Cryptographic system
enhancements for the
IBM System z9

IBM has offered hardware-based cryptographic processors for its
mainframe computers for nearly thirty years. Over that period,
IBM has continued to update both the hardware and software,
providing added features, higher performance, greater physical
security, and improved management features. This commitment
continues with the System z9™, as demonstrated by the two
improvements described in this paper. The first part of the paper
describes enhancements to the System z9 to configure and control
cryptographic features. The second part describes a new method
for the cryptographic coprocessors to securely manage keys which
are distributed to remote devices that are not necessarily in secure

T. W. Arnold
A. Dames

M. D. Hocker
M. D. Marik

N. A. Pellicciotti
K. Werner

or well-controlled environments.

Introduction

Encryption is a vital part of today’s business processes and
information systems. Transactions sent across networks
must be protected from eavesdropping and alteration.
Data files on Internet-connected servers must be protected
from malicious hackers. Secure Sockets Layer (SSL)
traffic must be encrypted at high speeds. The list of areas
that benefit from encryption grows every year.

IBM mainframe systems have long been designed with
this need for encryption in mind. Today’s IBM System z*
offers a number of standard and optional hardware-
based encryption features to satisfy nearly all customer
application encryption requirements. In addition, the
System z hardware and software provide the features
necessary to easily manage the cryptographic
configuration, and in a manner that is integrated
with the other System z management facilities.

IBM continuously adds support for new customer
requirements, and this generation of System z adds two
important improvements to existing cryptographic
facilities based on such requirements. The first
improvement provides a flexible way to configure
cryptographic hardware. The second provides improved
cryptographic key management, targeted principally at
loading of encryption keys in remotely located automatic
teller machines (ATMs).

Cryptographic configuration feature
The cryptographic hardware available on System z9*
consists of the message security assist functions and the

Crypto Express2 (CEX2) feature. The message security
assist, also called CP (central processor) assist for
cryptographic functions (CPACF), is available on every
CPU of the system. The CEX2 feature makes use of
the 4764 PCI-X Cryptographic Coprocessor. Two
coprocessors are plugged into the PCI-X (Peripheral
Component Interconnect Extended) slots in the Hydra 3
book, which is a physical, electrical, and logical
adaptation layer. The number 4764 references the
model number (or machine type) of the cryptographic
coprocessor card when sold for platforms other than the
System z. The 4764 designation is used in this paper to
refer to the individual cards [1]. The CEX2 feature was
first introduced on IBM System z990 and called the
CEX2 coprocessor.

The cryptographic configuration enhancement that
is introduced on System z9 permits the 4764 PCI-X
cryptographic adapter to be configured to run in one
of two different modes:

® Accelerator mode (i.e., the fast path), which provides a
function that is similar to that provided by the PCI
cryptographic accelerator (PCICA).

® Coprocessor mode (i.e., the normal path), which
provides a function that is functionally similar to
the PCI-X cryptographic coprocessor (PCIXCC).

The difference between these two modes is illustrated
in Figure 1. The term RSA in Figure 1 refers to the
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Table 1 Cryptographic feature history prior to the IBM
System z9.

Cryptographic Date IBM System z
feature introduced model

PCICC 06/1999 9672 G5
9672 G6

z800 and z900

PCICA 10/2001 z800 and z900

7890 and 7990

PCIXCC 09/2003 2890 and z990

Crypto Express2

(CEX2) 01/2005 2890 and z990

encryption algorithm developed in 1977 by Ron Rivest,
Adi Shamir, and Leonard Adleman.

History of the System z cryptographic feature
For decades, large IBM computing systems, of which
the most recent is known as System z, have contained
specific hardware to support cryptographic functions.
Recent cryptographic features have tended to be less
tightly coupled to the central processor (CP), with the
cryptographic features functioning somewhat like I/O.
These features are in contrast to CPACF, which has fast
but less secure hardware closely associated with CPs.
The earliest of the I/O-like cryptographic features,
the PCI cryptographic coprocessor (PCICC), used the
Hydra 1 book package with one 4758 PCI cryptographic
adapter. This feature was introduced on the 9672 GS5,
an early model of the IBM System z (Table 1).
Performance for Secure Sockets Layer (SSL) [2]
was significantly improved with the introduction of
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the PCICA on System z900. The PCICA supports only
unencrypted RSA keys and is designed for cryptographic
acceleration. It uses multiple IBM-designed
cryptographic chips identical to those used in the 4758
adapter.

The 4764 PCI-X cryptographic adapter is supported
on the following System z servers:

¢ Systems z890 and z990, where it is called the
PCIXCC. This is packaged in a Hydra 1.75 book
containing a single 4764 PCI-X cryptographic
adapter.

e Systems z890 and z990, where it is also called the
Crypto Express2 Coprocessor (CEX2C). This is
packaged in a Hydra 3 book containing two
4764 PCI-X cryptographic adapters.

e System z, where it is called the CEX2. This is
packaged in a Hydra 3 book with two 4764 PCI-X
cryptographic adapters, with additional accelerator
hardware enabled.

In the current System z9 processor complex, up to eight
CEX2 books can be installed in the I/O cages. The I/O
cage provides high-bandwidth I/O slots to enable a
greater number of 1/O ports in the system.

The CEX2 can be run in two modes, the coprocessor
mode (CEX2C) and the accelerator mode (CEX2A). The
CEX2 has functionally replaced the PCICC, the PCICA,
and the PCIXCC to provide a lower total cost of
ownership with enhanced performance. These latter
cryptographic features are not supported on System z9.

Motivation for the introduction of the cryptographic
configuration feature

Prior to the advent of System z9, and particularly prior
to the introduction of the 4764 PCI-X cryptographic
adapter, System z utilized a variety of IBM-developed
cryptographic products. In System z9, the 4764 PCI-X
cryptographic adapter is retained as the only secure
cryptographic feature.

Because earlier cryptographic products are no longer
being manufactured, product lines are being simplified,
and the CEX2 feature is superior to previous products
in terms of performance improvements and hardware
acceleration, it has become desirable to support only
one cryptographic feature, and this requires a means
to configure the CEX2 to run either in coprocessor
or accelerator mode.

