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With the addition of IBM System ze application assist processors
(zAAPs) and integrated information processors (zIIPs) to the
portfolio of special-purpose IBM System z processors, the
reinvention of the IBM mainframe continues. Jointly, zAAPs
and zIIPs provide significant IBM System z9e integrated and
cost-effective processing cycles for today’s strategic Javae and
DB2t for z/OSt programming platforms which are increasingly
fundamental to enterprise-class business environments. Overviews
of zAAPs and zIIPs are presented that describe their functionality,
design, and use by the z/OS operating system to achieve the
execution of both Java and z/OS DB2 programming functions.

Introduction

In contemporary computer networks, it is a common

practice to interconnect multiple computing systems,

typically called servers, in a manner that segregates each

of the interconnected servers into separate usage classes.

The classes are based on the various functions each server

is configured to execute. For example, one or more of

the interconnected servers may be assigned the task of

executing application programs, and others may be

assigned the task of executing database programs that

access and manage one or more of the network databases.

Networks that are structured in this manner are typically

described as distributed multitier server networks, as

depicted in Figure 1(a).

The structuring of distributed multitier networks and

the assignment of work to each of the servers within the

network is typically determined by a number of factors

such as processing speed, functional capabilities,

reliability, scalability, cost of acquisition, and cost to

operate and maintain. Typically, the computing functions

within these networks that require the highest degrees

of reliability, availability, data integrity, and scalability

are allocated to the database servers that control the

management and access of the network user’s data. Thus,

the core computing elements of many networks—in terms

of user data availability, integrity, and reliability—lie

with data servers such as the IBM System z9*. Such

database servers are responsible for accessing, updating,

and maintaining the centralized and integrated databases

upon which many companies rely for their associated

business processes. As such, they are typically the most

reliable and functionally robust elements within the

network, but they can also represent the most expensive

servers in terms of initial cost of ownership.

Within many distributed networks, the number of

application servers has increased significantly because

of the programming technologies being used to develop

and implement timely and cost-effective web-based

applications. This is especially true for applications

designed to support the evolving strategic e-business and

on-demand business models. Programming languages

such as Java** and Extensible Markup Language (XML)

for document processing play a major role in developing

new strategic service-oriented architecture web-based

applications. They provide significant advantages in

programming development productivity, reduced

development costs, and reduced time for application

deployment. These application-based programming

technologies present a high level of programming

abstraction to the program developer, are independent

of the specific computer architectures of the servers on

which they are deployed, and provide open-standard

programming interfaces to render application programs

operable on all server platform implementations.

However, these ‘‘application can operate anywhere’’

programming models have resulted in significantly

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 L. W. WYMAN ET AL.

77

0018-8646/07/$5.00 ª 2007 IBM



increased processing requirements in terms of the total

number of processor instructions that must be executed to

support a given application. For example, Java- and

XML-based web applications are emerging that can

require the execution of millions of computer instructions

to process a single application transaction. Consequently,

such applications are often not cost-effective when

deployed on more expensive server platforms within the

information processing network.

Historically, attempts to simplify and reduce the

overall cost of distributed multitier networks have met

with varying degrees of success. A method often chosen

for minimizing network sprawl and complexity is to

reduce the number of application servers and integrate

their application programming functions into more

functionally rich database servers within the network.

While such strategies have proven to significantly

improve the overall efficiency and management of the

network, the increased initial cost of ownership that is

frequently associated with more robust database servers

can be a barrier to entry. Consequently, the proliferation

of dedicated application server farms is often the reality

for many information technology environments.

However, while the cost to purchase and deploy

additional application-only servers may offer an

attractive initial alternative, application server

proliferation often results in unexpected increases in the

total cost of network ownership. This typically becomes

the reality for many mature yet ever-growing computing

environments, as the total number of server elements

within the environment increases to meet the growing

demands of the business. This server proliferation often

results in decreased reliability, additional complexity to

manage, and inefficient utilization of the application

servers within the information network.

