
T h i s   p a p e r   i s  concerned  with  application of linear  decision  functions 
to  the  pattern  identification  problem  and  describes an experimental 
pattern  recognition  system  for  the  magnetic  ink  character  font  now 
used in the  banking  industry. 

T h e   s y s t e m   i s  based o n  a linear  decision  function  determined  by 
means  of a variant of an “adaptive  training”  technique  due to 
Rosenblatt. 

The  system  has  been  partially  implemented (in part,  through  simula- 
tion  with  aid  of  a  digital  computer  and, in part,  by  hardware)  and 
experimental  results in using  the  system  are  reported. 

A pattern  identification  system 
using  linear  decision  functions 

by J. S. Griffin, Jr., J. H. King, Jr., 
and C. J. Tunis 

The first part of the  paper reviews some of the previous  work 
on the  pattern identification  problem. The second part discusses 
the technique  employed to  determine a suitable  linear decision 
function.  Finally, an experiment,al  system and  its implementation 
are described, and results  obtained  in  testing  are  reported. 

Introduction  to  the  pattern  identification  problem 
identification Every  pattern identification  systems  consists of two  fundamental 
systems parts: a transducer, which senses the  patterns  to be  identified 

and converts the information  acquired into electrical  signals; and 
a processor, which  accepts  these  signals and  by some means in- 
terprets  them so as to  achieve the required  identification.  There 
may, of course, be  other  parts  to  the  system. For example, the 
system  might  include: a device  for  presenting the  patterns  to 
the transducer,  such  as  a  paper  transport; or a device which 
utilizes the information  provided the processor, such as a set 
of gates which direct  documents  into  bins  according to  the par- 
ticular  pattern identified. But we shall not be concerned  with 
such  peripheral  apparatus. 

The  patterns  to be  identified could consist, for  instance, of 
a  family of characters  printed on  paper, or a  vocabulary of spoken 
words. In  the former case the transducer  might  consist of a  lens 
system and a means of measuring the darkness of various  parts 
of the resulting  image; or the characters  might  be  printed  in 
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magnetic  ink, and  the  transducer could then consist of one or 
another of the various  kinds of magnetic  reading  heads. In  the 
case of speech signals, the transducer could be  simply a micro- 
phone. 

The processor accepts  signals that  are produced by  the  trans- 
ducer when a pattern is present and  must  extract enough  informa- 
tion  to correctly identify  the  pattern  (with a high degree of 
probability). In  the case of printed  characters,  the first step 
might  be to  periodically sample the  output  from  the  transducer 
and  to quantize the result  into  two levels in such a way as  to 
produce  a  binary matrix which is  a  direct  electrical  image of the 
character.  The  matrix could be interpreted  in  many ways,  in- 
cluding:  those  based on correlation  techniques,  searching  for the 
presence or absence of certain  critical  features,  or  by the linear 
method  reported  in  this  paper. Of course, there  are  many  other 
ways to  construct  a processor for  printed  characters. In  the case 
of speech signals, the processor often  consists of a filter bank 
which determines the energy  present a t  various  frequencies, and 
some means of analyzing the resulting pattern. 

An early  cxample of a pattern identification  system  was 
described by Eldredge,  Kamphoefner, and  Wendt,1'2'3  and  pub- 
lished under  the  acronym ERMA. In  this  instance  the  patterns  to 
be  identified were the  ten  digits  and four special symbols of a 
specially designed font.  These were printed  with  an  ink con- 
taining  iron  ferrite  particles, so that upon being magnetized  each 
character  acquired  a field which was peculiar to  the class to which 
i t  belonged. The  transducer was a suitably designed magnetic 
reading  head; a  magnetized  character,  upon being passed  under 
this  reading  head, caused the  production of an electrical  signal 
which went  to  the processor for  interpretation.  The processor 
operated  essentially as follows. The signal  from the read  head was 
sampled a t  n successive points  in  time resulting in  values xl, 
xz, . . . , x?,. Let these  numbers  be the components of the vector X. 
Let  the  values which would bc  produced by a perfect pattern 
from the  ith class be wf,  wf, . . . , wf, and  let  these be the com- 
ponents of the vector W'; here i will evidently run from 1 to 14. 
The processor identified the  pattern  as belonging to  the  ith class 
provided 

eW.x > W ' . X  for all j z i, (1) 

where 9 was a fixed value  lying  between 0 and 1; otherwise the 
processor responded that identification  was not possible. 

Upon  recalling the relation  hetween the  dot  product of two 
vectors and  the cosine of their included  angle, one realizes that 
the inequalities (1) describe a region of n-dimensional  space 
roughly  in the shape of a cone, or more  nearly  a  prism,  with  vertex 
at the origin.  Included  in  this region are  the  standard  vector 
W"' associated with  the  ith  pattern,  together  with  almost  all 
of the vectors which arise  from patterns belonging to  the  ith 
class. The regions associated with  the  various classes are, of 
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course, non-overlapping, and in fact do  not  exhaust  the whole 
space. Patterns which produce signals whose vectors  do  not lie 
inside any of these regions are, of course, not identified. Note 
that  by decreasing 0 these regions could be diminished, the likeli- 
hood of announcing an incorrect  identification being thereby de- 
creased, but  at  the expense of increasing the regions corresponding 
to non-identification.  This, in  turn, would cause an increase in 
the rejection rate. 

Soon after  the  appearance of the Eldredge,  Kamphoefner, 
statistical and  Wendt papers,  C. K. Chow4 observed that  the  task of the 
decision processor could be stated  as a problem  in  statistical decision 
theory theory. Chow’s analysis may  be summarized as follows. He  noted 

that  the signals which arise  from the  presentation of patterns  to 
the transducer could, after  certain preliminary  transformations 
in  the processor, be  regarded as  points of a measurement space. 

