An algorithm for dynamic storage allocation of variable-sized pro-
grams and records is described. The algorithm is designed for real-time
systems in which core is assigned for data and programs in a com-
pletely unscheduled manner as, for example, in reservation systems.

The objective is to make efficient re-use of avarlable core with minimal
movement of data or programs after entry.

The procedure given depends on the frequency distributions of pro-
gram usage and of data block sizes. However, the distributions need
not be specified since the system will adapt to these distributions
and, equally important, to any changes in them that may occur.

The algorithm has yet to be simulated or tested within an operating
system.

Dynamic storage allocation for a
real-time system

nature of
the problem

by B. I. Witt

The environment for which the algorithm was devised is typified
by the real-time airline reservation problem. A large number of
agent-operated terminals are assumed, each connected to a central
computer. Requests from the terminals (for information, reserva-
tions, etc.) arrive at the computer at random intervals. Each
request must be processed by use of several programs retrieved
from a very large library of programs and with several references
to massive files containing flight information, billing accounts, ete.
Since neither all programs nor all data files can be contained
within core, most of the response time is spent in retrieving in-
formation from an external backup store. Retrieval time for one
request is overlapped with cpU processing of other requests.
Typically, there may be some 30 requests in various stages of
processing at any one time. Lifetime within the system of a typical
message is in the order of several seconds.

The need for dynamic storage allocation in this environment
arises from the random nature of the requests from the terminals.
Programs (especially if compiler generated) and data come in a
variety of sizes and must be entered in core only when they are
needed. In the process, older programs and data blocks are over-
written. After several minutes or hours of operation, unless care
is taken, all of core may be fragmented, with many free core
locations, but not enough contiguous ones for the current need.

However, data and programs do have certain “natural’”’ char-

IBM SYSTEMS JOURNAL * SEPTEMBER-DECEMBER 1963




acteristics which can be used to advantage by the algorithm.
Data block sizes will be determined by certain characteristics
of the file organization and of the storage device used. Thus,
block sizes can be expected to be one of several discrete sizes.
Also, for periods of time (measured in minutes) the number of
required blocks may be expected to be somewhat stable. Further-
more, retrieved data has a very short life of usefulness in core
(several seconds). Programs, on the other hand, will tend to
be of random sizes, but during relatively long periods of time
(several hours) their pattern of usage will be somewhat fixed.
That is, certain programs can be identified as being used fairly
frequently. Although these characteristics are not mandatory the
degree to which they are present decreases the cPU time necessary
to execute the algorithm.

The objective of the algorithm is to make efficient re-use of
available core without frequent moving of data or programs once
they have been entered.

General organization of memory

Memory organization is depicted in Figure 1. Low-order memory"
contains certain privileged programs and files which permanently
reside in core (e.g., the monitor, program directory, etc.). This
sector does not enter into the dynamic storage allocation scheme
and will not be mentioned again. The next area, called the P
sector, houses all other programs. Programs are called from ex-
ternal storage as they are needed and stored in contiguous loca-
tions in core starting from the fixed lower boundary of the P
sector. The high-order sector, called the D sector, houses all
data blocks. Data records (or requested work-storage blocks)
are also placed in core in contiguous locations as they are needed,
but starting from high-order memory. The free area between the
P and D sectors, which has variable boundaries, is called the ¥
sector. The general scheme will be to attempt to make efficient
re-use of space within P and D, and to encroach on F only when
needed. (If F becomes critically small, the system is considered
overloaded, and new requests from the terminal are either refused
or logged for later processing.)

