zAAPs and zlIPs:
Increasing the
strategic value
of System z

L. W. Wyman
J. Castano

J. P. Kubala
R. J. Maddison
B. R. Pierce

R. R. Rogers

With the addition of IBM System z™ application assist processors
(zAAPs) and integrated information processors (zIIPs) to the
portfolio of special-purpose IBM System z processors, the
reinvention of the IBM mainframe continues. Jointly, zAAPs
and zIIPs provide significant IBM System z9™ integrated and

cost-effective processing cycles for today’s strategic Java

™

and

DB2® for z/OS® programming platforms which are increasingly
Sfundamental to enterprise-class business environments. Overviews
of zAAPs and zIIPs are presented that describe their functionality,
design, and use by the z/OS operating system to achieve the
execution of both Java and z/OS DB2 programming functions.

Introduction

In contemporary computer networks, it is a common
practice to interconnect multiple computing systems,
typically called servers, in a manner that segregates each
of the interconnected servers into separate usage classes.
The classes are based on the various functions each server
is configured to execute. For example, one or more of
the interconnected servers may be assigned the task of
executing application programs, and others may be
assigned the task of executing database programs that
access and manage one or more of the network databases.
Networks that are structured in this manner are typically
described as distributed multitier server networks, as
depicted in Figure 1(a).

The structuring of distributed multitier networks and
the assignment of work to each of the servers within the
network is typically determined by a number of factors
such as processing speed, functional capabilities,
reliability, scalability, cost of acquisition, and cost to
operate and maintain. Typically, the computing functions
within these networks that require the highest degrees
of reliability, availability, data integrity, and scalability
are allocated to the database servers that control the
management and access of the network user’s data. Thus,
the core computing elements of many networks—in terms
of user data availability, integrity, and reliability—lie
with data servers such as the IBM System z9*. Such
database servers are responsible for accessing, updating,

and maintaining the centralized and integrated databases
upon which many companies rely for their associated
business processes. As such, they are typically the most
reliable and functionally robust elements within the
network, but they can also represent the most expensive
servers in terms of initial cost of ownership.

Within many distributed networks, the number of
application servers has increased significantly because
of the programming technologies being used to develop
and implement timely and cost-effective web-based
applications. This is especially true for applications
designed to support the evolving strategic e-business and
on-demand business models. Programming languages
such as Java** and Extensible Markup Language (XML)
for document processing play a major role in developing
new strategic service-oriented architecture web-based
applications. They provide significant advantages in
programming development productivity, reduced
development costs, and reduced time for application
deployment. These application-based programming
technologies present a high level of programming
abstraction to the program developer, are independent
of the specific computer architectures of the servers on
which they are deployed, and provide open-standard
programming interfaces to render application programs
operable on all server platform implementations.
However, these “application can operate anywhere”
programming models have resulted in significantly

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

L. W. WYMAN ET AL.

77

78

First tier Second tier Third tier
Client —
Application
Client server
Client N Application N
e Database
N

. server
N Application]

Client server

Client L,| Application | |

server

HHHHHE

Client

1
1
1
1
1
1
1
1
1
1
1
1
Client 'T' H-
1
1
1
1
1
1
1
1
1
: Network servers

I I
First tier : Second tier Third tier :
I I
: pplicatio 29 integrated X
- il N application and 0
: \ £ database server :
: _’Ap icgtion| | E 2 9z :
| | L sy s§&| 25 .
[Ctent ol oA IS EE| 22 |
1| Ly| Applicagion| | S A ANES :
! €rve b4 Databases | 1
l i \ z |z z 1
I
| _’Applicatio\‘_ A|lA|c|I|cC :
: server AlAlp | TP |
| HEE |
I
| I
I]

Network servers

Multitiered networks: (a) distributed; (b) simplified by the use of
integrated zAAPs and zIIPs.

increased processing requirements in terms of the total
number of processor instructions that must be executed to
support a given application. For example, Java- and
XML-based web applications are emerging that can
require the execution of millions of computer instructions
to process a single application transaction. Consequently,
such applications are often not cost-effective when
deployed on more expensive server platforms within the
information processing network.

Historically, attempts to simplify and reduce the
overall cost of distributed multitier networks have met
with varying degrees of success. A method often chosen
for minimizing network sprawl and complexity is to
reduce the number of application servers and integrate
their application programming functions into more
functionally rich database servers within the network.
While such strategies have proven to significantly
improve the overall efficiency and management of the

L. W. WYMAN ET AL.

network, the increased initial cost of ownership that is
frequently associated with more robust database servers
can be a barrier to entry. Consequently, the proliferation
of dedicated application server farms is often the reality
for many information technology environments.
However, while the cost to purchase and deploy
additional application-only servers may offer an
attractive initial alternative, application server
proliferation often results in unexpected increases in the
total cost of network ownership. This typically becomes
the reality for many mature yet ever-growing computing
environments, as the total number of server elements
within the environment increases to meet the growing
demands of the business. This server proliferation often
results in decreased reliability, additional complexity to
manage, and inefficient utilization of the application
servers within the information network.