- The consequent  identification  problem was to determine which 
pattern was  presented to  the  transducer, given that  it  had gene- 
rated a  certain  point  in  the  measurement space. Hence, the 
operation of the processor could be represented by a decision 
rule, i.e., by  an assignment to each point of the  measurement 
Space either one member of the class of patterns or the  statement 
“no  identification  is possible.” Chow postulated that with  each 
class of patterns  there was associated  a  probability  distribution 
on the measurement  space, this  distribution being a description 
of the likelihood of occurrence of a  given  point in  the measure- 
ment space upon  presentation to  the transducer of a  member of 
its corresponding class of patterns. For example, in  the  system 
described above, the preliminary  transformation  consists  in sampl- 
ing the waveform from the  transducer a t  n points, and  the measure- 
ment space is an n-dimensional vector  space. The decision rule 
has  already been stated; namely, for each i it assigns the  ith 
class to each point of the region defined by  the inequalities (1) 
and  the  statement “no  identification  is possible” to all other 
points.  Whatever  its exact nature,  the  probability  distribution 
associated  with the  ith class of patterns is  evidently  concentrated 
within  this same region, for otherwise this decision rule would 
not be effective. Chow also  postulated that  the result of each 
possible decision (correct  identification,  erroneous  identification, 
and failure to make  any identification) could be evaluated on a 
unit  cost basis. Specifically, suppose  m classes are to be  identified, 
say X,, X,, - , X,, and  let us assign the cost cii  to  the decision 
(‘a member of Si is identified as belong to Si1’. Then cii  is the cost 
(perhaps  negative) of correctly  identifying a member of Xi, 
whereas if i # j then cii is the cost of incorrectly  identifying a 
member of Si as a  member of Xi. Let c io  be the cost of a failure 
to make  any identification when the  pattern presented belongs 
to Xi. In  general, of course, if i # j and i # 0 then cii > ci0 > c i i .  
This corresponds to  the usual  notion of utility  in  statistical 
decision theory. 

For purposes of calculation, any  particular decision rule  can 
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be  represented as follows. If 1 5 i 5 m and X is any point of 
measurement  space,  let 

&(X)  = i 1 if the  ith class is assigned to X 

0 otherwise 

and similarly let S,(X) take  the  value 1 if there  is assigned to  
X the  statement  “no identification is possible” and  the value 0 
elsewhere. Finally we let p i  be the probability of occurrence of 
the  ith  pattern, i.e., the relative  frequency  with  which  members 
of X i  are  presented to  the transducer. Using this convention, 
Chow calculated the expected unit  cost of operation of this  system 
due  to identifying the  ith  character  as  the  jth  to be 

a. .  I t  = J Pi(X)Cii & ( X )  d X  
M 

where M is the measurement  space and pi is the probability  distri- 
bution  on A4 associated  with the  ith  pattern.  The value j = 0 
is, of course, to  be  interpreted as  the average  cost of failure to  
make  any identification when the  ith character  appears.  Itfollows 
that  the  total average  cost of operation of the system will be 

A = ptaii .  
m m  

j -0  i - 1  

Now 

A = A ,  + A ,  

where 

A ,  = picio and A ,  = 

where 

Z,(X) = 0 and Z i ( X )  = (cii  - ciO)p,pt(X) 

for 1 5 j 5 m. The  quantities Z j ( X )  may be interpreted  as 
measuring the excess of the cost of identifying a pattern which 
gives rise to  the point X of measurement  space as belonging to  
Si over the cost of failure to make  any identification. Chow ob- 
served that  the  total average  cost A may be minimized by asso- 
ciating  with X the class Si for which Z , ( X )  is  least. He  let 

2-1 

m 

i = l  

&(x) = 1 

if 

Z i ( X )  5 Z i ( X )  for all i # j 

(ties are decided arbitrarily). 
It may be  noted that  the  particular decision function which 

Chow obtained  may be described as optimum, in the sense that 
it minimizes the  cost of operation for a fixed relation  between the 
patterns  and  the  measurement  space;  and  the processor, insofar 
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as  it  implements  this decision function,  may also be called opti- 
mum. However, this  adjective  cannot  be applied to  the transducer 
or to  that  part of the processor whose function  is to  convert 
the signals  from the transducer  into  points of the  measurement 
space. It is  mainly  a matter of experimentation to select adequate 
transducers and  to properly extract  information  from  their  out- 
put signals. Other  limitations of Chow’s analysis  include: the  unit 
cost  assumption is not always  tenable; and  there  may  be de- 
pendences  among the successive patterns of a sequence, as when 
a self-checking account  number  or a fixed format  for  control 
characters is used. And finally, as Chow himself remarked,  even 
if the probabilities of occurrence of the various  patterns  and  the 
distributions  which  they  generate  are  accurately known, it may 
still  be  very difficult to  implement  the  optimum decision functions 
given by  this  algorithm. 

Some kinds of decision functions  happen to be quite convenient 
linear t o  implement, and  it  has proved  expedient to use certain of these 
decision even when they  bear  little  relation to  the optimum decision func- 
functions tions  in Chow’s sense. Acceptable  performance  generally has  to 

be  achieved by incurring  costs elsewhere in  the  system, e.g., by 
using better  transducers  and preliminary processing, or  in some 
cases by controlling the  input  patterns;  but  this kind of trade-off 
is familiar  in  systems design. 

The work to  be  reported  here  centers  around the so-called 
linear decision function,  a  broad discussion of which has been 
given b y   H i g h l e ~ m a n . ~ ’ ~   I n  simplest terms,  the  measurement 
space  is taken  to be a vector  space,  say, of dimension n,  and a 
linear decision function  is any partitioning of the space by one 
or more  hyperplanes (each of dimension  n - 1). The question, 
in which region of the  partition does a given  vector lie, evidently 
can  be  reduced to  the question, on which side of each  hyperplane 
does this  vector lie. The  utility of this  notion  is based  first  on the 
ease with which a mechanism  for  answering this  latter  question 
can  be  constructed. 