Procedure under normal load

In addition to the basic area for data, each data block cut from
the F sector contains control information which links it to other
data blocks of corresponding size. Thus, if there are 15 distinct
block sizes, then 15 separate lists, or chains® of data blocks, would
be maintained. Each block points to the block of equal size next
lower in memory. Whenever a data block is released, with one
exception noted below, the block is flagged. Whenever a new data
block is needed, the chain of blocks of corresponding size is re-
ferred to, and the flagged block first encountered (i.e., highest in

DYNAMIC STORAGE ALLOCATION

Figure 1

D

management
of the
D sector




Figure 2

__I\]__

Dy

D, (FREE)

D, (FREE)

232

memory) is selected for re-use. Only if no flagged blocks exist is
a new block cut from the F sector. With this rule, freed sectors
in upper memory tend to be quickly re-used, those in lower
memory, less so. The exception mentioned above is that: whenever
a block is freed which touches the F sector (as then defined),
the block is incorporated into the F sector instead of being flagged,
and furthermore, all contiguous flagged blocks immediately above
such a block are incorporated in the F sector.

Thus, in Figure 2, D, and D; remain free because the most
recent assignments for blocks of corresponding sizes were made
from blocks higher in memory within D. If D, now becomes free,
D,, D,, and D; are all incorporated in the F sector.

Soon thereafter, some short-term stability of data block assign-
ments may be expected. The distribution of data block sizes
actually created will correspond to the distribution actually
needed. Data blocks of a certain size will be freed at approxi-
mately the same rate as needed. Many short-term aberrations in
the distribution will be handled with no additional overhead
since the D—F border may recede in the direction of D. It is this
expected stability that makes the algorithm economical.

However, because of changes in the external environment
(for example, the end of a work shift), the distribution may undergo
severe changes. Initially the system reacts by cutting into the
F sector. That is, more blocks of the new size now needed are
created. However, many blocks of a size no longer “popular”
may be released (i.e., flagged in their chains) and, in a sense, be
trapped behind the lines. That is, since the new-type data blocks
are in active use near the F border, they prevent the old-type
blocks from being assimilated into F. Thus, there may be large
unused (and unusable) patches of core within the D sector.

Clearly, if the F sector is small, which may indicate the
system is under a heavy load, this is a matter of concern. How-
ever, a period during which the system is under a heavy load
may be the worst time to take additional cpu time to correct
the situation—since corrective action (called trimming) would
slow down response-time and contribute to an even heavier
load. In order to minimize corrective action taken during a heavy
load, the criterion adopted for trimming is made dependent on
the relative sizes of the unused patches and the F sector. Speci-
fically, the criterion is to trim the D sector whenever the total
area of the free blocks contained therein is greater than the area
of the F sector. Thus it is sufficient to test for a trim whenever
the F sector is reduced in size by an encroachment from either
P or D; and whenever an interior data block is released. Note
then that trimming procedure is preventive rather than corrective.

Next, the question arises as to the specific form of the trimming
action. In other circumstances it might have been to move all
used blocks to contiguous positions in upper memory, with all
the resulting problems for the programs operating on the data.
For this application, however, with each individual data block

B, I. WITT




having a relatively short life, it seems best to allow all old data
blocks to “die on the vine,” a procedure described next.

The procedure for trimming the D sector is as follows:

Step 1. Set a pointer A (see Figure 3) marking the higher bound-
ary of the highest occupied data block in the D sector. Call the
area above A (which may be null) the F’ sector. Remove all
blocks in F’ from the D sector chains (D chains, for short).

Step 2. Move the pointer down and continue to modify the D
chains whenever the highest data block within the D sector be-
comes free.

Step 3. When a new data block of any size is needed, proceed
as follows. If the data block can be contained in F’, place it in the
highest portion of F’. Call the assigned area D’. (See Figure 4.)
Maintain a new set of chains for D', following precisely the same
rules for D’ and F’ as was previously followed for D and F. For
example, data blocks of D’ which border F’ are released to F’
when they are freed. Otherwise, they are flagged in a set of chains,
one for each unique block size (D’ chains). As subsequent require-
ments for data blocks arise, the rule described herein (Step 3)
is modified to read: Search the appropriate D’ chain, and assign
the first available block (that is, the upper-most block). If there
are no empty (flagged) blocks on the chain, but if the new block
can be contained in F’, place it in the highest portion of F’ and
update the appropriate D’ chain.

