Advanced firmware
verification using a
code simulator for the
IBM System z9

Our methods for simulating host firmware of the IBM System z9™
facilitated rapid development from first power-on of the system to
achieving a platform with a functional operating system. Hundreds
of code bugs were eliminated before the code was run on System z9
hardware for the first time. This paper describes the methods used
in host firmware simulation for early and efficient firmware tests.
The central element for firmware simulation is the Central
Electronic Complex Simulator (CECSIM ), which offers new
facilities to manage the hardware of the simulated system.

This management includes concurrent configuration changes

of processors, memory, and 1/O along with the ability to
automatically test complex system functions. To verify correct
implementation of the z/Architecture™ , we introduced a new
test-case framework called the Verification Interface for System
Architecture, or VISA, which is used in simulations as well as on
the actual system. All of these features are used separately and in
combination. A comprehensive and flexible regression environment
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ensures periodic execution of the test scenarios, and code path
coverage measurements show the degree to which the code was

actually verified.

Introduction

The use of simulations for testing and debugging
firmware and software has a long history. In addition to
typical unit test environments, in which only certain parts
of a system are considered, the need for a full system
model [1-3] is becoming increasingly important given the
growing complexity of systems. Such comprehensive
testing is crucial for the IBM System z*, with its huge
firmware stacks in various subsystems.

The IBM System z9* uses firmware to implement
functions that include the execution of complex
instructions in the CPUs, I/O operations performed by
the system assist processors (SAPs), the management of
logical partitions (LPARSs), and various recovery and
serviceability features. For reasons of cost and product
development time, each firmware component must
be verified using a simulation environment. We use
CECSIM (Central Electronic Complex Simulator) [4, 5],
a firmware simulation platform that is described in this

paper.

CECSIM provides a set of advanced debug features
and is an essential part of the firmware development
process for the IBM System z. CECSIM provides a
simulated system environment for firmware test and
verification. Several years ago, our test effort in this
environment focused on the preparation of the initial
debug phase on the actual hardware. Complex functions
were not within the scope of CECSIM tests. However,
with the development of even more demanding and rapid
product plans, simulations were beginning to be required
for verification of complex functions early in the project
cycle, at a time when no actual hardware exists. In
addition, firmware development teams had to reduce
the number of expensive engineering systems used for
verification. Therefore, such teams were required to
provide better-quality tools and tests to the test teams in
order to accommodate the test plans and strict schedules.

These requirements reinforced the need for an
environment based on CECSIM in which the majority
of the firmware can be tested without requiring actual
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Overview of topics addressed in this paper. (VISA: Verification
Interface for System Architecture; ITEM: 1390 Test Case Execu-
tion Monitor.) The entire light blue box represents CECSIM; the
green and yellow boxes represent the codes that are run within
CECSIM. The bar labeled z/Architecture indicates that VISA runs
at the z/Architecture level within CECSIM. The arrows extending
from ITEM tests indicate calls to certain 1390 functions.

hardware and in which the developer is supported by
enhanced debug capabilities. An automated regression-
test environment also ensures the required level of
quality. Periodically our team gathered path-coverage
data [6] from the regression runs; this data tells the team
which part of the firmware is executed in order to indicate
the quality of the test package. Our use of the terms
regression tests and path coverage is clarified in the
sections on regression runs and coverage near the end of
this paper. In brief, regression testing of firmware permits
the stability and feature interactions to be tested as the
firmware base matures. Care must be taken to frequently
determine whether a desired design enhancement has not
in fact caused a degradation or regression in some aspect
of the system. Regression testing is a lengthy process
which must be conducted as firmware is updated

in order to verify that no existing functionality is
compromised.

A conceptual overview of various topics addressed in
this paper is shown in Figure 1. The various phrases
in Figure 1 are clarified in the following sections.

Two levels of processor firmware exist for the IBM
System z. The lowest level, referred to as millicode [7],
implements performance-critical functions, complex
z/Architecture* (i.e., System z architecture) instructions
that are not implemented in hardware, and functions for
direct control of the hardware. Millicode is written in
high-level assembly language and is executed on all
processors.

