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optimization solution

Successful implementation of an inventory optimization solution
requires significant effort and can pose certain risks to companies
implementing such solutions. Depending on the complexity of the
requirements, the solution may also involve a substantial IT
investment. In this paper, we present a cost-effective solution for
inventory optimization that can be useful for small and medium-
sized businesses with limited IT budgets. This solution can be
implemented on any application platform that is capable of
processing basic SOL™ (Structured Query Language) commands.
The solution eliminates the need to purchase additional software
and has a framework in which sales data in an Enterprise Resource
Planning (ERP) system are accessed, demand statistics based on

this data are generated along with other key parameters, and
optimal inventory policies, such as those involving safety stocks

and lot sizes, are calculated and reported.

Introduction

One of the most tangible ways in which companies can
benefit from IT investments is through implementing
solutions that are designed to provide inventory reduction
opportunities. Companies can reduce their inventory
through more accurate and faster receipt of demand
information, more reliable and shorter supply lead times,
and better inventory policies.

Faster receipt of demand information and shorter lead
times can be achieved by changing planning processes,
modifying supply chain infrastructure, and adopting
practices that enable rapid flow of information on both
the demand and supply sides. Supply chain management
(SCM) solutions are designed to support these activities.
(The term lead time refers to the amount of time between
the placing of an order and the receipt of the goods
ordered.) Demand-planning solutions can also help
increase the accuracy of demand forecasts.

Improved reliability of supply arrival times also has an
impact on inventory levels. Because companies must keep
a safety stock to protect against variations in either
supply quantity or supply arrival times, more reliable
supply arrival times can reduce these safety stocks. (The
term safety stock refers to the extra units of inventory
carried by a company as protection against possible stock
outages.) Clearly, shorter supply lead times also reduce
the need for safety stock.

On the other hand, no matter how well the planning
processes are executed or how advanced they may be,
some uncertainty almost always remains in a typical
supply chain on both the demand side and the supply
side. Companies continue to have a need for inventory
policies that are appropriate for their supply chain
environment and protect them from the serious
consequences of these uncertainties. For instance, a good
inventory policy takes into account demand variation,
supply lead times, and the service objective of a company
and calculates the size of safety stocks that can provide
the targeted service level with the minimum possible
inventory.

Inventory management is a well-established field of
research in both the academic and the industrial worlds,
and numerous publications and popular books are
available [1-8]. Analysis of Inventory Systems is an
early classic and a valuable source [9].

Numerous academic papers have made significant
contributions to the field. While it is not possible to
include all without providing an extensive survey, we can
mention [10-16] as examples of classic publications in the
field, and [17-19] as examples of later publications that
have made important contributions.

Optimized inventory policies are the most important
output provided by inventory optimization software.
Such policies are often characterized by a few
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parameters such as safety stock and lot size. Optimal
inventory policies can reduce inventory investment and
improve customer service significantly. Hence, most

of the time, a very attractive business case exists for
purchasing and implementing such inventory software.
Of course, companies that do not have the execution
processes in place for proper implementation of these
policies cannot benefit from them. Along with other
basics, execution typically requires the visibility of
different kinds of inventories (such as materials on hand,
on order, committed, or in transit) across the supply
chain, as well as the visibility of demand information such
as forecasts and sales orders. Most Enterprise Resource
Planning (ERP) systems or SCM systems are capable of
providing this visibility, although fragmented systems—
for example, in the form of IT systems with little
integration or with different applications—can lead to
data-integrity problems, such as data with missing fields
or with different definitions.

As is the case for any other software solution, some
concerns may exist with respect to using standalone
software to optimize inventory. (Note that when we use
the term standalone software, we refer to software that
is designed to be self-sufficient in terms of performing a
process or a part of the process, and that usually includes
such basic elements as a database, capability to store and
manipulate inputs and outputs, an engine that performs
the calculations, and a graphical user interface.) If many
elements of an inventory management process are
missing, a standalone software package may be the right
choice for a company, because such a package can help
establish and facilitate the entire process. However, if
many of the elements already exist, and a company has to
focus on optimizing safety stocks or lot sizes, a quick and
inexpensive solution like ours can be a viable choice. Our
solution is designed as a part of the ERP system and
hence does not require complex integration. Typical
concerns associated with standalone software use are
outlined in the following paragraphs.

Software proliferation: In order to gain full benefit of
a well-planned and well-executed supply chain process,
companies often find themselves in a situation in which
they must buy several layers of applications. Typically,
their ERP system may be considered to be the bottom
layer. Systems or applications may be integrated into
ERP. These include applications for distribution
requirements planning (DRP), materials requirements
planning (MRP), demand planning, SCM, order
fulfillment, procurement planning, and inventory-
optimization systems. These applications, which may
have complex integrations with one another, present a
serious IT challenge to companies that are concerned
about cost-effective management and maintenance of
their IT portfolios. If major business process changes
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evolve and the applications are therefore required to
support these changes, they may be inadequate or may
require substantial modifications to deliver the required
functionality. If the process changes are so extensive that
they affect a number of applications and the way they
must integrate, it may be very expensive to perform

the necessary changes in these applications. Realizing
that these costs can be very high, many companies
understandably resist additions to their systems portfolio
because they do not know what changes will be required
in the future.

