This paper is concerned with application of linear decision functions
to the pattern identification problem and describes an experimental
pattern recognition system for the magnetic ink character font now
used in the banking industry.

The system 1is based on a linear decision function determined by
means of a variant of an “adaptive training’’ technique due to
Rosenblatt.

The system has been partially implemented (in part, through simula-
tion with aid of a digital computer and, in part, by hardware) and
experimental results in using the system are reported.
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The first part of the paper reviews some of the previous work
on the pattern identification problem. The second part discusses
the technique employed to determine a suitable linear decision
function. Finally, an experimental system and its implementation
are described, and results obtained in testing are reported.

Introduction to the pattern identification problem

Every pattern identification systems consists of two fundamental
parts: a iransducer, which senses the patterns to be identified
and converts the information acquired into electrical signals; and
a processor, which accepts these signals and by some means in-
terprets them so as to achieve the required identification. There
may, of course, be other parts to the system. For example, the
system might include: a device for presenting the patterns to
the transducer, such as a paper transport; or a device which
utilizes the information provided the processor, such as a set
of gates which direct documents into bins according to the par-
ticular pattern identified. But we shall not be concerned with
such peripheral apparatus.

The patterns to be identified could consist, for instance, of
a family of characters printed on paper, or a vocabulary of spoken
words. In the former case the transducer might consist of a lens
system and a means of measuring the darkness of various parts
of the resulting image; or the characters might be printed in
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magnetic ink, and the transducer could then consist of one or
another of the various kinds of magnetic reading heads. In the
case of speech signals, the transducer could be simply a micro-
phone.

The processor accepts signals that are produced by the trans-
ducer when a pattern is present and must extract enough informa-
tion to correctly identify the pattern (with a high degree of
probability). In the case of printed characters, the first step
might be to periodically sample the output from the transducer
and to quantize the result into two levels in such a way as to
produce a binary matrix which is a direct electrical image of the
character. The matrix could be interpreted in many ways, in-
cluding: those based on correlation techniques, searching for the
presence or absence of certain critical features, or by the linear
method reported in this paper. Of course, there are many other
ways to construct a processor for printed characters. In the case
of speech signals, the processor often consists of a filter bank
which determines the energy present at various frequencies, and
some means of analyzing the resulting pattern.

An early example of a pattern identification system was
described by Eldredge, Kamphoefner, and Wendt"'*** and pub-
lished under the acronym ErRma. In this instance the patterns to
be identified were the ten digits and four special symbols of a
specially designed font. These were printed with an ink con-
taining iron ferrite particles, so that upon being magnetized each
character acquired a field which was peculiar to the class to which
it belonged. The transducer was a suitably designed magnetic
reading head; a magnetized character, upon being passed under
this reading head, caused the production of an electrical signal
which went to the processor for interpretation. The processor
operated essentially as follows. The signal from the read head was
sampled at n successive points in time resulting in values z,,
Zs, =+ * , Lo Let these numbers be the components of the vector X.
Let the values which would be produced by a perfect pattern
from the 7th class be wi, wi, --- , wi, and let these be the com-
ponents of the vector W*; here 7 will evidently run from 1 to 14.
The processor identified the pattern as belonging to the ¢th class
provided

oW -X > Wi.X  forall j# 1, 1

where 8 was a fixed value lying between 0 and 1; otherwise the
processor responded that identification was not possible.

Upon recalling the relation between the dot product of two
vectors and the cosine of their included angle, one realizes that
the inequalities (1) describe a region of n-dimensional space
roughly in the shape of a cone, or more nearly a prism, with vertex
at the origin. Included in this region are the standard vector
W associated with the 7th pattern, together with almost all
of the vectors which arise from patterns belonging to the 7th
class. The regions associated with the various classes are, of
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course, non-overlapping, and in fact do not exhaust the whole
space. Patterns which produce signals whose vectors do not lie
inside any of these regions are, of course, not identified. Note
that by decreasing 8 these regions could be diminished, the likeli-
hood of announcing an incorrect identification being thereby de-
creased, but at the expense of increasing the regions corresponding
to non-identification. This, in turn, would cause an increase in
the rejection rate.

Soon after the appearance of the Eldredge, Kamphoefner,
and Wendt papers, C. K. Chow" observed that the task of the
processor could be stated as a problem in statistical decision
theory. Chow’s analysis may be summarized as follows. He noted
that the signals which arise from the presentation of patterns to
the transducer could, after certain preliminary transformations
in the processor, be regarded as points of a measurement space.
The consequent identification problem was to determine which
pattern was presented to the transducer, given that it had gene-
rated a certain point in the measurement space. Hence, the
operation of the processor could be represented by a decision
rule, i.e., by an assignment to each point of the measurement
8pace either one member of the class of patterns or the statement
“no identification is possible.” Chow postulated that with each
class of patterns there was associated a probability distribution
on the measurement space, this distribution being a description
of the likelihood of occurrence of a given point in the measure-
ment space upon presentation to the transducer of a member of
its corresponding class of patterns. For example, in the system
described above, the preliminary transformation consists in sampl-
ing the waveform from the transducer at n points, and the measure-
ment space is an n-dimensional vector space. The decision rule
has already been stated; namely, for each ¢ it assigns the <th
class to each point of the region defined by the inequalities (1)
and the statement ‘“no identification is possible’” to all other
points. Whatever its exact nature, the probability distribution
associated with the 7th class of patterns is evidently concentrated
within this same region, for otherwise this decision rule would
not be effective. Chow also postulated that the result of each
possible decision (correct identification, erroneous identification,
and failure to make any identification) could be evaluated on a
unit cost basis. Specifically, suppose m classes are to be identified,
say Sy, Sz, ¢+, S., and let us assign the cost ¢;; to the decision
“a member of S, is identified as belong to S;”’. Then ¢,; is the cost
(perhaps negative) of correctly identifying a member of S,
whereas if 7 # j then c¢;; is the cost of incorrectly identifying a
member of S; as a member of S;. Let ¢;o be the cost of a failure
to make any identification when the pattern presented belongs
to S;. In general, of course, if 7 # jand 7 # 0 then ¢;; > ¢;0 > ¢y
This corresponds to the usual notion of utility in statistical
decision theory.

