
Massively parallel quantum
chromodynamics

P. Vranas
M. A. Blumrich

D. Chen
A. Gara

M. E. Giampapa
P. Heidelberger

V. Salapura
J. C. Sexton

R. Soltz
G. Bhanot

Quantum chromodynamics (QCD), the theory of the strong
nuclear force, can be numerically simulated on massively parallel
supercomputers using the method of lattice gauge theory. We
describe the special programming requirements of lattice QCD
(LQCD) as well as the optimal supercomputer hardware
architectures for which LQCD suggests a need. We demonstrate
these methods on the IBM Blue Gene/Le (BG/L) massively
parallel supercomputer and argue that the BG/L architecture is
very well suited for LQCD studies. This suitability arises from the
fact that LQCD is a regular lattice discretization of space into
lattice sites, while the BG/L supercomputer is a discretization of
space into compute nodes. Both LQCD and the BG/L architecture
are constrained by the requirement of short-distance exchanges.
This simple relation is technologically important and theoretically
intriguing. We demonstrate a computational speedup of LQCD
using up to 131,072 CPUs on the largest BG/L supercomputer
available in 2007. As the number of CPUs is increased, the speedup
increases linearly with sustained performance of about 20% of the
maximum possible hardware speed. This corresponds to a
maximum of 70.5 sustained teraflops. At these speeds, LQCD and
the BG/L supercomputer are able to produce theoretical results for
the next generation of strong-interaction physics.

1. Introduction

Quantum chromodynamics (QCD) is the theory of

subnuclear physics. All nuclear particles are made of

elementary particles called quarks and gluons. The gluons

mediate the strong nuclear force that binds the quarks

together to form stable nuclear particles. The strong

nuclear force is one of the four known physical forces,

with the other forces being the electromagnetic force,

weak nuclear force, and gravity. The strong nuclear force

is also responsible for the interactions of nuclear particles

and is, therefore, a fundamental area of study in nuclear

physics.

Perhaps the best introduction to the theory of QCD

was given by Frank Wilczek, a co-recipient of the 2004

Nobel Prize in Physics for his discovery of the properties

of QCD. He described QCD as ‘‘. . . our most perfect

physical theory’’ [1] because of the following: QCD

embodies deep and beautiful principles (it is a relativistic

quantum field theory), it suggests algorithms to answer

key questions in physics (one such algorithm is the subject

of this paper), it has a wide scope (from nuclear physics to

the genesis of the cosmos), it encompasses a wealth of

phenomena in physics (e.g., asymptotic freedom and

confinement, which are described below), it has few

parameters (and is, therefore, simple to describe), it is true

(has been verified experimentally), and it lacks flaws (it is

fully described by its definition, i.e., it requires no

additional assumptions).

Nuclear matter (protons and neutrons) currently

constitutes about 90% of the visible universe; however, it

is believed that until about 10 ls after the Big Bang,

nuclear matter did not exist. The very early universe was

so hot that quarks and gluons were in a plasma state

called the quark–gluon plasma. After 10 ls, the
temperature of the universe dropped below two trillion

kelvins, and the quark–gluon plasma underwent a phase

transition to stable nuclear matter. Currently, at the

Brookhaven National Laboratory, an enormously

powerful accelerator causes heavy nuclei (in particular

gold) to collide at speeds near the speed of light. The

Relativistic Heavy Ion Collider (RHIC) produces

collisions so powerful that it recreates, if only for a brief

moment, the conditions for the formation of the quark–

gluon plasma. Strong evidence suggests that RHIC has

�Copyright 2008 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 P. VRANAS ET AL.

189

0018-8646/08/$5.00 ª 2008 IBM

been successful in recreating this state of matter that has

not existed in our universe since 10 ls after its birth.
One of the most staggering properties of the theory

involves the behavior of its force. Quarks inside nuclear

particles behave almost as if they were free (i.e., they

experience very little of the nuclear force). This property

is called asymptotic freedom, which suggests that the

interaction between quarks becomes arbitrarily weak at

ever shorter distances. However, if one tries to ‘‘pull’’ a

quark out of a nuclear particle, the force rapidly becomes

extremely strong. A flux tube of gluons forms and forbids

the quark from escaping. This property is called

confinement. Researchers have never observed a single,

isolated quark. It is remarkable that both of these

dramatically opposite properties are described by a single

theory. Furthermore, the theory of QCD is extremely

simple in its mathematical description, and it is described

by a one-line mathematical formula.

Many physical quantities can be calculated analytically

for the case in which the force is weak by using weak-

coupling expansions around the zero-force point.

However, the calculation of physical quantities becomes

extremely difficult when the force is strong. Few

analytical calculations are possible, which would have

been a serious problem if it were not for the discovery of

lattice gauge theory [2, 3]. This theory allows us to

calculate physical quantities, such as the masses of

nuclear particles or the characteristics of the thermal

phase transition in the case of a strong force by using

computer simulations. Lattice gauge theory for QCD

(LQCD) is described in Section 2.