The cryptographic configuration feature, discussed
in forthcoming sections of this paper, was designed
to provide a high level of security, high-performance
acceleration of RSA public key operations, robustness,
and ease of use.
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Cryptographic configuration feature design

Overview

The CEX2 feature consists of a Hydra 3 book package
containing two 4764 PCI-X cryptographic adapters [1].
The 4764 PCI-X cryptographic adapter incorporates two
different communication paths for host access. With the
introduction of the PCIXCC on System z990, only the
coprocessor mode was available for use. Subsequently,
when the CEX2 feature was introduced on System z9,
both paths to the 4764 PCI-X cryptographic adapter
were available for use, although they could only be used
one at a time. A system operator may configure the
communication path using the manual controls of the
support element (SE). The SE is a dedicated workstation
(e.g., laptop computer) supplied with each System z9

to provide a console for monitoring and operating the
System z9. This configuration is communicated to the
Hydra 3, which provides for the setup, initialization,
and use of the appropriate communication path to the
4764 PCI-X cryptographic adapter.

SE, i390, and Hydra implementation

Figure 2 illustrates a high-level view of the different
components that are involved in the configuration,
initialization, diagnostic, monitoring, and functional
usage of the CEX2 feature. Also shown is the possibility
of supporting a variety of different IBM operating
systems. Each 4764 PCI-X cryptographic adapter
(CEX2C/CEX2A) is designed to support a maximum

of 16 logical partitions. In Figure 2, 1390 and millicode
designate firmware code layers, providing System z
architecture instruction support and an interface to the
hardware. The Processor Resource/Systems Manager*
(PR/SM*) provides support for logical partitioning. The
SE is a firmware code layer that is directly attached to the
server itself. It provides a console for monitoring and
operating the system. The HMC is a single point of
control for multiple systems, including the System z9,
zSeries*, and S/390* platforms. The HMC communicates
with each server through the SE, allowing for the remote
operation of the server through the SE.

Support element implementation

Using the cryptographic configuration panel (Figure 3) on
the SE, the system operator can configure the 4764 PCI-X
cryptographic adapter (referred to as “Crypto” on the SE
panels) to run as either a coprocessor or an accelerator.
The cryptographic configuration panel allows the user
to specify many configuration options and functions
pertaining to the CEX2 cards installed on the system. For
example, a user-defined extension (UDX) file containing
custom firmware can be imported and activated, trusted
key entry (TKE) commands can be permitted or denied
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Components associated with the CEX2 feature. The solid arrows
represent data paths, and the dashed arrows represent signal paths
used for hardware configuration, initialization, manual operations,
and diagnostics. (HMC: hardware management console; SE:
support element; ICSF: Integrated Cryptographic Service Facility;
VSE: Virtual Storage Extended, an operating system; LPAR: logical
partition.)

fij7 cryptographic Configuration
| Cryptographic informatior |

Select Number Status Crypto Serial Number | Type UDX Status | TKE Commands
| |0 Configured 94000200 X2 Coprocessor  IBM Default  Denied
c 1 Configursd 94000296 X2 Coprocessor  1BM Default  Denied
o 2 Configured 94000593 X2 Coprocessor  1BM Default  Denied
c 3 Configured 94000597 X2 Coprocessor  1BM Default  Denied
0 4 Configured 94000291 X2 Coprocessor  1BM Default  Denied
© 5 Configured 94000295 X2 Coprocessor  1BM Default  Denied
© L] Configured 84000230 X2 Coprocessor  IBM Default  Denied
© ¥ Configured 94000221 X2 Coprocessor  1BM Default  Denied
c 8 Configured 94000476 X2 Accelerator IBM Default  Not supported
© 9 Configured 94000531 X2 Accelerator IBM Default  Not supported
c 10 Configured 94000392 X2 Accelerator  1BM Default  Not supported
c " Configured 94000395 X2 Accelerator  IBM Default  Not supported
c 12 Configured 84000365 X2 Accelerator  IBM Default  Not supported
= 13 Configured 94000599 X2 Accelerator IBM Default  Not supported
o 14 Configured 84000397 X2 Accelerator IBM Default  Not supported
c 15 Configured 84000383 X2 Accelarator 18M Default  Not supported

Select a Cryplographic number and then click the task push button,

View Details.. | TestRN Generator | Zeroze | TKE Commands.. | Crypto Type Configuration... |
Zeroize All Coprocessors | _Test AN Generator on All | _UDX Configuration.. | Refresh | Cancel | Help

Cryptographic configuration panel.

for a particular 4764, or a 4764 can be zeroized. Zeroizing
is the process of erasing application-level security-
relevant data items (SRDIs) within the card; however,
note that zeroizing leaves the 4764 operational [3]. The
zeroize function is typically used in preparation for
removal of the card from the system.
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Note: Zeroize may also be performed using the Cryptographic Configuration
panel.

Note: The Crypto must be deconfigured to change the Crypto type configuration.

_OK | Refresh | Cancel || Help |

Cryptographic type configuration panel.

The cryptographic configuration panel in Figure 3
shows the status and configuration of all the 4764 PCI-X
cryptographic adapters, in addition to the cryptographic
type configuration for every cryptographic adapter
installed on the system. “X2 Coprocessor” designates
a cryptographic adapter that has been configured to
run as a coprocessor, and “X2 Accelerator” designates
a cryptographic adapter that has been configured to
run as an accelerator.

The cryptographic type configuration panel (Figure 4)
is used by the system operator to change the
cryptographic type configuration of a cryptographic
adapter. The configuration of the cryptographic adapter
can be changed only when the adapter is offline.

If the cryptographic type configuration is being
changed from that of a coprocessor to that of an
accelerator, the option to zeroize the coprocessor is
available to ensure that the SRDIs are removed before
the adapter is used as an accelerator. When a CEX2
feature is added to the system, either concurrently or
nonconcurrently, the adapter is initially configured as
a coprocessor by default.

The cryptographic type configuration data is stored on
the SE. The stored data includes the configuration setting
and the option to zeroize the coprocessor. The next time
the adapter is brought online, the SRDIs will first be
erased, if requested, and then the adapter will be
initialized to run in the selected mode.

