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Successful implementation of an inventory optimization solution
requires significant effort and can pose certain risks to companies
implementing such solutions. Depending on the complexity of the
requirements, the solution may also involve a substantial IT
investment. In this paper, we present a cost-effective solution for
inventory optimization that can be useful for small and medium-
sized businesses with limited IT budgets. This solution can be
implemented on any application platform that is capable of
processing basic SQLe (Structured Query Language) commands.
The solution eliminates the need to purchase additional software
and has a framework in which sales data in an Enterprise Resource
Planning (ERP) system are accessed, demand statistics based on
this data are generated along with other key parameters, and
optimal inventory policies, such as those involving safety stocks
and lot sizes, are calculated and reported.

Introduction
One of the most tangible ways in which companies can

benefit from IT investments is through implementing

solutions that are designed to provide inventory reduction

opportunities. Companies can reduce their inventory

through more accurate and faster receipt of demand

information, more reliable and shorter supply lead times,

and better inventory policies.

Faster receipt of demand information and shorter lead

times can be achieved by changing planning processes,

modifying supply chain infrastructure, and adopting

practices that enable rapid flow of information on both

the demand and supply sides. Supply chain management

(SCM) solutions are designed to support these activities.

(The term lead time refers to the amount of time between

the placing of an order and the receipt of the goods

ordered.) Demand-planning solutions can also help

increase the accuracy of demand forecasts.

Improved reliability of supply arrival times also has an

impact on inventory levels. Because companies must keep

a safety stock to protect against variations in either

supply quantity or supply arrival times, more reliable

supply arrival times can reduce these safety stocks. (The

term safety stock refers to the extra units of inventory

carried by a company as protection against possible stock

outages.) Clearly, shorter supply lead times also reduce

the need for safety stock.

On the other hand, no matter how well the planning

processes are executed or how advanced they may be,

some uncertainty almost always remains in a typical

supply chain on both the demand side and the supply

side. Companies continue to have a need for inventory

policies that are appropriate for their supply chain

environment and protect them from the serious

consequences of these uncertainties. For instance, a good

inventory policy takes into account demand variation,

supply lead times, and the service objective of a company

and calculates the size of safety stocks that can provide

the targeted service level with the minimum possible

inventory.

Inventory management is a well-established field of

research in both the academic and the industrial worlds,

and numerous publications and popular books are

available [1–8]. Analysis of Inventory Systems is an

early classic and a valuable source [9].

Numerous academic papers have made significant

contributions to the field. While it is not possible to

include all without providing an extensive survey, we can

mention [10–16] as examples of classic publications in the

field, and [17–19] as examples of later publications that

have made important contributions.

Optimized inventory policies are the most important

output provided by inventory optimization software.

Such policies are often characterized by a few
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parameters such as safety stock and lot size. Optimal

inventory policies can reduce inventory investment and

improve customer service significantly. Hence, most

of the time, a very attractive business case exists for

purchasing and implementing such inventory software.

Of course, companies that do not have the execution

processes in place for proper implementation of these

policies cannot benefit from them. Along with other

basics, execution typically requires the visibility of

different kinds of inventories (such as materials on hand,

on order, committed, or in transit) across the supply

chain, as well as the visibility of demand information such

as forecasts and sales orders. Most Enterprise Resource

Planning (ERP) systems or SCM systems are capable of

providing this visibility, although fragmented systems—

for example, in the form of IT systems with little

integration or with different applications—can lead to

data-integrity problems, such as data with missing fields

or with different definitions.

As is the case for any other software solution, some

concerns may exist with respect to using standalone

software to optimize inventory. (Note that when we use

the term standalone software, we refer to software that

is designed to be self-sufficient in terms of performing a

process or a part of the process, and that usually includes

such basic elements as a database, capability to store and

manipulate inputs and outputs, an engine that performs

the calculations, and a graphical user interface.) If many

elements of an inventory management process are

missing, a standalone software package may be the right

choice for a company, because such a package can help

establish and facilitate the entire process. However, if

many of the elements already exist, and a company has to

focus on optimizing safety stocks or lot sizes, a quick and

inexpensive solution like ours can be a viable choice. Our

solution is designed as a part of the ERP system and

hence does not require complex integration. Typical

concerns associated with standalone software use are

outlined in the following paragraphs.

Software proliferation: In order to gain full benefit of

a well-planned and well-executed supply chain process,

companies often find themselves in a situation in which

they must buy several layers of applications. Typically,

their ERP system may be considered to be the bottom

layer. Systems or applications may be integrated into

ERP. These include applications for distribution

requirements planning (DRP), materials requirements

planning (MRP), demand planning, SCM, order

fulfillment, procurement planning, and inventory-

optimization systems. These applications, which may

have complex integrations with one another, present a

serious IT challenge to companies that are concerned

about cost-effective management and maintenance of

their IT portfolios. If major business process changes

evolve and the applications are therefore required to

support these changes, they may be inadequate or may

require substantial modifications to deliver the required

functionality. If the process changes are so extensive that

they affect a number of applications and the way they

must integrate, it may be very expensive to perform

the necessary changes in these applications. Realizing

that these costs can be very high, many companies

understandably resist additions to their systems portfolio

because they do not know what changes will be required

in the future.