Even so, with LQCD, the computing requirement is

enormous. As a result, LQCD has always required the

largest supercomputers available to allow physicists to

make scientific progress. In Section 3, we describe the

special programming requirements of LQCD as well as

the optimal supercomputer hardware architectures from

which it benefits. We demonstrate these methods using

the IBM Blue Gene/L* (BG/L) massively parallel

supercomputer, and we argue that LQCD and the BG/L

architecture are well suited to each other because of their

curiously common properties. The main result of this

paper involves the speedup of LQCD using up to 131,072

CPUs on the largest BG/L supercomputer in 2007, and

the result is presented in Section 4. As the number of

CPUs is increased, the speedup increases linearly with

sustained performance of about 20% of the maximum

possible hardware speed. This corresponds to a maximum

of 70.5 sustained teraflops (floating-point operations per

second) [4, 5]. In Section 5, we present our conclusions.

For an introduction to quantum field theory and QCD,

the reader is referred to two books [6, 7]. For an

introduction to lattice gauge theory and lattice QCD, the

reader is referred to three books [8–10].

2. Lattice QCD
In this section, we give a brief overview of the lattice

gauge theory method [2, 3] that allows QCD to be

simulated on a computer.

QCD is defined with respect to the continuous four-

dimensional (4D) space-time. The quarks and gluons are

described by fields over space-time. Fields are complex-

valued functions of the space-time coordinates and,

loosely speaking, indicate the probability of the existence

of a particle at each coordinate. This probability is a

complicated function of the fields. Specific local and

global symmetries constrain these functions.

Since space-time is continuous, one would need an

infinite amount of numbers to exactly describe a field

even in a finite region. However, a computer is a finite

machine with finite memory and computing capability.

How then is it possible to simulate QCD?

The first step is to make space-time discrete by

replacing it with a 4D lattice. Typically, the lattice is

considered hypercubic. Because of the confinement

property of QCD, only a finite region of space that

contains the nuclear particles must be simulated. In

practice, in order to avoid small-volume effects, the

region of space used should be several times larger than

the particles it contains. Thus, the lattice used is finite,

and periodic and antiperiodic boundary conditions are

typically implemented. The sites of the lattice are

connected by links for which the distance along a link is

referred to as lattice spacing a.

This discrete approach could have destroyed the

symmetry properties of the theory. However, it turns out

that by defining the quark fields on the lattice sites while

defining the gluon fields (also called gauge fields) on the

lattice links, one of the most important symmetries of the

theory is preserved. Local gauge invariance is exact.

The rotational and translational symmetries of

continuous space-time are destroyed (e.g., the lattice

remains invariant if it is shifted by an amount equal to an

integer multiple of the lattice spacing, but it does not

remain invariant if it is shifted by an arbitrary amount, as

is the case for continuous space-time). However, these

symmetries are recovered as the lattice spacing a

approaches the zero-lattice-spacing limit. By repeating

the calculation on lattices with more lattice points and

smaller lattice spacing, one can extrapolate to the zero-

lattice-spacing limit.

Given this approach, the quark and gluon fields can be

defined on a finite set of points. In fact, 24 real numbers

per lattice site are needed for each quark field, while 18

real numbers per lattice link are needed for the gauge

field. In a typical QCD simulation on the lattice, the

computer generates these sets of numbers, called field

configurations, with a probability that is calculated using

the QCD formula. This calculation is complicated and

P. VRANAS ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

190

computationally intensive, but it is possible. From each

field configuration, one can then calculate a wealth of

physically interesting quantities such as energy and mass.

Average values of these quantities are calculated for the

full set of field configurations generated by the computer.

The method is similar to what is used to simulate

statistical-mechanics systems. The equivalent of the

Boltzmann weight is present here as well, and it dictates

the probability with which field configurations are

generated. In particular, molecular dynamics techniques

are employed to generate new field configurations from

previous ones.

Although it is possible to calculate many physical

quantities using numerical simulations, a class of such

quantities is still beyond the reach of simulations. For

example, equilibration processes, or finite-density physics,

involve a severe sign problem (i.e., a complex phase

problem) that prohibits use of these techniques. Research

efforts known to address these issues have been active for

many years. Thankfully, a large class of problems does

not suffer from these difficulties. Nuclear physics

calculations, calculations of the critical phenomena of the

QCD thermal transition, and calculations that relate to

the physics of both the current theory of elementary

particle physics (the standard model) and theories beyond

the standard model are currently being simulated on the

largest supercomputers. Such studies involve significant

effort because LQCD requires enormous computational

resources.

3. Blue Gene/L supercomputer and LQCD
In this section, we discuss LQCD on massively parallel

supercomputers and in particular LQCD on the BG/L

supercomputer. It may seem strange that a physical

theory at the frontier of science would have much in

common with a machine designed by engineers working

at the frontiers of technology and with strict timetables

and architectural guidelines. Theoretical physics has a

tradition of ‘‘pure thinking’’ and of analytical calculations

in which computers are often barely needed. Conversely,

the computing industry is defined by a very rapid

development schedule of ever-faster machines that must

follow Moore’s Law and in which little attention is paid

to abstract theories of distant and unrelated disciplines.

