Victim
management
In a cache
hierarchy

We investigate directions for exploiting what might be termed
pattern locality in a cache hierarchy, based on recording cache
discards or victims. An advantage of storing discard decisions is
the reduced duplication of pertinent information, as well as the
maintenance of information on the current location of discarded
lines. Typical caches are designed to exploit combinations of
temporal and spatial locality. Temporal locality, the likelihood that
recently referenced data will be referenced again, is exploited by
LRU-like algorithms. Spatial locality is the property that causes
larger cache lines to yield improved miss ratios. Here we consider
the exploitation of pattern locality—the property that lines
accessed in temporal proximity tend to be re-referenced together.
We describe some new cache structures including pattern-recording
features, along with their miss ratio and transfer traffic
performance as determined via simulations on traces drawn from
several benchmark applications. We show that pattern locality
information, based on discard statistics, can be useful in enhancing
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the quality of prefetch decisions.

1. Introduction
In the field of microprocessor cache hierarchy
management, new viable strategies for mitigating the
effects of memory latency continue to increase in
importance. Well-established solutions such as increased
cache sizes, prefetching of strides, larger cache lines, and
multithreading are becoming increasingly insufficient to
prevent processors from underperforming because of
memory starvation. This is because of the trend toward
increasing distances, in processor cycles, between on- and
off-chip accesses. The problem of the resulting limitation
on system performance is sometimes termed the memory
wall. A question of some importance is whether there are
unexplored potentially viable approaches to mitigating
this problem. Viability here broadly means having real
possibilities of successful application in future computing
systems.

Caches and cache hierarchies are effective because of
a combination of the temporal and spatial locality of
accesses. Temporal locality ensures the success of least
recently used (LRU)-like replacement algorithms, while
spatial locality can be exploited by a proper choice of line

size, such as a tradeoff between miss ratios and transfer
traffic.

Spatial locality can be viewed as a property that holds
across the contents of the entire memory—that is, that
a randomly selected line is likely to be referenced in
temporal proximity to another if they are neighbors in
some general sense. For example, one may say that two
lines are neighbors if their addresses differ numerically by
no more than a given number. A property specific to
actual items of data might be termed pattern locality. This
is the property that items accessed in temporal proximity
are likely to be accessed again in such proximity.

Not all neighboring cache lines necessarily exhibit
pattern locality. Identifying lines having this property
thus offers an opportunity for improving prefetch or
replacement performance over methods such as simply
increasing the size of cache lines. Detecting pattern
locality can be done, for example, by recording data
accesses.

Throughout this paper, we use the standard
terminology of cache design. A cache victim is a cache
line or entry that was chosen for replacement at the time a
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new entry was installed. A physical realization of a cache
consists of a memory that stores entries and tags or
identifiers that, together with the memory storage
location, identify the entries completely. The number of
possible locations any given entry can take within the
memory is called the associativity of the cache (when the
associativity is 1, we say that the cache is direct-mapped).
Line or entry identifiers and the information that is used
to select cache victims are held in a separate memory
called the cache directory.

In this paper, we discuss some new structures for the
efficient exploitation of pattern locality. In particular,
we consider the notion of victim prefetching, in which
prefetching is based on locality information recorded at
the time a line is discarded from a cache rather than at
time of reference. We describe what we believe is a new
construct, a Directory eXtension (DX), for tracking
victim patterns within pages. This is in contrast to
hardware for tracking lines which are referenced,
information which exhibits some redundancy with L2
directory contents. We also consider the modifications
and use of on-chip directories for off-chip caches. Such
directories are repositories of substantial information
on previous accesses.

We investigate cache performance enhancements
resulting from these notions in L2 cache configurations in
which L2 is the slowest on-chip cache. Our systems
include L2 side buffers such as victim caches, into which
lines may be prefetched, victim lines inserted, or both.
The systems considered include ones with and without
off-chip L3 caches. Our performance analysis is via
simulations based on traces obtained from execution
of various benchmarks on IBM processors equipped
with special hardware. The benchmarks tested include
1) TPC-C**, an on-line transaction processing
benchmark; 2) Trade2, an IBM internal benchmark
which simulates stock trading, is written in Java**, and
uses the WebSphere* application; 3) CPW, an IBM
internal benchmark similar to TPC-C but with more
complex transactions; and 4) NotesBench*, a benchmark
that exercises the Lotus Notes* e-mail application.
Because of space constraints, we give detailed results for
only the first two.

The use of a relatively small (of the order of 12% of the
L2 size) side buffer or cache to hold victim or prefetched
lines has two main advantages. One is that the mapping
of cache lines to sets can be different from the one used
for the main cache, thus mitigating effects due to
imbalance in references between equivalence classes.
Another is that prefetched lines do not interfere
with regular cache contents and vice versa. In this
investigation, there is an additional effect or rationale.
Our traces, as discussed below, constrain our
investigation of L2 performance to caches whose size
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is an integer number of megabytes, with the number

of congruence classes greater than or equal to that
corresponding to a one-megabyte direct-mapped cache.
(This is related to the stack property of the LRU
algorithm used and the observation that if the number of
congruence classes is identical in a larger cache, we simply
have more items in each congruence class.) Further, since
cache sizes appropriate for these traces consist of a few
megabytes (benchmarks used for systems with larger
caches would exhibit larger working sets), our
investigation is limited to caches with small associativity.
The low level of associativity exacerbates problems
associated with mistaken prefetches and hot spots in the
cache. These issues are mitigated with the use of side
buffers.

For a prefetch strategy to be effective, it must issue
a significant number of prefetches; a large fraction of
those prefetches must be subsequently referenced before
eviction, but such references should ideally happen after
the prefetch has been finalized in order to maximize the
associated benefit. These notions may be termed coverage,
accuracy, and timeliness [1]; a full assessment of a
prefetching mechanism should include these three. The
focus in our paper is on the first two, and we include only
a brief discussion of the third. One reason for this is that
timeliness is very much implementation- or system-
dependent, whereas the other two are largely a function
of the reference string. Coverage and accuracy combined
produce miss-ratio reductions.