Cost of implementation: Standalone solutions must

address issues such as Internet access infrastructure,

security, and system integration. Such concerns lead to an

unavoidable infrastructure cost that has to be incurred

in order to realize the benefit of the solution, which

facilitates inventory reduction and/or customer service

improvements. To the extent that a solution can take

advantage of existing infrastructure in addressing these

issues, it will be more attractive from an implementation

and maintenance cost point of view.

Systems integration: Since inventory optimization has

extensive data requirements, integration into existing

ERP and SCM systems can be time-consuming and

costly. However, robust and flexible data-extraction

templates can significantly reduce system integration

costs. Note that when major version updates occur,

version compatibility can become problematic while

maintaining this integration. Complex forms of

integration are clearly undesirable because business

changes may also require modifications in the way

applications must integrate.

Purchase price, maintenance and user fees: Standalone

software typically requires an up-front purchase cost,

annual fees based on the number of users, and

maintenance contracts. Version upgrades add to these

costs, as does training and/or hiring new staff who can

use the software effectively.

Cost-effective inventory optimization solution
Most of the up-front effort, and therefore cost, incurred

with inventory optimization software comes from data

and systems integration. Although the algorithmic part

of a solution that performs the inventory optimization

provides value, this is relatively inexpensive because many

algorithms with a range of features are readily available

from various sources such as textbooks, handbooks, and

academic publications. Some very specialized software

companies or companies that have strong research

departments can provide proprietary techniques that

are not publicly available.

The approach used by most standalone inventory

optimization software packages may be described as

follows. First, the package obtains an extract of data
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from an ERP system (typically via a flat file, containing

records with no structured relationships, or a Microsoft

Excel** file). The data is imported to a software package

and converted to a form that an optimization engine can

use. The calculations are carried out using a language

such as C or Cþþ. The output is placed in a data

repository that can be viewed by the user and sent back to

the ERP system or an Advanced Planning and Scheduling

(APS) system.

In many cases that are not complex, relatively simple

algorithms may provide satisfactory solutions. In fact, the

solution-finding process of some common inventory

problems can be simplified to the extent that these

solutions can be calculated using simple mathematical

functions available in Structured Query Language (SQL).

SQL is a language that enables access to a database,

performs queries with flexible conditions, and facilitates

basic data processing operations using commands such

as retrieve, insert, delete, and update. Although many

versions of SQL exist, basic commands in compliance

with American National Standards Institute (ANSI)

standards are supported by all providers. SQL is

commonly available in existing database software offered

by various vendors and widely used by organizations for

managing large sets of data. An accessible introduction

to SQL can be found in [20].

Although the wide availability of SQL is an advantage,

it does have limitations. For tasks such as inventory

optimization, SQL is not the appropriate tool, since it is

not designed for programming and executing advanced

algorithms during the runtime of an application.

However, we can simplify some common inventory

optimization problems in order to perform the optimal

safety stock and lot size (that is, economic order quantity)

calculations using basic mathematical functions available

in SQL. (The term economic order quantity refers to a

quantity that minimizes the fixed inventory replenishment

costs and inventory carrying costs.) Coupled with readily

available data-extraction templates in many database

software packages, our approach makes it possible to

create simple inventory optimization capabilities for

databases.

To take advantage of SQL, we attempted to make our

approach work seamlessly for systems with databases

that have strong capabilities for extracting and

manipulating data from transaction systems. Figure 1

schematically illustrates how our approach works. Using

available data extractors, we extract, transform, and load

(ETL) essential data such as sales transactions and lead

times into multidimensional summary data tables called

InfoCubes in the SAP** literature. [SAP, which stands for

systems, applications, and products in data processing, is

a business application and an ERP solution software

provider.] After the ETL step, we can calculate optimal

inventory policies using query commands in runtime.

Database management systems (DBMSs) are designed

to maintain data and answer queries that are typically

executed through SQL. Queries can be real-time

operations, and they allow real-time interaction with the

users. However, this interaction is mainly for the purpose

of reporting basic statistics about the data, such as total

sales in a period or total inventory for a product group or

a geographical region. Complex operations, such as

algorithms used to optimize inventory policies, normally

cannot be performed by queries. Although programming

languages such as C, Cþþ, and Java** are certainly capable
of performing such operations, they cannot be parts of

query commands that must process significant amounts of

input data in runtime. Java-based programsmay be able to

perform calculations with acceptable speed. However,

speed may be lost in open database connectivity (ODBC)

and Java database connectivity (JDBC) layers that are

necessary for a Java inplementation. For runtime

efficiency, these calculations must be performed outside

the query commands in batch mode. Obtaining results this

way requires a few steps, as we described earlier, and the

real-time nature of the interaction is lost. In addition, file

downloads from and uploads to databases can be time-

consuming. The ability to perform optimization in the

queries provides users with interaction capabilities and

enables them to do real-time ‘‘what-if ’’ analyses in

addition to avoiding file downloads and uploads. Most

significantly, the optimization speed can be acceptable.

In a solution that we designed on a common ERP

platform, we were able to run queries in order to calculate

Figure 1

Simple approach for inventory optimization using SQL. Arrows 

show the directions of information flows. Green double arrows 

represent the closely integrated InfoCubes and algorithms. All 

calculations are performed using query commands, which are 

closely tied to the data in the InfoCubes. 
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optimal inventory policies and more than 30 related

parameters in 25 seconds for ten products with a total of

10,000 customer order transactions constituting demand

data. We used an IBM iSeries* server with an OS/400*

operating system running on four processors. The data

was stored in a DB2* database. Our solution design had

several advantages, as listed in the following paragraphs.