However, this interplay between physical theories and

computer science is not strange. As described in the

previous section, the strong-force regime of QCD would

be inaccessible to theoretical calculations if it were not for

the largest supercomputers available. In fact, if lattice

theoretical physicists had all their wishes fulfilled, today’s

supercomputers would be viewed as desperately slow. The

thirst for computing speed is almost unquenchable. The

fact that LQCD absorbs these vast amounts of computing

is very interesting. As we discuss in the following section,

the weak scaling of QCD on the BG/L system is

fortuitous for researchers. (Weak scaling experiments

refer to studies in which researchers vary the problem size

and the number of processors such that the problem size

per processor remains constant.) The need for ever-finer

lattices that occupy ever-larger volumes indicates that

very large lattices are of interest. This implies that QCD

can use virtually any size of massively parallel

supercomputer that any current and near-future

technologies can produce. Petaflop-scale machines are

eagerly awaited.

From the supercomputing engineering perspective,

QCD has proven to be of great value for many reasons.

To understand this, we briefly describe the QCD code

and, in particular, its implementation on the BG/L

supercomputer.

It turns out that in most QCD implementations, about

90% of the compute cycles are expended inside a small

routine (;1,000 lines of code) called the QCD kernel or

D-slash (D=). This kernel calculates the dynamics of the

quarks and their interaction with the gluons. Obviously,

excellent optimization of D-slash is of great importance.

The basic operation that involves D-slash may be

expressed as

WðxÞ ¼
X

y

D= ðx; yÞW ðyÞ; ð1Þ

where W(x) is the quark field at the space-time coordinate

x, and D= (x, y) is the D-slash operator. This is a sparse

matrix with indices x and y. Most matrix elements are

zero except when the lattice sites x and y are adjacent on

the lattice grid. Because the D-slash operator is so sparse,

it is not stored in memory and its action is calculated

operationally. D-slash is given by the following equation:

D= ðx; yÞ ¼ 1

2

X4

l¼1

�
UlðxÞð1þ clÞdðxþ l; yÞ

þU
þ
l ðx� lÞð1� clÞdðx� l; yÞ

�
: ð2Þ

In the above equation, l represents three spatial

directions and one time direction, and the sum over l is a

sum over the four space-time directions. The gluon field

residing on a link that originates at location x and is

along the l direction is a 33 3 complex-valued matrix (18

real numbers) represented by Ul(x). The gluon field

carries an internal index, called color charge, that can

assume three values. The cl matrices are 4 3 4 complex

matrices that act on another internal index, called spin,

carried by the quark field. The function d(a, b) is one if

a ¼ b and zero otherwise. This function implements the

nearest-neighbor feature of the operator. It should be

noted that the terms (1 6 cl)/2 are projection operators

and reduce the 24-component quark field (also referred to

as full-spinor below) into four 12-component intermediate

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 P. VRANAS ET AL.

191

fields (also referred to as half-spinors below). The

following is one standard way to efficiently implement

Equation (1) so that it allows for possible overlap of

computations and communications:

1. Using the four projection operators (1 þ cl)/2 (l ¼
1,2,3,4), spin project W into four temporary half-

spinors Uf
l for all local lattice sites and store them in

memory. (The superscripts ‘‘f’’ and ‘‘b’’ stand for

forward and backward, respectively.)

2. Begin sending and receiving each Uf
l that is on the

surface of the local lattice to and from the nearest-

neighbor nodes along the negative direction l. Each
half-spinor consists of 12 numbers. Using double

precision, this corresponds to 96 bytes that must be

communicated for each site on the negative-direction

surfaces.

3. Using each projection operator (1� cl)/2 (l ¼1,2,3,4),
spin projectW andmultiply the result withUþl in order

to form four half-spinors Ub
l for all local lattice sites,

and store them in memory.

4. Begin sending and receiving each Ub
l that is on the

surface of the local lattice to and from the nearest-

neighbor nodes along the positive direction l. As in

step 2, each half-spinor consists of 12 numbers, and

in double precision, this again corresponds to 96

bytes that must be communicated for each site on the

positive direction surfaces.

5. Wait for the Uf
l communication to complete.

Typically, this involves polling a network register.

6. Now that all needed half-spinors Uf
l are in the

memory of the node, multiply each of them by Ul

and convert them to full-spinors. Add all four full-

spinors for each lattice site and store the resulting

full-spinor to memory.

7. Wait for the Ub
l communication to complete.

Typically, this involves polling a network register.

8. Now that all Ub
l are on the node, convert each of

them into a full-spinor, and for each site, add them

together. For each site, add the result to the full-

spinor of step 6 after loading it from memory. This

produces the resulting full-spinor for each site.

Notice that in the above steps, the U fields are not

sequential in memory. The U fields are sequential for the

first and second set of four terms but not between the two

sets. Also, the loop over lattice sites is over a 4D lattice.

As a result, memory accesses from the linear memory are

typically sequential only in the internal indices, as

indicated above, and therefore involve only a small

number of bytes to be transferred. Memory accesses per

lattice site consist of 24 numbers for the full-spinors, 12

numbers for the half-spinors, and 4318¼72 numbers for

the U field in all four links originating from the same site.

Furthermore, the communications involve very-small-

sized messages. The half-spinors that are communicated

reside on the surfaces of the 4D lattice and typically

cannot be grouped into a large message. As a result, each

half-spinor is communicated individually. These are short

messages of only 96 bytes each. The communications and

memory accesses cannot be rearranged because they are

associated with the in-between computations. The

computations themselves involve only a few operations.

