
An algorithm for dynamic storage allocation of variable-sized pro- 
grams  and records i s  described. The  algorithm i s  designed for real-time 
systems in which core i s  assigned for data  and programs in a  com- 
pletely  unscheduled manner  as, for example, in reservation systems. 

The objective i s  to make  eficient re-use of available core with  minimal 
movement of data or programs  after entry. 

The procedure given depends  on the frequency distributions  of pro- 
gram usage and  of  data block sizes.  However, the distributions need 
not be specijied since the system  will  adapt to these distributions 
and,  equally  important, to any changes in them that may occur. 

The  algorithm  has yet to be simulated or tested within  an operating 
system. 

Dynamic  storage  allocation  for a 
real-time  system 

by B. I. Witt 

nature of The environment for which the  algorithm was devised is typified 
the problem by  the real-time airline reservation problem. A large number of 

agent-operated  terminals are assumed, each connected to a central 
computer.  Requests from the terminals (for information, reserva- 
tions,  etc.)  arrive at the  computer at random  intervals.  Each 
request  must be processed by use of several  programs  retrieved 
from a  very large library of programs and with several references 
to massive files containing flight information, billing accounts,  etc. 
Since neither  all programs nor all data files can be contained 
within core, most of the response time is spent  in  retrieving in- 
formation from an external  backup  store.  Retrieval  time  for one 
request is overlapped with CPU processing of other  requests. 
Typically,  there  may be some 30 requests  in  various  stages of 
processing at  any one time. Lifetime within the system of a typical 
message is in  the order of several seconds. 

The need for  dynamic  storage  allocation  in  this  environment 
arises from the random nature of the requests from the terminals. 
Programs (especially if compiler generated) and  data come in a 
variety of sizes and  must be entered in core only when they  are 
needed. In  the process, older programs and  data blocks are over- 
written.  After several minutes or hours of operation, unless care 
is taken,  all of core may  be  fragmented,  with  many  free core 
locations, but  not enough contiguous ones for the  current need. 

However, data  and programs do have  certain  “natural”  char- 
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acteristics which can be used to advantage  by  the  algorithm. 
Data block sizes  will be determined  by  certain  characteristics 
of the file organization and of the storage device used. Thus, 
block  sizes can be expected to be one of several discrete sizes. 
Also, for periods of time (measured in  minutes) the  number of 
required blocks may be expected to be somewhat stable. Further- 
more, retrieved data  has a very  short life of usefulness in core 
(several seconds). Programs, on the other  hand, will tend  to 
be of random sizes, but during  relatively long periods of time 
(several hours)  their pattern of usage will be somewhat fixed. 
That is, certain  programs  can  be identified as being used fairly 
frequently. Although these  characteristics are  not  mandatory  the 
degree to which they  are present decreases the CPU time necessary 
to execute the algorithm. 

The objective of the algorithm is to make efficient  re-use of 
available core without  frequent moving of data or programs once 
they  have been entered. 

General  organization of memory 

Memory organization is depicted in Figure 1. Low-order memory' 
contains  certain privileged programs and files which permanently 
reside in core (e.g., the monitor,  program  directory,  etc.).  This 
sector does not  enter  into  the dynamic  storage  allocation scheme 
and will not be mentioned  again. The next  area, called the P 
sector, houses all other  programs.  Programs are called from ex- 
ternal  storage  as they  are needed and stored in contiguous loca- 
tions  in core starting from the fixed  lower boundary of the P 
sector. The high-order sector, called the D sector, houses all 
data blocks. Data records (or requested work-storage blocks) 
are also placed in core in contiguous locations as  they  are needed, 
but  starting from high-order memory. The free area between the 
P and D sectors, which has  variable boundaries, is called the F 
sector. The general scheme will be to  attempt  to make  efficient 
re-use of space within P and D, and  to encroach on F only when 
needed. (If F becomes critically small, the system is considered 
overloaded, and new requests from the terminal are  either refused 
or logged for  later processing.) 