To address these problems, IBM has developed the

System z* application assist processor (zAAP) and the

System z integrated information processor (zIIP). These

are special-purpose processing engines integrated within

the System z9 scalable symmetric multiprocessor (SMP)

memory-coherent infrastructure for use by the z/OS*

operating system [Figure 1(b)]. zAAPs execute strategic

Java programming applications and their associated

XML documents. zIIPs are designed to process portions

of the z/OS IBM DB2* relational database management

functions. Collectively, these two processor additions can

execute a significant percentage of the total processing

cycles consumed by these programming functions.

Consequently, zAAPs and zIIPs free up much of the

System z9 general-purpose central processor (CP)

capacity for other uses. Also, because of the hardware

and software cost advantages of zAAPs and zIIPs

compared with that of System z9 CPs, they collectively

provide a cost-competitive means to consolidate strategic

Java and related application programming and a more

cost-effective z/OS and DB2 database processing

platform. As an integrated application and database

server solution, they enable the IBM System z9 to provide

greater performance, function, and cost-competitiveness

when compared with typically less efficient and more

complex distributed network solutions prevalent in

today’s information technology marketplace.

Integrated processing engines
Both zAAPs and zIIPs are integrated into the System z9

server platform central processor and memory

attachment infrastructure to form a memory-coherent,

yet heterogeneous, processor complex. The result is that

both applications and associated database subsystem

functions can be executed in a highly efficient manner.

Also, by exploiting zAAPs and zIIPs with the z/OS

operating system, the System z9 provides significant

Figure 1

Multitiered networks: (a) distributed; (b) simplified by the use of 

integrated zAAPs and zIIPs.

 Second tier

Application

server

Application

server

Application

server

Application

server

Network servers

Database

server 

 Second tier  Third tier

 Third tier

 First tier

Client 

Client 

Client 

Client 

Client 

Databases

Application

server

Application

server

Application

server

Application

server

Client 

Client 

z9 integrated

application and

database server

Network servers

Ja
v
a

ap
p
li

ca
ti

o
n

p
ro

g
ra

m
s

D
at

ab
as

e

p
ro

g
ra

m
s

z

A

A

P

z

A

A

P

z

I

I

P 

C

P

C

P

Databases

 First tier

Client 

Client 

Client 

Client 

Client 

Client 

Client 

(a)

(b)

L. W. WYMAN ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

78



functional benefits to both the application and database

programs because both are now operating on the most

reliable server within the network. Additionally, the Java

application programs executed on zAAPs implicitly

benefit from the System z9 and z/OS advantages of

qualities of service, server scalability and reliability, and

z/OS computing capabilities, such as dynamic workload

balancing, multilevel security, logical partitioning, and

other robust server virtualization capabilities.

The Java application programs and their associated

database subsystem programs can interact with each

other more efficiently by using System z9 SMP memory

exchanges of data; that is, they can directly communicate

and share data with each other. This means that they

require neither physical network wires nor the associated

communication programming stacks that would

otherwise be necessary to interconnect physically separate

application and database servers. This eliminates the

requirement for such elements as Ethernet network

adapters, the associated Transmission Control Protocol/

Internet Protocol (TCP/IP) programming stacks,

firewalls, data conversion, data compression/

decompression, or data encryption/decryption

overheads. System z and z/OS integrated interprogram

communication using System z9 memory-based accesses

and data-sharing capabilities can significantly reduce the

overall complexity of the network, increase the total

network reliability, and significantly reduce network

transaction processing overhead.

Performance tests that demonstrate this increased

efficiency were executed at the IBM Washington Systems

Center, operating both Java application transactions and

their associated database programs in the same LPAR on

a System z platform. The result was an improvement by

as much as 77% in transaction processing efficiency as

measured by average central processing unit (CPU) time

per transaction. Additionally, the total number of bytes

transferred between the application and the database

subsystem was reduced by as much as 99% when

compared with operating the application and database

subsystem on separate physical server platforms [1].

Using zAAPs and zIIPs

zAAPs and zIIPs render their use transparent to the Java

programs that execute on zAAPs and the associated DB2

database programs that execute on zIIPs. The z/OS

control program, operating in conjunction with the

System z9 Processor Resource/Systems Manager*

(PR/SM*) firmware [2], commonly called the logical

partition (LPAR) hypervisor, transparently assigns and

dispatches the execution of Java programs on the zAAP

processors and the execution of appropriate DB2

database processing programs on zIIPs. In both

cases, this is accomplished without the awareness or

involvement of the Java programs or the DB2 programs.