For example, the multiplication of the gluon matrix U

with a half-spinor involves 72 multiply–add operations

that execute in just 36 cycles in a double floating-point

unit (FPU). Therefore, the above code (summarized in

the eight steps) involves very ‘‘bursty’’ (short,

nonsequential) memory accesses, communications, and

calculations and, as a result, is very sensitive to memory,

communication network, and FPU latencies.

Surprisingly, the above code suggests a wealth of

architectural requirements in order to achieve maximum

performance.

Since QCD is defined in a nearest-neighbor lattice of

space-time points, it is naturally mapped on a lattice of

compute nodes connected with nearest-neighbor physical

links. However, some implementations of QCD require

local communications that are more distant than nearest-

neighbor communications. This implies that a strict

nearest-neighbor network would be limiting and leads to

the requirement of a more general network.

The above code allows for almost maximal overlap in

time between computations, communications, and

memory accesses. Given the sensitivity to latencies, a

machine that could provide an overlap of all three of

these activities would offer a substantial performance

advantage over traditional approaches. Thus, the

following hardware features are desirable for QCD:

� Load and store accesses in ‘‘parallel’’ with

computations and communications.
� Sophisticated memory prefetching that allows block-

strided accesses.
� Communications that can overlap with computations

and memory accesses. This implies a DMA (direct

memory access)-driven network.

Finally, it should be mentioned that Equation (1) is the

innermost part of a conjugate gradient (CG) inverter.

This inverter requires two global sum reductions per

iteration. As a result, fast global-sum-reduction capability

is important, suggesting that a good part of the reduction

should be supported by hardware.

Although the BG/L supercomputer is a general-

purpose computer that is not designed for optimal QCD

P. VRANAS ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

192

performance, many of the above features are present in

its hardware. Here is a short description of the BG/L

hardware. The reader is referred to [11] for a full

description.

The BG/L supercomputer is a massively parallel

machine with compute nodes that are interconnected via

nearest-neighbor links arranged in a three-dimensional

(3D) torus topology. Each node is an IBM ASIC

(application-specific integrated circuit) containing two

IBM PowerPC* 440 (PPC440) CPU cores. Each core has

a custom double multiply–add unit capable of performing

up to four floating-point operations per cycle. Therefore,

each node can execute up to eight floating-point

operations per cycle. Each core has a 32-KB L1 data-

cache memory, but the two L1 memories are not

coherent. Each core is fed by a small, multistream,

sequential prefetcher (L2) that in turn accesses a shared,

on-chip 4-MB L3 cache memory. The L3 accesses

external DRAM (dynamic RAM) via an on-chip DDR2

(double-data-rate) controller. The ASIC contains a

sophisticated, packet-based virtual cut-through router,

which allows any node to send packets to any other node

without intermediate CPU intervention. Packets that

arrive at a node are kept if they are destined for that node

or are routed to the appropriate output links in order to

reach their final destinations in an optimal way. The

network router is accessed from either CPU core by

writing and reading packets into hardware addresses that

correspond to SRAM (static RAM)-based FIFO (first-in,

first-out) queues inside the router. A second, independent

collective network is also on the ASIC and provides fast

reduction operations such as global sums. Two such

ASICs (nodes) are assembled on a small circuit board

that also contains the external DRAM (typically 1 GB for

both nodes). More functionality is present in the ASIC,

but it does not directly relate to the purposes of this

paper.

The PPC440 core has a separate load and store

pipeline and can have up to three outstanding load

instructions. This allowsmemory access and computations

to overlap in time. However, the torus communication

network does not allow for overlap of computations and

communications because the CPU has to prepare the

hardware packets and copy them between memory and

the torus FIFOs. Because of this, the earlier code

description must be modified for the BG/L platform by

consolidating step 2 with step 4 and step 7 with step 5.

Given the above, it is clear that Equation (1) must be

carefully coded in a way that is ‘‘molded’’ to the BG/L

hardware in order to achieve high sustained performance.

This is particularly difficult since the sensitivity to

latencies is amplified by the high computing capability of

the hardware (eight floating-point operations per CPU

cycle). In order to be able to take full advantage of the

hardware, we wrote our code as inline assembly code. The

main features of our code include the following:

1. All floating-point operations use the double

multiply–add instructions by pairing all additions

with multiplications in sets of two, whenever

possible. The complex numbers used by QCD make

this pairing natural.

2. All computations are arranged to avoid pipeline

conflicts. These conflicts concern register access rules.

3. The storage order of the quark and gluon fields is

chosen to maximize the size of sequential accesses.

4. Load and store operations are arranged to take

advantage of the cache hierarchy and the three

outstanding load instructions capability of the

PPC440 CPU.

5. Since load and store operations can proceed in

parallel with floating-point computations, we

overlapped memory accesses with computations

whenever possible in order to reduce memory access

latencies.

6. Since each CG iteration requires two global sums

over all the nodes in the machine, we used fast

reduction over the global collective network.