The higher level of firmware, referred to as 1390
(internal 390) [8], implements functions such as the
channel-subsystem, recovery, and power-on-reset
functions. The 1390 is written in PL.8 [9] and C. The
major portion of 1390 code is executed on SAPs.
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CECSIM allows the running of 1390 code and of
millicode with excellent performance characteristics [4].
CECSIM also provides a simulated system environment
that includes multiprocessing (MP) capability and allows
for the testing of the majority of the implemented
firmware functions. The applications of CECSIM range
from unit tests of individual 1390 functions to a complex
system test environment with additional components
connected to CECSIM via network connections.

CECSIM can be connected to a support element (SE),
which is the system console of an IBM System z. With
CECSIM, users can interact with the SE as if processor
hardware were connected and available. In the standalone
mode, in which no SE is connected, CECSIM scripts
(small REXX programs) mimic the SE, and the user
can communicate with the simulator through the use
of commands, full-screen panels, and scripts. REXX
(REstructured eXtended eXecutor) is an interpreted
programming language.

The communication between the SE and the system
is based on service words, which are structured data
packets. This service word communication is also used
when testing with CECSIM in standalone mode, and this
paper focuses on the use of CECSIM as a standalone
environment. CECSIM scripts (see the section on the
REXX interface) can send service words to the central
electronic complex (CEC) and retrieve the responses from
the CEC. In most cases, the service words carry operator
commands, such as commands for partition activation or
retrieving status information. Service word handlers have
been written with these capabilities in order to simulate
the basic responsiveness of an SE.

CECSIM debug facilities

During firmware development, the user relies on a
complex set of CECSIM debug facilities that allow
developers to locate and identify bugs in the code.

The facilities available in the simulation environment

go far beyond what is provided in the actual machine
environment, where developers are limited to a function
that displays and alters memory. No SE is required for
these debug facilities, because they are all available from
the command line of the simulator.

Display/Alter

As just mentioned, CECSIM provides a rich set of display
and alter facilities that are used to access memory
locations, registers, and many kinds of special data areas
that reflect the current state of the simulated processor
and attached I/O hardware adapters. Data that is being
displayed may be dynamically overwritten in order to
correct an undesired state and to continue the debug
process with the current code load. Moreover, errors may
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be injected, using this feature, in order to debug recovery
facilities of the firmware.

Tracing
A number of trace facilities allow the tracking of
instruction streams and storage alterations. Millicode,
1390 code, and software are simulated together, and traces
can be established separately for each code layer. The
user may request that CECSIM halt a single processor or
all processors related to an event being traced, and the
instructions may be stepped sequentially. For 1390 code,
traces may also display the name of the i390 routine and
the instruction offset within that routine. This is especially
useful for tracing unexpected storage alterations. When
software is run in logical partitions (LPARSs) [10], the
same trace facilities may be applied to a specific partition.
Additional events such as interrupts or special i390-
only instructions can be traced. A “traceback” is
automatically generated for program interrupts in 1390
code. Such a traceback lists the names of all 1390 routines
in the current call chain. This traceback may also be
requested explicitly at any time with a user command
in order to obtain a snapshot of the current activity in
the simulated processor. Further trace facilities exist to
monitor activity in the I/O interface and communication
with the SE.

REXX interface

CECSIM allows developers to write scripts in REXX,
an interpreted command language [11]. All available
commands may be issued from the scripts, and an extract
facility allows data to be retrieved and stored in REXX
variables. Such data includes memory and register
contents, addresses of 1390 routines and data structures,
and current configuration information that includes the
number of CPUs, the memory size, and the number of
I/O hubs.

Many CECSIM scripts exist to support debugging;
for example, scripts are available to create a formatted
display of a data structure, to load and start programs, or
to verify expected results. In addition to these general
scripts, many CECSIM users have written their own
scripts that are adapted to their special needs.

The combination of CECSIM with REXX forms a
very powerful environment that offers comprehensive
capabilities. Beyond analysis, debug, and the handling
of service words, additional uses of REXX scripts are
described below, especially those involving the execution of
firmware tests (which we frequently refer to as test cases),
injection of errors, and controlling of regression tests.

Event facility

Another CECSIM debug feature is the event facility. For
certain situations, such as “reset complete” or “channel-
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path initialized,” CECSIM produces an event that can be
captured by a user command or, more often, a CECSIM
script. Events may apply to a particular processor or to
the system as a whole.