Procedure  under  normal  load 

In addition to the basic area  for  data, each data block cut from 
the F sector  contains  control  information which links it to other 
data blocks of corresponding size. Thus, if there  are 15 distinct 
block sizes, then 15 separate  lists, or chains' of data blocks, would 
be  maintained.  Each block points to  the block of equal size next 
lower in memory. Whenever a data block is released, with one 
exception noted below, the block is flagged. Whenever a new data 
block is needed, the chain of blocks of corresponding size is re- 
ferred  to, and  the flagged  block first encountered (i.e., highest  in 
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Figure 2 memory) is selected for re-use. Only if no flagged blocks exist is 
a new  block cut from the F sector. With  this rule, freed sectors 
in upper memory tend to be quickly re-used, those  in lower 

a block  is freed which touches  the F sector  (as then defined), 
the block  is incorporated into  the F sector  instead of being  flagged, 

(FREE) and furthermore,  all contiguous flagged blocks immediately  above 
such a block are incorporated in the F sector. 

Thus,  in Figure 2,  D, and D, remain free because the most 
recent assignments for blocks of corresponding sizes  were made 
from blocks higher in memory within D. If D, now becomes free, 
D,, D,, and D, are  all  incorporated  in the F sector. 

Soon thereafter, some short-term  stability of data block assign- 
ments  may be expected. The distribution of data block sizes 
actually  created will correspond to  the distribution  actually 
needed. Data blocks of a certain size  will be freed at approxi- 
mately the same rate as needed. Many short-term  aberrations  in 

P the  distribution will be handled  with no additional overhead 
since the D-F border  may recede in  the direction of D. It is this 
expected stability that makes the algorithm economical. 

However, because of changes in  the external  environment 
(for example, the end of a work shift), the distribution  may undergo 
severe changes. Initially  the system  reacts by  cutting  into  the 
F sector. That is, more blocks of the new size  now needed are 
created. However, many blocks of a size no longer “popular” 
may be released (i.e., flagged in  their chains) and,  in a sense, be 
trapped behind the lines. That is, since the new-type data blocks 
are  in active use near the F border, they  prevent  the old-type 
blocks from being assimilated into F .  Thus,  there  may be large 
unused (and  unusable)  patches of core within  the D sector. 

Clearly, if the F sector is small, which may  indicate the 
system is under a heavy load, this is a matter of concern. How- 
ever, a period during which the system is under  a  heavy load 
may  be  the worst  time to take  additional CPU time to correct 
the situation-since corrective action (called trimming) would 
slow down response-time and  contribute to  an even heavier 
load. In order to minimize corrective action taken during a heavy 
load, the criterion adopted  for  trimming is made  dependent on 
the relative sizes of the unused patches and  the F sector. Speci- 
fically, the criterion is to  trim  the D sector whenever the  total 
area of the  free blocks contained  therein is greater than  the  area 
of the F sector. Thus  it is  sufficient to  test for  a  trim whenever 
the F sector is reduced in size by  an encroachment  from  either 
P or D; and whenever an interior data block is released. Note 
then that trimming procedure is preventive rather  than corrective. 

Next, the question arises as to  the specific form of the trimming 
action. In  other circumstances it might  have been to  move all 
used blocks to contiguous positions in  upper memory, with  all 
the resulting problems for the programs operating on the  data. 
For this  application, however, with each individual data block 

0 4  memory, less so. The exception mentioned  above is that: whenever 
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having a relatively  short life, it  seems best to allow all old data 
blocks to  “die on the vine,”  a procedure described next. 

The procedure for  trimming the D sector is as follows: 

Step  1. Set a pointer A (see Figure 3) marking  the higher bound- 
ary of the highest occupied data block in  the D sector. Call the 
area  above A (which may be null) the F’ sector. Remove all 
blocks in F’ from the D sector chains (D chains, for  short). 

S t e p  2. Move the  pointer down and  continue to modify the D 
chains whenever the highest data block within the D sector be- 
comes free. 

S t e p  3. When  a new data block of any size is needed, proceed 
as follows. If the  data block can be contained  in F‘, place it in  the 
highest portion of F’. Call the assigned area Dl. (See Figure 4.) 
Maintain a new set of chains  for D‘, following precisely the same 
rules for D’ and F’ as was previously followed for D and F .  For 
example, data blocks of D‘ which border F‘ are released to  F‘ 
when they  are freed. Otherwise, they  are flagged in  a  set of chains, 
one for each unique block  size (D‘ chains). As subsequent require- 
ments  for data blocks arise, the rule described herein (Step 3) 
is modified to read: Search the  appropriate D‘ chain, and assign 
the first  available block (that is, the upper-most block). If there 
are  no  empty (flagged) blocks on the chain, but if the new block 
can be contained in F‘, place it in  the highest portion of P‘ and 
update the  appropriate D‘ chain. 