Step 4. If the assignment cannot be made by the procedure in
Step 3 (i.e., if there are no empty blocks in the appropriate D’
chain and if F' is not large enough), then refer to the original D

chains. However, in order to foster the movement downward, the
chains are now referred to in reverse order. That is, the assignment
is made from the lowest available block in D, rather than the
highest. (Hence, a two-way linkage is required in the chains.)

Step 6. If the appropriate D chain indicates that there are no
available blocks in the D sector, then a new block is cut out of
the F sector and added to the D chain, just as in the normal
procedure.

The presumed effect of this procedure is that the A pointer
will continue to move downward. The further it moves, the larger
D' and F’ become. The larger they become, the less often reference
will need to be made to either the D or the F sector, and this in
turn will facilitate the downward movement of A. In short, it is
expected that this procedure will soon result in the complete
elimination of the D sector. Blocks on its lower border will be
absorbed by F, blocks on its upper border will be absorbed by F’.
When the last block of D is released, that is, when the F and F’
sectors touch, all special controls are removed and the system
proceeds to handle the F' and D’ sectors as if they were normal
F and D sectors. Since only current blocks are contained in D,

DYNAMIC STORAGE ALLOCATION

trimming
the D sector




management of

the P sector

234

the desired redistribution has taken place with no movement of
data blocks and no interruption of service.

The general procedure for programs is the same as for data:
programs are initially placed in contiguous positions (starting
from lower memory), and by some criteria may eventually be
declared to be releasable. To satisfy new requirements, releasable
programs are examined from lower to upper core. The first releas-
able program encountered which is equal or larger in size than the
new program is over-written. Only if no such releasable program
is found is a new block of the required size cut out of the F sector.
Releasable programs which border the F sector are incorporated
into F. And finally, when the combined area of all releasable
programs and the scraps (i.e., the unused portions of reassigned
program blocks) exceeds the area of the F sector, the P sector is
trimmed. (Trimming the P sector means actually moving or
reloading all non-releasable programs into contiguous locations
in lower core, while maintaining their current sequence.)

Despite the apparent similarity of the procedure to be used
with programs and data, there are some fundamental differences,
all revolving about the criteria used to declare programs releasable.

Programs, unlike data, never become completely useless. It
is not known when they will be needed next. If they are already
in core when next needed, the lifetime of a message in the system
will be shorter. But since it is assumed that there is not enough
room to store all programs, some compromise is in order. The
compromise in general is this: programs which are in use will
always be allowed to remain in core.’ In addition, if the system is
stable, certain unused programs will be allowed to remain in core.
But as the system load increases, or if a phase change is entered,
we will place an increasingly severe age criterion on the unused
programs in order to permit them to remain in core. Programs
failing to meet the criterion will be declared releasable.

The method chosen to detect increases in system load or a
change in the pattern of requests being presented (i.e., a phase
change) is simply to keep track of the size of the F sector. When
F contracts by 109, an inspection is made for programs which
have not been used for a certain length of time. As a result, if the
system is undergoing rapid change, inspections will follow one
another at a rapid rate; if the system is undergoing a very slow
change, inspections will be infrequent. Furthermore, since the
length of inactivity allowed a program is based on how fast the
system is undergoing change, the inspections themselves can be
used—rather than, say, a clock—to determine if a program has
been unused for a sufficiently long time. Specifically, a program
is declared releasable if it remains unused for two successive
inspections.

