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The paper reviews our recent progress and current challenges in
implementing advanced gate stacks composed of high-j dielectric
materials and metal gates in mainstream Si CMOS technology. In
particular, we address stacks of doped polySi gate electrodes on
ultrathin layers of high-j dielectrics, dual-workfunction metal-gate
technology, and fully silicided gates. Materials and device
characterization, processing, and integration issues are discussed.

1. Introduction

The enormous growth of microelectronics over the past

four decades and, as a result, the significant progress of

information technology in general are based, to a large

extent, on a simple gift of nature, the SiO2/Si system. This

is especially true because ultrathin gate dielectrics in

MOSFETs remain the key element in conventional

silicon-based microelectronic devices. Since the very

beginning of the microelectronics era, the SiO2 gate

oxide has played a critical role in device performance

and scaling [1–6]. Whereas the thickness of the SiO2

gate oxide in the first transistors was a few hundred

nanometers, the functionality and performance of state-

of-the-art devices currently rely on gate oxides that are

just a few atomic layers (;1–2 nm) thick. Until very

recently, the (evolutionary) scaling of the gate dielectric

(and ULSI devices in general) has been accomplished by

shrinking physical dimensions. As the physical thickness

of SiO2-based gate oxides approaches ;2 nm, a number

of fundamental problems arise. In this ultrathin regime,

some key dielectric parameters degrade: gate leakage

current, oxide breakdown, boron penetration from the

polysilicon gate electrode, and channel mobility [1, 3].

Each of the parameters is vital for device operation. In

other words, the conventional device-scaling scenario

involving scaling down SiO2-based dielectrics below 1 nm

becomes impractical.

The solution is to replace conventional SiO2 gate oxides

with a material having higher permittivity. High-j
insulators can be grown physically thicker for the same

(or thinner) equivalent electrical oxide thickness (EOT),

thus offering significant gate leakage reduction, as

demonstrated by several research groups [7–10].

Significant progress has been achieved in terms of

the screening and selection of high-j insulators,

understanding their material and electrical properties,

and their integration into CMOS technology [7–10].

After almost a decade of intense research, the family of

hafnium-oxide-based materials, such as HfO2, HfSixOy,

HfOxNy, and HfSixOyNz, emerges as a leading candidate

to replace SiO2 gate dielectrics in advanced CMOS

applications [11–23]. It has also become evident in the last

few years that only replacing the gate insulator, with no

concurrent change of electrode material (currently heavily

doped polySi), may not be sufficient for device scaling.

Polysilicon gate electrodes are known to suffer from a

polySi depletion effect (equivalent to a ;0.3–0.4-nm-

thick parasitic capacitor), which cannot be ignored for

sub-2-nm gate stacks. Therefore, research on dual-

workfunction metal-gate electrodes is gaining

momentum, since conventional gate stacks are

approaching a limit to scaling as a means of improving

performance for nano-CMOS (i.e., sub-65-nm)

technologies.

It is the purpose of this paper to review our current

understanding of advanced metal-gate/high-j stacks from

the perspective of integrating both basic materials and

devices. Reliability is also an important factor, especially

for long-term device operation. Some reliability aspects of

advanced gate stacks are covered in the paper. More
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detailed results and focused discussion on this important

topic can be found in a recent dedicated review by IBM

researchers in [24]. The use of high-j dielectrics is one of

the most critical challenges in CMOS device scaling, and,

as such, it is being aggressively tackled worldwide by

many researchers and engineers in academic, industrial,

and government laboratories. In this review, we focus

specifically on the work and progress achieved in the

IBM laboratories over the past five years. The paper is

organized as follows. In Section 2, we discuss progress

and challenges in the integration of high-j materials with

polySi gates. Historically, using polySi gates with high-j
dielectrics was believed to be a ‘‘simple’’ solution to

overcome limits to SiO2 scaling in the tunneling regime

when gate leakage became too severe. It was the reason

why early work in the high-j area was dominated by

devices with polySi electrodes. It was later realized that

the polysilicon electrode was not an ideal solution, for

reasons of thickness scaling and threshold voltage

control; as a result, the focus shifted to metal gates,

an even more challenging area. The current status of

research and development in this area is reviewed in

Section 3. It is demonstrated that metal gates do offer

extraordinary scaling potential to an electrical inversion

thickness of almost 1 nm. At the same time, dual-

workfunction control of nþ and pþ Si band edges

remains a challenge. As discussed in Section 4, fully

silicided (FUSI) gates combine the integration benefits

of polySi devices and metal-like behavior without

polySi depletion effects.

2. PolySi/high-j gate stacks and Hf-based gate
dielectrics
PolySi-based devices are usually annealed at high

temperatures (.1,0008C) in order to activate dopants in

the gate and source/drain regions. The requirements of

thermal stability in contact with the polySi gate electrode

and negligible metal diffusion into the Si channel have

virtually ruled out successful integration of high-j
materials such as ZrO2 [25, 26] and Al2O3 [27] that once

were under intense investigation. Even with Hf-based

materials, a number of challenges remain, perhaps most

significantly regarding the thermal stability of the

dielectric, electrical thickness scaling, carrier mobility,

p-FET threshold voltage, and long-term stability/

reliability under device operation conditions. In the

following sections we review how such considerations

have recently guided the development of Hf-based gate

stack materials for polySi-gated devices.

Thermal stability

In contrast to ZrO2 [25, 26], no detrimental silicide

formation occurs with HfO2 in contact with polySi gates.

However, polySi/HfO2 gate stacks do undergo substantial

changes during thermal processing. Dopant activation

requires annealing to temperatures of ;1,0008C or more,

much higher than crystallization temperatures of

amorphous HfO2. Depending on HfO2 thickness,

crystallization into predominantly monoclinic

polycrystalline films occurs at 300–5008C [28–31]. Also,

the formation of additional interfacial SiO2 is often

observed [32], degrading gate stack capacitance.

This is discussed in more detail in the next subsection.

In the early stages of work on HfO2, it was believed

that grain boundaries in polycrystalline films might

constitute electrical leakage paths, giving rise to

dramatically increased gate leakage currents.

Experimentally, only minor, if any, increase in leakage

with polycrystalline HfO2 has been observed [29].

However, amorphous high-j layers may be preferred for

other reasons.

For example, it has been suggested that heterogeneous

grain orientations in the dielectric layer may give rise

to spatially varying electric fields and thus cause

carrier scattering, thereby degrading mobility. Also,

with continuing scaling, the gate length will become

comparable to the HfO2 grain diameter. According to the

International Technology Roadmap for Semiconductors

[33], the physical gate length of high-performance devices

is projected to reach 18 nm by 2010. This may cause

detrimental device-to-device variations in leakage,

threshold voltage, etc. Also, integration issues such as

line-edge roughness at the bottom of the gate stack during

gate stack etch may then arise. We note, however, that so

far there is little experimental evidence to support the

above concerns.

Finally, grain boundaries in poly- or nano-crystalline

material were recently claimed to be responsible for

localized unoccupied states below the metal d-state-

derived conduction band edge in ZrO2 and other

transition-metal (and rare-earth) oxide films [34]. Such

defect states have been observed by optical and X-ray

absorption spectroscopy as well as by photoconductivity

measurements [34]. Indeed, band-edge defect states have

recently been shown to occur in HfO2 if and only if the

dielectrics exhibit crystallinity as detected by infrared

spectroscopy, X-ray diffraction (XRD), and vacuum

ultraviolet spectroscopic ellipsometry (VUV–SE) [35].

This is exemplified by the imaginary part e2 of the
dielectric function for HfO2 films grown by atomic layer

deposition (ALD), as displayed in Figure 1. When HfO2

thickness (and concomitantly crystallinity) is increased,

an absorption feature emerges at ;5.8 eV, i.e., ;0.2–

0.3 eV below the bandgap. The same correlation between

crystallinity and electronic defects holds also for other

HfO2 growth chemistries [35]. These observations are

significant from a device perspective, since they may be

related to the finding that Frenkel–Poole hopping
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through HfO2 gate dielectrics occurs via trapping sites

located a few tenths of an eV below the HfO2 conduction

band edge [36]. Ultimately, it is unlikely that such

states will be a limiting factor in high-j-based CMOS

technologies, since they line up close to the insulator band

edge and are therefore not accessible at the low gate

voltages employed in high-performance and low-power

technologies. However, at present it is not clear whether

additional grain-boundary-induced defect states exist

deeper in the bandgap. It therefore appears preferable to

employ amorphous high-j materials.

