Overview of molecular
dynamics techniques

and early scientific results
from the Blue Gene project

The Blue Gene® project involves the development of a highly
parallel supercomputer, the coding of scalable applications to run
on it, and the design of protein simulations that take advantage of
the power provided by the new machine. This paper provides an
overview of analysis techniques applied to scientific results obtained
with Blue Matter, the software framework for performing
molecular dynamics simulations on the Blue Gene/L computer.
Blue Matter is a portable environment that runs on several
platforms ranging from single-processor to massively parallel
machines. Since the Blue Gene/L computer has become available
only recently, this work describes analysis techniques applied to a
range of experiments of increasing complexity on a corresponding
range of machine sizes, concluding with a membrane protein
simulation currently running on a 512-node Blue Gene/L computer.
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Introduction

The Blue Gene* project was originally conceived in 1999
with the goal of building a petaflops computer to address
the grand challenge problem of protein folding [1].
Since then, the machine design has evolved, as have the
scientific objectives, but the goal of gaining insight into
protein science and the mechanisms behind protein
folding remains. We chose classical molecular dynamics
as the method for simulating protein systems and
designed a software framework—called Blue Matter—
for doing these simulations on highly parallel

machines consisting of thousands of nodes [2].

It is important to emphasize that the Blue Gene project
involves not only the development of a powerful, highly
parallel computer, but the design of software and
mathematical approaches [3] that take advantage of this
power, and the application of the software to do research
in protein science. Since the Blue Gene/L (BG/L)
hardware has been available for production only within
the last year preceding this writing, this paper includes
scientific results obtained on traditional IBM computers
and describes some of the techniques for validating the
software as it was developed. In short, a great deal of
BG/L science was done prior to the arrival of the
computer hardware, both in the development of a
highly parallel application framework and in molecular

simulations performed on conventional hardware. In
this paper, we describe the progression of experiments
performed with the Blue Matter framework, with an
emphasis on the analysis applied to the results. The intent
is to provide general insight into the range of studies
performed, without requiring a detailed protein science
background.

Background on molecular dynamics simulations
Biomolecular systems, which comprise one or more
molecules of biological interest surrounded by some
amount of solvent (e.g., a protein in water), can be
studied by a variety of computational methods. One

of these is molecular dynamics, which simulates the
movement of all of the particles of a molecular system by
iteratively solving Newton’s equations of motion. This
calculation is based on the instantaneous coordinates of
all of the particles of the system to evaluate their energies
and forces of interaction. Given the coordinates,
velocities, and resulting forces, one can compute the
coordinates and velocities that the particles would have a
short time later. This process is then repeated many times,
yielding the motion of all of the particles over the time
of the simulation. The small timesteps are usually of
the order of one femtosecond (10~'° s), and a typical
simulation might perform ten million of these steps,
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resulting in a simulation of 10 nanoseconds (1077 s). The
maximum size of the small timesteps is limited by the
fastest motions in the system, which, for biomolecules,
corresponds to the vibrations between chemically bonded
atoms.

Molecular dynamics allows one to monitor the
simulated system as it moves from one conformational
state to the next and to deduce the timescales for those
transitions compared with experimental data [4]. In
addition, a number of variations on molecular dynamics
allow one to also simulate the behavior of a molecular
system under different conditions of temperature,
pressure, and other parameters [5]. These variations allow
the simulation of biomolecules in environments that
correspond to typical experimental conditions. Under
these conditions, properties such as the relative
populations of two conformations can be determined
from the simulation and compared directly with
experimental data. A drawback of these variations is
that they alter the temporal evolution of the simulated
system, so they cannot be used to directly compare
time-dependent phenomena between simulations and
experiments. Two important forms of molecular dynamic
simulations are thermodynamic and kinetic. Both
techniques are important and provide complementary
insight into protein structure and dynamics, and both
are applied in the Blue Gene science program.