SIMCALL facility

The SIMCALL (simulation call) facility allows the
simulated code (usually 1390 code or millicode) to request
a special service from the simulator. It is implemented as
an instruction that does not exist on the actual machine.
The instruction can also be enabled for software that is
run in the simulation environment.

One function of the SIMCALL instruction is
associated with the event facility. A firmware-generated
event may be raised through the use of a SIMCALL. Asis
the case for an event raised by CECSIM itself, a CECSIM
script can wait for this firmware-generated event, or the
event can be captured in order to trigger the execution
of a CECSIM script that, for instance, verifies the
implemented function or injects an error.

Error injection

CECSIM provides various ways to inject errors, usually
through CECSIM scripts. Memory may be manipulated,
for example, in order to change the contents of a control
block.

Other injection methods make use of interfaces to a
CECSIM 1/O model of a memory bus adapter (MBA), an
I/O channel, or a Parallel Sysplex* channel. (A sysplex,
or system complex, comprises one or more System z
processors joined as a single unit. Parallel Sysplex
technology permits multiple mainframes to act as one.)
For example, the interface to the Parallel Sysplex allows
both static and dynamic error injections. For dynamic
error injection, in response to a specific I/O model event,
a part of a script is executed that injects an error. Such
script calls for analysis or error injection can even be
issued from within a VISA test case.

The scripts can be called with one of the following
as an argument:

® init — to establish those variables that are to be
maintained across the various calls, and to instruct
the I/O model to call for certain events. This may
be called from a VISA test case.

* event —used when the I/O model calls the script in
response to the expected events.

® cleanup — checks the variables and sets the return code
as appropriate. This may be called from a VISA test
case.

A wide range of options is offered, and although they
have not yet been fully exploited, today hundreds of 209
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ESCON-16

<mba id="mba_02" addr="2">
<tnt id="tnt_020" addr="1" alt_path="tnt_050">
<fibb id="fibb_0230" addr="2">
<bbd id="bbd_0230" addr="0">

</bbd>

<bbd id="bbd_0231" addr="1">

</bbd>

</fibb>
</tnt>
</mba>

<mba id="mba_05" addr="5">
<tnt id="tnt_050" addr="0" alt_path="tnt_020" />
</mba>

Sample 1/O configuration and XML representation. A single 16-
port Enterprise Systems Connection (ESCON¥*) card, connected
via the redundant I/O interconnect (RII) of the System z9, is
described by an XML file. Every major component corresponds to
an XML tag with attributes that specify the link structure (‘“addr”
and “alt_path” attributes), an ID, and additional information such
as the physical channel ID (PCHID) number.

VISA test cases are available with complex error injection
scenarios for Parallel Sysplex channels, running every
night in regression.

Dynamic configuration changes

One of the distinguishing features of the System z
platforms is the variety of concurrent hardware changes
that can be made [12, 13]. Some of these changes are
referred to as hot plug, hot unplug, and repair-and-verify
of I/O cards and MBA fan-out cards, as well as enhanced
book availability (EBA) [13], which allows a single book
in a multibook server to be concurrently removed from
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the system. This allows service personnel to perform a
repair or to physically upgrade the hardware on the book.
(A processor book contains multiple processor chips,
physical memory cards, and multiple I/O hub cards.)

In the following, these kinds of actions are generically
referred to as hot plug; more specific terms are used when
necessary. All of these functionalities are simulated in
CECSIM because it allows individual pre-testing of a
specific concurrent change to be applied on a customer’s
system.

Within CECSIM, an I/O model [4] keeps track of the
current hardware configuration and simulates the I/O
hardware. While hardware could previously be initialized
only before the initial microcode load (IML), simulating a
hot-plug feature requires the modification of I/O model
configurations at any time. To accomplish this, certain
redesign steps were required.

The SE sends firmware configuration files to the CEC
that inform the processor firmware about the installed
hardware components. Previously, these files were also
used to initialize the 1/O model, but this proved to be
particularly impractical in hot-plug scenarios, and a
capability was needed for testing the resilience of the
firmware in the event of mismatches between the firmware
configuration files and the actual configuration. Thus, we
decided to remove the firmware configuration file
dependency of the I/O model and use another approach.

Several prerequisites had to be fulfilled; for example,
new hardware configurations should be easy to define in a
graphical or other manner. The mostly treelike topology
of the hardware structure, which is determined by
the nodes and multiplexers, should have a natural
representation. All hardware information should be
stored in a single easily maintainable file. Tools should
be readily available to manipulate the format and
check it for errors.