First, we note that our SQL-based approach was

simple in that SQL commands are communicated to the

database layer without implementing the ODBC and

JDBC connections and drivers required by a Java-based

solution. Data is efficiently retrieved from an already

established data model. This architecture also efficiently

and flexibly enables characteristics-based reporting on the

data.

Second, we note that since the ERP system we used

also had a flexible query-reporting capability based

on a data warehouse (i.e., a primary repository of an

organization’s historical data), no additional vendor or

software products were needed to gather data from the

back-end databases and communicate the results to the

web applications. More generally, our approach allows

us to calculate additional parameters by adding their

formulas to the query commands without having to

modify underlying programs such as Java code. By using

the web server that is native to the available ERP system,

we needed no additional application development in

order to display the results of queries in the form of charts

and tables. A Java application typically requires the

creation of an HMTL document in order to communicate

the results over the Web.

We next present some classes of inventory problems

and show how their solutions can be simplified and

implemented in SQL.

Some common inventory problems and their

solutions

Although many inventory optimization problems may

require relatively complex algorithms, some classes

of inventory problems can be simplified using

approximations. We focus on simple inventory policies

in which a safety stock and lot size characterize the

inventory policy. Figure 2 shows how a simple inventory

policy works. As discussed previously, safety stock is the

stock that is held in order to protect against uncertainties

in the process, such as uncertainty in demand and

uncertainty in supply lead time. When the inventory

position (defined as the inventory on hand plus inventory

on order minus the back orders) drops to the reorder

point, inventory is replenished at an amount equal to the

lot size. Most often, this replenishment is not instant (i.e.,

orders arrive after a lead time).

Next, we study different types of common inventory

problems that have simple solutions. Before we proceed,

we need to mention that the calculations of optimal

inventory policies that we present here are based on the

following assumptions.

Our model assumes that inventory is held at a single

location. This model can also be used to approximate

multiple-location models. A single-location model is

one in which inventory is held at a single location.

Each SKU has independent and identically distributed

demand in each time period. (The term SKU stands for

stock-keeping unit; it is an identifier that helps merchants

track products and services.) We assume a time period

that corresponds to a day. Customer orders arrive

according to a Poisson distribution. The quantity

requested in an order is random and follows a normal

distribution. The quantities of all orders are independent,

identically distributed random variables. Demand that

occurs during the replenishment lead time has (or is

approximated by) a normal distribution. Inventory is

replenished through manufacturing or a supplier with a

positive lead time. In the case in which the inventory is

reviewed periodically, the service targets are set for the

worst period in the replenishment cycle. Therefore, the

actual inventory availability levels might be higher than

the target. This is a conservative approach; if some of

the assumptions made in the model do not hold, this

approach could compensate for a potential shortfall in

Figure 2 

Simple inventory policy in action. When the inventory position 

decreases to the reorder point, a replenishment order is placed. 

The replenishment order has a calculated lot size, and until the 

order arrives, inventory shortages are prevented through the use of 

safety stocks. The inventory that is on hand can never exceed the 

maximum on-hand inventory. (Inventory level: on-hand inventory 

minus backlogs. Backlogs: demand that is waiting to be satisfied 

because of lack of inventory.)  
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actual service levels. Calculating optimal policies for

average service criteria requires search algorithms.

Although these algorithms would be simple to code in

a language such as C, it is not possible to code loops

in SQL. Therefore, we restrict service targets to the

conservative scenario. In the case in which inventory

is reviewed continuously, service targets are set to

control the average performance during a cycle.

The objective is one of the following: 1) minimize

expected inventory costs; 2) maximize expected profit; 3)

achieve target service with minimum expected inventory;

or 4) calculate safety stock for a fixed ‘‘days-of-supply’’

policy. Days of supply is a measure of inventory level,

calculated by dividing inventory in units by the average

demand per day.

The service is defined by one of the following: 1) the

probability of no stock-out (i.e., the probability of

inventory being available to satisfy demand); 2) the

probability of on-time shipment to meet the customer

request date; 3) the probability of on-time shipment to

commit (i.e., the probability that shipment was made no

later than the date that was committed to the customer);

and 4) the fill rate (which relates to the fraction of

demand that can be met from inventory with no delay).

The lot-sizing policy is defined by one of the following:

1) fixed lot size (provided by the user); 2) variable lot size

(the quantity that brings inventory position to a specified

level); or 3) economic order quantity (the optimal order

quantity that minimizes the sum of fixed order cost and

inventory carrying cost). The inventory-replenishment

process is defined by continuous review and

replenishment or periodic review and replenishment.

Notation

In this section, we introduce the parameters that we need

in order to perform the calculations of optimal lot size

and optimal safety stock that make up an optimal

inventory policy. As we introduce these parameters,

we indicate whether they are considered as input,

intermediate calculations, or output. Some parameters

can be provided as inputs or can be calculated on the basis

of their historical observations. We label such parameters

as input or intermediate calculations. In the lists, we

follow an order of precedence; that is, inputs come first,

followed by intermediate calculations and outputs.

Inputs

PNS: Inventory availability target in percentages

(probability of no stock-out, i.e., the event of running out

of inventory).