Cost of implementation. Standalone solutions must
address issues such as Internet access infrastructure,
security, and system integration. Such concerns lead to an
unavoidable infrastructure cost that has to be incurred
in order to realize the benefit of the solution, which
facilitates inventory reduction and/or customer service
improvements. To the extent that a solution can take
advantage of existing infrastructure in addressing these
issues, it will be more attractive from an implementation
and maintenance cost point of view.

Systems integration: Since inventory optimization has
extensive data requirements, integration into existing
ERP and SCM systems can be time-consuming and
costly. However, robust and flexible data-extraction
templates can significantly reduce system integration
costs. Note that when major version updates occur,
version compatibility can become problematic while
maintaining this integration. Complex forms of
integration are clearly undesirable because business
changes may also require modifications in the way
applications must integrate.

Purchase price, maintenance and user fees: Standalone
software typically requires an up-front purchase cost,
annual fees based on the number of users, and
maintenance contracts. Version upgrades add to these
costs, as does training and/or hiring new staff who can
use the software effectively.

Cost-effective inventory optimization solution
Most of the up-front effort, and therefore cost, incurred
with inventory optimization software comes from data
and systems integration. Although the algorithmic part
of a solution that performs the inventory optimization
provides value, this is relatively inexpensive because many
algorithms with a range of features are readily available
from various sources such as textbooks, handbooks, and
academic publications. Some very specialized software
companies or companies that have strong research
departments can provide proprietary techniques that
are not publicly available.

The approach used by most standalone inventory
optimization software packages may be described as
follows. First, the package obtains an extract of data
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from an ERP system (typically via a flat file, containing
records with no structured relationships, or a Microsoft
Excel** file). The data is imported to a software package
and converted to a form that an optimization engine can
use. The calculations are carried out using a language
such as C or C4++. The output is placed in a data
repository that can be viewed by the user and sent back to
the ERP system or an Advanced Planning and Scheduling
(APS) system.

In many cases that are not complex, relatively simple
algorithms may provide satisfactory solutions. In fact, the
solution-finding process of some common inventory
problems can be simplified to the extent that these
solutions can be calculated using simple mathematical
functions available in Structured Query Language (SQL).

SQL is a language that enables access to a database,
performs queries with flexible conditions, and facilitates
basic data processing operations using commands such
as retrieve, insert, delete, and update. Although many
versions of SQL exist, basic commands in compliance
with American National Standards Institute (ANSI)
standards are supported by all providers. SQL is
commonly available in existing database software offered
by various vendors and widely used by organizations for
managing large sets of data. An accessible introduction
to SQL can be found in [20].

Although the wide availability of SQL is an advantage,
it does have limitations. For tasks such as inventory
optimization, SQL is not the appropriate tool, since it is
not designed for programming and executing advanced
algorithms during the runtime of an application.
However, we can simplify some common inventory
optimization problems in order to perform the optimal
safety stock and lot size (that is, economic order quantity)
calculations using basic mathematical functions available
in SQL. (The term economic order quantity refers to a
quantity that minimizes the fixed inventory replenishment
costs and inventory carrying costs.) Coupled with readily
available data-extraction templates in many database
software packages, our approach makes it possible to
create simple inventory optimization capabilities for
databases.

To take advantage of SQL, we attempted to make our
approach work seamlessly for systems with databases
that have strong capabilities for extracting and
manipulating data from transaction systems. Figure 1
schematically illustrates how our approach works. Using
available data extractors, we extract, transform, and load
(ETL) essential data such as sales transactions and lead
times into multidimensional summary data tables called
InfoCubes in the SAP** literature. [SAP, which stands for
systems, applications, and products in data processing, is
a business application and an ERP solution software
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Web user access

Transaction data

InfoCubes
for data
processing

Library of inventory
optimization algorithms

Simple approach for inventory optimization using SQL. Arrows
show the directions of information flows. Green double arrows
represent the closely integrated InfoCubes and algorithms. All
calculations are performed using query commands, which are
closely tied to the data in the InfoCubes.

provider.] After the ETL step, we can calculate optimal
inventory policies using query commands in runtime.
Database management systems (DBMSs) are designed
to maintain data and answer queries that are typically
executed through SQL. Queries can be real-time
operations, and they allow real-time interaction with the
users. However, this interaction is mainly for the purpose
of reporting basic statistics about the data, such as total
sales in a period or total inventory for a product group or
a geographical region. Complex operations, such as
algorithms used to optimize inventory policies, normally
cannot be performed by queries. Although programming
languages such as C, C++, and Java** are certainly capable
of performing such operations, they cannot be parts of
query commands that must process significant amounts of
input data in runtime. Java-based programs may be able to
perform calculations with acceptable speed. However,
speed may be lost in open database connectivity (ODBC)
and Java database connectivity (JDBC) layers that are
necessary for a Java inplementation. For runtime
efficiency, these calculations must be performed outside
the query commands in batch mode. Obtaining results this
way requires a few steps, as we described earlier, and the
real-time nature of the interaction is lost. In addition, file
downloads from and uploads to databases can be time-
consuming. The ability to perform optimization in the
queries provides users with interaction capabilities and
enables them to do real-time “what-if ” analyses in
addition to avoiding file downloads and uploads. Most
significantly, the optimization speed can be acceptable.
In a solution that we designed on a common ERP
platform, we were able to run queries in order to calculate
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Simple inventory policy in action. When the inventory position
decreases to the reorder point, a replenishment order is placed.
The replenishment order has a calculated lot size, and until the
order arrives, inventory shortages are prevented through the use of
safety stocks. The inventory that is on hand can never exceed the
maximum on-hand inventory. (Inventory level: on-hand inventory
minus backlogs. Backlogs: demand that is waiting to be satisfied
because of lack of inventory.)