Thermodynamic questions involve the structure and
stability of conformational states of proteins. To carry
out their biological function, most proteins must be in a
specific folded state. This state is generally their “native
state,” the most thermodynamically stable conformation
for the protein under biologically relevant conditions
of temperature, pressure, and pH. As a result,
thermodynamic studies of protein folding attempt to
answer questions such as the following:

e What is the most stable structure for the protein at a
given temperature?

o [s there only one stable structure, or are there multiple
ones with comparable stability?

* How do the populations of these stable states change
with temperature?

Experimental techniques, such as X-ray crystallography
and nuclear magnetic resonance spectroscopy, provide
a partial picture of the folding thermodynamics, which
can be complemented by detailed simulations [6]. By
understanding what governs the stable states of proteins,
we will have the potential to design proteins of novel
structure [7] and function [8].

Kinetic questions are concerned with time-dependent
phenomena: specifically, the questions of how proteins
fold so quickly, how much time they spend in
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intermediate states along the folding pathway, and what
interactions govern the overall rate of folding. The first
question arises from the Levinthal paradox [9]—there
are an astronomical number of possible conformations
for a flexible protein chain [a chain of m residues could
have O(10™) distinct conformations}—but only a few
correspond to the folded state. If the folding process
involved some sort of random motion through this space
of conformations until the folded state was “found,”
proteins would fold much more slowly than observed.
Therefore, specific chemical interactions, along with
topological constraints, must guide the protein to fold
faster than it could by a simple random search. As it
folds, the time each protein spends in intermediate states
is also important. Intermediate states may be partially
folded or misfolded and hence prone to degradation [10]
or aggregation [11], both of which can affect the ability of
the protein to function, or which may themselves trigger
disease [12]. Finally, a full understanding of kinetic
phenomena in protein folding must enable us to alter
those phenomena in a deliberate fashion. By determining
which specific interactions control the overall folding
rate, we can design proteins that fold more rapidly or
more slowly by making specific mutations. Rapidly
folding protein variants could have therapeutic uses [13]
or serve as functional or structural nanomaterials.

Simulation output from Blue Matter
The first step in analyzing results from a simulation is
the retrieval of data from the running program. The
traditional view of a computer simulation writing values
to a file becomes more complex when that computer
contains thousands of independent processors working
together on the same problem. To provide a more
scalable solution that minimizes the need for
synchronized, cooperative communication among the
nodes, Blue Matter reports simulation results from
individual nodes via binary packets sent over sockets.
This allows individual nodes to report only their
contribution to simulation observables, such as total
energy, and relies on external analysis routines to
organize and integrate the packets to determine the full
simulation state over time. Although there are many
observables to study and many modes of analysis, they all
begin with the examination of a raw datagram stream
containing a sequence of packets representing partial
quantities from the simulation. Note that the frequency
of the output for various quantities can be set so that it
is appropriate to the need. For example, energy terms
are usually output much more frequently than the full
positions and velocities of the atoms, which represent
a much larger volume of data.

Numerous forms of analysis can be performed on the
output of a molecular simulation, but many of them
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represent a reduction of a large amount of information to
a simpler form that is easier to interpret. Sometimes this
process involves a visualization component based on two-
dimensional (2D) or 3D representation; at other times,
it is a strictly quantitative reduction of a value that

can be matched to experiment. One of the simplest 3D
representations of a system is a direct visualization of the
configuration, which can be useful both as a check that
the system is behaving properly and to provide insight
into dynamic processes occurring either within or
between molecules. There are many examples of familiar
single-value reductions of a molecular system, such as
total energy, temperature, and pressure, but there are
additional quantities that are specific to a system, such
as the number of native hydrogen bonds. Each of these
reduced forms can then be studied over time, allowing
additional analysis on the time series to be performed,
such as autocorrelations. Specific examples of these
reduction and visualization techniques are described

in more detail in the sections that follow.