FRT: Fill rate target in percentages, i.e., the fraction of

demand that can be met from inventory without any

delay.

OTDR: On-time delivery to customer request target,

in percentages.

OTDC: On-time delivery to commit target, in

percentages.

OCOST: Fixed order cost (per order).

SCOST: Shortage cost (per unit per period).

HCOST: Inventory holding cost (per unit per period).

COST: Cost of a unit (cost of manufacturing or

purchase).

PRICE: Price of a unit.

SVALUE: Salvage value of a unit when season is over

(for seasonal items). This value is the price offered when

trying to dispose of the unsold inventory, and this price

is almost always a highly discounted one.

PDECLINE: Price decline of a unit (during a season or

period).

QFIX: Fixed lot size given by the user.

QUNIT: Unit lot size. (The output parameter LOT,

which represents lot size, must be an integer multiple of

this quantity.)

QMIN: Minimum lot size.

QMAX: Maximum lot size.

T: Number of days in the data time window. (Note: The

length of the time window must be determined prior to

calculating T.)

N: Number of orders during T days (i.e., during the entire

data time window).

NDAYS: Number of working days in a year.

I: Order number in the data window (I ¼ 1, 2, � � �, N).

J: Day number in the data window (J¼ 1, 2, � � �, T).
DOQ[J]: Daily order quantity [total order quantity in day

J (J ¼ 1, 2, � � �, T)].
ORQ[I]: Order quantity in order I (I ¼ 1, 2, � � �, N).

TSERVICE: Target service level (percentage).

MLT: Manufacturing (or supply) cycle time or period

length (in days) when inventory is reviewed and

replenished periodically. This parameter is also called

‘‘manufacturing (or supply) frequency’’ and is the number

of days during which supplies are regularly planned.

PLT: Manufacturing (supply) lead time (in days). This is

the actual physical manufacturing time (or supplier’s

turnaround time).

OPT: Order processing time (in days). This is the number

of days required to process the inventory replenishment

orders from the stocking locations.

TLT: Transportation time (in days). This is the number

of days required to transport orders from the

manufacturing location to the stocking location.

IP: Inventory position. This is a key metric for the

execution of any inventory policy. It must be monitored
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during execution and not calculated in optimization. This

requires monitoring inventory on hand, inventory on

order, and amount of demand back-ordered. The proper

implementation of ROP (reorder point) requires keeping

track of the inventory position, because replenishment

orders should be triggered only when the inventory

position (not the inventory on hand) drops to ROP. IP is

given by IP ¼ inventory on hand þ inventory on order �
back orders.

Inputs or intermediary calculations

SPLT: Standard deviation of manufacturing (supply)

lead time PLT.

SOPT: Standard deviation of order processing time OPT.

STLT: Standard deviation of transportation time TLT.

CLTR: Customer order lead time (requested by

customer).

CLTC: Customer order lead time (committed to

customer).

SCLTR: Standard deviation of customer order lead time

CLTR.

Intermediary calculations

RLT: Replenishment lead time (in days).

SRLT: Standard deviation of replenishment lead time

RLT.

ADLT: Average demand during replenishment lead time.

SDLT: Standard deviation of demand during

replenishment lead time.

OAR: Order arrival rate (average number of orders per

day).

TOQ: Sum of all order quantities.

TOQS: Sum of the squares of all order quantities.

TOD: Total of all daily demand quantities.

TODS: Total of the squares of all daily demand

quantities.

AOQ: Average order quantity (i.e., average quantity

demanded in a single customer order).

SOQ: Standard deviation of order quantity.

AOD: Average demand during a day.

SOD: Standard deviation of the amount of quantity

ordered during a day.

PDURATION: Duration (in days) of a season (or a

period) during which expected profit is to be maximized

or expected cost is to be minimized.

k: Safety factor used for safety stock calculation.

PVALUE: z value for the standard normal distribution.

This is used for the calculation of the safety factor k.

Outputs

SS: Safety stock.

ROP: Reorder point.

LOT: Lot size.

MAX: Maximum inventory level.

Throughout the calculations below, we use sqrt(X) to

denote the square root of X, max(X, Y) to denote the

maximum of X and Y, min(X, Y) to denote the minimum

of X and Y, and ln(X) to denote the natural logarithm

of X.

Calculation of optimal inventory policies using SQL

functions

All of the calculations presented in the following are

designed in such a way that they can be coded in SQL.

Since, as discussed, query languages are not able to use

loops and they have limited mathematical functions

available, we provide approximate solutions for problems

that normally require looping algorithms to solve.

Calculation of key problem parameters

First, we introduce different cases that apply to practical

inventory problems. Then, in each case, we calculate three

important parameters: PVALUE, RLT, and SRLT. Very

briefly, PVALUE represents or summarizes the objective

function of the optimization problem. The inverse of

the cumulative distribution of demand during the total

replenishment lead time at the PVALUE gives the

optimal amount of safety stock. RLT and SRLT are

respectively the mean and standard deviation of the

demand during the total replenishment lead time. We

refer to these three parameters as the key problem

parameters.