We chose to describe the configuration in XML format.
Certain XML tags were assigned to all of the hardware
components that are relevant for the I/O model
configuration. Each component was given a unique
identifier, and all of the necessary hardware and logical
attributes of the components were defined as arguments
for the tags. For the rare instances in which the hardware
topology is not strictly treelike (for example, for Parallel
Sysplex channels and for redundant I/O interconnect),
special attributes were defined to describe the non-treelike
connections. A sample extract of an I/O configuration
and the corresponding XML source are shown in
Figure 2. In the figure, the elements MBA (memory
bus adapter), TNT (Triton-T), FIBB (fast internal bus
buffer), BBD (bidirectional bus distributor), and CH
(channel) are application-specific integrated circuits
(ASICs) of the System z I/O subsystem. (Triton-Ts are
part of a new redundant I/O interconnect feature.)
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While CECSIM is running, the I/O model can read
a modified configuration and perform the necessary
updates. The I/O model automatically analyzes the
differences between the current configuration and the new
one, and adds or removes hardware whenever necessary
but leaves the remaining hardware untouched. The
restrictions due to the actual hardware packaging are
taken into account by controlling scripts that directly
modify configurations using commands. In this manner,
realistic scenarios such as plugging or unplugging I/O
cards can be simulated.

In hot-plug scenarios, various firmware configuration
files are exchanged between SE and 1390 firmware. To
simplify the implementation of hot-plug test cases,
CECSIM provides commands to generate these files from
the XML descriptions of the configurations before and
after hot plug. Knowledge of both configurations is
required because the firmware configuration files describe
only configuration changes, while the XML file always
specifies the complete hardware configuration [12].
CECSIM can analyze the difference and create the
firmware configuration files. Service words transfer the
resulting files to the CEC. Programmed or manual
intervention in order to inject errors is possible.

When connected to an SE, the firmware configuration
files are created on the SE as they would be for an
actual machine. The SE generates an updated XML
configuration and transmits it. The simulator in turn
must process the file upon reception and update the I/O
model configuration. Controlling scripts on the SE were
implemented to initiate and specify the hot-plug actions.

Test environments

From a system point of view, three major methods exist
to trigger a particular functionality of the firmware. The
most obvious method uses z/Architecture instructions to
test the corresponding firmware implementation, as is
done with VISA or small programs. Another method
exploits the capabilities of CECSIM scripts to interact
with the firmware either on the service word interface or
by modifying system internal states to trigger various
recovery situations. These first two methods, used by
themselves or in combination, allow a high degree of
functional test coverage for the firmware even without the
third method.

To obtain even more comprehensive test capabilities, a
third method allows the dynamic loading and execution
of firmware fragments. The test case is essentially a piece
of firmware that calls other firmware functions to act as a
unit test.

VISA—a new test-case framework

Developers often write small assembly language
programs for unit tests. In many cases, these programs
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are not very flexible, and they must be modified each
time to work with another configuration or in another
environment. Also, they have no built-in capabilities such
as those needed for diagnostic messages and tracing. On
the other hand, very complex and sophisticated exercisers
exist that can be controlled using many parameters. They
are designed for automated regression runs on the real
system and provide good diagnostic information for later
analysis.

All of these programs run at the z/Architecture level
and thus have no access to firmware-specific components
in the system. Therefore, they can verify the correctness
of the system behavior only at that architecture level.
They cannot detect an invalid update to a firmware
control block that may lead to subsequent erroneous
behavior of the system. Their capability to inject errors
is limited, because this would also require access to
firmware-internal data areas.

VISA has been developed to close the gap between
simple unit test programs and complex exercisers. The
main focus of VISA is the CECSIM platform, but it is
used on the actual machine as well. When running in the
simulation environment, it may utilize interfaces to the
simulator in order to access internal information that is
not available at the architecture level. A strength of VISA
arises from the fact that its test cases can be configured
via parameters at runtime. Numerous macros and service
routines are available to assist the developer in writing
new test cases. VISA and the test cases are written in C,
and the VISA environment is structured as shown in
Figure 3.