With the advent of very-large-scale cellular computer
systems such as BG/L, there is the prospect of producing
massive volumes of data. Molecular dynamics
simulations on a 512-node BG/L partition currently
generate approximately 6 GB/day of data (2.2 TB/year)
when taking a snapshot of the simulation state every
picosecond of simulation time. On a 64-rack system, the
extrapolated volume of data might be 300 TB/year,
assuming linear scaling of the data volume because
multiple simulations could be running on the 64-rack
system. There are also significant volumes of data
generated by analysis, and there may be simulations that
require more frequent sampling of the simulation data.
Much of the data generated is “reference” data that is
accessed for analysis and then put down without any
further access. Although access to the raw data is unlikely
to be needed, there is an understandable reluctance
to actually discard it. Instead, we have adopted a
hierarchical storage approach using Tivoli* Space
Manager that migrates data to tape according to user-
defined policies.

Analysis for code validation

Analysis is useful not only for scientific insight into the
results of a simulation, but to help establish its validity
and scientific correctness [14]. One example of this is the
demonstration that the integrator, which determines the
motion of the atoms on the basis of applied forces, is
faithfully representing the forces and energies involved.
This appears most directly in the conservation of energy
in the system, but also in more subtle ways that can be
recognized by running a simulation at different timestep
sizes.
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A molecular system under simulation usually has a
conserved quantity, related to its total energy, that should
not change over time." Energy may change from potential
to kinetic, allowing the system to undergo significant
changes in its configuration and behavior, but the
conserved quantity should remain constant. In actual
simulations, the conserved quantity changes slightly
on each timestep because of the finite timestep of the
calculation, but there should be little or no drift over
time. Thus, one of the first analysis tests for the validity of
a simulation is to confirm that the conserved quantity is
not drifting excessively. An additional test of the validity
of the integrator involves running multiple short runs of
the same simulation over the same time interval, but with
a series of shorter timesteps. For short simulations
with small timesteps, the change in energy over time
should increase quadratically with timestep in a manner
that is very sensitive to integration errors [15].

Figure 1(a) shows a plot of the conserved quantity
during a short molecular simulation, along with its
constituent energy terms. On this scale, the conserved
quantity appears constant, and fluctuations of the
individual terms appear to cancel out to keep the sum
constant. Figure 1(b) shows a closeup of a series of
conserved quantity plots for the same simulation, but at
different timesteps, showing that the conserved quantity
does vary slightly, and that the fluctuations increase with
increasing timestep. Note that the vertical scale is greatly
magnified to reveal fluctuations that are small on the scale
of the actual conserved quantity. In this view, the curves
appear roughly the same shape, but the quadratically
increasing scale is not evident. Figure 1(c) shows the same
plots, but with the vertical scale decreasing quadratically
with the timestep size. This view allows a direct
comparison of the behavior of the simulations over time,
and the quadratic relationship is evident. There is a slight
departure of the curves at later time due to the slightly
different trajectory taken by the simulations, but this
is a small effect on short simulations.

A more complex simulation involving constant
temperature and pressure appears in Figure 2(a), which
shows abrupt changes in conserved quantity that appear
to scale with timestep, although quadratic behavior is not
directly evident.” When each plot is scaled quadratically
with timestep, as shown in Figure 2(b), the departure
is immediately evident and linked to the code related
to temperature control. Although this test does not
guarantee that the simulation is working correctly, it is a

'The conserved quantity can be simply the total energy, in the case of a constant
volume and energy simulation, or, more generally, it is the Hamiltonian, which can
include terms related to temperature and pressure control. Some molecular dynamics
simulations do not allow for the calculation of such a conserved quantity, but Blue
Matter provides a conserved quantity for all of its simulation modes, which allows for
important validation tests.