For purposes of calculation, any particular decision rule can
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be represented as follows. If 1 < 7 < m and X is any point of
measurement space, let

8:(X) = {

0 otherwise

1 if the 7th class is assigned to X

and similarly let §,(X) take the value 1 if there is assigned to
X the statement ‘“‘no identification is possible’” and the value 0
elsewhere. Finally we let p; be the probability of occurrence of
the 7th pattern, i.e., the relative frequency with which members
of S, are presented to the transducer. Using this convention,
Chow calculated the expected unit cost of operation of this system
due to identifying the 7th character as the jth to be

ai = [ B:Xei; 8,(X) dX

where M is the measurement space and 8, is the probability distri-
bution on M associated with the 7th pattern. The value j = 0
is, of course, to be interpreted as the average cost of failure to
make any identification when the ¢th character appears. It follows
that the total average cost of operation of the system will be

m

4 = Z Zpia’ii'

i=0 i=1
Now
A=A, + A,

where

A—O = Z piciO and A1 = fM ZO Zy(X) 6.’I(X) dX

i=1

where
Z,(X) = 0 and Z,(X) = 2. (es; — clp(X)

for 1 < j < m. The quantities Z,(X) may be interpreted as
measuring the excess of the cost of identifying a pattern which
gives rise to the point X of measurement space as belonging to
S; over the cost of failure to make any identification. Chow ob-
served that the total average cost A may be minimized by asso-
ciating with X the class S; for which Z;(X) is least. He let

8,(X) =1
if
Z,X) < Z.(X) forall ¢ #j

(ties are decided arbitrarily).

It may be noted that the particular decision function which
Chow obtained may be described as optimum, in the sense that
it minimizes the cost of operation for a fixed relation between the
patterns and the measurement space; and the processor, insofar
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as 1t implements this decision function, may also be called opti-
mum. However, this adjective cannot be applied to the transducer
or to that part of the processor whose function is to convert
the signals from the transducer into points of the measurement
space. It is mainly a matter of experimentation to select adequate
transducers and to properly extract information from their out-
put signals. Other limitations of Chow’s analysis include: the unit
cost assumption is not always tenable; and there may be de-
pendences among the successive patterns of a sequence, as when
a self-checking account number or a fixed format for control
characters is used. And finally, as Chow himself remarked, even
if the probabilities of occurrence of the various patterns and the
distributions which they generate are accurately known, it may
still be very difficult to implement the optimum decision functions
given by this algorithm.

Some kinds of decision functions happen to be quite convenient
to implement, and it has proved expedient to use certain of these
even when they bear little relation to the optimum decision funec-
tions in Chow’s sense. Acceptable performance generally has to
be achieved by incurring costs elsewhere in the system, e.g., by
using better transducers and preliminary processing, or in some
cases by controlling the input patterns; but this kind of trade-off
is familiar in systems design.

The work to be reported here centers around the so-called
linear decision function, a broad discussion of which has been
given by Highleyman.”"® In simplest terms, the measurement
space is taken to be a vector space, say, of dimension n, and a
linear decision function is any partitioning of the space by one
or more hyperplanes (each of dimension n — 1). The question,
in which region of the partition does a given vector lie, evidently
can be reduced to the question, on which side of each hyperplane
does this vector lie. The utility of this notion is based first on the
ease with which a mechanism for answering this latter question
can be constructed.

Indeed, a typical implementation is by means of a current
summing network. Suppose that n measurements are made on
the signal from the transducer resulting in voltages on n lines
having the values vy, 05, « -+ , v,. The vector having these numbers
as components will be designated by V. If the lines are connected
through resistors to a current measuring device, then the cur-
rent I which is observed to flow will be ¢, + gv2 + - -+ -+ gutn,
where g, is the conductance (reciprocal of the resistance) of the
ith resistor. One may then determine whether the vector V lies
on one or the other side of the hyperplane with equation

gy + gty + - g — =10

by noting whether the current I exceeds or is less than ¢. Negative
conductances may be implemented by inverting the corresponding
input voltages. Thus, one such network as this will be required
for each hyperplane involved in the linear decision function.
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Obviously the effectiveness of a linear decision function in identify-
ing a given family of patterns is contingent upon the possibility
of specifying an adequate linear decision function in terms of
an economically reasonable number of hyperplanes. For example,
we have found it feasible to use one hyperplane to separate the
signals arising from patterns of any one category from the signals
arising from patterns from all other categories. This means that,
altogether, there would be as many hyperplanes as there were
classes of patterns.

