
Victim
management
in a cache
hierarchy

P. A. Franaszek
L. A. Lastras-Montaño

S. R. Kunkel
A. C. Sawdey

We investigate directions for exploiting what might be termed
pattern locality in a cache hierarchy, based on recording cache
discards or victims. An advantage of storing discard decisions is
the reduced duplication of pertinent information, as well as the
maintenance of information on the current location of discarded
lines. Typical caches are designed to exploit combinations of
temporal and spatial locality. Temporal locality, the likelihood that
recently referenced data will be referenced again, is exploited by
LRU-like algorithms. Spatial locality is the property that causes
larger cache lines to yield improved miss ratios. Here we consider
the exploitation of pattern locality—the property that lines
accessed in temporal proximity tend to be re-referenced together.
We describe some new cache structures including pattern-recording
features, along with their miss ratio and transfer traffic
performance as determined via simulations on traces drawn from
several benchmark applications. We show that pattern locality
information, based on discard statistics, can be useful in enhancing
the quality of prefetch decisions.

1. Introduction

In the field of microprocessor cache hierarchy

management, new viable strategies for mitigating the

effects of memory latency continue to increase in

importance. Well-established solutions such as increased

cache sizes, prefetching of strides, larger cache lines, and

multithreading are becoming increasingly insufficient to

prevent processors from underperforming because of

memory starvation. This is because of the trend toward

increasing distances, in processor cycles, between on- and

off-chip accesses. The problem of the resulting limitation

on system performance is sometimes termed the memory

wall. A question of some importance is whether there are

unexplored potentially viable approaches to mitigating

this problem. Viability here broadly means having real

possibilities of successful application in future computing

systems.

Caches and cache hierarchies are effective because of

a combination of the temporal and spatial locality of

accesses. Temporal locality ensures the success of least

recently used (LRU)-like replacement algorithms, while

spatial locality can be exploited by a proper choice of line

size, such as a tradeoff between miss ratios and transfer

traffic.

Spatial locality can be viewed as a property that holds

across the contents of the entire memory—that is, that

a randomly selected line is likely to be referenced in

temporal proximity to another if they are neighbors in

some general sense. For example, one may say that two

lines are neighbors if their addresses differ numerically by

no more than a given number. A property specific to

actual items of data might be termed pattern locality. This

is the property that items accessed in temporal proximity

are likely to be accessed again in such proximity.

Not all neighboring cache lines necessarily exhibit

pattern locality. Identifying lines having this property

thus offers an opportunity for improving prefetch or

replacement performance over methods such as simply

increasing the size of cache lines. Detecting pattern

locality can be done, for example, by recording data

accesses.

Throughout this paper, we use the standard

terminology of cache design. A cache victim is a cache

line or entry that was chosen for replacement at the time a

�Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006 P. A. FRANASZEK ET AL.

507

0018-8646/06/$5.00 ª 2006 IBM

new entry was installed. A physical realization of a cache

consists of a memory that stores entries and tags or

identifiers that, together with the memory storage

location, identify the entries completely. The number of

possible locations any given entry can take within the

memory is called the associativity of the cache (when the

associativity is 1, we say that the cache is direct-mapped).

Line or entry identifiers and the information that is used

to select cache victims are held in a separate memory

called the cache directory.

In this paper, we discuss some new structures for the

efficient exploitation of pattern locality. In particular,

we consider the notion of victim prefetching, in which

prefetching is based on locality information recorded at

the time a line is discarded from a cache rather than at

time of reference. We describe what we believe is a new

construct, a Directory eXtension (DX), for tracking

victim patterns within pages. This is in contrast to

hardware for tracking lines which are referenced,

information which exhibits some redundancy with L2

directory contents. We also consider the modifications

and use of on-chip directories for off-chip caches. Such

directories are repositories of substantial information

on previous accesses.

We investigate cache performance enhancements

resulting from these notions in L2 cache configurations in

which L2 is the slowest on-chip cache. Our systems

include L2 side buffers such as victim caches, into which

lines may be prefetched, victim lines inserted, or both.

The systems considered include ones with and without

off-chip L3 caches. Our performance analysis is via

simulations based on traces obtained from execution

of various benchmarks on IBM processors equipped

with special hardware. The benchmarks tested include

1) TPC-C**, an on-line transaction processing

benchmark; 2) Trade2, an IBM internal benchmark

which simulates stock trading, is written in Java**, and

uses the WebSphere* application; 3) CPW, an IBM

internal benchmark similar to TPC-C but with more

complex transactions; and 4) NotesBench*, a benchmark

that exercises the Lotus Notes* e-mail application.

Because of space constraints, we give detailed results for

only the first two.

The use of a relatively small (of the order of 12% of the

L2 size) side buffer or cache to hold victim or prefetched

lines has two main advantages. One is that the mapping

of cache lines to sets can be different from the one used

for the main cache, thus mitigating effects due to

imbalance in references between equivalence classes.

Another is that prefetched lines do not interfere

with regular cache contents and vice versa. In this

investigation, there is an additional effect or rationale.

Our traces, as discussed below, constrain our

investigation of L2 performance to caches whose size

is an integer number of megabytes, with the number

of congruence classes greater than or equal to that

corresponding to a one-megabyte direct-mapped cache.

(This is related to the stack property of the LRU

algorithm used and the observation that if the number of

congruence classes is identical in a larger cache, we simply

have more items in each congruence class.) Further, since

cache sizes appropriate for these traces consist of a few

megabytes (benchmarks used for systems with larger

caches would exhibit larger working sets), our

investigation is limited to caches with small associativity.

The low level of associativity exacerbates problems

associated with mistaken prefetches and hot spots in the

cache. These issues are mitigated with the use of side

buffers.

For a prefetch strategy to be effective, it must issue

a significant number of prefetches; a large fraction of

those prefetches must be subsequently referenced before

eviction, but such references should ideally happen after

the prefetch has been finalized in order to maximize the

associated benefit. These notions may be termed coverage,

accuracy, and timeliness [1]; a full assessment of a

prefetching mechanism should include these three. The

focus in our paper is on the first two, and we include only

a brief discussion of the third. One reason for this is that

timeliness is very much implementation- or system-

dependent, whereas the other two are largely a function

of the reference string. Coverage and accuracy combined

produce miss-ratio reductions.

Our results indicate that victim prefetching can

yield significant miss-rate reductions compared with

configurations in which the side buffer functions only as a

victim cache. Similarly, for the caches we consider here,

with a low degree of associativity, victim caching

combined with victim prefetching yields improved

miss-ratio performance over either policy used alone.

Prefetching increases the amount of fetch traffic over

simple demand fetching, but this increase appears in the

simulations to be perhaps acceptable in practice; we

quantify this effect directly by computing the probability

that a prefetched line is not requested before eviction

from the side buffer (this measures the accuracy of the

prefetches). As we later see, for certain simple processors

we can actually make significant positive statements

about the timeliness of our prefetch strategies.

The paper is organized as follows: Section 2 describes

prior related work, and Section 3 introduces some basic

assumptions with respect to the system considered.

The essence of our main contribution can be found in

Section 4, where we discuss in detail the operation of the

prefetch policies. Section 5 describes our experimental

methodology and further details our system assumptions.

Experimental results can be found in Section 6, with

conclusions in Section 7. In the Appendix (Section 8), we

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006

508

include a detailed description of the experimental tracing

methodology used in the collecting and processing of the

traces.

Our main conclusions are the following:

� The use of prefetch feedback combined with on-chip

directories for off-chip caches can yield effective

prefetch performance.
� The use of a directory extension is effective for

prefetching in systems with no L3.
� The combined use of victim caching and prefetching

can provide miss ratios corresponding to substantially

larger caches with only modest increases in transfer

traffic.

As mentioned above, our results are largely restricted

to determining prefetch opportunities and prefetch

accuracies as defined here (namely, whether a prefetched

line will be referenced before it is discarded). The

resulting performance improvements, if any, are further

determined by the order and timing in which items are

actually referenced, as well as by the detailed architecture

of the buses and memory subsystems. We include some

simple examples to quantify the scale of the

improvements.

2. Description of prior work
The most common way to exploit spatial locality consists

of employing large line sizes in a cache, a technique that

could be regarded also as a form of prefetching. For

many workloads of interest, it is a generally accepted

empirical fact that increasing the line size often results

in improved cache-miss rates, in spite of the resulting

reduction of the number of lines that may be stored in

the cache. However, large lines are also associated with

increased data movement as well as increased coherency

interference between processors.