2Here, the conserved quantity includes terms for the energy transferred to the heat
bath and the piston that controls pressure.
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(a) Energy components during a short molecular dynamics simulation, with the conserved quantity equal to the sum of four constituent
energy terms. On this scale, there is some slight variation in the individual terms, but the conserved quantity appears nearly constant, and
the fluctuations in the terms amount to very little net change. (b) Closeup of the conserved quantity shown in (a) for three repeats of the
same simulation, but with successively doubled timesteps. Note that the initial energy is identical in the three runs, but the fluctuations
increase dramatically with timestep. Also note that the seemingly large fluctuations in this plot are closeups of the conserved quantity curve
in (a), which does reveal structure on this finer scale. (c) Another plot of the information in (b), but with the energy change scaled by the
square of the inverse timestep. If the energy fluctuations were proportional to the square of the timestep and if each simulation followed the
same configurations in time, the three curves would line up exactly. Here they line up very well, indicating a properly implemented
integrator, but with slight departure toward the end due to slight differences in configurations over time.
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(a) Plot similar to Figure 1(b), but for a more complicated simulation involving temperature and pressure control. The periodic jumps are
due to sudden randomizations of the atom velocities to maintain constant temperature. Despite the abrupt changes to the system, the
conserved quantity should still show the quadratic behavior with timestep, and on this constant scale, it is difficult to tell whether this holds.
(b) Quadratic scaling of the changes in conserved quantity, similar to Figure 1(c), reveals that the simulations are initially behaving
quadratically with timestep, but the temperature control causes sudden changes that are not quadratic. This not only indicates that there is an
error in the integrator but helps identify its location in the code. (c) Energy trace of a multinanosecond simulation shows virtually no drift
over time. This is the result of careful analysis of the behavior of the conserved quantity as a sensitive probe of integration errors, and it
provides confidence in the long simulations necessary for biologically relevant results.

sensitive test of subtle errors that would otherwise be provides confidence in the simulation results and allows

hard to find, and it serves as a necessary, though not long runs with constant energy to yield results that

sufficient, sign of a correctly implemented algorithm. provide useful kinetic information, as described in the
The end result of these and many other validation next section.

procedures appears in Figure 2(c), which is a plot of

energy over time for a 20K-atom simulation of lipid Protein kinetics study

molecules. The ability to do extended runs of large As described in the Introduction, two common but very

systems without significant drift of the conserved quantity different ways to study a protein are via thermodynamics
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Figure 3

(a) Simple “stick” view of the beta-hairpin, but with striped tubes to show the hydrogen bonds. The hairpin shape is evident, with the
hydrogen bonds linking the two “legs” together and the “turn” of the hairpin on the left side. This depiction includes all of the atoms of the
protein except the nonpolar hydrogens, which do not play a role in hydrogen bonding. The green spheres represent the counter-ions of
sodium in the simulation. The actual simulation has 1,660 water molecules surrounding the protein, but these are not shown here to avoid
obscuring the hairpin. (b) A more abstract representation of the hairpin designed to convey some of the forces that define the configuration,
with the protein shown as a ribbon colored according to the chain of amino acid residues. The green striped tube on the left is a salt bridge
near the turn; native hydrogen bonds are blue, while nonnative are red, and both show a thickness proportional to the energy of the bond.
The gray bonds represent sidechain—sidechain contacts that provide additional structural linkage. The five nearest waters are also shown.

and kinetics. Established methods exist to generate
ensembles of proteins at a given temperature on the basis of
molecular dynamics [16], and the resulting distribution of
conformations represents the “canonical ensemble” at that
temperature. Kinetic information tends to be more elusive,
largely because the timescales of protein processes are so
much longer (microseconds) compared with the timestep of
the simulation (femtoseconds)—a factor of one billion.

As our first experiment with Blue Matter molecular
dynamics, we chose a novel approach to determine kinetic
information about a small protein by running many
short, independent simulations in parallel in order to
piece together the behavior of a typical protein over a
long period of time. The technique involved starting a
number of independent runs (237) of a protein from a
wide range of initial configurations and tracking their
changing shape over time. Different configurations were
divided into bins, and the time spent in each bin, along
with the probability of transitioning to other bins,
allowed a Markov model of the folding process that, in
theory, could predict the folding rate and the equilibrium
(canonical) ensemble.