7. The BG/L supercomputer does not have a network

DMA engine, and as mentioned earlier, the CPUs

are responsible for loading and unloading data from

the network, reading and storing data to memory,

and preparing and attaching the hardware packet

headers. Since the transfers that must complete

between calculations are very short, we are careful

not to introduce any unnecessary latencies. In order

to reduce the latencies in step 4, we developed a very

fast communications layer directly on the torus

hardware. This layer takes advantage of the nearest-

neighbor nature of the communication and dispenses

with control-related communications. In addition,

because the communication pattern is persistent, the

packet headers are calculated once only at the

beginning of the program. Furthermore, all

communications involve direct transfers from and to

memory without intermediate copying. Also,

although QCD requires a 4D lattice and the BG/L

supercomputer has a 3D lattice of nodes, there is a

natural way to map QCD onto the BG/L

supercomputer. The two CPU cores in each node can

serve as a ‘‘fourth’’ dimension. The system software

has a virtual node mode of operation in which each

core is assigned its own memory footprint, and half

the torus FIFOs can be assigned to each core. In this

sense, each core is a virtual node. Communication

between cores is possible via a commonly mapped

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 P. VRANAS ET AL.

193

area of memory. We carefully overlap the necessary

memory copy time with the time it takes for the

network packets to be fully received.

As was mentioned earlier, D-slash is responsible for

90% of the consumed cycles. The remaining 10% are

spent by the bulk of the QCD code. This code is tens of

thousands of lines long and is written in a high-level

language. It encodes both the physics of QCD as well as

ingenious algorithms. These codes are written by groups

of theoretical physicists and have been developed over

many years. It is interesting that the full QCD code stack

involves two extremes: a short kernel written in assembly

code together with a large amount of code written in a

high-level language. In our work, we programmed the

D-slash kernel but used the Cþþ code base of the

Columbia Physics System (CPS) that originated at

Columbia University [12].

To reiterate, if one wants to design hardware that will

perform well for QCD, the design will have to be simple

and modular in order to be able to serve various

concurrent and competing demands. In particular, trade-

off decisions that affect latency can be based on the very-

low-latency performance requirements of QCD. For

example, this may affect the number of stages of various

pipelines, such as CPU, memory, or communications

hardware pipelines. Low-latency communications layers

would be useful for any QCD type of application in which

the communication pattern is fixed and small amounts of

data (kilobyte size) are communicated at one time. This is

in contrast to the general-purpose heavier type of

communication layer, such as Message Passing Interface

(MPI). Furthermore, given the importance of low-latency

memory access, specialized library functions can be

developed for commonly used operations such as the ones

found in QCD.

The QCD kernel D-slash can serve as a valuable tool

during hardware verification. It can be used to expose

bugs (i.e., errors) that may otherwise be unreachable. Bug

exposure is facilitated because QCD uses the hardware at

high efficiencies as well as at high overlap. For example,

the FPU can operate at full performance while the

network transfers data at high bandwidth and the

memory hierarchy rapidly moves data. This high-demand

situation arising from competing and concurrent

demands applies pressure on the hardware. Furthermore,

the QCD kernel is the full kernel of a real application, so

it is of practical importance. Applications often provide

excellent verification tools. There have been instances in

which bugs were not detected by full verification suites

but were apparent during execution of some application.

Because most applications tend to be large, they are not

suitable as hardware simulators. This is not the case for

the small QCD kernel, which can execute in only a few

thousand cycles.

During full system validation, QCD can serve as a

unique tool for fault isolation for the following reasons.

One can program all nodes to perform identical

operations on identical datasets. This is possible because

the communications are nearest neighbor, their pattern is

fixed for all nodes, and the application is strictly SIMD

(single instruction, multiple data). All nodes will send and

receive the same data to and from their neighbors. At

certain intervals, one can check that all nodes have the

same value for some intermediate number (e.g., the on-

node energy of the gluon field). If a value at a node

differs, then the fault is isolated in the neighborhood of

that node and corresponding links.

Finally, and very importantly, the QCD kernel can

serve as a powerful performance evaluation tool. The

performance can be evaluated even before the computer

development begins. Because the QCD demands are well

defined by Equation (1), these studies can be reliable.

Equally significant is that the performance of D-slash can

be measured at every stage of the computer development,

from verification to a fully built system performance

evaluation.

Many of these considerations have been part of the

development of several supercomputers, including the

BG/L systems. Other examples are the QCD on digital

signal processors (QCDSPs) and QCD-on-a-chip

(QCDOC) supercomputers [13] that were developed

specifically for the study of QCD and have influenced the

design of the BG/L supercomputer.

Table 1 Sustained performance for various local lattice sizes. The performance values in the table represent percentages of peak

performance.

Number of nodes

24 4 3 23 44 8 3 43 82 3 42 16 3 43

D-slash without communications 31.5 28.2 25.9 27.1 27.1 27.8

D-slash with communications 12.6 15.4 15.6 19.5 19.7 20.3

Conjugate gradient inverter 13.1 15.3 15.4 18.7 18.8 19.0

P. VRANAS ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

194

4. Performance
In this section we present the performance results of our

code running on the BG/L supercomputer. The strong

scaling properties of our kernel were reported in 2005

[14]. (Strong scaling studies generally have a fixed problem

size, vary the number of processors, and measure the

speed.) Our method is not the usual one because we

simply kept the number of nodes fixed (to two nodes, with

four cores) while we decreased the local problem size.