Our results indicate that victim prefetching can
yield significant miss-rate reductions compared with
configurations in which the side buffer functions only as a
victim cache. Similarly, for the caches we consider here,
with a low degree of associativity, victim caching
combined with victim prefetching yields improved
miss-ratio performance over either policy used alone.
Prefetching increases the amount of fetch traffic over
simple demand fetching, but this increase appears in the
simulations to be perhaps acceptable in practice; we
quantify this effect directly by computing the probability
that a prefetched line is not requested before eviction
from the side buffer (this measures the accuracy of the
prefetches). As we later see, for certain simple processors
we can actually make significant positive statements
about the timeliness of our prefetch strategies.

The paper is organized as follows: Section 2 describes
prior related work, and Section 3 introduces some basic
assumptions with respect to the system considered.

The essence of our main contribution can be found in
Section 4, where we discuss in detail the operation of the
prefetch policies. Section 5 describes our experimental
methodology and further details our system assumptions.
Experimental results can be found in Section 6, with
conclusions in Section 7. In the Appendix (Section 8), we
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include a detailed description of the experimental tracing
methodology used in the collecting and processing of the
traces.

Our main conclusions are the following:

® The use of prefetch feedback combined with on-chip
directories for off-chip caches can yield effective
prefetch performance.

® The use of a directory extension is effective for
prefetching in systems with no L3.

® The combined use of victim caching and prefetching
can provide miss ratios corresponding to substantially
larger caches with only modest increases in transfer
traffic.

As mentioned above, our results are largely restricted
to determining prefetch opportunities and prefetch
accuracies as defined here (namely, whether a prefetched
line will be referenced before it is discarded). The
resulting performance improvements, if any, are further
determined by the order and timing in which items are
actually referenced, as well as by the detailed architecture
of the buses and memory subsystems. We include some
simple examples to quantify the scale of the
improvements.

2. Description of prior work

The most common way to exploit spatial locality consists
of employing large line sizes in a cache, a technique that
could be regarded also as a form of prefetching. For
many workloads of interest, it is a generally accepted
empirical fact that increasing the line size often results
in improved cache-miss rates, in spite of the resulting
reduction of the number of lines that may be stored in
the cache. However, large lines are also associated with
increased data movement as well as increased coherency
interference between processors.

In techniques that use information from prior
references, the data transferred is varied on the basis of
earlier recorded accesses. Perhaps the first example of
such a technique can be found in the work of Franaszek
and Bennett on adaptive variation of the transfer unit size
[2]. They introduced the notion of storing information
(for each block of several pages in a database) pertaining
to pages accessed within this data block; the information
was then used to control the data transferred (when doing
1/O) as that block was referenced; prefetches were placed
in a side buffer. See also the work of Van Vleet et al. [3].
In the work of Alexander and Kedem [4], prefetches are
determined using a table that stores potentially multiple
addresses of groups of cache lines that were referenced
after a given reference. The SRAM buffers of Charney
and Puzak [5] are placed between two caches to improve
the apparent performance of the one closer to the
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processor. The prefetching technique considered is a
variant of next sequential prefetching; one of the features
of this work relevant to ours is that a confirmation bit
is employed for improving prefetch accuracy. The work
of Johnson and Hwu [6] proposes to segment memory
in regions called macroblocks for which statistics for
reference patterns are then kept in a memory access table.
This table has a counter per macroblock that denotes
the frequency of access of this block; on the basis of
this counter, it is decided which line to keep during a
replacement decision. A possibility is to prefetch subsets
of a memory page, not necessarily contiguous, on certain
accesses to the page (for example, L2 cache misses). The
work of Kumar and Wilkerson [7, 8] exploits this general
idea through a Spatial Footprint Predictor, which tracks
which portions of a block have been accessed in the past.
In his Ph.D. thesis [9], Burger discusses the notions

of dual-size fetches and sub-block prefetching, which
correspond roughly to the ideas of adaptive transfer unit
size and prefetching of lines that are noncontiguous but
spatially close. Yu and Kedem [10] propose the use of a
prediction table cache with entries representing historical
access information for cache lines within a given page; see
also Kedem et al. [11]. The work of Lai et al. on dead
block correlating prefetching [12] is a prefetching scheme
that links a candidate prefetch to a line that is evicted as a
result of a prediction that it will no longer be used; the
link to the present paper is that in contrast in our

work, lines that are evicted become potential prefetch
candidates. Lin et al. [13] (see also the earlier work of Lin
et al. [14]) use the notion of density vectors, which is
closely aligned with the work of Kumar and Wilkerson [7]
and Burger [9]. Temam [15] extended Belady’s MIN
algorithm to a setting in which prefetching is done with
no memory latency. One of the scenarios considered by
Temam is that of prefetching lines within the same page
to which a cache access is made. Moreno et al. [16]
describe a general table-based mechanism that stores
accesses to pages and uses this information in preparing
suitable prefetch candidates. Hu et al. [17] describe a
technique using predictions based on correlations
between sequences of accesses in different cache
congruence sets. The use of meta-data structures to track
reference patterns of regions in memory can also be found
in other work; for example, in the recent work of
Moshovos [18] and Cantin et al. [19], the authors
introduce filters that allow them to prevent remote
directory queries when executing a cache coherency
protocol.

Another idea exploited here is the notion of victim
lines, that is, lines that are ejected from a cache because
of a buffer-management action. Jouppi [20] introduced
victim caching, which in his original design is used to
improve the performance of a direct-mapped cache with
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Overview of system architectures considered. We consider
separately the settings in which there is an on-chip L3 directory
and those in which there is none; in the latter we include a new
construct that we call a Directory eXtension (DX).

the addition of a small, fully associative cache that
receives victims from the primary cache. The idea of
victim caching has other attractive properties, which

led for example to its use in some IBM PowerPC*
microprocessors, in which L3 is configured as a victim
cache of the L2 as a complement to a policy that directly
inserts into L2 lines requested from memory on L3
misses.