Both zAAPs and zIIPs assist the System z9 CPs and are

configured using the same LPAR definition and activation

processes as provided for the CPs configured to an LPAR.

Each z/OS LPARmay have one or more zAAPs and zIIPs

configured to them along with their associated CPs.

However, as zAAPs and zIIPs are designed to assist CPs,

they have some unique characteristics. For example,

neither zAAPs or zIIPs can be the target of an initial

program load (IPL)1, the maximum number of configured

zAAPs and zIIPs cannot exceed the total number of CPs

for a given system, and, depending on the System z model,

zAAPs and zIIPs do not necessarily operate at the same

speed as the CPs (see the section on zAAP and zIIP

architecture characteristics below).

Program requirements

zAAPs are designed to execute Java programs, while

zIIPs, are designed to execute z/OS DB2 database

processing programs, which creates certain programming

requirements. For zAAPs, the requirements are the

following:

� z/OS 1.6 (or z/OS.e 1.6), or later.
� IBM Software Development Kit (SDK) for z/OS,

Java 2 Technology Edition, V1.4, or later with

program temporary fix (PTF) for authorized program

analysis report (APAR) PQ86689 [the IBM Java

Virtual Machine (JVM) that controls and executes

Java programs].

Additionally, subsystems and applications that use the

SDK 1.4 JVM and its subsequent releases automatically

exploit zAAPs. These include the following:

� IBM WebSphere* Application Server (WAS) releases

5.1 and 6.0.1, or later . . .
� IBM Customer Information Control System/

Transaction Server (CICS*/TS) release 2.3, or later . . .
� IBM DB2 for z/OS version 7, or later . . .
� IBM Information Management System (IMS*)

version 8, or later . . .
� IBM WebSphere Business Integration (WBI)

version 5 for z/OS Java batch programs.

For zIIPs, the program requirements [3] are as follows:

� z/OS 1.6 (or z/OS.e 1.6), or later . . .
� IBM DB2 for z/OS version 8 or later, with the

following maintenance:

1An IPL is the System z method for booting an operating system into a logical
partition and activating it.
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� Distributed Rational Database Architecture

(DRDA): PK18454.

� Utilities: PK19920.

� Star schema parallelism: PK19921.

Directing work to zAAPs

The process of assigning and executing zAAP-eligible

programs to their corresponding physical zAAP

processors is accomplished by a four-phase process.

Phase 1 is the process by which the Java program is made

eligible for execution on zAAP processors. Phase 2 is the

process by which the z/OS dispatcher, operating on a

CP, suspends execution of the zAAP-eligible programs.

Phase 3 is the process by which the System z9 PR/SM

selects and dispatches the zAAP logical processor to

a corresponding zAAP physical processor (see the

section below on controlling the execution of zAAPs

and zIIPs). Phase 4 is the process by which the z/OS

dispatcher, operating on a zAAP, selects and dispatches

the zAAP-eligible programs on their respective zAAP

logical processors operating on physical zAAP

processors.

The JVM that controls and executes Java programs

uses an internal secure ‘‘switch’’ programming interface to

request the z/OS control program to make it eligible for

execution on a zAAP. This z/OS switching service is

available only to the appropriate IBM JVMs. Attempts

by other programs to use this interface will not result in a

switching action by z/OS.

The IBM JVM uses this interface prior to executing a

Java program. When the JVM is subsequently dispatched

on a zAAP, the JVM and its associated Java program

execute on a zAAP until the Java program ends,

abnormally terminates, or, more typically, requests

service by use of a Java Native Interface (JNI) application

programming interface (API) for a non-Java program

function. For example, if the Java program requests data

from the z/OS DB2 subsystem through the use of a Java

database connectivity (JDBC) JNI, the JVM again uses

the z/OS switch interface service to request that z/OS be

redispatched to request its execution on a CP in order to

activate the non-Java programming components of the

JDCB function on the CP. Subsequently, when the non-

Java functions have completed and control is returned to

the JVM, it again requests that z/OS execute it on a zAAP

in order to resume execution of the Java program. This

programming flow is depicted in Figure 2(a). Figure 2(b)

depicts the program flow between a Java application

program, operating on a zAAP in its own z/OS address

space, and the DB2 subsystem, operating on CPs and

zIIPs in a DB2 address space, in order to access or modify

data in a DB2 database.