optimal inventory policies and more than 30 related
parameters in 25 seconds for ten products with a total of
10,000 customer order transactions constituting demand
data. We used an IBM iSeries* server with an OS/400*
operating system running on four processors. The data
was stored in a DB2* database. Our solution design had
several advantages, as listed in the following paragraphs.

First, we note that our SQL-based approach was
simple in that SQL commands are communicated to the
database layer without implementing the ODBC and
JDBC connections and drivers required by a Java-based
solution. Data is efficiently retrieved from an already
established data model. This architecture also efficiently
and flexibly enables characteristics-based reporting on the
data.

Second, we note that since the ERP system we used
also had a flexible query-reporting capability based
on a data warehouse (i.e., a primary repository of an
organization’s historical data), no additional vendor or
software products were needed to gather data from the
back-end databases and communicate the results to the
web applications. More generally, our approach allows
us to calculate additional parameters by adding their
formulas to the query commands without having to
modify underlying programs such as Java code. By using
the web server that is native to the available ERP system,
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we needed no additional application development in
order to display the results of queries in the form of charts
and tables. A Java application typically requires the
creation of an HMTL document in order to communicate
the results over the Web.

We next present some classes of inventory problems
and show how their solutions can be simplified and
implemented in SQL.

Some common inventory problems and their
solutions

Although many inventory optimization problems may
require relatively complex algorithms, some classes

of inventory problems can be simplified using
approximations. We focus on simple inventory policies
in which a safety stock and lot size characterize the
inventory policy. Figure 2 shows how a simple inventory
policy works. As discussed previously, safety stock is the
stock that is held in order to protect against uncertainties
in the process, such as uncertainty in demand and
uncertainty in supply lead time. When the inventory
position (defined as the inventory on hand plus inventory
on order minus the back orders) drops to the reorder
point, inventory is replenished at an amount equal to the
lot size. Most often, this replenishment is not instant (i.e.,
orders arrive after a lead time).

Next, we study different types of common inventory
problems that have simple solutions. Before we proceed,
we need to mention that the calculations of optimal
inventory policies that we present here are based on the
following assumptions.

Our model assumes that inventory is held at a single
location. This model can also be used to approximate
multiple-location models. A single-location model is
one in which inventory is held at a single location.

Each SKU has independent and identically distributed
demand in each time period. (The term SKU stands for
stock-keeping unit; it is an identifier that helps merchants
track products and services.) We assume a time period
that corresponds to a day. Customer orders arrive
according to a Poisson distribution. The quantity
requested in an order is random and follows a normal
distribution. The quantities of all orders are independent,
identically distributed random variables. Demand that
occurs during the replenishment lead time has (or is
approximated by) a normal distribution. Inventory is
replenished through manufacturing or a supplier with a
positive lead time. In the case in which the inventory is
reviewed periodically, the service targets are set for the
worst period in the replenishment cycle. Therefore, the
actual inventory availability levels might be higher than
the target. This is a conservative approach; if some of
the assumptions made in the model do not hold, this
approach could compensate for a potential shortfall in
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actual service levels. Calculating optimal policies for
average service criteria requires search algorithms.
Although these algorithms would be simple to code in
a language such as C, it is not possible to code loops
in SQL. Therefore, we restrict service targets to the
conservative scenario. In the case in which inventory
is reviewed continuously, service targets are set to
control the average performance during a cycle.

The objective is one of the following: 1) minimize
expected inventory costs; 2) maximize expected profit; 3)
achieve target service with minimum expected inventory;
or 4) calculate safety stock for a fixed “days-of-supply”
policy. Days of supply is a measure of inventory level,
calculated by dividing inventory in units by the average
demand per day.

The service is defined by one of the following: 1) the
probability of no stock-out (i.e., the probability of
inventory being available to satisfy demand); 2) the
probability of on-time shipment to meet the customer
request date; 3) the probability of on-time shipment to
commit (i.e., the probability that shipment was made no
later than the date that was committed to the customer);
and 4) the fill rate (which relates to the fraction of
demand that can be met from inventory with no delay).

The lot-sizing policy is defined by one of the following:
1) fixed lot size (provided by the user); 2) variable lot size
(the quantity that brings inventory position to a specified
level); or 3) economic order quantity (the optimal order
quantity that minimizes the sum of fixed order cost and
inventory carrying cost). The inventory-replenishment
process is defined by continuous review and
replenishment or periodic review and replenishment.

