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IBM has offered hardware-based cryptographic processors for its
mainframe computers for nearly thirty years. Over that period,
IBM has continued to update both the hardware and software,
providing added features, higher performance, greater physical
security, and improved management features. This commitment
continues with the System z9e, as demonstrated by the two
improvements described in this paper. The first part of the paper
describes enhancements to the System z9 to configure and control
cryptographic features. The second part describes a new method
for the cryptographic coprocessors to securely manage keys which
are distributed to remote devices that are not necessarily in secure
or well-controlled environments.

Introduction
Encryption is a vital part of today’s business processes and

information systems. Transactions sent across networks

must be protected from eavesdropping and alteration.

Data files on Internet-connected servers must be protected

from malicious hackers. Secure Sockets Layer (SSL)

traffic must be encrypted at high speeds. The list of areas

that benefit from encryption grows every year.

IBM mainframe systems have long been designed with

this need for encryption in mind. Today’s IBM System z*

offers a number of standard and optional hardware-

based encryption features to satisfy nearly all customer

application encryption requirements. In addition, the

System z hardware and software provide the features

necessary to easily manage the cryptographic

configuration, and in a manner that is integrated

with the other System z management facilities.

IBM continuously adds support for new customer

requirements, and this generation of System z adds two

important improvements to existing cryptographic

facilities based on such requirements. The first

improvement provides a flexible way to configure

cryptographic hardware. The second provides improved

cryptographic key management, targeted principally at

loading of encryption keys in remotely located automatic

teller machines (ATMs).

Cryptographic configuration feature
The cryptographic hardware available on System z9*

consists of the message security assist functions and the

Crypto Express2 (CEX2) feature. The message security

assist, also called CP (central processor) assist for

cryptographic functions (CPACF), is available on every

CPU of the system. The CEX2 feature makes use of

the 4764 PCI-X Cryptographic Coprocessor. Two

coprocessors are plugged into the PCI-X (Peripheral

Component Interconnect Extended) slots in the Hydra 3

book, which is a physical, electrical, and logical

adaptation layer. The number 4764 references the

model number (or machine type) of the cryptographic

coprocessor card when sold for platforms other than the

System z. The 4764 designation is used in this paper to

refer to the individual cards [1]. The CEX2 feature was

first introduced on IBM System z990 and called the

CEX2 coprocessor.

The cryptographic configuration enhancement that

is introduced on System z9 permits the 4764 PCI-X

cryptographic adapter to be configured to run in one

of two different modes:

� Accelerator mode (i.e., the fast path), which provides a

function that is similar to that provided by the PCI

cryptographic accelerator (PCICA).
� Coprocessor mode (i.e., the normal path), which

provides a function that is functionally similar to

the PCI-X cryptographic coprocessor (PCIXCC).

The difference between these two modes is illustrated

in Figure 1. The term RSA in Figure 1 refers to the

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 T. W. ARNOLD ET AL.

87

0018-8646/07/$5.00 ª 2007 IBM



encryption algorithm developed in 1977 by Ron Rivest,

Adi Shamir, and Leonard Adleman.

History of the System z cryptographic feature

For decades, large IBM computing systems, of which

the most recent is known as System z, have contained

specific hardware to support cryptographic functions.

Recent cryptographic features have tended to be less

tightly coupled to the central processor (CP), with the

cryptographic features functioning somewhat like I/O.

These features are in contrast to CPACF, which has fast

but less secure hardware closely associated with CPs.

The earliest of the I/O-like cryptographic features,

the PCI cryptographic coprocessor (PCICC), used the

Hydra 1 book package with one 4758 PCI cryptographic

adapter. This feature was introduced on the 9672 G5,

an early model of the IBM System z (Table 1).

Performance for Secure Sockets Layer (SSL) [2]

was significantly improved with the introduction of

the PCICA on System z900. The PCICA supports only

unencrypted RSA keys and is designed for cryptographic

acceleration. It uses multiple IBM-designed

cryptographic chips identical to those used in the 4758

adapter.

The 4764 PCI-X cryptographic adapter is supported

on the following System z servers:

� Systems z890 and z990, where it is called the

PCIXCC. This is packaged in a Hydra 1.75 book

containing a single 4764 PCI-X cryptographic

adapter.
� Systems z890 and z990, where it is also called the

Crypto Express2 Coprocessor (CEX2C). This is

packaged in a Hydra 3 book containing two

4764 PCI-X cryptographic adapters.
� System z, where it is called the CEX2. This is

packaged in a Hydra 3 book with two 4764 PCI-X

cryptographic adapters, with additional accelerator

hardware enabled.

In the current System z9 processor complex, up to eight

CEX2 books can be installed in the I/O cages. The I/O

cage provides high-bandwidth I/O slots to enable a

greater number of I/O ports in the system.

The CEX2 can be run in two modes, the coprocessor

mode (CEX2C) and the accelerator mode (CEX2A). The

CEX2 has functionally replaced the PCICC, the PCICA,

and the PCIXCC to provide a lower total cost of

ownership with enhanced performance. These latter

cryptographic features are not supported on System z9.

Motivation for the introduction of the cryptographic

configuration feature

Prior to the advent of System z9, and particularly prior

to the introduction of the 4764 PCI-X cryptographic

adapter, System z utilized a variety of IBM-developed

cryptographic products. In System z9, the 4764 PCI-X

cryptographic adapter is retained as the only secure

cryptographic feature.

Because earlier cryptographic products are no longer

being manufactured, product lines are being simplified,

and the CEX2 feature is superior to previous products

in terms of performance improvements and hardware

acceleration, it has become desirable to support only

one cryptographic feature, and this requires a means

to configure the CEX2 to run either in coprocessor

or accelerator mode.

The cryptographic configuration feature, discussed

in forthcoming sections of this paper, was designed

to provide a high level of security, high-performance

acceleration of RSA public key operations, robustness,

and ease of use.

Figure 1

Fast-path and normal-path interfaces.
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Table 1 Cryptographic feature history prior to the IBM

System z9.