A second important attribute of linear decision functions is
the ease with which suitable hyperplanes can often be found. This
attribute will become apparent in the following section devoted
to finding a particular decision function.

Determination of a suitable linear decision function

The particular method to be described in this section is a variant
of the adaptive training or programmed error correction tech-
nique used by Rosenblatt in his PERCEPTRON experiments.”'®

Suppose that one has a family of patterns to be identified
and that a transducer together with a preliminary processing has
been decided upon, so that the presentation of a pattern to the
transducer will produce a known vector in measurement space.
In the following sections, we address the problem of determining
an appropriate linear decision function. Later in the paper we
give an explicit description of the algorithm or training procedure
for the simplest possible case, namely when there are only two
classes of patterns to be identified and the separating hyperplane
may be presumed to pass through the origin of measurement
space. We will also show how to modify this procedure so as to
give two parallel hyperplanes placed symmetrically about the
origin; this allows for a zone of indecision, i.e., a rejection region,
and may incidentally shorten the length of the training procedure
required. A further modification which frees these planes from
their special relation to the origin will be described, as well as an
extension of these techniques to provide for the identification of
more than two classes of patterns.

The effectiveness of these procedures will depend primarily
on the distribution of the images of the various patterns in meas-
urement space. Generally speaking, if the vectors produced by
patterns from S, are concentrated in a region RE,, and those pro-
duced by 8, are concentrated in a region R,, and if there is a
hyperplane which lies between R, and E,, then this training pro-
cedure may be expected to produce a satisfactory decision rule.
Thus, the transducer and the preliminary part of the processor
must be designed to meet this condition. Failure to obtain a
satisfactory decision rule after a reasonably lengthy training
procedure would suggest that the design should be reconsidered.
Theoretical arguments have been adduced to justify this position,
but our view is mainly heuristic: it has turned out to be practical
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to design pattern identification systems using this approach.

Suppose initially that there are just two classes of patterns
to be identified, say S, and S,. We look for a linear decision func-
tion which will suffice to distinguish members of these two classes.
We seek a vector W such that if a vector X is produced by the
presentation of a pattern from the class S; then (with a high
degree of probability)

X-W>o0, @
whereas if X is produced by a member of S, then
X-w<o. ®3

If such a vector can be found, then an unknown pattern will be
identified as belonging to S, or S, according to the following
decision rule: if the vector X produced in measurement space by
the pattern satisfies condition (2) then the pattern is identified
as belonging to S;; if X satisfies (3) then the pattern is identified
as belonging to S,; if neither of these conditions is satisfied, i.e.,
if X-W = 0, then no decision is rendered (or, as we say, the
pattern is rejected). Speaking geometrically, we will have a hyper-
plane passing through the origin, with almost all of the vectors
produced by members of S, lying on one side of it, and with
almost all of those produced by S lying on the other.

We attempt to find W by a trial-and-error technique. Let
D1, D2y " , De D a sequence of patterns, some from S, and the
remainder from S,, and let X,, X,, -+ , X, be the sequence of
corresponding vectors arising in measurement space from the
presentation of these patterns to the transducer. Let 7', be any
vector (typically T, is taken to be the zero vector). We define a
sequence of vectors Ts, T, --- , Ty, iteratively, as follows:

if p; is from S, and 7;-X; > O then T;,, = T, (4a)
if p; is from S, but 7;-X; < 0 then 7, = T; + X, (4b)
if p;isfrom S, and T;-X; < 0 then T;,, = T, (4e)
if p;isfrom S; but 7;-X; > O0then 7,., = T, — X,. (4d)

In other words, if the vector 7T'; behaves as desired with regard
to the ith pattern, then it is left unchanged (statements (4a)
and (4c)); but, if not, then it is corrected (statements (4b) and
(4d)). That statements (4b) and (4d) do in fact represent cor-
rections is clear: if, for example, p; is from S, but

T,"X,' < 0
then
T X, =T, X, + X;- X, > T;- X

so that T';,, is an improvement, at least as far as the sth pattern
is concerned. The last pattern in this sequence, namely 7.4,
is a tentative choice for W.
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Such procedures as this are frequently described in anthro-
pomorphic terms: we speak of the procedure as a training routine,
of the statements (4) as training rules, and of the processor as
being trained by the application of these rules.

This process can be expected to converge (i.e., for some k < «,
T..1 = T, for all ¢ > k) only under the special condition that all
X from S, may be separated from all X, from S, by a hyperplane
passing through the origin. Generally, this condition is not met,
but perhaps a majority of the X, from S; may be separated from
the majority of the X, from S, by some hyperplane, W-X = 0,
when k is taken sufficiently large. The question here is obviously
not whether we can obtain convergence in the strict sense but,
rather, how many iterations of the training sample are necessary
in order to guarantee that no substantial improvement will result
with further iterations. At present, this question remains largely
unanswered in the general case even though there are several
proofs of strict convergence for a finite number of iterations when
S, and S, are linearly separable.”*'*°

There is no a priori reason to believe that the choice W = T,
is acceptable, i.e., to believe that the above decision rule with
T, substituted for W will represent a processor with satisfactory
performance. The next step, therefore, is to estimate the fre-
quency with which errors and rejections will occur if the choice
W = T.., is made. This estimate is made by testing the per-
formance, for a particular choice of W, on the training sequence
which is presumed to be representative. (By error we understand
a substitution, i.e., the identification of a pattern as belonging
to one class when in fact it belongs to another.) If the choice
W = T, does not prove to be aceceptable, then one may augment
the sequence of patterns and continue the training procedure;
or perhaps one will decide to abandon the search for this par-
ticular W.