Indeed, a typical  implementation  is  by  means of a current 
summing  network.  Suppose that n  measurements  are  made  on 
the signal  from the transducer  resulting  in  voltages  on  n lines 
having the values vl, v2, , v,. The  vector  having  these  numbers 
as components will be  designated by V .  If the lines are connected 
through resistors to  a current measuring device, then  the cur- 
rent I which is  observed to  flow will be glvl + gzv2  + . . . + gnu,, 
where g i  is the conductance (reciprocal of the resistance) of the 
i th  resistor.  One may  then  determine  whether  the  vector V lies 
on one or the other side of the hyperplane  with  equation 

g1v1 + 92212 + . . . gnvn - t = 0 

by  noting  whether  the  current I exceeds or is less than t .  Negative 
conductances  may  be  implemented  by  inverting the corresponding 
input voltages. Thus, one such  network as  this will be  required 
for  each  hyperplane  involved  in  the  linear decision function. 
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Obviously the effectiveness of a  linear decision function  in  identify- 
ing  a  given  family of patterns  is  contingent  upon  the possibility 
of specifying an  adequate  linear decision function  in  terms of 
an  economically reasonable  number of hyperplanes. For example, 
we have  found i t  feasible to  use one hyperplane to  separate  the 
signals  arising  from patterns of any one category  from the signals 
arising  from patterns  from  all  other categories. This  means  that, 
altogether,  there would be as  many  hyperplanes  as  there were 
classes of patterns. 

A second important  attribute of linear decision functions is 
the ease with which suitable  hyperplanes  can  often  be  found.  This 
attribute will become apparent  in  the following section  devot,ed 
to  finding a particular decision function. 

Determination of a suitable  linear decision function 
The  particular  method  to be  described in  this section  is a variant 
of the  adaptive  training or programmed  error  correction  tech- 
nique  used  by  Rosenblatt  in his PERCEPTRON  experiment^."^ 

Suppose that one has a family of patterns  to be identified 
and  that a transducer  together  with a preliminary processing has 
been decided upon, so that  the presentation of a pattern  to  the 
transducer will produce a known  vector  in  measurement  space. 
In  the following sections, we address the problem of determining 
an  appropriate  linear decision function.  Later  in  the  paper we 
give an explicit  description of the algorithm or training  procedure 
for the simplest possible case, namely  when there  are only two 
classes of patterns  to be  identified and  the separating  hyperplane 
may be  presumed to  pass  through  the origin of measurement 
space.  We will also show how to modify this procedure so as   to  
give two parallel  hyperplanes  placed  symmetrically  about the 
origin; this allows for  a zone of indecision, i.e., a rejection region, 
and  may incidentally  shorten the length of the  training procedure 
required. A further modification which frees  these  planes  from 
their special relation to  the origin will be  described, as well as  an 
extension of these  techniques to provide  for the identification of 
more  than  two classes of patterns. 

The effectiveness of these  procedures will depend  primarily 
on the distribution of the images of the various  patterns  in meas- 
urement  space.  Generally  speaking, if the vectors  produced by 
patterns  from SI are  concentrated  in  a region R,, and those  pro- 
duced by S ,  are  concentrated  in a region R,, and if there  is a 
hyperplane which lies between R, and R,, then  this  training pro- 
cedure may be  expected to  produce a satisfactory decision rule. 
Thus,  the  transducer  and  the preliminary part of the processor 
must be designed to meet  this  condition.  Failure to obtain a 
satisfactory decision rule after a reasonably  lengthy  training 
procedure would suggest that  the design should be reconsidered. 
Theoretical  arguments  have been adduced to  justify  this position, 
but our view is mainly  heuristic: it  has  turned  out  to be  practical 
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to design pattern identification  systems using this  approach. 
Suppose  initially that  there  are  just two classes of patterns 

two-class to  be  identified, say S,  and S,. We look for a linear decision func- 
identification tion which will suffice to  distinguish  members of these  two classes. 
algorithm We seek a vector W such that if a vector X is  produced by  the 

presentation of a pattern  from  the class SI then  (with a high 
degree of probability) 

x*w > 0, (2) 

whereas if X is produced by a member of X, then 

x*w < 0. (3) 

If such a vector  can  be  found,  then an unknown pattern will be 
identified as belonging to  X, or X, according to the following 
decision rule: if the vector X produced in  measurement  space by 
the  pattern satisfies condition (2) then  the  pattern  is identified 
as belonging to  SI; if X satisfies (3) then  the  pattern  is identified 
as belonging to  X,; if neither of these  conditions  is  satisfied, i.e., 
if X . W  = 0, then  no decision is  rendered (or, as we say, the 
pattern is rejected). Speaking  geometrically, we will have a hyper- 
plane  passing through  the origin, with  almost  all of the vectors 
produced  by  members of X, lying  on one side of it, and  with 
almost  all of those  produced by S,  lying  on the other. 

We attempt  to find W by a trial-and-error  technique.  Let 
p,,  p,, . - - , p k  be a sequence of patterns, some  from S1 and  the 
remainder  from S,, and  let X , ,  X,, . . , X ,  be  the sequence of 
corresponding  vectors  arising in measurement  space  from  the 
presentation of these  patterns  to  the  transducer.  Let T ,  be any 
vector  (typically T ,  is  taken  to  be  the zero vector).  We define a 
sequence of vectors T,, T,, . . . , T,+, iteratively, as follows: 

if pi is  from S ,  and T i . X i  > 0 then Ti+, = Ti  ( 4 4  

if p i  is  from X, but T,.Xi 5 0 then Ti+, = Ti + X i  (4b) 

if pi is  from S ,  and T, .Xi  < 0 then Ti+1 = T i  (4c) 

if pi is  from S,  but Ti .Xi  2 0 then Ti+,  = Ti  - X i .  ( 4 4  

In  other words, if the vector Ti  behaves as desired with  regard 
to  the  ith  pattern,  then  it is  left unchanged (statements (4a) 
and (4c));  but, if not,  then i t  is corrected (statements (4b) and 
(4d)). That  statements (4b) and (4d) do  in  fact  represent cor- 
rections  is  clear: if, for  example, pi is from S1 but 

Ti . X ;  < 0 

then 

Ti+,*X,  = !!‘,*Xi + X i . X i  > T i . X i  

so that Ti+, is an improvement, at least as far as  the  ith  pattern 
is concerned. The  last  pattern  in  this sequence, namely Tk+,, 
is a tentative choice for W .  
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Such procedures as  this  are frequently described in  anthro- 
pomorphic terms: we speak of the procedure as a training  routine, 
of the  statements (4) as training  rules, and of the processor as 
being trained by the application of these rules. 