Cryptographic type configuration data also persists
during system power-off and power-on, partition
reactivation with different activation profiles, configure
off and on action, and when new cryptographic code is
loaded. The data also persists during the zeroizing of
SRDIs and during the replacement of the CEX2 feature.
The CEX2 feature can be replaced as part of a repair
action performed by a service representative.
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1390 firmware implementation

The interface function to communicate with the CEX2 is
accomplished using a queue structure, which consists of a
set of 16 queues per cryptographic adapter, allocated in
the hardware system area (HSA). HSA is a logical area of
central storage, not addressable by application programs,
used to store firmware and control information. Each
queue consists of eight data elements.

Communication from an application within an
operating system to the 4764 PCI-X cryptographic
adapter is accomplished via these queues, using
architected ESA/390 instructions. [Enterprise Systems
Architecture/390* (ESA/390) was introduced in the
1990s and is the IBM mainframe computing design and
successor of System/370*.] A queue must be assigned and
configured to a logical partition, using the customize
image profiles manual control on the SE. Aside from the
16 queues used for communications with an application,
an additional queue is provided for maintenance
commands.

1390, the central electronic complex (CEC) firmware
layer for cryptography, provides support for the
following:

® The communication path for maintenance commands
(SE-related cryptographic requests and manual
operations to the CEX2 feature).

* Maintenance of the queue structure for initialization,
configuration, and error and recovery handling.

* Additional support in the queue control structure,
which is required to provide Hydra firmware
the appropriate configuration and zeroization
information for use during initialization of the
CEX2 feature.

CEX?2 implementation

In the System z9, the 4764 PCI-X cryptographic adapter
is incorporated in a Hydra 3 version of a System z
common I/O package (CIOP) [4]. Figure S is a
photograph of the Hydra 3 CEX2 book, which contains
the two 4764 PCI-X cryptographic adapters. The Hydra 3
book comprises two essentially separate, highly reliable
intelligent data paths to the 4764 cards, each path having
a PowerPC embedded processor within an application-
specific integrated circuit (ASIC) with PCI-X bus
connectivity to the 4764 and a proprietary self-timed
interface (STI) bus connection to the rest of the CEC
processor complex.

The firmware contained within the book is an
adaptation layer between the 4764 and the CEC. The
firmware transports the data requests to and from the
4764 with transport layer introspection as necessary. In
addition, the Hydra 3 firmware handles exceptions, error
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recovery, and updating of firmware for the 4764, and it is
the local repository of log messages produced by the
firmware running on the 4764.

As shown in Figure 6, the four principal components of
the Hydra 3 firmware that provides the functionality of
the 4764 are the following:

e A component called the host interface, which handles
communications with the i1390/millicode and data
transport via queuing structures contained in system
memory.

* A miniboot state engine, which handles the
specialized tasks associated with transporting revised
or new cryptographically signed code into the 4764.

* A device driver (DD) component, which handles low-
level hardware communications with the 4764 card
itself, along with reset functions required by the
PCI-X bus and by the distinct 4764 hardware.

e A maintenance component, which handles external
requests, called maintenance element requests,
primarily invoked by manual operations
accomplished using the SE console to view status,
provide zeroization, and perform related functions.

Firmware components also provide miscellaneous
utility support and initialization functions for the Hydra
hardware. With the exception of the error logging and
recovery, these additional components are not described
in any detail in this paper, but these features include
Hydra initialization, error logging and recovery,
concurrent update of the Hydra firmware, support for
tasks associated with localized error determination, and
support for many minor functions such as timers and
storage allocation routines required by a typical
embedded processor application.

The overall structure of the firmware remains
unchanged, with respect to the Systems z890 and 2990,
with the addition of the CEX2A capability to the CEX2
feature. The principal changes to the firmware structure
involved the handling of the additional architected clear
key request blocks, changes to the device driver to
support the additional hardware data path for the fast
path, and certain changes associated with security.

Host interface

The host interface component of the firmware is the
gateway for inbound cryptographic requests; it has
several tasks, some of which are new or changed for
fast-path support in the CEX2:

® The host interface provides rudimentary syntax

checking of cryptographic requests (primarily
inbound requests, but also outbound requests) in
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’ Maintenance %—>’ Host interface
* A Miniboot
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|

Overview of the firmware in Hydra used in conjunction with the CEX2.

order to verify that the data constructs are not faulty.
For instance, data bounds are examined to ensure
that invalid storage accesses do not occur. The new
fast-path CEX2A clear-key format of the request
block required unique checks to be added. Note that
Hydra host interface syntax checks are primarily
intended to avert problems in transporting data
requests. The firmware contained within the 4764
itself for normal-path requests, or the field-
programmable gate array (FPGA)/cryptographic
chip for fast-path requests, has the responsibility

of implementing complete command checking.

* The host interface limits requests to either normal-
path (CEX2C) or fast-path (CEX2A) requests.
Although the 4764 supports both fast-path and
normal-path requests simultaneously, for System z
the Hydra 3 is configured to support only CEX2C
or CEX2A requests at any one time. This structure
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is enforced at the host interface part of the Hydra 3
firmware.

* A zeroization step was added to the host interface
for the support of fast-path. The 1390 firmware sets
a state bit indicating to the Hydra firmware that a
zeroization of the application-level SRDIs within the
4764 is required. This state is examined by Hydra
after exiting from reset but prior to notifying 1390 that
inbound requests can be accepted. If the zeroization
state is set, a command is constructed to zeroize
the application-level SRDIs within the 4764.

* Additional data is collected for the resource
measurement facility (RMF). The RMF provides an
indication to the customer of the utilization rate of the
cryptographic facility. On the basis of the RMF data,
the customer can, for example, make an informed
decision about resource allocation, such as decisions
associated with plans to install additional CEX2
features.

Miniboot
The specialized miniboot state engine was not modified
for support of the fast path. The Hydra-side miniboot
state engine interacts with an equivalent miniboot partner
within the 4764 so as to transport appropriately signed
firmware from the host side to the firmware within the
4764 secure boundary in a manner that is resistant to
potentially nefarious activity. Thus, for example, a signed
firmware object is examined only by specialized code,
which in turn runs only after a reset. The reset ensures
that there is no vestige of previously running and
potentially dubious firmware that may taint the
examination of a signature for a signed object.
Fast-path is a hardware-only path through the 4764
and has no firmware component that requires the use of
miniboot. The only exception would occur if a change to
an application were necessary within the 4764 in order to
set the appropriate enablement registers for fast-path.