Notation

In this section, we introduce the parameters that we need
in order to perform the calculations of optimal lot size
and optimal safety stock that make up an optimal
inventory policy. As we introduce these parameters,

we indicate whether they are considered as input,
intermediate calculations, or output. Some parameters
can be provided as inputs or can be calculated on the basis
of their historical observations. We label such parameters
as input or intermediate calculations. In the lists, we
follow an order of precedence; that is, inputs come first,
followed by intermediate calculations and outputs.

Inputs

PNS: Inventory availability target in percentages
(probability of no stock-out, i.e., the event of running out
of inventory).

FRT: Fill rate target in percentages, i.e., the fraction of
demand that can be met from inventory without any
delay.
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OTDR: On-time delivery to customer request target,

in percentages.

OTDC: On-time delivery to commit target, in
percentages.

OCOST: Fixed order cost (per order).

SCOST: Shortage cost (per unit per period).

HCOST: Inventory holding cost (per unit per period).
COST: Cost of a unit (cost of manufacturing or
purchase).

PRICE: Price of a unit.

SVALUE: Salvage value of a unit when season is over
(for seasonal items). This value is the price offered when
trying to dispose of the unsold inventory, and this price
is almost always a highly discounted one.

PDECLINE: Price decline of a unit (during a season or
period).

QFIX: Fixed lot size given by the user.

QUNIT: Unit lot size. (The output parameter LOT,
which represents lot size, must be an integer multiple of
this quantity.)

QMIN: Minimum lot size.

OMAX: Maximum lot size.

T: Number of days in the data time window. (Note: The
length of the time window must be determined prior to
calculating T.)

N: Number of orders during 7 days (i.e., during the entire
data time window).

NDAYS: Number of working days in a year.

I: Order number in the data window (/=1, 2, ---, N).
J: Day number in the data window (J=1, 2, ---, T).
DOQIJ]: Daily order quantity [total order quantity in day
JUJ=12,---,T)]

ORQ[I]: Order quantity in order I (I=1, 2, ---, N).
TSERVICE: Target service level (percentage).

MLT: Manufacturing (or supply) cycle time or period
length (in days) when inventory is reviewed and
replenished periodically. This parameter is also called
“manufacturing (or supply) frequency” and is the number
of days during which supplies are regularly planned.
PLT: Manufacturing (supply) lead time (in days). This is
the actual physical manufacturing time (or supplier’s
turnaround time).

OPT: Order processing time (in days). This is the number
of days required to process the inventory replenishment
orders from the stocking locations.

TLT: Transportation time (in days). This is the number
of days required to transport orders from the
manufacturing location to the stocking location.

IP: Inventory position. This is a key metric for the
execution of any inventory policy. It must be monitored
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during execution and not calculated in optimization. This
requires monitoring inventory on hand, inventory on
order, and amount of demand back-ordered. The proper
implementation of ROP (reorder point) requires keeping
track of the inventory position, because replenishment
orders should be triggered only when the inventory
position (not the inventory on hand) drops to ROP. IP is
given by IP = inventory on hand + inventory on order —
back orders.

Inputs or intermediary calculations
SPLT: Standard deviation of manufacturing (supply)
lead time PLT.

SOPT: Standard deviation of order processing time OPT.
STLT: Standard deviation of transportation time 7LT.

CLTR: Customer order lead time (requested by
customer).

CLTC: Customer order lead time (committed to
customer).

SCLTR: Standard deviation of customer order lead time
CLTR.

Intermediary calculations
RLT: Replenishment lead time (in days).

SRLT: Standard deviation of replenishment lead time
RLT.

ADLT: Average demand during replenishment lead time.

SDLT: Standard deviation of demand during
replenishment lead time.

OAR: Order arrival rate (average number of orders per
day).

TOQ: Sum of all order quantities.

TOQS: Sum of the squares of all order quantities.
TOD: Total of all daily demand quantities.

TODS: Total of the squares of all daily demand
quantities.

AOQ: Average order quantity (i.e., average quantity
demanded in a single customer order).

SOQ: Standard deviation of order quantity.
AOD: Average demand during a day.

SOD: Standard deviation of the amount of quantity
ordered during a day.

PDURATION: Duration (in days) of a season (or a
period) during which expected profit is to be maximized
or expected cost is to be minimized.

k. Safety factor used for safety stock calculation.

PVALUE: z value for the standard normal distribution.
This is used for the calculation of the safety factor k.
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Outputs
SS: Safety stock.

ROP: Reorder point.
LOT: Lot size.

MAX: Maximum inventory level.

Throughout the calculations below, we use sqrt(X) to
denote the square root of X, max(X, Y) to denote the
maximum of X and Y, min(X, Y) to denote the minimum
of X and Y, and In(X) to denote the natural logarithm
of X.

Calculation of optimal inventory policies using SQL
functions

All of the calculations presented in the following are
designed in such a way that they can be coded in SQL.
Since, as discussed, query languages are not able to use
loops and they have limited mathematical functions
available, we provide approximate solutions for problems
that normally require looping algorithms to solve.

Calculation of key problem parameters

First, we introduce different cases that apply to practical
inventory problems. Then, in each case, we calculate three
important parameters: PVALUE, RLT, and SRLT. Very
briefly, PVALUE represents or summarizes the objective
function of the optimization problem. The inverse of
the cumulative distribution of demand during the total
replenishment lead time at the PVALUE gives the
optimal amount of safety stock. RLT and SRLT are
respectively the mean and standard deviation of the
demand during the total replenishment lead time. We
refer to these three parameters as the key problem
parameters.