In order to prevent gate dielectric crystallization and to

minimize interfacial SiO2 formation, the thermal stability

of the HfO2 dielectric must be increased. This can be

achieved by addition of Al [29, 37, 38], Si [31, 35], and/or

N [39]. HfA1O gate dielectrics have often been found to

reduce carrier mobility, possibly due to fixed charge near

the high-j/channel interface [38]. Therefore, most

researchers have recently concentrated on HfSiO and

HfSiON.

Substantially increased thermal stability is achieved

for example at a comparatively low Si content of

Si/(Hf þ Si) ¼ 20%.1 Even after rapid thermal anneals

to 1,0008C for 5 s, such films do not exhibit any infrared

phonon modes characteristic of monoclinic HfO2, in

contrast to what is observed from as-deposited HfO2

films formed under the same conditions. It is likely that

the HfSiO remains mostly amorphous, although partial

crystallization into the tetragonal or orthorhombic phase

cannot be excluded [31]. However, after longer 900–

1,0008C anneals, HfSiO may still crystallize and

decompose into HfO2 and SiO2 [28, 31, 39, 40, 41].

Further increased thermal stability can be achieved by

additionally introducing N. The tendency to crystallize

under extended 1,0008C dopant activation anneals is

completely suppressed in HfSiON with a N content of

N/(O þN) . 10% [39]. In addition, boron penetration

is more effectively prevented by HfSiON than by HfSiO

[39, 41].

Electrical thickness scaling

In broad terms, the electrical thickness of Hf(Si)O(N)/

SiO(N) gate dielectrics is determined by the sum of the

electrical thickness of the high-j layer and the interfacial

SiO(N) layer (if present). Therefore, a combination of

strategies may be pursued in order to minimize total

electrical thickness, each posing its own challenges:

� Minimize high-j thickness, while maintaining a)

a closed high-j layer and b) sufficient Hf content of

the gate stack as a whole, ensuring a gate leakage

advantage over pure SiON gate dielectrics.

� Minimize the interfacial SiO(N) thickness, while

maintaining a) sufficient/appropriate Si surface

functionalization to ensure good (near-homogeneous)

high-j nucleation and hence a closed layer, and

b) high carrier mobility.
� Increase N concentration in the interfacial SiO(N)

and high-j layers in order to increase the dielectric

constant and reduce interfacial layer growth during

thermal processing, while maintaining a) low charge

trapping and b) high carrier mobility.

In this subsection, we review various surface

preparation and process approaches to optimize

interfacial layer thickness and high-j nucleation, and in

particular to address the scaling benefit of interfacial

nitrogen. The scaling benefit of HfSiO nitridation is

discussed below in conjunction with the impact of N

on charge trapping and carrier mobility.

Chemically or thermally grown silicon oxide films,

preferably with a high density of terminal hydroxyl

groups, represent excellent nucleation layers for many

ALD- and CVD-based high-j growth processes [42].

However, their thickness typically ranges from 0.5 to

more than 1 nm, contributing significantly to the total

electrical thickness. This has motivated the development

of alternative surface preparation schemes.

In an attempt to fabricate atomically sharp Si/high-j
interfaces, oxide-free H-terminated Si(H/Si) substrates

have been utilized. Such H/Si(100) can be prepared

quickly and reproducibly by a hydrofluoric acid (HF)

wet etch of SiO2/Si, with subseqent water rinse [43].

Such substrates are remarkably resistant to oxidation

in laboratory air, and even in O2- or H2O-containing

environments at temperatures as high as 3008C. (For a

Figure 1

Imaginary part �2 of the dielectric function, determined from 
VUV–SE data, for 5- and 40-nm-thick ALD-grown HfO2 films. 
The 40-nm data has been offset vertically for clarity.
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1M. M. Frank and L. F. Edge, unpublished work.
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comprehensive review of H/Si reactivity with respect to

O2, H2O, NH3, and high-j precursors, see [44].) While

this low surface reactivity may be advantageous in terms

of oxidation resistance, it also causes the poor nucleation

characteristics of many ALD-grown high-j films,

resulting in nonlinear growth kinetics and the formation

of discontinuous and electrically leaky gate stacks.

Prominent examples are the popular HfCl4/H2O process

for HfO2 growth [30, 42, 45], as well as other water-based

ALD processes employing metal precursors that are

designed to react with surface �OH groups, such as ZrCl4
for ZrO2 growth [26, 46] and Al(CH3)3 for Al2O3 growth

[44–46]. Nucleation can be enhanced, and more linear

growth achieved, if in situ activation of the H/Si surface

by a more reactive oxygen precursor such as O3 is

performed. However, this comes at the expense of

substantial interfacial SiO2 formation during growth

[47, 48].

A simple way to overcome poor ALD nucleation on

H/Si without employing a more reactive O precursor is

via initial extended H/Si exposure to Al(CH3)3. During

exposures ;1,000 times larger than what is commonly

employed in ALD, metal–organic functional groups are

introduced onto the Si surface [44, 45, 49]. Such groups

are reactive toward the water precursor. On Al–organic

functionalized Si, improved HfO2 and Al2O3 nucleation is

achieved [44, 45, 49]. (Note that, by contrast, large initial

H2O exposures of H/Si leave the H termination nearly

unaffected and therefore do not lead to enhanced high-

j growth [44, 45, 49].) A possible shortcoming of Al-

organic functionalization is the excessive Al(CH3)3
exposure times required with currently available ALD

equipment. Also, in view of HfAlO-induced mobility

degradation [38], tests must be made to determine

whether Al located near a HfO2/channel interface is

acceptable.

Another approach to optimize nucleation and

minimize interfacial SiO2 formation on H/Si is based on

ALD growth at reduced temperatures (e.g., 50 –1008C).

Interfacial SiO2 formation thus is prevented using both

the Al(CH3)3/H2O process for Al2O3 growth
2 and the

tetrakis(ethylmethylamino)hafnium/water process for

HfO2 growth
2 [50].

To passivate the surface and prevent oxidation,

hydrogen may be replaced with other atomic species

as surface passivant. For example, monolayer chlorine

passivation is achieved by a simple Cl2 gas treatment of

H/Si [51], where reaction rates may be enhanced by

ultraviolet (UV) light [52]. Preliminary evaluation

indicates a minor thickness advantage over SiON

interfaces, but nucleation is poor [53].

Like oxide-based subtrates, nitride-based interfaces

such as high-nitrogen-concentration SiON or pure silicon

nitride often are good nucleation layers [30, 54, 55]. In

addition, nitridation increases interface permittivity

(e.g., kSiO2 ¼ 3.9; kSi3N4 ¼ 7–8) and thermal stability.

This scaling benefit can be realized, for example, with

interfacial Si(O)N layers fabricated by H/Si anneal in

NH3 at 6508C to form thin Si3N4 [55, 56], optionally

followed by an oxidizing anneal in NO [57]. PolySi/

HfSiO stacks on such high-nitrogen-content films exhibit

lower electrical thickness (EOT) than on 1.1-nm low-N-

content SiON control substrates, even in cases in which

physical thickness is greater [57]. The main concern with

high-nitrogen-content interfaces is carrier mobility loss,

as discussed below.

To conclude, we note that despite promising results

with unconventional Si surface treatments (such as

chlorination or metal–organic functionalization),

most work in the high-j field still relies on hydrogen

termination and on SiO2 or low-nitrogen SiON films.

Such substrates can be prepared quickly and cost-

effectively with conventional manufacturing equipment.

Carrier mobility

High-j materials have often been observed to degrade

carrier mobility in the transistor channel. A number

of mechanisms have been held responsible, most

significantly remote phonon scattering through emission

or absorption of low-energy phonons in the high-j
material [58] and remote Coulomb scattering off fixed or

trapped charges in the gate dielectric. Over time, reported

mobilities with nominally similar gate stacks generally

have improved. This suggests that certain defects in

the high-j materials such as electrical trap sites and

impurities giving rise to fixed charges can be minimized

by process engineering.

However, remote phonon scattering has been central

in the debate regarding mobility degradation since, if

significant, it could fundamentally limit the performance

of HfO2-based devices. A possible solution is based on

the incorporation of Si into the HfO2, modifying the

vibrational properties. Since Si–O bonds are stiffer than

Hf–O bonds, soft phonon modes are reduced in intensity.