Device driver

Of all of the components within the Hydra cryptographic
firmware, the device driver underwent the largest change
with respect to Systems z890 and z990. For Hydra
cryptographic firmware, the device driver implementation
performs tasks that are larger than those typically
performed in other related platforms. One primary reason
for this is that for the Hydra-based cryptographic
adapters, the bulk of the Hydra-embedded controller
application code is unchanged with the exception of the
device driver. Thus, certain functions which normally
would reside in a higher layer of the coding structure are
subsumed by the various device drivers in order to reduce
overall development resource utilization.
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For the support of fast-path, the main firmware
changes fell into several categories:

* Device driver support for an additional direct
memory access (DMA) data path. Modular math
(MM) requests (i.e., the clear-key requests used in
fast-path) have a separate DMA path into the 4764.
Different routing and registers are used for this
purpose and require support by the device driver.

* Because the normal- and fast-path hardware DMA
channels are different, as described above, additional
checking prior to using the hardware is necessary. In
all cases that include the normal path, the hardware
is verified as operational prior to use for customer
operations. For fast-path, the additional checking
code uses “known answer tests” (KATs), which are
used to verify the end-to-end correctness of that path
from the device driver through the 4764 cryptographic
ASIC and back to the device driver. Each KAT test is
a representative cryptographic request with a known
answer. The request is sent to the 4764 via the fast-
path DMA channel, and the reply must be verified
as being the same as the known answer. A KAT
failure renders the CEX2 unusable.

The fast-path hardware returns specialized error codes
depending on the problem encountered by the fast-path
hardware in the 4764. The device driver translates these
specialized error codes into return codes, as described
in the System z9 architecture documents.

Error handling and recovery

Hydra firmware generates various trace data during
normal operations. If a failure is encountered, this trace
data is a valuable tool for determining the causes leading
to the failure. In addition to trace data, error-state
information is collected at the time of fault detection
and saved to a log file in order to provide sufficient
information to determine and repair the root cause of the
failure. In no case is security-relevant data, such as the
contents of a customer request, saved into logged data.
Fast-path support has its own set of new trace entries and
provides the collection of error-state information. These
features are added to the overall Hydra firmware.

Improved remote key distribution

In the next few sections of this paper, we discuss
improved methods for remote key distribution within
the framework of the IBM Common Cryptographic
Architecture (CCA), a carefully architected set of
cryptographic functions and application programming
interfaces (APIs) that provide both general-
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purpose functions and a broad set of functions designed
specifically to secure financial transactions.

With the introduction of the System z9, the IBM CEX2
coprocessor feature (CEX2C) adds new methods for
securely transferring symmetric encryption keys to
remote devices, such as automated teller machines
(ATMs), PIN entry devices, and point-of-sale terminals.
(The term symmetric encryption refers to a type of
encryption in which the same key is used to encrypt
and decrypt the message.) The coprocessor feature
may also be used to transfer symmetric keys to another
cryptographic system of any type, such as a different kind
of hardware security module (HSM) in an IBM or
non-IBM computer server. These new methods for
transferring symmetric encryption keys are added to the
IBM CCA API, which is the programming interface used
with the CEX2C as well as cryptographic features for
other IBM servers. On System z servers, the Integrated
Cryptographic Service Facility (ICSF) component of
z/OS provides the CCA API software.

These new methods for transferring keys are especially
important for banks, because for initial key distribution,
they replace expensive operations by humans with
network transactions that can be processed quickly and
inexpensively. The new CCA features allow applications
to support the recently approved ANSI X9.24-2 standard,
which was driven by banks and ATM vendors and defines
acceptable methods for this kind of key distribution. New
models of ATMs are being deployed today with features
to support this standard.

It has always been difficult to exchange keys between
HSMs that have different architectures without
compromising security. Since different vendors attach
security attributes to keys in different ways, it has often
been necessary to remove the attributes when exchanging
keys, which can expose the keys to misuse. The new
features provide a way to translate CCA keys to other
attribute styles without removing the security attributes.

These novel and flexible methods support a variety of
requirements, fulfilling the new needs of the banking
community while simultaneously making significant
interoperability improvements to related cryptographic
key management functions. For the purposes of our
discussion, the ATM scenario is used to illustrate the
operation of the new methods. However, other uses of
this method are also valuable.

Definitions

The following definitions will be useful to keep in mind
for the remainder of this paper.

* ATM — An automated teller machine, used to perform
banking transactions.
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* Master key — A key stored in a secure cryptographic
device for the purpose of encrypting keys, to be
used in that device, which are stored externally in
unprotected storage. The CEX2C coprocessor has
two master keys—a Data Encryption Standard (DES)
master key used to protect DES and Triple Data
Encryption Standard (TDES) keys, and a public-key
algorithm (PKA) master key used to protect RSA [5]
keys and other public-key objects.

* MKVP — A master key verification pattern. This is
a cryptographically calculated hash of the cleartext
(unencrypted) value of a master key, which can be
used to verify that the correct key value is used
without disclosing information about any bits of
the key itself.

* Key-encrypting key (KEK) — A symmetric key that is
used to encrypt a key for secure transport to another
device over unprotected paths. Both devices must
have the same KEK key value so that one can encrypt
a key with it and the other can decrypt the key after it
is received.

o Internal key — A key that is intended for use on the
local cryptographic device. This key is encrypted with
a master key associated with the cryptographic device.

e External key — A key that is for exchange with
another cryptographic device. This key is encrypted
with a transport key, also called a key-encrypting key
(KEK). The KEK is shared with the other device
to which the key may be transmitted.

* Variant — A value used to modify a key value. The
variant is generally a binary string of the same length
as the key, and it is exclusive-ORed with the key value
to produce a variant key that is used for some
cryptographic operation. Variants are often used
to produce versions of a base key that are intended
for specific purposes.

e MAC — A message authentication code. This is a
cryptographically computed checksum that uses a
cryptographic key to produce a fixed-length hash of a
variable-length message string. The MAC changes if
any portion of the message is changed, or if the wrong
key is used.

e TDES — An abbreviation for Triple-DES, the version
of the DES encryption algorithm that uses either 128-
bit or 192-bit encryption keys. The effective length of
these keys is 112 bits and 168 bits, because one bit
of each byte is used for parity.