Case 1. Minimize expected inventory costs

In Case 1, the objective is to minimize the expected
inventory holding and backlogging costs. We assume
that the demand not met immediately in a period is
backlogged to the next period. Backlogging has costs
associated with expediting orders, paying a penalty to the
customer, buying inventory at a high price, or loss of
customer goodwill. We use a “myopic solution” to this
cost problem. This solution tries to minimize the expected
inventory-carrying and backlogging costs one period at a
time (hence our use of the term myopic). In general this
solution is not optimal, and the optimal policies can be
complex. However, the simplicity of the method makes
it practical. Reference [13] provides conditions under
which myopic policies are optimal. When significant
obsolescence costs exist that are associated with unsold
inventory, myopic policies may be unwise to use and
caution is warranted. One may also study [21] for such
cases.
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In the following, we show the calculation of three key
intermediary parameters, PVALUE, RLT, and SRLT:

A. If lot size is flexible and inventory is reviewed
periodically, then

SCOST
SCOST + HCOST .

B. If a lot size LOT exists, then

PVALUE =

LOT X HCOST

PVALUE = .
VALU AOD X NDAYS X SCOST

A. If inventory is reviewed and replenished
continuously (i.e., manufacturing or purchasing can
be performed at any time), then

RLT = OPT+TLT + PLT.

B. If inventory review and supply replenishment are
performed periodically with review period length
MLT, then

RLT = OPT+ TLT + PLT + MLT,
SRLT = sqrt (SOPT’ + STLT” + SPLT") .

Case 2. Maximize expected profit

In Case 2, the objective is to maximize the expected profit
(revenue minus purchase cost minus inventory cost). This
maximization is typically used in cases in which a large-
quantity purchase (or manufacturing build) exists prior to
a season, or a period such as a month or a quarter. The
objective is to purchase or build the appropriate quantity
in order to maximize the expected profit in that season or
period. Since the supply quantity must be decided before
observing the demand, a risk is associated with the supply
quantity. Excess supply is sold at a loss at the end of the
season or period. Supply shortage causes revenue and
profit shortfall. Relevant parameters include COST
(purchase price or manufacturing cost per unit), PRICE
(price of the unit in the market), and SVALUE (value per
unit for any unsold units left at the end of the season or
other period when salvaged).

When the problem has multiple periods, the salvage
value per unit must be calculated as SVALUE = PRICE —
PDECLINE. Here, PDECLINE is the loss of value of a
unit (or price decline) during the season or other period.
For items that have a very long life, where there is no or
minimal price decline, this model is not appropriate.
Because a perpetual demand exists for such items, the
focus is typically on cost minimization or service target
achievement instead of profit maximization.

The PVALUE that maximizes the expected profit
during the season or other period is given by the
following:
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PVALUE = (PRICE — COST)/(PRICE — SVALUE),
RLT = PDURATION,
SRLT = SPDURATION.

Case 3. Achieve a target probability of no stock-out
In Case 3, the probability of no stock-out is defined by
PNS (see notations above). PVALUE, RLT, and SRLT
are calculated as follows. First, PVALUE = PNS. Note
that if inventory is reviewed and replenished continuously
(i.e., manufacturing can be done at any time, or purchase
can be done at any time), then RLT=0OPT+ TLT+ PLT.
If inventory review and supply replenishment are done
periodically with review period length M LT, then

RLT = OPT+ TLT+ PLT + MLT,
SRLT = sqrt (SOPT” + STLT® + SPLT").

Case 4. Achieve a target probability of on-time
shipment to customer request date

In Case 4, on-time delivery in response to a customer
request is defined by OTDR (see notations above).
PVALUE, RLT, and SRLT are calculated as follows.
First, PVALUE = OTDR. If inventory is reviewed and
replenished continuously (i.e., manufacturing can be done
at any time, or purchase can be done at any time), then
RLT=OPT+ TLT+ PLT — CLTR. If inventory review
and supply replenishment are done periodically with
review period length MLT, then

RLT = OPT + TLT + PLT — CLTR + MLT,
SRLT = sqrt (SOPT” + STLT” + SPLT” + SCLTR’).

Case 5. Achieve target probability of on-time
shipment to commit date

In Case 5, on-time delivery in response to a customer
request is defined by OTDC (see notations above).
PVALUE, RLT, and SRLT are calculated as follows.
First, PVALUE = OTDC. If inventory is reviewed and
replenished continuously (i.e., manufacturing can be done
at any time, or purchase can be done at any time), then
RLT=OPT+ TLT+ PLT — CLTC. If inventory review
and supply replenishment are done periodically with
review period length M LT, then

RLT = OPT + TLT + PLT — CLTC + MLT,
SRLT = sqrt (SOPT” + STLT® + SPLT").

Case 6. Achieve a target fill rate

In Case 6, fill rate is defined by FRT (see notations
above). PVALUE, RLT, and SRLT are calculated as
follows. First, PVALUE = FRT. If inventory is reviewed
and replenished continuously (i.e., manufacturing can
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be done at any time, or purchase can be done at any
time), then RLT = OPT + TLT + PLT. If inventory
review and supply replenishment are done periodically
with review period length M LT, then

RLT = OPT + TLT + PLT + MLT,
SRLT = sqrt (SOPT” + STLT® + SPLT").

