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The Blue Genet project involves the development of a highly
parallel supercomputer, the coding of scalable applications to run
on it, and the design of protein simulations that take advantage of
the power provided by the new machine. This paper provides an
overview of analysis techniques applied to scientific results obtained
with Blue Matter, the software framework for performing
molecular dynamics simulations on the Blue Gene/L computer.
Blue Matter is a portable environment that runs on several
platforms ranging from single-processor to massively parallel
machines. Since the Blue Gene/L computer has become available
only recently, this work describes analysis techniques applied to a
range of experiments of increasing complexity on a corresponding
range of machine sizes, concluding with a membrane protein
simulation currently running on a 512-node Blue Gene/L computer.

Introduction
The Blue Gene* project was originally conceived in 1999

with the goal of building a petaflops computer to address

the grand challenge problem of protein folding [1].

Since then, the machine design has evolved, as have the

scientific objectives, but the goal of gaining insight into

protein science and the mechanisms behind protein

folding remains. We chose classical molecular dynamics

as the method for simulating protein systems and

designed a software framework—called Blue Matter—

for doing these simulations on highly parallel

machines consisting of thousands of nodes [2].

It is important to emphasize that the Blue Gene project

involves not only the development of a powerful, highly

parallel computer, but the design of software and

mathematical approaches [3] that take advantage of this

power, and the application of the software to do research

in protein science. Since the Blue Gene/L (BG/L)

hardware has been available for production only within

the last year preceding this writing, this paper includes

scientific results obtained on traditional IBM computers

and describes some of the techniques for validating the

software as it was developed. In short, a great deal of

BG/L science was done prior to the arrival of the

computer hardware, both in the development of a

highly parallel application framework and in molecular

simulations performed on conventional hardware. In

this paper, we describe the progression of experiments

performed with the Blue Matter framework, with an

emphasis on the analysis applied to the results. The intent

is to provide general insight into the range of studies

performed, without requiring a detailed protein science

background.

Background on molecular dynamics simulations
Biomolecular systems, which comprise one or more

molecules of biological interest surrounded by some

amount of solvent (e.g., a protein in water), can be

studied by a variety of computational methods. One

of these is molecular dynamics, which simulates the

movement of all of the particles of a molecular system by

iteratively solving Newton’s equations of motion. This

calculation is based on the instantaneous coordinates of

all of the particles of the system to evaluate their energies

and forces of interaction. Given the coordinates,

velocities, and resulting forces, one can compute the

coordinates and velocities that the particles would have a

short time later. This process is then repeated many times,

yielding the motion of all of the particles over the time

of the simulation. The small timesteps are usually of

the order of one femtosecond (10�15 s), and a typical

simulation might perform ten million of these steps,
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resulting in a simulation of 10 nanoseconds (10�9 s). The

maximum size of the small timesteps is limited by the

fastest motions in the system, which, for biomolecules,

corresponds to the vibrations between chemically bonded

atoms.

Molecular dynamics allows one to monitor the

simulated system as it moves from one conformational

state to the next and to deduce the timescales for those

transitions compared with experimental data [4]. In

addition, a number of variations on molecular dynamics

allow one to also simulate the behavior of a molecular

system under different conditions of temperature,

pressure, and other parameters [5]. These variations allow

the simulation of biomolecules in environments that

correspond to typical experimental conditions. Under

these conditions, properties such as the relative

populations of two conformations can be determined

from the simulation and compared directly with

experimental data. A drawback of these variations is

that they alter the temporal evolution of the simulated

system, so they cannot be used to directly compare

time-dependent phenomena between simulations and

experiments. Two important forms of molecular dynamic

simulations are thermodynamic and kinetic. Both

techniques are important and provide complementary

insight into protein structure and dynamics, and both

are applied in the Blue Gene science program.

Thermodynamic questions involve the structure and

stability of conformational states of proteins. To carry

out their biological function, most proteins must be in a

specific folded state. This state is generally their ‘‘native

state,’’ the most thermodynamically stable conformation

for the protein under biologically relevant conditions

of temperature, pressure, and pH. As a result,

thermodynamic studies of protein folding attempt to

answer questions such as the following:

� What is the most stable structure for the protein at a

given temperature?
� Is there only one stable structure, or are there multiple

ones with comparable stability?
� How do the populations of these stable states change

with temperature?

Experimental techniques, such as X-ray crystallography

and nuclear magnetic resonance spectroscopy, provide

a partial picture of the folding thermodynamics, which

can be complemented by detailed simulations [6]. By

understanding what governs the stable states of proteins,

we will have the potential to design proteins of novel

structure [7] and function [8].