This process can be expected to converge (i.e., for some k < , 
T i + ,  = Ti for  all i > k) only under the special condition that all 
X i  from X, may be separated from all Xi from X, by a hyperplane 
passing through the origin. Generally, this condition is not met, 
but perhaps a majority of the Xi from X, may be separated from 
the  majority of the Xi from X, by some hyperplane, W . X  = 0, 
when k is taken sufficiently large. The question here is obviously 
not  whether we can obtain convergence in the  strict sense but, 
rather, how many  iterations of the training  sample are necessary 
in order to guarantee that no substantial  improvement will result 
with  further  iterations.  At  present,  this question remains largely 
unanswered in the general case even though  there  are several 
proofs of strict convergence for a finite number of iterations when 
S,  and S, are linearly ~ e p a r a b l e . ~ ' ~ ' ' ~  

There is no a priori reason to believe that  the choice W = Tk+, 
is acceptable, i.e., to believe that  the above decision rule with 
Tk+, substituted for W will represent a processor with satisfactory 
performance. The  next  step, therefore, is to estimate the fre- 
quency with which errors and rejections will occur if the choice 
W = Tk+, is made.  This  estimate is made by testing the per- 
formance, for a particular choice of W ,  on the training sequence 
which is presumed to be representative. (By error we understand 
a substitution, i.e., the identification of a pattern as belonging 
to one class when in fact it belongs to another.) If the choice 
W = T,,, does not prove to be acceptable, then one may  augment 
the sequence of patterns  and continue the training procedure; 
or perhaps one  will decide to abandon the search for this par- 
ticular W .  

Once a satisfactory plane is  found, it can be implemented 
using a circuit of the  type described later. The  output of this 
circuit can be quantized to two levels, say 0 and 1, so that e.g., 
a 0 will be interpreted as indicating that a member of X, is  present 
whereas a 1 will indicate  a member of S,. 

A simple but significant improvement  results from choosing 
a positive number d and then replacing the training rules (4) by: 

if pi is from S ,  and T i . X i  > d then Ti+, = Ti (54 

if p i  is from X, but T i   - X i  5 d then Ti+,  = Ti + X i  (5b) 

if pi is from S,  and T, .Xi  < -d  then Ti+,  = Ti (5c) 

if p i  is from X, but T i . X i  2 -d  then Tt+,  = Ti - X ; .  (5d) 

Correspondingly one might modify the decision rule to read: if 
the vector V produced by  a pattern satisfies the condition 

W - X  > d (6) 
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then  the  pattern is identified as belonging to S,; if the vector 
produced satisfies the condition 

W * X  < - d  (7) 

then  the  pattern  is identified as belonging to  S,; and if neither of 
these  conditions  is  satisfied then  the  pattern is rejected. 

This decision rule  can  be visualized in  terms of a pair of hyper- 
planes  placed  symmetrically about  the origin;  between them lies 
the rejection region, and of the other  two regions, one  is  identified 
with SI and  the  other  with X,. A moment’s reflection will show 
that these  training rules may be  understood  similarly: they repre- 
sent  an  attempt  to place a pair of parallel  hyperplanes  between 
the regions in which the images of patterns  from  the  two classes 
are concentrated  with the proviso that  as  the  training routine 
progresses, the vectors Ti tend  to  get longer, so that in effect the 
two  hyperplanes  drift  toward  the origin. Thus  there  is a relation 
between the choice of d and a suitable  length of the  training 
routine.  Intuitively  what one expects  is  for the necessary  length 
of the  training sequence to  increase with increase of d. Also, by 
choice of a  suitable  large  value  for d the  ratio \d\/lWl will be 
maximized,  i.e., the relative  separation will be maximized. But 
the  main  point here  is that  by using two  hyperplanes one may 
expect to  get a better  fit. 

Finally, we note that  the decision rule may be further modified: 
one could  replace the inequalities (6) and (7) by 

wax > Bd (8) 

and 

w.x < -ed (9) 

respectively,  where  generally 0 is chosen between 0 and 1. Note 
that  the effect of increasing B would be to  decrease substitution 
errors but  at  the expense of increasing the  number of rejections. 
This, of course,  presupposes that XI and X, may be  “separated”, 
in  the large,  by  a  linear boundary passing  through the origin. 
The general case where this condition  is not  met  may  be  handled 
by one further simple modification explained below. 

It is  also  easy and wort,hwhile to  free  these  hyperplanes  from 
their peculiar  relation to  the origin; that  is, we can  find and use 
a single hyperplane which need not pass  through the origin, or a 
pair of parallel  hyperplanes which are  not necessarily sym- 
metrically  placed  about  the origin. The simplest  way to  ac- 
complish this  is  to  append a  fictitious  component to  the vectors 
produced by  the presentation of patterns  to  the  transducer,  and 
to  always  take  this  component to  have  the value 1. The  training 
procedures described earlier  in the paper  may be used to  produce 
a  vector, the  last  component of which may be taken  to be the 
constant  term  in  the  equation of the desired  hyperplane. 

To  be more  explicit,  suppose that  we are looking for a single 
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hyperplane and  that we have  the sequence X, ,   X , ,  1 x, 
of vectors  in  measurement  space, as before. Let  the dimension 
of measurement  space be n,  and  let  the sequence X: ,  Xi, - , X :  
of (n + 1)-dimensional  vectors  be defined as follows: for  each 
index i, the first n components of X :  are  the  components of X i ,  
and  the (n + 1)st component of X :  is 1. 