To address these problems, IBM has developed the
System z* application assist processor (zAAP) and the
System z integrated information processor (zIIP). These
are special-purpose processing engines integrated within
the System z9 scalable symmetric multiprocessor (SMP)
memory-coherent infrastructure for use by the z/OS*
operating system [Figure 1(b)]. zZAAPs execute strategic
Java programming applications and their associated
XML documents. zIIPs are designed to process portions
of the z/OS IBM DB2* relational database management
functions. Collectively, these two processor additions can
execute a significant percentage of the total processing
cycles consumed by these programming functions.
Consequently, zAAPs and zIIPs free up much of the
System z9 general-purpose central processor (CP)
capacity for other uses. Also, because of the hardware
and software cost advantages of zZAAPs and zIIPs
compared with that of System z9 CPs, they collectively
provide a cost-competitive means to consolidate strategic
Java and related application programming and a more
cost-effective z/OS and DB2 database processing
platform. As an integrated application and database
server solution, they enable the IBM System z9 to provide
greater performance, function, and cost-competitiveness
when compared with typically less efficient and more
complex distributed network solutions prevalent in
today’s information technology marketplace.

Integrated processing engines

Both zZAAPs and zIIPs are integrated into the System z9
server platform central processor and memory
attachment infrastructure to form a memory-coherent,
yet heterogeneous, processor complex. The result is that
both applications and associated database subsystem
functions can be executed in a highly efficient manner.
Also, by exploiting zZAAPs and zIIPs with the z/OS
operating system, the System z9 provides significant

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

functional benefits to both the application and database
programs because both are now operating on the most
reliable server within the network. Additionally, the Java
application programs executed on zAAPs implicitly
benefit from the System z9 and z/OS advantages of
qualities of service, server scalability and reliability, and
z/OS computing capabilities, such as dynamic workload
balancing, multilevel security, logical partitioning, and
other robust server virtualization capabilities.

The Java application programs and their associated
database subsystem programs can interact with each
other more efficiently by using System z9 SMP memory
exchanges of data; that is, they can directly communicate
and share data with each other. This means that they
require neither physical network wires nor the associated
communication programming stacks that would
otherwise be necessary to interconnect physically separate
application and database servers. This eliminates the
requirement for such elements as Ethernet network
adapters, the associated Transmission Control Protocol/
Internet Protocol (TCP/IP) programming stacks,
firewalls, data conversion, data compression/
decompression, or data encryption/decryption
overheads. System z and z/OS integrated interprogram
communication using System z9 memory-based accesses
and data-sharing capabilities can significantly reduce the
overall complexity of the network, increase the total
network reliability, and significantly reduce network
transaction processing overhead.

Performance tests that demonstrate this increased
efficiency were executed at the IBM Washington Systems
Center, operating both Java application transactions and
their associated database programs in the same LPAR on
a System z platform. The result was an improvement by
as much as 77% in transaction processing efficiency as
measured by average central processing unit (CPU) time
per transaction. Additionally, the total number of bytes
transferred between the application and the database
subsystem was reduced by as much as 99% when
compared with operating the application and database
subsystem on separate physical server platforms [1].

Using zAAPs and zIIPs

zAAPs and zIIPs render their use transparent to the Java
programs that execute on zAAPs and the associated DB2
database programs that execute on zIIPs. The z/OS
control program, operating in conjunction with the
System z9 Processor Resource/Systems Manager*
(PR/SM*) firmware [2], commonly called the logical
partition (LPAR) hypervisor, transparently assigns and
dispatches the execution of Java programs on the zZAAP
processors and the execution of appropriate DB2
database processing programs on zIIPs. In both

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

cases, this is accomplished without the awareness or
involvement of the Java programs or the DB2 programs.

Both zZA APs and zIIPs assist the System z9 CPs and are
configured using the same LPAR definition and activation
processes as provided for the CPs configured to an LPAR.
Each z/OS LPAR may have one or more zZAAPs and zIIPs
configured to them along with their associated CPs.
However, as zAAPs and zIIPs are designed to assist CPs,
they have some unique characteristics. For example,
neither zZAAPs or zIIPs can be the target of an initial
program load (IPL)', the maximum number of configured
zAAPs and zIIPs cannot exceed the total number of CPs
for a given system, and, depending on the System z model,
zAAPs and zIIPs do not necessarily operate at the same
speed as the CPs (see the section on zZAAP and zIIP
architecture characteristics below).

Program requirements

zAAPs are designed to execute Java programs, while
zIIPs, are designed to execute z/OS DB2 database
processing programs, which creates certain programming
requirements. For zZAAPs, the requirements are the
following:

* 7/OS 1.6 (or z/OS.e 1.6), or later.

¢ [BM Software Development Kit (SDK) for z/OS,
Java 2 Technology Edition, V1.4, or later with
program temporary fix (PTF) for authorized program
analysis report (APAR) PQ86689 [the IBM Java
Virtual Machine (JVM) that controls and executes
Java programs].