S t e p  4. If the assignment  cannot be made  by the procedure in 
Step 3 (i.e., if there  are no empty blocks in  the  appropriate D’ 
chain and if F‘ is not large enough), then refer to the original D 
chains. However, in order t o  foster the movement downward, the 
chains are now referred to in reverse order. That is, the assignment 
is made from the lowest available block in D, rather  than  the 
highest. (Hence, a two-way linkage is required in  the chains.) 
Step  5.  If the  appropriate D chain  indicates that there  are  no 
available blocks in  the D sector,  then a new block is cut  out of 
the F sector  and  added to the D chain, just  as in the normal 
procedure. 

The presumed effect of this procedure is that  the A pointer 
will continue to move downward. The  further it moves, the larger 
D’ and F’ become. The larger they become, the less often reference 
will need to be made to either  the D or the F sector, and  this  in 
turn will facilitate the downward movement of A.  In  short, it is 
expected that this procedure will soon result  in the complete 
elimination of the D sector. Blocks on its lower border will be 
absorbed  by F ,  blocks on its upper  border will be absorbed  by F’. 
When the  last block of D is released, that is, when the F and F‘ 
sectors touch, all special controls  are removed and  the system 
proceeds to handle the F‘ and D‘ sectors as if they were normal 
F and D sectors. Since only current blocks are contained in D’, 
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the desired redistribution  has  taken place with no movement of 
data blocks and no interruption of service. 

The general procedure for programs is the same as for  data: 
management of programs are  initially placed in contiguous positions (starting 
the P sector from lower memory), and  by some criteria  may  eventually be 

declared to be releasable. To satisfy new requirements, releasable 
programs are examined from lower to upper core. The first releas- 
able program encountered which is equal or larger in size than  the 
new program is over-written. Only if no such releasable program 
is found is a new  block of the required size cut  out of the F sector. 
Releasable programs which border the F sector are incorporated 
into F.  And finally, when the combined area of all releasable 
programs and  the scraps (i.e., the unused portions of reassigned 
program blocks)  exceeds the  area of the F sector, the P sector is 
trimmed. (Trimming the P sector means actually moving or 
reloading all non-releasable programs into contiguous locations 
in lower core, while maintaining  their  current sequence.) 

Despite the  apparent  similarity of the procedure to be  used 
with programs and  data, there  are some fundamental differences, 
all revolving about  the  criteria used to declare programs releasable. 

Programs, unlike data, never become completely useless. It 
is not known when they will  be needed next. If they  are  already 
in core  when next needed, the lifetime of a message in  the system 
will  be shorter. But since i t  is assumed that there is not enough 
room t o  store  all programs, some compromise is in order. The 
compromise in general is this: programs which are  in use  will 
always be  allowed to remain in core.3 In addition, if the system is 
stable,  certain unused programs will  be  allowed to remain in core. 
But  as  the system load increases, or if a phase change is entered, 
we  will place an increasingly severe age criterion on the unused 
programs in order to permit  them to remain in core. Programs 
failing to meet the criterion will be declared releasable. 

The method chosen to detect increases in system load or a 
change in the  pattern of requests being presented (i.e., a phase 
change) is simply to keep track of the size of the F sector. When 
F contracts  by lo%, an inspection is made  for  programs which 
have not been  used for a certain length of time. As a  result, if the 
system is undergoing rapid change, inspections will  follow  one 
another at a rapid  rate; if the system is undergoing a very slow 
change, inspections will  be infrequent.  Furthermore, since the 
length of inactivity allowed a program is based on  how fast  the 
system is undergoing change, the inspections themselves can be 
used-rather than, say, a clock-to determine if a program has 
been unused for a sufficiently  long time. Specifically, a program 
is declared releasable if it remains unused for two successive 
inspections. 