VISA kernel

VISA is based on a small operating system kernel with
a C runtime library. VISA supports multiple processors
(not yet exploited in test cases) and offers, for example,
the flexibility required to install private signal handlers
in order to track and handle interrupt conditions.

VISA services

VISA services form the VISA application programming
interface (API). They make it easy to write test cases.
Standard interrupt handlers are included as well as
services that compare actual data with predictions. The
test-case writer may install other interrupt handlers if
needed.

VISA services relieve the test-case writer from various
details and at the same time allow the writer to handle
details and inject errors wherever needed, even at the
lowest levels. This capability was created by offering
many levels of service subroutines.

A service is available that allocates storage on a
required alignment boundary, clears it, and ensures that
this storage is released automatically during a cleanup
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REXX scripts

VISA—> - Compile, transfer, execute

Test cases

VISA-API

Services

- z/instructions - Coupling services
- Interrupts - I/O services

- Trace console

- Access CECSIM

- Access 1390 trace

Kernel
- C runtime library

7/ Architecture

’ CECSIM or hardware with firmware ‘

Structure of the VISA environment. The API is the interface
between the functionalities represented by the test-case rectangle
and the services rectangle. The blue box at the bottom indicates
that VISA can be run on the actual system or within CECSIM.

subroutine at the end of the test case. As mentioned,
CECSIM services can be invoked by using the SIMCALL
instruction to inject errors or inspect firmware internal
data when needed.

VISA provides tracing routines. Each trace is
associated with a trace level. Whether or not a trace is
actually shown is controlled via a global trace level that is
specified by the user when executing a test case. A higher
trace level results in the display of more data such as
progress messages, control block data, or even the VISA-
internal addresses of such data. The built-in services
provided by VISA generate ample traces to ease the
task of the test-case writer. In addition, a test case may
invoke the trace function explicitly.

For z/Architecture instructions to be tested, an include
file is available that declares the control blocks involved.
Also available are a C function with inline assembly
language code to generate the instruction, and a higher-
level service that traces on the console the progress and
the control block data.

The services help the test-case writers to concentrate on
the subject of their tests, the firmware code. With VISA,
they obtain easily maintainable test cases, output that is
easy to read, systematic error messages, and efficient
regression-run capability.

VISA test cases

VISA test cases are executed directly on the
z/Architecture and not inside any other OS environment.

K. THEURICH ET AL.

As mentioned, VISA services are offered for checking,
tracing, and for accessing CECSIM, for example, in order
to inject errors or analyze firmware internal data. Each
step within a VISA test case can perform some or all of
the following functions:

¢ Allocate space for control blocks and enter the data.
e Set up error injection.
e Call the subroutine to execute the instruction and
indicate expected condition codes.
® Check the condition code. A service writes traces
if the code is unexpected.
® Check the resulting data.

Often, a test-case writer does not want to cope with many
details of the architecture but wants to use standard cases
and data. This option is offered as well, and the test-case
writer can vary certain particular values and create
dedicated error scenarios.

VISA scripts

We previously introduced the concept of CECSIM scripts
in the sections on error injection and the REXX interface.
VISA scripts are a subset of CECSIM (REXX) scripts
that typically control the execution of VISA test cases. In
this section, we note that VISA scripts are offered to
monitor and control test-case execution on CECSIM. The
execution of a series of test cases may be stopped when an
error occurs. In conjunction with CECSIM and machine
features that permit single-stepping of instructions,
comprehensive debug capabilities are available.

The scripts that execute VISA test cases use control
files. One file contains a matrix of related test cases and
one or more applicable types, e.g., I/O channel types. This
is required for automated regression runs, but manual
execution of a single test case may also make use of this
file. Additionally, files are available that contain the
prepared configuration-specific data to be transferred
when prompted by a test case. When a new I/O
configuration data set (IOCDS) for CECSIM is being
prepared, effort is required to create these files so that test
cases can make use of them. (IOCDS provides a software
view of the I/O hardware.)

Each test case begins with an initialization macro. At
execution time, the macro establishes the internal data
structures, installs default signal handlers, and prompts
the user to enter the configuration data needed. On the
actual system, or when CECSIM is connected to an SE,
this prompt is displayed on the integrated console of the
SE as an operator message. On a standalone CECSIM,
a script answers this prompt and responds with prepared
data.