Explanation of steps in calculations

We now give a step-by-step description of the method for
calculating the optimal inventory policies by using the key
problem parameters that we have calculated above.

Step 1: Calculate daily demand statistics

TOQ = ORQI1] + ORQ[2] + - - - + ORQ[N]

(sum of quantities of all orders in the data time window).
AOQ =TOQ/N (average order quantity).

TOQS = ORQ[1]* + ORQ[2) + - - - + ORQ[N}?

(sum of squares of all orders in the data time window).
SOQ = sqrt [(TOQS — N X A0Q?)/(N — 1)]

(standard deviation of order quantity).

OAR = N/T (average number of orders per day).
AOD = OAR X AOQ (average demand during a day).
SOD = sqrt (AOD* + OAR X SOQ?)

(standard deviation of demand during a day).

Step 2: Calculate lead-time statistics

Up to this point, in the above calculations we have
assumed that total replenishment time RLT is a known
and fixed quantity. If the total replenishment time is not
fixed, and every time it can be a different number, one
must keep track of this lead time for each item-location
combination through time. Then, by using this data

one can estimate the mean and standard deviation of
this lead time.

We assume that all lead times (i.e., OPT, TLT, PLT,
and CLTR) are random, except for the manufacturing
cycle time M LT and the customer order lead-time commit
CLTC.

In the following, we demonstrate how to calculate the
standard deviation of the transportation lead time TLT
if one has a sample of transportation lead times. These
calculations can be used for other lead times for which a
sample of observations is available. First we introduce the
following notation:

TLT: Mean (or average) transportation lead time (as
previously defined).

TLTS: Sum of the squares of transportation lead-time
observations in the sample.

STLT: Standard deviation of transportation lead

time (this must be calculated from sample data of
transportation lead times for that item, from the plant
to the stocking location for the item).
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Consider a case with K transportation lead-time
observations in our sample given by L[1], L[2], ---, L[K].
We then calculate TLT as follows:

TLT = (L1 +L2]+---+ L[K])/K
(average of all transportation times in the sample)

To calculate the standard deviation, we need the sum of
the squares of transportation lead times, which we denote
it as TLTS. In other words,

TLTS = L1’ + L2 + -+ + LIK]
(sum of squares of all transportation times in the sample).

We then calculate the standard deviation as follows:

STLT = sqit[(TLTS = KX TLT?)/(K — 1)]
(standard deviation of all transportation times in the
sample).

Step 3: Calculate key problem parameters

For various different types of problems, earlier in this
paper we have provided ways to calculate the key
intermediary parameters PVALUE, RLT, and SRLT.
These are used to calculate the optimal inventory policy
parameters.

Step 4: Calculate mean and standard deviation of demand
during lead time

Mean demand during the replenishment lead time

is ADLT = AOD X RLT. If the lead time is

random with standard deviation SRLT, standard
deviation of demand during lead time is

SDLT = sqrt (SRLT?> X AOD?> + SOD> X RLT).

If lead time is fixed, standard deviation of demand
during lead time is SDLT = SOD X sqrt (RLT).

Step 5: Calculate fixed lot size

All formulas provided so far are appropriate for one-for-
one replenishment where no restriction exists on the lot
size or the frequency of orders. When the lot size is fixed
or a minimum or maximum restriction exists on it,
because of replenishment process limitations, supply
requirements, or cost considerations, these restrictions
must be taken into account.

The user provides a fixed lot size as an input, and this
size is used directly in the calculations. In this case, the
inventory policy is still to bring “inventory position”
to ROP level whenever it falls below ROP. However,
because of the restriction on the lot size, the order
quantity must reflect these restrictions. We have five
different types of lot size restrictions, discussed in the
following sections.

Case 1: Fixed lot size

In this case, there is a predetermined lot size QFIX.
Whenever the inventory position drops to ROP,
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this quantity is ordered. Here, LOT = QFIX. If no
predetermined lot size exists and economic order quantity
cannot be calculated because of the lack of fixed order
cost data (or if economic order quantity is not

desired), the following lot size can be recommended:
LOT = AO0D X RLT. Here RLT is the total
replenishment lead and AOD is the average daily demand.

Case 2: Minimum increments

In this case, the lot size has to be an integer multiple of
a minimum number (QUNIT). The lot size is given by
LOT =M X QUNIT. Here M is the smallest integer for
which M X QUNIT is greater than ROP — IP, and IP is
the inventory position.

Case 3: Min lot size

Lot size can be any number, but it must be above a
minimum. That is, LOT=max (QMIN, ROP — IP). Here,
QMIN is the minimum lot size and 7P is the inventory
position.

Case 4: Max lot size

Lot size can be any number, but it must be below a
maximum. That is, LOT = min (QMAX, ROP — IP).
Here QM AX is the maximum lot size and /P is the
inventory position.

Case 5: Economic order quantity

When costs are available, an economic order quantity
(EOQ) can be calculated. The cost inputs required for this
calculation are OCOST (fixed order cost paid per supply
order) and HCOST (inventory holding cost, dollars

per unit held per day). The lot size is given by

LOT =sqrt (2AOD X OCOST/HCOST).