Cryptographic

feature

Date

introduced

IBM System z

model

PCICC 06/1999 9672 G5

9672 G6

z800 and z900

PCICA 10/2001 z800 and z900

z890 and z990

PCIXCC 09/2003 z890 and z990

Crypto Express2

(CEX2) 01/2005 z890 and z990
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Cryptographic configuration feature design

Overview

The CEX2 feature consists of a Hydra 3 book package

containing two 4764 PCI-X cryptographic adapters [1].

The 4764 PCI-X cryptographic adapter incorporates two

different communication paths for host access. With the

introduction of the PCIXCC on System z990, only the

coprocessor mode was available for use. Subsequently,

when the CEX2 feature was introduced on System z9,

both paths to the 4764 PCI-X cryptographic adapter

were available for use, although they could only be used

one at a time. A system operator may configure the

communication path using the manual controls of the

support element (SE). The SE is a dedicated workstation

(e.g., laptop computer) supplied with each System z9

to provide a console for monitoring and operating the

System z9. This configuration is communicated to the

Hydra 3, which provides for the setup, initialization,

and use of the appropriate communication path to the

4764 PCI-X cryptographic adapter.

SE, i390, and Hydra implementation

Figure 2 illustrates a high-level view of the different

components that are involved in the configuration,

initialization, diagnostic, monitoring, and functional

usage of the CEX2 feature. Also shown is the possibility

of supporting a variety of different IBM operating

systems. Each 4764 PCI-X cryptographic adapter

(CEX2C/CEX2A) is designed to support a maximum

of 16 logical partitions. In Figure 2, i390 and millicode

designate firmware code layers, providing System z

architecture instruction support and an interface to the

hardware. The Processor Resource/Systems Manager*

(PR/SM*) provides support for logical partitioning. The

SE is a firmware code layer that is directly attached to the

server itself. It provides a console for monitoring and

operating the system. The HMC is a single point of

control for multiple systems, including the System z9,

zSeries*, and S/390* platforms. The HMC communicates

with each server through the SE, allowing for the remote

operation of the server through the SE.

Support element implementation

Using the cryptographic configuration panel (Figure 3) on

the SE, the system operator can configure the 4764 PCI-X

cryptographic adapter (referred to as ‘‘Crypto’’ on the SE

panels) to run as either a coprocessor or an accelerator.

The cryptographic configuration panel allows the user

to specify many configuration options and functions

pertaining to the CEX2 cards installed on the system. For

example, a user-defined extension (UDX) file containing

custom firmware can be imported and activated, trusted

key entry (TKE) commands can be permitted or denied

for a particular 4764, or a 4764 can be zeroized. Zeroizing

is the process of erasing application-level security-

relevant data items (SRDIs) within the card; however,

note that zeroizing leaves the 4764 operational [3]. The

zeroize function is typically used in preparation for

removal of the card from the system.

Components associated with the CEX2 feature. The solid arrows 

represent data paths, and the dashed arrows represent signal paths 

used for hardware configuration, initialization, manual operations, 

and diagnostics. (HMC: hardware management console; SE: 

support element; ICSF: Integrated Cryptographic Service Facility; 

VSE: Virtual Storage Extended, an operating system; LPAR: logical 

partition.)
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The cryptographic configuration panel in Figure 3

shows the status and configuration of all the 4764 PCI-X

cryptographic adapters, in addition to the cryptographic

type configuration for every cryptographic adapter

installed on the system. ‘‘X2 Coprocessor’’ designates

a cryptographic adapter that has been configured to

run as a coprocessor, and ‘‘X2 Accelerator’’ designates

a cryptographic adapter that has been configured to

run as an accelerator.

The cryptographic type configuration panel (Figure 4)

is used by the system operator to change the

cryptographic type configuration of a cryptographic

adapter. The configuration of the cryptographic adapter

can be changed only when the adapter is offline.

If the cryptographic type configuration is being

changed from that of a coprocessor to that of an

accelerator, the option to zeroize the coprocessor is

available to ensure that the SRDIs are removed before

the adapter is used as an accelerator. When a CEX2

feature is added to the system, either concurrently or

nonconcurrently, the adapter is initially configured as

a coprocessor by default.

The cryptographic type configuration data is stored on

the SE. The stored data includes the configuration setting

and the option to zeroize the coprocessor. The next time

the adapter is brought online, the SRDIs will first be

erased, if requested, and then the adapter will be

initialized to run in the selected mode.

Cryptographic type configuration data also persists

during system power-off and power-on, partition

reactivation with different activation profiles, configure

off and on action, and when new cryptographic code is

loaded. The data also persists during the zeroizing of

SRDIs and during the replacement of the CEX2 feature.

The CEX2 feature can be replaced as part of a repair

action performed by a service representative.

i390 firmware implementation

The interface function to communicate with the CEX2 is

accomplished using a queue structure, which consists of a

set of 16 queues per cryptographic adapter, allocated in

the hardware system area (HSA). HSA is a logical area of

central storage, not addressable by application programs,

used to store firmware and control information. Each

queue consists of eight data elements.

Communication from an application within an

operating system to the 4764 PCI-X cryptographic

adapter is accomplished via these queues, using

architected ESA/390 instructions. [Enterprise Systems

Architecture/390* (ESA/390) was introduced in the

1990s and is the IBM mainframe computing design and

successor of System/370*.] A queue must be assigned and

configured to a logical partition, using the customize

image profiles manual control on the SE. Aside from the

16 queues used for communications with an application,

an additional queue is provided for maintenance

commands.

i390, the central electronic complex (CEC) firmware

layer for cryptography, provides support for the

following:

� The communication path for maintenance commands

(SE-related cryptographic requests and manual

operations to the CEX2 feature).
� Maintenance of the queue structure for initialization,

configuration, and error and recovery handling.
� Additional support in the queue control structure,

which is required to provide Hydra firmware

the appropriate configuration and zeroization

information for use during initialization of the

CEX2 feature.

