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Our methods for simulating host firmware of the IBM System z9e

facilitated rapid development from first power-on of the system to
achieving a platform with a functional operating system. Hundreds
of code bugs were eliminated before the code was run on System z9
hardware for the first time. This paper describes the methods used
in host firmware simulation for early and efficient firmware tests.
The central element for firmware simulation is the Central
Electronic Complex Simulator (CECSIM), which offers new
facilities to manage the hardware of the simulated system.
This management includes concurrent configuration changes
of processors, memory, and I/O along with the ability to
automatically test complex system functions. To verify correct
implementation of the z/Architecturee, we introduced a new
test-case framework called the Verification Interface for System
Architecture, or VISA, which is used in simulations as well as on
the actual system. All of these features are used separately and in
combination. A comprehensive and flexible regression environment
ensures periodic execution of the test scenarios, and code path
coverage measurements show the degree to which the code was
actually verified.

Introduction

The use of simulations for testing and debugging

firmware and software has a long history. In addition to

typical unit test environments, in which only certain parts

of a system are considered, the need for a full system

model [1–3] is becoming increasingly important given the

growing complexity of systems. Such comprehensive

testing is crucial for the IBM System z*, with its huge

firmware stacks in various subsystems.

The IBM System z9* uses firmware to implement

functions that include the execution of complex

instructions in the CPUs, I/O operations performed by

the system assist processors (SAPs), the management of

logical partitions (LPARs), and various recovery and

serviceability features. For reasons of cost and product

development time, each firmware component must

be verified using a simulation environment. We use

CECSIM (Central Electronic Complex Simulator) [4, 5],

a firmware simulation platform that is described in this

paper.

CECSIM provides a set of advanced debug features

and is an essential part of the firmware development

process for the IBM System z. CECSIM provides a

simulated system environment for firmware test and

verification. Several years ago, our test effort in this

environment focused on the preparation of the initial

debug phase on the actual hardware. Complex functions

were not within the scope of CECSIM tests. However,

with the development of even more demanding and rapid

product plans, simulations were beginning to be required

for verification of complex functions early in the project

cycle, at a time when no actual hardware exists. In

addition, firmware development teams had to reduce

the number of expensive engineering systems used for

verification. Therefore, such teams were required to

provide better-quality tools and tests to the test teams in

order to accommodate the test plans and strict schedules.

These requirements reinforced the need for an

environment based on CECSIM in which the majority

of the firmware can be tested without requiring actual
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hardware and in which the developer is supported by

enhanced debug capabilities. An automated regression-

test environment also ensures the required level of

quality. Periodically our team gathered path-coverage

data [6] from the regression runs; this data tells the team

which part of the firmware is executed in order to indicate

the quality of the test package. Our use of the terms

regression tests and path coverage is clarified in the

sections on regression runs and coverage near the end of

this paper. In brief, regression testing of firmware permits

the stability and feature interactions to be tested as the

firmware base matures. Care must be taken to frequently

determine whether a desired design enhancement has not

in fact caused a degradation or regression in some aspect

of the system. Regression testing is a lengthy process

which must be conducted as firmware is updated

in order to verify that no existing functionality is

compromised.

A conceptual overview of various topics addressed in

this paper is shown in Figure 1. The various phrases

in Figure 1 are clarified in the following sections.

Two levels of processor firmware exist for the IBM

System z. The lowest level, referred to as millicode [7],

implements performance-critical functions, complex

z/Architecture* (i.e., System z architecture) instructions

that are not implemented in hardware, and functions for

direct control of the hardware. Millicode is written in

high-level assembly language and is executed on all

processors.

The higher level of firmware, referred to as i390

(internal 390) [8], implements functions such as the

channel-subsystem, recovery, and power-on-reset

functions. The i390 is written in PL.8 [9] and C. The

major portion of i390 code is executed on SAPs.

CECSIM allows the running of i390 code and of

millicode with excellent performance characteristics [4].

CECSIM also provides a simulated system environment

that includes multiprocessing (MP) capability and allows

for the testing of the majority of the implemented

firmware functions. The applications of CECSIM range

from unit tests of individual i390 functions to a complex

system test environment with additional components

connected to CECSIM via network connections.