Additionally, subsystems and applications that use the
SDK 1.4 JVM and its subsequent releases automatically
exploit zZAAPs. These include the following:

e IBM WebSphere* Application Server (WAS) releases
5.1 and 6.0.1, or later ...

¢ [BM Customer Information Control System/
Transaction Server (CICS*/TS) release 2.3, or later . ..

¢ [BM DB2 for z/OS version 7, or later ...

¢ IBM Information Management System (IMS¥)
version 8, or later ...

e IBM WebSphere Business Integration (WBI)
version 5 for z/OS Java batch programs.

For zIIPs, the program requirements [3] are as follows:

* 7/OS 1.6 (or z/OS.e 1.6), or later ...
e IBM DB2 for z/OS version 8 or later, with the
following maintenance:

'An IPL is the System z method for booting an operating system into a logical
partition and activating it.

L. W. WYMAN ET AL.

79

80

79 general-purpose processor

z9 ZAAP
s || | [Nobsmespen ccs,
Dispatch JVM task [% E ;C . aZo:iZ .
on zAAP xeeute Jav
JVM JVM
Execute Java application Switch to zZAAP
Ay s z/0OS dispatcher
application code —1— Suspend JVM task on
general-purpose processor
JVM z/0S dispatcher
Switch to general- ¥ Dispatch JVM task on
purpose processor general-purpose processor
¥ ¥
z/OS dispatcher JVM
Suspend JVM task [Initiate execution of
on zZAAP non-Java code
(2)
Executed on general-purpose
Executed on a zZAAP processors and zIIPs in the
same z/OS logical partition
i o)
Z N
3 2 (=
- S [INI (Sl & [Dre2
ST 2] | £13| 2 |4 mBC 2
3 S = < inter- 2
g 2 = .“.; address 5
s g : 53 space i
5 O le = > connection | &
Al 8 S le— v A
2 26|85
Q
| I m —
VM < g
Py -
z/OS address spacet INI
for the JVM and Java callback
application code

(b)

+ A 2%%-byte virtual memory space for executing programs.

Programming flow: (a) z/OS switching between general-purpose
logical processors and zZA AP logical processors. (b) Java application
interacting with the DB2 subsystem to access a DB2 database.
(RRSAF: Resource recovery services attach facility; ASM/PLX:
assembly and PLX code.)

¢ Distributed Rational Database Architecture
(DRDA): PK18454.

Utilities: PK19920.

e Star schema parallelism: PK19921.

L. W. WYMAN ET AL.

Directing work to zAAPs

The process of assigning and executing zA AP-eligible
programs to their corresponding physical zAAP
processors is accomplished by a four-phase process.
Phase 1 is the process by which the Java program is made
eligible for execution on zAAP processors. Phase 2 is the
process by which the z/OS dispatcher, operating on a
CP, suspends execution of the zZAAP-eligible programs.
Phase 3 is the process by which the System z9 PR/SM
selects and dispatches the zAAP logical processor to

a corresponding zAAP physical processor (see the
section below on controlling the execution of zAAPs
and zIIPs). Phase 4 is the process by which the z/OS
dispatcher, operating on a zAAP, selects and dispatches
the zAAP-eligible programs on their respective zZAAP
logical processors operating on physical zZAAP
processors.

The JVM that controls and executes Java programs
uses an internal secure “switch” programming interface to
request the z/OS control program to make it eligible for
execution on a zZAAP. This z/OS switching service is
available only to the appropriate IBM JVMs. Attempts
by other programs to use this interface will not result in a
switching action by z/OS.

The IBM JVM uses this interface prior to executing a
Java program. When the JVM is subsequently dispatched
on a zAAP, the JVM and its associated Java program
execute on a zZAAP until the Java program ends,
abnormally terminates, or, more typically, requests
service by use of a Java Native Interface (JNI) application
programming interface (API) for a non-Java program
function. For example, if the Java program requests data
from the z/OS DB2 subsystem through the use of a Java
database connectivity (JDBC) JNI, the JVM again uses
the z/OS switch interface service to request that z/OS be
redispatched to request its execution on a CP in order to
activate the non-Java programming components of the
JDCB function on the CP. Subsequently, when the non-
Java functions have completed and control is returned to
the JVM, it again requests that z/OS execute it on a zZAAP
in order to resume execution of the Java program. This
programming flow is depicted in Figure 2(a). Figure 2(b)
depicts the program flow between a Java application
program, operating on a zZAAP in its own z/OS address
space, and the DB2 subsystem, operating on CPs and
zIIPs in a DB2 address space, in order to access or modify
data in a DB2 database.