Step 6: Calculate safety factor

When we previously described six different cases, we
showed how to calculate key problem parameters in each
case. Now we show how to calculate safety factors. In the
inventory literature, these safety factors are calculated
using functions such as the inverse of the standard normal
distribution and the inverse of what is called g-function.
These functions do not exist in standard query languages.
Here we show the use of approximations to these
functions; these approximations can easily be coded

in query languages.

Cases 1 through 5
Safety factor k is given by the following:

k = —MULTIPLIER X (0.5/A4,)
X [A, — sqrt(max{0, A?
+ 44, In [max (PVALUE, 1 — PVALUE) — 1]})],
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where MULTIPLIER =—1 if PVALUE < 0.5,
MULTIPLIER =1 if PVALUE > 0, A; =1.363471, and
A, =0.266705. The formula we provide here for the k
value is an approximation for the inverse of the standard
normal distribution function. Since some versions of SQL
do not have the inverse normal as a built-in function, this
formula is useful, since it uses mathematical function
available in SQL. The formula is very accurate for
practical purposes.

We tested the values of k in the interval [-3, 3]
and found that the absolute maximum and absolute
minimum errors are 0.035711 and —0.035711,
respectively.

Case 6. Achieve service target (fill rate)
Safety factor k is given by the following:

2 3
A AZ+ AT+ A7
B, + B,Z + B,Z +B,Z" + B,Z'

k

where

GVALUE = (1 — PVALUE) X LOT /SDLT
if there is a fixed lot size, LOT,

GVALUE = (1 — PVALUE) X ADLT /(RLT X SDLT)
if lot size is flexible,

Z = sqrt {2 In [max(1,5/GVALUE)} ,

and Ay =—-5.3925569, 4, = 5.6211054, A, =—3.883683,
Az =1.0897299, B, = 1.0000000, B; =—0.72496485, B, =
0.507326622, B3 = 0.066913687, and B, =—0.003291291.
The derivation of these formulas can be found in [6].
These formulas are used for continuous review problems
in which demand is also continuous. In this case, a simple
(s, Q) inventory policy can be used if no more than a
single replenishment order is outstanding in the supply
pipeline. Here, Q is the lot size (LOT), and s is the reorder
point (ROP). According to this policy, one places a
replenishment order of Q when inventory position 7P
drops to s.

The above approximation is a very accurate estimation
of safety factor k for normal demand. We tested the
values of k in the interval [-3, 3] and found that the
maximum and minimum errors are 0.000295
and —0.000205, respectively.

Step 7: Calculate optimal inventory policy

Inventory policy parameters include safety stock (SS),
reorder point (ROP), and maximum inventory level
(MAX). These parameters were explained earlier; their
formulas, based on the safety factor and lot size
(LOT), are SS=k X SDLT, ROP = ADLT + SS, and
MAX = ROP + LOT.
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Activity

Data analysis and
algorithm selection

112(3]|4|5]|6
Performance review and
algorithm refinement

Solution design and
configuration

planning

Pilot implementation -

Full implementation

Implementation !

Typical plan for the SQL-based inventory optimization solution
implementation. The numbers at the top represent weeks, from
week 1 to week 10 and beyond.

Implementation issues

When implementing our approach, one must test the
calculations with respect to actual data, since many of
the assumptions may not be appropriate for the data.
Simulation tests can be performed using actual sales and
lead time data to observe how the inventory policies
perform. If the performance is poor because of the
normality of demand assumption, other distributions
(such as gamma or log-normal) can be used.
Approximations similar to what we presented for the
normal distribution can be developed for other demand
distributions. Alternatively, empirical distributions can be
derived on the basis of sales data, and their percentiles
can be used to calculate the safety stocks.

After achieving satisfactory performance results, a
solution can be designed with a configuration that
addresses the customer’s requirements. A quick pilot
implementation can follow and policies can be
monitored in action for a subset of products before
full implementation. A project plan for a simple
implementation is given in Figure 3. The durations of
activities are our estimates for a standard implementation.
Actual implementation times can vary depending on the
complexity of a customer’s data systems and requirements.

Some of the algorithms we have presented are tested
using actual historical data from clients. The simulation
tests based on actual transaction data showed that for
a variety of demand patterns, the formulas used in this
paper are able to deliver target service levels on the
average, although for some SKUs actual service can be
below the target and for some it can be above. Most of
the deviations from target service levels were within
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acceptable statistical tolerance levels in our test cases.
However, caution must be used in cases in which the
assumptions we made here are arbitrary. In using the
formulas, we have shown a few issues that must be kept
in mind; we reiterate some of these issues below.

Our basic assumption on which the inventory policy
calculations are based is that historical demand is a good
representation of future demand. If trends in the demand
data exist, statistical forecasting models can be used to
estimate demand during lead times. Such forecasting
models can generate the mean daily demand (i.e., the
daily demand forecast) and the standard deviation of
daily demand. This forecast can replace the demand
statistics calculated in Step 1. It is possible to program
in SQL simple but effective forecasting techniques such
as exponential smoothing and moving average, since
these have simple forms.