Before proceeding with the step-by-step procedure of P sector 
inspections and  trims, one final general note is in order regarding 
P sector trims. Because the sequence of programs is maintained 
during the relocating or reloading or programs during a trim, the 
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programs tend to arrange themselves after several trims  in a 
sequence approximating  their  relative  activity (i.e., their proba- 
bility of use). A program that remains non-releasable will never 
be moved upward, always downward. Hence, after several trims, 
if the probability-of-use distribution of the programs remains 
approximately the same, the P sector stabilizes. All programs with 
a short useful life-time appear  near the F sector, where they  are 
either absorbed by F or where their  area is used by  other programs 
of equally short life. In short,  the P sector will have  automatically 
organized itself into something resembling two  distinct  areas, 
one containing in compact form the “permanent” programs, the 
other containing in a somewhat loose-knit manner the “temporary”’ 
programs. However, the algorithm permits the continual change 
of the  content  in each area  as change is dictated  by  external 
events.  Furthermore, it may be expected that although  many 
trims will  be needed at the beginning of every phase, fewer and 
fewer  will be required later;  and with each progressive trim, 
fewer and fewer programs need to be moved, for the most active 
programs are  already c~mpac ted .~  

The following procedure is used for P sector inspection and inspecting 
trimming: and trimming 

Step I .  A base value Fo is established against which changes in 
the size of the F sector are measured. F ,  is always the size of the 
entire F sector as recorded a t  certain specified points of time. 
Initially it is all of available core since P and D are presumably 
empty. Redefinitions of Fo occur at  the following times: 

At  the completion of any inspection (which should not be 
confused with the 10% test which leads to  an inspection). 
At  the completion of a P sector trim, which necessarily results 
in  a larger F sector than  the one determined at the completion 
of the pre-requisite inspection. 
At  the release of a data block bordering the F sector, provided 
that  the size of the expanded F sector exceeds the  current 
value of F,. 

the P sector 

Note that between inspections F ,  can only be made larger, and 
hence the system is permitted to respond more quickly to a re- 
sumption of activities  after a lull. During D sector trims, the 
size of the F sector is taken to be the sum of the F and F‘ sectors. 

Step 2. Whenever the F sector is impinged upon by  either  the 
P or D sectors, the new area of F is compared against the  current 
value of F,. If it is 10% less than F,, a new inspection is made 
as described in Step 3. 

Step 3. It is assumed that either  all program blocks currently 
assigned, or all corresponding entries  in the program directory, 
are chained in descending core sequence. Thus,  the  first link in 
the chain is the program bordering the F sector. At each inspection, 
this  chain is examined. Every unused program not  already flagged, 
is flagged. Every unused program which has a flag is declared 
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releasable, and with one exception, will  be placed in a new chain, 
with link addresses pointing to  the previous program  encountered 
(i.e., a  chain of releasable programs is formed which is in ascending 
core sequence). The one exception is that releasable programs 
which border the F sector are  not placed in  the chain, but instead 
are incorporated into  the F sector. A cumulative sum is made of 
all releasable programs so defined. In addition,  the new area of 
the F sector (i.e., F,) is calculated. 

Step 4. The sum of all releasable areas  and  all scraps is compared 
against the  area of the F sector. If the  former is less than  the  latter, 
the chain of releasable programs becomes the tool  for locating the 
lowest releasable space large enough to accommodate a new 
program. If the combination of releasable and scrap  area is greater 
than  the F sector area,  the P sector is trimmed, and  the chain of 
releasable programs is initialized (;.e., made empty). 

Procedure  under heavy load 
It was said eariier that trimming was performed as a  preventive 
action in order to  avoid overloading the machine when it was 
already  under a heavy  load. It follows that trimming and related 
procedures should actually be suppressed or altered  during periods 
when the machine is under  heavy load. 