CEX2 implementation

In the System z9, the 4764 PCI-X cryptographic adapter

is incorporated in a Hydra 3 version of a System z

common I/O package (CIOP) [4]. Figure 5 is a

photograph of the Hydra 3 CEX2 book, which contains

the two 4764 PCI-X cryptographic adapters. The Hydra 3

book comprises two essentially separate, highly reliable

intelligent data paths to the 4764 cards, each path having

a PowerPC embedded processor within an application-

specific integrated circuit (ASIC) with PCI-X bus

connectivity to the 4764 and a proprietary self-timed

interface (STI) bus connection to the rest of the CEC

processor complex.

The firmware contained within the book is an

adaptation layer between the 4764 and the CEC. The

firmware transports the data requests to and from the

4764 with transport layer introspection as necessary. In

addition, the Hydra 3 firmware handles exceptions, error

Cryptographic type configuration panel.

Figure 4
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recovery, and updating of firmware for the 4764, and it is

the local repository of log messages produced by the

firmware running on the 4764.

As shown in Figure 6, the four principal components of

the Hydra 3 firmware that provides the functionality of

the 4764 are the following:

� A component called the host interface, which handles

communications with the i390/millicode and data

transport via queuing structures contained in system

memory.
� A miniboot state engine, which handles the

specialized tasks associated with transporting revised

or new cryptographically signed code into the 4764.
� A device driver (DD) component, which handles low-

level hardware communications with the 4764 card

itself, along with reset functions required by the

PCI-X bus and by the distinct 4764 hardware.
� A maintenance component, which handles external

requests, called maintenance element requests,

primarily invoked by manual operations

accomplished using the SE console to view status,

provide zeroization, and perform related functions.

Firmware components also provide miscellaneous

utility support and initialization functions for the Hydra

hardware. With the exception of the error logging and

recovery, these additional components are not described

in any detail in this paper, but these features include

Hydra initialization, error logging and recovery,

concurrent update of the Hydra firmware, support for

tasks associated with localized error determination, and

support for many minor functions such as timers and

storage allocation routines required by a typical

embedded processor application.

The overall structure of the firmware remains

unchanged, with respect to the Systems z890 and z990,

with the addition of the CEX2A capability to the CEX2

feature. The principal changes to the firmware structure

involved the handling of the additional architected clear

key request blocks, changes to the device driver to

support the additional hardware data path for the fast

path, and certain changes associated with security.

Host interface

The host interface component of the firmware is the

gateway for inbound cryptographic requests; it has

several tasks, some of which are new or changed for

fast-path support in the CEX2:

� The host interface provides rudimentary syntax

checking of cryptographic requests (primarily

inbound requests, but also outbound requests) in

order to verify that the data constructs are not faulty.

For instance, data bounds are examined to ensure

that invalid storage accesses do not occur. The new

fast-path CEX2A clear-key format of the request

block required unique checks to be added. Note that

Hydra host interface syntax checks are primarily

intended to avert problems in transporting data

requests. The firmware contained within the 4764

itself for normal-path requests, or the field-

programmable gate array (FPGA)/cryptographic

chip for fast-path requests, has the responsibility

of implementing complete command checking.
� The host interface limits requests to either normal-

path (CEX2C) or fast-path (CEX2A) requests.

Although the 4764 supports both fast-path and

normal-path requests simultaneously, for System z

the Hydra 3 is configured to support only CEX2C

or CEX2A requests at any one time. This structure

Hydra 3 book package without cover.

Figure 5

Hydra 3 book
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4764 PCI-X

Adapter 1

4764 PCI-X

Adapter 2

Overview of the firmware in Hydra used in conjunction with the CEX2.

Figure 6
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is enforced at the host interface part of the Hydra 3

firmware.
� A zeroization step was added to the host interface

for the support of fast-path. The i390 firmware sets

a state bit indicating to the Hydra firmware that a

zeroization of the application-level SRDIs within the

4764 is required. This state is examined by Hydra

after exiting from reset but prior to notifying i390 that

inbound requests can be accepted. If the zeroization

state is set, a command is constructed to zeroize

the application-level SRDIs within the 4764.
� Additional data is collected for the resource

measurement facility (RMF). The RMF provides an

indication to the customer of the utilization rate of the

cryptographic facility. On the basis of the RMF data,

the customer can, for example, make an informed

decision about resource allocation, such as decisions

associated with plans to install additional CEX2

features.

Miniboot

The specialized miniboot state engine was not modified

for support of the fast path. The Hydra-side miniboot

state engine interacts with an equivalent miniboot partner

within the 4764 so as to transport appropriately signed

firmware from the host side to the firmware within the

4764 secure boundary in a manner that is resistant to

potentially nefarious activity. Thus, for example, a signed

firmware object is examined only by specialized code,

which in turn runs only after a reset. The reset ensures

that there is no vestige of previously running and

potentially dubious firmware that may taint the

examination of a signature for a signed object.

Fast-path is a hardware-only path through the 4764

and has no firmware component that requires the use of

miniboot. The only exception would occur if a change to

an application were necessary within the 4764 in order to

set the appropriate enablement registers for fast-path.

Device driver

Of all of the components within the Hydra cryptographic

firmware, the device driver underwent the largest change

with respect to Systems z890 and z990. For Hydra

cryptographic firmware, the device driver implementation

performs tasks that are larger than those typically

performed in other related platforms. One primary reason

for this is that for the Hydra-based cryptographic

adapters, the bulk of the Hydra-embedded controller

application code is unchanged with the exception of the

device driver. Thus, certain functions which normally

would reside in a higher layer of the coding structure are

subsumed by the various device drivers in order to reduce

overall development resource utilization.

For the support of fast-path, the main firmware

changes fell into several categories:

� Device driver support for an additional direct

memory access (DMA) data path. Modular math

(MM) requests (i.e., the clear-key requests used in

fast-path) have a separate DMA path into the 4764.