Some ideas we consider here are similar to those
mentioned above. However, the access information we
maintain in the DX is on pages with recently evicted lines,
rather than pages with recently referenced lines, thus
enabling what we term victim prefetching without the
maintenance of redundant cache data. Victim prefetching
is further combined with victim caching, which is shown
to yield additional advantages. Another difference from
previous work is our utilization of the directories of large
L3s, which can be used as repositories of useful reference
information. We combine these structures with feedback
mechanisms that improve prefetch accuracy. Another
aspect of our results is that they are based on trace
analyses that permit the study of very large traces drawn
from commercial applications.

3. System structures

As mentioned above, our main focus here is the use of
pattern locality for reducing the effective L2 miss ratio.
The configuration we use includes a relatively small side
buffer in which we place or replace carefully chosen data.
In our work, the side buffer can be used in one of two
ways: In the first, it is the recipient of all prefetches and all
victims of the L2 cache; in the second, it only receives
all prefetches. In the first approach, we assume one
additional bit per entry in the side buffer in order to
distinguish prefetches from L2 victims.
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As it is often true of ideas that can be stated at the
policy level, the present work may be applicable to
other cache settings. For example, the results for the
combination of L2 cache and side buffer may carry over
to caches with no side buffer but with larger associativity.

In contrast to the best known successful prefetch
strategies such as wide line prefetch or stride prefetch, the
methods described in this work rely on a significantly
larger amount of past learned information, thereby
raising the associated storage and data-management
issues. We consider two approaches to this problem that
reflect whether or not an L3 is present in the system.

L3 present in the system

For the purpose of this work, the relevance of the
presence of an L3 is related to whether the associated L3
directory is easily accessible by the prefetch mechanism.
In many systems with off-chip L3 caches, the L3 directory
is on-chip for performance reasons (see Figure 1). If an
L3 is present, we assume that lines evicted from the
processor chip (either the L2 cache or side buffer) are
immediately placed in the L3, and that this is the only
way in which a line can be installed in the L3 (i.e., the L3
is a victim cache of the processor chip). Moreover, a line
that is transferred from the L3 into the processor chip
(either the L2 cache or side buffer) is deleted from the L3.
This is largely for the purpose of discussion, as the results
also pertain to standard L3s which have the inclusion
property, namely that the contents of L2 and the side
buffer are a subset of those in L3. In some architectures
considered in our experimental section, evictions from the
L2 cache are routed to the side buffer, not the L3 cache;
then all evictions of the processor chip are from the side
buffer, and these are incorporated in the L3 cache.

We expect an L3 to hold a much larger number of
entries than an L2. As a consequence, L3 directories are
generally rich information sources of past data references
and are also a natural target for the storage of other
useful statistics. To support this statement, note that by
searching the L3 directory one can answer queries such as
“Give me all lines within a given page that have been
evicted recently from L2.” By appropriately augmenting
the L3 directory, one can support a more elaborate query
which further demands that no line whose last fetch was
an unsuccessful prefetch be reported. We show that
incorporating such feedback information in a prefetch
policy can yield improvements in its effectiveness.

The L3 directory queries mentioned above could
require a significant number of accesses (the L2 directory
need not be scanned because of the assumption of
exclusivity between the L2 and L3 contents). Since
these directory queries are for the purpose of initiating
prefetches, they can be regarded as low-priority requests
in comparison with queries that are being originated
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by actual demands from the processor. This can be
implemented with priority queues; note that basic query
arbitration is generally already implemented in situations
in which two or more L2 caches share one L3.

No system L3

If an L3 is not included in the system, the associated

L3 directory will obviously not normally be considered
in a chip design. Here we store all prefetch-related
information in a structure we term a Directory eXtension
(DX). A DX is a table organized on a page basis; each
entry of the DX has a bit for every line in the associated
page. The management of the entries of a DX is as in

a standard cache (with a least-recently-used eviction
rule applied on equivalence classes of the entries). The
relevance of the page notion is that it is the largest storage
unit for which we may generally expect spatial locality to
be present (in systems with multiple page sizes we might
choose the smallest such, generally 4 KB). Figure 1 shows
the logical placement of a DX if it is incorporated

in the design. The figure shows that such a system is
obtained by omitting the L3 directory and the L3 cache.
(We postpone a full description of the operation of

the DX to the next section.)

4. Description of policies

We now consider management policies associated with
the system structures described above. We define a failed
prefetch in the obvious way, as a line that was prefetched
but not referenced before eviction from the processor
chip. We define a prefetch window as the number of
contiguous lines from a page that are considered for a
prefetch. In our experiments, we restrict our windows to
be aligned fractions of pages (e.g., a half or a quarter of a
page).

In systems with an L3 directory, on every L2 miss that
also misses in the side buffer, we prefetch all lines of the
same page that are valid in L3 from the prefetch window,
except for lines whose last retrieval from L3 (if any) was a
failed prefetch. Prefetches are placed in the side buffer,
which is managed like a standard cache. If a miss from
the L2 is found in the side buffer, the line is deleted from
the side buffer and inserted in the L2 cache. As mentioned
above, in some configurations we consider, the side buffer
may also receive evictions from the L2. If a line is in the
L2 cache, it is not in the side buffer. Conversely, if a line
is inserted in the side buffer, by definition it was not
in the L2 at insertion time, and thus the contents of the
L2 and the side buffer are mutually exclusive.

The above policy may be implemented by including an
extra bit in the directory for each line stored in L3. By
default, this bit is set to 1 when the line is placed in the L3
after eviction, unless the line joined the side buffer as a
prefetch from L3 but was never requested, in which case
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the bit is set to zero. Thus, on misses of the processor
chip one then scans the L3 directory to find possible
prefetches. We reiterate that such scanning is not in any
critical path and can be assigned low priority with respect
to normal directory queries.

For systems with no L3, we introduce a DX, structured
as described above. The DX is managed according to the
following policy:

1. On evictions from L2 (in systems in which these are
not placed in the side buffer). The corresponding page
is searched in the DX; a new entry is created in case it
is not found. In the DX entry, the bit corresponding
to the evicted line is set to 1, denoting an “on” bit.
Those lines associated with “on” bits we term DX
candidate prefetches.