First, some simple but unambiguous means is needed for 
measuring detecting that  the system is entering a period of heavy load. A 
the load suitable  measure  appears to be the  total  amount of core occupied 

by in-use programs and  data. An equivalent and more convenient’ 
measure is the  total free core in  the system, i.e., the sum of the 
areas of the F sector, the unused data blocks, releasable programs 
and program  scraps. These areas  are, of course, the  very same 
areas used for trimming  tests. The evaluation of the load is merely 
a comparison of the  amount of free core (as defined above) with 
some pre-defined number s to serve as  a “stress” criterion. If the 
amount of free core is less than s, we shall  say that  the system is 
in a state of stress, and  by implication, in danger of overloading. 
The  actual value of s will depend on the problem application and, 
of course, the  total size of core. However, it seems easy enough 
to keep track of the  free core over a period of time, and  to even- 
tually  establish s as  an amount of free core which is available, 
say, 85% of the time. A lower limit  for s should represent enough 
core to satisfy the clean-up operations discussed later.  The initial 
value for s may be guessed. To prevent  rapid oscillation between 
the stress and normal  states, we might  demand that  to return 
to  normal, the free core available must  not only be greater  than s, 
but significantly greater. But for  present purposes this  damping 
scheme will be ignored. 

Whenever a new data or program block assignment is made, 
procedure whether it be a re-use of an older block or an encroachment on 
under stress the F Eector, the new free core amount is compared against s. 

If it is  less than s, the following actions are  taken: 
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Step  1. A special inspection of the P sector is made, without 
regard to  the 10% change normally required of the F sector. 
Now all unused programs are  added to  a  chain of “releasables,” 
without  regard to how  long they  have been unused (i.e., without 
regard to  the special flags). The  area of all releasable programs 
and all scraps  are  summed,  as before. 

Step  2. As before, if the calculated area is greater than  the  area 
of the F sector, a  trim is made; otherwise the new chain of releasa- 
bles is used for future program assignments. 

Step  3 .  As soon as a program becomes unused, it is added to the 
chain of releasables. There is no age requirement in periods of 
stress. 

Step  4. No further inspections or trims  are made of P or D until 
the system leaves the  state of stress. 

Note that during  a  normal period (i.e., non-stress) the D 
sector is tested  for  trim whenever anything  happens which may 
affect its  trim  status. Hence it enters  stress  already  in t r h 5  
After  stress is detected  a special test is made of the P sector to 
insure that  it also is in  trim. Subsequently, of course, the  system 
may become further overloaded. However, if all goes  well, the 
system  eventually  returns to a  normal mode of operation. The 
fourth condition above is nothing more than  an effort to reduce 
the housekeeping overload. 

No storage allocation algorithm  can  guarantee that demands 
for core can always be satisfied and  the question arises as  to  ap- 
propriate  action if such demands  cannot be satisfied. (It is not 
enough to  say that  the installation should have  had a larger 
memory.) Although the answer to this  question is beyond the 
intended scope of this  paper, we have some  brief comments. 

The first defense against  inundation is to stop  the message 
flow. As soon as  the  system  enters  stress,  the polling of communica- 
tions lines for new messages can be discontinued, or all new  mes- 
sages can be logged on  backup  store.  Thus,  all core requests repre- 
sent  requirements  for the processing of messages already  in the 
system. If the stress  criterion was properly chosen, there should 
be sufficient free core remaining in  the system to  meet such 
demands. 

If this proves not to be  the case, other procedures which may 
be considered include: 

Granting core to  only high priority messages, even if it means 
that CPU time will not be efficiently used. 
Utilizing for high priority message processing the space oc- 
cupied by programs supporting only low priority tasks-even 
though those programs may be in use. 
Writing  out on backup  store  all low priority messages and 
data blocks, and using that space for high priority message 
processing. 
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Summary 
The storage allocation algorithm considered brings programs and 
data  into core as they  are needed, directing the former to con- 
tiguous positions in lower  core and  the  latter  into contiguous 
positions in  upper core. 

All data blocks so defined are placed into  separate chains 
according to their size. When a new requirement is placed for a 
data block of a certain size, the corresponding data chain is 
searched. If a previously assigned block  on the chain has been 
freed, that block is assigned for the  current  requirement. If no 
previously-assigned blocks of the required size are available, a 
new  block is generated, contiguous to  the  data block lowest in 
core. As  long as the distribution of data block sizes remains 
relatively stable, the system  operates with little overhead. As 
the distribution of data block  sizes changes, the  system adapts 
itself to the change. No moving of data blocks is anticipated. 