In addition to Java application programs, generally
available XML parsing programs that are coded in Java
implicitly benefit from executing on zAAPs. Such XLM
parsing programs derive the same functional and price/
performance benefits as all other Java-coded programs
that execute on zAAPs.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Controlling zAAP-eligible work
To ensure that Java program execution meets the desired
transaction response time and to provide user control
of the overall Java workload for capacity planning and
management purposes, z/OS provides two Java execution
options, as specified by the z/OS SYS1.PARMLIB dataset
parameter IFAHONORPRIORITY? = YES/NO.

When IFAHONORPRIORITY = YES is specified, z/OS
executes both Java and non-Java programs as follows:

* All Java-eligible programs are executed on zAAPs
in priority order.

¢ All non-Java programs are executed on CPs in
priority order. Java-eligible programs may also be
executed on CPs in priority order, but only when the
zA AP processors are overcommitted and require
assistance to meet the processing demands of the
overall Java programming workload.

When [FAHONORPRIORITY = NO is specified,

e All Java programs are executed on zAAPs in priority
order.

¢ All non-Java programs are executed on CPs in
priority order. Java programs may also be executed
on CPs, but only when there are no non-Java
programs to dispatch on the CPs; that is, prior to
the processor entering an enabled wait state”.

In the unlikely event that the zZAAP processors become
unavailable for program execution (that is, they enter the
not-operational state or they are varied offline), z/OS
dispatches the Java-eligible programs to CPs, just as when
no zAAP processors are configured to the LPAR.

Directing work to zlIPs

zI1Ps execute those z/OS programs that are structured

to operate under control of z/OS-preemptable enclave
service request blocks (SRBs)* [4]. An enclave is a z/OS
construct that allows a unit of work or transaction, such as
a distributed relational database architecture (DRDA)
[5] request for DB2 to be assigned a goal by the z/OS
Workload Manager (WLM) [4] on the basis of customer-
provided rules. The execution threads, such as SRBs, that
perform the transaction are assigned priority and are
actively managed by WLM to achieve the assigned goal.
The process of assigning and executing zIIP-eligible SRB

Integrated facility for applications (IFA) is the programming name assigned to
zAAPs.

3An enabled wait state is the processor state in which no instructions are executed
and the processor is enabled to accept an interrupt in order to place it back in the
instruction execution state—for example, when an I/O or timer interrupt condition is
detected that causes the processor to again execute an instruction stream appropriate
for the type of interrupt condition accepted by the processor.

“An SRB is the z/OS data structure used to dispatch and control the execution of a
high-performance program.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

programs is similar to the four-phase process used for
zA AP-eligible programs, as described in the preceding
subsection. However, unlike zA APs, which execute only
Java programs, zIIPs can be exploited to execute any
programming function that is structured to operate under
control of enclave SRBs; that is, zIIPs are not restricted
to specific programming languages, but rather to a specific
type of z/OS-dispatchable unit. The z/OS interface used to
schedule enclave SRB programs as eligible for execution
on zIIPs is proprietary and is therefore not described.
However, like the proprietary zZAAP switching interface,
this zITP-enabling interface results in the eligible programs
executing on zIIPs either wholly or in part as determined
by two elements: the requirements of the program that
scheduled the zITP SRB enclave and the overall zITP
processing workload as controlled by the z/OS WLM.

ZIIPs are not subject to the zZAAP IFAHONORPRIORITY
parameter. However, they are managed in a manner
similar to zZAAPs when [FAHONORPRIORITY = YES is
specified; that is, non-zIIP-eligible programs execute only
on CPs in priority order. They may also execute zIIP-
eligible programs in priority order under the following
conditions:

e 7zIIPs are overcommitted and require CP assistance.

e zIIP-eligible programs have met or exceeded their
zIIP processing requirements as specified by their
associated zIIP scheduling program.

e zIIP processors become unavailable for program
execution.

Which DB2 functions execute on zIlIPs
z/OS DB2 Version 8 is the initial IBM subsystem to
exploit zIIPs, and this exploitation can significantly
enhance the cost and performance benefits of DB2 for
System z9 users. In the future, it is expected that other
strategic System z program offerings will be enhanced
to take advantage of the benefits that zIIPs provide.
Currently, DB2 provides zIIP enablement for the
following functions:

® Network-connected applications: For applications that
execute on other server platforms but access a DB2
database hosted on a System z9, a portion of the DB2
subsystem functions that accept and process
Structured Query Language (SQL) calls from the
remote application over a TCP/IP DRDA connection
are enabled for zIIPs. Additionally, the System z
HiperSockets*® facility may also be used in
conjunction with the DRDA connector by application

5Enclave SRBs are collections of SRBs representing a business unit of work or

transaction that are managed as a group.

®HiperSockets is the System z9 facility that provides a virtual LAN connection for
TCP/IP communications between programs operating in separate logical partitions.

L. W. WYMAN ET AL.

81

82

programs operating in other LPARs on the same
System z9 database server to access DB2. Examples
of the application workloads that may be running on
the remote server include business integration (BI),
enterprise resource planning, and customer relations
management applications.

* Data warehousing applications: Portions of database
queries that utilize DB2 star schema parallel SQL
queries [6] are zIIP-eligible. For example, BI
applications may use such queries.