2. On eviction from the side buffer. If the evicted line
joined the side buffer as an L2 eviction, the procedure
is performed as described in step 1. Otherwise, it
joined as a prefetch, and no further action is taken.

3. On misses from L2 that also miss the side buffer. The
corresponding entry in the DX is looked up, and in
case of a match, the lines from this page within the
prefetch window which have their prefetch bits set to
1 are fetched and inserted into the side buffer, with
the exception of the demand miss that triggered the
prefetch event, which is placed in L2 directly. The
prefetch bits for the fetched lines are then set to 0,
and if all bits for this page are 0, the entry is deleted
from the DX.

4. When a new entry is created in the DX and there is
no space in the corresponding DX equivalence class,
the LRU entry in this class is deleted.

We now briefly discuss the impact of the above policies
on critical paths of the design of the L2 and L3 directories
and caches. The eviction events in steps 1 and 2 simply
result in the associated DX update with no further
consequence. In step 3 we note that the memory demand
fetch is scheduled at the earliest opportunity (as in a
standard architecture) regardless of whether or not the
DX lookup is finished; the prefetches are issued at
the time their identity is learned. Note that a relevant
performance issue is whether the memory subsystem is
operating with an open or closed page policy, a detail
beyond the scope of this paper.

5. Experimental methodology
Description of traces
We show simulation results using traces captured from

buses of specially configured IBM machines. These traces
further undergo a certain postprocessing phase to be
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described in the Appendix. Because of a number of
physical limitations, the references reported in the trace
consist of transactions observed in a bus only after they
have been filtered through an L2 cache with 128-byte
lines, which is 1 MB in size and direct-mapped in all cases.
This corresponds exactly to 8,192 sets, each consisting of
a single line. The specifics on how these traces were
obtained can be found in the Appendix, which also
includes a discussion on how one can reconstruct the
contents of the directory of a hypothetical larger cache
using only the trace information.

The conclusions of the Appendix are next summarized.
It is feasible to recreate exactly the directory of the
hypothetical larger cache if’

1. The number of lines of the larger cache is an integer
multiple of the number of sets in a 1-MB direct-
mapped cache.

2. LRU replacement is employed.

3. Exactly the same function that maps lines to sets is
employed. For these traces, the sets are selected by
address bits 7-19, assuming a numbering starting
from 0.

4. For every one of the 8,192 sets, the number of LOAD
misses in the trace mapped to the set is at least equal
to the number of entries in the set. This is simply
because otherwise there will be one or more entries in
the cache with unknown contents.

A note on notation

When referring to the geometry of a memory (a cache, a
directory extension, etc.), we use the notation ambw,
where a and b are positive integers and the naming means
that the cache has a megabyte of capacity and b ways.
Thus, for example, 2m2w is a 2-MB, two-way cache. We
also use other standard notation: B="byte, KB =kilobyte,
MB = megabyte.

Overview of the experiments
The specifications of the computer system considered are
as follows:

* A single-threaded uniprocessor with one L2 cache,
one L3 cache, and a side buffer searched on misses of
the L2.

* Lines evicted from the chip are immediately inserted
into L3, which is a 32-MB, eight-way set-associative
cache.

e [2is 2 MB, two-way set-associative

* The side buffer is 256 KB and four-way set-
associative.

'In fact, simulations for more general situations are feasible; nevertheless, we do not
explore them in this work.
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* Prefetches are scheduled only in L2 misses, and
prefetched lines must be within the same 4-KB page
of the L2 demand miss associated with them.

e The line size is 128 bytes. Thus, a 4-KB page has
32 lines.

e The workloads are TPC-C and Trade2 (similar results
for CPW and Notesbench are also discussed, but not
in detail).

The strategy that shows the most promise among those
considered here prefetches exclusively from L3 and uses
feedback information to decrease the probability of an
unsuccessful prefetch. Moreover, it employs the side
buffer for storage of victims of the L2 as well, which are
inserted at the most recently used (MRU) position.

We term the strategy above victim caching and
prefetching with feedback. The alternative with no
feedback has a corresponding name. Another method
also considered is as above but without storing L2 victims
in the side buffer; we call this technique victim prefetching
with feedback/no feedback labels appended as
appropriate.

For all prefetching techniques (novel or not)
demonstrated here, including the ones described below,
we consider restricting the potential prefetches to be
within a page sub-block of a given size, with 2, 4, 8, 16, or
32 lines being the possibilities. We assign lines 1-16 to the
first sub-block of length 16, and lines 17-32 to the second
sub-block. For sub-blocks of length 8, the partitioning is
(1-8) (9-16) (17-24) (25-32), and so forth. The sub-block
selected is exactly the one to which the demand miss
belongs.

Of primary concern is to contrast the technique with
more conventional ones, and to address this issue we also
simulate

1. Simple cache (no side buffer). We report on statistics
for various cache sizes.

2. Victim caching. The side buffer stores all evictions of
the L2, and nothing else.

3. Victim caching + contiguous block prefetching. Here
we prefetch a contiguous block of lines of a preset
size (2, 4, 8, 16, or 32 lines). As in victim caching and
prefetching, we also insert L2 evictions into the side
buffer in the MRU position. Prefetches are always
from the L3 and are inserted into the side buffer; we
never prefetch into the L2. As described above, the
address of the sub-block is obtained directly from the
address of the line by setting to zero the appropriate
number of least-significant bits.

In presenting our measurements, we take as a reference
point the simple cache system for the smallest cache size
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simulated, in this case a 2-MB two-way set-associative
cache. The parameters that we present for each
prefetching technique are as follows:

1. The reduction of L2 LOAD misses relative to the
smallest simple cache simulation. Note that L2
misses can also be caused by STORE events, but
it may be argued that the LOAD miss reduction
figure represents possible system performance
improvements more accurately than a LOAD/
STORE compound figure if one assumes a processor
that continues execution past a store miss.