Before proceeding with the step-by-step procedure of P sector
inspections and trims, one final general note is in order regarding
P sector trims. Because the sequence of programs is maintained
during the relocating or reloading or programs during a trim, the

B. I. WITT




programs tend to arrange themselves after several trims in a
sequence approximating their relative activity (i.e., their proba-
bility of use). A program that remains non-releasable will never
be moved upward, always downward. Hence, after several trims,
if the probability-of-use distribution of the programs remains
approximately the same, the P sector stabilizes. All programs with
a short useful life-time appear near the F sector, where they are
either absorbed by F or where their area is used by other programs
of equally short life. In short, the P sector will have automatically
organized itself into something resembling two distinct areas,
one containing in compact form the ‘“permanent’” programs, the
other containing in a somewhat loose-knit manner the “temporary”’
programs. However, the algorithm permits the continual change
of the content in each area as change is dictated by external
events. Furthermore, it may be expected that although many
trims will be needed at the beginning of every phase, fewer and
fewer will be required later; and with each progressive trim,
fewer and fewer programs need to be moved, for the most active
programs are already compacted.*

The following procedure is used for P sector inspection and
trimming:
Step 1. A base value F, is established against which changes in
the size of the F sector are measured. F, is always the size of the
entire F sector as recorded at certain specified points of time.
Initially it is all of available core since P and D are presumably
empty. Redefinitions of F; occur at the following times:

e At the completion of any inspection (which should not be
confused with the 109, test which leads to an inspection).
At the completion of a P sector trim, which necessarily results
in a larger F sector than the one determined at the completion
of the pre-requisite inspection.

At the release of a data block bordering the F sector, provided
that the size of the expanded F sector exceeds the current
value of F,.

Note that between inspections F, can only be made larger, and
hence the system is permitted to respond more quickly to a re-
sumption of activities after a lull. During D sector trims, the
size of the F sector is taken to be the sum of the ' and F’ sectors.

Step 2. Whenever the F sector is impinged upon by either the
P or D sectors, the new area of F is compared against the current
value of F,. If it is 109 less than F,, a new inspection is made
as described in Step 3.

Step 3. It is assumed that either all program blocks currently
assigned, or all corresponding entries in the program directory,
are chained in descending core sequence. Thus, the first link in
the chain is the program bordering the F sector. At each inspection,
this chain is examined. Every unused program not already flagged,
is flagged. Every unused program which has a flag is declared

DYNAMIC STORAGE ALLOCATION

inspecting
and trimming
the P sector




measuring
the load

procedure
under stress

releasable, and with one exception, will be placed in a new chain,
with link addresses pointing to the previous program encountered
(i.e., a chain of releasable programs is formed which is in ascending
core sequence). The one exception is that releasable programs
which border the F sector are not placed in the chain, but instead
are incorporated into the F' sector. A cumulative sum is made of
all releasable programs so defined. In addition, the new area of
the F sector (i.e., Fy) is calculated.

Step 4. The sum of all releasable areas and all scraps is compared
against the area of the F sector. If the former is less than the latter,
the chain of releasable programs becomes the tool for locating the
lowest releasable space large enough to accommodate a new
program. If the combination of releasable and scrap area is greater
than the F sector area, the P sector is trimmed, and the chain of
releasable programs is initialized (i.e., made empty).

Procedure under heavy load

It was said earlier that trimming was performed as a preventive
action in order to avoid overloading the machine when it was
already under a heavy load. It follows that trimming and related
procedures should actually be suppressed or altered during periods
when the machine is under heavy load.

First, some simple but unambiguous means is needed for
detecting that the system is entering a period of heavy load. A
suitable measure appears to be the total amount of core occupied
by in-use programs and data. An equivalent and more convenient
measure is the total free core in the system, i.e., the sum of the
areas of the F sector, the unused data blocks, releasable programs
and program scraps. These areas are, of course, the very same
areas used for trimming tests. The evaluation of the load is merely
a comparison of the amount of free core (as defined above) with
some pre-defined number s to serve as a “‘stress’ criterion. If the
amount of free core is less than s, we shall say that the system is
in a state of siress, and by implication, in danger of overloading.
The actual value of s will depend on the problem application and,
of course, the total size of core. However, it seems easy enough
to keep track of the free core over a period of time, and to even-
tually establish s as an amount of free core which is available,
say, 859, of the time. A lower limit for s should represent enough
core to satisfy the clean-up operations discussed later. The initial
value for s may be guessed. To prevent rapid oscillation between
the stress and normal states, we might demand that to return
to normal, the free core available must not only be greater than s,
but significantly greater. But for present purposes this damping
scheme will be ignored.