The consequent drop in the remote phonon scattering

cross section has been predicted to result in near-complete

carrier mobility recovery when ZrO2 is replaced by

ZrSiO4 [58]. The same physics holds for hafnium silicates,

as experimentally proven by Ren and colleagues [59]. The

mobility advantage comes at the expense of a reduced

dielectric constant (20–25 for HfO2 compared to 10–15

for HfSiO), a tradeoff that must be taken into account

when optimizing overall device performance by tuning

the composition of Hf-based dielectrics.

2M. M. Frank, Y. Wang, M.-T. Ho, R. T. Brewer, and Y. J. Chabal, ‘‘Hydrogen
Barrier Layer Preventing Silicon Oxidation During Atomic Layer Deposition of Al2O3

and HfO2,’’ in preparation.
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Carrier mobility and thermal stability have likely been

the main characteristics driving the shift in industry focus

from polySi/HfO2 to polySi/HfSiO(N) gate stacks.

Indeed, even Si concentrations in HfSiO as low as

Si/(Hf þ Si) ¼ 20% have been shown to enable excellent

mobilities. For example, we have fabricated polySi/

HfSiO/SiON n-FETs with EOT ¼ 1.6 nm that exhibit

electron peak mobility identical to that of low-N-content

SiON control devices [60]. High-field electron mobility

was degraded by only ;10%. Given a leakage reduction

factor of .1,000 compared with SiON control devices

with the same EOT, such gate stacks are serious

contenders for low-power applications.

Whether the observed mobility improvements achieved

by the introduction of Si into the HfO2 are due mainly to

the drop in remote phonon scattering is still under debate.

Reduced charge trapping is another possible cause, since

this would reduce the Coulomb scattering rate. The

charge-trapping behavior of HfSiO is indeed better than

that of HfO2 [59].

Nitrogen is often introduced into high-j gate stacks to

enhance thermal stability and reduce electrical thickness,

as discussed briefly above. However, carrier mobility is

usually reduced, e.g., for HfSiO on Si3N4 interface layers

[56]. This is illustrated in Figure 2, which shows n-FET

electron mobility for various HfSiO/Si(O)N gate stacks.

Mobility at high field (black symbols) was extracted from

full mobility curves (inset) measured using the split

C–V technique [61, 62]. With interfacial Si3N4 formed

by an NH3 anneal of H/Si at 6508C (N areal density

;2 3 1015 N/cm2), high-field mobility is degraded by

20–25% compared with low-N-content interfacial SiON

layers (;7 3 1014 N/cm2). Even upon introduction of O

into the nitride using NO gas anneals at 700–8008C,

mobility recovers only marginally. When interpreting such

data, it is noteworthy that high nitrogen concentrations

usually reduce mobility even with conventional SiON

gate dielectrics [63]. Since nitrogen is known to create

fixed charge in SiON [64, 65], it seems natural to hold

Coulomb scattering by fixed charges responsible for the

mobility loss both in SiON and high-j stacks. However,

other physical causes also may underlie the observed N-

induced mobility degradation in high-j gate stacks. Three

scenarios may explain an observed mobility reduction: a)

Slow interface states (areal density Nit) or b) fixed charges

(areal density Nox) cause Coulomb scattering of channel

electrons; or c) charge trapping causes Coulomb

scattering or induces hysteresis which distorts the

inversion charge and mobility measurement.

A combination of electrical measurement techniques

aids in assessing which of these mechanisms is dominant

in mobility degradation [57]. To address scenario a),

Nit was measured by amplitude-sweep charge pumping.

Independently of O content, all nitride-based interfaces

exhibited 3–5 times higher Nit (1.3–1.9 3 1011 cm�2) than

low-nitrogen-content control SiON interfaces. In order to

establish whether this Nit difference is sufficient to explain

the mobility loss, a corrected mobility was calculated

that would be measured if Nit could be reduced to zero

without otherwise modifying the gate stacks.3 After this

correction, the mobility trend with N and O content

remained virtually unchanged (Figure 2, white symbols),

demonstrating that mechanisms other than slow interface

states are predominantly responsible for N-induced

mobility loss. Scenario b), by contrast, was supported by

C–V measurements: threshold voltage Vt is ;0.1 V lower

with all Si3N4-based interfaces than with the control

SiON interface. This shift corresponds to an areal density

of positive fixed charge of Nox ;8 3 1011 cm�2 (broadly

consistent with [56]), independent of O content. Nox thus

is significantly higher than Nit and can quantitatively

explain the observed mobility loss with reoxidized nitride

interfaces [57]. With pure nitride interfaces, distortion

of the inversion charge measurement due to transient

charging c) occurs in addition [57]. However, fixed charge

likely is the main case of carrier mobility loss with

interfacial N [57].

Nitridation of HfSiO layers similarly has often been

reported to degrade mobility. However, this is not a

universal result. Recent experimental studies indicate that

High-field electron mobility (at inversion charge density Ninv � 1013 
cm�2) as a function of inversion thickness (Tinv) values for various 
Si(O)N processes (see text) and HfSiO thicknesses. Black: 
as-measured. White: after Nit correction. Inset: Electron mobility 
as a function of Ninv for various Si(O)N processes at a HfSiO 
thickness of 3 nm.
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3K. Maitra, V. Misra, B. P. Linder, V. Narayanan, E. P. Gusev, M. M. Frank, and
E. Cartier, Appl. Phys. Lett. (submitted).
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mobility impact is greatest if nitridation conditions allow

N to permeate the entire HfSiO film, while near-surface

nitridation preserves mobility [39]. This indicates that N

in or close to the interfacial layer has by far the greatest

impact on mobility. Possible reasons for this are a) the

rapidly decaying electrical field strength around a fixed

charge, giving rise to simultaneously dropping Coulomb

scattering cross sections; and b) a lower fixed charge

per N atom in HfSiON than in SiON.

Good electron mobility with HfSiON/SiO2 is

demonstrated in Figure 3. Appropriate low-temperature

plasma nitridation conditions ensured a high proportion

of near-surface N [57]. Under such conditions, gate stacks

incorporating such HfSiON showed N-induced Tinv

reduction by up to 0.1 nm, confirming the scaling benefit

of N. At N concentrations as high as [N/(NþO)] ; 21%,

the N-induced Vfb/Vt shift to more negative values is

smaller than 0.02 V, showing that little positive fixed

charge is created far from the gate electrode. Trap density

remains low as well. As expected on the basis of our

discussion of the mobility degradation mechanisms with

interfacial N, mobility is nearly identical to that of a low-

N-content SiON control (Figure 3).

Summarizing this section, the replacement of HfO2

by HfSiO has led to mobility improvements, through

reduced remote phonon and/or Coulomb scattering.

Additional N incorporation helps optimize thermal

stability and electrical thickness. However, N near the

channel reduces carrier mobility through Coulomb

scattering by fixed charges. N incorporation near the

top of the HfSiO is therefore the method of choice.

Threshold voltage

The threshold voltages of polySi-gated high-j n-FETs

and p-FETs usually deviate from the ideal values

achieved with corresponding SiO(N) devices. Using Hf-

based high-j materials, in particular, n-FET Vt is usually

found to be more positive by ;0.2 V, while p-FET Vt

is more negative by ;0.6 V [66–69]. While threshold

voltages can be tuned to their optimum values through

device engineering, for example by an appropriate choice

of halo implant design or by counterdoping, device

performance degrades with excessive tuning. It is likely

that n-FET devices can be designed in such a way as to

offset the materials-induced shift of ;0.2 V. By contrast,

given the ;0.6-V shift for p-FET devices, one cannot rely

on implant engineering alone in order to fabricate good-

performance Hf-based polySi/high-j devices. The gate

stack itself must be understood and modified. In the

following, we first summarize some observations

regarding the impact on Vt of processing conditions

and materials composition. We then review the current

understanding of the underlying physical mechanisms

causing the increased p-FET threshold voltage. Finally,

we discuss recent attempts to control p-FET Vt and

demonstrate that improvement by ;0.3 V can be

achieved by appropriate design of the gate stack alone

[60], rendering p-FETs with good performance possible.

The fact that laboratories worldwide—using a wide

variety of process equipment and chemicals to fabricate

gate stacks—report nearly identical p-FET Vt shifts of

;0.6 V from the target value suggests that a fundamental

physical or chemical phenomenon is responsible. We have

tested whether tuning of processing details, in particular

choice of dopant, method of doping (implant vs. in situ

doping with CVD precursors), and thermal processing,

can help control Vt. To this end, the Vfb/Vt shifts were

measured after such critical gate-stack fabrication steps

[70]. Measurements even with undoped and unactivated

polySi gates were made possible by recording electrical

data at elevated device temperatures (up to 2008C) in

order to ensure sufficient conductivity. The results

indicated that Vfb/Vt ratios are largely set during polySi

deposition and remain virtually unchanged during gate

implantation and thermal activation, independent of the

p-type dopant (B, Al, Ga). The p-FET Vt shift is thus a

fundamental phenomenon that is not easily prevented

by employing modified polySi/Hf(Si)O(N) formation

conditions. A reaction of Si with the Hf-based material,

occurring already during polySi deposition, appears

to be the root cause for the poor Vfb/Vt control.