Some DB2 utility functions [7] that are used to
maintain index maintenance structures (e.g., Load, Re0Org,
and ReBuild Index) are zIIP-eligible—specifically, those
portions of these utility functions that execute as enclave
SRBs.

Controlling zAAP and zIIP execution
As with previous System z mainframes, the PR/SM LPAR
hypervisor controls the creation, activation, and execution
of LPARs. This includes the assignment of processors,
memory, and I/O to each partition. As with System z9
CPs, zAAPs and zIIPs may be configured only to
Extended System Architecture (ESA)-mode [8] LPARs’.
Each ESA-mode partition must have at least one CP and
may have one or more zAAPs and zIIPs, up to a maximum
of 54 total processors. However, the number of ZzAAPs
or the number of zIIPs, individually, cannot exceed the
number of CPs for a given system configuration. For
example, if the configuration has five installed CPs, it
can have a maximum of five zZAAPs and five zIIPs.
zAAPs and zIIPs may be defined as either dedicated or
shared, just as with the CPs assigned to a z/OS LPAR.
However, regardless of processor type, dedicated and
shared processors may not be concurrently assigned to
the same LPAR. Dedicated zAAPs and zIIPs and their
corresponding CPs are used exclusively by the z/OS
operating in the LPAR to which they are assigned. More
typically, as with shared CPs, shared zAAPs and zIIPs are
available for use by all LPARs for which shared zAAPs
and zIIPs are defined.

Just as it does for CPs, the LPAR hypervisor creates
zAAP and zIIP logical processors and dispatches them to
the corresponding zZAAP and zIIP physical processors in
order to execute the programs residing in the memory
of each LPAR to which they are configured (Figure 3).
Each zZAAP and zIIP logical processor comprises
processor hardware, millicode, and logical partitioning
firmware controls, which collectively represent the
physical processor. Just as with CPs, each zZAAP and zIIP
logical processor contains a complete set of physical
processor controls and associated operating states

72/0S operates only in ESA-mode LPARs.

L. W. WYMAN ET AL.

necessary to execute the logical processor on the
hypervisor-selected physical processor. For example, if a
zAAP is configured to two LPARs, each partition has a
separate ZAAP logical processor configured to it. In turn,
the z/OS control program provides independent zAAP
and zIIP logical processor controls in order to dispatch
the appropriate programming tasks and SRB programs
to their associated zAAP and zIIP logical processors.

The hypervisor creates and maintains separate physical
processor pools for each processor type—CPs, zAAPs,
zIIPs, Integrated Facility for Linux** processors (IFLs),
and Integrated Coupling Facility processors (ICFs)—and
uses the proprietary z/Architecture™* start interpretive
execution (SIE) virtualization technology provided by
System z to define, initiate, and control the execution of
zAAP and zIIP logical processors on their corresponding
physical processors. This architecture provides a logical
processor state description that is loaded into the physical
zAAP and zIIP instruction processing controls when the
SIE instruction is executed by the hypervisor. In turn, the
SIE instruction activates the physical processor on behalf
of'its associated LPAR. This process is depicted in Figure 4.
Once activated, zZAAP and zIIP logical processors typically
remain active on behalf of their associated partitions
until one of the following conditions is encountered:

e [t is placed in a wait state by the OS; for example,
when there are no zAAP- or zIIP-eligible programs
to be executed.

* A preemptive interrupt condition—such as a time-
slice end interruption condition or, in the case of
zIIPs, an I/O interruption condition associated with
another LPAR—is recognized by the hypervisor. In
both of these cases, the hypervisor is given control
and typically dispatches the physical processor to
another sharing partition.

¢ 7/OS executes an instruction for which the hypervisor
must take a special action in order to assist in the
execution of the instruction. For example, the OS
executes a low-frequency privileged instruction for
which the processor SIE controls do not interpretively
execute.

* The physical processor encounters an error condition
that requires assistance from the hypervisor to
recover.

* An operator action is recognized that requires
hypervisor assistance: For example, the logical
processor is varied offline.

¢ The LPAR is placed in a nonexecutable state: For
example, the operator deactivates the LPAR.

To control the percentage of zZAAP and zIIP processing
capacity for each LPAR that shares zAAPs and zIIPs, the

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

z/OS logical partition A z/OS logical partition B
General- zAAP zAAP zIIP General- General- || General- zAAP zZAAP zIIP
purpose logical logical logical purpose purpose purpose logical logical logical
logical processor || processor processor logical logical logical processor processor | | processor
processor processor | | processor | | processor
z/0S Javaand || Javaand z/OS z/OS z/0S Java and
and Java-based| | Java-based DB2 and and and Java-based DB2 DB2
DB2 XML XML DB2 DB2 DB2 XML
[|
|_|_| T |_|_|

v * v

v v v

3. Logical zITPs on physical zIIPs.

The z9 LPAR hypervisor dispatches
1. General-purpose logical processors on general-purpose physical processors.
2. Logical zZAAPs on physical zZAAPs.