2. The total number of lines transferred from L3 to L2,
relative to the same number for the smallest simple
cache. These transfers could be due to misses on
LOAD, STORE events, or prefetches. The rationale
behind presenting the compound figure is that this
better represents the net stress imposed on the
communication bus from L3 to L2.

3. The same as in part 2 above, but considering the total
number of lines transferred from either memory or
L3 to L2. This data is mainly relevant to compare
against the contiguous block prefetching possibility.

4. The ratio between the number of prefetched lines
evicted from the side buffer divided by the number of
prefetches added to the side buffer. Because every
successful prefetch is deleted from the side buffer
when demanded after an L2 miss, this statistic
corresponds exactly to the probability of a failed
prefetch.

5. The same as in part 4 above, but instead of
prefetched lines, we consider lines that enter the side
buffer because they are victims of the L2. This is
relevant only in the victim caching and prefetching
setting.

Description of the statistics-gathering procedure

In order to ensure that simulation start-up edge effects are
negligible in our results, we let every simulation run until
half of the records in the trace have been processed. A
principal indicator of the relevance of the measurements
presented is the fraction of L3 lines not initialized at this
moment, because a poorly utilized L3 would indicate that
the behavior of the prefetch algorithm would not yet be
sufficiently stable to be measured. The corresponding L3
utilization in our simulations is at least 90% at the time
tracking of the prefetching behavior begins. At this point
we reset the performance counters, which are the source
for the statistics reported in this paper. The final numbers
are collected after all records have been processed. For a
fixed workload, exactly the same number of records are
processed for each experiment.
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6. Experimental results

Our performance results are offered in two types of plots,
the first describing tradeoffs between the L2 miss rate and
data transfer traffic for a given policy and the second
describing the probabilities of failed prefetch and failed
victim caching events. The translation of these results
into actual computer system performance results is a
delicate matter because issues of prefetch timeliness and
performance penalties due to additional queuing delays
must be taken into consideration. In understanding the
results, it may be advantageous to consider a simple
observation relating traffic, prefetch performance, and
traffic increases due to prefetching. Let 7} be the traffic
without the fetches that will be saved by prefetching, T},
be the number of successful prefetches, and yT}, be the
number of unsuccessful prefetches. The total traffic is
then 7' + T}, without prefetching, and 7'+ T}, 4+ yT,, with
prefetching. Suppose that the read traffic is four times the
write traffic, that prefetching eliminates half the read
misses, and that y = 0.5. Then the increase in traffic due
to prefetching is 20%.

The first type of plot is exemplified by Figure 2, where
the horizontal axis denotes the relative load miss-rate
reduction compared with that of a simple 2m2w L2 cache.
The vertical axis refers to the total number of lines
transferred from L3 into L2 (load + store + prefetch),
again normalized against the statistic for the simple L2
cache. Note that lines that cannot be serviced from the L3
are brought from memory. In Figure 2, no prefetching
is enabled; our goal is to illustrate the relative
improvements in L2 miss rates that are attainable by
increasing the cache size along with the associated
increase in associativity implied by our simulation
restrictions. In what follows, we use these statistics to
contrast performance improvements due to prefetching
with those due to increased cache sizes. The second type
of plot illustrates some other important properties of the
prefetch algorithm, such as the number of prefetches
executed but never referenced by the processor.

We offer results for two workloads, TPC-C and
Trade2. We provide relevant statistics for our prefetch
algorithm for a given workload, L2 cache size, and
prefetch buffer size through a set of six plots. For
purposes of intelligibility, we introduce the plots for
TPC-C first on an individual basis, then bundle the plots
for Trade2 in a separate figure; thus, after interpreting a
particular plot type for the first workload, one may cross-
check the parallel results for the second workload.

Prefetching with feedback enabled

Refer to Figure 3, where all statistics are normalized to

those of a 2m2w L2 cache with no prefetching and with a

disabled side buffer. For comparison purposes, we have

also included the performance of a 3m3w L2 cache and 513
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Performance of various L2 cache sizes for two workloads
normalized to that of the 2m2w L2 cache; in these simulations
there is no prefetching and no side buffer enabled. The integer next
to each symbol denotes the size and associativity of the L2 cache.

Relative traffic from L3 to L2

a 4m4w L2 cache (green triangles). If the side buffer
functions as a victim cache of the L2, one obtains the
performance indicated by the asterisk. The number of
misses removed by the victim cache is approximately half
of the number of misses removed by the additional
megabyte (and overall associativity) of the 3m3w cache.
When the side buffer is employed as a repository for
prefetches only, and when the prefetching scheme is
victim prefetching from L3 into L2 with feedback, we
obtain the simulation points denoted by the red cross
marks. Each of these represents a different choice for the
prefetch window span. If the side buffer functions both as
a prefetch buffer and as a victim cache, one obtains the
points denoted by the blue circles. As can be seen, for this
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Victim prefetching with feedback for the TPC-C workload. The
integer next to each of the blue circles and red cross marks
specifies the number of lines that comprise the prefetch window.
One sample conclusion is that victim prefetching gives significant
miss-rate reductions and moderate traffic increases, and that
further allowing for L2 victim caching gives an even better
tradeoff.

workload the latter strategy, which allows for both victim
prefetching and caching, is a better tradeoff than the
former.

The point labeled “16 o” offers a reduction of misses,
with respect to the simple L2 cache, of about 50%. The
total traffic from L3 onto the chip remains approximately
the same as the L2 cache alone. Furthermore, this
prefetching technique is a significant improvement over
the miss-rate reduction of the 3m3w cache. However,
obtaining the actual overall performance benefit of
these prefetches would require a more detailed analysis,
involving issues such as prefetch timeliness and queuing
penalties of the failed prefetches.

The above discussion is relevant for a designer who
is contemplating the possible addition of a side buffer
to support prefetching. Where a side buffer already exists
or no side buffer will be considered, it is more appropriate
to contrast a given prefetching technique against the
performance of the L2 cache, with the side buffer
functioning as a victim cache. Note that in the case in
which no side buffer is considered, the above corresponds
roughly to a situation in which the L2 has a sufficient
degree of associativity to permit flexible management
of prefetches versus demand fetches.