Case 1. Minimize expected inventory costs

In Case 1, the objective is to minimize the expected

inventory holding and backlogging costs. We assume

that the demand not met immediately in a period is

backlogged to the next period. Backlogging has costs

associated with expediting orders, paying a penalty to the

customer, buying inventory at a high price, or loss of

customer goodwill. We use a ‘‘myopic solution’’ to this

cost problem. This solution tries to minimize the expected

inventory-carrying and backlogging costs one period at a

time (hence our use of the term myopic). In general this

solution is not optimal, and the optimal policies can be

complex. However, the simplicity of the method makes

it practical. Reference [13] provides conditions under

which myopic policies are optimal. When significant

obsolescence costs exist that are associated with unsold

inventory, myopic policies may be unwise to use and

caution is warranted. One may also study [21] for such

cases.
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In the following, we show the calculation of three key

intermediary parameters, PVALUE, RLT, and SRLT:

A. If lot size is flexible and inventory is reviewed

periodically, then

PVALUE ¼ SCOST

SCOST þ HCOST :

B. If a lot size LOT exists, then

PVALUE ¼ LOT 3 HCOST

AOD3NDAYS3 SCOST
:

A. If inventory is reviewed and replenished

continuously (i.e., manufacturing or purchasing can

be performed at any time), then

RLT ¼ OPTþ TLTþ PLT:

B. If inventory review and supply replenishment are

performed periodically with review period length

MLT, then

RLT ¼ OPTþ TLTþ PLTþMLT ;

SRLT ¼ sqrt ðSOPT
2 þ STLT

2 þ SPLT
2Þ :

Case 2. Maximize expected profit

In Case 2, the objective is to maximize the expected profit

(revenue minus purchase cost minus inventory cost). This

maximization is typically used in cases in which a large-

quantity purchase (or manufacturing build) exists prior to

a season, or a period such as a month or a quarter. The

objective is to purchase or build the appropriate quantity

in order to maximize the expected profit in that season or

period. Since the supply quantity must be decided before

observing the demand, a risk is associated with the supply

quantity. Excess supply is sold at a loss at the end of the

season or period. Supply shortage causes revenue and

profit shortfall. Relevant parameters include COST

(purchase price or manufacturing cost per unit), PRICE

(price of the unit in the market), and SVALUE (value per

unit for any unsold units left at the end of the season or

other period when salvaged).

When the problem has multiple periods, the salvage

value per unit must be calculated as SVALUE¼PRICE�
PDECLINE. Here, PDECLINE is the loss of value of a

unit (or price decline) during the season or other period.

For items that have a very long life, where there is no or

minimal price decline, this model is not appropriate.

Because a perpetual demand exists for such items, the

focus is typically on cost minimization or service target

achievement instead of profit maximization.

The PVALUE that maximizes the expected profit

during the season or other period is given by the

following:

PVALUE ¼ ðPRICE� COST Þ=ðPRICE� SVALUE Þ;

RLT ¼ PDURATION;

SRLT ¼ SPDURATION:

Case 3. Achieve a target probability of no stock-out

In Case 3, the probability of no stock-out is defined by

PNS (see notations above). PVALUE, RLT, and SRLT

are calculated as follows. First, PVALUE ¼ PNS. Note

that if inventory is reviewed and replenished continuously

(i.e., manufacturing can be done at any time, or purchase

can be done at any time), then RLT¼OPTþTLTþPLT.

If inventory review and supply replenishment are done

periodically with review period length MLT, then

RLT ¼ OPTþ TLTþ PLTþMLT;

SRLT ¼ sqrt ðSOPT
2 þ STLT

2 þ SPLT
2Þ:

Case 4. Achieve a target probability of on-time

shipment to customer request date

In Case 4, on-time delivery in response to a customer

request is defined by OTDR (see notations above).

PVALUE, RLT, and SRLT are calculated as follows.

First, PVALUE ¼ OTDR. If inventory is reviewed and

replenished continuously (i.e., manufacturing can be done

at any time, or purchase can be done at any time), then

RLT¼OPTþ TLTþ PLT� CLTR. If inventory review

and supply replenishment are done periodically with

review period length MLT, then

RLT ¼ OPTþ TLTþ PLT� CLTRþMLT;

SRLT ¼ sqrt ðSOPT
2 þ STLT

2 þ SPLT
2 þ SCLTR

2Þ:

Case 5. Achieve target probability of on-time

shipment to commit date

In Case 5, on-time delivery in response to a customer

request is defined by OTDC (see notations above).

PVALUE, RLT, and SRLT are calculated as follows.

First, PVALUE ¼ OTDC. If inventory is reviewed and

replenished continuously (i.e., manufacturing can be done

at any time, or purchase can be done at any time), then

RLT¼OPTþ TLTþ PLT� CLTC. If inventory review

and supply replenishment are done periodically with

review period length MLT, then

RLT ¼ OPTþ TLTþ PLT� CLTCþMLT;

SRLT ¼ sqrt ðSOPT
2 þ STLT

2 þ SPLT
2Þ:

Case 6. Achieve a target fill rate

In Case 6, fill rate is defined by FRT (see notations

above). PVALUE, RLT, and SRLT are calculated as

follows. First, PVALUE ¼ FRT. If inventory is reviewed

and replenished continuously (i.e., manufacturing can
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be done at any time, or purchase can be done at any

time), then RLT ¼ OPT þ TLT þ PLT. If inventory

review and supply replenishment are done periodically

with review period length MLT, then

RLT ¼ OPTþ TLTþ PLTþMLT;

SRLT ¼ sqrt ðSOPT
2 þ STLT

2 þ SPLT
2Þ:

Explanation of steps in calculations

We now give a step-by-step description of the method for

calculating the optimal inventory policies by using the key

problem parameters that we have calculated above.