The protein in the study was the beta-hairpin from the
C-terminus of protein G, which is a 16-residue peptide
commonly used in protein simulations because of its rich
folding behavior despite its small size [17]. An early
step in analyzing a protein simulation is to determine
observables that characterize the state of the protein
with regard to its degree of foldedness. Two common
observables are the number of hydrogen bonds formed
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and the radius of gyration, but many others can be
defined [18]. Hydrogen bonds are part of what gives a
protein its shape, and the folded configuration consists
of a number of native bonds. An arbitrary protein
configuration may consist of some native bonds and other
non-native bonds that may be obstructing or assisting the
path to the folded configuration. The radius of gyration
captures the extent of the protein, with a small value
indicating a compact structure. For the hairpin, the
number of native bonds and the radius of gyration
together define a 2D space into which a given protein
configuration can be plotted.

Figure 3(a) is a rendering of a folded configuration of
the beta-hairpin created with the Prototype Protein Viewer
[19]—the visualization component of the Blue Matter
framework. This is a standard “stick” view of the protein,
but with a novel representation of the hydrogen bonds
as striped tubes with thickness proportional to their
energies. This is a relatively direct view of the molecule
layout and provides precise location of the individual
atoms, but it does not convey the underlying forces
responsible for the shape, except for the hydrogen bonds.
In contrast, Figure 3(b) shows the ribbon shape of the
peptide pioneered by Richardson [20], along with novel
representations of other structural components, such
as salt bridges and sidechain—sidechain contacts. This
is a reduced, abstract view of an otherwise opaque
arrangement of atoms; it conveys in one image many of
the forces dictating the shape of the protein and their
spatial relationship. These representations were very 479
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(a) Scatterplot of configurations from a replica-exchange simulation of the hairpin showing the increasing spread of points with
temperature. Each configuration appears as a small transparent square colored according to temperature. The vertical axis represents the size
of the central region of the hairpin; the horizontal axis corresponds to the number of native hydrogen bonds. The upper left is fully
unfolded; the lower right is fully folded. (b) Free-energy landscape of (a) as a 3D surface based on data from a single temperature. The
relative occupation of the bonded areas is evident, as is the separation of bonded from nonbonded configurations.

helpful in interpreting the many protein simulations
performed for this kinetics study.

If one selects thousands of hairpin configurations
randomly from an ensemble at a given temperature,
a distribution appears as shown in Figure 4(a). When
this scatterplot is instead shown as a log histogram,
it represents the “free-energy surface” at the given
temperature and depicts the relative distribution of
configurations in the canonical ensemble. Figure 4(b)
depicts the resulting histogram as a surface in three
dimensions, with height proportional to the log of the
probability density. In each figure, the strong vertical
bands are due to the successive numbers of native
hydrogen bonds, and the L-shaped appearance captures
extended, nonbonded configurations in the upper left and
collapsed, fully folded configurations in the lower right.
Note that the distribution of configurations indicates that
the hairpins do not simply fold and remain folded, but
instead are constantly changing from one configuration
to another. However, this thermodynamic picture tells us
nothing about how a given hairpin moves about this
landscape. That perspective requires a kinetics study.

For the kinetics experiment, we selected 237 starting
configurations distributed around the free-energy
landscape and launched independent simulations using
Blue Matter on an IBM SP* computer. Each simulation
involved 256 protein atoms, 1,660 water molecules, and
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three counter-ions to balance the charge in the system.’
(It is not uncommon for protein—water simulations to
be dominated by the computational costs of the water
molecules). As each of the protein systems evolved in
time, its trajectory on the free-energy landscape captured
the folding and unfolding process of an individual
protein. Figure 5 is a unique visualization that combines
the kinetic data from the independent trajectories with
the thermodynamic data from the canonical ensemble.
By running all systems in parallel and starting them
distributed around the free-energy surface, we were able
to track the behavior of individual proteins in different
sections of the landscape at the same time. This
embarrassingly parallel technique was well suited to an
IBM SP computer rather than a tightly coupled shared
memory machine, since the different simulations were
independent and did not communicate with one another
while they were running. This is in contrast to other
simulations that require a large number of atoms and
many processors in parallel working on a single molecular
system.