The introduction of Si or N into the Hf-based layer has

a limited impact on Vt/Vfb. As expected, when utilizing

HfSiO with increasing Si content, Vfb gradually

approaches the value observed with SiO2 (Figure 4, inset)

[67, 69–72]. However, in order to bring Vt to within less

than 0.3 V from the target value, Hf contents below

;20% are required. At such compositions, the dielectric

constant is only marginally higher than for SiON, making

Electron mobility with 3 nm top-nitrided HfSiON with [N/(N � O)] 
~ 21%, compared with low-N-content SiON.

Figure 3
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implementation unattractive. As mentioned above, fixed

charge from N incorporated into the gate stacks (in

particular, into the bottom interface) is another means

of controlling Vt. However, only a limited degree of Vt

improvement (by up to ;0.1 V) is achieved in this

manner, at the expense of mobility loss [57].

Recent experimental evidence indicates that

oxygen plays a prominent role in the p-FET Vt shift

phenomenon. It was demonstrated that oxidation of the

polySi/high-j stack by lateral indiffusion of oxygen can

alleviate the p-FET Vt shift of transistor devices with

channel lengths below ;1 lm at the expense of EOT [73].

Also, optical spectroscopy was used to relate trap levels in

HfO2 to oxygen deficiencies [74]. It is likely that these

results are related to recent findings for metal/high-j gate

stacks, which are discussed in detail in the next section.

There, it is demonstrated that p-FET Vt can vary by as

much as 0.75 V, depending on O2 partial pressure and

temperature during post-deposition gas anneals [75].

Fermi-level pinning has often been invoked as a

fundamental mechanism causing the Vt shift, in analogy

with a phenomenon that has long impeded successful

fabrication of high-quality gate stacks on compound

semiconductors [76, 77]. Fermi-level pinning is caused by

a high areal density of interface states whose occupation

changes as the gate voltage is swept from conditions of

accumulation to inversion. The interface states partially

screen the electric field from the gate electrode, preventing

it from reaching the channel. The extent of gate-induced

tuning of the channel carrier occupancy is thus greatly

reduced. In the first detailed discussions of the p-FET

Vt shift with Hf-based high-j materials [67–69], it was

argued that Fermi-level pinning just below the polySi

conduction band is caused by Hf–Si bonds at the

high-j/polySi interface. Direct physical evidence for

such bonds is scarce, but this picture is broadly

consistent with the experimentally observed impact

of oxygen deficiencies on Vt.

However, defect levels and fixed charge in the Hf-based

gate dielectric itself may similarly cause Vt shifts. It has

been reported, for example, that O vacancy formation

in HfO2 is energetically favorable when the HfO2 is in

contact with a p-doped polySi gate, since such defect

states are stabilized by the transfer of two electrons to the

gate electrode [74, 78, 79]; this transfer cannot occur in

contact with an n-doped polySi gate. Positive fixed charge

is thus created inside the HfO2, shifting the p-FET Vt to

more negative values, which provides an explanation for

the experimentally observed Vt behavior.

More generally, potential physical causes for fixed

charge are vacancies or interstitials, foreign atoms such as

Si, N, or gate dopants diffused into the high-j layer. Si

and N are not candidate species causing the p-FET Vt

problem, since N-free HfO2/SiO2 stacks suffer from it,

and since the intentional introduction of Si partially

alleviates the issue (see below). The impact of gate

dopants was excluded by the careful experimental studies

discussed above [70].

Owing to the accumulating evidence regarding the

importance of O, and a better understanding of the

electronic structure and formation enthalpy of O

vacancies in HfO2, such vacancies are currently

considered to be the most likely origin of the Vt shifts.

However, more physical characterization experiments are

required in order to conclusively distinguish such defects

from interfacial Hf–Si bonds.

From a technological perspective, it is critical to

determine whether the p-FET Vt can be shifted closer

to the target value by choosing appropriate processing

conditions. As mentioned above, lateral oxidation of the

high-j layer brings partial relief for short-channel devices

[73]. However, the concomitant growth of SiO2 at the

gate electrode interface increases the EOT, O indiffusion

and hence Vt are dependent on channel length, and it is

unclear whether the O content of the gate stack can be

maintained during the entire device fabrication process.

These factors limit the implementation of lateral

oxidation.

Motivated by the Hf–Si bond theory, efforts have

recently concentrated on thin dielectric cap layers inserted

between the Hf-based dielectric and the polySi electrode.

However, success with this approach has been mixed,

notably weakening the Hf–Si bond theory. For example,

Si3N4 [70–72], SiC:H [72], and HfON [80] cap layers lead

to only very small Vt improvement. With SiO2 cap layers,

moderate Vt improvement (by 0.3 V) has been achieved at

a cap thickness of 1 nm [71] (though dissimilar results

have been reported [72]). However, SiO2 capping severely

limits thickness scaling and effectively defeats the purpose

of introducing high-j materials.

EOT and composition (inset) dependence of Vfb shift for polySi- 
gated p-FETs with HfSiO gate dielectric. From [70], with per- 
mission; ©2004 IEEE.
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Several studies have concentrated on Al2O3 cap layers,

often grown by ALD. Reported improvements range

from 0.1 to 0.3 V on HfSiO [70, 81, 82] to 0.6–0.7 V

on HfSiON [83]. These variations indicate that process

control may be an issue. The most likely mechanism of Vt

improvement is through negative fixed charge introduced

into the Hf-based material by the Al, as is the case for

HfAlO gate dielectrics [38]. A possible concern with

Al2O3 cap layers is charge trapping under operation

conditions, which is a known issue for pure Al2O3 gate

dielectrics [14]. In Al2O3/HfSiO stacks, however, the

degree of trapping inside the HfSiO appears to be

essentially independent of cap thickness [84]. Still, it may

be beneficial to reduce cap thickness to a minimum, since

with increasing cap thickness the distance of the trap

sites from the gate electrode increases and, in turn,

the Vfb shift induced by trapped charges increases.

Recently, aluminum nitride (AlN) was introduced as

a novel cap material that reproducibly ensures sufficient

Vt improvement at very low cap thickness and high

effective permittivity [60, 85]. Hf-based stacks were

thus engineered such that the n-FET and p-FET Vt are

sufficiently low, with excellent device characteristics. To

this end, the AlN cap was deposited onto the HfSiO on

both p-FETs and n-FETs, and subsequently etched off

the n-FETs. Selective capping of p-FETs only is thus

achieved. Separate wafers were employed, but full CMOS

integration is possible through a masking/etching scheme.

Figure 5(a) shows C–V curves for optimized p-FET

and n-FET polySi/(AlN)/HfSiO gate stacks [60]. The

physical thickness of the AlN cap is only 0.4 nm; more

significantly, because of the high dielectric constant of the

AlN, this cap contributes only 0.1 nm to the total EOT,

ensuring scalability [85]. The p-FET Vt shift is reduced to

only�0.22 V to�0.31 V compared with a SiON control,

depending on the Si/high-j interface layer. For n-FETs,

we find DVt ¼ 0.21 V, similar to conventional polySi/

Hf(Si)O stacks. Thus, we obtain nearly symmetric C–V

characteristics with low Vt. These findings are confirmed

by Id–Vg data [Figure 5(b)]. A small subthreshold swing

of 71 mV/dec indicates that the interface state density

is low. This was confirmed by amplitude sweep charge

pumping data, which demonstrates that n-FET

Dit ; 1010 eV�1-cm�2 and p-FETDit ; 731010 eV�1-cm�2

[60]. The p-FET Vt improves slightly with decreasing

thickness [60], indicating further scalability. Also, the

Vt-optimized high-j-based FETs show good performance:

Mobilities and drain currents for p-FETs and n-FETs

range between 90 and 110% of those for a SiON control

[60]. A narrow distribution of breakdown voltages

indicates the uniform quality of the dielectric. Stress-

induced n-FET Vt shifts due to charge trapping are

sufficiently low to meet the ten-year device lifetime

targets. By combining this capped gate stack with

moderate implant engineering for final Vt adjustment,

short-channel polySi/(AlN)/HfSiO devices with

acceptable performance have been manufactured [85].