I I

|
v v v v y ¥ Y ¥
Shared Shared Shared Shared Shared Shared Shared Shared
general- general- general- general- zAAP zAAP zIIP zITP
purpose purpose purpose purpose physical physical physical physical
physical physical physical physical processor processor processor processor
processor processor processor processor
General-purpose physical processor pool Physical zAAP pool Physical zIIP pool

Dispatching CP, zAAP, and zIIP logical processors to their respective physical processors.

LPAR activation profile [2] provides individual zAAP
and zIIP processing weights, like those provided for CPs;
that is, CPs, zZAAPs, and zIIPs each have separate initial,
minimum, and maximum processing weights assigned to
them for each sharing partition. The hypervisor maintains
separate physical CP, zZAAP, and zIIP processor pools
and uses these weight specifications to control the
percentage of physical processor capacity from each
processor pool for each sharing partition [2]. However,
unlike CPs, zZAAPs and zIIPs are not subject to the z/OS
WLM soft-capping function®. While the z/OS WLM
monitors and provides usage statistics for both zAAPs
and zIIPs, it does not dynamically adjust zAAP and zIIP
shared processor weights, as is possible for shared CPs.

Allocating physical zAAPs and zlIPs to System
29 books

The System z9 physical packaging structure provides
from one to four processor books’. Depending on the
model, each book provides either 12 or 16 processing

8Soft-capping is the process in which the z/OS WLM interacts with the logical
partition hypervisor to dynamically adjust the percentage of shared processor capacity
that a logical partition may use [2].

A processor book is the physical packaging method used by System z9 to contain
such elements as system processors, cache, memory cards, and I/O connectors.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

units and a 40-MB shared level 2 (L2) cache. A high-
speed communications ring interconnects the L2 caches
of each book with all other configured books to provide a
shared, memory-coherent, SMP L2 cache structure for all
assigned processing units.

To maximize the performance of CP, zAAP, and zIIP
memory accesses, System z9 millicode assigns each of
these different processor types in a manner that is
designed to minimize multibook L2 cache coherency
overhead; that is, to increase the probability that a
processor memory access can be completed without
having to communicate with the L2 cache in either the L2
cache of an adjacent book or the L2 cache of the book
that is two books away on the L2 cache communications
ring. To accomplish this, the installed CPs, zAAPs, and
zIIPs are assigned in a manner that minimizes their
placement to as few books as possible; that is, they are
clustered together when possible. Additionally, they are
segregated from the books containing ICF and IFL
processors when possible. This is accomplished as
follows:

e CPUs, zAAPs, and zIIPs are clustered together,
starting with book 0, then book 2, then book 3, and

L. W. WYMAN ET AL.

83

84

z/OS LPAR z/0OS LPAR
one CP, one zZAAP, one zIIP one CP, one zIIP
b h A b A
LPAR
A 4 v iyt A v
Logical Logical Logical Logical Logical
CP state zAAP state | | zIIP state CP state zIIP state
description | | description | | description | | description | | description
controls controls controls controls controls
l«— SIE Not-dispatched state SIE —»!
|
|
L v v v
Logical Logical Logical Logical
CP state CP state zAAP state zIIP state
description description description description
controls controls controls controls
Hardware Hardware Hardware Hardware
and and and and
millicode millicode millicode millicode
Physical CP Physical CP Physical zZAAP Physical zITP

PR/SM activation of logical CPs, zZAAPs, and zIIPs on their associ-
ated physical processors using the start interpretive execution (SIE)
instruction.

finally book 1 when necessary. Within each book, CPs
are assigned first, ZAAPs are assigned next, and zIIPs
are assigned last.

¢ ICF and IFL processors are clustered together
starting with book 1, then book 3, then book 2, and
finally book 0 when necessary. Within each book,
ICFs are assigned first, and IFLs are then assigned.

Monitoring and reporting zAAP and zIIP usage
Collectively, z/OS, WLM, and the resource measurement
facility (RMF) [9] monitor and report zZAAP and zIIP
consumption metrics using the same recording and
reporting facilities as provided for general-purpose CPs.
The appropriate z/OS service management facility (SMF)
resource utilization records are used to record zZAAP and
zIIP activity numbers such as individual zAAP and zIIP
utilization and collective averages for both. These
statistics are then used by RMF and DB2 instrumentation
to generate various processor resource reports, such as
processor workload, activity, and enclave reports.

zAAP and zIIP architecture characteristics
zAAP and zIIP processors are capable of executing all
z/Architecture-mode instructions necessary to operate
z/OS and the zZAAP and zIIP associated subsystem and

L. W. WYMAN ET AL.

application programs. Additionally, several privileged
supervisory instructions used by z/OS to control
execution of zZAAPs and zIIPs (such as the signal
processor instruction, store system information
instruction, and read CPU information instruction) are
enhanced to accommodate zAAP and zIIP processor
types. As with general-purpose CPs, zAAPs and zIIPs
may be added or removed by the System z9 dynamic
capacity on/off on demand facility [10], assuming that
zAAP and zIIP dynamic additions do not exceed the
maximum number allowed.