In addition to Java application programs, generally

available XML parsing programs that are coded in Java

implicitly benefit from executing on zAAPs. Such XLM

parsing programs derive the same functional and price/

performance benefits as all other Java-coded programs

that execute on zAAPs.

Figure 2

Programming flow: (a) z/OS switching between general-purpose 

logical processors and zAAP logical processors. (b) Java application 

interacting with the DB2 subsystem to access a DB2 database. 

(RRSAF: Resource recovery services attach facility; ASM/PLX: 

assembly and PLX code.)
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Controlling zAAP-eligible work

To ensure that Java program execution meets the desired

transaction response time and to provide user control

of the overall Java workload for capacity planning and

management purposes, z/OS provides two Java execution

options, as specified by the z/OS SYS1.PARMLIB dataset

parameter IFAHONORPRIORITY2 ¼ YES/NO.
When IFAHONORPRIORITY¼ YES is specified, z/OS

executes both Java and non-Java programs as follows:

� All Java-eligible programs are executed on zAAPs

in priority order.
� All non-Java programs are executed on CPs in

priority order. Java-eligible programs may also be

executed on CPs in priority order, but only when the

zAAP processors are overcommitted and require

assistance to meet the processing demands of the

overall Java programming workload.

When IFAHONORPRIORITY¼ NO is specified,

� All Java programs are executed on zAAPs in priority

order.
� All non-Java programs are executed on CPs in

priority order. Java programs may also be executed

on CPs, but only when there are no non-Java

programs to dispatch on the CPs; that is, prior to

the processor entering an enabled wait state3.

In the unlikely event that the zAAP processors become

unavailable for program execution (that is, they enter the

not-operational state or they are varied offline), z/OS

dispatches the Java-eligible programs to CPs, just as when

no zAAP processors are configured to the LPAR.

Directing work to zllPs

zIIPs execute those z/OS programs that are structured

to operate under control of z/OS-preemptable enclave

service request blocks (SRBs)4 [4]. An enclave is a z/OS

construct that allows a unit of work or transaction, such as

a distributed relational database architecture (DRDA)

[5] request for DB2 to be assigned a goal by the z/OS

Workload Manager (WLM) [4] on the basis of customer-

provided rules. The execution threads, such as SRBs, that

perform the transaction are assigned priority and are

actively managed by WLM to achieve the assigned goal.

The process of assigning and executing zIIP-eligible SRB

programs is similar to the four-phase process used for

zAAP-eligible programs, as described in the preceding

subsection. However, unlike zAAPs, which execute only

Java programs, zIIPs can be exploited to execute any

programming function that is structured to operate under

control of enclave SRBs5; that is, zIIPs are not restricted

to specific programming languages, but rather to a specific

type of z/OS-dispatchable unit. The z/OS interface used to

schedule enclave SRB programs as eligible for execution

on zIIPs is proprietary and is therefore not described.

However, like the proprietary zAAP switching interface,

this zIIP-enabling interface results in the eligible programs

executing on zIIPs either wholly or in part as determined

by two elements: the requirements of the program that

scheduled the zIIP SRB enclave and the overall zIIP

processing workload as controlled by the z/OS WLM.

ZIIPs are not subject to the zAAP IFAHONORPRIORITY

parameter. However, they are managed in a manner

similar to zAAPs when IFAHONORPRIORITY ¼ YES is

specified; that is, non-zIIP-eligible programs execute only

on CPs in priority order. They may also execute zIIP-

eligible programs in priority order under the following

conditions:

� zIIPs are overcommitted and require CP assistance.
� zIIP-eligible programs have met or exceeded their

zIIP processing requirements as specified by their

associated zIIP scheduling program.
� zIIP processors become unavailable for program

execution.