Compared with the L2 cache with a victim cache (the
asterisk), the prefetching technique reduces the miss rate

IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006



by approximately 35%, at a cost of about 32% increase in
traffic from L3.

We now examine in more detail the efficiency of the
side buffer (we refer the reader to Figure 4), in particular
the probability of a failed prefetch (the y axis) and the
probability that an L2 victim was cached in the victim
cache but not used (the x axis), whenever the prevailing
policy allows for victim caching. When there is no victim
caching and only victim prefetching, we obtain the
horizontal lines given by the vp(2) through vp(32) labels;
here it can be seen that the probability of a failed prefetch
increases with the size of the prefetch window span.
Nevertheless, this probability is at most approximately
1/3. If only victim caching is allowed, we obtain the
vertical line which indicates that the probability that a
line inserted in the victim cache is not used before eviction
is about 4/5. This probability is much higher than the
previous one, but note that L2 victims are much less
costly than prefetches in that they need not be transferred
from memory. If one allows for both victim caching and
prefetching (blue circles), both undesired probabilities
increase; in particular, the probability of a failed prefetch
now ranges from 1/5 to 2/5. Nevertheless, the blue circles
still indicate a better performance tradeoff than the
horizontal lines (as deduced from Figure 3), because the
relatively large number of victim cached lines improve the
miss rate significantly more than the degradation due
to the increase of the undesired probabilities.

Prefetching with no feedback

We now contrast a system with no feedback with one
which uses feedback information. Refer to Figure 3 and
Figure 5, in particular to the points labeled with blue
circles (victim caching and prefetching), which we
indicate by using the shorthand notation “vcap.”
Compare the vcap(8) point in the no-feedback case with
vcap(16) in the feedback case. The miss rate reductions
relative to the 2m2w L2 cache are approximately the
same, yet when there is no feedback the traffic increases
about 37% for the no-feedback case and about 3% for the
feedback setting.

Feedback may also prevent prefetches that would have
been successful otherwise: Consider veap(32) of the case
with no feedback. Although the traffic measurement is
about 2.7 relative to the 2m2w L2 cache, the reduction in
misses is similar to that of a 4m4w cache, in contrast to
the case with feedback. This suggests that there may be
better ways to incorporate feedback information into the
prefetch policy.

As in the case of feedback, in Figure 6 we show a plot
that includes the probabilities of unsuccessful prefetches
for the policies considered. Both the horizontal lines
(associated with victim prefetching) and the blue circles
(victim prefetching and caching) indicate significantly
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Victim prefetching with no feedback for the TPC-C workload.

worse statistics for the no-feedback case, as expected. For
example, for veap(16) the probability of a failed prefetch
is around 2/3, in contrast to the same for the feedback
case (Figure 3), which is about 1/3.
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Contiguous block prefetching

It is also of interest to consider the performance of a
simple prefetcher, which makes no use of the L3 directory
and does not employ feedback information. In this case,
prefetches could come from memory or from the L3. The
policy considered is one which prefetches a contiguous
block of lines aligned, for example, on full, half, or
quarter pages. The address of the block is obtained from
the demand miss. In addition to prefetching, the side
buffer also functions as a victim cache of the L2 (hence,
the overall policy label is victim caching and contiguous
block prefetching). For this policy, we present two plots
in Figure 7. The difference between these is in the quantity
represented by the y axis. In part (a), we present the
number of lines transferred from L3 onto the chip,
relative to the same measurement for the 2m2w L2
cache. In part (b), we present the total number of lines
transferred either from memory or L3, relative to the
total number of lines transferred for the simple 2m2w L2
case. The general conclusion we draw from these figures
is that simple contiguous block prefetching is not a
competitive policy; note the unreasonable traffic
requirements and the high probability of an unsuccessful
prefetch in the red diamonds of Figure 7.

Effectiveness of victim prefetching for a larger L2
cache

In Figure 8 we find the counterpart of Figure 3 for the
TPC-C workload, but in this case for a 4m4w L2 cache.
The miss-rate reduction of victim caching and prefetch
with a window span of 16 with respect to the victim-
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caching-only point (the asterisk) is approximately 30%,
which is slightly less than the 35% that we previously
observed for the 2m2w L2 case. The traffic increase with
respect to the victim-caching-only point is about 40%, in
contrast to the 32% observed in the 2m2w L2 setting.
Another noticeable difference is that the simulation
points in which full page prefetch was a possibility were
strictly worse than the half-prefetch setting, likely due to
side-buffer pollution by the additional prefetches. Thus,
the benefits of the combined prefetch/victim side buffer
are largely preserved when going to a larger cache with
higher associativity. This may be partially because the
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which in (a) indicates the traffic from L3 and in (b) the traffic from
both the memory and the L3.
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degree of associativity in the side buffer masks that of the
cache.

Directory extension effectiveness

We conclude by considering the effectiveness of adding a
DX to the processor chip. As previously discussed, a DX
is suggested for implementing the prefetch policy when
there is no L3 cache (and hence no access to an L3
directory). We refer the reader to Table 1, where we
report DX miss-rate statistics (recall that a DX is
interrogated on L2 misses) in a system where no
prefetching is enabled. For comparison purposes, we
also report in Table 2 the miss rate of an L3 that is

32 MB and eight-way.

Assume a 2m2w L2 cache. On every L2 miss we
compute the prefetch candidates. With a DX with 1,024
entries, only about 20-25% of those misses are associated
with a successful inquiry at the DX level. A DX that
is eight times as large has miss rates ranging from
approximately 23% to 37%, which is a considerable
improvement over the DX of 1,024 entries. The optimal
DX size depends on the available budget and desired
performance benefit. If the L2 size is doubled, the misses
become more difficult to predict, and the size desired for a
DX approximately doubles, as suggested by the empirical
results.