CECSIM can be connected to a support element (SE),

which is the system console of an IBM System z. With

CECSIM, users can interact with the SE as if processor

hardware were connected and available. In the standalone

mode, in which no SE is connected, CECSIM scripts

(small REXX programs) mimic the SE, and the user

can communicate with the simulator through the use

of commands, full-screen panels, and scripts. REXX

(REstructured eXtended eXecutor) is an interpreted

programming language.

The communication between the SE and the system

is based on service words, which are structured data

packets. This service word communication is also used

when testing with CECSIM in standalone mode, and this

paper focuses on the use of CECSIM as a standalone

environment. CECSIM scripts (see the section on the

REXX interface) can send service words to the central

electronic complex (CEC) and retrieve the responses from

the CEC. In most cases, the service words carry operator

commands, such as commands for partition activation or

retrieving status information. Service word handlers have

been written with these capabilities in order to simulate

the basic responsiveness of an SE.

CECSIM debug facilities

During firmware development, the user relies on a

complex set of CECSIM debug facilities that allow

developers to locate and identify bugs in the code.

The facilities available in the simulation environment

go far beyond what is provided in the actual machine

environment, where developers are limited to a function

that displays and alters memory. No SE is required for

these debug facilities, because they are all available from

the command line of the simulator.

Display/Alter

As just mentioned, CECSIM provides a rich set of display

and alter facilities that are used to access memory

locations, registers, and many kinds of special data areas

that reflect the current state of the simulated processor

and attached I/O hardware adapters. Data that is being

displayed may be dynamically overwritten in order to

correct an undesired state and to continue the debug

process with the current code load. Moreover, errors may

Figure 1

Overview of topics addressed in this paper. (VISA: Verification 

Interface for System Architecture; ITEM: i390 Test Case Execu-

tion Monitor.) The entire light blue box represents CECSIM; the 

green and yellow boxes represent the codes that are run within 

CECSIM. The bar labeled z/Architecture indicates that VISA runs 

at the z/Architecture level within CECSIM. The arrows extending 

from ITEM tests indicate calls to certain i390 functions.

Scripts

I/O models CECSIM

Service words

z/Architecture
VISA

i390 code

Millicode
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be injected, using this feature, in order to debug recovery

facilities of the firmware.

Tracing

A number of trace facilities allow the tracking of

instruction streams and storage alterations. Millicode,

i390 code, and software are simulated together, and traces

can be established separately for each code layer. The

user may request that CECSIM halt a single processor or

all processors related to an event being traced, and the

instructions may be stepped sequentially. For i390 code,

traces may also display the name of the i390 routine and

the instruction offset within that routine. This is especially

useful for tracing unexpected storage alterations. When

software is run in logical partitions (LPARs) [10], the

same trace facilities may be applied to a specific partition.

Additional events such as interrupts or special i390-

only instructions can be traced. A ‘‘traceback’’ is

automatically generated for program interrupts in i390

code. Such a traceback lists the names of all i390 routines

in the current call chain. This traceback may also be

requested explicitly at any time with a user command

in order to obtain a snapshot of the current activity in

the simulated processor. Further trace facilities exist to

monitor activity in the I/O interface and communication

with the SE.

REXX interface

CECSIM allows developers to write scripts in REXX,

an interpreted command language [11]. All available

commands may be issued from the scripts, and an extract

facility allows data to be retrieved and stored in REXX

variables. Such data includes memory and register

contents, addresses of i390 routines and data structures,

and current configuration information that includes the

number of CPUs, the memory size, and the number of

I/O hubs.

Many CECSIM scripts exist to support debugging;

for example, scripts are available to create a formatted

display of a data structure, to load and start programs, or

to verify expected results. In addition to these general

scripts, many CECSIM users have written their own

scripts that are adapted to their special needs.

The combination of CECSIM with REXX forms a

very powerful environment that offers comprehensive

capabilities. Beyond analysis, debug, and the handling

of service words, additional uses of REXX scripts are

described below, especially those involving the execution of

firmware tests (which we frequently refer to as test cases),

injection of errors, and controlling of regression tests.

Event facility

Another CECSIM debug feature is the event facility. For

certain situations, such as ‘‘reset complete’’ or ‘‘channel-

path initialized,’’ CECSIM produces an event that can be

captured by a user command or, more often, a CECSIM

script. Events may apply to a particular processor or to

the system as a whole.