Remote key loading

Remote key loading refers to the process of installing
symmetric encryption keys from a central administrative
site into a remotely located device. This entails two phases
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of key distribution. The first involves distribution of initial
KEKSs to a newly installed device. The second phase
involves distribution of operational keys or replacement
KEKs, enciphered under a KEK currently installed in the
device.

As we have discussed, we use an ATM as an example to
demonstrate the key-loading process. A new ATM has
none of the bank’s keys installed when it is delivered from
the manufacturer. The process of securely loading the first
key is difficult. This has typically been done by loading the
first KEK into each ATM manually, in multiple cleartext
key parts. In this process, two separate people must carry
key part values to the ATM and load them manually.
Once inside the ATM, these parts are combined to form
the actual KEK. In this manner, neither of the two people
has the entire key, protecting the key value from disclosure
or misuse. This method is labor-intensive and error-prone,
making it expensive for the banks.

New techniques have been developed to define
acceptable methods for loading these keys using public
key cryptographic techniques, which allow the banks to
load the initial KEKs without sending a person to the
ATMs. These new methods make the process quicker,
more reliable, and much less expensive for the banks. The
new cryptographic features added to the IBM CEX2C
provide flexible and novel methods for the creation and
use of the special key forms that are needed for remote
key distribution of this type. In addition, they provide
ways to surmount longstanding barriers to secure key
exchange with non-IBM cryptographic systems.

Once the ATM is in operation, the bank can install new
keys as needed by sending them enciphered under a KEK
that it installed at an earlier time. This is conceptually
straightforward, but the cryptographic architecture in the
ATMs is often different from that of the host system
sending the keys, and it is difficult to export the keys
in a form understood by the ATM. For example,
cryptographic architectures often enforce key usage
restrictions, in which a key is associated with data that
describes limitations on how the key can be used for
encrypting data, for encrypting keys, for operating on
message authentication codes (MACs), etc. The encoding
of these restrictions, and the method used to bind them to
the key itself, differ among cryptographic architectures,
and it is often necessary to translate the format to that
understood by the target device before a key can be
transmitted. It is difficult to do this without reducing
security in the system, for example, by making it possible
to arbitrarily change key usage restrictions. The methods
described here provide a mechanism through which the
system owner can securely control these translations,
preventing the majority of attacks that could be mounted
by modifying usage restrictions.
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The primary vehicle supporting these new methods
is the trusted block, which is described in the following
sections.

Trusted blocks

The trusted block is the central data structure that
supports all remote key loading functions. It provides
great power and flexibility, but this means that it must be
designed and used with care in order to have a secure
system. This security is provided through several features
of the design.

* Dual control is used to create a trusted block. In other
words, two separate people must cooperate in order
to create a usable block.

* The trusted block includes cryptographic protection
that prevents any modification after it is created.

* A number of fields in the trusted block rules offer
the ability to limit how the block is used, reducing
the risk of using it in unintended ways or with
unintended keys.

These features are covered in more detail in later
sections.

The trusted block is the enabler that requires secure
approval for its creation, then enables the export or
generation of DES and TDES keys in a wide variety of
forms as approved by the administrators who created the
trusted block. For added security, the trusted blocks
themselves may be created on a separate system, such as
an IBM System x platform with a 4764 cryptographic
coprocessor card, where that system is locked in a secure
room. Trusted blocks can subsequently be imported to
the System z server, where they are used to support
applications.

In CCA, API functions are called verbs or services. Two
new CCA verbs have been developed to manage and use
trusted blocks. The verb Trusted_Block_Create (TBC)
creates a trusted block, and the verb Remote_Key_ Export
(RKX) uses a trusted block to generate or export DES
keys according to the parameters in the trusted block.

Overview of trusted block elements

The trusted block consists of several parts, some of which
are required while others are optional. Figure 7 shows an
overview of the contents of a trusted block, with some
details omitted for brevity. The following is a description
of some of the elements that are depicted in the figure.

Public key

This contains an RSA public key and its attributes. For
distribution of keys to a remote ATM, this is the root
certification key for the ATM vendor, and it is used to
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verify the signature on public-key certificates for specific
individual ATMs. In this example, the trusted block
also contains rules that are used to generate or export
symmetric keys for the ATMs. The trusted block may
also be used simply as a trusted public key container, and
in this case the public key in the block is used in general-
purpose cryptographic functions such as digital signature
verification.

The public key attributes contain information on key
usage restrictions. This is used to securely control which
operations are permitted to use the public key. If desired,
the public key can be restricted to use for only digital
signature operations, or for only key-management
operations.

Trusted block protection information

This section contains information that is used to protect
the trusted block contents from modification. A cipher
block chaining (CBC)-mode MAC is calculated over the
trusted block using a randomly generated TDES key,
according to the method provided by the ISO 16609
standard. (Cipher block chaining is a method that uses
an encryption algorithm to securely encrypt data that

is longer than the size of the block that the algorithm
fundamentally encrypts.) The MAC key itself is encrypted
and embedded in the block. For the internal form of the
block, the MAC key is encrypted with a variant of the
CEX2C PKA master key. For the external form, the
MAC key is encrypted with a fixed variant of a key-
encrypting key. The MK VP field contains the MK VP for
the PKA master key that was used, and the field is filled
with binary zeros if the trusted block is in external
format.

Note that the trusted block can optionally contain an
expiration date and an activation date. The activation
date is the first day on which the block can be used, and
the expiration date is the last day when the block can be
used. If these dates are present, the date-checking flag
in the trusted block indicates whether the coprocessor
should check the dates using its internal clock. In the case
of the CEX2C in a System z server, the clock is not set;
thus, date checking must be performed by an application
program before using the trusted block. This feature is
still valuable, because storing the dates in the block itself
securely maintains the association between the trusted
block and its activation and expiration dates.

The flags field contains the following boolean flags:

® The active flag indicates whether the trusted block
is active and ready for use. This is the basis for
enforcing dual control over creation of the block. One
person creates the block, but in an inactive state.
Subsequently, a second person must approve the
block, which causes the active flag to be turned on.
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Application- Data defined and used by the

defined data

application program

Trusted block overall layout.