We now define a sequence T I ,  T,, . . . , T ,  by  the  training 
rules stated earlier in  the  paper,  but  with XI replacing Xi. Finally, 
the vector T ,  is obtained and we define W to  be the n-dimensional 
vector whose components  are  the first n components of T,, and 
we let t be the (n + 1)st component of T,. 

We now use the following decision rule: if the vector X results 
from the presentation of a pattern  to  the transducer,  then X is 
identified as having belonged to  X,, to  S,, or is rejected,  according 
to  whether W a x  + t is positive,  negative,  or  zero. 

The  treatment of a  pair of parallel  hyperplanes  may be simi- 
larly modified. 

Ordinarily  in pattern identification  work  one must  deal  with 
several  distinct classes of patterns  rather  than  just  two classes. 
If there  are m classes, then one may dichotomize the family of 
classes p times,  where p is the least  integer which is as large as 
log, m; the identification of a pattern could then consist in  the 
determination of which half of each of these  dichotomies the class 
containing the relevant  pattern belonged to  (in  other  words, 
only p bits of information  are  required to  specify one object  out 
of m). Interpreting  this  remark  in  terms of measurement  space, 
we see that in  principle i t  is possible to use just p hyperplanes to 
identify  a  pattern  as  having come from one of m classes, subject 
of course to  the requirement that  the regions in which the images 
of various classes are  concentrated be well spread  out  in meas- 
urement  space.  However, it has  not proved to  be  practical to  
implement so economical a scheme as  this because we do  not 
know of a simple way to recognize which dichotomies of a  family 
of classes of patterns  can be  implemented  with  a  hyperplane  in 
measurement  space. 

This  has been called the coding assignment  problem; the 
essential difficulty is  illustrated  in  Figure 1, which is intended to  
suggest the regions of concentration of the measurements  in  a 
two-dimensional measurement  space  arising  from  each of four 
classes of patterns,  say X,, X,, X,, and X,. It is  evident that if 
we group X, and X, together  into one class and X, and X, together 
into  another,  then we may expect the  training procedure to yield 
the hyperplane  (line) A .  We would obtain  therefrom an assign- 
ment,  say, of 0 to  members of X, and X, and of 1 to members 
of X, and X,. If next we take S,  and X, to  form one class and 
X, and X, to form the other,  then we should arrive at   the hyper- 
plane B and  the  assignment of 0 to members of X, and X, and 1 
to members of X, and X,. On taking  these  two  together, we would 
identify  patterns according to  the scheme  shown in  Table 1. 
But, if  we had  the misfortune to  put X, and X, together into 
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pair  separation 
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one class and X, and Sq into  the  other, we could not expect to  
find a suitable  hyperplane. 

Another  scheme which one would certainly  expect to  be quite 
effective consists in  the use of a hyperplane (or a pair of parallel 
hyperplanes) to  distinguish  between  members of each  pair of 
classes; thus m(m - 1)/2 hyperplanes (or pairs of hyperplanes) 
are required. Each such  hyperplane (or pair of hyperplanes)  can 
of course  be  found by using the methods  described  earlier. The 
decision rule must  take  into  account  the  fact  that if a hyperplane 
is  suitably  located to  differentiate  between two  particular classes, 
then  the location with respect to  this hyperplane of any  vector 
arising  from a pattern  from  any  third class will contain  no in- 
formation. 

This  method  has been called class  pair  separation; the  three 
hyperplanes which would separate S,  from X,, S3 and X, are 
indicated  in  Figure  2. The disadvantage of this  method  is  the 
comparatively  large  number of hyperplanes  required; if there 
were 14 characters  in the  font,  then 91 hyperplanes would be 
needed, and if there were 26 characters  then 325 hyperplanes 
would be  necessary. 

We have  had some success with a scheme intermediate be- 
tween  these  two,  namely, the use of one hyperplane to  separate 
the vectors  arising  from the presentation of patterns  from one 
class  from  those  arising  from the presentation of members of all 
other classes taken  together.  Thus, to  distinguish  among the 
members of m different classes of patterns m hyperplanes are 
required. To express this  more formally,  suppose we let X,, 

value of i between 1 and m, let W i  and t ,  be chosen (using the 
method  described  earlier in  the  paper) so that  the hyperplane 
with  equation 

X,, . * a  , X, be  the m classes of patterns  to be  identified. For each 

W " X  + t i  = 0 

distinguishes the vectors  arising  from the presentation of members 
of Xi from  those  arising  from the presentation of members of all 
other classes. An appropriate decision rule is: if a pattern produces 
the  vector X in  measurement  space,  then  this  pattern is identified 
as belonging to  Xi provided 

W i . X  + ti > r 
and  for  all j f i 
W ' - X  + ti < -r 

for some suitably chosen value of r ;  if these  conditions are  not 
satisfied  for any value of i, then  the  pattern  is rejected. 

Another decision rule which may be  implemented using these 
same  vectors W', W2,  . . . , W" and  constants t,, t,, . * , t, is 
the following: if a pattern produces the vector X in  measurement 
space, then  it is  identified as having come from Xi provided 

W"X + ti > W'*X + t i  + E 
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for all  values of j different  from i, where e is a positive  number 
chosen in  advance; if this condition is  not satisfied  for any value 
of i, then  the  pattern  is  rejected. It is  evident that  this rule can 
be useful only if the vectors W', W2, . . . , W" bear a suitable 
relation to  one another,  as  for, example,  might  be true if they 
were all  unit  vectors, so that  the linear  forms W ' . X  + ti would 
represent  signed  distances of the vector X from the corresponding 
hyperplanes.  Our experience indicates that  the performance of a 
processor using this rule  is about  an order of magnitude  better 
than  that of a processor using the rule  given in  the  last  paragraph. 
This  is  the decision rule  on which we have  concentrated  our  atten- 
tion; we have  referred to  it  as a ramp method because of the 
circuitry used in its implementation. 

