviations in M.C.M.

Mean Standard Deviation

Month
Historical — Generated Historical Generated
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Mar. 100.
Apr. 62.
May 31.
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July 2.
Aug. -3.
Sept. —5.
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Note: “Historical” refers to the 35 recorded years appearing in Table 1.
“Generated” refers to the sequence covering 400 years generated by
the 1BM 1620, part of which appears in Table 4.

Table 3 Correlation coefficients between inflows into Lake Tiberias

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept.
1 2 3 4 3 6 7 8 9 10 11 12

.008 .050 .015 —.312 —.015 —.107 .042 —.201 — . 112 —-.017 .071
.009 053 092 —.246 008 —.004 127 —.187 —.007 .054 .085

343 .369 101 —.126 —.069 .158 —.093 .071  .028  .253
.337  .353 078 —.105 —.063 .131 —.098 .050 .006 .244

2056 .264 118 019 .172 238 .204 .347 278
242 234 142 054 .180 .236 .291 .337 .271

204 —.015 172 510 .209 .466 .452 147
225 066 188 462 .187 440 .454 117

362 .692 230 .430 525  .597 —.013
.30 583 289 .434 .515 .548 .011

413 —.057 —.046 .164 .333 .072
470 184 .096 .359 .368  .027

Apr. 495 .328 403 .415 337
.560 379 461  .413 392

May 535 .681  .279  .468
526 .710 .345 .388

June 606 .539  .177
.593 591 173

July .580  .170
624 142

Aug. .048
.053

Note: The lower figure in each entry pertains to the 35 years of recorded historical data, while
the upper one refers to the generated sequence.
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e The correlations between all pairs of months would be close
to the historieal ones.
The monthly inflows could be assumed to be normally dis-
tributed about their means.

Various methods of generating synthetic sequences of monthly
earlier  flows have been suggested and used in the past. However, none
work of them satisfies all the requirements mentioned above. Sudler'

suggests reshuffling the years in the historical record several times.
This, however, leaves the years intact, i.e., creates no new com-
binations within years. Furthermore, the range for each month
remains unchanged although it should grow when the record size
grows.

Barnes® improved the method by using random numbers to
generate monthly flows which were normally distributed about
the monthly mean. This method still did not take into account
the existing correlations between months.

Finally, a method which also takes into account correlations
between successive months was developed by Thomas and Fiering®.
This method is applicable when a Markov model can be used
to represent the data. This, however, is not the case with in-
flows into Lake Tiberias, where the winter months are highly
correlated with the following summer months as pointed out
above. For example, the correlation between February and August
is 0.548 (see Table 3). Also, Thomas’ and Fiering’s method
creates a slight correlation between years, which is undesirable
in our case.

A new algorithm, which generates a sequence meeting all five

algorithm objectives was developed. The algorithm is as follows:

e First, the multiple regression and multiple correlation coeffi-
cients of each month on all preceding months in the same
hydrological year (i.e., going back to October) are computed
from the historical data.

Second, we let:

a;,; denote the multiple regression coefficient of month j on
month ¢, where
j=2,---,12and¢ =1, --- ,j — 1 where j = 1 refers
to October, j = 2 refers to November, --- and j = 12,
refers to September,

R; denote the multiple correlation coeflicient between month
4 and all preceding months,

x; denote the mean historical inflow in month 7,

y; denote the generated synthetic inflow for month 7 in the
year under consideration,

t; denote a random normal variate with mean 0 and variance 1,
used in generating the inflow of month j,

o; denote the standard deviation of the historical inflows of
month j,

and we compute y,; as follows:
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Table 4 Part of the generated sequence of monthly inflows into Lake Tiberias in millions of cubic meters

Year A . . Jan. Feb. Mar. . June July Aug. Sept.
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Table 5

Historical Generated

Mean yearly total (in MCM) 502.5 508.4
Standard deviation of yearly totals (in MCM) 201.2 195.1
Serial correlation of yearly totals (insignificant

in both cases) .019 —.011

=z, + toy
Z2 + a1.2(yl - xl) + tz(fz'\/l - Rg

Un = Zn + G uln — 210) + 020 — x2) + -+
+ an—l.n(yn—l - :t,,_l) + tndn'\/l — Ri,

where n goes up to 12 in our case. The computation is repeated
the desired number of times (400 in our example) to obtain
the same number of independently generated sets of y..

The above procedure was programmed in FORTRAN II and, with
the use of a 40K card 1BM 1620 computer, a sequence corresponding
to 400 years was generated. Part of this sequence is shown in
Table 4. The statistical properties of the yearly totals are sum-
marized in Table 5. The historical monthly means and variances
are compared with the generated ones in Table 2 and correlations
between months in Table 3. Discrepancies are in all cases very
small and of no significance for practical purposes.
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We now establish that sequences generated by means of the
algorithm satisfy the statistical objectives stated above.