® The date-checking flag indicates whether the CEX2C
should check the expiration and activation dates for
the trusted block. If this flag is off, date checking must
be performed outside the device if it is required. This
is done so that the trusted block can be used with
devices that have their own internal clocks, as well
as with devices that do not. As mentioned in the
case of the CEX2C, the date-checking flag is turned
off, because the CEX2C internal clock is not set when
it is used in a System z.

Trusted block name (public key name)

This field optionally contains a text string that is a key
label name for the trusted block. It is included in the
block for use by an external system, such as a host
computer, and not by the card itself. In the System z
environment, the label can be checked by RACF to
determine whether use of the block is authorized. It is
possible to disable use of trusted blocks that have been
compromised or must be removed from use for other
reasons. One approach is to publish a revocation list
containing the key names for the blocks that must not be
used. Code in the host system can check each trusted
block before it is used in the cryptographic coprocessor in
order to ensure that the name from that block is not in
the revocation list. Other methods can also be used.
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Table 2 Contents of a rule.

Field name Required? Description

Rule ID Yes An eight-character name for the rule.

Operation Yes Indicator of whether rule is to generate a new key or export an
existing key.

Generated key length Yes For key generation, indicates the length of the key.

Key-check algorithm ID Yes Algorithm to be used to compute the optional key-check value
(KCV). Options are

* No KCV to be computed.
* Encrypt zeros with the key.
¢ Compute MDC2 hash of the key.
Symmetric-encrypted output format Yes Format of the symmetric-encrypted key output. Options are
* CCA format key token.
* RKX token (see section on the RKX key token).

Asymmetric-encrypted output format Yes Format of the optional asymmetric-encrypted key output. (Key
is encrypted with RSA.) Options are

* No asymmetric-encrypted key.
* Encrypt in PKCS1.2 format.
* Encrypt in RSAOAEP format.

Transport key variant No A variant to be applied to the transport key before it is used to
encrypt the key being generated or exported.

Transport key control vector No A CCA control vector to be applied to the transport key before
it is used to encrypt the key being generated or exported. In
CCA, this method is used to define permitted uses for the key.

Transport key rule reference No Rule ID for the rule that must have been used to generate the
transport key, if that key is an RKX token.

Export key length limits Yes When a key is being exported, this indicates the minimum and
maximum lengths of the key that can be exported with this rule.

Output key variant No A variant to be applied to the generated or exported key before
it is encrypted.

Export key rule reference No Rule ID for the rule that must have been used to generate the
key being exported, if that key is an RKX token.

Export key control vector restrictions No Masks and templates that can be used to restrict the possible
control-vector values that a key can have when being exported
with RKX. Applies only if the key is a CCA key token. This can
be used to control the types of CCA keys that can be processed
using the rule.

Export key label template No The application program can identify the key to be exported

using a key label, which is a name for the key. The rule can
optionally contain a key label template, which is matched against
the host-supplied key label, using wild cards so that the template
can match a set of related key labels. The operation is accepted
only if the supplied label matches the wild-card template in the
rule.

Rules

A variable number of rules can be included in the block.
Each rule contains information on how to generate or
export a symmetric key, including values for variants to
be used in order to provide keys in the formats expected
by systems with differing cryptographic architectures. Use
of the rules is described in sections of this paper that
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cover key generation and export using the RKX function.

Table 2 summarizes the mandatory and optional values
that are part of each rule.

Application-defined data
The trusted block can hold data that is defined and
understood only by the host application program. This
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data is included in the protected contents of the trusted
block, but it is not used or examined in any way by the
coprocessor. By including its own data in the trusted
block, an application can guarantee that the data is not
changed in any way, because it is protected in the same
way as other trusted block contents.

Changes to the CCA API

We have made the following changes to the CCA API
in order to support remote key loading using trusted
blocks:

* A new API Trusted_Block_Create (TBC) has been
developed to securely create trusted blocks under dual
control.

* A new API Remote_Key_Export (RKX) has been
created to generate or export DES and TDES keys
under control of the rules contained in a trusted
block.

® The Digital _Signature_Verify (DSV) API has been
enhanced. It can now verify digital signatures using
the RSA public key contained in a trusted block, in
addition to ordinary CCA RSA keys.

® The PKA_Key Import (PKI) API has been enhanced.
This API is used to import an RSA key into the CCA
domain. The enhancement also allows the API to
import a trusted block that is in external form,
producing an internal-format trusted block ready to
be used in the local system.

e The PKA_Key_Token_Change (KTC) API has been
enhanced. When the master key is changed, this API
is used to re-encipher the internal RSA keys that
were encrypted under the old master key, producing
keys that are instead encrypted under the new master
key. The API has been enhanced so that it can
also update trusted blocks, which is accomplished
by re-enciphering the MAC key embedded in
the block.

RKX key token

CCA normally uses key tokens that are designed solely
for the purposes of protecting the key value and carrying
metadata associated with the key to control its use by
CCA cryptographic functions. The remote key-loading
design introduces a new type of key token called an
RKX token. The purpose of this token is somewhat
different, and its use is connected directly with the

RKX verb added to the CCA command set for

remote key loading.

The RKX token uses a special structure that binds the
token to a specific trusted block, allowing sequences of
RKX calls to be bound together as if they were an atomic
operation. This allows a series of related key-management
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Enciphered key =~
—— MAC covers these values

Rule ID -

MAC

Simplified conceptual view of the RKX token structure. The
arrows indicate that a MAC is computed over the encrypted key
and the rule ID. The MAC, which ensures that a block of data has
not been modified, provides integrity for the values of the
enciphered key and the rule ID.

operations to be performed using the RKX verb. These
capabilities are made possible by incorporating three
features into the RKX key token structure:

* The key is enciphered using a variant of the MAC key
that is in the trusted block. A fixed, randomly derived
variant is applied to the key before it is used. As a
result, the enciphered key is protected against
disclosure because the trusted block MAC key is itself
protected at all times.

* The key token structure includes a rule ID for the
trusted block rule that was used to create the key. A
subsequent call to the RKX function can use this key
with a trusted block rule that references this rule 1D,
effectively chaining use of the two rules together in
a secure fashion.

e A MAC is computed over the encrypted key and the
rule ID, using the same MAC key that is used to
protect the trusted block itself. This MAC guarantees
that the key and the rule ID cannot be modified
without detection, providing integrity and binding the
rule ID to the key itself. In addition, the MAC verifies
only if the RKX token is used with the same trusted
block that created the token, thus binding the key
to that specific trusted block.