After running each of the trajectories for
approximately one nanosecond, most of the free-energy

*These were NVE runs using the OPLSAA force field and SPC water in a 38-A box.
P3ME electrostatics provided fully periodic boundary conditions, and heavy-atom
hydrogens were rigidly constrained, allowing one-femtosecond timesteps. (An NVE
simulation has a constant number of particles, constant volume, and constant energy.
OPLSAA = optimized potential for liquid simulation—all atom. SPC = single point
charge. P3SME = particle-particle particle-mesh Ewald.)
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Combination of the static, thermodynamic view of the free-energy
landscape from Figure 4(b) with kinetics from several independent
trajectories of the hairpin system started from a range of initial
configurations. Each trajectory is colored differently and explores
its own region of the free-energy landscape. A single, very long
simulation would gradually explore the entire landscape, showing
local behavior similar to that seen in each of the short simulations.

surface had been visited by at least one trajectory, and
together they provided good statistical coverage of

the entire region. By dividing the area into bins and
statistically determining the mean time in each bin, along
with the likelihood of transitioning into the other bins, a
transition matrix was defined for the process, which was
then modeled using Markov methods. The full theory
behind this technique is described in [21], but Figure 6 is a
visualization of the transition matrix as a pattern of
directed arcs, with probability flux depicted as thickness
along each tube. The combination of the static
thermodynamic information in the free-energy landscape
with a reduced but easily interpreted view of the path of a
protein along the surface is abstractly visualized as hops
between bins with corresponding branching probabilities.
The full results of the simulation are described in [22],
which presents the first publication of simulation work
done with Blue Matter as part of the Blue Gene project.
Although the behavior of the hairpin turned out to be too
complex to be Markovian in our simple binning scheme,
the technique shows promise for modeling protein
transitions on the basis of data from multiple independent
runs. We did not perform the simulation on Blue Gene
hardware (since it did not yet exist), but the experiment was
consistent with the research goals of the Blue Gene project
and exercised Blue Matter along with its analysis framework.

Lipid—cholesterol bilayer membrane system

The next system we studied was a lipid bilayer consisting
of 20K atoms, corresponding to a substantial increase
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Depiction of a Markov model of the hairpin folding process
deduced from observed transitions in many short trajectories. The
circles are at the centers of bins defined on the landscape, and the
arcs depict the probability flux flowing between the bins. The
size of each circle depicts the expected occupancy of the bin, and
the color conveys the bin lifetime, with blue to red representing
short to long.

in system size from the hairpin. Lipid membranes are
biologically important because they form the cell wall and
control the transfer of material into and out of the cell. They
are also important as the location where many proteins
perform their function, as described in the final section.
Figure 7 shows a cross section of the lipid—cholesterol
simulation, with two layers of lipid forming the bilayer,
a layer of water on the outside, and cholesterols
interspersed among the lipids as they would be in a real
membrane.* A key role of analysis for this system is to
“This simulation consisted of 72 SDPC lipid molecules and 24 cholesterols in two
leaflets, plus 2,174 TIP3P water molecules, using the CHARMM27 force field; NVE
ensemble with a 2-fs timestep and rigid bonds to hydrogen. (CHARMM = chemistry
at Harvard molecular mechanics [23]. TIP3P = transferable intermolecular potentials

with three point charges. SDPC = 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-
phosphocholine.)
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Cross-sectional view of a lipid—cholesterol bilayer membrane with
water molecules on each side. Each blue strand is one chain of a
lipid, and each lipid has two chains plus a head group. Cholesterols
are interspersed in the lipids and shown as the gray molecules. The
lipid—holesterol system is split horizontally into two leaflets,
consistent with the structure found in a cell wall, which acts as a
permeable barrier between two solutions.