Which DB2 functions execute on zIIPs

z/OS DB2 Version 8 is the initial IBM subsystem to

exploit zIIPs, and this exploitation can significantly

enhance the cost and performance benefits of DB2 for

System z9 users. In the future, it is expected that other

strategic System z program offerings will be enhanced

to take advantage of the benefits that zIIPs provide.

Currently, DB2 provides zIIP enablement for the

following functions:

� Network-connected applications: For applications that

execute on other server platforms but access a DB2

database hosted on a System z9, a portion of the DB2

subsystem functions that accept and process

Structured Query Language (SQL) calls from the

remote application over a TCP/IP DRDA connection

are enabled for zIIPs. Additionally, the System z

HiperSockets*6 facility may also be used in

conjunction with the DRDA connector by application

2Integrated facility for applications (IFA) is the programming name assigned to
zAAPs.
3An enabled wait state is the processor state in which no instructions are executed
and the processor is enabled to accept an interrupt in order to place it back in the
instruction execution state—for example, when an I/O or timer interrupt condition is
detected that causes the processor to again execute an instruction stream appropriate
for the type of interrupt condition accepted by the processor.
4An SRB is the z/OS data structure used to dispatch and control the execution of a
high-performance program.

5Enclave SRBs are collections of SRBs representing a business unit of work or
transaction that are managed as a group.
6HiperSockets is the System z9 facility that provides a virtual LAN connection for
TCP/IP communications between programs operating in separate logical partitions.
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programs operating in other LPARs on the same

System z9 database server to access DB2. Examples

of the application workloads that may be running on

the remote server include business integration (BI),

enterprise resource planning, and customer relations

management applications.
� Data warehousing applications: Portions of database

queries that utilize DB2 star schema parallel SQL

queries [6] are zIIP-eligible. For example, BI

applications may use such queries.

Some DB2 utility functions [7] that are used to

maintain index maintenance structures (e.g., Load, ReOrg,

and ReBuild Index) are zIIP-eligible—specifically, those

portions of these utility functions that execute as enclave

SRBs.

Controlling zAAP and zIIP execution
As with previous System z mainframes, the PR/SM LPAR

hypervisor controls the creation, activation, and execution

of LPARs. This includes the assignment of processors,

memory, and I/O to each partition. As with System z9

CPs, zAAPs and zIIPs may be configured only to

Extended System Architecture (ESA)-mode [8] LPARs7.

Each ESA-mode partition must have at least one CP and

may have one or more zAAPs and zIIPs, up to a maximum

of 54 total processors. However, the number of zAAPs

or the number of zIIPs, individually, cannot exceed the

number of CPs for a given system configuration. For

example, if the configuration has five installed CPs, it

can have a maximum of five zAAPs and five zIIPs.

zAAPs and zIIPs may be defined as either dedicated or

shared, just as with the CPs assigned to a z/OS LPAR.

However, regardless of processor type, dedicated and

shared processors may not be concurrently assigned to

the same LPAR. Dedicated zAAPs and zIIPs and their

corresponding CPs are used exclusively by the z/OS

operating in the LPAR to which they are assigned. More

typically, as with shared CPs, shared zAAPs and zIIPs are

available for use by all LPARs for which shared zAAPs

and zIIPs are defined.

Just as it does for CPs, the LPAR hypervisor creates

zAAP and zIIP logical processors and dispatches them to

the corresponding zAAP and zIIP physical processors in

order to execute the programs residing in the memory

of each LPAR to which they are configured (Figure 3).

Each zAAP and zIIP logical processor comprises

processor hardware, millicode, and logical partitioning

firmware controls, which collectively represent the

physical processor. Just as with CPs, each zAAP and zIIP

logical processor contains a complete set of physical

processor controls and associated operating states

necessary to execute the logical processor on the

hypervisor-selected physical processor. For example, if a

zAAP is configured to two LPARs, each partition has a

separate zAAP logical processor configured to it. In turn,

the z/OS control program provides independent zAAP

and zIIP logical processor controls in order to dispatch

the appropriate programming tasks and SRB programs

to their associated zAAP and zIIP logical processors.