In techniques that use information from prior

references, the data transferred is varied on the basis of

earlier recorded accesses. Perhaps the first example of

such a technique can be found in the work of Franaszek

and Bennett on adaptive variation of the transfer unit size

[2]. They introduced the notion of storing information

(for each block of several pages in a database) pertaining

to pages accessed within this data block; the information

was then used to control the data transferred (when doing

I/O) as that block was referenced; prefetches were placed

in a side buffer. See also the work of Van Vleet et al. [3].

In the work of Alexander and Kedem [4], prefetches are

determined using a table that stores potentially multiple

addresses of groups of cache lines that were referenced

after a given reference. The SRAM buffers of Charney

and Puzak [5] are placed between two caches to improve

the apparent performance of the one closer to the

processor. The prefetching technique considered is a

variant of next sequential prefetching; one of the features

of this work relevant to ours is that a confirmation bit

is employed for improving prefetch accuracy. The work

of Johnson and Hwu [6] proposes to segment memory

in regions called macroblocks for which statistics for

reference patterns are then kept in a memory access table.

This table has a counter per macroblock that denotes

the frequency of access of this block; on the basis of

this counter, it is decided which line to keep during a

replacement decision. A possibility is to prefetch subsets

of a memory page, not necessarily contiguous, on certain

accesses to the page (for example, L2 cache misses). The

work of Kumar and Wilkerson [7, 8] exploits this general

idea through a Spatial Footprint Predictor, which tracks

which portions of a block have been accessed in the past.

In his Ph.D. thesis [9], Burger discusses the notions

of dual-size fetches and sub-block prefetching, which

correspond roughly to the ideas of adaptive transfer unit

size and prefetching of lines that are noncontiguous but

spatially close. Yu and Kedem [10] propose the use of a

prediction table cache with entries representing historical

access information for cache lines within a given page; see

also Kedem et al. [11]. The work of Lai et al. on dead

block correlating prefetching [12] is a prefetching scheme

that links a candidate prefetch to a line that is evicted as a

result of a prediction that it will no longer be used; the

link to the present paper is that in contrast in our

work, lines that are evicted become potential prefetch

candidates. Lin et al. [13] (see also the earlier work of Lin

et al. [14]) use the notion of density vectors, which is

closely aligned with the work of Kumar and Wilkerson [7]

and Burger [9]. Temam [15] extended Belady’s MIN

algorithm to a setting in which prefetching is done with

no memory latency. One of the scenarios considered by

Temam is that of prefetching lines within the same page

to which a cache access is made. Moreno et al. [16]

describe a general table-based mechanism that stores

accesses to pages and uses this information in preparing

suitable prefetch candidates. Hu et al. [17] describe a

technique using predictions based on correlations

between sequences of accesses in different cache

congruence sets. The use of meta-data structures to track

reference patterns of regions in memory can also be found

in other work; for example, in the recent work of

Moshovos [18] and Cantin et al. [19], the authors

introduce filters that allow them to prevent remote

directory queries when executing a cache coherency

protocol.

Another idea exploited here is the notion of victim

lines, that is, lines that are ejected from a cache because

of a buffer-management action. Jouppi [20] introduced

victim caching, which in his original design is used to

improve the performance of a direct-mapped cache with

IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006 P. A. FRANASZEK ET AL.

509

the addition of a small, fully associative cache that

receives victims from the primary cache. The idea of

victim caching has other attractive properties, which

led for example to its use in some IBM PowerPC*

microprocessors, in which L3 is configured as a victim

cache of the L2 as a complement to a policy that directly

inserts into L2 lines requested from memory on L3

misses.

Some ideas we consider here are similar to those

mentioned above. However, the access information we

maintain in the DX is on pages with recently evicted lines,

rather than pages with recently referenced lines, thus

enabling what we term victim prefetching without the

maintenance of redundant cache data. Victim prefetching

is further combined with victim caching, which is shown

to yield additional advantages. Another difference from

previous work is our utilization of the directories of large

L3s, which can be used as repositories of useful reference

information. We combine these structures with feedback

mechanisms that improve prefetch accuracy. Another

aspect of our results is that they are based on trace

analyses that permit the study of very large traces drawn

from commercial applications.

3. System structures
As mentioned above, our main focus here is the use of

pattern locality for reducing the effective L2 miss ratio.

The configuration we use includes a relatively small side

buffer in which we place or replace carefully chosen data.

In our work, the side buffer can be used in one of two

ways: In the first, it is the recipient of all prefetches and all

victims of the L2 cache; in the second, it only receives

all prefetches. In the first approach, we assume one

additional bit per entry in the side buffer in order to

distinguish prefetches from L2 victims.

As it is often true of ideas that can be stated at the

policy level, the present work may be applicable to

other cache settings. For example, the results for the

combination of L2 cache and side buffer may carry over

to caches with no side buffer but with larger associativity.

In contrast to the best known successful prefetch

strategies such as wide line prefetch or stride prefetch, the

methods described in this work rely on a significantly

larger amount of past learned information, thereby

raising the associated storage and data-management

issues. We consider two approaches to this problem that

reflect whether or not an L3 is present in the system.

L3 present in the system

For the purpose of this work, the relevance of the

presence of an L3 is related to whether the associated L3

directory is easily accessible by the prefetch mechanism.

In many systems with off-chip L3 caches, the L3 directory

is on-chip for performance reasons (see Figure 1). If an

L3 is present, we assume that lines evicted from the

processor chip (either the L2 cache or side buffer) are

immediately placed in the L3, and that this is the only

way in which a line can be installed in the L3 (i.e., the L3

is a victim cache of the processor chip). Moreover, a line

that is transferred from the L3 into the processor chip

(either the L2 cache or side buffer) is deleted from the L3.

This is largely for the purpose of discussion, as the results

also pertain to standard L3s which have the inclusion

property, namely that the contents of L2 and the side

buffer are a subset of those in L3. In some architectures

considered in our experimental section, evictions from the

L2 cache are routed to the side buffer, not the L3 cache;

then all evictions of the processor chip are from the side

buffer, and these are incorporated in the L3 cache.

We expect an L3 to hold a much larger number of

entries than an L2. As a consequence, L3 directories are

generally rich information sources of past data references

and are also a natural target for the storage of other

useful statistics. To support this statement, note that by

searching the L3 directory one can answer queries such as

‘‘Give me all lines within a given page that have been

evicted recently from L2.’’ By appropriately augmenting

the L3 directory, one can support a more elaborate query

which further demands that no line whose last fetch was

an unsuccessful prefetch be reported. We show that

incorporating such feedback information in a prefetch

policy can yield improvements in its effectiveness.

The L3 directory queries mentioned above could

require a significant number of accesses (the L2 directory

need not be scanned because of the assumption of

exclusivity between the L2 and L3 contents). Since

these directory queries are for the purpose of initiating

prefetches, they can be regarded as low-priority requests

in comparison with queries that are being originated

Figure 1

Overview of system architectures considered. We consider
separately the settings in which there is an on-chip L3 directory
and those in which there is none; in the latter we include a new
construct that we call a Directory eXtension (DX).

Main memory

L3
cache

Memory
controller

Side buffer

L2 cacheProcessor
core
and

L1 cache

DX

L3 directory

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006

510

by actual demands from the processor. This can be

implemented with priority queues; note that basic query

arbitration is generally already implemented in situations

in which two or more L2 caches share one L3.

No system L3

If an L3 is not included in the system, the associated

L3 directory will obviously not normally be considered

in a chip design. Here we store all prefetch-related

information in a structure we term a Directory eXtension

(DX). A DX is a table organized on a page basis; each

entry of the DX has a bit for every line in the associated

page. The management of the entries of a DX is as in

a standard cache (with a least-recently-used eviction

rule applied on equivalence classes of the entries). The

relevance of the page notion is that it is the largest storage

unit for which we may generally expect spatial locality to

be present (in systems with multiple page sizes we might

choose the smallest such, generally 4 KB). Figure 1 shows

the logical placement of a DX if it is incorporated

in the design. The figure shows that such a system is

obtained by omitting the L3 directory and the L3 cache.

(We postpone a full description of the operation of

the DX to the next section.)