In this work we have chosen to simulate the L3
directory option instead of the directory extension version
of the policy. In order to determine the size of a directory
extension that is needed to match the prefetch
information stored in the L3 directory, one may use the
following simple observation: One should estimate the
average number of different pages that have at least one
line in the L3 directory, and then allocate that number of
entries to the directory extension. We have observed that
on average a page has four to eight lines in a cache;
assuming the former, it means that the directory
extension should have approximately a quarter of the
number of entries of the L3 cache.

System performance implications
We now briefly discuss some performance implications
for a highly simplified system model.

We assume a system with no L3, such that an L2 cache
fault which is not serviced by the side buffer causes a
delay D in machine cycles, and that a hit to the buffer
causes no additional delay. Suppose that the trace
represents N instructions. Typically, some subset of these
are idle instructions, representing for example times when
a page fault was being processed and no other work could
be scheduled immediately. Each such instruction is
executed in one cycle.

For the TPC-C trace described here, a representative
fraction for idle instructions is 0.1. The number of infinite
L2 cycles required per instruction is approximately 1.7.
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The percentage of non-idle instructions resulting in

L2 misses (for the 1-MB direct-mapped cache) is
approximately 0.02. The number of cycles required for
a machine to process the set of N instructions is then

T=0.1N+0.9N(1.7 + 0.02RD),

where R is the relative miss ratio, compared to the
1-MB direct-mapped cache. The number of cycles per
instruction (CPI) of the machine for non-idle instructions
is about 3.27. For the machine generating the trace, D
is of the order of 90. Thus, about half the processing
time in this case is due to Imlw L2 cache fault delays.
Reducing the number of faults by a factor of 2 can

thus improve performance by as much as 25%.

The miss rates of the prefetching methods studied here
are given in comparison to the miss rate of a simple cache
of the appropriate size. Therefore, to obtain performance
numbers it is necessary to learn the miss rate of the simple
cache compared with the miss rate of the Imlw cache
used for capturing the traces. Table 3 gives this statistic
for three workloads and cache sizes.

A sample calculation follows: Figure 3 shows that for
TPC-C the miss rate of a 2m2w L2 with the “16 0~
strategy is approximately half that of a 2m2w L2 with no
prefetching and no side buffer. The miss rate of a 2m2w
L2 is ~0.49 of that of a Im1w cache, as shown in Table 3.
Compounding these numbers then yields about 0.25. This
gives a CPI of 2.44 with a 2m2w L2 cache with no
prefetching and a CPI as low as 2.03 for the same cache
but with prefetching into the side buffer, which is a
reduction of about 16% of the original CPI. The result is a
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Table 1

Directory extension miss-rate statistics for various L2 cache sizes and workloads (no prefetching enabled, no victim caching).

The notation aebw implies a memory with a entries and with associativity b.

L2 geometry DX geometry DX miss rates
TPC-C TRADE CPW NOTES
2m2w 8192edw 0.237318 0.250004 0.320904 0.372551
4096e4w 0.370400 0.452307 0.423462 0.513887
2048e4w 0.560952 0.652450 0.579140 0.671960
1024e4w 0.759551 0.814356 0.752682 0.808705
4m4w 16384e4w 0.278221 0.133674 0.512374 0.416528
8192edw 0.420749 0.321932 0.600887 0.556574
4096e4w 0.579302 0.539234 0.703534 0.702265
2048e4w 0.738021 0.727691 0.813192 0.830273
8m8w 32768e4w 0.281420 0.098430 0.579822 0.461278
16384e4w 0.431931 0.183081 0.731036 0.585343
8192e4w 0.566722 0.348746 0.832160 0.710878
4096e4w 0.742797 0.563857 0.903598 0.823781

Table 2 L3 miss-rate statistics for various L2 cache sizes and
workloads (no prefetching enabled, no victim caching).

L2 geometry L3 32mb8w miss rate

TPC-C TRADE  CPW NOTES
2m2w 0.0907 0.007 0.2228 0.1412
4mdw 0.2255 0.015 0.3887 0.217

Table 3 Miss rate of an L2 cache of a given size with respect to
the miss rate of a Im1w L2. Statistics for three different workloads
are presented.

Miss rate TPC-C TRADE NOTES
wrt L2 Imlw

L2 2m2w 0.488 0.622 0.515

L2 4m4w 0.302 0.315 0.285

L2 8m8w 0.123 0.110 0.164

bound for the actual CPI benefit, as the benefit is further
reduced by factors such as the timeliness of the prefetches
and additional queuing delays caused by the increased
traffic.

To obtain a better estimate of the true CPI
performance improvement, we would need to refine our
model to take into account issues of prefetch timeliness

518 and queuing penalties due to the failed prefetches; we

P. A. FRANASZEK ET AL.

next give a brief overview of a type of analysis one
might undertake to account for these. To support our
discussion, we refer the reader to the time diagram in
Figure 9.

Often it is true that the latency to memory is
determined mainly by the time required for the memory
subsystem to react to a request, rather than the time
required to transfer the line across the memory bus;
the ratio of the former to the latter could be typically
in the range of 8:1 to 16:1. In our simplified model, the
processor always stalls waiting for a line to be serviced
from memory. We assume that the prefetches associated
with an L2 miss can be brought back-to-back across the
memory bus after the initial missed line is transferred
from memory; this can be done because the prefetches
are coming from the same page and because of an
assumption that the DRAM devices are functioning
with an open-page policy. If after processing the data
requested in the first miss the processor immediately
issues a request for a second line, and if such a line
was actually prefetched by the policy, then on average
(assuming that we do not have special prefetch ordering
strategies in place) the second miss will be found in the
middle of the sequence of prefetched lines that come after
the initial miss.

The observation above can be used to provide an initial
estimate of the prefetch benefit; note that here we have
made a pessimistic assumption that the second miss
comes immediately after the first miss is serviced.

The prefetch benefit can be further discounted to
take into account an increased queuing penalty
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due to the prefetches and other issues such as processor
multithreading. A complete analysis is beyond the scope
of this paper; we simply mention here that in realistic
settings we have computed the prefetch CPI benefit to be
at least half of that predicted by a simple miss-rate
reduction computation at the beginning of this section;
thus, in that example the CPI improvement would be 8%
instead of 16%.