In conclusion, O vacancies, or perhaps Hf–Si bonds, in

Hf-based polySi/high-j gate stacks are the predominant

cause of the observed Vt shifts. It is unclear whether O

can be reintroduced into the stack without unacceptable

SiO2 growth, and whether such O content can be

maintained throughout a full CMOS integration flow.

Though unsuccessful in most cases, cap layers deposited

onto the Hf-based dielectric have recently shown promise

for Vt control. It has been demonstrated that sufficient Vt

improvement with a scalable cap layer can be achieved

without significantly degrading drive current. In

(a) Split C–V characteristics for AlN-capped p-FET and AlN- 
capped/etched n-FET high-� stacks on two interfaces compared 
with conventional HfSiO and SiON. (b) Id–Vg characteristics for 
AlN-capped p-FET (EOT � 1.9 nm) and AlN-capped/etched 
n-FET (EOT � 2.0 nm) high-� stacks compared with SiON. From 
[60], with permission; ©2005 IEEE.
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conjunction with implant engineering, this opens up

opportunities for polySi/high-j devices.

In summary, we have reviewed how thermal stability

and mobility requirements have guided the trend of

polySi/high-j devices from HfO2 to HfSiO. The

incorporation of additional N not only further suppresses

high-j crystallization, but also increases the dielectric

constant and aids interfacial layer scaling. However, N

close to the channel introduces fixed charge that degrades

carrier mobility through Coulomb scattering. Threshold-

voltage offset of polySi devices incorporating Hf-based

high-j dielectrics is probably caused by an O deficiency

of the gate stack. Scalable AlN capping layers have

been developed that enable p-FET Vt control without

degrading device performance. Combined with channel

engineering by ion implantation, selective p-FET

implementation of such AlN/HfSiO gate dielectrics holds

promise for successful polySi/high-j CMOS fabrication.

3. Metal gates
The previous section has shown that while high-j
dielectrics are clearly required to scale beyond the 45-nm

node, the integration of Hf-based dielectrics with polySi

electrodes suffers from a number of drawbacks, including

high p-FET Vt and difficulty in scaling below Tinv of

2 nm. The use of metal gates helps to overcome some of

these hurdles. In this section, we summarize the advances

and challenges remaining for metal/high-j stacks. We

show that aggressively scaled metal/high-j stacks

(Tinv ¼ 1.4 nm) with high electron mobility can be

achieved in a conventional self-aligned process by

careful process optimization, including the use of

non-nitrogen interface layers, high-temperature

processing, and appropriate electrode structures to

prevent regrowth. However, Vfb/Vt instability after

high-temperature processing remains the biggest

challenge to overcome, with oxygen vacancies in

the high-j resulting in large Vfb/Vt shifts for high-

workfunction (um) metal gates.

Thermal stability

For compatibility with conventional self-aligned

processing, thermally stable metal electrodes were

required. This led to our initial evaluation of different

metal electrode/dielectric gate stacks by in situ X-ray

diffraction (XRD). An electrode was considered unstable

if the XRD analysis showed a deviation from the typical

linear decrease in diffraction angle (2h) as a function of

temperature [86]. This suggested the reaction and/or

formation of a new phase with a different crystal

structure. On the basis of this criterion, possible stable

electrode choices were narrowed down as shown in

Figure 6. Most of the low-um elemental metal gates

(um ¼ 4.1 to 4.3 eV), indicated by light shading, were

reactive and did not withstand conventional CMOS

annealing temperatures. The exceptions were TaN and

TaSiN, which were reported to have low n-FET um yet

remain stable to high temperatures. On the other hand,

most of the midgap (including TiN [87], not shown) and

high-um metal gates (um ¼ 4.9 to 5.2 eV), indicated by

darker shading, remained stable to high temperatures

(800 –1,0008C). In summary, while most of the p-FET

gate metals and alloys were structurally stable at high

temperatures, conventional CMOS processing that

requires temperatures greater than 9508C may not be an

integration option for most elemental n-FET electrodes.

These thermal stability constraints were a catalyst for

the development of a gate-last or replacement-gate

process. Typically, the process requires that after a

source/drain (S/D) activation anneal and silicide

formation for a conventional polySi/SiON integration

Figure 6

(a) Periodic table indicating the thermal stability of different 
electrode materials on SiO2 evaluated using in situ XRD, 
resistance, and optical scattering analysis techniques. Superscripts 
following the chemical symbols indicate the type of workfunction: 
n � n-FET, m � midgap, and p � p-FET. The shading indicates 
whether the thermal stability is less than 700�C (light gray) or 
greater than 700�C (darker gray). (b) Thermal stability of different 
electrode materials on Al2O3 [nomenclature similar to part (a)]. 
Adapted from [86], reproduced with permission.
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scheme, nitride and oxide are deposited, and this is

followed by planarization using chemical–mechanical

polishing (CMP). The sacrificial polySi gate and SiON

dielectrics are selectively removed, and the new SiON (or

high-j) is grown (or deposited), followed by deposition of

the metal gate. After deposition, the highest temperatures

to which the gate stacks are exposed are those observed in

the back end, which are typically ,5008C. Using the

replacement-gate integration scheme and CVD W as a

metal gate, CMOS transistors down to 0.1 lm were

successfully fabricated [88]. It was shown that while the

hole mobility of p-FETs remains as good and in some

cases better than that of polySi/SiON controls, the

electron mobility for W/SiO2, W/SiON [88], and

W/HfO2/SiON [Figure 7(a)] were degraded by more than

20% compared with polySi/SiON gate stacks of similar

Tinv. It was also clear that the presence of N in the gate

stack further degrades the electron mobility for a low-

temperature integration process [88]. Figure 7(b) is a

representative TEM image of the center of a 1-lm trench

for a W/HfO2/SiON stack. The thickness variation of the

HfO2 (intended to be 2.5 nm) clearly demonstrates the

conformality issues to be overcome for gate lengths of less

than 45 nm. Significant advances have been made with

the replacement-gate process [89], in which high electron

mobility (250 cm2/V-s at peak and 190 cm2/V-s at

1 MV/cm) at Tinv of 1.5 nm have been observed for

a non-nitrogen-based electrode and dielectric process.

However, the viability of the replacement gate process

for gate lengths of less than 25 nm remains questionable

and depends on the development of an extremely

conformal dielectric and electrode deposition process.

Metal/SiON vs. metal/high-j stacks

Metal/SiON gate stacks may not be well suited for high-

performance logic applications because they do not

provide an improvement in leakage and also place

severe limitations on deposition processes. Low-damage

deposition processes such as ALD or CVD are preferred,

since physical vapor deposition (PVD) processes result in

sputter damage to the thin oxynitride dielectric layer.

Such stringent requirements on deposition processes

are not required for the integration of metal/HfO2 gate

stacks, since these stacks have a physically thicker high-j
dielectric (compared with SiON) that results in lower gate

leakage; more significantly, these stacks are more

thermodynamically stable at elevated temperatures than

metal/SiO2 stacks [90]. This allows for the possibility of

a ‘‘gate-first’’ conventional process integration scheme.

Thus, the integration complexity of introducing a metal

gate for high-performance CMOS requires that both

metal and high-j be introduced at the same time for an

overall benefit to be achieved in scaling and leakage.

Unfortunately, aggressively scaled metal/high-j stacks

suffer from electron mobility degradation [87, 91] and

Vfb/Vt instabilities [75, 92].

Electron mobility

In the subsection on thermal stability, it was shown that

the low-temperature-processed metal/high-j devices

suffer from degraded electron mobility. The effect of

high-temperature processing on the n-FET mobility of

W/HfO2/SiO2 stacks was evaluated using a simple non-

self-aligned integration flow, with devices processed

between 6008C and 1,0008C. It was shown that even

with low interface-state densities (Nit), low-temperature

(,6008C) processing resulted in extremely low electron

mobilities [93]. Increasing the thermal budget resulted in

significantly improved mobilities, but at the expense of

Tinv due to interlayer (IL) regrowth. Using a non-self-

aligned flow [94], n-FET-like CVD TaSiN/HfO2 gate

stacks were also fabricated, and the mobility compared

with CVD W/HfO2 after high-temperature processing

(Figure 8). As with the replacement-gate results, it is

observed that the presence of N at the interface for

both gate electrode stacks clearly degrades the electron

mobility. This not entirely unexpected, as nitrogen is also

the potential cause of the reduction of mobilities for

aggressively scaled polySi/SiON devices. For the non-

nitrogen ILs, it was not clear whether the observed

Figure 7

(a) Electron mobility of a CVD W/HfO2/SiON replacement-gate 
device compared with a polySi/SiON control device. (b) Repre-
sentative TEM image of the center of a replacement-gate trench.
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improvement in mobility was due only to the thickening

of the IL or whether the composition of the IL had

also been modified and also played a role. It has been

suggested that the Hf intermixes with a non-nitrogen IL

(from comparison of high-resolution TEM and electrical

measurements) to form a higher-j Hf-silicate IL [93] that

results in higher mobility than HfO2, since it has a weaker

coupling of the SO phonons compared with HfO2 [95].