Different routing and registers are used for this

purpose and require support by the device driver.
� Because the normal- and fast-path hardware DMA

channels are different, as described above, additional

checking prior to using the hardware is necessary. In

all cases that include the normal path, the hardware

is verified as operational prior to use for customer

operations. For fast-path, the additional checking

code uses ‘‘known answer tests’’ (KATs), which are

used to verify the end-to-end correctness of that path

from the device driver through the 4764 cryptographic

ASIC and back to the device driver. Each KAT test is

a representative cryptographic request with a known

answer. The request is sent to the 4764 via the fast-

path DMA channel, and the reply must be verified

as being the same as the known answer. A KAT

failure renders the CEX2 unusable.

The fast-path hardware returns specialized error codes

depending on the problem encountered by the fast-path

hardware in the 4764. The device driver translates these

specialized error codes into return codes, as described

in the System z9 architecture documents.

Error handling and recovery

Hydra firmware generates various trace data during

normal operations. If a failure is encountered, this trace

data is a valuable tool for determining the causes leading

to the failure. In addition to trace data, error-state

information is collected at the time of fault detection

and saved to a log file in order to provide sufficient

information to determine and repair the root cause of the

failure. In no case is security-relevant data, such as the

contents of a customer request, saved into logged data.

Fast-path support has its own set of new trace entries and

provides the collection of error-state information. These

features are added to the overall Hydra firmware.

Improved remote key distribution

In the next few sections of this paper, we discuss

improved methods for remote key distribution within

the framework of the IBM Common Cryptographic

Architecture (CCA), a carefully architected set of

cryptographic functions and application programming

interfaces (APIs) that provide both general-
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purpose functions and a broad set of functions designed

specifically to secure financial transactions.

With the introduction of the System z9, the IBM CEX2

coprocessor feature (CEX2C) adds new methods for

securely transferring symmetric encryption keys to

remote devices, such as automated teller machines

(ATMs), PIN entry devices, and point-of-sale terminals.

(The term symmetric encryption refers to a type of

encryption in which the same key is used to encrypt

and decrypt the message.) The coprocessor feature

may also be used to transfer symmetric keys to another

cryptographic system of any type, such as a different kind

of hardware security module (HSM) in an IBM or

non-IBM computer server. These new methods for

transferring symmetric encryption keys are added to the

IBM CCA API, which is the programming interface used

with the CEX2C as well as cryptographic features for

other IBM servers. On System z servers, the Integrated

Cryptographic Service Facility (ICSF) component of

z/OS provides the CCA API software.

These new methods for transferring keys are especially

important for banks, because for initial key distribution,

they replace expensive operations by humans with

network transactions that can be processed quickly and

inexpensively. The new CCA features allow applications

to support the recently approved ANSI X9.24-2 standard,

which was driven by banks and ATM vendors and defines

acceptable methods for this kind of key distribution. New

models of ATMs are being deployed today with features

to support this standard.

It has always been difficult to exchange keys between

HSMs that have different architectures without

compromising security. Since different vendors attach

security attributes to keys in different ways, it has often

been necessary to remove the attributes when exchanging

keys, which can expose the keys to misuse. The new

features provide a way to translate CCA keys to other

attribute styles without removing the security attributes.

These novel and flexible methods support a variety of

requirements, fulfilling the new needs of the banking

community while simultaneously making significant

interoperability improvements to related cryptographic

key management functions. For the purposes of our

discussion, the ATM scenario is used to illustrate the

operation of the new methods. However, other uses of

this method are also valuable.

Definitions

The following definitions will be useful to keep in mind

for the remainder of this paper.

� ATM – An automated teller machine, used to perform

banking transactions.

� Master key – A key stored in a secure cryptographic

device for the purpose of encrypting keys, to be

used in that device, which are stored externally in

unprotected storage. The CEX2C coprocessor has

two master keys—a Data Encryption Standard (DES)

master key used to protect DES and Triple Data

Encryption Standard (TDES) keys, and a public-key

algorithm (PKA) master key used to protect RSA [5]

keys and other public-key objects.
� MKVP – A master key verification pattern. This is

a cryptographically calculated hash of the cleartext

(unencrypted) value of a master key, which can be

used to verify that the correct key value is used

without disclosing information about any bits of

the key itself.
� Key-encrypting key (KEK) – A symmetric key that is

used to encrypt a key for secure transport to another

device over unprotected paths. Both devices must

have the same KEK key value so that one can encrypt

a key with it and the other can decrypt the key after it

is received.
� Internal key – A key that is intended for use on the

local cryptographic device. This key is encrypted with

a master key associated with the cryptographic device.
� External key – A key that is for exchange with

another cryptographic device. This key is encrypted

with a transport key, also called a key-encrypting key

(KEK). The KEK is shared with the other device

to which the key may be transmitted.
� Variant – A value used to modify a key value. The

variant is generally a binary string of the same length

as the key, and it is exclusive-ORed with the key value

to produce a variant key that is used for some

cryptographic operation. Variants are often used

to produce versions of a base key that are intended

for specific purposes.
� MAC – A message authentication code. This is a

cryptographically computed checksum that uses a

cryptographic key to produce a fixed-length hash of a

variable-length message string. The MAC changes if

any portion of the message is changed, or if the wrong

key is used.
� TDES – An abbreviation for Triple-DES, the version

of the DES encryption algorithm that uses either 128-

bit or 192-bit encryption keys. The effective length of

these keys is 112 bits and 168 bits, because one bit

of each byte is used for parity.

Remote key loading
Remote key loading refers to the process of installing

symmetric encryption keys from a central administrative

site into a remotely located device. This entails two phases
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of key distribution. The first involves distribution of initial

KEKs to a newly installed device. The second phase

involves distribution of operational keys or replacement

KEKs, enciphered under a KEK currently installed in the

device.

As we have discussed, we use an ATM as an example to

demonstrate the key-loading process. A new ATM has

none of the bank’s keys installed when it is delivered from

the manufacturer. The process of securely loading the first

key is difficult. This has typically been done by loading the

first KEK into each ATM manually, in multiple cleartext

key parts. In this process, two separate people must carry

key part values to the ATM and load them manually.