SIMCALL facility

The SIMCALL (simulation call) facility allows the

simulated code (usually i390 code or millicode) to request

a special service from the simulator. It is implemented as

an instruction that does not exist on the actual machine.

The instruction can also be enabled for software that is

run in the simulation environment.

One function of the SIMCALL instruction is

associated with the event facility. A firmware-generated

event may be raised through the use of a SIMCALL. As is

the case for an event raised by CECSIM itself, a CECSIM

script can wait for this firmware-generated event, or the

event can be captured in order to trigger the execution

of a CECSIM script that, for instance, verifies the

implemented function or injects an error.

Error injection

CECSIM provides various ways to inject errors, usually

through CECSIM scripts. Memory may be manipulated,

for example, in order to change the contents of a control

block.

Other injection methods make use of interfaces to a

CECSIM I/O model of a memory bus adapter (MBA), an

I/O channel, or a Parallel Sysplex* channel. (A sysplex,

or system complex, comprises one or more System z

processors joined as a single unit. Parallel Sysplex

technology permits multiple mainframes to act as one.)

For example, the interface to the Parallel Sysplex allows

both static and dynamic error injections. For dynamic

error injection, in response to a specific I/O model event,

a part of a script is executed that injects an error. Such

script calls for analysis or error injection can even be

issued from within a VISA test case.

The scripts can be called with one of the following

as an argument:

� init – to establish those variables that are to be

maintained across the various calls, and to instruct

the I/O model to call for certain events. This may

be called from a VISA test case.
� event – used when the I/O model calls the script in

response to the expected events.
� cleanup – checks the variables and sets the return code

as appropriate. This may be called from a VISA test

case.

A wide range of options is offered, and although they

have not yet been fully exploited, today hundreds of
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VISA test cases are available with complex error injection

scenarios for Parallel Sysplex channels, running every

night in regression.

Dynamic configuration changes

One of the distinguishing features of the System z

platforms is the variety of concurrent hardware changes

that can be made [12, 13]. Some of these changes are

referred to as hot plug, hot unplug, and repair-and-verify

of I/O cards and MBA fan-out cards, as well as enhanced

book availability (EBA) [13], which allows a single book

in a multibook server to be concurrently removed from

the system. This allows service personnel to perform a

repair or to physically upgrade the hardware on the book.

(A processor book contains multiple processor chips,

physical memory cards, and multiple I/O hub cards.)

In the following, these kinds of actions are generically

referred to as hot plug; more specific terms are used when

necessary. All of these functionalities are simulated in

CECSIM because it allows individual pre-testing of a

specific concurrent change to be applied on a customer’s

system.

Within CECSIM, an I/O model [4] keeps track of the

current hardware configuration and simulates the I/O

hardware. While hardware could previously be initialized

only before the initial microcode load (IML), simulating a

hot-plug feature requires the modification of I/O model

configurations at any time. To accomplish this, certain

redesign steps were required.

The SE sends firmware configuration files to the CEC

that inform the processor firmware about the installed

hardware components. Previously, these files were also

used to initialize the I/O model, but this proved to be

particularly impractical in hot-plug scenarios, and a

capability was needed for testing the resilience of the

firmware in the event of mismatches between the firmware

configuration files and the actual configuration. Thus, we

decided to remove the firmware configuration file

dependency of the I/O model and use another approach.

Several prerequisites had to be fulfilled; for example,

new hardware configurations should be easy to define in a

graphical or other manner. The mostly treelike topology

of the hardware structure, which is determined by

the nodes and multiplexers, should have a natural

representation. All hardware information should be

stored in a single easily maintainable file. Tools should

be readily available to manipulate the format and

check it for errors.

We chose to describe the configuration in XML format.

Certain XML tags were assigned to all of the hardware

components that are relevant for the I/O model

configuration. Each component was given a unique

identifier, and all of the necessary hardware and logical

attributes of the components were defined as arguments

for the tags. For the rare instances in which the hardware

topology is not strictly treelike (for example, for Parallel

Sysplex channels and for redundant I/O interconnect),

special attributes were defined to describe the non-treelike

connections. A sample extract of an I/O configuration

and the corresponding XML source are shown in

Figure 2. In the figure, the elements MBA (memory

bus adapter), TNT (Triton-T), FIBB (fast internal bus

buffer), BBD (bidirectional bus distributor), and CH

(channel) are application-specific integrated circuits

(ASICs) of the System z I/O subsystem. (Triton-Ts are

part of a new redundant I/O interconnect feature.)