This is akin to strong scaling methodologies, which keep

the global size fixed while increasing the number of nodes

and, thereby, decreasing the local problem size. The

results are given in Table 1.

As can be seen, the smallest local lattice (24 sites)

without communications achieves 31.5% of peak

performance. This high performance is largely due to the

fact that the data mostly fits into the L1 cache, resulting

in fast memory accesses. However, such a small local

lattice has a large surface-to-volume ratio, and therefore,

a large number of communications per volume are

necessary. Because communications cannot be

overlapped with computations on the BG/L

supercomputer, the communication cost is additive and

the performance drops dramatically to 12.6% when

communications are included. For the larger 163 43 local

lattice, the performance without communications is less

(27.8%), but the surface-to-volume ratio is smaller, so the

cost of adding communications is less severe, dropping

performance to 20.3%.

Nevertheless, QCD is typically used as a weak scaling

application. The nearest-neighbor nature of the

communications as well as the existence of a fast global

sum collective network in the BG/L system give linear

speedup as the number of compute cores is increased. We

were able to increase the number of cores up to the

maximum present in the fastest supercomputer (as of the

date of this writing), the BG/L 64-rack system at the

Lawrence Livermore National Laboratory (LLNL). The

result that led to the award in Reference [4] is the

culmination of our efforts, as well as of the findings

described in this paper. The results appear here for the

first time in print, in Figure 1, which shows a maximum of

70.5 Tflops sustained on 131,072 CPUs. The local lattice

size is 4 3 4 3 4 3 16, resulting in a maximum global size

of 128 3 128 3 256 3 32 since the grid of compute nodes

of the full machine is 32 3 32 3 64 3 2. The sustained

percent of peak speed in this figure is 19.3% for the

D-slash kernel and 18.7% for the full CG inverter, which

includes the global sum reductions.

5. Conclusions
In this paper, we have given a general description of the

physics of QCD and discussed how massively parallel

supercomputers are a natural match for this application.

QCD and supercomputing have had a long history. The

reader may be interested to know that one of the most

popular theoretical physicists and a Nobel laureate

Richard Feynman was involved in the development of the

Connection Machine 2, a supercomputer that grew out of

Danny Hillis’s research in the early 1980s at MIT. In fact,

Mr. Feynman coded QCD for that machine [15].

Furthermore, we have discussed how QCD can help in

the development of massively parallel supercomputers

from architecture to final system performance evaluation.

Indeed, thishasbeenacomponentofseveralsupercomputer

development efforts, including the IBM Blue Gene*

series of machines.

Finally, we have presented the culmination of our

efforts in Figure 1, which shows a linear speedup of QCD

up to 131,072 CPU cores and 70.5 sustained Tflops. This

result was obtained with the 64-rack BG/L system at the

LLNL.

Our hope for this paper is that we have shown the close

ties between QCD and supercomputing since these ties

can serve both fields well in the very interesting and

challenging immediate future, when new technologies

make it possible to achieve impressive computing speeds

and new physics experiments generate new mysteries for

LQCD to solve. Readers interested in early research

concerning applications of Equation (1) may consult [16].

Acknowledgments
We thank Dr. George Chiu of the IBM Research Division

for his help and support. We thank the IBM Research

Division and the IBM BG/L team for their support. We

Figure 1

The QCD Dirac operator (D-slash) and conjugate gradient (CG)

inverter speedup on the BG/L supercomputer as the number of

CPU cores is increased up to the full machine size, 131,072. The

highest sustained speed in this graph is 70.5 Tflops [4]. The total

lattice has size 128 � 128 � 256 � 32, while the CPU cores form

a grid with size 32 � 32 � 64 � 2. Therefore, the local lattice on

a CPU is of size 4 � 4 � 4 � 16.

0 20,000 40,000 60,000 80,000 100,000 120,000

Number of CPU cores

S
u
st

ai
n
ed

 t
er

af
lo

p
s

Dirac operator � 19.3%

CG inverter � 18.7%

0

10

20

30

40

50

60

70

80

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 P. VRANAS ET AL.

195

are grateful to the BG/L supercomputing center at the

IBM Thomas J. Watson Research Center and to the

Lawrence Livermore National Laboratory for allowing

us access to these precious resources. We thank the

QCDOC collaboration for providing us with the CPS

software. Ron Soltz acknowledges the Department of

Energy for supporting his research.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

References
1. F. Wilczek, ‘‘What QCD Tells Us About Nature—and Why

We Should Listen,’’ Nuclear Phys. A 663, 3–20 (2000).
2. K. G. Wilson, ‘‘Confinement of Quarks,’’ Phys. Rev. D 10, No.

8, 2445–2459 (1974).
3. K. G. Wilson, ‘‘Quarks and Strings on a Lattice,’’ New

Phenomena in Subnuclear Physics, Part A, A. Zichichi, Ed.,
Plenum Press, New York, 1974, pp. 69–142.

4. P. Vranas, G. Bhanot, M. Blumrich, D. Chen, A. Gara, M.
Giampapa, P. Heidelberger, V. Salapura, J. C. Sexton, and R.
Soltz, ‘‘2006 Gordon Bell Prize for Special Achievement,’’
Proceedings of Supercomputing 2006, Tampa, FL; see http://
sc06.supercomputing.org/news/press_release.php?id=14.