Figure 8 shows a simplified conceptual view of the
RKX token structure.

Using trusted blocks
The following examples illustrate how trusted blocks are
used with the new CCA functions.

Creating a trusted block

Figure 9 illustrates the steps used to create a trusted
block. In particular, this shows the two-step process that

T. W. ARNOLD ET AL.

97



98

Administrator Administrator
1 2
Trusted Trusted
block block

Inactive Active

Trusted block creation and activation. This figure outlines the set
of operations required to create a usable trusted block. The arrows
represent input and output parameters for the TBC functions.

requires action by two different administrators in order to
create the trusted block. Trusted blocks are structures
that could be abused in order to circumvent security

if an attacker could create them with undesirable
settings. The requirement for two separate people
makes it impossible for a single dishonest employee,

for example, to create such a block. A trusted block
cannot be used for any operations until it is in the
active state.

The trusted block is always created in external form,
which means that it is protected by a transport key
(KEK). When the trusted block is complete, it is imported
to the system where it will be used. The system
importation is performed because the most secure way to
create trusted blocks is on a separate computer which is
located in an access-controlled area. Any number of
trusted blocks can be created in order to meet different
needs of application programs.

Exporting keys with RKX

Figure 10 shows the process required for using a trusted
block in order to export a DES or TDES key. This high-
level representation illustrates the main steps of the
process. First, the RKX function is called with the
following information:

* A trusted block that is in the active state. The block
defines how the export operation is to be processed
and includes values such as variants to apply to the
keys.

¢ A transport key, which is a KEK or an RKX token
that is used to encrypt the key being exported.

* The key to be exported (shown in Figure 10 as the
export key). The export key can be in one of two
forms. In particular, it can be either a CCA key token
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or an RKX token, as described in the section on the
RKX key token.

* A key-encrypting key, indicated in Figure 10 as the
export key KEK. This is used only if the export key is
a CCA key token that is in external form, where it is
encrypted under a KEK. In this case, the export key
KEK is the key required by the coprocessor in order
to decrypt the export key and obtain its cleartext
value.

* A public-key certificate, which is optional. If it is
included, it contains the certified public key for a
specific ATM. The certificate is signed with the
private key of the ATM vendor; the corresponding
public key is contained in the trusted block so that
this certificate can be validated. The public key
contained in the certificate can be used to encrypt
the exported key.

The processing steps are simple at a high level, but
there are many options and significant complexity in
the details.

¢ The trusted block itself is validated. This includes
several types of validation:
¢ Cryptographic validation, which uses the MAC that

is embedded in the block, in which the MAC key is
decrypted using the coprocessor master key. The
MAC is then verified using that key. This verifies
that the block has not been corrupted or tampered
with, and it also verifies that the block is intended for
use with this coprocessor because the MAC verifies
successfully only if the master key is correct.

e Consistency checking and field validation, in which
the validity of the structure itself is checked, and all
values are verified to be within defined ranges.

* Checking of fields in the trusted block to see
whether all requirements are met for use of this
trusted block. For example: The trusted block must
be in the active state. The current date must be
between the activation date and the expiration date
(inclusive), if those are present in the trusted block,
and if the related flag indicates that date checking
should be performed in the coprocessor card.

* Input parameters to the RKX function are validated
against rules defined for them within the trusted
block. For example, the rule can restrict the length of
the key to be exported, or the rule can restrict the
control vector (CV) values for the key to be exported,
so that only certain key types can be exported with
that rule.

* The export key is decrypted, and then the rules
embedded in the trusted block are used to modify

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007



that key to produce the desired output key value. For
example, the trusted block can contain a variant

to be exclusive-ORed with the export key before
that key is encrypted. Variants are used in many
non-IBM cryptographic systems to provide key
separation so that a key cannot be used for the
wrong purpose.

¢ A key check value (KCV) can be optionally computed
for the export key. The trusted block permits one
of two key-check algorithms to be used: encrypting
binary zeros with the key, or computing an MDC2
hash of the key. The KCV is returned as an output of
the RKX function. (MDC2 stands for a modification
detection code cryptographic-hashing algorithm and
is based on the DES encryption algorithm.)

* The export key, which may have been modified with
a variant according to the rules in the trusted block,
is enciphered with the transport key. The rules can
specify that the key should be created in one of two
formats, a CCA key token or the new RKX token
described previously in this paper. With proper choice
of rule options, the RKX token can be used to create
keys that can be used in non-CCA systems. The key
value can be extracted from the CCA token, resulting
in a generic encrypted key, with variants and other
options as defined in the rule.

Two optional fields in the trusted block may modify the
transport key before it is used to encrypt the export key.
In particular, the trusted block can contain a CCA
control vector (CV) to be exclusive-ORed with the
transport key before that key is used to encrypt the export
key. This exclusive-OR process is the standard way CCA
applies a CV to a key. Additionally, the trusted block can
also contain a variant to be exclusive-ORed with the
transport key prior to its use. If a variant and control
vector are both present in the trusted block, the variant
is applied first, and then the CV is applied.

The export key can optionally be encrypted with the
RSA public key contained in the certificate parameter to
RKX, in addition to encrypting it with the transport key
as described above. These two encrypted versions of the
export key are provided as separate outputs of the RKX
function. The trusted block allows a choice of encrypting
the key in either PKCS1.2 format or PKCSOAEP format.
Both of these formats provide standard ways of
formatting keys in order to encrypt them with a public-
key algorithm such as RSA.

Generating keys with RKX

The process for using a trusted block in order to generate a
new DES or TDES key is similar to the process described
in Figure 10 for exporting keys. In particular, the RKX
function is called with the following information:
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Note: The export key KEK
is used only if the export key

Validate trusted block.

Y
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trusted block.

v
Apply rules in trusted
block to build output
key value from

is an external CCA token. export key.
The export key KEK 7
is then the key used to
decrypt the export key. Compute key-check
value (KCV) on export
key if specified by rule.
Y
Apply rules to encrypt

key value with
transport key and
optionally with public
key in certificate.

Symmetric- | | RSA-encrypted | | Key-check
encrypted key value
key (optional) (optional)

Exporting keys using a trusted block.

e A trusted block which is in the active state, as
discussed for the case of exporting keys. The block
defines how the key-generation operation is to be
processed.

e A transport key, which is a CCA KEK or an RKX
token that is used to encrypt the key being generated.