Figure 2

Sample I/O configuration and XML representation. A single 16- 

port Enterprise Systems Connection (ESCON*) card, connected 

via the redundant I/O interconnect (RII) of the System z9, is 

described by an XML file. Every major component corresponds to 

an XML tag with attributes that specify the link structure (“addr” 

and “alt_path” attributes), an ID, and additional information such 

as the physical channel ID (PCHID) number.

...

<mba id="mba_02" addr="2">

 <tnt id="tnt_020" addr="1" alt_path="tnt_050">

  <fibb id="fibb_0230" addr="2">

   <bbd id="bbd_0230" addr="0">

    ...

   </bbd>

   <bbd id="bbd_0231" addr="1">

    <escon id="escon_104" addr="0" pchid="0�104" />

    ...

    <escon id="escon_107" addr="3" pchid="0�107" />

   </bbd>

   ...

  </fibb>

 </tnt>

</mba>

...

<mba id="mba_05" addr="5">

 <tnt id="tnt_050" addr="0" alt_path="tnt_020" />

</mba>

...

TNT TNT

FIBB    

CH

CH

ESCON-16

BBD

BBD

MBA MBA
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While CECSIM is running, the I/O model can read

a modified configuration and perform the necessary

updates. The I/O model automatically analyzes the

differences between the current configuration and the new

one, and adds or removes hardware whenever necessary

but leaves the remaining hardware untouched. The

restrictions due to the actual hardware packaging are

taken into account by controlling scripts that directly

modify configurations using commands. In this manner,

realistic scenarios such as plugging or unplugging I/O

cards can be simulated.

In hot-plug scenarios, various firmware configuration

files are exchanged between SE and i390 firmware. To

simplify the implementation of hot-plug test cases,

CECSIM provides commands to generate these files from

the XML descriptions of the configurations before and

after hot plug. Knowledge of both configurations is

required because the firmware configuration files describe

only configuration changes, while the XML file always

specifies the complete hardware configuration [12].

CECSIM can analyze the difference and create the

firmware configuration files. Service words transfer the

resulting files to the CEC. Programmed or manual

intervention in order to inject errors is possible.

When connected to an SE, the firmware configuration

files are created on the SE as they would be for an

actual machine. The SE generates an updated XML

configuration and transmits it. The simulator in turn

must process the file upon reception and update the I/O

model configuration. Controlling scripts on the SE were

implemented to initiate and specify the hot-plug actions.

Test environments
From a system point of view, three major methods exist

to trigger a particular functionality of the firmware. The

most obvious method uses z/Architecture instructions to

test the corresponding firmware implementation, as is

done with VISA or small programs. Another method

exploits the capabilities of CECSIM scripts to interact

with the firmware either on the service word interface or

by modifying system internal states to trigger various

recovery situations. These first two methods, used by

themselves or in combination, allow a high degree of

functional test coverage for the firmware even without the

third method.

To obtain even more comprehensive test capabilities, a

third method allows the dynamic loading and execution

of firmware fragments. The test case is essentially a piece

of firmware that calls other firmware functions to act as a

unit test.

VISA—a new test-case framework

Developers often write small assembly language

programs for unit tests. In many cases, these programs

are not very flexible, and they must be modified each

time to work with another configuration or in another

environment. Also, they have no built-in capabilities such

as those needed for diagnostic messages and tracing. On

the other hand, very complex and sophisticated exercisers

exist that can be controlled using many parameters. They

are designed for automated regression runs on the real

system and provide good diagnostic information for later

analysis.

All of these programs run at the z/Architecture level

and thus have no access to firmware-specific components

in the system. Therefore, they can verify the correctness

of the system behavior only at that architecture level.

They cannot detect an invalid update to a firmware

control block that may lead to subsequent erroneous

behavior of the system. Their capability to inject errors

is limited, because this would also require access to

firmware-internal data areas.