It is obvious that the years are independent in this method
because they are generated independently. Each y; is normally
distributed about its z; because all the terms which are added to
each z; are normally distributed with means zero.

The proof that the generated sequence preserves the historical
monthly means and variances, as well as the correlations between
months, is given in an appendix.

The variance of yearly totals is the sum of all monthly variances
plus twice the sum of monthly covariances. Since these are the
same for the historical and generated sequences, it follows that
the variance of yearly totals will also be the same for both.

Appendix: Proof of preservation of historical means,
variances and correlations

We shall prove that the y; generated by the algorithm preserve
the historical monthly means, variances, and correlations.
First consider the means:

Ew) =z, + o) = 2,
because f, is normal with mean 0. Similarly:
E(?/z) =2z, + a1,2E(y1 - 1'1) + 0'2\/
because the last two terms are equal zero. Generally :
EW,) = v + a By, —x) + -+

+ @ur B — 2) + 0. V1 — RIE(L)

1 —

REE(tZ) = T2

= Z,.

This shows that the expected values of generated monthly means
are equal to the historical ones.
Now consider the variances. We have

var (5) = By — v)* = E(to))’ = of
since ¢, is normal with mean 0 and variance 1. Generally,
var (y,) = By, — .)°
= E{(, — wlaia(yy — 21) + Gonlye — x2) + -+
+ o althr = 2mr) + Lo V1 — RI)
= Q01 T G202 + 00t GamrnOnin

+ El(y. — 2)two, V1 — R

~ (& o) + ot — D

=1

Relative to proof of the last step, consider the general multiple
regression equation,
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Zo = 0% + aszs + -0+ Guoizan Fp,

where p is the residual term. Assume all E(z;) = 0. Let o, denote
the variance of z,, then

on = E(@)
= E[zn(alzl + a2y + 0+ Gz + p)]

=0y, + Qo2n T+ 0+ G0 T+ E(an)

The last term equals the variance of the residuals, E(p*), as shown
in Cramer* page 305, which in turn equals ¢2(1 — R2) as shown
on page 308. Thus,

0': = (Z ai,n”i,n) + 0’:(1 - Ri)
i=1

and hence,
— 2
var (yn) = 0,

as was to be shown.
Consider now the covariances. Let m < n, then

cov (ym) yn) = E[(Um - :cm)(yn - xn)]
= E{(y, — v )loryy — @) + -+
+ tactnlomr — Tum) + 1o V1 — BRI

= Q; 201,m + Q2 n02,m + tt + 1, mn—1.m

n—1
> a;.0:, forall n and for all m < n.
i=1

The term {,0,\/1 — RZ drops out because m # n and E(t,) = 0.
In the above sum ¢, ., Whenever it appears, means o for all m.
Examining the last sum above for a particular n we note that
we have n — 1 terms. Since the a, , are the multiple regression
coefficients of 4, on ¥, - - - , ¥._1 they obey the so called ‘“normal”
equations,

n—1
> inCim = G where m =1, --- ,n — 1.
t=1

These equations are derived by means of the least squares theory
as shown in Cramer page 303, in a slightly different notation. It
follows that

COV (Ymy Yo) = Omon

as was to be proved.

Thus the historical monthly means, variances, and covariances
are preserved in the generated sequence. Consequently, correla-
tions between months are preserved as well.
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These papers iniroduce concepts involved in adapting the principal
programmang components within a single system.

After an examination of the over-all structure, the system’s assembler,
loader, and compilers are discussed. In this discussion (Paris I
through V) attention is focused on the general design notions with
minimal reference to the detail of mechanization and particular
machines. Such reference, where necessary, is made to implementation
of the system on the 7090.

Part VI compares implementation of the system on different machines
and, to a certain extent, 1solates the concepts that are independent of
hardware.

Part VII is devoted to a general analysis of the system design.

Although some familiarity with the individual system components
ts assumed, an effort is made to address the systems engineer irrespec-
tive of his particular programming experience.

Design of an integrated programming
and operating system

Part I: System considerations and the monitor

Part II: The assembly program and its language

Part III: The expanded function of the loader

Part IV: The system’s FORTRAN compiler

Part V: The system’s COBOL compiler

Part VI: Implementation on different machines

Part VII: Analysis of the system design

Parts II1, IV and V are tncluded here. Parts I and 11 appeared
in June and the others are scheduled for publication in March.
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