characterize the way in which cholesterols interact with
the lipids. One way to do this is with histograms of the
atoms in the vicinity of the cholesterol, which can then be
sliced and shown as the isolines in Figure 8(a). Three-
dimensional visualization helps here by avoiding the
need to slice the volume and instead showing a three-
dimensional isosurface of the histogram [Figure 8(b)].
This immediately conveys the density of neighboring
atoms around the cholesterol and reveals preferential
associations at an atomistic level that can be accessed
only via simulations such as these. Additional details
of membrane simulation and analysis are discussed in
the next section, which describes a lipid—cholesterol
membrane and its interaction with an embedded
membrane protein, rhodopsin.

Rhodopsin simulation on Blue Gene/L
Membrane proteins are the focus of more than half of the
contemporary drug targets [24]. It is difficult to obtain
structural detail for membrane proteins at atomic
resolution because of the challenges of growing crystals of
proteins in a membrane environment [25, 26]. In addition
to structure, the functional dynamics are accessible

via spectroscopic techniques [27-29]. The added
complexity of the membrane environment must be
included in membrane protein studies, since the
composition of the membrane can have dramatic

effects on the function of a protein [30-32].

Simulation of membrane protein environments has
received a direct benefit from recent advances in
supercomputing. The ability to produce tens to hundreds
of nanoseconds of a fully atomistic simulation of
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membrane environments has produced detailed
characterization of their structure and dynamics to a
degree previously unavailable and at a scale inaccessible
by experiment. As a result, simulation can offer
additional insight into the structure, dynamics, and
environment of the membrane proteins themselves [33].

Rhodopsin is a member of the signaling protein family
known as G-protein-coupled receptors (GPCRs) [34-37].
It functions as the first step in the signal cascade

(b)

(a) Average neighborhood of a cholesterol molecule showing the
density of adjacent atoms in a horizontal slice through each choles-
terol. This 2D view shows preferential associations along each
“face” of the molecule, but is hard to interpret, since it represents
only a single slice through a complicated 3D interaction. (b) The
same information as in (a), but shown as 3D isosurfaces in the
context of a model of the cholesterol. In addition, the proximity of
water molecules is shown as the red isosurface above. This use of
3D analysis immediately conveys the three dimensions of the
cholesterol neighborhood in ways that would be difficult to
assemble from multiple 2D slices as shown in (a).
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that results in the perception of light [38], but has the
distinction of being the only GPCR whose structure is
known with atomic resolution [25]. Although other
workers have used molecular dynamics to study
rhodopsin in a membrane environment [33], we have
chosen to apply the capabilities of BG/L to simulate
rhodopsin in a more complex, native-like environment
of polyunsaturated lipids with cholesterol.

Setting up a large-scale simulation is technically
demanding and requires a lengthy equilibration protocol.
This is complicated by the fact that it is difficult to
determine the point in time at which equilibrium has been
reached. For a system as complex as rhodopsin in a two-
component lipid matrix with cholesterol, the equilibration
time alone can extend to tens of nanoseconds. Until
recently, this would have represented the full time allotted
to a complete simulation, because of the limited
computing resource available.

Figure 9(a) shows a top view of the rhodopsin/lipid/
cholesterol system, looking down on the membrane
surface. The rhodopsin appears as a red ribbon; the green
and blue respectively represent the SDPE and SDPC?,
and the cholesterol atoms are shown as gray spheres. This
snapshot is from early in the simulation, before the
cholesterol distribution has had time to fully equilibrate.
Experimental diffusion rates for cholesterol are of the
order of 1 X 1077 cm?/s [39], which means that many
nanoseconds of simulation time are required for the
cholesterol distribution to reach a steady state.