Once a satisfactory plane is found, it can be implemented
using a circuit of the type described later. The output of this
circuit can be quantized to two levels, say 0 and 1, so that e.g.,
a 0 will be interpreted as indicating that a member of S, is present
whereas a 1 will indicate a member of S,.

A simple but significant improvement results from choosing
a, positive number d and then replacing the training rules (4) by:

if pi iS fI‘OIn Sl and Ti'X,' > d then T,’+1 = T,' (534)

if p; is from S; but 7;-X; < dthen 7,,, = T; + X, (5b)
if p; is from S; and 7,;-X; < —d then 7;,;, = T (5¢)
if p'i iS fI‘OIn S2 butr T,"X{ Z —d then T¢+1 = T,' - Xi. <5d)

Correspondingly one might modify the decision rule to read: if
the vector ¥V produced by a pattern satisfies the condition

W-X>d (6)
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then the pattern is identified as belonging to S,; if the vector
produced satisfies the condition

W.-X < —d @

then the pattern is identified as belonging to S;; and if neither of
these conditions is satisfied then the pattern is rejected.

This decision rule can be visualized in terms of a pair of hyper-
planes placed symmetrically about the origin; between them lies
the rejection region, and of the other two regions, one is identified
with S, and the other with S,. A moment’s reflection will show
that these training rules may be understood similarly: they repre-
sent an attempt to place a pair of parallel hyperplanes between
the regions in which the images of patterns from the two classes
are concentrated with the proviso that as the training routine
progresses, the vectors 7; tend to get longer, so that in effect the
two hyperplanes drift toward the origin. Thus there is a relation
between the choice of d and a suitable length of the training
routine. Intuitively what one expects is for the necessary length
of the training sequence to increase with increase of d. Also, by
choice of a suitable large value for d the ratio |d|/|W| will be
maximized, i.e., the relative separation will be maximized. But
the main point here is that by using two hyperplanes one may
expect to get a better fit.

Finally, we note that the decision rule may be further modified:
one could replace the inequalities (6) and (7) by

W-X > 6d ®

and

W-X < —6d 9)

respectively, where generally 6 is chosen between 0 and 1. Note
that the effect of increasing § would be to decrease substitution
errors but at the expense of increasing the number of rejections.
This, of course, presupposes that S; and S, may be ‘“‘separated”,
in the large, by a linear boundary passing through the origin.
The general case where this condition is not met may be handled
by one further simple modification explained below.

It is also easy and worthwhile to free these hyperplanes from
their peculiar relation to the origin; that is, we can find and use
a single hyperplane which need not pass through the origin, or a
pair of parallel hyperplanes which are not necessarily sym-
metrically placed about the origin. The simplest way to ac-
complish this is to append a fictitious component to the vectors
produced by the presentation of patterns to the transducer, and
to always take this component to have the value 1. The training
procedures described earlier in the paper may be used to produce
a vector, the last component of which may be taken to be the
constant term in the equation of the desired hyperplane.

To be more explicit, suppose that we are looking for a single
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hyperplane and that we have the sequence X,;, X, -+ , X, Figure 1 An example in two-
of vectors in measurement space, as before. Let the dimension  dimensional measurement space
of measurement space be n, and let the sequence X{, X3, --+ , X} ® h
of (n 4+ 1)-dimensional vectors be defined as follows: for each

index 7, the first » components of X/ are the components of X,

and the (n 4+ 1)st component of X/ is 1.

We now define a sequence T, T, --- , T, by the training
rules stated earlier in the paper, but with X/ replacing X .. Finally,
the vector T, is obtained and we define W to be the n-dimensional
vector whose components are the first n components of 7', and
we let ¢ be the (n 4 1)st component of 7.

We now use the following decision rule: if the vector X results
from the presentation of a pattern to the transducer, then X is
identified as having belonged to S;, to S:, or is rejected, according
to whether W-X + ¢ is positive, negative, or zero.

The treatment of a pair of parallel hyperplanes may be simi-
larly modified.

Ordinarily in pattern identification work one must deal with m-class
several distinct classes of patterns rather than just two classes. identification
If there are m classes, then one may dichotomize the family of  algorithm
classes p times, where p is the least integer which is as large as
log, m; the identification of a pattern could then consist in the
determination of which half of each of these dichotomies the class
containing the relevant pattern belonged to (in other words,
only p bits of information are required to specify one object out
of m). Interpreting this remark in terms of measurement space,
we see that in principle it is possible to use just p hyperplanes to
identify a pattern as having come from one of m classes, subject
of course to the requirement that the regions in which the images
of various classes are concentrated be well spread out in meas-
urement space. However, it has not proved to be practical to
implement so economical a scheme as this because we do not
know of a simple way to recognize which dichotomies of a family
of classes of patterns can be implemented with a hyperplane in
measurement, space.