Once inside the ATM, these parts are combined to form

the actual KEK. In this manner, neither of the two people

has the entire key, protecting the key value from disclosure

or misuse. This method is labor-intensive and error-prone,

making it expensive for the banks.

New techniques have been developed to define

acceptable methods for loading these keys using public

key cryptographic techniques, which allow the banks to

load the initial KEKs without sending a person to the

ATMs. These new methods make the process quicker,

more reliable, and much less expensive for the banks. The

new cryptographic features added to the IBM CEX2C

provide flexible and novel methods for the creation and

use of the special key forms that are needed for remote

key distribution of this type. In addition, they provide

ways to surmount longstanding barriers to secure key

exchange with non-IBM cryptographic systems.

Once the ATM is in operation, the bank can install new

keys as needed by sending them enciphered under a KEK

that it installed at an earlier time. This is conceptually

straightforward, but the cryptographic architecture in the

ATMs is often different from that of the host system

sending the keys, and it is difficult to export the keys

in a form understood by the ATM. For example,

cryptographic architectures often enforce key usage

restrictions, in which a key is associated with data that

describes limitations on how the key can be used for

encrypting data, for encrypting keys, for operating on

message authentication codes (MACs), etc. The encoding

of these restrictions, and the method used to bind them to

the key itself, differ among cryptographic architectures,

and it is often necessary to translate the format to that

understood by the target device before a key can be

transmitted. It is difficult to do this without reducing

security in the system, for example, by making it possible

to arbitrarily change key usage restrictions. The methods

described here provide a mechanism through which the

system owner can securely control these translations,

preventing the majority of attacks that could be mounted

by modifying usage restrictions.

The primary vehicle supporting these new methods

is the trusted block, which is described in the following

sections.

Trusted blocks
The trusted block is the central data structure that

supports all remote key loading functions. It provides

great power and flexibility, but this means that it must be

designed and used with care in order to have a secure

system. This security is provided through several features

of the design.

� Dual control is used to create a trusted block. In other

words, two separate people must cooperate in order

to create a usable block.
� The trusted block includes cryptographic protection

that prevents any modification after it is created.
� A number of fields in the trusted block rules offer

the ability to limit how the block is used, reducing

the risk of using it in unintended ways or with

unintended keys.

These features are covered in more detail in later

sections.

The trusted block is the enabler that requires secure

approval for its creation, then enables the export or

generation of DES and TDES keys in a wide variety of

forms as approved by the administrators who created the

trusted block. For added security, the trusted blocks

themselves may be created on a separate system, such as

an IBM System x platform with a 4764 cryptographic

coprocessor card, where that system is locked in a secure

room. Trusted blocks can subsequently be imported to

the System z server, where they are used to support

applications.

In CCA, API functions are called verbs or services. Two

new CCA verbs have been developed to manage and use

trusted blocks. The verb Trusted_Block_Create (TBC)

creates a trusted block, and the verb Remote_Key_Export

(RKX) uses a trusted block to generate or export DES

keys according to the parameters in the trusted block.

Overview of trusted block elements

The trusted block consists of several parts, some of which

are required while others are optional. Figure 7 shows an

overview of the contents of a trusted block, with some

details omitted for brevity. The following is a description

of some of the elements that are depicted in the figure.

Public key

This contains an RSA public key and its attributes. For

distribution of keys to a remote ATM, this is the root

certification key for the ATM vendor, and it is used to
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verify the signature on public-key certificates for specific

individual ATMs. In this example, the trusted block

also contains rules that are used to generate or export

symmetric keys for the ATMs. The trusted block may

also be used simply as a trusted public key container, and

in this case the public key in the block is used in general-

purpose cryptographic functions such as digital signature

verification.

The public key attributes contain information on key

usage restrictions. This is used to securely control which

operations are permitted to use the public key. If desired,

the public key can be restricted to use for only digital

signature operations, or for only key-management

operations.

Trusted block protection information

This section contains information that is used to protect

the trusted block contents from modification. A cipher

block chaining (CBC)-mode MAC is calculated over the

trusted block using a randomly generated TDES key,

according to the method provided by the ISO 16609

standard. (Cipher block chaining is a method that uses

an encryption algorithm to securely encrypt data that

is longer than the size of the block that the algorithm

fundamentally encrypts.) The MAC key itself is encrypted

and embedded in the block. For the internal form of the

block, the MAC key is encrypted with a variant of the

CEX2C PKA master key. For the external form, the

MAC key is encrypted with a fixed variant of a key-

encrypting key. The MKVP field contains the MKVP for

the PKA master key that was used, and the field is filled

with binary zeros if the trusted block is in external

format.

Note that the trusted block can optionally contain an

expiration date and an activation date. The activation

date is the first day on which the block can be used, and

the expiration date is the last day when the block can be

used. If these dates are present, the date-checking flag

in the trusted block indicates whether the coprocessor

should check the dates using its internal clock. In the case

of the CEX2C in a System z server, the clock is not set;

thus, date checking must be performed by an application

program before using the trusted block. This feature is

still valuable, because storing the dates in the block itself

securely maintains the association between the trusted

block and its activation and expiration dates.

The flags field contains the following boolean flags:

� The active flag indicates whether the trusted block

is active and ready for use. This is the basis for

enforcing dual control over creation of the block. One

person creates the block, but in an inactive state.

Subsequently, a second person must approve the

block, which causes the active flag to be turned on.

� The date-checking flag indicates whether the CEX2C

should check the expiration and activation dates for

the trusted block. If this flag is off, date checking must

be performed outside the device if it is required. This

is done so that the trusted block can be used with

devices that have their own internal clocks, as well

as with devices that do not. As mentioned in the

case of the CEX2C, the date-checking flag is turned

off, because the CEX2C internal clock is not set when

it is used in a System z.