The changing cholesterol distribution around
rhodopsin as it progresses toward equilibrium appears
in Figure 9(b) as successive histograms of the radial
distribution of cholesterol over time. The counts of
cholesterol molecules at a given distance are shown on
the vertical scale, where the light color indicates greater
likelihood at that distance. Each vertical histogram is an
average of the cholesterols over a 250-picosecond time
window. The most likely range, which appears as a band
of gray across the time axis, is fairly stable, suggesting
that the setup protocol produced a configuration near
equilibrium. The minimum and maximum ranges of each
histogram, however, show a general trend downward.
The minimum distances decrease, which indicates that
equilibrium includes some cholesterols closely associated
with rhodopsin.

Another, simpler, way to characterize the equilibration
of the system is to study the mean radius of the
cholesterols over time, which amounts to a further
reduced representation of the histogram strip chart.
Figure 10(a) shows the time evolution of the mean radius
of cholesterol from the rhodopsin center of mass. The

*SDPE and SDPC are abbreviations for the chemical makeup of the lipids: SDPE
is 1-stearoyl-2-docosahexaenoyl-sn-glycerophosphoethanolamine, and SDPC is
1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine.
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(a) Top view of the rhodopsin system, consisting of the rhodopsin
protein, shown as the red ribbon, surrounded by the two-component
lipid system, shown in green and blue, and the cholesterol, shown in
gray. (b) This plot captures the equilibration of the rhodopsin
system by showing the changing radial distribution of cholesterol
over time. Each vertical slice is a histogram at that point in time of
the radial distribution of cholesterol from the center of the protein.
There is a fair amount of mixing evident, but with an overall
declining trend that is largely equilibrated after 25 ns.

clear oscillatory pattern indicates fluctuations in the
cholesterol distribution on a timescale of several
nanoseconds. The amplitude of the oscillations is
damping to a converged value, suggesting significant
progress toward equilibrium in approximately 25 ns.
Figure 10(b) suggests that in the first 30 ns, part
of the rhodopsin structure underwent a rotation of
approximately 10 degrees from the initial setup
conditions and then stabilized during the 30-ns to 40-ns
time frame. Further monitoring is needed to establish
stability in the overall rhodopsin orientation, since
protein motion occurs on a timescale of tens of
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Figure 10

(a) Plot reduced from the information in Figure 9(b), showing
simply the mean cholesterol radial distance over time. Here, initial
oscillations are evident, which are largely damped out after 25 ns.
(b) Changing angle of rhodopsin over time, indicating only a slight
shift over many nanoseconds. The lack of rotation simplifies the
interpretation of the local behavior of lipid and cholesterol near the
protein.

nanoseconds. It is not clear how much of this rotation is
due to an internal conformational change in rhodopsin,

or whether it represents an overall rigid body rotation as
it adjusts to its environment; however, the fact that the

protein is not making significant angular changes greatly
simplifies the analysis of the neighboring lipid—cholesterol
environment.

Care must be taken to validate interpretations of the
rich detail offered by fully atomistic simulations of
complex environments, such as the one described here.
Each line of analysis should make contact with what
can be experimentally observed. For example, some
measurable spectroscopic quantities can be calculated
from the simulation and compared with experiment. Once
validated, the atomic detail can be examined further for

F. SUITS ET AL.

mechanistic insight that is inaccessible experimentally.
Simulation, once validated with experiment, can help
interpret experimental results by providing a greater level
of detail than is available with contemporary techniques.
Supercomputing resources such as BG/L have expanded
the level at which complex biological phenomena may
be studied. Most significantly, the newly harnessed
capability enables investigations that could not have
been attempted a few years ago. In this light, the
potential advances with BG/L are in kind, rather than
in degree. The rhodopsin simulations are ongoing and
will be investigated in detail using techniques such as
those described above.

Conclusion

The Blue Gene/L project has been on a dual path to
produce a massively parallel machine and associated
scalable software to make use of its power. As more
nodes of the machine become available, the scientific
possibilities increase tremendously, since the simulations
can then access more biologically interesting scales of
time and complexity. Much insight has already emerged
from Blue Matter simulations on an IBM SP computer
and on a BG/L computer of up to 512 nodes, and we look
forward to the completion of our work on rhodopsin and
the continuation onto more complex systems as the node
count expands.
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