Geometrically, this  ramp  method  amounts  to class-pair separa- 
tion. In  fact,  this becomes quite clear if the inequality (10) is 
rewritten  in  the  form 

(Wi - W i ) . X  + (ti - ti) > E for all i z j ,  

and we note  further  that  there is  no  restriction on the values of 
the  quantities 

(Wk - Wi).X + ( t k  - t i )  

when both k and j are different  from i. Because of its relative 
simplicity and familiarity, we chose to base  our  experimental  work 
on  the  fourteen  patterns of the  magnetic  ink  character recognition 
font now in use in the banking  industry.  This  font  is shown in 
Figure 3. 

The  pattern identification system  operated  as follows. The 
characters were printed  in  magnetic ink, as described  earlier. 
Before presentation to  the transducer,  they were magnetized  with 
an  alternating field such that seven  complete cycles spanned the 
width of the widest character.  The  transducer consisted of a 
column of thirty reading  heads  arranged to scan a character  along 
thirty  horizontal rows, the tallest  characters being nominally 
covered by a contiguous  group of eight of these  heads.  Ten channels 
were derived  from the  thirty  outputs  by forming the  ten  linear 
combinations of the  output of every tenth head.  This  technique 
solved the vertical  registration  problem. The initial part of the 
processor sampled the  output of each of the  ten channels at seven 
equally  spaced  times and  quantitized  the  result  into  two levels 
such that a measurement  was  produced  on a 7 X 10 cylindrically 
connected matrix which  resembled the original printed  character 
if viewed from the proper  orientation. 

It was  apparent  that,  in effect, ten different measurements 
were performed on each  character scanned and  there remained 
the problem of selecting the measurement or measurements  on 
which to  attempt recognition. This problem  was resolved by 
positioning the image of the  pattern  in  the  matrix  with a set of 
positioning  rules. 

The processor may  be  most conveniently thought of as divided 
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into  two  parts.  The first part we have  just described. The re- 
mainder of the processor accepted the selected  measurements 
produced  for  each character scanned and performed the required 
identification;  this second part we refer to  as  the categorizer. 
Functionally,  this whole system is identical  with  the  pattern 
identification  system used in  the IBM 1210 Reader-Sorter  which 
is now in commercial  use;  however, in  the 1210 the categorizer 
is  based  on Boolean logic, whereas  our system is based  on  linear 
decision functions as described  above. 

We have  not  actually  constructed such a pattern recognition 
system  in  its  entirety.  Instead we have used the  transducer  and 
the initial part of the processor of the 1210 to  record the 70-bit 
patterns on  magnetic  tape;  the  training  and  testing of the cate- 
gorizer was then  simulated using the IBM 7090 computer,  i.e., the 
training and testing of our  simulated  categorizer  was  done  only 
with  measurements produced by  the initial part of the 1210. The 
simulation  program was exactly an implementation of the scheme 
described  earlier in  the  paper:  for  training we used one  pair of 
parallel  hyperplanes to  separate  each class from  all  other classes, 
and for  recognition we used the  ramp  method. Some  indication 
of the  results  obtained  with  this  program  are described below. I n  
order t o  relate t o  reality  these  simulation  results,  a  hardware 
implementation of a  limited  version of the categorizer was con- 
structed.  This machine  accepted  70-bit  patterns  set  manually  with 
switches and identified  a pattern  as a 0, 1, 2, or 3; this  machine 
was not  an  adaptive network, but was  constructed using the 
results of the simulation  program. I ts  successful performance 
demonstrated  that  the  simulation  results  did  in  fact  have  the 
meaning purported.  This machine and one of the problems  arising 
in  its  construction  are described later  in  the  paper. 

The  main source of data for  our  experimental  work  was a 
experimental magnetic  tape upon which was  recorded the result of presenting 
results slightly  over one million characters to  the IBM 1210. Mint docu- 

ments  with nominally  perfect printed  characters were used.  Our 
tape  contained  about 27,000 distinct  binary  patterns;  to  save 
handling  time, i t  was edited so as  to list  each  pattern only once, 
but  to indicate  with  each  pattern  its  frequency of occurrence. 
Thus,  in effect, we worked with a  typical  distribution of patterns 
produced by  mint  documents;  all recognition  results  refer to  this 
distribution.  For  training purposes, we extracted  about 5,000 of 
these  patterns  and recorded them on a separate  tape. 

The result of a training  routine  was a set of fourteen  vectors 
in 70-dimensional space, or masks as we have called them.  Three 
of the masks  are shown in  Figures 4, 5, and 6. The upper  parts 
of these figures are  the ideal or nominally  perfect patterns  as seen 
by  the categorizer, while the lower parts  are  the  masks themselves. 
One can well think of these  in  terms of contour  maps of surfaces; 
in  this  instance we have encircled the higher parts of the ridges 
and shaded the deeper parts of the valleys. In  general, the peaks 
will be contributed  by  the  character itself,  whereas the valleys 
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Figure 4 Ideal 1 pattern  (tap) 
and mask (bottom) 

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

Figure 5 Ideal 3 pattern (top) 
and mask (bottom) 

0 0 0 0 0 0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0 0 0 0  ?\ 
1 1 1 1  

0 0 0 0 0  

0 0 0 0 0 0 0  

figure 6 Ideal 8 pattern (top) 
and mask (bottom) 

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

L 1 1 1  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 -2 -1 16 1 -26 

I 70 41 I 18 8 - 6 b  -11 

0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 0  

will be due to  other  characters which overlap the character  in 
question  in  a  significant  way. 