4. Description of policies
We now consider management policies associated with

the system structures described above. We define a failed

prefetch in the obvious way, as a line that was prefetched

but not referenced before eviction from the processor

chip. We define a prefetch window as the number of

contiguous lines from a page that are considered for a

prefetch. In our experiments, we restrict our windows to

be aligned fractions of pages (e.g., a half or a quarter of a

page).

In systems with an L3 directory, on every L2 miss that

also misses in the side buffer, we prefetch all lines of the

same page that are valid in L3 from the prefetch window,

except for lines whose last retrieval from L3 (if any) was a

failed prefetch. Prefetches are placed in the side buffer,

which is managed like a standard cache. If a miss from

the L2 is found in the side buffer, the line is deleted from

the side buffer and inserted in the L2 cache. As mentioned

above, in some configurations we consider, the side buffer

may also receive evictions from the L2. If a line is in the

L2 cache, it is not in the side buffer. Conversely, if a line

is inserted in the side buffer, by definition it was not

in the L2 at insertion time, and thus the contents of the

L2 and the side buffer are mutually exclusive.

The above policy may be implemented by including an

extra bit in the directory for each line stored in L3. By

default, this bit is set to 1 when the line is placed in the L3

after eviction, unless the line joined the side buffer as a

prefetch from L3 but was never requested, in which case

the bit is set to zero. Thus, on misses of the processor

chip one then scans the L3 directory to find possible

prefetches. We reiterate that such scanning is not in any

critical path and can be assigned low priority with respect

to normal directory queries.

For systems with no L3, we introduce a DX, structured

as described above. The DX is managed according to the

following policy:

1. On evictions from L2 (in systems in which these are

not placed in the side buffer). The corresponding page

is searched in the DX; a new entry is created in case it

is not found. In the DX entry, the bit corresponding

to the evicted line is set to 1, denoting an ‘‘on’’ bit.

Those lines associated with ‘‘on’’ bits we term DX

candidate prefetches.

2. On eviction from the side buffer. If the evicted line

joined the side buffer as an L2 eviction, the procedure

is performed as described in step 1. Otherwise, it

joined as a prefetch, and no further action is taken.

3. On misses from L2 that also miss the side buffer. The

corresponding entry in the DX is looked up, and in

case of a match, the lines from this page within the

prefetch window which have their prefetch bits set to

1 are fetched and inserted into the side buffer, with

the exception of the demand miss that triggered the

prefetch event, which is placed in L2 directly. The

prefetch bits for the fetched lines are then set to 0,

and if all bits for this page are 0, the entry is deleted

from the DX.

4. When a new entry is created in the DX and there is

no space in the corresponding DX equivalence class,

the LRU entry in this class is deleted.

We now briefly discuss the impact of the above policies

on critical paths of the design of the L2 and L3 directories

and caches. The eviction events in steps 1 and 2 simply

result in the associated DX update with no further

consequence. In step 3 we note that the memory demand

fetch is scheduled at the earliest opportunity (as in a

standard architecture) regardless of whether or not the

DX lookup is finished; the prefetches are issued at

the time their identity is learned. Note that a relevant

performance issue is whether the memory subsystem is

operating with an open or closed page policy, a detail

beyond the scope of this paper.

5. Experimental methodology

Description of traces

We show simulation results using traces captured from

buses of specially configured IBM machines. These traces

further undergo a certain postprocessing phase to be

IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006 P. A. FRANASZEK ET AL.

511

described in the Appendix. Because of a number of

physical limitations, the references reported in the trace

consist of transactions observed in a bus only after they

have been filtered through an L2 cache with 128-byte

lines, which is 1 MB in size and direct-mapped in all cases.

This corresponds exactly to 8,192 sets, each consisting of

a single line. The specifics on how these traces were

obtained can be found in the Appendix, which also

includes a discussion on how one can reconstruct the

contents of the directory of a hypothetical larger cache

using only the trace information.

The conclusions of the Appendix are next summarized.

It is feasible to recreate exactly the directory of the

hypothetical larger cache if1

1. The number of lines of the larger cache is an integer

multiple of the number of sets in a 1-MB direct-

mapped cache.

2. LRU replacement is employed.

3. Exactly the same function that maps lines to sets is

employed. For these traces, the sets are selected by

address bits 7–19, assuming a numbering starting

from 0.

4. For every one of the 8,192 sets, the number of LOAD

misses in the trace mapped to the set is at least equal

to the number of entries in the set. This is simply

because otherwise there will be one or more entries in

the cache with unknown contents.

A note on notation

When referring to the geometry of a memory (a cache, a

directory extension, etc.), we use the notation ambw,

where a and b are positive integers and the naming means

that the cache has a megabyte of capacity and b ways.

Thus, for example, 2m2w is a 2-MB, two-way cache. We

also use other standard notation: B¼byte, KB¼kilobyte,

MB ¼megabyte.

Overview of the experiments

The specifications of the computer system considered are

as follows:

� A single-threaded uniprocessor with one L2 cache,

one L3 cache, and a side buffer searched on misses of

the L2.
� Lines evicted from the chip are immediately inserted

into L3, which is a 32-MB, eight-way set-associative

cache.
� L2 is 2 MB, two-way set-associative
� The side buffer is 256 KB and four-way set-

associative.

� Prefetches are scheduled only in L2 misses, and

prefetched lines must be within the same 4-KB page

of the L2 demand miss associated with them.
� The line size is 128 bytes. Thus, a 4-KB page has

32 lines.
� The workloads are TPC-C and Trade2 (similar results

for CPW and Notesbench are also discussed, but not

in detail).

The strategy that shows the most promise among those

considered here prefetches exclusively from L3 and uses

feedback information to decrease the probability of an

unsuccessful prefetch. Moreover, it employs the side

buffer for storage of victims of the L2 as well, which are

inserted at the most recently used (MRU) position.

We term the strategy above victim caching and

prefetching with feedback. The alternative with no

feedback has a corresponding name. Another method

also considered is as above but without storing L2 victims

in the side buffer; we call this technique victim prefetching

with feedback/no feedback labels appended as

appropriate.

For all prefetching techniques (novel or not)

demonstrated here, including the ones described below,

we consider restricting the potential prefetches to be

within a page sub-block of a given size, with 2, 4, 8, 16, or

32 lines being the possibilities. We assign lines 1–16 to the

first sub-block of length 16, and lines 17–32 to the second

sub-block. For sub-blocks of length 8, the partitioning is

(1–8) (9–16) (17–24) (25–32), and so forth. The sub-block

selected is exactly the one to which the demand miss

belongs.

Of primary concern is to contrast the technique with

more conventional ones, and to address this issue we also

simulate

1. Simple cache (no side buffer). We report on statistics

for various cache sizes.

2. Victim caching. The side buffer stores all evictions of

the L2, and nothing else.

3. Victim caching þ contiguous block prefetching. Here

we prefetch a contiguous block of lines of a preset

size (2, 4, 8, 16, or 32 lines). As in victim caching and

prefetching, we also insert L2 evictions into the side

buffer in the MRU position. Prefetches are always

from the L3 and are inserted into the side buffer; we

never prefetch into the L2. As described above, the

address of the sub-block is obtained directly from the

address of the line by setting to zero the appropriate

number of least-significant bits.

In presenting our measurements, we take as a reference

point the simple cache system for the smallest cache size
1In fact, simulations for more general situations are feasible; nevertheless, we do not
explore them in this work.

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006

512

simulated, in this case a 2-MB two-way set-associative

cache. The parameters that we present for each

prefetching technique are as follows:

1. The reduction of L2 LOAD misses relative to the

smallest simple cache simulation. Note that L2

misses can also be caused by STORE events, but

it may be argued that the LOAD miss reduction

figure represents possible system performance

improvements more accurately than a LOAD/

STORE compound figure if one assumes a processor

that continues execution past a store miss.

2. The total number of lines transferred from L3 to L2,

relative to the same number for the smallest simple

cache. These transfers could be due to misses on

LOAD, STORE events, or prefetches. The rationale

behind presenting the compound figure is that this

better represents the net stress imposed on the

communication bus from L3 to L2.

3. The same as in part 2 above, but considering the total

number of lines transferred from either memory or

L3 to L2. This data is mainly relevant to compare

against the contiguous block prefetching possibility.

4. The ratio between the number of prefetched lines

evicted from the side buffer divided by the number of

prefetches added to the side buffer. Because every

successful prefetch is deleted from the side buffer

when demanded after an L2 miss, this statistic

corresponds exactly to the probability of a failed

prefetch.