Trusted block name (public key name)

This field optionally contains a text string that is a key

label name for the trusted block. It is included in the

block for use by an external system, such as a host

computer, and not by the card itself. In the System z

environment, the label can be checked by RACF to

determine whether use of the block is authorized. It is

possible to disable use of trusted blocks that have been

compromised or must be removed from use for other

reasons. One approach is to publish a revocation list

containing the key names for the blocks that must not be

used. Code in the host system can check each trusted

block before it is used in the cryptographic coprocessor in

order to ensure that the name from that block is not in

the revocation list. Other methods can also be used.

Trusted block overall layout.

Figure 7
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Rules

A variable number of rules can be included in the block.

Each rule contains information on how to generate or

export a symmetric key, including values for variants to

be used in order to provide keys in the formats expected

by systems with differing cryptographic architectures. Use

of the rules is described in sections of this paper that

cover key generation and export using the RKX function.

Table 2 summarizes the mandatory and optional values

that are part of each rule.

Application-defined data

The trusted block can hold data that is defined and

understood only by the host application program. This

Table 2 Contents of a rule.

Field name Required? Description

Rule ID Yes An eight-character name for the rule.

Operation Yes Indicator of whether rule is to generate a new key or export an

existing key.

Generated key length Yes For key generation, indicates the length of the key.

Key-check algorithm ID Yes Algorithm to be used to compute the optional key-check value

(KCV). Options are
� No KCV to be computed.
� Encrypt zeros with the key.
� Compute MDC2 hash of the key.

Symmetric-encrypted output format Yes Format of the symmetric-encrypted key output. Options are
� CCA format key token.
� RKX token (see section on the RKX key token).

Asymmetric-encrypted output format Yes Format of the optional asymmetric-encrypted key output. (Key

is encrypted with RSA.) Options are
� No asymmetric-encrypted key.
� Encrypt in PKCS1.2 format.
� Encrypt in RSAOAEP format.

Transport key variant No A variant to be applied to the transport key before it is used to

encrypt the key being generated or exported.

Transport key control vector No A CCA control vector to be applied to the transport key before

it is used to encrypt the key being generated or exported. In

CCA, this method is used to define permitted uses for the key.

Transport key rule reference No Rule ID for the rule that must have been used to generate the

transport key, if that key is an RKX token.

Export key length limits Yes When a key is being exported, this indicates the minimum and

maximum lengths of the key that can be exported with this rule.

Output key variant No A variant to be applied to the generated or exported key before

it is encrypted.

Export key rule reference No Rule ID for the rule that must have been used to generate the

key being exported, if that key is an RKX token.

Export key control vector restrictions No Masks and templates that can be used to restrict the possible

control-vector values that a key can have when being exported

with RKX. Applies only if the key is a CCA key token. This can

be used to control the types of CCA keys that can be processed

using the rule.

Export key label template No The application program can identify the key to be exported

using a key label, which is a name for the key. The rule can

optionally contain a key label template, which is matched against

the host-supplied key label, using wild cards so that the template

can match a set of related key labels. The operation is accepted

only if the supplied label matches the wild-card template in the

rule.

T. W. ARNOLD ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

96



data is included in the protected contents of the trusted

block, but it is not used or examined in any way by the

coprocessor. By including its own data in the trusted

block, an application can guarantee that the data is not

changed in any way, because it is protected in the same

way as other trusted block contents.

Changes to the CCA API
We have made the following changes to the CCA API

in order to support remote key loading using trusted

blocks:

� A new API Trusted_Block_Create (TBC) has been

developed to securely create trusted blocks under dual

control.
� A new API Remote_Key_Export (RKX) has been

created to generate or export DES and TDES keys

under control of the rules contained in a trusted

block.
� The Digital_Signature_Verify (DSV) API has been

enhanced. It can now verify digital signatures using

the RSA public key contained in a trusted block, in

addition to ordinary CCA RSA keys.
� The PKA_Key_Import (PKI) API has been enhanced.

This API is used to import an RSA key into the CCA

domain. The enhancement also allows the API to

import a trusted block that is in external form,

producing an internal-format trusted block ready to

be used in the local system.
� The PKA_Key_Token_Change (KTC) API has been

enhanced. When the master key is changed, this API

is used to re-encipher the internal RSA keys that

were encrypted under the old master key, producing

keys that are instead encrypted under the new master

key. The API has been enhanced so that it can

also update trusted blocks, which is accomplished

by re-enciphering the MAC key embedded in

the block.

RKX key token
CCA normally uses key tokens that are designed solely

for the purposes of protecting the key value and carrying

metadata associated with the key to control its use by

CCA cryptographic functions. The remote key-loading

design introduces a new type of key token called an

RKX token. The purpose of this token is somewhat

different, and its use is connected directly with the

RKX verb added to the CCA command set for

remote key loading.

The RKX token uses a special structure that binds the

token to a specific trusted block, allowing sequences of

RKX calls to be bound together as if they were an atomic

operation. This allows a series of related key-management

operations to be performed using the RKX verb. These

capabilities are made possible by incorporating three

features into the RKX key token structure:

� The key is enciphered using a variant of the MAC key

that is in the trusted block. A fixed, randomly derived

variant is applied to the key before it is used. As a

result, the enciphered key is protected against

disclosure because the trusted block MAC key is itself

protected at all times.
� The key token structure includes a rule ID for the

trusted block rule that was used to create the key. A

subsequent call to the RKX function can use this key

with a trusted block rule that references this rule ID,

effectively chaining use of the two rules together in

a secure fashion.
� A MAC is computed over the encrypted key and the

rule ID, using the same MAC key that is used to

protect the trusted block itself. This MAC guarantees

that the key and the rule ID cannot be modified

without detection, providing integrity and binding the

rule ID to the key itself. In addition, the MAC verifies

only if the RKX token is used with the same trusted

block that created the token, thus binding the key

to that specific trusted block.

Figure 8 shows a simplified conceptual view of the

RKX token structure.

Using trusted blocks

The following examples illustrate how trusted blocks are

used with the new CCA functions.