This has been called the coding assignment problem; the
essential difficulty is illustrated in Figure 1, which is intended to
suggest the regions of concentration of the measurements in a
two-dimensional measurement space arising from each of four
classes of patterns, say 8, Sz, Ss;, and S,. It is evident that if
we group S; and S, together into one class and S, and S; together
into another, then we may expect the training procedure to yield
the hyperplane (line) 4. We would obtain therefrom an assign-
ment, say, of 0 to members of S, and 8, and of 1 to members
of S, and S;. If next we take S, and S, to form one class and
S, and S; to form the other, then we should arrive at the hyper-
plane B and the assignment of 0 to members of S; and S, and 1
to members of S; and S;. On taking these two together, we would
identify patterns according to the scheme shown in Table 1.

But, if we had the misfortune to put 8; and 8, together into

PATTERN RECOGNITION WITH LINEAR FUNCTIONS




Figure 2 An example of class
pair separation

one class and S; and S, into the other, we could not expect to
find a suitable hyperplane.

Another scheme which one would certainly expect to be quite
effective consists in the use of a hyperplane (or a pair of parallel
hyperplanes) to distinguish between members of each pair of
classes; thus m(m — 1)/2 hyperplanes (or pairs of hyperplanes)
are required. Each such hyperplane (or pair of hyperplanes) can
of course be found by using the methods described earlier. The
decision rule must take into account the fact that if a hyperplane
is suitably located to differentiate between two particular classes,
then the location with respect to this hyperplane of any vector
arising from a pattern from any third class will contain no in-
formation.

This method has been called class pair separation; the three
hyperplanes which would separate S, from S;, S; and S, are
indicated in Figure 2. The disadvantage of this method is the
comparatively large number of hyperplanes required; if there
were 14 characters in the font, then 91 hyperplanes would be
needed, and if there were 26 characters then 325 hyperplanes
would be necessary.

We have had some success with a scheme intermediate be-
tween these two, namely, the use of one hyperplane to separate
the vectors arising from the presentation of patterns from one
class from those arising from the presentation of members of all
other classes taken together. Thus, to distinguish among the
members of m different classes of patterns m hyperplanes are
required. To express this more formally, suppose we let S,
S;, +++, 8, be the m classes of patterns to be identified. For each
value of 7 between 1 and m, let W' and ¢, be chosen (using the
method described earlier in the paper) so that the hyperplane
with equation

Wi'X+t,'=0

distinguishes the vectors arising from the presentation of members
of S, from those arising from the presentation of members of all
other classes. An appropriate decision rule is: if a pattern produces
the vector X in measurement space, then this pattern is identified
as belonging to S; provided

WX+t >r

and for all j & ¢

WX+t < —r

for some suitably chosen value of r; if these conditions are not
satisfied for any value of 7, then the pattern is rejected.

Another decision rule which may be implemented using these
same vectors W', W?, ... W™ and constants ¢, £, --- , t, is
the following: if a pattern produces the vector X in measurement
space, then it is identified as having come from 8; provided

Wi'X + tl' > Wi'X + t,' + € (10)
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for all values of j different from ¢, where ¢ is a positive number
chosen in advance; if this condition is not satisfied for any value
of ¢, then the pattern is rejected. It is evident that this rule can
be useful only if the vectors W', W? ... , W™ bear a suitable
relation to one another, as for, example, might be true if they
were all unit vectors, so that the linear forms W*-X + ¢; would
represent signed distances of the vector X from the corresponding
hyperplanes. Our experience indicates that the performance of a
processor using this rule is about an order of magnitude better
than that of a processor using the rule given in the last paragraph.
This is the decision rule on which we have concentrated our atten-
tion; we have referred to it as a ramp method because of the
circuitry used in its implementation.

Geometrically, this ramp method amounts to class-pair separa-
tion. In fact, this becomes quite clear if the inequality (10) is
rewritten in the form

W' — W)X+ (t; —t)>e forall i3

and we note further that there is no restriction on the values of
the quantities

W =W)X+ (b — t)

when both & and j are different from ¢. Because of its relative
simplicity and familiarity, we chose to base our experimental work
on the fourteen patterns of the magnetic ink character recognition
font now in use in the banking industry. This font is shown in
Figure 3.

The pattern identification system operated as follows. The
characters were printed in magnetic ink, as described earlier.
Before presentation to the transducer, they were magnetized with
an alternating field such that seven complete cycles spanned the
width of the widest character. The transducer consisted of a
column of thirty reading heads arranged to scan a character along
thirty horizontal rows, the tallest characters being nominally
covered by a contiguous group of eight of these heads. Ten channels
were derived from the thirty outputs by forming the ten linear
combinations of the output of every tenth head. This technique
solved the vertical registration problem. The initial part of the
processor sampled the output of each of the ten channels at seven
equally spaced times and quantitized the result into two levels
such that a measurement was produced on a 7 X 10 cylindrically
connected matrix which resembled the original printed character
if viewed from the proper orientation.

It was apparent that, in effect, ten different measurements
were performed on each character scanned and there remained
the problem of selecting the measurement or measurements on
which to attempt recognition. This problem was resolved by
positioning the image of the pattern in the matrix with a set of
positioning rules.