5. The same as in part 4 above, but instead of

prefetched lines, we consider lines that enter the side

buffer because they are victims of the L2. This is

relevant only in the victim caching and prefetching

setting.

Description of the statistics-gathering procedure

In order to ensure that simulation start-up edge effects are

negligible in our results, we let every simulation run until

half of the records in the trace have been processed. A

principal indicator of the relevance of the measurements

presented is the fraction of L3 lines not initialized at this

moment, because a poorly utilized L3 would indicate that

the behavior of the prefetch algorithm would not yet be

sufficiently stable to be measured. The corresponding L3

utilization in our simulations is at least 90% at the time

tracking of the prefetching behavior begins. At this point

we reset the performance counters, which are the source

for the statistics reported in this paper. The final numbers

are collected after all records have been processed. For a

fixed workload, exactly the same number of records are

processed for each experiment.

6. Experimental results
Our performance results are offered in two types of plots,

the first describing tradeoffs between the L2 miss rate and

data transfer traffic for a given policy and the second

describing the probabilities of failed prefetch and failed

victim caching events. The translation of these results

into actual computer system performance results is a

delicate matter because issues of prefetch timeliness and

performance penalties due to additional queuing delays

must be taken into consideration. In understanding the

results, it may be advantageous to consider a simple

observation relating traffic, prefetch performance, and

traffic increases due to prefetching. Let Tr be the traffic

without the fetches that will be saved by prefetching, Tp

be the number of successful prefetches, and yTp be the

number of unsuccessful prefetches. The total traffic is

then TrþTp without prefetching, and TrþTpþ yTp with

prefetching. Suppose that the read traffic is four times the

write traffic, that prefetching eliminates half the read

misses, and that y ¼ 0.5. Then the increase in traffic due

to prefetching is 20%.

The first type of plot is exemplified by Figure 2, where

the horizontal axis denotes the relative load miss-rate

reduction compared with that of a simple 2m2w L2 cache.

The vertical axis refers to the total number of lines

transferred from L3 into L2 (load þ store þ prefetch),

again normalized against the statistic for the simple L2

cache. Note that lines that cannot be serviced from the L3

are brought from memory. In Figure 2, no prefetching

is enabled; our goal is to illustrate the relative

improvements in L2 miss rates that are attainable by

increasing the cache size along with the associated

increase in associativity implied by our simulation

restrictions. In what follows, we use these statistics to

contrast performance improvements due to prefetching

with those due to increased cache sizes. The second type

of plot illustrates some other important properties of the

prefetch algorithm, such as the number of prefetches

executed but never referenced by the processor.

We offer results for two workloads, TPC-C and

Trade2. We provide relevant statistics for our prefetch

algorithm for a given workload, L2 cache size, and

prefetch buffer size through a set of six plots. For

purposes of intelligibility, we introduce the plots for

TPC-C first on an individual basis, then bundle the plots

for Trade2 in a separate figure; thus, after interpreting a

particular plot type for the first workload, one may cross-

check the parallel results for the second workload.

Prefetching with feedback enabled

Refer to Figure 3, where all statistics are normalized to

those of a 2m2w L2 cache with no prefetching and with a

disabled side buffer. For comparison purposes, we have

also included the performance of a 3m3w L2 cache and

IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006 P. A. FRANASZEK ET AL.

513

a 4m4w L2 cache (green triangles). If the side buffer

functions as a victim cache of the L2, one obtains the

performance indicated by the asterisk. The number of

misses removed by the victim cache is approximately half

of the number of misses removed by the additional

megabyte (and overall associativity) of the 3m3w cache.

When the side buffer is employed as a repository for

prefetches only, and when the prefetching scheme is

victim prefetching from L3 into L2 with feedback, we

obtain the simulation points denoted by the red cross

marks. Each of these represents a different choice for the

prefetch window span. If the side buffer functions both as

a prefetch buffer and as a victim cache, one obtains the

points denoted by the blue circles. As can be seen, for this

workload the latter strategy, which allows for both victim

prefetching and caching, is a better tradeoff than the

former.

The point labeled ‘‘16 *’’ offers a reduction of misses,

with respect to the simple L2 cache, of about 50%. The

total traffic from L3 onto the chip remains approximately

the same as the L2 cache alone. Furthermore, this

prefetching technique is a significant improvement over

the miss-rate reduction of the 3m3w cache. However,

obtaining the actual overall performance benefit of

these prefetches would require a more detailed analysis,

involving issues such as prefetch timeliness and queuing

penalties of the failed prefetches.

The above discussion is relevant for a designer who

is contemplating the possible addition of a side buffer

to support prefetching. Where a side buffer already exists

or no side buffer will be considered, it is more appropriate

to contrast a given prefetching technique against the

performance of the L2 cache, with the side buffer

functioning as a victim cache. Note that in the case in

which no side buffer is considered, the above corresponds

roughly to a situation in which the L2 has a sufficient

degree of associativity to permit flexible management

of prefetches versus demand fetches.

Compared with the L2 cache with a victim cache (the

asterisk), the prefetching technique reduces the miss rate

Figure 2

Performance of various L2 cache sizes for two workloads
normalized to that of the 2m2w L2 cache; in these simulations
there is no prefetching and no side buffer enabled. The integer next
to each symbol denotes the size and associativity of the L2 cache.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

R
el

at
iv

e
tr

af
fi

c
fr

om
 L

3
to

 L
2

Workload: tpcc.zt, L2 : 2m2w–10m10w, L3 : 32m8w

0 0.2 0.4 0.6 0.8 1.0
Relative miss-rate reduction

(a)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

R
el

at
iv

e
tr

af
fi

c
fr

om
 L

3
to

 L
2

Workload: trade.zt, L2 : 2m2w–10m10w, L3 : 32m8w

0 0.2 0.4 0.6 0.8 1.0
Relative miss-rate reduction

(b)

10

9

8

7

6

5 4

3

2

10

9

8

7
6

5 4

3

2 Figure 3

Victim prefetching with feedback for the TPC-C workload. The
integer next to each of the blue circles and red cross marks
specifies the number of lines that comprise the prefetch window.
One sample conclusion is that victim prefetching gives significant
miss-rate reductions and moderate traffic increases, and that
further allowing for L2 victim caching gives an even better
tradeoff.

3.0

2.5

2.0

1.5

1.0

0.5

0

R
el

at
iv

e
tr

af
fi

c
fr

om
 L

3
to

 L
2

Workload: tpcc.zt, L2 : 2m2w, L3 : 32m8,
side buffer : 256kb4w, feedback

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Relative miss-rate reduction

Simple cache
Victim caching and prefetching
Victim caching
Victim prefetching

32

32

16

16

8

8

4

4

2

2

4m4w
3m3w

2m2w�VC
2m2w

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006

514

by approximately 35%, at a cost of about 32% increase in

traffic from L3.

We now examine in more detail the efficiency of the

side buffer (we refer the reader to Figure 4), in particular

the probability of a failed prefetch (the y axis) and the

probability that an L2 victim was cached in the victim

cache but not used (the x axis), whenever the prevailing

policy allows for victim caching. When there is no victim

caching and only victim prefetching, we obtain the

horizontal lines given by the vp(2) through vp(32) labels;

here it can be seen that the probability of a failed prefetch

increases with the size of the prefetch window span.

Nevertheless, this probability is at most approximately

1/3. If only victim caching is allowed, we obtain the

vertical line which indicates that the probability that a

line inserted in the victim cache is not used before eviction

is about 4/5. This probability is much higher than the

previous one, but note that L2 victims are much less

costly than prefetches in that they need not be transferred

from memory. If one allows for both victim caching and

prefetching (blue circles), both undesired probabilities

increase; in particular, the probability of a failed prefetch

now ranges from 1/5 to 2/5. Nevertheless, the blue circles

still indicate a better performance tradeoff than the

horizontal lines (as deduced from Figure 3), because the

relatively large number of victim cached lines improve the

miss rate significantly more than the degradation due

to the increase of the undesired probabilities.

Prefetching with no feedback

We now contrast a system with no feedback with one

which uses feedback information. Refer to Figure 3 and

Figure 5, in particular to the points labeled with blue

circles (victim caching and prefetching), which we

indicate by using the shorthand notation ‘‘vcap.’’