The hypervisor creates and maintains separate physical

processor pools for each processor type—CPs, zAAPs,

zIIPs, Integrated Facility for Linux** processors (IFLs),

and Integrated Coupling Facility processors (ICFs)—and

uses the proprietary z/Architecture* start interpretive

execution (SIE) virtualization technology provided by

System z to define, initiate, and control the execution of

zAAP and zIIP logical processors on their corresponding

physical processors. This architecture provides a logical

processor state description that is loaded into the physical

zAAP and zIIP instruction processing controls when the

SIE instruction is executed by the hypervisor. In turn, the

SIE instruction activates the physical processor on behalf

of its associatedLPAR. This process is depicted inFigure 4.

Once activated, zAAP and zIIP logical processors typically

remain active on behalf of their associated partitions

until one of the following conditions is encountered:

� It is placed in a wait state by the OS; for example,

when there are no zAAP- or zIIP-eligible programs

to be executed.
� A preemptive interrupt condition—such as a time-

slice end interruption condition or, in the case of

zIIPs, an I/O interruption condition associated with

another LPAR—is recognized by the hypervisor. In

both of these cases, the hypervisor is given control

and typically dispatches the physical processor to

another sharing partition.
� z/OS executes an instruction for which the hypervisor

must take a special action in order to assist in the

execution of the instruction. For example, the OS

executes a low-frequency privileged instruction for

which the processor SIE controls do not interpretively

execute.
� The physical processor encounters an error condition

that requires assistance from the hypervisor to

recover.
� An operator action is recognized that requires

hypervisor assistance: For example, the logical

processor is varied offline.
� The LPAR is placed in a nonexecutable state: For

example, the operator deactivates the LPAR.

To control the percentage of zAAP and zIIP processing

capacity for each LPAR that shares zAAPs and zIIPs, the7z/OS operates only in ESA-mode LPARs.
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LPAR activation profile [2] provides individual zAAP

and zIIP processing weights, like those provided for CPs;

that is, CPs, zAAPs, and zIIPs each have separate initial,

minimum, and maximum processing weights assigned to

them for each sharing partition. The hypervisor maintains

separate physical CP, zAAP, and zIIP processor pools

and uses these weight specifications to control the

percentage of physical processor capacity from each

processor pool for each sharing partition [2]. However,

unlike CPs, zAAPs and zIIPs are not subject to the z/OS

WLM soft-capping function8. While the z/OS WLM

monitors and provides usage statistics for both zAAPs

and zIIPs, it does not dynamically adjust zAAP and zIIP

shared processor weights, as is possible for shared CPs.

Allocating physical zAAPs and zIIPs to System

z9 books

The System z9 physical packaging structure provides

from one to four processor books9. Depending on the

model, each book provides either 12 or 16 processing

units and a 40-MB shared level 2 (L2) cache. A high-

speed communications ring interconnects the L2 caches

of each book with all other configured books to provide a

shared, memory-coherent, SMP L2 cache structure for all

assigned processing units.

To maximize the performance of CP, zAAP, and zIIP

memory accesses, System z9 millicode assigns each of

these different processor types in a manner that is

designed to minimize multibook L2 cache coherency

overhead; that is, to increase the probability that a

processor memory access can be completed without

having to communicate with the L2 cache in either the L2

cache of an adjacent book or the L2 cache of the book

that is two books away on the L2 cache communications

ring. To accomplish this, the installed CPs, zAAPs, and

zIIPs are assigned in a manner that minimizes their

placement to as few books as possible; that is, they are

clustered together when possible. Additionally, they are

segregated from the books containing ICF and IFL

processors when possible. This is accomplished as

follows:

� CPUs, zAAPs, and zIIPs are clustered together,

starting with book 0, then book 2, then book 3, and

Figure 3
Dispatching CP, zAAP, and zIIP logical processors to their respective physical processors.
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8Soft-capping is the process in which the z/OS WLM interacts with the logical
partition hypervisor to dynamically adjust the percentage of shared processor capacity
that a logical partition may use [2].
9A processor book is the physical packaging method used by System z9 to contain
such elements as system processors, cache, memory cards, and I/O connectors.
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finally book 1 when necessary. Within each book, CPs

are assigned first, zAAPs are assigned next, and zIIPs

are assigned last.