The processor may be most conveniently thought of as divided
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into two parts. The first part we have just described. The re-
mainder of the processor accepted the selected measurements
produced for each character scanned and performed the required
identification; this second part we refer to as the categorizer.
Functionally, this whole system is identical with the pattern
identification system used in the rBm 1210 Reader-Sorter which
is now in commercial use; however, in the 1210 the categorizer
is based on Boolean logic, whereas our system is based on linear
decision functions as described above.

We have not actually constructed such a pattern recognition
system in its entirety. Instead we have used the transducer and
the initial part of the processor of the 1210 to record the 70-bit
patterns on magnetic tape; the training and testing of the cate-
gorizer was then simulated using the 1BM 7090 computer, i.e., the
training and testing of our simulated categorizer was done only
with measurements produced by the initial part of the 1210. The
simulation program was exactly an implementation of the scheme
described earlier in the paper: for training we used one pair of
parallel hyperplanes to separate each class from all other classes,
and for recognition we used the ramp method. Some indication
of the results obtained with this program are described below. In
order to relate to reality these simulation results, a hardware
implementation of a limited version of the categorizer was con-
structed. This machine accepted 70-bit patterns set manually with
switches and identified a pattern as a 0, 1, 2, or 3; this machine
was not an adaptive network, but was constructed using the
results of the simulation program. Its successful performance
demonstrated that the simulation results did in fact have the
meaning purported. This machine and one of the problems arising
in its construction are described later in the paper.

The main source of data for our experimental work was a
magnetic tape upon which was recorded the result of presenting
slightly over one million characters to the 1BM 1210. Mint docu-
ments with nominally perfect printed characters were used. Our
tape contained about 27,000 distinet binary patterns; to save
handling time, it was edited so as to list each pattern only once,
but to indicate with each pattern its frequency of occurrence.
Thus, in effect, we worked with a typical distribution of patterns
produced by mint documents; all recognition results refer to this
distribution. For training purposes, we extracted about 5,000 of
these patterns and recorded them on a separate tape.

The result of a training routine was a set of fourteen vectors
in 70-dimensional space, or masks as we have called them. Three
of the masks are shown in Figures 4, 5, and 6. The upper parts
of these figures are the ideal or nominally perfect patterns as seen
by the categorizer, while the lower parts are the masks themselves.
One can well think of these in terms of contour maps of surfaces;
in this instance we have encircled the higher parts of the ridges
and shaded the deeper parts of the valleys. In general, the peaks
will be contributed by the character itself, whereas the valleys

J. 8. GRIFFIN, JR., J. H. KING, JR., AND C. J. TUNIS




Figure 4 Ideal 1 pattern (top) Figure 5 Ideal 3 pattern (top)
and mask (bottom) and mask (bottom)

0 o ]

0

will be due to other characters which overlap the character in
question in a significant way.

We refer to the entries in the masks as weighis. The variation
of these quantities over the entire family of masks is of some
interest, for it provides an indication of the range of values re-
quired of a variable weight in order that it be useful in an adaptive
device. For this particular system and font, the weights ranged,
in increments of 1, from 1 up to about 200. But this is not meant
to imply that aceuracy to within 1/2 of 19 is required or even
useful: actually, we have not yet ascertained how the performance
of the system deteriorates as the weights are rounded off or other-
wise perturbed.

Figure 7 illustrates the performance typical of the simulated
system. In this particular instance, d was chosen to be 200 (here d
has the same meaning as in the training rules described earlier
in the paper). As suggested earlier in the paper, in order to use
the ramp method some normalization of the masks (vectors) is
required; in this instance we merely divided each weight in a
particular mask by the sum of the absolute values of the weights
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Figure 8 Identification system
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which originally appeared in that mask. Thus the output of any
one mask ranges over some interval of length 1. As described
earlier in the paper, e represents the minimum permissible dif-
ference between the maximum signal and the next largest one.
Note that as € is decreased, the rejection rate is decreased, but at
the expense of permitting substitution errors.

The categorizer which was actually constructed in hardware
is illustrated in Figure 8. Provision was made for entering 70-bit
patterns manually by setting switches. Four circuits representing
masks with weights determined by the simulation program de-
seribed above were constructed, one of these circuits being for
each of the characters 0, 1, 2, and 3; for our purposes there seemed
to be very little need to build all fourteen. For a given input
pattern X, the output of each of these cricuits was proportional
to the corresponding quantity « = W*-X + ¢;. This output could
have been either a current or a voltage; we elected to use voltage.
Provision was made to determine which circuit had the largest
output, and whether this output exceeded the next largest output
by a predetermined amount which we will call #; the various
possible outcomes were indicated by means of lights.

A convenient method of comparing the outputs of the several
circuits is as follows. As indicated in Figure 8, a “ramp control”
is added to the threshold circuits which follow each of the mask
circuits, there being but a single ramp generator for the entire
system. Initially, the input from the ramp generator is sufficiently
great to cause all threshold circuits to be off, no matter how large
the output of the mask circuits. Then, at some time during the
character cycle, the ramp voltage decreases linearly. When the
first threshold circuit comes on, it sets its latch and a single shot
fires, the width of the single shot pulse being proportional to .
If any other threshold circuit comes on while the single shot is on,
it also sets its latch, but those coming on after the single shot goes
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off do not set their latches. At the end of the ramp cycle, if just
one latch is on then the pattern is identified at the corresponding
character, but if more than one is on then the pattern is rejected.