Programs  are generally allowed to remain in core, even though 
they  are no longer in  active use. However, when the system re- 
quires it, programs are released, according to the  amount of 
time  in which they  have been inactive. Programs  are over-written 
only by new programs of equal or smaller size. Occasionally, 
programs in use must be moved, but with each such move programs 
which are heavily used tend to compact themselves and, hence, 
tend to resist additional moves. 

The algorithm uses the inherent frequency distribution of 
programs and  data block  sizes to reduce overhead costs without 
requiring any prior knowledge of the distributions. 

Since the algorithm has  not been tested within an operational 
system, its value is subject to some speculation. Presumably, its 
behavior within a system could be simulated  with modest effort. 
However, the accuracy of results obtained would depend on the 
accuracy of the frequency distributions of program usage and 
data block sizes (together  with pattern of change in  these distri- 
butions) assumed to describe the system considered. 

Since information of this  type  tends to be incomplete, simula- 
tion of the algorithm would probably  tend to give indicative 
rather  than definitive results. 

ACKNOWLEDGEMENT 

The  author acknowledges the valuable assistance of his colleagues 
-T. Kallner, Lucille C. Lee and  Janette T. Wood. 

FOOTNOTES 

1. Throughout  this paper,  memory with smaller core addresses  is referred 
to  as low-order or lower memory;  memory with larger core addresses  is 
referred to  as high-order or upper memory. 

2. Chain is used in  the conventional sense with  the following implications: 
The  actual location of each of the  data blocks is  immaterial. 
There exists for each  chain  a set of control words in a fixed location which 
contains the location of, say, the first word of one of the blocks. Hence, 
the location of the usable portion of the block may be inferred. 



The first word of the block referred to contains the location of the first 
word of another block. The  first word of that block refers to  the  first 
word of yet  another block, and so on. Each of the blocks is thus a link 
in  the chain. 

3. The  term in use need not be defined rigorously for present purposes. 
Suffice i t   to  say that  many programs may  be  in use simultaneously in 
this real-time system. Also, any one program may be simultaneously in 
use in servicing the requests  from a number of different terminals. Further- 
more, a program  operating  upon a particular  set of data  may call a sub- 
program  with the expectation that  return will be made to  the program. 
Under  certain  circumstances such a program might be declared in use, 
and  other circumstances not  in use. 

4. Although re-locating or re-loading a program which is still in use is treated 
in a cavalier manner in  the body of the paper, the problem is by  no means 
trivial. Two  alternatives present themselves. The first  is that  the program- 
mer specifies particular relocation points  within his program a t  which the 
program  can be reloaded. This implies that he  makes  no modification of a 
program across a re-location point, that  he stores  no  absolute addresses 
for use in  the program  segment following the relocation  point, etc. With 
this alternative,  program re-location takes place only when all  programs 
have reached relocation points and have relinquished control to  the monitor. 
Programs so written have, by definition, been called disciplined programs. 
The second alternative requires that programs be so written  that  they 
are re-locatable at   any point. The implication is that  the monitor must 
be informed of the way in which index registers are being used (and hence 
be able to modify them if the program  is re-located), the program cannot 
store  any  data relative to  its present location except  perhaps through  the 
monitor, etc.  Programs so written have, by definition, been called well- 
disciplined. 

5. Actually, as described, D is in  trim only if the block assignment which led 
to stress was from an  empty block previously formed. If it was a new 
encroachment on F, D may be knocked out of trim at the same time  that 
the system  is put  in stress. Furthermore,  that same  encroachment may be 
enough to  satisfy the 10% comparison which leads to P sector inspections. 
Here  then is a problem of priorities. Any encroachment  on F as described 
in  the  paper calls for three things: a test for D sector trim, a test for a 
P sector inspection, and a test for stress. But  the sequence of the  tests will 
affect the  resultant  structure of core. For example, if D were tested  and 
trimmed, the larger resulting size of F might  indicate that P need not be 
inspected. If, however, P had been looked at  first, it  might have resulted 
in P being trimmed and,  with a larger F ,  no need to  trim D. Similarly if 
P were trimmed before the stress test, newly declared releasable programs 
might leave the system in a normal state, whereas if the sequence were 
reversed, the system  might  have  been declared in stress. There is a set of 
trade-offs here  that is  probably not  too significant but which will neverthe- 
less need to be examined more carefully. 
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