VISA has been developed to close the gap between

simple unit test programs and complex exercisers. The

main focus of VISA is the CECSIM platform, but it is

used on the actual machine as well. When running in the

simulation environment, it may utilize interfaces to the

simulator in order to access internal information that is

not available at the architecture level. A strength of VISA

arises from the fact that its test cases can be configured

via parameters at runtime. Numerous macros and service

routines are available to assist the developer in writing

new test cases. VISA and the test cases are written in C,

and the VISA environment is structured as shown in

Figure 3.

VISA kernel

VISA is based on a small operating system kernel with

a C runtime library. VISA supports multiple processors

(not yet exploited in test cases) and offers, for example,

the flexibility required to install private signal handlers

in order to track and handle interrupt conditions.

VISA services

VISA services form the VISA application programming

interface (API). They make it easy to write test cases.

Standard interrupt handlers are included as well as

services that compare actual data with predictions. The

test-case writer may install other interrupt handlers if

needed.

VISA services relieve the test-case writer from various

details and at the same time allow the writer to handle

details and inject errors wherever needed, even at the

lowest levels. This capability was created by offering

many levels of service subroutines.

A service is available that allocates storage on a

required alignment boundary, clears it, and ensures that

this storage is released automatically during a cleanup
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subroutine at the end of the test case. As mentioned,

CECSIM services can be invoked by using the SIMCALL

instruction to inject errors or inspect firmware internal

data when needed.

VISA provides tracing routines. Each trace is

associated with a trace level. Whether or not a trace is

actually shown is controlled via a global trace level that is

specified by the user when executing a test case. A higher

trace level results in the display of more data such as

progress messages, control block data, or even the VISA-

internal addresses of such data. The built-in services

provided by VISA generate ample traces to ease the

task of the test-case writer. In addition, a test case may

invoke the trace function explicitly.

For z/Architecture instructions to be tested, an include

file is available that declares the control blocks involved.

Also available are a C function with inline assembly

language code to generate the instruction, and a higher-

level service that traces on the console the progress and

the control block data.

The services help the test-case writers to concentrate on

the subject of their tests, the firmware code. With VISA,

they obtain easily maintainable test cases, output that is

easy to read, systematic error messages, and efficient

regression-run capability.

VISA test cases

VISA test cases are executed directly on the

z/Architecture and not inside any other OS environment.

As mentioned, VISA services are offered for checking,

tracing, and for accessing CECSIM, for example, in order

to inject errors or analyze firmware internal data. Each

step within a VISA test case can perform some or all of

the following functions:

� Allocate space for control blocks and enter the data.
� Set up error injection.
� Call the subroutine to execute the instruction and

indicate expected condition codes.
� Check the condition code. A service writes traces

if the code is unexpected.
� Check the resulting data.

Often, a test-case writer does not want to cope with many

details of the architecture but wants to use standard cases

and data. This option is offered as well, and the test-case

writer can vary certain particular values and create

dedicated error scenarios.

VISA scripts

We previously introduced the concept of CECSIM scripts

in the sections on error injection and the REXX interface.

VISA scripts are a subset of CECSIM (REXX) scripts

that typically control the execution of VISA test cases. In

this section, we note that VISA scripts are offered to

monitor and control test-case execution on CECSIM. The

execution of a series of test cases may be stopped when an

error occurs. In conjunction with CECSIM and machine

features that permit single-stepping of instructions,

comprehensive debug capabilities are available.

The scripts that execute VISA test cases use control

files. One file contains a matrix of related test cases and

one or more applicable types, e.g., I/O channel types. This

is required for automated regression runs, but manual

execution of a single test case may also make use of this

file. Additionally, files are available that contain the

prepared configuration-specific data to be transferred

when prompted by a test case. When a new I/O

configuration data set (IOCDS) for CECSIM is being

prepared, effort is required to create these files so that test

cases can make use of them. (IOCDS provides a software

view of the I/O hardware.)

Each test case begins with an initialization macro. At

execution time, the macro establishes the internal data

structures, installs default signal handlers, and prompts

the user to enter the configuration data needed. On the

actual system, or when CECSIM is connected to an SE,

this prompt is displayed on the integrated console of the

SE as an operator message. On a standalone CECSIM,

a script answers this prompt and responds with prepared

data.