� ICF and IFL processors are clustered together

starting with book 1, then book 3, then book 2, and

finally book 0 when necessary. Within each book,

ICFs are assigned first, and IFLs are then assigned.

Monitoring and reporting zAAP and zIIP usage

Collectively, z/OS, WLM, and the resource measurement

facility (RMF) [9] monitor and report zAAP and zIIP

consumption metrics using the same recording and

reporting facilities as provided for general-purpose CPs.

The appropriate z/OS service management facility (SMF)

resource utilization records are used to record zAAP and

zIIP activity numbers such as individual zAAP and zIIP

utilization and collective averages for both. These

statistics are then used by RMF and DB2 instrumentation

to generate various processor resource reports, such as

processor workload, activity, and enclave reports.

zAAP and zIIP architecture characteristics

zAAP and zIIP processors are capable of executing all

z/Architecture-mode instructions necessary to operate

z/OS and the zAAP and zIIP associated subsystem and

application programs. Additionally, several privileged

supervisory instructions used by z/OS to control

execution of zAAPs and zIIPs (such as the signal

processor instruction, store system information

instruction, and read CPU information instruction) are

enhanced to accommodate zAAP and zIIP processor

types. As with general-purpose CPs, zAAPs and zIIPs

may be added or removed by the System z9 dynamic

capacity on/off on demand facility [10], assuming that

zAAP and zIIP dynamic additions do not exceed the

maximum number allowed.

However, zAAPs and zIIPs differ from general-purpose

CPs in several ways:

� zAAPs are not enabled to process I/O interrupts or

time-of-day clock interrupts.

Figure 4

PR/SM activation of logical CPs, zAAPs, and zIIPs on their associ-

ated physical processors using the start interpretive execution (SIE) 

instruction.
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Using zAAPs and zIIPs in a typical System z operating environ-
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� zAAPs and zIIPs are not subject to initial program

loading (IPL10); that is, neither can be specified as

the target processor for an operator-initiated LOAD

PROCESSOR function, often referred to as an LPAR

boot, or any of the System z9 LOAD derivatives.
� A few other operator-initiated functions, such as the

PSW11 RESTART and the STOP function, and their

derivates, are either not available for zAAPs or zIIPs

or do not affect zAAP and zIIP operating states [2].

Summary

zAAPs and zIIPs can individually provide significant

benefits in terms of increased network integration,

workload efficiency, and reduced information network

costs. When viewed collectively with other System z9

capabilities, these advantages become even more

apparent. Benefits of zAAPs and zIIPs can be derived

indirectly by application programs operating in other

LPARs on the same System z9 server and by application

programs operating on remote application servers, as

depicted in Figure 5.

For example, application programs operating in

separate z/OS, z/VM*, or z/Linux LPARs on the same

System z9 server as their associated DB2 partition may

all communicate with the z/OS LPAR DB2 subsystem

operating on zIIPs and CPs by use of the System z9

HiperSockets facility. In addition to the reliability,

scalability, integrity and other z9 advantages these

applications implicitly accrue by operating on the same

System z9 platform, they can also have integration

benefits similar to those that would be available if they

were operating in the same LPAR as the DB2 subsystem.

By using HiperSockets, all TCP/IP communications

among such applications and their associated DB2

subsystem are performed at memory speeds faster than

that of a remote network adapter operating at Ethernet

speeds. Additionally, the associated remote server

TCP/IP communication overheads such as data

conversions, data compression and decompression,

and data encryption and decryption can be eliminated.

Applications configured to operate in either z/VM or

z/Linux IFL partitions benefit from the advantage of

executing on System z9 IFL processors, which provide

cost benefits similar to those of zAAPs. Finally, remote

applications operating on different physical servers can

benefit indirectly from the reduced cost per database

transaction when zIIPs are used to assist processing of

the DB2 requests.