In addition to the high-level VISA script using control
files, other scripts (see the section on CECSIM scripts
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that follows) can call a low-level VISA script to start

a test case, providing the required parameters and
configuration data as an argument string. The return code
of a test case is displayed by a message on the console and
is also saved in storage. VISA signals the end of a test
case to CECSIM via a SIMCALL instruction. This event
is recognized by the VISA script, which inspects the
return code in storage to decide whether the test case was
successful or had failed. For regression runs, depending
on the severity of the failure, the script decides whether it
continues running (in the case of minor errors), performs
a system reset before issuing the next test case, or even
performs a re-IML of the simulated system before
starting the next test case.

CECSIM scripts

In this section, we reemphasize and consolidate important
information related to CECSIM scripts as they relate to
VISA test cases, channel configuration, and partition
management. As mentioned earlier, an example of a
CECSIM test is a script that can configure or deconfigure
a channel by starting a VISA test case. This can be
accomplished for a single channel or a group of channels,
for a single partition or for all applicable partitions. A
list of channels may be given for configuration and
deconfiguration. To determine all configured channels,
we may first deconfigure them and then configure them
again for all applicable partitions. An option is also
available to deconfigure a channel, run a given VISA test
case, and then configure it again.

We developed CECSIM scripts to initialize the
simulated system in logical partition (LPAR) mode
and to activate partitions. This functionality is usually
provided by the SE. In CECSIM, standalone scripts send
service words carrying the appropriate command to the
CEC. The basic input parameters for the partition
activation include the number of CPUs that should
belong to the partition, the amount of central storage,
and the amount of expanded storage.

A script can be used to send several operator
commands to the CEC, and a program can be loaded and
executed in a partition. Thus, the partition handling can
be tested without requiring an SE. Other operator
commands can configure an adjunct processor when it
is necessary for testing the IBM System z cryptographic
functions.

ITEM test cases

In order to force 1390 code into specific states and to
create error situations, the 1390 test-case execution
monitor (ITEM) is available. ITEM allows the loading
and linking of new functions to an existing and running
1390 code load. After linking, the new functions can be
executed. Figure 1 placed ITEM tests in perspective
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with other topics discussed in this paper. The ITEM
test cases can be run in the CECSIM standalone
environment, in combination with the SE, or on the real
machine. The user interface on CECSIM is a script.

The ITEM load function on CECSIM sends the ITEM
test cases to the 1390 ITEM loader function of the
executable and linking format (ELF) loader [14]. The
ITEM loader links the test cases to the resident code load.
Thus, the ITEM test cases can use all procedures and
services of the permanent 1390 code load, such as 1390
tracing, logging, remote procedure call services, and
storage management.

The dynamically added functions can be called by
using service words. It is also possible to change variable
values, call any routine, or just change a single bit.
Particular 1390 code paths can be executed by performing
these kinds of operations. It is also possible to pass
arguments to the ITEM test case in order to control the
execution. Depending on the arguments, the execution of
different code paths can be triggered. The execution can
take place on any processor in the system. The ITEM
test-case results are sent via service words to the SE.

In CECSIM standalone modes, scripts can analyze
and handle these results.

Regression runs

During firmware development, it is not sufficient to test
only new or changed functionality. Rather, we must
verify that code changes and new functions do not
damage any existing functions. A good way to detect
unexpected side effects as early as possible is to run a
regression test package every day. The 1390 regression test
does not replace other tests; rather, it is a tool for quality
improvement, and it reduces the test effort on actual
machines and thus reduces development costs.

By using VISA, script, or ITEM test cases, all tests are
developed so that they can be executed in regression.
Normally, online users start CECSIM using a full-screen
panel. In addition, we provide a command-line interface
that is used for automatic regression runs.

Automation is necessary to ensure that regression is
performed regularly. Every night, a series of CECSIM
runs is started (Figure 4). The results are written into files
such as overview files that contain the result summaries
from all CECSIM runs. Additionally, during each run,
other result files are created, and these files are referred to
as console files, firmware trace files, log files, or specific
test-case output files.

These files are automatically checked for irregularities,
such as error messages on the console or missing or
unexpected system reference codes in the log file, so that
many kinds of errors are found in the summary file. As
specified in the control files, some of these files are always 213
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Regression package
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case

Test Result
case file
Test

o

Regression
result
file
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Regression tests. The regression package starts CECSIM several
times during a complete regression run. After CECSIM has been
started, the regression software executes several test cases. Each
test case writes its own detailed result file, and also writes a single
line, denoting success or failure, into the regression result file
depicted at the right of the figure.