However, zZAAPs and zIIPs differ from general-purpose
CPs in several ways:

e zAAPs are not enabled to process I/O interrupts or
time-of-day clock interrupts.

z/OS LPAR A
Shared Shared Shared
zIIP general- zAAP
purpose
processor
WebSphere application
WAS Java
control application
region code
4 7Y
DB2
DB2 utilities Interprogram
communications
Parallel star J
schema |«
SQL queries |«
Remote DRDA
application |« TCP/IP [ibl (oo
server y y

— |] |

> HiperSockets ‘

> ;
] | M] H
v
- 5 \ 4
Elelll2|gl| 3¢ WAS Java
‘é = § E| | =8 control application
=g slgl | &3 region code
2| 8 S| g x § g
(2 g = é _3:‘3 5 WebSphere application
o |E S1E| | &z
N | > N > 2 %
=
Shared IFLs
z/VM z/Linux z/0S
LPAR LPAR LPAR B

Using zAAPs and zIIPs in a typical System z operating environ-
ment.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

e zAAPs and zIIPs are not subject to initial program
loading (IPL'); that is, neither can be specified as
the target processor for an operator-initiated LOAD
PROCESSOR function, often referred to as an LPAR
boot, or any of the System z9 LOAD derivatives.

* A few other operator-initiated functions, such as the
PSW!! RESTART and the STOP function, and their
derivates, are either not available for zZAAPs or zIIPs
or do not affect zZAAP and zIIP operating states [2].

Summary

zAAPs and zIIPs can individually provide significant
benefits in terms of increased network integration,
workload efficiency, and reduced information network
costs. When viewed collectively with other System z9
capabilities, these advantages become even more
apparent. Benefits of zZAAPs and zIIPs can be derived
indirectly by application programs operating in other
LPARs on the same System z9 server and by application
programs operating on remote application servers, as
depicted in Figure 5.

For example, application programs operating in
separate z/OS, z/VM*, or z/Linux LPARs on the same
System z9 server as their associated DB2 partition may
all communicate with the z/OS LPAR DB2 subsystem
operating on zIIPs and CPs by use of the System z9
HiperSockets facility. In addition to the reliability,
scalability, integrity and other z9 advantages these
applications implicitly accrue by operating on the same
System z9 platform, they can also have integration
benefits similar to those that would be available if they
were operating in the same LPAR as the DB2 subsystem.
By using HiperSockets, all TCP/IP communications
among such applications and their associated DB2
subsystem are performed at memory speeds faster than
that of a remote network adapter operating at Ethernet
speeds. Additionally, the associated remote server
TCP/IP communication overheads such as data
conversions, data compression and decompression,
and data encryption and decryption can be eliminated.
Applications configured to operate in either z/VM or
z/Linux IFL partitions benefit from the advantage of
executing on System z9 IFL processors, which provide
cost benefits similar to those of zAAPs. Finally, remote
applications operating on different physical servers can
benefit indirectly from the reduced cost per database
transaction when zIIPs are used to assist processing of
the DB2 requests.

I9IPL is the z/Architecture term for the processor program loading and program
activation function. The operator LOAD PROCESSOR function and its derivatives
are the application of the z/Architecture IPL function on System z systems.

"'PSW, or Program Status Word, is the processor hardware logic that contains
processor state information, such as the current instuction execution address,
condition code, and other state information used to control instruction sequencing.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

With the advantages provided by the IBM System z9
zAAPs and zIIPs, the mainframe evolution continues. Its
balanced capabilities support the integration of both
traditional enterprise-class workloads and the ever-
increasing web-based workloads onto an enterprise-class
business server that is both world-class and renowned for
its reliability, scalability, and robust functionality.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc. or Linus Torvalds in the United States, other
countries, or both.

References

1. IBM Corporation, “Optimizing WebSphere for z/OS
Performance,” White Paper; see http.//www-03.ibm.com/
support|techdocs|atsmastr.nsf] WebIndex/WP100558.

2. IBM Corporation, System z9 109 Processor Resource/Systems
Manager Planning Guide (SB10-7041-01a), October 10, 2006;
see http://www-Libm.com/support/docview.wss?uid=
isg22526a41d800842b98525701c00728 1db.

3. zIIP program requirements; see /ittp://www-03.ibm.com/
systems|z|ziip/gettingstarted|prereqs.htmi.

4. P. Bari, P. Cassier, A. Defendi, J. Hutchinson, A. Maneville,
G. Membrini, and C. Ong, IBM Corporation, “System
Programmer’s Guide to: Workload Manager,” IBM
Redbooks, January 19, 2006; see http://www.redbooks.
ibm.com/abstracts/sg246472.html?Open.