We refer to  the entries  in  the masks as weights. The  variation Figure rate and 

of these quantities over the entire  family of masks is of some reject rate  platted against the 

interest, for i t  provides an indication of the  range of values re- 
quired of a variable  weight  in  order that   i t  be useful in  an  adaptive 4 : ' ' ' ' ! los t  1000 4 

device. For this  particular  system  and  font,  the weights  ranged, 2 1 
in  increments of 1, from 1 up to  about 200. But  this  is  not  meant - 

to  imply that accuracy to within  1/2 of 1% is required  or  even 2 - 

useful: actually, we have not  yet  ascertained how the performance E lo' 

of the  system  deteriorates  as the weights are rounded off or other- $ 
wise perturbed. 

Figure 7 illustrates the performance  typical of the  simulated 
system. In  this  particular  instance, d was chosen to  be 200 (here d lo' 

has  the same  meaning as in the training  rules described earlier 
in  the  paper). As suggested  earlier in  the  paper,  in  order  to use 
the  ramp  method some normalization of the masks  (vectors)  is 
required;  in  this  instance we merely  divided  each  weight  in  a 102 

particular  mask  by  the  sum of the absolute  values of the weights 

discrimination level 
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Figure 8 Identification system 
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which originally  appeared in  that mask. Thus  the  output of any 
one mask  ranges  over some interval of length 1. As described 
earlier in  the  paper, E represents  the  minimum permissible dif- 
ference between the maximum  signal and  the next  largest one. 
Note  that  as E is decreased, the rejection rate is decreased, but at 
the expense of permitting  substitution  errors. 

The categorizer which was  actually  constructed  in  hardware 
description is illustrated  in  Figure 8. Provision was made  for  entering 70-bit 
of the patterns  manually  by  setting switches. Four circuits  representing 
categorizer masks  with weights  determined  by  the  simulation  program  de- 

scribed  above were constructed, one of these  circuits being for 
each of the characters 0, 1, 2, and 3; for  our  purposes there seemed 
to be very  little need to  build  all  fourteen. For a  given input 
pattern X ,  the  output of each of these  cricuits was proportional 
to  the corresponding quantity x = W i  .X  + ti. This  output could 
have been either  a  current  or a voltage; we elected to  use voltage. 
Provision  was  made to determine which circuit had  the  largest 
output,  and  whether  this  output exceeded the  next  largest  output 
by a predetermined amount which we will call 7; the various 
possible outcomes were indicated  by  means of lights. 

A convenient  method of comparing the  outputs of the several 
circuits  is as follows. As indicated  in  Figure 8, a "ramp control'' 
is added to  the threshold  circuits which follow each of the mask 
circuits, there being but a single ramp  generator for the entire 
system.  Initially, the  input from the  ramp  generator  is sufficiently 
great  to cause  all  threshold  circuits to be off, no  matter how large 
the  output of the mask  circuits. Then, a t  some time  during  the 
character cycle, the  ramp  voltage decreases linearly.  When the 
first  threshold  circuit comes on, it sets its  latch  and a single shot 
fires, the width of the single shot pulse being proportional to  7. 
If any  other  threshold circuit comes on while the single shot is 011, 
i t  also  sets its  latch,  but those coming on after  the single shot goes 
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off do  not  set  their  latches.  At  the  end of the  ramp cycle, if just 
one latch  is on then  the  pattern is identified at the corresponding 
character, but if more than one is  on then  the  pattern is rejected. 

One of the problems which we considered in  the  construction 
of a physical  implementation of the categorizer  was to  take  into 
account  the  deviations of commercially available  components 
from their nominal  values. We made the  appropriate analyses  for 
both the case of a  voltage  output  and a current  output; because 
i t  is somewhat  more transparent, we  will describe the  current 
case, although  for  circuit  reasons we actually  built  mask circuits 
with  voltage  outputs. 

A  schematic  representation of a mask  circuit  with  current 
outputs  is shown in  Figure 9. The  output signal is to  be propor- 
tional to 

X = w1x1 + wsx2 + . . . + w,x, + t 
where xl, x2, . . . , x, are  binary variables  (assume the  values 
0 or 1) and  the numbers wl, wz, . . . , w, are  arbitrary  subject  to 
the condition that 

1% + Iw21 + . . .  + Iw,,I = 1. 
A  suitable  physical  analog is the  current summing  network of 
Figure 10. The  output  current I is given  by 

I = g1v1 + gzvz  + ~ 3 ~ 3  + . . . + gnvn + f *  

In  this expression, gl, g2, . . . , g, are conductances chosen to  be 
proportional,  respectively, to lwll, /w21, . . 3 , IW,~. If w, > 0, v i  takes 
on the  values 0 and V ,  respectively, as x ,  = 0 or x i  = 1 and 
if wi < 0, u ,  takes on the  values 0 and - V ,  respectively, as 
xi = 0 or xi = 1. The  current I flowing in  the  network will 
thus be proportional to  the  output signal X for any binary  pattern. 
However, the three  voltages  present,  namely V ,  0, and - V ,  are 
an inconvenience to  the circuit  designer, and therefore it is  worth- 
while to  make  the following alteration, which is familiar  in the 
field of Boolean threshold logic: the variables v l ,  vl, . . . , v, are 
replaced by v:, vi, . . . , v:, where 

v: = v i  if wi > 0 

v: = vi + V if wi < 0 

so that 

I = g1v: + 922); + . . . + gnu: + 1' 

where 

t' = t - v gi, 

the sum  ranging  over  those i for which wi < 0. Now if wi > 0, 
v: takes on the value 0 or V according to whether xi is 0 or 1, 
but if wi < 0, then vl assumes the value V or 0 as xi takes on the 
value 0 or 1.  Geometrically this  amounts  to moving the configura- 
tion  consisting of a cube V units on its edge and a  hyperplane 
passing  through i t  parallel to  itself until  the cube lies in  the 
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“first  2”-ant”,  i.e.,  until that cube coincides with  the cube whose 
edges are  the n vectors (V ,  0, 0, . . .  , 0), (0, V ,  0, . - .  , 0), , 
(0, 0, 0, . - , V ) .  Note  that  this same translation scheme could 
be used more  generally to  cause the  circuit to  operate between 
any  two voltages 8, and V,. Thus,  at  any  rate, we see that a 
current summing  network  can  be  constructed which is analogous 
to  any given  mask and which uses as  inputs only the  two voltages 
0 and 8. 