Compare the vcap(8) point in the no-feedback case with

vcap(16) in the feedback case. The miss rate reductions

relative to the 2m2w L2 cache are approximately the

same, yet when there is no feedback the traffic increases

about 37% for the no-feedback case and about 3% for the

feedback setting.

Feedback may also prevent prefetches that would have

been successful otherwise: Consider vcap(32) of the case

with no feedback. Although the traffic measurement is

about 2.7 relative to the 2m2w L2 cache, the reduction in

misses is similar to that of a 4m4w cache, in contrast to

the case with feedback. This suggests that there may be

better ways to incorporate feedback information into the

prefetch policy.

As in the case of feedback, in Figure 6 we show a plot

that includes the probabilities of unsuccessful prefetches

for the policies considered. Both the horizontal lines

(associated with victim prefetching) and the blue circles

(victim prefetching and caching) indicate significantly

worse statistics for the no-feedback case, as expected. For

example, for vcap(16) the probability of a failed prefetch

is around 2/3, in contrast to the same for the feedback

case (Figure 3), which is about 1/3.

Figure 4

Side-buffer efficiency statistics for the TPC-C workload and
prefetching with feedback. In both axes, less is better.

1.0

0.8

0.6

0.4

0.2

0

Pr
ob

ab
ili

ty
 o

f
a

si
de

-b
uf

fe
r

ev
ic

tio
n

of
 a

 p
re

fe
tc

he
d

lin
e

Workload: tpcc.zt, L2 : 2m2w, L3 : 32m8w,
side buffer : 256kb4w, feedback

0.75 0.80 0.85 0.90 0.95 1.0
Probability of a side-buffer eviction of an L2 victim

Victim caching and prefetching (vcap)
VC � contiguous block prefetching (vccbp)
Victim prefetching (vp)

Victim caching
vccbp(32)

vccbp(16)

vccbp(8)

vccbp(4)

vccbp(2)

vcap(32)

vp(32)
vp(16)
vp(8)
vp(4)

vp(2)

vcap(16)
vcap(8)

vcap(4)
vcap(2)

Figure 5

Victim prefetching with no feedback for the TPC-C workload.

3.0

2.5

2.0

1.5

1.0

0.5

0

R
el

at
iv

e
tr

af
fi

c
fr

om
 L

3
to

 L
2

Workload: tpcc.zt, L2 : 2m2w, L3 : 32m8w,
side buffer : 256kb4w, no feedback

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Relative miss-rate reduction

Simple cache
Victim caching and prefetching
Victim caching
Victim prefetching

32 32

16
16

8
8

4
4 2

2

4m4w
3m3w

2m2w�VC
2m2w

IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006 P. A. FRANASZEK ET AL.

515

Contiguous block prefetching

It is also of interest to consider the performance of a

simple prefetcher, which makes no use of the L3 directory

and does not employ feedback information. In this case,

prefetches could come from memory or from the L3. The

policy considered is one which prefetches a contiguous

block of lines aligned, for example, on full, half, or

quarter pages. The address of the block is obtained from

the demand miss. In addition to prefetching, the side

buffer also functions as a victim cache of the L2 (hence,

the overall policy label is victim caching and contiguous

block prefetching). For this policy, we present two plots

in Figure 7. The difference between these is in the quantity

represented by the y axis. In part (a), we present the

number of lines transferred from L3 onto the chip,

relative to the same measurement for the 2m2w L2

cache. In part (b), we present the total number of lines

transferred either from memory or L3, relative to the

total number of lines transferred for the simple 2m2w L2

case. The general conclusion we draw from these figures

is that simple contiguous block prefetching is not a

competitive policy; note the unreasonable traffic

requirements and the high probability of an unsuccessful

prefetch in the red diamonds of Figure 7.

Effectiveness of victim prefetching for a larger L2

cache

In Figure 8 we find the counterpart of Figure 3 for the

TPC-C workload, but in this case for a 4m4w L2 cache.

The miss-rate reduction of victim caching and prefetch

with a window span of 16 with respect to the victim-

caching-only point (the asterisk) is approximately 30%,

which is slightly less than the 35% that we previously

observed for the 2m2w L2 case. The traffic increase with

respect to the victim-caching-only point is about 40%, in

contrast to the 32% observed in the 2m2w L2 setting.

Another noticeable difference is that the simulation

points in which full page prefetch was a possibility were

strictly worse than the half-prefetch setting, likely due to

side-buffer pollution by the additional prefetches. Thus,

the benefits of the combined prefetch/victim side buffer

are largely preserved when going to a larger cache with

higher associativity. This may be partially because the

Figure 6

Side-buffer efficiency statistics for the TPC-C workload in the
setting in which there is no feedback (see in contrast Figure 4).

1.0

0.8

0.6

0.4

0.2

0

Pr
ob

ab
ili

ty
 o

f
a

si
de

-b
uf

fe
r

ev
ic

tio
n

of
 a

 p
re

fe
tc

he
d

lin
e

Workload: tpcc.zt, L2 : 2m2w, L3 : 32m8w,
side buffer : 256kb4w, no feedback

0.75 0.80 0.85 0.90 0.95 1.0
Probability of a side-buffer eviction of an L2 victim

Victim caching and prefetching (vcap)
Victim prefetching (vp)

Victim caching vcap(32) vp(32)

vp(16)

vp(8)

vp(4)

vp(2)

vcap(16)

vcap(8)

vcap(4)

vcap(2)

Figure 7

Victim caching and contiguous block prefetching for the TPC-C
workload. The difference between the two plots is in the y-axis,
which in (a) indicates the traffic from L3 and in (b) the traffic from
both the memory and the L3.

3.0

2.5

2.0

1.5

1.0

0.5

0

R
el

at
iv

e
tr

af
fi

c
fr

om
 L

3
to

 L
2

7

6

5

4

3

2

1

0

R
el

at
iv

e
tr

af
fi

c
fr

om
 m

em
or

y
an

d
L

3
to

 L
2

Workload: tpcc.zt, L2 : 2m2w, L3 : 32m8w,
side buffer : 256kb4w, feedback

Workload: tpcc.zt, L2 : 2m2w, L3 : 32m8w,
side buffer : 256kb4w, feedback

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Relative miss-rate reduction

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Relative miss rate reduction

(b)

Simple cache
Victim caching and prefetching
Victim caching
VC � contiguous block prefetching

16

16

16

16

8

8

8

8

4

4

4

4
2

2
2

2

4m4w

4m4w

3m3w

3m3w

2m2w�VC

2m2w�VC

2m2w

2m2w

Simple cache
Victim caching and prefetching
Victim caching
VC � contiguous block prefetching

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006

516

degree of associativity in the side buffer masks that of the

cache.

Directory extension effectiveness

We conclude by considering the effectiveness of adding a

DX to the processor chip. As previously discussed, a DX

is suggested for implementing the prefetch policy when

there is no L3 cache (and hence no access to an L3

directory). We refer the reader to Table 1, where we

report DX miss-rate statistics (recall that a DX is

interrogated on L2 misses) in a system where no

prefetching is enabled. For comparison purposes, we

also report in Table 2 the miss rate of an L3 that is

32 MB and eight-way.

Assume a 2m2w L2 cache. On every L2 miss we

compute the prefetch candidates. With a DX with 1,024

entries, only about 20–25% of those misses are associated

with a successful inquiry at the DX level. A DX that

is eight times as large has miss rates ranging from

approximately 23% to 37%, which is a considerable

improvement over the DX of 1,024 entries. The optimal

DX size depends on the available budget and desired

performance benefit. If the L2 size is doubled, the misses

become more difficult to predict, and the size desired for a

DX approximately doubles, as suggested by the empirical

results.

In this work we have chosen to simulate the L3

directory option instead of the directory extension version

of the policy. In order to determine the size of a directory

extension that is needed to match the prefetch

information stored in the L3 directory, one may use the

following simple observation: One should estimate the

average number of different pages that have at least one

line in the L3 directory, and then allocate that number of

entries to the directory extension. We have observed that

on average a page has four to eight lines in a cache;

assuming the former, it means that the directory

extension should have approximately a quarter of the

number of entries of the L3 cache.

System performance implications

We now briefly discuss some performance implications

for a highly simplified system model.

We assume a system with no L3, such that an L2 cache

fault which is not serviced by the side buffer causes a

delay D in machine cycles, and that a hit to the buffer

causes no additional delay. Suppose that the trace

represents N instructions. Typically, some subset of these

are idle instructions, representing for example times when

a page fault was being processed and no other work could

be scheduled immediately. Each such instruction is

executed in one cycle.