5. P. Vranas, G. Bhanot, M. Blumrich, D. Chen, A. Gara, P.
Heidelberger, V. Salapura, and J. C. Sexton, ‘‘The Blue
Gene/L Supercomputer and Quantum Chromodynamics,’’
Proceedings of Supercomputing 2006, Tampa, FL; see http://
sc06.supercomputing.org/schedule/pdf/gb110.pdf.

6. T. Cheng and L. Li, Gauge Theory and Elementary Particle
Physics, Oxford University Press, New York, 1984.

7. M. E. Peskin and D. V. Schroeder, An Introduction to
Quantum Field Theory, Perseus Books, New York, 1995.

8. M. Creutz, Quark, Gluons and Lattices, Cambridge University
Press, New York, 1983.

9. I. Monvay and G. Munster, Quantum Fields on a Lattice,
Cambridge University Press, New York, 1994.

10. J. Kogut, Milestones in Lattice Gauge Theory, Kluwer,
New York, 2004.

11. ‘‘Blue Gene,’’ IBM J. Res. & Dev. 49, No. 2/3 (2005), entire
issue.

12. The Columbia Physics System (CPS); see http://
www.epcc.ed.ac.uk/;ukqcd/cps.

13. P. A. Boyle, D. Chen, N. H. Christ, M. A. Clark, S. D. Cohen,
C. Christian, Z. Dong, et al., ‘‘Overview of the QCDSP and
QCDOC Computers,’’ IBM J. Res. & Dev. 49, No. 2/3, 351–
365 (2005).

14. G. Bhanot, D. Chen, A. Gara, J. Sexton, and P. Vranas,
‘‘QCD on the Blue Gene/L Supercomputer,’’ Nucl. Phys. B
Proc. Suppl. 140, 823–825 (2005); see http://xxx.lanl.gov/ps/
hep-lat/0409042.

15. W. D. Hillis, ‘‘Richard Feynman and the Connection
Machine’’; see http://www.kurzweilai.net/articles/
art0504.html?printable¼1.

16. H. Hamber and G. Parisi, ‘‘Numerical Estimates of Hadronic
Masses in Pure SU (3) Gauge Theory,’’ Phys. Rev. Lett. 47,
No. 25, 1792–1795 (1981).

Received March 14, 2007; accepted for publication

Pavlos Vranas Lawrence Livermore National Laboratory,
Livermore, California 94550 (vranas1@llnl.gov). Dr. Vranas
received his B.S. degree in physics from the University of Athens,
Greece, in 1985 and his Ph.D. degree in theoretical elementary
particle physics from the University of California at Davis in 1990.
He continued his research in theoretical physics as a postdoctoral
researcher at the Supercomputing Computations Research
Institute at Columbia University and at the University of Illinois at
Urbana-Champaign. From 2000 to 2007, Dr. Vranas worked at the
IBM Thomas J. Watson Research Center as a Research Staff
Member with the core hardware architecture, design, and
development team of the Blue Gene series of supercomputers while
continuing his research in theoretical physics. Dr. Vranas
performed the first numerical simulations using domain wall
fermions and has played a key role in their application to quantum
chromodynamics (QCD) and related theories. He received the
Gordon Bell Prize in 1998 for his work on the Columbia University
QCDSP supercomputer. In 2006, he received the 2006 Gordon Bell
Prize for Special Achievement for simulations of QCD on the
Blue Gene/L system, and in 2007 he received the IBM Outstanding
Invention Achievement Award. Dr. Vranas has authored more
than 70 papers in theoretical physics and supercomputing as well as
18 patents.

Matthias A. Blumrich IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (blumrich@us.ibm.com). Dr. Blumrich is a Research
Staff Member in the Blue Gene Systems Development group at the
IBM Thomas J. Watson Research Center. He received a B.E.E.
degree from the State University of New York at Stony Brook in
1986, and M.A. and Ph.D. degrees in computer science from
Princeton University in 1991 and 1996, respectively. He joined
IBM Research in 1998, where he has worked on scalable
networking and memory systems for servers and the Blue Gene
supercomputers. Dr. Blumrich is an author and coauthor of many
patents and technical papers.

Dong Chen IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (chendong@us.ibm.com). Dr. Chen is a Research Staff
Member in the Deep Computing Systems Department of IBM. He
received his B.S. degree in physics from Peking University in 1990,
and M.A., M.Phil., and Ph.D. degrees in theoretical physics from
Columbia University. He continued as a postdoctoral researcher at
Massachusetts Institute of Technology before joining the IBM
Server Group in 1999. He has been working in many areas related
to the Blue Gene systems since 2000. Dr. Chen is an author or
coauthor of more than 30 technical journal papers. He has received
an IBM Outstanding Technical Achievement Award and five IBM
Invention Achievement Awards. He also received two Gordon Bell
Prizes for his contributions to QCDSP and Blue Gene/L
supercomputers.