With the advantages provided by the IBM System z9

zAAPs and zIIPs, the mainframe evolution continues. Its

balanced capabilities support the integration of both

traditional enterprise-class workloads and the ever-

increasing web-based workloads onto an enterprise-class

business server that is both world-class and renowned for

its reliability, scalability, and robust functionality.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc. or Linus Torvalds in the United States, other
countries, or both.

References
1. IBM Corporation, ‘‘Optimizing WebSphere for z/OS

Performance,’’ White Paper; see http://www-03.ibm.com/
support/techdocs/atsmastr.nsf/WebIndex/WP100558.

2. IBM Corporation, System z9 109 Processor Resource/Systems
Manager Planning Guide (SB10-7041-01a), October 10, 2006;
see http://www-1.ibm.com/support/docview.wss?uid¼
isg22526a41d800842b98525701c007281db.

3. zIIP program requirements; see http://www-03.ibm.com/
systems/z/ziip/gettingstarted/prereqs.html.

4. P. Bari, P. Cassier, A. Defendi, J. Hutchinson, A. Maneville,
G. Membrini, and C. Ong, IBM Corporation, ‘‘System
Programmer’s Guide to: Workload Manager,’’ IBM
Redbooks, January 19, 2006; see http://www.redbooks.
ibm.com/abstracts/sg246472.html?Open.

5. B. Steegmans, N. Armstrong, C. Cemiloglu, S. V. Kumar,
and S. Todokoro, IBM Corporation, ‘‘Distributed
Functions for DB2 for z/OS and OS/390*,’’ IBM Redbooks,
June 30, 2003; see http://www.redbooks.ibm.com/abstracts/
sg246952.html?Open.

6. S. Podcameni, V. Anavi-Chaput, V. L. Hicks, and P. Bruns,
IBM Corporation, ‘‘Data Warehousing with DB2 for
OS/390,’’ IBM Redbooks, December 17, 1997; see http://
www.redbooks.ibm.com/abstracts/sg242249.html?Open.

7. B. Steegmans, R. Garcia, S. Kaschta, R. Kumar, and M.
Parbs, IBM Corporation, ‘‘DB2 UDB for z/OS Version 8:
Everything You Ever Wanted to Know, . . . and More,’’ IBM
Redbooks, May 2004; see http://www.redbooks.ibm.com/
redbooks/pdfs/sg246079.pdf.

8. IBM Corporation, z/Architecture Principles of Operation; see
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/r3pdf/
zarchpops.html.

9. IBM Corporation, IBM z/OS Resource Measurement Facility
Programmer’s Guide (SC33-7994-04); see http://publibz.
boulder.ibm.com/epubs/pdf/erbzpg30.pdf.

10. F. Injey, G. Chambers, M. Gasparovic, P. Hamid, B. Hatfield,
K. Hewitt, D. Jorna, and P. Kappeler, IBM Corporation,
‘‘IBM System z9 Enterprise Class Technical Guide,’’ IBM
Redbooks, December 2006; see http://www.redbooks.ibm.com/
redbooks/pdfs/sg247124.pdf.

Received March 21, 2006; accepted for publication

10IPL is the z/Architecture term for the processor program loading and program
activation function. The operator LOAD PROCESSOR function and its derivatives
are the application of the z/Architecture IPL function on System z systems.
11PSW, or Program Status Word, is the processor hardware logic that contains
processor state information, such as the current instuction execution address,
condition code, and other state information used to control instruction sequencing.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 L. W. WYMAN ET AL.

85

June 15, 2006; Internet publication January 9, 2007



Les W. Wyman IBM Systems and Technology Group, 2455
South Road, Poughkeepsie, NewYork 12601 (lwyman@us.ibm.com).
Mr.Wyman retired in 1993 as a Senior Technical StaffMember and
rejoined IBM in 1999. He has held numerous technical and technical
leadership positions in programming systems, channel engineering,
and systems architecture, including the mainframe zSeries* logical
partitioning and multiple high-performance virtual machine
conceptualizations and architectures, the multiple logical channel
subsystem conceptualization and architecture, the queued direct I/O
(QDIO) architecture, System z zAAP conceptualization, and others.
Mr.Wyman has achieved the IBM Ninth Plateau Invention
Achievement Award and has received numerous IBM division
and corporate technical achievement awards.
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