Step 1: Calculate daily demand statistics

TOQ ¼ ORQ[1] þ ORQ[2] þ � � � þ ORQ[N]

(sum of quantities of all orders in the data time window).

AOQ ¼ TOQ/N (average order quantity).

TOQS ¼ ORQ[1]2þ ORQ[2]2þ � � � þ ORQ[N]2

(sum of squares of all orders in the data time window).

SOQ ¼ sqrt [(TOQS � N 3 AOQ2)/(N � 1)]

(standard deviation of order quantity).

OAR ¼ N/T (average number of orders per day).

AOD ¼ OAR 3 AOQ (average demand during a day).

SOD ¼ sqrt (AOD2þ OAR 3 SOQ2)

(standard deviation of demand during a day).

Step 2: Calculate lead-time statistics

Up to this point, in the above calculations we have

assumed that total replenishment time RLT is a known

and fixed quantity. If the total replenishment time is not

fixed, and every time it can be a different number, one

must keep track of this lead time for each item-location

combination through time. Then, by using this data

one can estimate the mean and standard deviation of

this lead time.

We assume that all lead times (i.e., OPT, TLT, PLT,

and CLTR) are random, except for the manufacturing

cycle timeMLT and the customer order lead-time commit

CLTC.

In the following, we demonstrate how to calculate the

standard deviation of the transportation lead time TLT

if one has a sample of transportation lead times. These

calculations can be used for other lead times for which a

sample of observations is available. First we introduce the

following notation:

TLT: Mean (or average) transportation lead time (as

previously defined).

TLTS: Sum of the squares of transportation lead-time

observations in the sample.

STLT: Standard deviation of transportation lead

time (this must be calculated from sample data of

transportation lead times for that item, from the plant

to the stocking location for the item).

Consider a case with K transportation lead-time

observations in our sample given by L[1], L[2], � � �, L[K ].

We then calculate TLT as follows:

TLT ¼ ðL½1� þ L½2� þ � � � þ L½K �Þ=K
(average of all transportation times in the sample)

To calculate the standard deviation, we need the sum of

the squares of transportation lead times, which we denote

it as TLTS. In other words,

TLTS ¼ L½1�2 þ L½2�2 þ � � � þ L½K �2

(sum of squares of all transportation times in the sample).

We then calculate the standard deviation as follows:

STLT ¼ sqrt½ðTLTS ¼ K3TLT
2Þ=ðK� 1Þ�

(standard deviation of all transportation times in the

sample).

Step 3: Calculate key problem parameters

For various different types of problems, earlier in this

paper we have provided ways to calculate the key

intermediary parameters PVALUE, RLT, and SRLT.

These are used to calculate the optimal inventory policy

parameters.

Step 4: Calculate mean and standard deviation of demand
during lead time

Mean demand during the replenishment lead time

is ADLT ¼ AOD 3 RLT. If the lead time is

random with standard deviation SRLT, standard

deviation of demand during lead time is

SDLT ¼ sqrt (SRLT2 3 AOD2þ SOD2 3 RLT ).

If lead time is fixed, standard deviation of demand

during lead time is SDLT¼ SOD 3 sqrt (RLT ).

Step 5: Calculate fixed lot size

All formulas provided so far are appropriate for one-for-

one replenishment where no restriction exists on the lot

size or the frequency of orders. When the lot size is fixed

or a minimum or maximum restriction exists on it,

because of replenishment process limitations, supply

requirements, or cost considerations, these restrictions

must be taken into account.

The user provides a fixed lot size as an input, and this

size is used directly in the calculations. In this case, the

inventory policy is still to bring ‘‘inventory position’’

to ROP level whenever it falls below ROP. However,

because of the restriction on the lot size, the order

quantity must reflect these restrictions. We have five

different types of lot size restrictions, discussed in the

following sections.

Case 1: Fixed lot size

In this case, there is a predetermined lot size QFIX.

Whenever the inventory position drops to ROP,
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this quantity is ordered. Here, LOT ¼ QFIX. If no

predetermined lot size exists and economic order quantity

cannot be calculated because of the lack of fixed order

cost data (or if economic order quantity is not

desired), the following lot size can be recommended:

LOT ¼ AOD 3 RLT. Here RLT is the total

replenishment lead and AOD is the average daily demand.

Case 2: Minimum increments

In this case, the lot size has to be an integer multiple of

a minimum number (QUNIT). The lot size is given by

LOT ¼M 3 QUNIT. Here M is the smallest integer for

which M 3 QUNIT is greater than ROP � IP, and IP is

the inventory position.

Case 3: Min lot size

Lot size can be any number, but it must be above a

minimum. That is, LOT¼max (QMIN, ROP� IP). Here,

QMIN is the minimum lot size and IP is the inventory

position.

Case 4: Max lot size

Lot size can be any number, but it must be below a

maximum. That is, LOT ¼min (QMAX, ROP � IP).

Here QMAX is the maximum lot size and IP is the

inventory position.

Case 5: Economic order quantity

When costs are available, an economic order quantity

(EOQ) can be calculated. The cost inputs required for this

calculation are OCOST (fixed order cost paid per supply

order) and HCOST (inventory holding cost, dollars

per unit held per day). The lot size is given by

LOT ¼ sqrt (2AOD 3 OCOST/HCOST).