Discussion on other workloads

The qualitative behavior of the prefetching technique
considered in this discussion remains constant across

a variety of different workloads; in particular, for
comparison we refer the reader to Figure 10, which
bundles the results for Trade2 in a single figure. In
particular, in the plot at the top left (to be contrasted with
Figure 3), the “16 o” point in fact meets the miss-rate
reduction of the 4m4w cache, again with approximately
the same number of fetches from L3 as in the simple

L2 cache situation. The miss-rate improvement, when
compared to that obtained by TPC-C, is slightly greater:
In this case, a miss-rate reduction of about 53% is
experienced. When compared to the performance of the
L2 cache with a victim cache, the miss-rate reduction is
about 42% at a cost of a 25% total traffic increase.

The interpretation of the other plots of Figure 10
follows along the same lines as the methodology
described above. A feature of reasonable interest is that
the results hold qualitatively across both workloads; in
fact, the same is true of the other two workloads studied
but not presented here (CPW, Notes). The best strategy,
using a reasonable criterion, is consistently that of victim
caching and prefetching with feedback, and the gains in
L2 miss-rate reductions are within the same order of
magnitude.

7. Conclusion

Memory latency is a factor with increasing performance
impact as processor speeds outdistance those of the
memory subsystem. Two approaches to this problem are
to a) have more effective policies for the retention of
required data in the on-chip caches, and b) initiate the
transfer of such data before it is actually requested
(prefetching). In this paper, we have considered some
techniques for prefetching based on the observation that
access patterns appear to be significantly page-specific.
We have considered two basic approaches: the use and
augmentation of access pattern information implicit in
directories for off-chip caches, and the use of a special
construct, which we term a directory extension, for
holding such information in the absence of such a
directory. We have shown that page-specific access
information, coupled with feedback to improve
prefetching accuracy, can yield significant miss-ratio
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reductions at the cost of what may be acceptable traffic
increases for a variety of commercial workloads. The use
of a directory for an off-chip cache may be particularly
attractive, as it is associated with a modest additional
cost in hardware complexity. Directions for future work
may include more detailed performance evaluations for
systems with multiple processors and studies of issues at
the hardware—software interface. An example of the latter
is the consideration of the inclusion of thread information
with DX entries.

8. Appendix: Tracing methodology

The traces are collected by attaching a probing device to
the bus between the L2 cache and the rest of the system.
There is no L3 cache. Captured by this probe are all L2
cache misses that go to memory and all commands to
and from the I/O (DMA and MMIO commands). This
method is used because the benchmarks traced are large,
commercial applications with a great deal of interaction
with various types of I/O that makes them difficult to
capture using other methodologies. The processor is
in-order, so there are no speculative cache misses. The
processor supports multithreading, but it was turned off.
For all of the traces, the operating system was OS/400*
and the database was DB2*.

Because the probing device is placed at the bus, there
are some restrictions on the type of information that can
be extracted. For example, clearly every processor load
instruction which hits in the L2 cache is not observed.
The events that can be observed that are of importance to
our study are
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* 1.2 load misses.

e Read-with-intent-to-modify (rwitm) events. These are
placed on the bus when a processor store instruction
misses in the L2 cache. The associated line is placed in
exclusive state in the L2 cache. The store then takes
place and the modified flag of the line is set.

e .2 cast-outs of modified lines.

e [/O DMA.

Note that for a given set from the direct-mapped L2
cache, after the first L2 load miss mapped to the set
appears on the bus, one can determine the address of the
line held in the set after the miss is serviced from memory.
Every subsequent processor load to the same line that
misses the L1 is not observed, but these load misses, if
any, obviously do not change the contents and identity of
the line stored in the set. Nevertheless, it is possible that
a processor store instruction to the same line may be
executed that may not result in a bus rwitm event,
because the associated line may already be held in
exclusive state. These store instructions are also
immediately invisible to our probing, suggesting that
modified bits cannot be accurately tracked under this set
of assumptions. Interestingly, this is not the case, as we
shall shortly explain.

Continuing our discussion, the next transaction
observed for this set in the bus must be either a processor
load or store to a different line, but one which maps to the
same set.

In either case, the identity of the line that resides in
the set after the completion of the load/store is known.
Furthermore, in the case of a store it is known that the
line is currently modified. The identity of the associated
evicted line, if any, is also known; nevertheless, it is not
always known whether the evicted line was modified. To
learn this, one must examine the next event in the trace
mapped to the set in question. If this event is an L2 cast-
out of the evicted line, we know that the evicted line was
modified. If the next event to the set is to a different line,
the evicted line was unmodified. The above discussion
illustrates that it is possible to recreate the identities of the
lines stored in the 1-MB direct-mapped cache along with
their modified status, said status known a posteriori, after
the L2 modified cast-out, if any, is observed.

For the purpose of cache simulation, it is desirable to
postprocess the bus trace in a manner that removes the
inconvenient non-causal element exposed above. A
solution is to insert a STORE immediately before the
load/store instruction that caused the cast-out and to
remove the cast-out from the trace. Since it is technically
impossible to recover the exact time at which the store
happened, the events as ordered in the postprocessed
trace do not necessarily correspond to reality. However,
the exact location of the store is not necessary, since the
resulting effect on the LRU information of the simulated

IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006

cache will be identical because the cache is direct-mapped.
This means that there is no other access to another cache
line for this set, since the line was brought into the cache.
In rebuilding the contents of the direct-mapped cache, the
modified bit will be set by the time the offending load/
rwitm is received, and thus the L2 cast-out event can be
reproduced.

We now turn to the problem of building the contents
of the directory of a hypothetical larger cache. If one
assumes that the larger cache employs an LRU rule
and that the number of sets remains unchanged (but
the associativity is increased, of course), the task of
constructing the MRU position of each set has already
been accomplished. However, the second MRU can be
obtained by tracking ejections or modified cast-outs of
the MRU and so forth, and the entire cache contents can
be built this way. A specific set of sufficient conditions to
be met for the simulation of larger caches to be successful
was given in Section 5.
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