Alan Gara IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(alangara@us.ibm.com). Dr. Gara is a Research Staff Member at
the IBM Thomas J. Watson Research Center. He received his
Ph.D. degree in physics from the University of Wisconsin at
Madison in 1986. In 1998 Dr. Gara received the Gordon Bell Prize
in the most cost-effective category for the QCDSP supercomputer,
and in 2006 he received the Gordon Bell Prize for Special
Achievement. He is the Chief Architect of the Blue Gene line of
supercomputers. In 2006, he was named a member of the IBM
Academy and an IBM Fellow.

P. VRANAS ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

196

April 9, 2007; Internet publication December 11, 2007

Mark E. Giampapa IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (giampapa@us.ibm.com). Mr. Giampapa is a Senior
Engineer in the Exploratory Server Systems Department. He
received a B.A. degree in computer science from Columbia
University. He joined the IBM Research Division in 1984 to work
in the areas of parallel and distributed processing, and he has
focused his research on distributed memory and shared memory
parallel architectures and operating systems. Mr. Giampapa has
received three IBM Outstanding Technical Achievement Awards
for his work in distributed processing, simulation, and parallel
operating systems. He holds 15 patents, with several more pending,
and has published ten papers.

Philip Heidelberger IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (philiph@us.ibm.com). Dr. Heidelberger received a
B.A. degree in mathematics from Oberlin College in 1974 and a
Ph.D. degree in operations research from Stanford University in
1978. He has been a Research Staff Member at the IBM Thomas J.
Watson Research Center since 1978. His research interests include
modeling and analysis of computer performance, probabilistic
aspects of discrete event simulations, parallel simulation, and
parallel computer architectures. He has authored more than 100
papers in these areas. He has been working on the Blue Gene
Project since 2000. Dr. Heidelberger has served as Editor-in-Chief
of the ACM Transactions on Modeling and Computer Simulation.
He was the general chairman of the ACM Special Interest Group
on Measurement and Evaluation (SIGMETRICS) Performance
2001 Conference, the program co-chairman of the ACM
SIGMETRICS Performance 1992 Conference, the program
chairman of the 1989 Winter Simulation Conference, and he was
the vice president of ACM SIGMETRICS. He is a Fellow of the
ACM and the IEEE.

Valentina Salapura IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (salapura@us.ibm.com). Dr. Salapura has been a
technical leader for the Blue Gene program since its inception. She
has contributed to the architecture and implementation of several
generations of Blue Gene systems focusing on multithreaded,
multicore architecture design and evaluation, and multiprocessor
memory subsystems, interconnect, and synchronization. Most
recently, she has been Unit Lead for several units of the
Blue Gene/P* system, as well as a leader of the chip and system
bring-up effort. She is currently working on power/performance
characterization of the Blue Gene/P system and on the architecture
of future IBM systems. Before joining IBM, Dr. Salapura was
Assistant Professor with Technische Universität Wien. She received
her Ph.D. degree from Technische Universität Wien, Vienna,
Austria, and M.S. degrees in electrical engineering and computer
science from University of Zagreb, Croatia. She is the recipient of
the 2006 Gordon Bell Prize for Special Achievement for the Blue
Gene/L supercomputer and quantum chromodynamics. She is the
author of more than 60 papers on processor architecture and high-
performance computing, and she holds many patents in this area.
She was general co-chair of the 2006 ACM Computing Frontiers
conference and program co-chair for the System Architecture and
Applications track of the IEEE International Conference on
Computer Design in 2006 and 2007. Dr. Salapura is a senior
member of the IEEE.

James C. Sexton IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York

10598 (sextonjc@us.ibm.com). Dr. Sexton is a Research Staff
Member at the IBM Thomas J. Watson Research Center. He
received his Ph.D. degree in theoretical physics from Columbia
University and has held research positions at the Fermi National
Accelerator Laboratory (Fermilab), the Institute of Advanced
Studies at Princeton University, and Trinity College, Dublin.

Ron Soltz Physics and Advanced Technologies Directorate,
Lawrence Livermore National Laboratory, 7000 East Avenue,
Livermore, California 94550 (soltz@llnl.gov). Dr. Soltz is a Staff
Physicist at Lawrence Livermore National Laboratory (LLNL).
He received his Ph.D. degree in physics from the Massachusetts
Institute of Technology in Cambridge, Massachusetts, in 1994. He
currently leads the LLNL research program for the Relativistic
Heavy Ion Collider (RHIC) at Brookhaven National Laboratory.
His interest in understanding nuclear matter at very highest
temperatures and densities led him to begin calculations in lattice
quantum chromodynamics, and this work led to the Gordon Bell
Prize for Special Achievement in 2006.

Gyan Bhanot Department of Biomedical Engineering,
Rutgers University, Piscataway, New Jersey 08855
(gyanbhanot@gmail.com). Professor Bhanot received his Ph.D.
degree in theoretical physics from Cornell University in 1979. He
was a Research Staff Member at the IBM Research Division in the
Physics Department from 1994 to 2001 and in the Computational
Biology Group from 2001 to 2006. He worked on BG/L
applications at IBM from 2003 to 2005. He is currently Professor
of Biomedical Engineering at Rutgers University with joint
appointments at the Cancer Institute of New Jersey and the
BioMaPS Institute. His current research interest is in developing
models for the initiation, progression, and metastasis of cancer and
understanding complex disease phenotypes.

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 P. VRANAS ET AL.

197