Step 6: Calculate safety factor

When we previously described six different cases, we

showed how to calculate key problem parameters in each

case. Now we show how to calculate safety factors. In the

inventory literature, these safety factors are calculated

using functions such as the inverse of the standard normal

distribution and the inverse of what is called g-function.

These functions do not exist in standard query languages.

Here we show the use of approximations to these

functions; these approximations can easily be coded

in query languages.

Cases 1 through 5

Safety factor k is given by the following:

k ¼ �MULTIPLIER3 ð0:5=A
2
Þ

3
�
A

1
� sqrt

�
maxf0;A2

1

þ 4A
2

ln ½max ðPVALUE; 1� PVALUEÞ � 1�g
��
;

where MULTIPLIER ¼�1 if PVALUE , 0.5,

MULTIPLIER¼ 1 if PVALUE � 0, A1¼ 1.363471, and

A2¼ 0.266705. The formula we provide here for the k

value is an approximation for the inverse of the standard

normal distribution function. Since some versions of SQL

do not have the inverse normal as a built-in function, this

formula is useful, since it uses mathematical function

available in SQL. The formula is very accurate for

practical purposes.

We tested the values of k in the interval [�3, 3]
and found that the absolute maximum and absolute

minimum errors are 0.035711 and �0.035711,
respectively.

Case 6: Achieve service target (fill rate)

Safety factor k is given by the following:

k ¼
A

0
þ A

1
Z þ A

2
Z

2 þ A
3
Z

3

B
0
þ B

1
Z þ B

2
Z

2 þ B
3
Z

3 þ B
4
Z

4
;

where

GVALUE ¼ ð1� PVALUEÞ3 LOT=SDLT

if there is a fixed lot size, LOT,

GVALUE ¼ ð1� PVALUEÞ3 ADLT=ðRLT 3 SDLTÞ
if lot size is flexible,

Z ¼ sqrt 2 ln ½maxð1; 5=GVALUEÞ�f g ;

and A0 ¼�5.3925569, A1¼ 5.6211054, A2¼�3.883683,
A3¼ 1.0897299, B0¼ 1.0000000, B1¼�0.72496485, B2¼
0.507326622, B3 ¼ 0.066913687, and B4¼�0.003291291.
The derivation of these formulas can be found in [6].

These formulas are used for continuous review problems

in which demand is also continuous. In this case, a simple

(s, Q) inventory policy can be used if no more than a

single replenishment order is outstanding in the supply

pipeline. Here, Q is the lot size (LOT), and s is the reorder

point (ROP). According to this policy, one places a

replenishment order of Q when inventory position IP

drops to s.

The above approximation is a very accurate estimation

of safety factor k for normal demand. We tested the

values of k in the interval [�3, 3] and found that the

maximum and minimum errors are 0.000295

and �0.000205, respectively.

Step 7: Calculate optimal inventory policy

Inventory policy parameters include safety stock (SS),

reorder point (ROP), and maximum inventory level

(MAX). These parameters were explained earlier; their

formulas, based on the safety factor and lot size

(LOT), are SS¼ k 3 SDLT, ROP ¼ ADLT þ SS, and

MAX ¼ ROP þ LOT.
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Implementation issues

When implementing our approach, one must test the

calculations with respect to actual data, since many of

the assumptions may not be appropriate for the data.

Simulation tests can be performed using actual sales and

lead time data to observe how the inventory policies

perform. If the performance is poor because of the

normality of demand assumption, other distributions

(such as gamma or log-normal) can be used.

Approximations similar to what we presented for the

normal distribution can be developed for other demand

distributions. Alternatively, empirical distributions can be

derived on the basis of sales data, and their percentiles

can be used to calculate the safety stocks.

After achieving satisfactory performance results, a

solution can be designed with a configuration that

addresses the customer’s requirements. A quick pilot

implementation can follow and policies can be

monitored in action for a subset of products before

full implementation. A project plan for a simple

implementation is given in Figure 3. The durations of

activities are our estimates for a standard implementation.

Actual implementation times can vary depending on the

complexity of a customer’s data systems and requirements.

Some of the algorithms we have presented are tested

using actual historical data from clients. The simulation

tests based on actual transaction data showed that for

a variety of demand patterns, the formulas used in this

paper are able to deliver target service levels on the

average, although for some SKUs actual service can be

below the target and for some it can be above. Most of

the deviations from target service levels were within

acceptable statistical tolerance levels in our test cases.

However, caution must be used in cases in which the

assumptions we made here are arbitrary. In using the

formulas, we have shown a few issues that must be kept

in mind; we reiterate some of these issues below.

Our basic assumption on which the inventory policy

calculations are based is that historical demand is a good

representation of future demand. If trends in the demand

data exist, statistical forecasting models can be used to

estimate demand during lead times. Such forecasting

models can generate the mean daily demand (i.e., the

daily demand forecast) and the standard deviation of

daily demand. This forecast can replace the demand

statistics calculated in Step 1. It is possible to program

in SQL simple but effective forecasting techniques such

as exponential smoothing and moving average, since

these have simple forms.

The formulas normally work better with products that

have a high demand volume (e.g., products that receive

frequent orders). For low-demand products, inventory

policies are very sensitive to the amount of individual

orders; therefore, the actual service levels may vary

significantly for such products. For some low-demand

products, if it is critical to achieve desired inventory

availability levels, it would help to increase the lot sizes

to cover several months of demand.