Creating a trusted block

Figure 9 illustrates the steps used to create a trusted

block. In particular, this shows the two-step process that

Simplified conceptual view of the RKX token structure. The 

arrows indicate that a MAC is computed over the encrypted key 

and the rule ID. The MAC, which ensures that a block of data has 

not been modified, provides integrity for the values of the 

enciphered key and the rule ID.

Figure 8

MAC covers these values
Enciphered key

Rule ID

MAC

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 T. W. ARNOLD ET AL.

97



requires action by two different administrators in order to

create the trusted block. Trusted blocks are structures

that could be abused in order to circumvent security

if an attacker could create them with undesirable

settings. The requirement for two separate people

makes it impossible for a single dishonest employee,

for example, to create such a block. A trusted block

cannot be used for any operations until it is in the

active state.

The trusted block is always created in external form,

which means that it is protected by a transport key

(KEK). When the trusted block is complete, it is imported

to the system where it will be used. The system

importation is performed because the most secure way to

create trusted blocks is on a separate computer which is

located in an access-controlled area. Any number of

trusted blocks can be created in order to meet different

needs of application programs.

Exporting keys with RKX

Figure 10 shows the process required for using a trusted

block in order to export a DES or TDES key. This high-

level representation illustrates the main steps of the

process. First, the RKX function is called with the

following information:

� A trusted block that is in the active state. The block

defines how the export operation is to be processed

and includes values such as variants to apply to the

keys.

� A transport key, which is a KEK or an RKX token

that is used to encrypt the key being exported.

� The key to be exported (shown in Figure 10 as the

export key). The export key can be in one of two

forms. In particular, it can be either a CCA key token

or an RKX token, as described in the section on the

RKX key token.
� A key-encrypting key, indicated in Figure 10 as the

export key KEK. This is used only if the export key is

a CCA key token that is in external form, where it is

encrypted under a KEK. In this case, the export key

KEK is the key required by the coprocessor in order

to decrypt the export key and obtain its cleartext

value.
� A public-key certificate, which is optional. If it is

included, it contains the certified public key for a

specific ATM. The certificate is signed with the

private key of the ATM vendor; the corresponding

public key is contained in the trusted block so that

this certificate can be validated. The public key

contained in the certificate can be used to encrypt

the exported key.

The processing steps are simple at a high level, but

there are many options and significant complexity in

the details.

� The trusted block itself is validated. This includes

several types of validation:
� Cryptographic validation, which uses theMAC that

is embedded in the block, in which the MAC key is

decrypted using the coprocessor master key. The

MAC is then verified using that key. This verifies

that the block has not been corrupted or tampered

with, and it also verifies that the block is intended for

use with this coprocessor because the MAC verifies

successfully only if the master key is correct.
� Consistency checking and field validation, in which

the validity of the structure itself is checked, and all

values are verified to be within defined ranges.
� Checking of fields in the trusted block to see

whether all requirements are met for use of this

trusted block. For example: The trusted block must

be in the active state. The current date must be

between the activation date and the expiration date

(inclusive), if those are present in the trusted block,

and if the related flag indicates that date checking

should be performed in the coprocessor card.
� Input parameters to the RKX function are validated

against rules defined for them within the trusted

block. For example, the rule can restrict the length of

the key to be exported, or the rule can restrict the

control vector (CV) values for the key to be exported,

so that only certain key types can be exported with

that rule.
� The export key is decrypted, and then the rules

embedded in the trusted block are used to modify

Trusted block creation and activation. This figure outlines the set 

of operations required to create a usable trusted block. The arrows 

represent input and output parameters for the TBC functions.

Figure 9
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that key to produce the desired output key value. For

example, the trusted block can contain a variant

to be exclusive-ORed with the export key before

that key is encrypted. Variants are used in many

non-IBM cryptographic systems to provide key

separation so that a key cannot be used for the

wrong purpose.
� A key check value (KCV) can be optionally computed

for the export key. The trusted block permits one

of two key-check algorithms to be used: encrypting

binary zeros with the key, or computing an MDC2

hash of the key. The KCV is returned as an output of

the RKX function. (MDC2 stands for a modification

detection code cryptographic-hashing algorithm and

is based on the DES encryption algorithm.)
� The export key, which may have been modified with

a variant according to the rules in the trusted block,

is enciphered with the transport key. The rules can

specify that the key should be created in one of two

formats, a CCA key token or the new RKX token

described previously in this paper. With proper choice

of rule options, the RKX token can be used to create

keys that can be used in non-CCA systems. The key

value can be extracted from the CCA token, resulting

in a generic encrypted key, with variants and other

options as defined in the rule.

Two optional fields in the trusted block may modify the

transport key before it is used to encrypt the export key.

In particular, the trusted block can contain a CCA

control vector (CV) to be exclusive-ORed with the

transport key before that key is used to encrypt the export

key. This exclusive-OR process is the standard way CCA

applies a CV to a key. Additionally, the trusted block can

also contain a variant to be exclusive-ORed with the

transport key prior to its use. If a variant and control

vector are both present in the trusted block, the variant

is applied first, and then the CV is applied.

The export key can optionally be encrypted with the

RSA public key contained in the certificate parameter to

RKX, in addition to encrypting it with the transport key

as described above. These two encrypted versions of the

export key are provided as separate outputs of the RKX

function. The trusted block allows a choice of encrypting

the key in either PKCS1.2 format or PKCSOAEP format.

Both of these formats provide standard ways of

formatting keys in order to encrypt them with a public-

key algorithm such as RSA.

Generating keys with RKX

The process for using a trusted block in order to generate a

new DES or TDES key is similar to the process described

in Figure 10 for exporting keys. In particular, the RKX

function is called with the following information:

� A trusted block which is in the active state, as

discussed for the case of exporting keys. The block

defines how the key-generation operation is to be

processed.

� A transport key, which is a CCA KEK or an RKX

token that is used to encrypt the key being generated.