For the TPC-C trace described here, a representative

fraction for idle instructions is 0.1. The number of infinite

L2 cycles required per instruction is approximately 1.7.

The percentage of non-idle instructions resulting in

L2 misses (for the 1-MB direct-mapped cache) is

approximately 0.02. The number of cycles required for

a machine to process the set of N instructions is then

T ¼ 0:1Nþ 0:9Nð1:7þ 0:02RDÞ;

where R is the relative miss ratio, compared to the

1-MB direct-mapped cache. The number of cycles per

instruction (CPI) of the machine for non-idle instructions

is about 3.27. For the machine generating the trace, D

is of the order of 90. Thus, about half the processing

time in this case is due to 1m1w L2 cache fault delays.

Reducing the number of faults by a factor of 2 can

thus improve performance by as much as 25%.

The miss rates of the prefetching methods studied here

are given in comparison to the miss rate of a simple cache

of the appropriate size. Therefore, to obtain performance

numbers it is necessary to learn the miss rate of the simple

cache compared with the miss rate of the 1m1w cache

used for capturing the traces. Table 3 gives this statistic

for three workloads and cache sizes.

A sample calculation follows: Figure 3 shows that for

TPC-C the miss rate of a 2m2w L2 with the ‘‘16 *’’

strategy is approximately half that of a 2m2w L2 with no

prefetching and no side buffer. The miss rate of a 2m2w

L2 is ;0.49 of that of a 1m1w cache, as shown in Table 3.

Compounding these numbers then yields about 0.25. This

gives a CPI of 2.44 with a 2m2w L2 cache with no

prefetching and a CPI as low as 2.03 for the same cache

but with prefetching into the side buffer, which is a

reduction of about 16% of the original CPI. The result is a

Figure 8

Victim prefetching for the TPC-C workload with feedback, with a
4m4w L2 cache (to be contrasted with the 2m2w L2 in Figure 3).

3.0

2.5

2.0

1.5

1.0

0.5

0

R
el

at
iv

e
tr

af
fi

c
fr

om
 L

3
to

 L
2

Workload: tpcc.zt, L2 : 4m4w, L3 : 32m8w,
side buffer : 256kb4w, feedback

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Relative miss-rate reduction

Simple cache
Victim caching and prefetching
Victim caching
Victim prefetching

32
32

16
16 8

8 4

4
2

2

6m6w
5m5w

4m4w�VC

4m4w

IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006 P. A. FRANASZEK ET AL.

517

bound for the actual CPI benefit, as the benefit is further

reduced by factors such as the timeliness of the prefetches

and additional queuing delays caused by the increased

traffic.

To obtain a better estimate of the true CPI

performance improvement, we would need to refine our

model to take into account issues of prefetch timeliness

and queuing penalties due to the failed prefetches; we

next give a brief overview of a type of analysis one

might undertake to account for these. To support our

discussion, we refer the reader to the time diagram in

Figure 9.

Often it is true that the latency to memory is

determined mainly by the time required for the memory

subsystem to react to a request, rather than the time

required to transfer the line across the memory bus;

the ratio of the former to the latter could be typically

in the range of 8:1 to 16:1. In our simplified model, the

processor always stalls waiting for a line to be serviced

from memory. We assume that the prefetches associated

with an L2 miss can be brought back-to-back across the

memory bus after the initial missed line is transferred

from memory; this can be done because the prefetches

are coming from the same page and because of an

assumption that the DRAM devices are functioning

with an open-page policy. If after processing the data

requested in the first miss the processor immediately

issues a request for a second line, and if such a line

was actually prefetched by the policy, then on average

(assuming that we do not have special prefetch ordering

strategies in place) the second miss will be found in the

middle of the sequence of prefetched lines that come after

the initial miss.

The observation above can be used to provide an initial

estimate of the prefetch benefit; note that here we have

made a pessimistic assumption that the second miss

comes immediately after the first miss is serviced.

The prefetch benefit can be further discounted to

take into account an increased queuing penalty

Table 1 Directory extension miss-rate statistics for various L2 cache sizes and workloads (no prefetching enabled, no victim caching).

The notation aebw implies a memory with a entries and with associativity b.

L2 geometry DX geometry DX miss rates

TPC-C TRADE CPW NOTES

2m2w 8192e4w 0.237318 0.250004 0.320904 0.372551

4096e4w 0.370400 0.452307 0.423462 0.513887

2048e4w 0.560952 0.652450 0.579140 0.671960

1024e4w 0.759551 0.814356 0.752682 0.808705

4m4w 16384e4w 0.278221 0.133674 0.512374 0.416528

8192e4w 0.420749 0.321932 0.600887 0.556574

4096e4w 0.579302 0.539234 0.703534 0.702265

2048e4w 0.738021 0.727691 0.813192 0.830273

8m8w 32768e4w 0.281420 0.098430 0.579822 0.461278

16384e4w 0.431931 0.183081 0.731036 0.585343

8192e4w 0.566722 0.348746 0.832160 0.710878

4096e4w 0.742797 0.563857 0.903598 0.823781

Table 2 L3 miss-rate statistics for various L2 cache sizes and

workloads (no prefetching enabled, no victim caching).

L2 geometry L3 32mb8w miss rate

TPC-C TRADE CPW NOTES

2m2w 0.0907 0.007 0.2228 0.1412

4m4w 0.2255 0.015 0.3887 0.217

Table 3 Miss rate of an L2 cache of a given size with respect to

the miss rate of a 1m1w L2. Statistics for three different workloads

are presented.

Miss rate

wrt L2 1m1w

TPC-C TRADE NOTES

L2 2m2w 0.488 0.622 0.515

L2 4m4w 0.302 0.315 0.285

L2 8m8w 0.123 0.110 0.164

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006

518

due to the prefetches and other issues such as processor

multithreading. A complete analysis is beyond the scope

of this paper; we simply mention here that in realistic

settings we have computed the prefetch CPI benefit to be

at least half of that predicted by a simple miss-rate

reduction computation at the beginning of this section;

thus, in that example the CPI improvement would be 8%

instead of 16%.

Discussion on other workloads

The qualitative behavior of the prefetching technique

considered in this discussion remains constant across

a variety of different workloads; in particular, for

comparison we refer the reader to Figure 10, which

bundles the results for Trade2 in a single figure. In

particular, in the plot at the top left (to be contrasted with

Figure 3), the ‘‘16 *’’ point in fact meets the miss-rate

reduction of the 4m4w cache, again with approximately

the same number of fetches from L3 as in the simple

L2 cache situation. The miss-rate improvement, when

compared to that obtained by TPC-C, is slightly greater:

In this case, a miss-rate reduction of about 53% is

experienced. When compared to the performance of the

L2 cache with a victim cache, the miss-rate reduction is

about 42% at a cost of a 25% total traffic increase.

The interpretation of the other plots of Figure 10

follows along the same lines as the methodology

described above. A feature of reasonable interest is that

the results hold qualitatively across both workloads; in

fact, the same is true of the other two workloads studied

but not presented here (CPW, Notes). The best strategy,

using a reasonable criterion, is consistently that of victim

caching and prefetching with feedback, and the gains in

L2 miss-rate reductions are within the same order of

magnitude.

7. Conclusion
Memory latency is a factor with increasing performance

impact as processor speeds outdistance those of the

memory subsystem. Two approaches to this problem are

to a) have more effective policies for the retention of

required data in the on-chip caches, and b) initiate the

transfer of such data before it is actually requested

(prefetching). In this paper, we have considered some

techniques for prefetching based on the observation that

access patterns appear to be significantly page-specific.

We have considered two basic approaches: the use and

augmentation of access pattern information implicit in

directories for off-chip caches, and the use of a special

construct, which we term a directory extension, for

holding such information in the absence of such a

directory. We have shown that page-specific access

information, coupled with feedback to improve

prefetching accuracy, can yield significant miss-ratio

reductions at the cost of what may be acceptable traffic

increases for a variety of commercial workloads. The use

of a directory for an off-chip cache may be particularly

attractive, as it is associated with a modest additional

cost in hardware complexity. Directions for future work

may include more detailed performance evaluations for

systems with multiple processors and studies of issues at

the hardware–software interface. An example of the latter

is the consideration of the inclusion of thread information

with DX entries.