* A public-key certificate, which is optional. If it is
included, it contains the certified public key for a
specific ATM. The certificate is signed with the
private key of the ATM vendor; the corresponding
public key is contained in the trusted block so that
this certificate can be validated. The public key
contained in the certificate can be used to encrypt
the generated key.

Most of the processing steps are the same as those
described previously for key export. In particular,
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Trusted block
Transport key —— Symmetric-encrypted key
Export key RKX —— Asymmetric-encrypted key

Certificate — — Key-check value

Export key KEK —
(if needed)

Typical flow of verbs for remote key export. (TBC: trusted block
create; PKI: PKA key import; RKX: remote key export.)

¢ Validation of the trusted block and input parameters
is performed as previously described for export.

e The DES or TDES key to be returned by the RKX
function is randomly generated. The trusted block
indicates the length for the generated key.

* The output key value is optionally modified by a
variant as described above for export, and then
encrypted in the same way as for export, using the
transport key and optionally the public key in the
certificate parameter.

¢ The key-check value (KCV) is optionally computed
for the generated key using the same method as for
an exported key.

Overall CCA function flow

The new and modified CCA functions are used together
to create trusted blocks, and then to generate or export
keys under the control of those trusted blocks. Figure 11
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summarizes the flow of the CCA functions to show how
they are used. In the upper three blocks in the figure, a
trusted block is created, approved, and then imported to
the system where it will be used. In the remaining blocks,
this trusted block is used to control the generation or
export of DES or Triple-DES keys to be used on other
systems or devices.

Usage example

The scenario described below shows how these CCA
functions might be combined in a real-life application
to distribute a key to an ATM and keep a copy for local
use. Some of the terminology used reflects typical terms
used in ATM networks. Our example illustrates a fairly
complex real-world key distribution scenario, in which
the following values are produced:

* A terminal master key (TMK), which is the root KEK
used by the ATM to exchange other keys. The TMK
is produced in two forms: encrypted under the ATM
public key, so that it can be sent to the ATM, and
as an RKX token that is used in subsequent calls
to the RKX verb to produce other keys.

* A key-encrypting key (KEKI), which is encrypted
under the TMK in a form that can be understood by
the ATM.

* A PIN-encrypting key (PINKEY), which is used by
the ATM to encrypt customer-entered PINs, and by
the System z host to verify those PINs. The PINKEY
is produced in two forms: encrypted under KEK1 in a
form that can be understood by the ATM, and as a
CCA internal key token with the proper PIN key
control vector, encrypted under the CCA DES master
key and suitable for use with the System z CEX2C
COprocessor.

Seven steps are required to produce these keys using
the new verbs. These steps use a combination of five rules,
which would be contained in a single trusted block. We
refer to those rules as GEN1, GEN2, EXP1, EXP2, and
EXP3, referring respectively to the terms generate and
export.

1. Use RKX with rule GENI to generate a TMK for
use with the ATM. The key is output in two forms:
a. ePu(TMK): Output is encrypted under the ATM
public key, supplied in the certificate parameter.
The encrypted TMK is transmitted to the ATM.
b. RKX(TMK): Output is an RKX token, suitable
for subsequent input to the RKX function.
2. Use RKX with rule GEN2 to generate a key-
encrypting key KEK1 as an RKX token,
RKX(KEKI).
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3. Use RKX with rule GEN2 to generate a PIN key
PINKEY as an RKX token, RKX(PINKEY).

4. Use RKX with rule EXP1 to export KEK 1 encrypted
under the TMK as a CCA token, using a variant
of zeros applied to the TMK. (The term variant is
defined in the “Definitions” section of this paper.)
This produces e TMK(KEK1). The encrypted KEK 1
is transmitted to the ATM.

5. Use RKX with rule EXP2 to export PINKEY
encrypted under KEK1 as a CCA token, using a
variant of zeros applied to KEK1. This produces
eKEK1(PINKEY). The encrypted PINKEY is
transmitted to the ATM.

6. Use RKX with rule EXP3 to export PINKEY
under KEK2, an existing CCA key-encrypting
key on the local System z server. This produces
eKEK2(PINKEY), with the CCA control vector
for a PIN key.

7. Use the key import (KIM) function to import
the PINKEY, produced in Step 6, into the
local system as an operational key. This produces
eMK(PINKEY), a copy of the key encrypted under
the local DES master key and ready for use by
CCA PIN API functions.

Conclusion

In designing the cryptographic configuration feature
discussed in the first part of this paper, we have made a
significant effort to ensure that the firmware stack did not
adversely affect data throughput in the high-performance
CEX2A data path. Owing to the efficient 4764 hardware
interface design and care in design and implementation of
the Hydra firmware, the impact of the Hydra firmware on
the full-capacity throughput performance is essentially
negligible.

The cryptographic configuration feature allows
unique cryptographic hardware to be run in different
cryptographic modes, thus reducing the number of
different types of hardware required. Furthermore, the
cryptographic configuration feature permits flexible or
adaptable usage, depending on customer needs for the
System z9 CEX2 feature.

Returning to the discussion of remote key distribution
in the second part of this paper, we note that the changes
we have introduced to CCA solve one new problem and
one longstanding problem. The changes allow the secure
distribution of initial keys to ATMs and other remote
devices using public-key techniques, in a flexible way that
can support a wide variety of different cryptographic
architectures. The changes also make it far easier, and far
more secure, to send keys to non-CCA systems when
those keys are encrypted with a triple-DES key-
encrypting key. These changes make it easier for
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customers to develop more secure systems, and they
enable IBM CCA cryptographic systems to evolve and
support the new methods being used for key transport
in the banking and finance industry.

The new CCA services are complex, and IBM offers an
alternative for customers who do not have the time or
skills to develop application programs that call these
functions directly. In particular, the IBM Distributed Key
Management System (DKMS) has higher-level functions
to generate the trusted blocks as well as an API to set up
and perform the sequences of calls to the RKX service.
This offers a much simpler interface for an application
programmer. More information on DKMS is available
on the IBM Security Solutions Web site [6].

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Linus
Torvalds in the United States, other countries, or both.
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