In addition to the high-level VISA script using control

files, other scripts (see the section on CECSIM scripts

Figure 3

Structure of the VISA environment. The API is the interface 

between the functionalities represented by the test-case rectangle 

and the services rectangle. The blue box at the bottom indicates 

that VISA can be run on the actual system or within CECSIM.

CECSIM or hardware with firmware

Kernel

- C runtime library

Test cases 

REXX scripts

- Compile, transfer, execute 

Services
- z/instructions

- Interrupts

- Trace console

- Access CECSIM

- Access i390 trace

- Coupling services

- I/O services

VISA–API 

z/Architecture

VISA
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that follows) can call a low-level VISA script to start

a test case, providing the required parameters and

configuration data as an argument string. The return code

of a test case is displayed by a message on the console and

is also saved in storage. VISA signals the end of a test

case to CECSIM via a SIMCALL instruction. This event

is recognized by the VISA script, which inspects the

return code in storage to decide whether the test case was

successful or had failed. For regression runs, depending

on the severity of the failure, the script decides whether it

continues running (in the case of minor errors), performs

a system reset before issuing the next test case, or even

performs a re-IML of the simulated system before

starting the next test case.

CECSIM scripts

In this section, we reemphasize and consolidate important

information related to CECSIM scripts as they relate to

VISA test cases, channel configuration, and partition

management. As mentioned earlier, an example of a

CECSIM test is a script that can configure or deconfigure

a channel by starting a VISA test case. This can be

accomplished for a single channel or a group of channels,

for a single partition or for all applicable partitions. A

list of channels may be given for configuration and

deconfiguration. To determine all configured channels,

we may first deconfigure them and then configure them

again for all applicable partitions. An option is also

available to deconfigure a channel, run a given VISA test

case, and then configure it again.

We developed CECSIM scripts to initialize the

simulated system in logical partition (LPAR) mode

and to activate partitions. This functionality is usually

provided by the SE. In CECSIM, standalone scripts send

service words carrying the appropriate command to the

CEC. The basic input parameters for the partition

activation include the number of CPUs that should

belong to the partition, the amount of central storage,

and the amount of expanded storage.

A script can be used to send several operator

commands to the CEC, and a program can be loaded and

executed in a partition. Thus, the partition handling can

be tested without requiring an SE. Other operator

commands can configure an adjunct processor when it

is necessary for testing the IBM System z cryptographic

functions.

ITEM test cases

In order to force i390 code into specific states and to

create error situations, the i390 test-case execution

monitor (ITEM) is available. ITEM allows the loading

and linking of new functions to an existing and running

i390 code load. After linking, the new functions can be

executed. Figure 1 placed ITEM tests in perspective

with other topics discussed in this paper. The ITEM

test cases can be run in the CECSIM standalone

environment, in combination with the SE, or on the real

machine. The user interface on CECSIM is a script.

The ITEM load function on CECSIM sends the ITEM

test cases to the i390 ITEM loader function of the

executable and linking format (ELF) loader [14]. The

ITEM loader links the test cases to the resident code load.

Thus, the ITEM test cases can use all procedures and

services of the permanent i390 code load, such as i390

tracing, logging, remote procedure call services, and

storage management.

The dynamically added functions can be called by

using service words. It is also possible to change variable

values, call any routine, or just change a single bit.

Particular i390 code paths can be executed by performing

these kinds of operations. It is also possible to pass

arguments to the ITEM test case in order to control the

execution. Depending on the arguments, the execution of

different code paths can be triggered. The execution can

take place on any processor in the system. The ITEM

test-case results are sent via service words to the SE.

In CECSIM standalone modes, scripts can analyze

and handle these results.

Regression runs

During firmware development, it is not sufficient to test

only new or changed functionality. Rather, we must

verify that code changes and new functions do not

damage any existing functions. A good way to detect

unexpected side effects as early as possible is to run a

regression test package every day. The i390 regression test

does not replace other tests; rather, it is a tool for quality

improvement, and it reduces the test effort on actual

machines and thus reduces development costs.

By using VISA, script, or ITEM test cases, all tests are

developed so that they can be executed in regression.

Normally, online users start CECSIM using a full-screen

panel. In addition, we provide a command-line interface

that is used for automatic regression runs.