8. Appendix: Tracing methodology

The traces are collected by attaching a probing device to

the bus between the L2 cache and the rest of the system.

There is no L3 cache. Captured by this probe are all L2

cache misses that go to memory and all commands to

and from the I/O (DMA and MMIO commands). This

method is used because the benchmarks traced are large,

commercial applications with a great deal of interaction

with various types of I/O that makes them difficult to

capture using other methodologies. The processor is

in-order, so there are no speculative cache misses. The

processor supports multithreading, but it was turned off.

For all of the traces, the operating system was OS/400*

and the database was DB2*.

Because the probing device is placed at the bus, there

are some restrictions on the type of information that can

be extracted. For example, clearly every processor load

instruction which hits in the L2 cache is not observed.

The events that can be observed that are of importance to

our study are

Figure 9

Time diagram to illustrate the timeliness attributes of our prefetch
strategies. In this example there are three prefetches; on average,
the desired prefetch will be serviced after the second prefetch is
received.

First
miss is
issued

First miss is
serviced, second

miss is issued

Second miss is
serviced if no
prefetching

Data of the first miss
starts to come out of the
DRAM and to be sent
across the memory bus

Prefetches
(total of three)

Second miss is serviced
with prefetching (on average)

Base
DRAM
latency

Average
prefetch
benefit

IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006 P. A. FRANASZEK ET AL.

519

Figure 10
Prefetch performance results for Trade2, presented from left to right and top to bottom in the same order as they were presented for the TPC-C
workload. For interpretation of these plots, we refer the reader to the main text of the paper.

1.0

0.8

0.6

0.4

0.2

0

Pr
ob

ab
ili

ty
 o

f
a

si
de

-b
uf

fe
r

ev
ic

tio
n

of
 a

 p
re

fe
tc

he
d

lin
e

Pr
ob

ab
ili

ty
 o

f
a

si
de

-b
uf

fe
r

ev
ic

tio
n

of
 a

 p
re

fe
tc

he
d

lin
e

Victim caching and prefetching (vcap)
Victim prefetching (vp)

Victim caching

vcap(32)

vcap(32)

vp(32)

vp(16)

vp(8)

vp(4)

vp(2)

vp(32)
vp(16)

vp(8)
vp(4)

vp(2)

vcap(16)

vcap(16)

vcap(8)

vcap(8)

vcap(4)

vcap(4)

vcap(2)

vcap(2)

Victim caching and prefetching (vcap)
VC � contiguous block prefetching (vccbp)
Victim prefetching (vp)

Victim caching

vccbp(32)

vccbp(16)

vccbp(8)

vccbp(4)

vccbp(2)

R
el

at
iv

e
tr

af
fi

c
fr

om
 L

3
to

 L
2

3.0

2.5

2.0

1.5

1.0

0.5

0

R
el

at
iv

e
tr

af
fi

c
fr

om
 L

3
to

 L
2

Simple cache
Victim caching and prefetching
Victim caching
Victim prefetching

Simple cache
Victim caching and prefetching
Victim caching
Victim prefetching

32

32

32

32
16

16

16

16

8

8

8

8

4

4

4

4

2

2

2

2

4m4w

4m4w

3m3w

3m3w

2m2w�VC

2m2w�VC

2m2w

2m2w

3.0

2.5

2.0

1.5

1.0

0.5

0

R
el

at
iv

e
tr

af
fi

c
fr

om
 L

3
to

 L
2

R
el

at
iv

e
tr

af
fi

c
fr

om
 m

em
or

y
an

d
L

3
to

 L
2

Simple cache
Victim caching and prefetching
Victim caching
VC � contiguous block prefetching

Simple cache
Victim caching and prefetching
Victim caching
VC � contiguous block prefetching

32

16

16

16

16

8
8

8
8

4

4

4
4

2

2
2

2

4m4w 4m4w

3m3w

3m3w

2m2w�VC

2m2w�VC

2m2w

2m2w

1.0

0.8

0.6

0.4

0.2

0

3.0

2.5

2.0

1.5

1.0

0.5

0

7

6

5

4

3

2

1

0

Workload: trade.zt, L2 : 2m2w, L3 : 32m8w,
side buffer : 256kb4w, feedback

Workload: trade.zt, L2 : 2m2w, L3 : 32m8w,
side buffer : 256kb4w, feedback

Workload: trade.zt, L2 : 2m2w, L3 : 32m8w,
side buffer : 256kb4w, no feedback

Workload: trade.zt, L2 : 2m2w, L3 : 32m8w,
side buffer : 256kb4w, feedback

Workload: trade.zt, L2 : 2m2w, L3 : 32m8w,
side buffer : 256kb4w, feedback

Workload: trade.zt, L2 : 2m2w, L3 : 32m8w,
side buffer : 256kb4w, no feedback

Relative miss-rate reduction

Relative miss-rate reduction

Probability of a side-buffer eviction of an L2 victim

Probability of a side-buffer eviction of an L2 victim
0.75 0.80 0.85 0.90 0.95 1.0

0.75 0.80 0.85 0.90 0.95 1.00.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Relative miss-rate reduction Relative miss-rate reduction

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006

520

� L2 load misses.
� Read-with-intent-to-modify (rwitm) events. These are

placed on the bus when a processor store instruction

misses in the L2 cache. The associated line is placed in

exclusive state in the L2 cache. The store then takes

place and the modified flag of the line is set.
� L2 cast-outs of modified lines.
� I/O DMA.

Note that for a given set from the direct-mapped L2

cache, after the first L2 load miss mapped to the set

appears on the bus, one can determine the address of the

line held in the set after the miss is serviced from memory.

Every subsequent processor load to the same line that

misses the L1 is not observed, but these load misses, if

any, obviously do not change the contents and identity of

the line stored in the set. Nevertheless, it is possible that

a processor store instruction to the same line may be

executed that may not result in a bus rwitm event,

because the associated line may already be held in

exclusive state. These store instructions are also

immediately invisible to our probing, suggesting that

modified bits cannot be accurately tracked under this set

of assumptions. Interestingly, this is not the case, as we

shall shortly explain.

Continuing our discussion, the next transaction

observed for this set in the bus must be either a processor

load or store to a different line, but one which maps to the

same set.

In either case, the identity of the line that resides in

the set after the completion of the load/store is known.

Furthermore, in the case of a store it is known that the

line is currently modified. The identity of the associated

evicted line, if any, is also known; nevertheless, it is not

always known whether the evicted line was modified. To

learn this, one must examine the next event in the trace

mapped to the set in question. If this event is an L2 cast-

out of the evicted line, we know that the evicted line was

modified. If the next event to the set is to a different line,

the evicted line was unmodified. The above discussion

illustrates that it is possible to recreate the identities of the

lines stored in the 1-MB direct-mapped cache along with

their modified status, said status known a posteriori, after

the L2 modified cast-out, if any, is observed.

For the purpose of cache simulation, it is desirable to

postprocess the bus trace in a manner that removes the

inconvenient non-causal element exposed above. A

solution is to insert a STORE immediately before the

load/store instruction that caused the cast-out and to

remove the cast-out from the trace. Since it is technically

impossible to recover the exact time at which the store

happened, the events as ordered in the postprocessed

trace do not necessarily correspond to reality. However,

the exact location of the store is not necessary, since the

resulting effect on the LRU information of the simulated

cache will be identical because the cache is direct-mapped.

This means that there is no other access to another cache

line for this set, since the line was brought into the cache.

In rebuilding the contents of the direct-mapped cache, the

modified bit will be set by the time the offending load/

rwitm is received, and thus the L2 cast-out event can be

reproduced.

We now turn to the problem of building the contents

of the directory of a hypothetical larger cache. If one

assumes that the larger cache employs an LRU rule

and that the number of sets remains unchanged (but

the associativity is increased, of course), the task of

constructing the MRU position of each set has already

been accomplished. However, the second MRU can be

obtained by tracking ejections or modified cast-outs of

the MRU and so forth, and the entire cache contents can

be built this way. A specific set of sufficient conditions to

be met for the simulation of larger caches to be successful

was given in Section 5.

Acknowledgment
This material is based upon work supported by the

Defense Advanced Research Projects Agency (DARPA)

under Contract No. NBCH3039004.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Transaction
Processing Performance Council or Sun Microsystems, Inc.

References
1. P. G. Emma, A. Hartstein, T. R. Puzak, and V. Srinivasan,

‘‘Exploring the Limits of Prefetching,’’ IBM J. Res. & Dev. 49,
No. 1, 127–144 (2005).