One of the problems which we considered in the construction
of a physical implementation of the categorizer was to take into
account the deviations of commercially available components
from their nominal values. We made the appropriate analyses for
both the case of a voltage output and a current output; because
it is somewhat more transparent, we will describe the current
case, although for circuit reasons we actually built mask circuits
with voltage outputs.

A schematic representation of a mask circult with current
outputs is shown in Figure 9. The output signal is to be propor-
tional to

S = wz, + we, + - + waz, + ¢
where x,, ,, --* , %, are binary variables (assume the values

0 or 1) and the numbers w,, w,, - -+ , w, are arbitrary subject to
the condition that

lwll + [wzl + -+ lwnl = 1.
A suitable physical analog is the current summing network of
Figure 10. The output current [ is given by

I =gw + g+ gsvs + - + g + L

In this expression, ¢,, ¢, *-- , ¢. are conductances chosen to be
proportional, respectively, to |[w. ], |w., - - -, jw,|. If w, > 0, v, takes
on the values 0 and V, respectively, as z; = 0 or x; = 1 and
if w, < 0, v; takes on the values 0 and —V, respectively, as
z; = 0 or x; = 1. The current / flowing in the network will
thus be proportional to the output signal S for any binary pattern.
However, the three voltages present, namely V, 0, and —V, are
an inconvenience to the circuit designer, and therefore it is worth-
while to make the following alteration, which is familiar in the
field of Boolean threshold logic: the variables vy, v, --- , v, are
replaced by v{, v}, - -+, v’, where

vi=vp, if w;,>0

vi=v;,+V if w, <0

so that

I'=gvi+gv+ -+ g+t

where

t=t—V 2 g,

the sum ranging over those ¢ for which w; < 0. Now if w;, > 0,
v} takes on the value 0 or V according to whether x; is 0 or 1,
but if w; < 0, then v/ assumes the value V or 0 as z, takes on the
value 0 or 1. Geometrically this amounts to moving the configura-

tion consisting of a cube V units on its edge and a hyperplane
passing through it parallel to itself until the cube lies in the
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“first 2"-ant”, i.e., until that cube coincides with the cube whose
edges are the n vectors (V, 0,0, ---,0), (0, V,0, ---,0), ---,
0, 0,0, ---, V). Note that this same translation scheme could
be used more generally to cause the circuit to operate between
any two voltages V, and V,. Thus, at any rate, we see that a
current summing network can be constructed which is analogous
to any given mask and which uses as inputs only the two voltages
Oand V.

Let us suppose, then that a mask is to be implemented using
this eircuit. The conductances ¢, ¢», - - - , ¢. are to be implemented
using resistors which may deviate from their nominal values by
as much as a certain fixed percentage, so that the actual con-
ductances used will also deviate from their nominal values by
about the same percentage (at least for sufficiently precise
resistors). Thus, there is a certain number p such that for each
7 the value of the 7th conductance lies between (1 — p)g. and
(1 4+ p)g.. Similarly the voltages nominally equal to V and 0 may
lie between V' — §and V + & and between — & and § respectively,
where § is a constant. The number 7 can be determined rather
more accurately than g, g., --- , g. and its deviations from
nominal will be ignored. Suppose we let ¢ be the sum of the
conductances:

c=¢g+ g+ -+ g.

Now when a pattern is presented, some of the input lines will
receive a nominal voltage of V; the remainder will nominally
receive 0 volts. Let the sum of the conductances associated with
the first of these sets of lines be ¢,, and the sum of the other con-
ductances be ¢,. Then the nominal value of the current will be

Lw =06V + 1,

the largest possible value will be

Lo = (1 + plei(V + 8) + (1 + p)ezd,

and similarly the smallest possible value will be
Inin = (1 — pla(V — 8) + (1 — pea(—9).
We find then that

Lo — Loowm = ¢8 + pe,V 4 cpé

and since ¢; < ¢ we conclude that

Imax - Inom S C(a + pV + pa)‘

A similar calculation may be made for I,;,, and therefore we
conclude that the actual current will differ from the nominal by
at most cV(p + g + pg) where we have set ¢ = §/V. Evidently
the maximum current which can flow through any mask circuit
is cV. Also,

|4
E*Lpt—gtp—q)=p+q+pqu+q
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since pg < 1. Thus, the tolerance of the output of the mask
circuit is 100(p 4+ ¢)%. This shows explicitly the relation of the
voltage and conductance tolerances to the tolerance of the mask
circuits. The deviations of the threshold detector and the ramp
generator from nominal are ignored, for they can be controlled
quite precisely.

Now suppose that there are to be k¥ such mask circuits and
for a binary pattern X, let

f(X) =W-X 4+t

where 7 = 1,2, --- | k. If we let ¢,(X) be the (actual) output of
the 7th mask cireuit, since the nominal output of the 7th mask
circuit is ¢V{;(X), we conclude that

[6:(X) — V(XD < @ + V. an

Suppose that it has been decided to use a certain discrimination
level ¢, i.e., that we want to use the decision rule: the binary
pattern X is identified as having come from the 7th character
provided

fX) > f(X) + e forall 4. (12)
This inequality is equivalent to

V(X)) > V(X)) + eV forall j 7.