Automation is necessary to ensure that regression is

performed regularly. Every night, a series of CECSIM

runs is started (Figure 4). The results are written into files

such as overview files that contain the result summaries

from all CECSIM runs. Additionally, during each run,

other result files are created, and these files are referred to

as console files, firmware trace files, log files, or specific

test-case output files.

These files are automatically checked for irregularities,

such as error messages on the console or missing or

unexpected system reference codes in the log file, so that

many kinds of errors are found in the summary file. As

specified in the control files, some of these files are always

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 K. THEURICH ET AL.

213



retained in a library for evaluation, while others are

retained only when an error is detected.

Various precautions are taken to prevent problems that

might hamper the progress of the regression runs. As

previously mentioned, if regression runs are unable to

proceed (i.e., they ‘‘hang’’), system reset (re-IML) may

take place, or a single CECSIM run can be terminated to

permit regression to continue with the next CECSIM run.

Coverage

Path coverage measurement determined which i390 code

paths were tested by the regression package. By using the

measurement results, components that were not covered

were found, and new test cases were written for these and

integrated into the regression package. Existing test cases

were enhanced to cover more code. In some cases, the

results even indicated the presence of unused code, which

could be removed.

To be able to measure code path coverage, the i390

code load must be instrumented by the compiler. Global

counters are inserted at all branch points. The i390 loader

ensures that these counters are allocated for each

processor unit (PU) in the system. Thus, it is even possible

to determine which PU executed a particular piece of

code. Normally, an instrumented executable, such as a

Linux** executable, writes the counters into a file at the

end of execution. Because i390 never really ends its

execution, the counters must be extracted from the

running system. To achieve this, i390 storage can be

accessed directly through CECSIM facilities, or service

words can be used to send the counters. The first method

is relatively fast, while the latter is slower but can be also

be used on the actual machine.

After a regression run, the raw coverage data (i.e., the

counter values) are processed by the LCOV software tool.

LCOV is based on the GNU coverage tool GCOV [6],

which provides information about which parts of a

program are actually executed (i.e., ‘‘covered’’) while

running a particular test case. LCOV is able to generate

HTML pages that show the results of the measurements

in a directory view, a file view, and a source-code view.

[The term GNU (GNU’s Not UNIX**) is a recursive

acronym that refers to a UNIX-like development effort

of the Free Software Foundation.]

The generated HTML pages are published on an

Intranet web server so that each i390 developer can

examine the coverage of his components. Figure 5 shows

a sample extract from a coverage measurement. Each line

represents a source-code directory and its path coverage

data. The developer can click on the directory name to

obtain the data for each individual source file within the

directory. A click on the file name opens the source code

itself with the counters beside each line. A configurable

color code is available that indicates the degree of path

coverage. For example, 0–15% may be represented as red,

15–50% as yellow, and 50–100% as green.

Because coverage measurement is currently still

semiautomatic, we are working to fully automate the

process and run it weekly. However, each developer can

also measure coverage as desired by using only a specific

set of test cases to verify a code change. Our ultimate goal

is to provide a history of coverage data to ensure that the

Figure 4

Regression tests. The regression package starts CECSIM several 

times during a complete regression run. After CECSIM has been 

started, the regression software executes several test cases. Each 

test case writes its own detailed result file, and also writes a single 

line, denoting success or failure, into the regression result file 

depicted at the right of the figure.
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Coverage measurement — sample part of a directory view.
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amount of code covered by the regression package is

continuously increasing.

Outlook
The recent enhancements for the CECSIM platform

discussed in this paper clearly indicate a trend toward

increased capabilities for firmware test that include better

unit test capabilities, higher code quality through

regression tests, and additional means for complex

function testing. The next stage of CECSIM development

will include the ability to attach VHDL (hardware

description language) simulators running certain I/O

hardware parts in order to allow early and more precise

firmware testing with realistic hardware behavior. This

will not reduce the need for simple and fast I/O models

such as the ones used today.

Further enhancements will integrate other firmware

components such as the I/O channel code, and our use

of a remote GNU debugger for i390 will enhance our

general debugging ability. Although many capabilities are

currently established, many improvements of CECSIM

may be developed in order to create an even more

comprehensive system integration platform.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Linus
Torvalds or The Open Group in the United States, other countries,
or both.
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