The formulas normally work better with products that
have a high demand volume (e.g., products that receive
frequent orders). For low-demand products, inventory
policies are very sensitive to the amount of individual
orders; therefore, the actual service levels may vary
significantly for such products. For some low-demand
products, if it is critical to achieve desired inventory
availability levels, it would help to increase the lot sizes
to cover several months of demand.

Updating the inventory policy parameter (i.e., safety
stock, reorder point, and lot size) calculations may or
may not be desirable. If the demand pattern changes very
little, the inventory policy should also not be expected to
change much. In steady demand situations, monthly or
quarterly parameter updates are reasonable. Otherwise,
more frequent updates are needed.

Inventory replenishment orders should be triggered by
observing the relative value of inventory position /P to
the reorder point ROP. That is, when IP drops below
ROP, an inventory replenishment order should be
triggered for the predetermined lot size. If the reviews are
periodic and the lot size is flexible, an order is placed in
every period so as to bring the inventory position to ROP.
This is also known as a basestock policy.

We note that IBM Global Business Services, IBM
Research, and NIBCO (Northern Indiana Brass
Company) have jointly implemented a version of the
approach described in this paper to provide NIBCO a
cost-effective inventory management solution. NIBCO
has observed significant improvements in both inventory
levels and on-time shipment performance since 2005.

Conclusion
Advantages

We have briefly explained our approach to create
a virtually seamless inventory optimization solution

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007



for database systems that use SQL. This approach has a
number of potential advantages from both technical and
business process perspectives. Here, we briefly explain
some of these advantages.

Our approach simplifies optimal inventory policy
calculations in such a way that existing databases and
basic SQL commands can be used to rapidly code these
calculations. Data-extraction templates and reporting
templates of databases can be used to provide a fully
functional solution. Hence, for simple inventory
problems, no need exists for additional software.

Because this is a solution provided on an existing
database system, there is no need to create new security
protocols, network integration infrastructure, and Web
access protocols. All of these elements are typically
provided by the existing database system infrastructure
for the users.

By using query capabilities of the existing database
application, various reports of optimal policies, key
performance indicator (KPI) projections and “what-if”
analyses for decision support can be created. Many of
these basic analyses can be done using mathematical
functions available in SQL.

Because companies that use database applications
already have trained staff, much less technical training is
required in order to use this solution. As for the business
process, the solution does not necessarily require
changing existing inventory planning processes. It
requires that the execution of recommended inventory
policies be done properly by monitoring key metrics
such as inventory position and sales orders.

Because this solution requires no new software,
typical purchase costs and user fees do not apply. The
maintenance costs can be controlled because this solution
can be implemented as a part of the existing database/
data-warehouse maintenance program.

Because the calculations are done at runtime through
query commands, inventory managers and analysts can
perform real-time what-if analysis using query reports.
For instance, analysts can observe how inventory levels
are affected if they change some key factors such as
customer service objectives, operating objectives, and
inventory policy types.

More complex inventory problems

Although the approach we have presented in this paper
can solve some common inventory problems, many other
cases exist for which more complex algorithms are
needed. These can be coded following the standard
approach and using a common programming language
such as C or C++ or Java. Integration of these algorithms
into the solution is typically done at the data extraction
level. The results are then stored in database tables.
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Since sales data is accessed and other historical demand
statistics are calculated during data extraction from the
transaction system, if advanced forecasting algorithms
are desired in order to perform more accurate forecasts,
these algorithms can be called during the data extraction
process. The ability to use C or Java at the data
extraction level gives enough flexibility to code advanced
algorithms.

Figure 4 shows details of how this flexible design
may work. As the figure indicates, the optimal policy
calculations are performed during data extraction from
the ERP system. The optimal inventory policies are
stored, along with input data, and are made ready for
reporting purposes. In addition, some metrics such as
projected inventory levels, projected backlogs, and their
confidence bands can also be calculated and stored.
Queries are used for reporting only, and no optimization
calculation is performed at the query level. This
architecture provides the flexibility to place complex
algorithms during the data extraction. Programming
languages such as Java, C, or C++can be used to code the
algorithms.

This solution design has a drawback in that it may not
be possible to obtain quick real-time results because of
architectural and algorithmic complexity. However,
potential scenarios can be analyzed in anticipation of user
needs, and results can be stored prior to user requests.
Thus, real-time response can be provided to anticipate
queries.

Numerous sources of complications exist in inventory
problems, and this is why the inventory-control literature
is so rich. The multi-echelon nature of supply chain
systems, substitutability of products, nonstationary
nature of demand, products with bills of materials,
and distribution systems are examples of the elements
that make inventory problems complex and variable.
(Distribution systems are systems in which inventory flows
from manufacturing to central distribution centers, then
to warehouses, and then to local stores.)

Since the literature is extensive, we can mention only
a few key relevant publications. Readers who wish to
become more familiar with these complexities may
consult [10, 11, 19, 22-30] for multi-echelon systems.
More specifically, for one-warehouse, multi-retailer
systems, see [5, 14, 15, 31-36]. For assembly
manufacturing systems, see [4, 30-35, 37].

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Sun

Microsystems, Inc., Microsoft Corporation, or SAP
Aktiengesellschaft in the United States, other countries, or both. 443
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