5. B. Steegmans, N. Armstrong, C. Cemiloglu, S. V. Kumar,
and S. Todokoro, IBM Corporation, “Distributed
Functions for DB2 for z/OS and 0S/390*,” IBM Redbooks,
June 30, 2003; see http://www.redbooks.ibm.com/abstracts/
58246952 .html?Open.

6. S. Podcameni, V. Anavi-Chaput, V. L. Hicks, and P. Bruns,
IBM Corporation, “Data Warehousing with DB2 for
0S/390,” IBM Redbooks, December 17, 1997; see http://
www.redbooks.ibm.com/abstracts/sg242249.htmi?Open.

7. B. Steegmans, R. Garcia, S. Kaschta, R. Kumar, and M.
Parbs, IBM Corporation, “DB2 UDB for z/OS Version 8:
Everything You Ever Wanted to Know, ... and More,” IBM
Redbooks, May 2004; see http://www.redbooks.ibm.com/
redbooks/pdfs|sg246079.pdf.

8. IBM Corporation, z/Architecture Principles of Operation; see
http:|/www-03.ibm.com/servers/eserver|zseries|zos/bkserv/r3pdf]
zarchpops.html.

9. IBM Corporation, IBM z/OS Resource Measurement Facility
Programmer’s Guide (SC33-7994-04); see http://publibz.
boulder.ibm.com/epubs/pdfjerbzpg30.pdf.

10. F. Injey, G. Chambers, M. Gasparovic, P. Hamid, B. Hatfield,
K. Hewitt, D. Jorna, and P. Kappeler, IBM Corporation,
“IBM System z9 Enterprise Class Technical Guide,” IBM
Redbooks, December 2006; see http://www.redbooks.ibm.com/
redbooks/pdfs|sg247124.pdf.

Received March 21, 2006, accepted for publication
June 15, 20006, Internet publication January 9, 2007

L. W. WYMAN ET AL.

85

86

Les W. Wyman IBM Systems and Technology Group, 2455
South Road, Poughkeepsie, New York 12601 (lwyman@us.ibm.com).
Mr. Wyman retired in 1993 as a Senior Technical Staff Member and
rejoined IBM in 1999. He has held numerous technical and technical
leadership positions in programming systems, channel engineering,
and systems architecture, including the mainframe zSeries™ logical
partitioning and multiple high-performance virtual machine
conceptualizations and architectures, the multiple logical channel
subsystem conceptualization and architecture, the queued direct I/O
(QDIO) architecture, System zzAAP conceptualization, and others.
Mr.Wyman has achieved the IBM Ninth Plateau Invention
Achievement Award and has received numerous IBM division

and corporate technical achievement awards.

José Castano IBM Systems and Technology Group,

2455 South Road, Poughkeepsie, New York 12601
(castano@us.ibm.com). Mr. Castafio received a B.B.A. degree
from Pace University. He is the program director and manager
for System z strategy and technology for z/OS and the strategy
manager for the zSeries on demand initiative. He is the technical
chairman of the System z e-Business Leadership Council and the
System z System Design Council.

Jeffrey P. Kubala 1BM Systems and Technology Group, 2455
South Road, Poughkeepsie, New York 12601 (kubes@us.ibm.com).
Mr. Kubala received a B.S.E. degree in computer engineering from
the University of Connecticut. He is an IBM Distinguished
Engineer and Master Inventor in the z/OS development
department. He is currently the technical team leader for the
System z LPAR hypervisor. Mr. Kubala, in addition, is actively
engaged with the iSeries™ and pSeries™ hypervisor teams as a
technical consultant.

Robert J. (Bob) Maddison IBM Software Group,

Hursley Park, Winchester, England SO21 2JN
(bob_maddison@uk.ibm.com). Mr. Maddison was involved

in the development of Java virtual machines specializing

in z/OS-specific issues, including the design and

implementation of JVM support for zAAPs. He currently works
with the recently formed common infrastructure development
team in the field of information management.

Bernard R. Pierce IBM Systems and Technology Group, 2455
South Road, Poughkeepsie, New York 12601 (brpierce@us.ibm.com).
Mr. Pierce has been a leader and innovator in performance analysis
and design for thirty years. He is a Senior Technical Staff Member
with responsibility for performance analysis and performance
design of the z/OS operating system. He has been instrumental

in the z/OS design to support zZAAPs and zIIPs as well as research
in the management of high-end SMP systems. Mr. Pierce is the
inventor or coinventor of five patents relating to z/OS resource
management.

Robert R. Rogers IBM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(rrrogers@us.ibm.com). Mr. Rogers received a B.A. degree in
mathematics from Marist College. He is an IBM Distinguished
Engineer working on System z software system design. He has
received several IBM Outstanding Technical Achievement and
IBM Outstanding Innovation Awards for his design work. Mr.
Rogers was a recipient of the 2000 IBM Chairman’s Award.

L. W. WYMAN ET AL.

IBM J. RES. & DEV. VOL. 5l

NO. 1/2 JANUARY/MARCH 2007