Whenever a new data or program block assignment is made,
whether it be a re-use of an older block or an encroachment on
the F gector, the new free core amount is compared against s.
If it is less than s, the following actions are taken:

B. I. WITT




Step 1. A special inspection of the P sector is made, without
regard to the 109, change normally required of the F sector.
Now all unused programs are added to a chain of ‘releasables,”
without regard to how long they have been unused (i.e., without
regard to the special flags). The area of all releasable programs
and all scraps are summed, as before.

Step 2. As before, if the calculated area is greater than the area
of the F sector, a trim is made; otherwise the new chain of releasa-
bles is used for future program assignments.

Step 3. As soon as a program becomes unused, it is added to the
chain of releasables. There is no age requirement in periods of
stress.

Step 4. No further inspections or trims are made of P or D until
the system leaves the state of stress.

Note that during a normal period (i.e., non-stress) the D
sector is tested for trim whenever anything happens which may
affect its trim status. Hence it enters stress already in trim.°
After stress is detected a special test is made of the P sector to
insure that it also is in trim. Subsequently, of course, the system
may become further overloaded. However, if all goes well, the
system eventually returns to a normal mode of operation. The
fourth condition above is nothing more than an effort to reduce
the housekeeping overload.

No storage allocation algorithm can guarantee that demands
for core can always be satisfied and the question arises as to ap-
propriate action if such demands cannot be satisfied. (It is not
enough to say that the installation should have had a larger
memory.) Although the answer to this question is beyond the
intended scope of this paper, we have some brief comments.

The first defense against inundation is to stop the message
flow. As soon as the system enters stress, the polling of communica-
tions lines for new messages can be discontinued, or all new mes-
sages can be logged on backup store. Thus, all core requests repre-
sent requirements for the processing of messages already in the
system. If the stress criterion was properly chosen, there should
be sufficient free core remaining in the system to meet such
demands.

If this proves not to be the case, other procedures which may
be considered include:

¢ Granting core to only high priority messages, even if it means
that cpu time will not be efficiently used.
Utilizing for high priority message processing the space oc-
cupied by programs supporting only low priority tasks—even
though those programs may be in use.
Writing out on backup store all low priority messages and
data blocks, and using that space for high priority message
processing.

DYNAMIC STORAGE ALLOCATION

overload




Summary

The storage allocation algorithm considered brings programs and
data into core as they are needed, directing the former to con-
tiguous positions in lower core and the latter into contiguous
positions in upper core.

All data blocks so defined are placed into separate chains
according to their size. When a new requirement is placed for a
data block of a certain size, the corresponding data chain is
searched. If a previously assigned block on the chain has been
freed, that block is assigned for the current requirement. If no
previously-assigned blocks of the required size are available, a
new block is generated, contiguous to the data block lowest in
core. As long as the distribution of data block sizes remains
relatively stable, the system operates with little overhead. As
the distribution of data block sizes changes, the system adapts
itself to the change. No moving of data blocks is anticipated.

Programs are generally allowed to remain in core, even though
they are no longer in active use. However, when the system re-
quires it, programs are released, according to the amount of
time in which they have been inactive. Programs are over-written
only by new programs of equal or smaller size. Occasionally,
programs in use must be moved, but with each such move programs
which are heavily used tend to compact themselves and, hence,
tend to resist additional moves.

The algorithm uses the inherent frequency distribution of
programs and data block sizes to reduce overhead costs without
requiring any prior knowledge of the distributions.