Current view: directory
Test: Regression-PFD-IOFD1
Date: 2006-08-13
Code covered: 41.4 %

Instrumented lines: 175185
Executed lines: 72439

\p on_deman =] 55.3 % 641 / 1160 lines
edu —) 74.0 % 342 / 462 lines
T — 36.5 % 386 / 1058 lines
_— 56.2 % 450 / 801 lines
— 15.5 % 96 / 620 lines
— 78.0% 1242/ 1593 lines
£ — 42,5% 1201/ 2827 lines
—) 66.3 % 521/ 786 lines
file ¢ ] 71.1 % 974 / 1370 lines

Coverage measurement — sample part of a directory view.

retained in a library for evaluation, while others are
retained only when an error is detected.

Various precautions are taken to prevent problems that
might hamper the progress of the regression runs. As
previously mentioned, if regression runs are unable to
proceed (i.e., they “hang”), system reset (re-IML) may
take place, or a single CECSIM run can be terminated to
permit regression to continue with the next CECSIM run.
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Coverage

Path coverage measurement determined which 1390 code
paths were tested by the regression package. By using the
measurement results, components that were not covered
were found, and new test cases were written for these and
integrated into the regression package. Existing test cases
were enhanced to cover more code. In some cases, the
results even indicated the presence of unused code, which
could be removed.

To be able to measure code path coverage, the 1390
code load must be instrumented by the compiler. Global
counters are inserted at all branch points. The 1390 loader
ensures that these counters are allocated for each
processor unit (PU) in the system. Thus, it is even possible
to determine which PU executed a particular piece of
code. Normally, an instrumented executable, such as a
Linux** executable, writes the counters into a file at the
end of execution. Because 1390 never really ends its
execution, the counters must be extracted from the
running system. To achieve this, 1390 storage can be
accessed directly through CECSIM facilities, or service
words can be used to send the counters. The first method
is relatively fast, while the latter is slower but can be also
be used on the actual machine.

After a regression run, the raw coverage data (i.e., the
counter values) are processed by the LCOV software tool.
LCOV is based on the GNU coverage tool GCOV [6],
which provides information about which parts of a
program are actually executed (i.e., “covered”) while
running a particular test case. LCOV is able to generate
HTML pages that show the results of the measurements
in a directory view, a file view, and a source-code view.
[The term GNU (GNU’s Not UNIX**) is a recursive
acronym that refers to a UNIX-like development effort
of the Free Software Foundation.]

The generated HTML pages are published on an
Intranet web server so that each 1390 developer can
examine the coverage of his components. Figure 5 shows
a sample extract from a coverage measurement. Each line
represents a source-code directory and its path coverage
data. The developer can click on the directory name to
obtain the data for each individual source file within the
directory. A click on the file name opens the source code
itself with the counters beside each line. A configurable
color code is available that indicates the degree of path
coverage. For example, 0-15% may be represented as red,
15-50% as yellow, and 50-100% as green.

Because coverage measurement is currently still
semiautomatic, we are working to fully automate the
process and run it weekly. However, each developer can
also measure coverage as desired by using only a specific
set of test cases to verify a code change. Our ultimate goal
is to provide a history of coverage data to ensure that the
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amount of code covered by the regression package is
continuously increasing.

Outlook

The recent enhancements for the CECSIM platform
discussed in this paper clearly indicate a trend toward
increased capabilities for firmware test that include better
unit test capabilities, higher code quality through
regression tests, and additional means for complex
function testing. The next stage of CECSIM development
will include the ability to attach VHDL (hardware
description language) simulators running certain I/O
hardware parts in order to allow early and more precise
firmware testing with realistic hardware behavior. This
will not reduce the need for simple and fast I/O models
such as the ones used today.

Further enhancements will integrate other firmware
components such as the I/O channel code, and our use
of a remote GNU debugger for 1390 will enhance our
general debugging ability. Although many capabilities are
currently established, many improvements of CECSIM
may be developed in order to create an even more
comprehensive system integration platform.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Linus
Torvalds or The Open Group in the United States, other countries,
or both.
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