However, a number of research groups have chemically

analyzed the IL using low-loss electron energy loss

spectroscopy [96] and medium-energy ion scattering [97]

and show no evidence for Hf-silicate formation upon

annealing. Alternatively, it has also been suggested that

the IL is Si-rich, resulting in a dielectric constant greater

than that of SiO2 [98]. In summary, the composition of

the IL is currently a topic of intense debate in the high-j
community, and its impact on the mobility of high-j
stacks is not well understood.

To understand the effect of processing temperature

on electron mobility and to decouple the role of the IL

thickening from mobility improvement of metal/HfO2

stacks, we have used PVD TaSiN, a well-known

oxygen diffusion barrier which is known to minimize IL

thickening, so that the contribution of the IL to mobility

improvement remains constant. For the explicit purpose

of dopant activation at low temperature, we used the

solid phase epitaxial regrowth (SPER) [99] process, which

uses high-energy As implants for S/D amorphization

followed by a 6008C anneal, in combination with NiSi

S/D and gate contacts to fabricate self-aligned n-FETs

at low temperatures. Some wafers were subjected to an

additional 8008C, 5 s and 1,0008C, 5 s anneal after SPER

and prior to NiSi formation to observe the impact of

high-temperature activation. Figure 9(a) shows that

substantial improvement in mobility (25%, peak) is

observed for both TaSiN/HfO2/SiON and a control

TaSiN/SiON stack only after 1,0008C anneals with little

change in Tinv. It is clear that the mobility increase is

neither related to IL regrowth (Tinv remains about

the same; see the figure caption), nor affected by Nit

variations, as the mobility curves are corrected for Nit

[100]. These results show unequivocally that the high

thermal budget modifies the dielectric stack without

interfacial regrowth to enhance the mobility. The

mobility enhancement can be related to the formation

of a relaxed IL/Si interface at T . 9508C [101] or, in

addition, especially for the high-j gate stacks, to

structural relaxation and modification of the HfO2/IL

interface.

We have recently obtained high-mobility devices at

aggressive Tinv, for self-aligned metal-gated high-j
transistors [102] with oxide starting surfaces by capping

different thin metal gate stacks such as PVD TiN, ALD

TaN, and CVD W with polySi [Figures 9(b), 9(c)]. To

prevent reactions between W and polySi at T . 8008C, a

TiN barrier layer was inserted between the W and polySi

layers. PolySi/TiN/HfO2 gate stacks were shown to

have record electron mobilities at a Tinv of 1.4 nm better

than previously reported [103, 104]. We believe that by

careful process optimization such as the use of non-

nitrogen interface layers, high-temperature processing,

low Nit (,33 1010 cm�2-eV�1), and appropriate electrode

and electrode structures to prevent interfacial regrowth,

we have largely minimized undesirable sources of

Coulomb scattering. This results in high mobility

in aggressively scaled metal/high-j stacks that are

competitive or better than aggressive polySi/SiON stacks

[Figure 10(a)]. We also show that these high-mobility

stacks still maintain more than 4–5 orders of leakage

reduction compared with polySi/SiON [Figure 10(b)].

Metal gate screening of the soft optical phonon modes

in the high-j (the primary reason for reduced mobility of

polySi/high-j as proposed by Fischetti et al. [95] and

experimentally verified by Ren et al. [59]) has been

proposed as a possible reason for improvement in

mobility [103]. However, we have recently shown with

low-temperature mobility measurements of aggressively

scaled metal-gated high-j stacks4 that electron mobility

is still limited by HfO2 SO-phonon scattering.

Figure 8

Electron mobility comparison of TaSiN/HfO2/SiON, W/HfO2/SiON, 
and W/HfO2/SiO2 stacks after high-temperature annealing. Adapted 
from [94], reproduced with permission; ©2004 IEEE.
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Tinv scaling

Figures 9(b) and 10(a) show a significant difference in Tinv

for different electrode stacks that are processed under

nominally identical process conditions. After a high-

temperature process, W-gated devices capped by TiN

and polySi are at least 0.5 nm thicker in Tinv than an

equivalent polySi/TiN device. Since the W is completely

encapsulated during the S/D activation by TiN/polySi

and nitride spacers, the increased Tinv can only be

attributed to residual oxygen present in the W [105] that is

released upon annealing as atomic species and oxidizes

the Si substrate surface. This kind of regrowth has been

observed with other relatively high-workfunction and

refractory metals such as Re [75] and suggests that

Figure 9
(a) Comparison of electron mobilities for TaSiN/HfO2/SiON and TaSiN/SiON gate stacks, for three different process temperatures. Inversion 
thickness (Tinv) values corresponding to these process temperatures are respectively 1.7 nm, 1.5 nm, and 1.6 nm for the HfO2/SiON stacks and 
2.3 nm, 2.3 nm, and 2.4 nm for the SiON stacks. (b) Inversion split-C–V characteristics and (c) electron mobility curves of self-aligned 
metal/HfO2/SiO2 n-FET gate stacks after a 1,000�C, 5-s RTA. Tinv values for  CVD W, PVD TiN, and ALD TaN are 2.05 nm, 1.4 nm, and 
1.7 nm, respectively. Channel doping was Na � 1 � 1017 cm�3 for all stacks. Adapted from [102], reproduced with permission; ©2006 IEEE.
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possible hurdles may exist for the scaling of high-um

p-FET electrodes.

Vt / Vfb stability—Role of oxygen vacancies

A key problem that affects metal-gate/high-j stacks is the

Vt/Vfb stability of metal gates when in contact with Hf-

based dielectrics. This remains probably the toughest

challenge for the introduction of metal gates and can be

summed up as follows: The Vt/Vfb values for metal/high-j
stacks predicted using the metal workfunction are accurate

for low-temperature-processed devices, but thermal

processing induces significant drift, usually toward a

midgap effective workfunction (EWF). An illustration of

this effect is shown in Figure 11(a) for PVD TaSiN/HfO2

and CVD Re/HfO2 devices, in which, after high-

temperature anneals, the difference in Vfb (a measure of

the EWF for aggressively scaled devices) is less than

100 mV. The reported um of these materials is 4.4 eV

[106] and 4.9 eV [107]. We reported previously by using

the barrier height technique to evaluate um that some of

these Vfb shifts that are observed upon annealing are due

to fixed charge [108] as interpreted by the difference

between the um obtained from the barrier height

technique (which yields values similar to reported um

values) and that extracted from C–Vs. However, it is

becoming increasingly apparent industrywide that for

high-um metal gates, the observed EWF on HfO2 can

be shifted by more than 500 mV from the expected um

upon exposure to moderately high temperatures and/or

reducing ambients. This shift in Vfb is qualitatively similar

to the high Vfb shift observed for pþpolySi/HfO2 gate

stacks, where the shift was attributed to Fermi-level

pinning [68, 69, 109]. Using Re/HfO2 gate stacks [75], we

illustrate this effect and show that for room-temperature-

deposited e-beam Re, reducing ambients at moderate

temperature can shift the Vfb of MOS capacitors by

;700 mV [Figure 11(b)]. The Vfb for the forming-gas-

annealed e-beam Re/HfO2 stacks is very similar to as-

deposited CVD Re/HfO2 films that are grown at 5008C

under reducing conditions. These kinds of similar shifts

have also been observed for Ru/HfO2 [75] and Pt/HfO2

[92]. However, we have also shown that by using

appropriate low-temperature oxidizing ambients, some

of this Vfb shift is recoverable without interfacial

regrowth [Figure 11(c)] [75]. Thus, we strongly believe

that the Vfb modulation is related to the oxygen vacancy

concentration [Vo] in the HfO2 near the Re contact.