In view of (11), in order to insure (12) it is sufficient to require
$:(X) > ¢,(X) + eV + 20 + )V,

in other words, to chose the parameter as

1 =cV(2p + 29). (13)

Thus if 5 is so chosen, we can infer that if the 4th light turns on,
inequalities (12) hold. Of course, in any specific device the devia-
tions of the actual values from the nominal values may well be
such that the choice of # given by (13) imposes rather more
stringent requirements than those given by (12).

In the particular case of the model we built, we used 19
resistors, so that p = 0.01; V was 12 volts and § was 0.78 volts,
so that ¢ = 0.065. For example, if one wanted to guarantee (for
this sample) no errors at all, then one might choose ¢ = 0.12, and
7 would be 3.24 ¢. Or one might choose e = 0 and 9 = 1.8 ¢,
in which case one would be sure (again for this sample) that
there would be no more than 100 substitution errors per million
characters.

For a number of patterns we measured the outputs of the
mask eircuits and compared them with the corresponding (properly
scaled) quantities in the simulated categorizer; agreement was
found to be within 1%,. This agreement was well within the limits
set by the pessimistic design philosophy upon which the above
analysis was based, and there is a strong suggestion that these
criteria are too severe. Thus it appears that in the case of our
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model ¢ is very nearly proportional to 7, i.e., that our model uses
the decision rule: the binary pattern X is identified as having come
from the ith character provided

f,-(X)>f,-(X)+g7{—, for all j 5 1.

Since the input to this categorizer was manual, it was not
economically feasible to test it with a large sample of patterns,
and therefore we have no extensive experimental curves corre-
sponding to those shown in Figure 7. However, the response of
this categorizer to each of 100 patterns presented to it was identical
to the response of the simulated categorizer to the same patterns.
Thus we feel able to conclude that the simulated categorizer can
be designed to operate substantially as predicted, and in particular
that the curves shown in Figure 7 very nearly describe our cate-
gorizer. The categorizer simulated, designed, and tested in the
present work represents the most straightforward application of
linear decision functions to a pattern recognition task, inasmuch
as the categorizer inputs were simple measurements representing
individual spots of ink in the input pattern. One intention was
to determine the capability of such a simple network when realistic
devices and component tolerances are taken into account. A
second purpose was to test the utility of adaptive learning tech-
niques in handling realistic patterns.

More complex networks capable of improved performance
immediately suggest themselves; indeed some of these have already
been simulated. Some of the modifications that may be made
include: the addition of a layer of Boolean logic operating on the
raw measurements (for instance to accomplish feature detection),
the use of additional class-pair planes to resolve particular class-
pair conflicts remaining in the existing categorizer, and the use of
several layers of threshold circuits wherein the early layers are
trained according to codes indicating the presence of particular
features.

ACKNOWLEDGMENT

The authors would like to acknowledge the assistance of members
of the Scientific Computation Laboratory, in particular, R. N.
Ascher and F. E. McFarlin. C. E. Kiessling, I. G. Akmenkalns,
and L. J. LaBalbo of Advanced Electrical Technology also con-
tributed materially to this project.

Essentially this same paper was presented at the Sympostum
on Learning, Adaptation and Control in Information Systems
(Northwestern University, June 17 and 18, 1963) sponsored by
the Office of Naval Research. Appreciation is due the ONR for
permission to publish.

CITED REFERENCES

1. K. R. Eldredge, F. J. Kamphoefner, and P. H. Wendt, “Teaching Ma-
chines to Read,” SRI Journal, First quarter, 18-23, 1957,

J. 8. GRIFFIN, JR., J. H. KING, JR., AND C. J. TUNIS




. K. R. Eldredge, F. J. Kamphoefner, and P. H. Wendt, “Automatic Input
for Business Data Processing Systems,”’ Proceedings of the EJCC, 69-73,
Dec. 10-12, 1956.

3. W. T. Booth, G. M. Miller, and O. A. Schleich, “Design Considerations

for Stylized Font Character Readers,” 115~128 of Opiical Character Recog-
nition, edited by Fischer et al., Spartan Books, 1962.

. C. K. Chow, “An Optimum Character Recognition System using Decision
Functions,” IRE Transactions on Electronic Computers, EC-6, no. 4, 247—
254, December 1957,

. W. H. Highleyman, ‘“Linear Decision Functions, with Application to
Pattern Recognition,” Proceedings of the IRE, 50, no. 6, 1501-1514, June
1962,

. W. H. Highleyman, Linear Decision Functions, with Application to Pattern
Recognition. Ph.D. Dissertation, Polytechnic Institute of Brooklyn, N. Y.,
June 1961. Available from University Microfilms, Ann Arbor, Michigan.
. H. D. Block, “The Perceptron: A Model for Brain Functioning. 1, Re-
views of Modern Physics, 34, no. 1, 123-135, January 1962,

. H. D. Block, B. W. Knight, Jr., and F. Rosenblatt. “Analysis of a Four-
Layer Series-Coupled Perceptron. IL,”’ Reviews of Modern Physics, 34,
no. 1, 135-142, January 1962.

. A. G. Konheim, “A Geometric Convergence Theorem for the Perceptron,”
IBM Research Paper RC-621, 16 Feb. 1962.

. A. Novikoff, “On Convergence Proofs for Perceptrons,”” presented at the
Symposium on Mathematical Theory of Automation, Polytechnic Inst.
of Brooklyn, 24 April 1962.

PATTERN RECOGNITION WITH LINEAR FUNCTIONS

267