Let us suppose, then  that a mask  is t o  be  implemented using 
this  circuit.  The conductances gl, g2, . . . , gn are  to be  implemented 
using resistors which may  deviate  from  their nominal  values by 
as much  as a  certain fixed percentage, so that  the  actual con- 
ductances used will also  deviate  from  their  nominal  values  by 
about  the same  percentage (at least  for sufficiently precise 
resistors). Thus,  there  is a  certain  number p such that for  each 
i the value of the  ith conductance lies between (1 - p ) g i  and 
(1 + p)g i .  Similarly the voltages  nominally  equal to  V and 0 may 
lie between V - 6 and V + 6 and between - 6 and 6 respectively, 
where 6 is  a  constant.  The  number t can  be  determined  rather 
more  accurately than gl, g,, . . . , gn and  its  deviations  from 
nominal will be  ignored.  Suppose we let c be the  sum of the 
conductances: 

Now when a pattern is presented, some of the  input lines will 
receive a  nominal  voltage of V; the remainder will nominally 
receive 0 volts.  Let  the  sum of the conductances  associated  with 
the first of these  sets of lines be cl, and  the sum of the  other con- 
ductances  be cp. Then  the nominal  value of the  current will be 

the largest possible value will be 

and similarly the smallest possible value will be 

We find then  that 

and since c1 5 c we conclude that 

A similar  calculation may be  made  for Imin, and therefore we 
conclude that  the  actual  current will differ from the nominal by 
at most c V ( p  + q + pq)  where we have  set q = 6/V.  Evidently 
the maximum  current which can flow through  any  mask  circuit 
is cV. Also, 
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since p q  << 1. Thus,  the tolerance of the  output of the mask 
circuit  is 1OO(p + q)%. This shows explicitly the relation of the 
voltage and conductance  tolerances to  the tolerance of the mask 
circuits. The  deviations of the threshold  detector and  the  ramp 
generator  from  nominal  are  ignored,  for  they  can  be  controlled 
quite precisely. 

Now suppose that  there  are  to be k such  mask  circuits and 
for a binary pattern X, let 

f;(X) = wi .x + t ;  

where i = 1, 2, . , IC. If we let +i(X) be the (actual)  output of 
the  ith mask  circuit, since the nominal output of the  ith mask 
circuit is cVf;(X), we conclude that 

I4i(X> - CVfi(X)I I b + qkV. (11) 

Suppose that  it   has been decided to use a certain discrimination 
level e,  i.e., that we want  to use the decision rule: the  binary 
pattern X is  identified as having come from the  ith character 
provided 

fi(X) > fi(X) + e for all j # i. (12) 

This  inequality is equivalent to 

cVfi(X) > cVfi(X) + ECV for all j f i. 

In  view of ( l l ) ,  in  order to  insure (12) i t  is sufficient to  require 

+,(X) > +i(X) + € C V  + 2@ + q)cV, 
in  other words, to chose the  parameter as 

rl = cV(2p + 2q). (1 3) 

Thus if 7 is so chosen, we can  infer that if the  ith light  turns on, 
inequalities (12) hold. Of course, in any specific device the devia- 
tions of the  actual  values  from  the nominal  values may well be 
such that  the choice of 7 given  by (13) imposes rather more 
stringent  requirements  than those  given by (12). 

In  the  particular case of the model we built, we used 1% 
resistors, so that p = 0.01; V was  12  volts and 6 was 0.78 volts, 
so that q = 0.065. For example, if one wanted to  guarantee (for 
this  sample)  no  errors a t  all, then one might choose e = 0.12, and 
7 would be 3.24 c. Or one might choose e = 0 and 7 = 1.8 c, 
in which case one would be  sure  (again  for  this  sample) that 
there would be no  more than 100 substitution  errors per million 
characters. 

For a number of patterns we measured the  outputs of the 
mask  circuits  and compared them  with  the corresponding  (properly 
scaled) quantities  in  the  simulated categorizer;  agreement was 
found  to be  within 1%. This  agreement was well within the limits 
set  by  the pessimistic design  philosophy  upon  which the above 
analysis was based, and there is a  strong  suggestion that these 
criteria  are  too severe. Thus  it  appears  that  in  the case of our 
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model E is very nearly proportional to 7, i.e., that our model  uses 
the decision rule: the binary pattern X is identified as having come 
from the  ith character provided 

fi(x> > fi(x> + -& for all j z i. 

Since the  input to this categorizer was manual, it was not 
economically feasible to test it with a large sample of patterns, 
and therefore we have no extensive experimental curves corre- 
sponding to those shown in Figure 7. However, the response of 
this categorizer to each of 100 patterns presented to  it was identical 
to  the response of the simulated categorizer to  the same patterns. 
Thus we  feel able to conclude that  the simulated categorizer can 
be  designed to operate  substantially as predicted, and in  particular 
that  the curves shown in Figure 7 very nearly describe our cate- 
gorizer. The categorizer simulated, designed, and  tested in the 
present work represents the most straightforward application of 
linear decision functions to a pattern recognition task, inasmuch 
as  the categorizer inputs were simple measurements representing 
individual spots of ink  in the  input  pattern. One intention was 
to determine the capability of such a simple network when realistic 
devices and component tolerances are  taken  into  account.  A 
second purpose was to  test  the  utility of adaptive learning tech- 
niques in handling realistic patterns. 

More complex networks capable of improved performance 
immediately suggest themselves; indeed some of these have  already 
been simulated. Some of the modifications that may be made 
include: the  addition of a layer of Boolean  logic operating on the 
raw measurements (for instance to accomplish feature  detection), 
the use of additional class-pair pIanes to resolve particular class- 
pair conflicts remaining in the existing categorizer, and  the use of 
several layers of threshold circuits wherein the early layers  are 
trained according to codes indicating the presence of particular 
features. 
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