Recently Shiraishi et al. [78, 79] have attributed the

Fermi-level pinning effect for pþpolySi/HfO2 to the

generation of an interfacial dipole formed by the

evolution of charged oxygen vacancies. By a similar

analogy, we believe that the introduction of a high-um

metal gate adjacent to the HfO2 allows for the following

reaction: O0 ! Vþþo þ 2e� þ ½ O2 : Since this reaction is

thermally activated, there is no driving force at room

temperature for the reaction to proceed (consistent with

Figure 11
(a) High-frequency (100-kHz) C–V characteristics of different polySi-capped metal gated stacks clearly showing the midgap-like Vfb  for both 
TaSiN and Re gate stacks after 900�C, 5-s RTA. (b) Comparison of C–V characteristics of Re/HfO2/SiO2 gate stacks with CVD Re (grown 
at 500�C) and e-beam-evaporated Re (25�C), respectively. Adapted from [75], reproduced with permission. (c) High-frequency (100-kHz) 
C–V characteristics of SiO2/HfO2/CVD Re showing that flatband voltage shifts can be induced in oxidizing ambient without incurring 
interfacial oxide regrowth, if low temperatures and low O2 partial pressures are used. (No passivation was performed on these devices, 
causing C–V stretch-out). (d) Schematics explaining the impact of oxygen vacancies, [VO], and of “dipole” formation due to electron transfer 
from the HfO2 to the Re. The magnitude of the Vfb shift depends on the oxygen vacancy concentration and the distribution in the HfO2 layer. 
Adapted from [75], reproduced with permission; ©2005 IEEE.
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the as-deposited e-beam Re/HfO2 measurements). It has

been predicted theoretically that the oxygen vacancy

defect level in the HfO2 is aligned close to the silicon

conduction band [110]. Therefore, at moderately high

temperatures, the presence of a high-um metal with its

Fermi level aligned close to the valence band of Si

provides the necessary driving force to generate

charged oxygen vacancies and lose 2e� to the metal. This

results in a dipole layer that changes the effective gate

workfunction and the corresponding Vfb by pulling it

toward midgap, as illustrated in Figure 11(d). By

introducing oxygen to the system, we can effectively

neutralize the oxygen vacancies near the metal/high-j
interface, thereby recovering the high um of the metal

gate, as shown in Figure 11(c).

It has also been suggested that these shifts could be

attributed to metal-induced gap states (MIGS), an

intrinsic effect in which the EWF is modulated by the

charge neutrality level and pinning parameter [111],

which are well known for HfO2. Recently, Lim et al. [112]

have shown quite convincingly that for as-deposited high-

um gate metals, the EWF can be well predicted by the

MIGS model; however, upon even moderate annealing

the realized EWF can be explained only by the vacancy

model. Thus, oxygen movement and its role in

modulating oxygen vacancy (Vo) formation in the

high-j is strongly coupled with the gate electrode and

is responsible for the low EWFs that are observed

for materials that have high um.

In summary, most of the n-FET metals or alloys are

either unstable at high temperatures or at best have

EWFs that are more than 200 mV from the Si conduction

band edge (for example TaSiN, TaSi2.5, or TaC). On the

other hand, p-FET metals and alloys, though stable at

high temperatures, have unusually high Vfb shifts that

might be related to the oxygen vacancy concentrations

in the HfO2 or HfSiO gate dielectric.

Charge trapping and NBTI

Unlike polySi/HfO2 stacks which suffer from significant

charge-trapping concerns [14, 113, 114], metal/high-j gate

stacks have been shown to have very good Vt stability

under constant stress conditions; this is illustrated

in Figure 12 [115]. Compared with W/HfO2, both

FUSI/HfO2 and polySi/HfO2 suffer from significant

charge trapping. This degradation is very unlikely to

come from the FUSI process, since it is not seen on SiO2

control devices with FUSI gates. These observations

combined with the metal gate data strongly indicate that

reaction(s) between polySi gates and high-j dielectrics

may be responsible for defect creation that leads to

enhanced charge trapping, with most of these trapping

effects being eliminated by the use of metal gates.

Degradation related to NBTI (negative biased

temperature instability) in scaled W/HfO2 replacement-

gate p-FETs has also been shown to be comparable to

polySi/SiON, suggesting that NBTI is not a problem for

aggressive metal-gate/high-j stacks [116].

To conclude this section, substantial mobility

improvements in metal-gated high-j systems at an

aggressive Tinv of 1.4 nm which are as good as or better

than those of aggressive polySi/SiON stacks have been

achieved. High-temperature processing and nitrogen in

the interface layer appear to influence this improvement

strongly, though careful process optimization has helped

in overcoming mobility as a problem for aggressive

stacks. Workfunction stability remains the most

significant challenge to overcome, with oxygen vacancies

in the high-j resulting in large Vfb/Vt shifts for high-

workfunction metal gates. Low-workfunction metal gates

are either unstable at high temperatures or are still

significantly shifted from the Si conduction band

edge. We therefore believe that significant changes to

conventional integration schemes would be required

in order to obtain high-mobility and band-edge

workfunction metal/high-j stacks.

4. Gate stacks with FUSI metal gates
As discussed above, using metal gates offers many

benefits for CMOS scaling, in particular lower Tinv due to

eliminated polySi depletion. The process flow described in

Section 3 included metallic material deposited directly on

gate dielectric regardless of the ‘‘gate-first’’ or ‘‘gate-last’’

integration scheme. An alternative attractive approach

to fabricating metallic gates is to convert a conventional

polySi gate into a silicide material which, after silicidation

transformation, is in direct contact with the dielectric

film. Most metal silicide materials are known to have

Figure 12
Comparison of Vt instability in polySi, fully silicided (FUSI), and 
metal gate stacks with the same high-� stressed under identical 
conditions. Adapted from [115], reproduced with permission; 
©2004 IEEE.
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metal-like low electrical resistivities, typically of the

order of 10–100 lX-cm [117–119]. Low resistivity and

selectivity to form silicides only in the areas where metal

is in direct contact with silicon (the so-called ‘‘self-

aligned’’ process) have made them a key contact element

of modern ULSI transistors [117]. As a result of many

years of focused research and development in this area,

silicide materials and processes are fairly well understood.

One should mention that the idea of complete

silicidation of a polySi gate was proposed in the late 1970s

[117 –120]. At that time, the polysilicon depletion effect

was not a big issue, and the focus was more on finding

low-resistance contact materials with high reliability. The

situation has changed drastically over the past several

years with the requirement of reducing electrical thickness

of the gate stack in inversion without gate leakage

penalty. Several groups have explored full silicidation

(FUSI) of conventional polySi gates and observed

an encouraging effect of reduced Tinv for the same

physical structure and thickness of the dielectric stack

[21, 121–144].

Several integration routes to fabricate fully silicided

gates have been reported, some involving CMP steps and

others not. One popular approach is shown schematically

in Figure 13. The integration scheme remains a

conventional front-end-of-line (FEOL) process flow

including polysilicon gate definition and patterning, ion

implantation into extension regions, spacer formation,

source/drain ion implantation and silicide contacts, and

an oxide passivation layer. After that, FUSI-specific

steps include 1) CMP planarization of the passivation

overlayer; 2) removal of the cap layer on top of the polySi

gate; and 3) metal deposition at the thickness sufficient to

fully silicide the polySi gate after moderate annealing,

typically at 400–6008C. In this approach, source/drain

and gate silicidation are performed separately. To

sum up, FUSI gate integration is clearly similar to the

conventional CMOS process flow, and therefore offers

several advantages over the more complex standard metal

gates described above. In fact, short-channel FUSI

devices have been demonstrated for 65-nm- and

45-nm-technology nodes.

With respect to silicide materials for FUSI gates, most

of the ones explored so far are common silicides that

are already in use for source/drain contacts or other

microelectronics processes, such as molybdenum silicides

[119, 120, 138], tungsten silicides [122], titanium

silicides [136], hafnium silicides [134], platinum silicides

[131, 133], cobalt silicides [123, 141] and nickel silicides

[21, 121, 124–144], germanides, and alloys. Nickel-based

silicide materials are emerging as a leading candidate

for FUSI gates for several reasons: 1) low resistivity

(;15–25 lX-cm; 2) low volume expansion (less than

20%); and 3) the fact that this material has already been

introduced into Si FEOL processing for sub-90-nm-

technology nodes. More significantly, nickel silicide is

formed by Ni indiffusion into the polySi gate, therefore

allowing complete silicidation without forming voids.