Since the algorithm has not been tested within an operational
system, its value is subject to some speculation. Presumably, its
behavior within a system could be simulated with modest effort.

However, the accuracy of results obtained would depend on the
accuracy of the frequency distributions of program usage and
data block sizes (together with pattern of change in these distri-
butions) assumed to describe the system considered.

Since information of this type tends to be incomplete, simula-
tion of the algorithm would probably tend to give indicative
rather than definitive results.

ACKNOWLEDGEMENT

The author acknowledges the valuable assistance of his colleagues
—T. Kallner, Lucille C. Lee and Janette T. Wood.

FOOTNOTES

1. Throughout this paper, memory with smaller core addresses is referred
to as low-order or lower memory; memory with larger core addresses is
referred to as high-order or upper memory.

. Chain is used in the conventional sense with the following implications:
¢ The actual location of each of the data blocks is immaterial.
o There exists for each chain a set of control words in a fixed location which
contains the location of, say, the first word of one of the blocks. Hence,
the location of the usable portion of the block may be inferred.

B. I. WITT




e The first word of the block referred to containg the location of the first
word of another block. The first word of that block refers to the first
word of yet another block, and so on. Each of the blocks is thus a link
in the chain.

. The term in wuse need not be defined rigorously for present purposes.
Suffice it to say that many programs may be in use simultaneously in
this real-time system. Also, any one program may be simultaneously in
use in servicing the requests from a number of different terminals. Further-
more, a program operating upon a particular set of data may call a sub-
program with the expectation that return will be made to the program.
Under certain circumstances such a program might be declared in use,
and other circumstances not in use.

. Although re-locating or re-loading a program which is still in use is treated
in a cavalier manner in the body of the paper, the problem is by no means
trivial. Two alternatives present themselves. The first is that the program-
mer specifies particular relocation points within his program at which the
program can be reloaded. This implies that he makes no modification of a
program across a re-location point, that he stores no absolute addresses
for use in the program segment following the relocation point, etc. With
this alternative, program re-location takes place only when all programs
have reached relocation points and have relinquished control to the monitor.
Programs so written have, by definition, been called disciplined programs.
The second alternative requires that programs be so written that they
are re-locatable at any point. The implication is that the monitor must
be informed of the way in which index registers are being used (and hence
be able to modify them if the program is re-located), the program cannot
store any data relative to its present location except perhaps through the
monitor, etc. Programs so written have, by definition, been called well-
disciplined.

. Actually, as described, D is in trim only if the block assignment which led
to stress was from an empty block previously formed. If it was a new
encroachment on F, D may be knocked out of trim at the same time that
the system is put in stress. Furthermore, that same encroachment may be
enough to satisfy the 109, comparison which leads to P sector inspections.
Here then is a problem of priorities. Any encroachment on F as described
in the paper calls for three things: a test for D sector trim, a test for a
P sector inspection, and a test for stress. But the sequence of the tests will
affect the resultant structure of core. For example, if D were tested and
trimmed, the larger resulting size of F might indicate that P need not be
inspected. If, however, P had been looked at first, it might have resulted
in P being trimmed and, with a larger ¥, no need to trim D. Similarly if
P were trimmed before the stress test, newly declared releasable programs
might leave the system in a normal state, whereas if the sequence were
reversed, the system might have been declared in stress. There is a set of
trade-offs here that is probably not too significant but which will neverthe-
less need to be examined more carefully.

BIBLIOGRAPHY

o “Papers presented at the ACM Storage Allocation Symposium, June
23-24, 1963”’, Communications of the ACM, 4, no. 10, 416-464, October 1961.
e John W. Weil, “A Heuristic for Page Turning in a Multiprogrammed
Computer,”’ Communications of the ACM, 5, no.9,480-481, September 1962.

DYNAMIC STORAGE ALLOCATION 239