Updating the inventory policy parameter (i.e., safety

stock, reorder point, and lot size) calculations may or

may not be desirable. If the demand pattern changes very

little, the inventory policy should also not be expected to

change much. In steady demand situations, monthly or

quarterly parameter updates are reasonable. Otherwise,

more frequent updates are needed.

Inventory replenishment orders should be triggered by

observing the relative value of inventory position IP to

the reorder point ROP. That is, when IP drops below

ROP, an inventory replenishment order should be

triggered for the predetermined lot size. If the reviews are

periodic and the lot size is flexible, an order is placed in

every period so as to bring the inventory position to ROP.

This is also known as a basestock policy.

We note that IBM Global Business Services, IBM

Research, and NIBCO (Northern Indiana Brass

Company) have jointly implemented a version of the

approach described in this paper to provide NIBCO a

cost-effective inventory management solution. NIBCO

has observed significant improvements in both inventory

levels and on-time shipment performance since 2005.

Conclusion

Advantages

We have briefly explained our approach to create

a virtually seamless inventory optimization solution

Figure 3

Typical plan for the SQL-based inventory optimization solution 

implementation. The numbers at the top represent weeks, from 

week 1 to week 10 and beyond.

Activity 1 2 3 4 5 6 7 8 9 10……

Data analysis and

algorithm selection 

Performance review and

algorithm refinement 

Solution design and

configuration 

Implementation

planning 

Pilot implementation

Full implementation
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for database systems that use SQL. This approach has a

number of potential advantages from both technical and

business process perspectives. Here, we briefly explain

some of these advantages.

Our approach simplifies optimal inventory policy

calculations in such a way that existing databases and

basic SQL commands can be used to rapidly code these

calculations. Data-extraction templates and reporting

templates of databases can be used to provide a fully

functional solution. Hence, for simple inventory

problems, no need exists for additional software.

Because this is a solution provided on an existing

database system, there is no need to create new security

protocols, network integration infrastructure, and Web

access protocols. All of these elements are typically

provided by the existing database system infrastructure

for the users.

By using query capabilities of the existing database

application, various reports of optimal policies, key

performance indicator (KPI) projections and ‘‘what-if ’’

analyses for decision support can be created. Many of

these basic analyses can be done using mathematical

functions available in SQL.

Because companies that use database applications

already have trained staff, much less technical training is

required in order to use this solution. As for the business

process, the solution does not necessarily require

changing existing inventory planning processes. It

requires that the execution of recommended inventory

policies be done properly by monitoring key metrics

such as inventory position and sales orders.

Because this solution requires no new software,

typical purchase costs and user fees do not apply. The

maintenance costs can be controlled because this solution

can be implemented as a part of the existing database/

data-warehouse maintenance program.

Because the calculations are done at runtime through

query commands, inventory managers and analysts can

perform real-time what-if analysis using query reports.

For instance, analysts can observe how inventory levels

are affected if they change some key factors such as

customer service objectives, operating objectives, and

inventory policy types.

More complex inventory problems

Although the approach we have presented in this paper

can solve some common inventory problems, many other

cases exist for which more complex algorithms are

needed. These can be coded following the standard

approach and using a common programming language

such as C or Cþþ or Java. Integration of these algorithms

into the solution is typically done at the data extraction

level. The results are then stored in database tables.

Since sales data is accessed and other historical demand

statistics are calculated during data extraction from the

transaction system, if advanced forecasting algorithms

are desired in order to perform more accurate forecasts,

these algorithms can be called during the data extraction

process. The ability to use C or Java at the data

extraction level gives enough flexibility to code advanced

algorithms.

Figure 4 shows details of how this flexible design

may work. As the figure indicates, the optimal policy

calculations are performed during data extraction from

the ERP system. The optimal inventory policies are

stored, along with input data, and are made ready for

reporting purposes. In addition, some metrics such as

projected inventory levels, projected backlogs, and their

confidence bands can also be calculated and stored.

Queries are used for reporting only, and no optimization

calculation is performed at the query level. This

architecture provides the flexibility to place complex

algorithms during the data extraction. Programming

languages such as Java, C, or Cþþ can be used to code the

algorithms.

This solution design has a drawback in that it may not

be possible to obtain quick real-time results because of

architectural and algorithmic complexity. However,

potential scenarios can be analyzed in anticipation of user

needs, and results can be stored prior to user requests.

Thus, real-time response can be provided to anticipate

queries.

Numerous sources of complications exist in inventory

problems, and this is why the inventory-control literature

is so rich. The multi-echelon nature of supply chain

systems, substitutability of products, nonstationary

nature of demand, products with bills of materials,

and distribution systems are examples of the elements

that make inventory problems complex and variable.

(Distribution systems are systems in which inventory flows

from manufacturing to central distribution centers, then

to warehouses, and then to local stores.)

Since the literature is extensive, we can mention only

a few key relevant publications. Readers who wish to

become more familiar with these complexities may

consult [10, 11, 19, 22–30] for multi-echelon systems.

More specifically, for one-warehouse, multi-retailer

systems, see [5, 14, 15, 31–36]. For assembly

manufacturing systems, see [4, 30–35, 37].

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc., Microsoft Corporation, or SAP
Aktiengesellschaft in the United States, other countries, or both.
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