As an illustration, a comparison of cobalt silicide and

nickel silicide gates is shown in Figure 14. In contrast

to nickel silicidation, silicon atoms are the main diffusing

species during cobalt monosilicide formation, resulting in

Figure 13
Schematic integration scheme for fully silicided (FUSI) gate dielectrics utilizing the CMP approach.  In this approach, source/drain and gate 
are silicided separately.
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void formation at the gate dielectric interface. Generally

speaking, silicidation is a complex multistep process

involving diffusion and phase transformation. Depending

on the ratio of nickel to silicon, different phases can be

formed (e.g., Ni3Si, Ni31Si12, Ni2Si, N3Si2, NiSi, NiSi2),

with different workfunctions, as is discussed below.

In terms of electrical properties, FUSI gates show a

metallic behavior (due to complete silicidation) with no

signature of polySi depletion for both high-j and SiO2

gate dielectrics (Figure 15). Accumulation and inversion

capacitances are equal, and this is true for both n-FET

and p-FET devices. Some slight increase of the

capacitance in accumulation is also observed, as expected

[145] when polySi gates are replaced with a metal gate.

The gain of Tinv due to the FUSI process is approximately

0.3–0.5 nm, especially over the polySi/high-j devices

without polySi pre-doping (Figure 15). The combination

of polySi-depletion elimination and the high permittivity

of the high-j layers results in very significant (six to seven

orders of magnitude) gate leakage current reduction,

plotted against Tinv (Figure 16). A high-j layer (with

polySi gates) contributes to a gate leakage reduction of

approximately 103–105, while FUSI gates offer additional

reduction by a factor of ;100.

As discussed in the two previous sections, threshold

voltage control (especially for low-Vt high-performance

devices) is a challenge for both metal-gate (band-edge

metals) and polySi/high-j devices (the so-called p-FET

Vt problem). Achieving band-edge workfunctions for

CMOS is one of the key issues with FUSI gates as well.

Undoped NiSi gates show a mid-gap workfunction, as

evidenced, for example, from Vt shift by ;0.5 V from nþ

Si and pþ Si controls (Figure 15). Several techniques have

been proposed to adjust the workfunction of FUSI gates

toward band edges: 1) pre-doping of polySi gates with

common nþ and pþ dopants before gate silicidation

[126, 129–132, 135, 140, 141, 144]; 2) changing the

composition of FUSI gates, in particular alloying Ni

with other elements (for example, Pt or Ge for p-FET

shifts and Al for n-FETs) [130, 131, 133, 137, 140];

3) using different silicide phases [21, 140, 143, 144];

Figure 14
Cross-sectional SEM image of short-channel fully silicided (FUSI) devices with (a) CoSi2 and (b) NiSi gates.

(a) (b)

70 nm 80 nm

Figure 15

High-frequency (100-kHz) C–V measurements on (a) n-FET and 
(b) p-FET devices with fully silicided (FUSI) and polySi devices 
with SiON gate dielectrics. Tinv gain due to polySi-depletion 
elimination and Vt shifts are shown. Tqm � IBM equivalent oxide 
thickness metric [1].
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4) utilizing ultrathin cap materials between the gate

dielectric and the FUSI gate, similar to the idea

discussed in the polySi/high-j section [140]; 5) bottom

interface engineering [140]; and 6) channel pre-doping.

With the help of polysilicon pre-doping [e.g., As, Sb,

P ion implantation (I/I) for n-FETs and Al, B I/I for

p-FETs] of FUSI gates on SiO2-based gate dielectrics, Vt

can be adjusted [126] within ;150 meV (for p-FETs) and

300 meV (for n-FETs) from the mid-gap value of the

undoped NiSi (Figure 17). The dopant dose should be

carefully optimized because some EOT loss and adhesion

problems are observed at high ion implant doses. In other

words, there is a tradeoff between the value of the Vt shift

and the degree of delamination (for n-type dopants) and

also EOT loss. Besides, polySi pre-doping becomes less

efficient in the case of FUSI gates on high-j dielectrics

because of the so-called Fermi-level pinning problem

discussed in detail in Section 2. For FUSI gates this

problem can be mitigated by using 1) metal-rich phases

of nickel silicides; 2) platinum silicides or platinum

alloys; and/or 3) more stable silicate and nitrided silicate

materials. It has been demonstrated that different phases

of nickel silicides exhibit workfunctions ranging from

;4.3 eV (for NiSi2) to ;4.7 eV (for Ni2Si) [21]. This

phase-controlled full silicidation offers an extra ‘‘knob’’ to

tune the workfunctions of FUSI gates. Another factor in

adjusting Vt is to alloy nickel silicides with elements that

help to move the workfunction toward band edges. For

example, devices with NiPtSi FUSI gates show threshold

voltages close to a ‘‘quarter-gap’’ p-FET value, whereas

alloying with aluminum shifts the workfunction almost to

the nþ band edge (Figure 18). The mechanism of this

Vt modulation is not fully understood at present. It is

believed to be possibly due to segregation of the alloying

element at the FUSI/dielectric interface.

Device performance improvement is an ultimate goal

of device scaling, and innovations in materials and device

architecture are enabling it. In terms of performance,

long-channel FUSI-gated HfSixOy devices show carrier

mobilities close to that of the SiO2 control [131]. This fact

combined with reduced Tinv (Figures 15 and 16) results in

significant drive current improvements [131]. Figure 19

shows (over)drive current in the linear regime as a

function of gate leakage. The upper x-axis also shows

an equivalent gate oxide thickness extracted from gate

current density assuming SiO2 tunneling behavior. At a

given gate leakage, the n-FET performance gain is ;25%

for NiSi/HfSixOy and ;15% for NiSi/SiO2. Another way

Figure 17

Workfunction control for fully silicided (FUSI) gates by polySi 
pre-doping with typical n-type and p-type dopants.
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to interpret the data shown in Figure 19 is that, for a

given drive current (the equivalent of ;1 nm SiO2 gate

dielectric), NiSi/HfSixOy shows approximately six orders

of magnitude lower gate leakage.

As indicated in the previous sections, charge (electron)

trapping is a well-known phenomenon and a serious

reliability concern in high-j-based devices. It causes Vt

instabilities and drive current degradation. FUSI-gated

devices exhibit charge-trapping behavior similar to that of

the polySi/ high-j stacks, as evaluated by means of the

constant-stress voltage technique [113]. Specifically, FUSI

on HfO2 shows significant Vt instability, whereas charge

trapping in both doped and undoped FUSI on HfSixOy

is negligible. This important observation was also

complemented by charge-pumping measurements.

Finally, we comment on scaling issues of FUSI/high-j
gates. ‘‘Gate-last’’ FUSI devices are subjected to

processing (starting from polysilicon deposition) and a

thermal budget similar to that of polySi/high-j stacks.

Hence, one could expect similar issues with regrowth and

reactions at high temperatures which should be carefully

managed. One conventional way to scale down the

electrical equivalent thickness of the stack is to combine

an optimized thin SiO2-like interface and a reduced

high-j layer thickness. Electrical thicknesses in

inversion (Tinv) as thin as 1.6 nm have been achieved

for NiSi/HfSiO devices [140].

In summary, the FUSI device is an attractive metal-

gate integration option that offers a number of device

benefits such as sub-2-nm Tinv; performance gain over

polySi/SiO2 at a given gate leakage; six to seven orders of

gate leakage reduction (at a given Tinv); Vt control for

both n-FETs and p-FETs, and negligible charge trapping.

5. Summary

There is no doubt that enormous progress has been

achieved in the area of advanced gate stacks over the past

several years. Initial demonstrations of high-j devices

in the late 1990s did show significant leakage current

reduction due to higher permittivity of the stack.

However, these early devices were barely usable. They

suffered from significant mobility degradation, threshold

voltage instability caused by unacceptable charge

trapping, limiting scaling potential below 2 nm (Tinv),

reliability concerns, and an unclear integration path.

Most of these issues (which seemed fundamental in the

early days) have now been solved. High-j/metal-gate

devices are much more competitive now for high-

performance technologies. They exhibit high mobility at

thin Tinv and no significant charge trapping. Controllable

and reliable Vt control still remains as a potential issue,

but several options have been identified to solve this

problem. Interface optimization is an important task

for high-performance (high-mobility) devices.
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Figure 19

Normalized constant overdrive (at Vt � 0.8 V) current for NiSi/SiO2 
and NiSi/HfSiO n-FETs. Performance gain over polySi/SiO2 at a 
given gate leakage is shown by arrows. (Id(lin): linear drive current.) 
Reproduced from [131], with permission; ©2004 IEEE.
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