2. P. A. Franaszek and B. T. Bennett, ‘‘Adaptive Variation of the
Transfer Unit in a Storage Hierarchy,’’ IBM J. Res. & Dev. 22,
No. 4, 405–412 (1978).

3. P. Van Vleet, E. Anderson, L. Brown, J. L. Baer, and A.
Karlin, ‘‘Pursuing the Performance Potential of Dynamic
Cache Line Sizes,’’ Proceedings of the International Conference
on Computer Design, 1999, pp. 528–537.

4. T. Alexander and G. Kedem, ‘‘Distributed Prefetch-Buffer/
Cache Design for High Performance Memory Systems,’’
Proceedings of the 2nd International Symposium on High-
Performance Computer Architecture, 1996, pp. 254–263.

5. M. J. Charney and T. R. Puzak, ‘‘Prefetching and Memory
System Behavior of the SPEC95 Benchmark Suite,’’ IBM J.
Res. & Dev. 41, No. 3, 265–286 (1997).

6. T. L. Johnson and W. W. Hwu, ‘‘Run-Time Adaptive Cache
Hierarchy Management via Reference Analysis,’’ Proceedings
of the 24th International Symposium on Computer Architecture,
1997, pp. 315–326.

7. S. Kumar and C. Wilkerson, ‘‘Exploiting Spatial Locality in
Data Caches Using Spatial Footprints,’’ Proceedings of the
25th Annual International Symposium on Computer
Architecture, 1998, pp. 357–368.

8. C. B. Wilkerson and S. Kumar, ‘‘Spatial Footprint
Prediction,’’ U.S. Patent 6,535,961, B2, March 18, 2003.

9. D. Burger, ‘‘Hardware Techniques to Improve the
Performance of the Processor/Memory Interface,’’ Technical
Report, Computer Science Department, University of
Wisconsin at Madison, 1998.

IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006 P. A. FRANASZEK ET AL.

521

10. H. Yu and G. Kedem, ‘‘DRAM-Page Based Prediction
and Prefetching,’’ Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers and
Processors, 2000, p. 267.

11. G. Kedem, R. Ronen, and A. Yoaz, ‘‘Method and Apparatus
for Cache Line Prediction and Prefetching Using a Prefetch
Controller and Buffer and Access History,’’ U.S. Patent
6,134,643, October 17, 2000.

12. A.-C. Lai, C. Fide, and B. Falsafi, ‘‘Dead-Block Prediction
and Dead-Block Correlating Prefetchers,’’ Proceedings of the
28th Annual International Symposium on Computer
Architecture, 2001, pp. 52–62.

13. W.-F. Lin, S. K. Reinhardt, D. Burger, and T. R. Puzak,
‘‘Filtering Superfluous Prefetches Using Density Vectors,’’
Proceedings of the IEEE International Conference on Computer
Design, 2001, pp. 124–132.

14. W.-F. Lin, S. K. Reinhardt, and D. Burger, ‘‘Reducing
DRAM Latencies with an Integrated Memory Hierarchy
Design,’’ Proceedings of the 7th International Symposium on
High-Performance Computer Architecture, 2001, pp. 301–312.

15. O. Temam, ‘‘An Algorithm for Optimally Exploiting Spatial
and Temporal Locality in Upper Memory Levels,’’ IEEE
Trans. Computers, 48, No. 2, 150–158 (1999).

16. J. H. Moreno, J. A. Rivers, and J. D. Wellman, ‘‘Method and
Apparatus for Memory Prefetching Based on Intra-Page
Usage History,’’ U.S. Patent 6,678,795, January 13, 2004.

17. Z. Hu, M. Martonosi, and S. Kaxiras, ‘‘TCP: Tag Correlating
Prefetchers,’’ Proceedings of the Ninth International
Symposium on High-Performance Computer Architecture,
2003, pp. 317–326.

18. A. Moshovos, ‘‘RegionScout: Exploiting Coarse Grain
Sharing in Snoop-Based Coherence,’’ Proceedings of the 32nd
Annual International Symposium on Computer Architecture,
2005, pp. 234–245.

19. J. F. Cantin, M. H. Lipasti, and J. E. Smith, ‘‘Improving
Multiprocessor Performance with Coarse-Grain Coherence
Tracking,’’ Proceedings of the 32nd Annual International
Symposium on Computer Architecture, 2005, pp. 246–257.

20. N. P. Jouppi, ‘‘Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers,’’ Proceedings of the 17th International
Symposium on Computer Architecture, 1990, pp. 364–373.

Received August 10, 2005; accepted for publication

Peter A. Franaszek IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (paf@us.ibm.com). Dr. Franaszek received the Ph.D.
degree in electrical engineering from Princeton University in 1965.
From 1965 to 1968, he was employed by Bell Laboratories; he
joined the IBM Research Division in 1968. During the academic
year 1973–1974, he was on sabbatical leave at Stanford University
as Consulting Associate Professor of Computer Science and
Electrical Engineering. His interests are in the general area of
information representation and management, and computer
system organization. Dr. Franaszek has received two IBM
Corporate Awards for his work on codes for magnetic recording,
an IBM Corporate Patent Portfolio Award for his contribution
to the ESCON* architecture, and IBM Outstanding Innovation
Awards for fragmentation-reduction algorithms, for network
theory, for concurrency-control algorithms, for run-length-limited
codes, for the 8B/10B code used in ESCON, Fibre Channel, and
Gigabit Ethernet, and for compressed-memory machines. He is
a member of the IBM Academy of Technology and a Master
Inventor. He is a Fellow of the IEEE, and received the 1989 IEEE
Emmanuel R. Piore Award for his contributions to the theory and
practice of constrained channel coding in digital recording. In
2003, he received the ACM Paris Kanellakis Theory and Practice
Award for his contributions to the theory and practice of such
coding. Dr. Franaszek holds more than fifty patents and has
published more than forty-five technical papers.

Luis A. Lastras-Montaño IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (lastrasl@us.ibm.com). Dr. Lastras-Montaño received
the Ph.D. degree in electrical engineering from Cornell University
in 2000; he received the B.Sc. degree from the School of Sciences
(UASLP, Mexico). He joined the IBM Thomas J. Watson
Research Center after receiving his graduate degree. His academic
interests are in the field of information theory, specifically network
lossy and lossless data compression. Other interests include large
deviations, statistical inference, communication signal design, and
foundational issues at the intersection of information theory and
computing systems architecture. At IBM his contributions have
included theoretical topics such as the performance analysis
of multiple description codes, universal lossless compression
algorithms, and non-asymptotic large deviations theory, as well
as practical topics such as algorithms for low-complexity lossless
compression, prefetching in microarchitectures, and the design and
analysis of compressed memory systems.

Steven R. Kunkel IBM Systems and Technology Group, 3605
Hwy. 52 N, Rochester, Minnesota 55901 (srkunkel@us.ibm.com).
Dr. Kunkel received his Ph.D. degree from the University of
Wisconsin at Madison in 1987. He then joined IBM in Endicott,
New York, doing performance analysis of a vector facility for a
mid-range System/390* product. In 1989, he transferred to the
IBM Rochester, Minnesota, site where he currently works.
During most of his years in Rochester, he did architecture and
performance analysis for AS/400* and RS/6000* (now called
iSeries* and pSeries*) products. This included such areas as
NUMA, VLIW, caches, MP cache coherency, multithreading,
and converting AS/400 to PowerPC* architecture processors. Dr.
Kunkel is currently a Senior Technical Staff Member; he continues
to do architecture and performance analysis for iSeries, pSeries,
and zSeries* servers.

Aaron C. Sawdey IBM Systems and Technology Group, 3605
Hwy. 52 N, Rochester, Minnesota 55901 (sawdey@us.ibm.com).
Dr. Sawdey received his Ph.D. degree from the University of
Minnesota in 1997. From 1997 to 1999 he worked for SGI/Cray in

P. A. FRANASZEK ET AL. IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006

522

February 23, 2006; Internet publication August 8, 2006

Eagan, Minnesota, on debuggers, application performance analysis
software, and parallel processing libraries. In 1999 he joined IBM
in Rochester, Minnesota, where he does cache and SMP
interconnect analysis for PowerPC processors used in the iSeries
and pSeries products.

IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006 P. A. FRANASZEK ET AL.

523