� A public-key certificate, which is optional. If it is

included, it contains the certified public key for a

specific ATM. The certificate is signed with the

private key of the ATM vendor; the corresponding

public key is contained in the trusted block so that

this certificate can be validated. The public key

contained in the certificate can be used to encrypt

the generated key.

Most of the processing steps are the same as those

described previously for key export. In particular,

Exporting keys using a trusted block.

Figure 10
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� Validation of the trusted block and input parameters

is performed as previously described for export.

� The DES or TDES key to be returned by the RKX

function is randomly generated. The trusted block

indicates the length for the generated key.

� The output key value is optionally modified by a

variant as described above for export, and then

encrypted in the same way as for export, using the

transport key and optionally the public key in the

certificate parameter.

� The key-check value (KCV) is optionally computed

for the generated key using the same method as for

an exported key.

Overall CCA function flow

The new and modified CCA functions are used together

to create trusted blocks, and then to generate or export

keys under the control of those trusted blocks. Figure 11

summarizes the flow of the CCA functions to show how

they are used. In the upper three blocks in the figure, a

trusted block is created, approved, and then imported to

the system where it will be used. In the remaining blocks,

this trusted block is used to control the generation or

export of DES or Triple-DES keys to be used on other

systems or devices.

Usage example

The scenario described below shows how these CCA

functions might be combined in a real-life application

to distribute a key to an ATM and keep a copy for local

use. Some of the terminology used reflects typical terms

used in ATM networks. Our example illustrates a fairly

complex real-world key distribution scenario, in which

the following values are produced:

� A terminal master key (TMK), which is the root KEK

used by the ATM to exchange other keys. The TMK

is produced in two forms: encrypted under the ATM

public key, so that it can be sent to the ATM, and

as an RKX token that is used in subsequent calls

to the RKX verb to produce other keys.
� A key-encrypting key (KEK1), which is encrypted

under the TMK in a form that can be understood by

the ATM.
� A PIN-encrypting key (PINKEY), which is used by

the ATM to encrypt customer-entered PINs, and by

the System z host to verify those PINs. The PINKEY

is produced in two forms: encrypted under KEK1 in a

form that can be understood by the ATM, and as a

CCA internal key token with the proper PIN key

control vector, encrypted under the CCA DES master

key and suitable for use with the System z CEX2C

coprocessor.

Seven steps are required to produce these keys using

the new verbs. These steps use a combination of five rules,

which would be contained in a single trusted block. We

refer to those rules as GEN1, GEN2, EXP1, EXP2, and

EXP3, referring respectively to the terms generate and

export.

1. Use RKX with rule GEN1 to generate a TMK for

use with the ATM. The key is output in two forms:

a. ePu(TMK): Output is encrypted under the ATM

public key, supplied in the certificate parameter.

The encrypted TMK is transmitted to the ATM.

b. RKX(TMK): Output is an RKX token, suitable

for subsequent input to the RKX function.

2. Use RKX with rule GEN2 to generate a key-

encrypting key KEK1 as an RKX token,

RKX(KEK1).

Typical flow of verbs for remote key export. (TBC: trusted block 

create; PKI: PKA key import; RKX: remote key export.)

Figure 11
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3. Use RKX with rule GEN2 to generate a PIN key

PINKEY as an RKX token, RKX(PINKEY).

4. Use RKX with rule EXP1 to export KEK1 encrypted

under the TMK as a CCA token, using a variant

of zeros applied to the TMK. (The term variant is

defined in the ‘‘Definitions’’ section of this paper.)

This produces eTMK(KEK1). The encrypted KEK1

is transmitted to the ATM.

5. Use RKX with rule EXP2 to export PINKEY

encrypted under KEK1 as a CCA token, using a

variant of zeros applied to KEK1. This produces

eKEK1(PINKEY). The encrypted PINKEY is

transmitted to the ATM.

6. Use RKX with rule EXP3 to export PINKEY

under KEK2, an existing CCA key-encrypting

key on the local System z server. This produces

eKEK2(PINKEY), with the CCA control vector

for a PIN key.

7. Use the key import (KIM) function to import

the PINKEY, produced in Step 6, into the

local system as an operational key. This produces

eMK(PINKEY), a copy of the key encrypted under

the local DES master key and ready for use by

CCA PIN API functions.

Conclusion
In designing the cryptographic configuration feature

discussed in the first part of this paper, we have made a

significant effort to ensure that the firmware stack did not

adversely affect data throughput in the high-performance

CEX2A data path. Owing to the efficient 4764 hardware

interface design and care in design and implementation of

the Hydra firmware, the impact of the Hydra firmware on

the full-capacity throughput performance is essentially

negligible.

The cryptographic configuration feature allows

unique cryptographic hardware to be run in different

cryptographic modes, thus reducing the number of

different types of hardware required. Furthermore, the

cryptographic configuration feature permits flexible or

adaptable usage, depending on customer needs for the

System z9 CEX2 feature.

Returning to the discussion of remote key distribution

in the second part of this paper, we note that the changes

we have introduced to CCA solve one new problem and

one longstanding problem. The changes allow the secure

distribution of initial keys to ATMs and other remote

devices using public-key techniques, in a flexible way that

can support a wide variety of different cryptographic

architectures. The changes also make it far easier, and far

more secure, to send keys to non-CCA systems when

those keys are encrypted with a triple-DES key-

encrypting key. These changes make it easier for

customers to develop more secure systems, and they

enable IBM CCA cryptographic systems to evolve and

support the new methods being used for key transport

in the banking and finance industry.

The new CCA services are complex, and IBM offers an

alternative for customers who do not have the time or

skills to develop application programs that call these

functions directly. In particular, the IBM Distributed Key

Management System (DKMS) has higher-level functions

to generate the trusted blocks as well as an API to set up

and perform the sequences of calls to the RKX service.

This offers a much simpler interface for an application

programmer. More information on DKMS is available

on the IBM Security Solutions Web site [6].

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Linus
Torvalds in the United States, other countries, or both.
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