Kinetic questions are concerned with time-dependent

phenomena: specifically, the questions of how proteins

fold so quickly, how much time they spend in

intermediate states along the folding pathway, and what

interactions govern the overall rate of folding. The first

question arises from the Levinthal paradox [9]—there

are an astronomical number of possible conformations

for a flexible protein chain [a chain of m residues could

have O(10m) distinct conformations]—but only a few

correspond to the folded state. If the folding process

involved some sort of random motion through this space

of conformations until the folded state was ‘‘found,’’

proteins would fold much more slowly than observed.

Therefore, specific chemical interactions, along with

topological constraints, must guide the protein to fold

faster than it could by a simple random search. As it

folds, the time each protein spends in intermediate states

is also important. Intermediate states may be partially

folded or misfolded and hence prone to degradation [10]

or aggregation [11], both of which can affect the ability of

the protein to function, or which may themselves trigger

disease [12]. Finally, a full understanding of kinetic

phenomena in protein folding must enable us to alter

those phenomena in a deliberate fashion. By determining

which specific interactions control the overall folding

rate, we can design proteins that fold more rapidly or

more slowly by making specific mutations. Rapidly

folding protein variants could have therapeutic uses [13]

or serve as functional or structural nanomaterials.

Simulation output from Blue Matter
The first step in analyzing results from a simulation is

the retrieval of data from the running program. The

traditional view of a computer simulation writing values

to a file becomes more complex when that computer

contains thousands of independent processors working

together on the same problem. To provide a more

scalable solution that minimizes the need for

synchronized, cooperative communication among the

nodes, Blue Matter reports simulation results from

individual nodes via binary packets sent over sockets.

This allows individual nodes to report only their

contribution to simulation observables, such as total

energy, and relies on external analysis routines to

organize and integrate the packets to determine the full

simulation state over time. Although there are many

observables to study and many modes of analysis, they all

begin with the examination of a raw datagram stream

containing a sequence of packets representing partial

quantities from the simulation. Note that the frequency

of the output for various quantities can be set so that it

is appropriate to the need. For example, energy terms

are usually output much more frequently than the full

positions and velocities of the atoms, which represent

a much larger volume of data.

Numerous forms of analysis can be performed on the

output of a molecular simulation, but many of them
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represent a reduction of a large amount of information to

a simpler form that is easier to interpret. Sometimes this

process involves a visualization component based on two-

dimensional (2D) or 3D representation; at other times,

it is a strictly quantitative reduction of a value that

can be matched to experiment. One of the simplest 3D

representations of a system is a direct visualization of the

configuration, which can be useful both as a check that

the system is behaving properly and to provide insight

into dynamic processes occurring either within or

between molecules. There are many examples of familiar

single-value reductions of a molecular system, such as

total energy, temperature, and pressure, but there are

additional quantities that are specific to a system, such

as the number of native hydrogen bonds. Each of these

reduced forms can then be studied over time, allowing

additional analysis on the time series to be performed,

such as autocorrelations. Specific examples of these

reduction and visualization techniques are described

in more detail in the sections that follow.

With the advent of very-large-scale cellular computer

systems such as BG/L, there is the prospect of producing

massive volumes of data. Molecular dynamics

simulations on a 512-node BG/L partition currently

generate approximately 6 GB/day of data (2.2 TB/year)

when taking a snapshot of the simulation state every

picosecond of simulation time. On a 64-rack system, the

extrapolated volume of data might be 300 TB/year,

assuming linear scaling of the data volume because

multiple simulations could be running on the 64-rack

system. There are also significant volumes of data

generated by analysis, and there may be simulations that

require more frequent sampling of the simulation data.

Much of the data generated is ‘‘reference’’ data that is

accessed for analysis and then put down without any

further access. Although access to the raw data is unlikely

to be needed, there is an understandable reluctance

to actually discard it. Instead, we have adopted a

hierarchical storage approach using Tivoli* Space

Manager that migrates data to tape according to user-

defined policies.

Analysis for code validation

Analysis is useful not only for scientific insight into the

results of a simulation, but to help establish its validity

and scientific correctness [14]. One example of this is the

demonstration that the integrator, which determines the

motion of the atoms on the basis of applied forces, is

faithfully representing the forces and energies involved.

This appears most directly in the conservation of energy

in the system, but also in more subtle ways that can be

recognized by running a simulation at different timestep

sizes.

A molecular system under simulation usually has a

conserved quantity, related to its total energy, that should

not change over time.1 Energy may change from potential

to kinetic, allowing the system to undergo significant

changes in its configuration and behavior, but the

conserved quantity should remain constant. In actual

simulations, the conserved quantity changes slightly

on each timestep because of the finite timestep of the

calculation, but there should be little or no drift over

time. Thus, one of the first analysis tests for the validity of

a simulation is to confirm that the conserved quantity is

not drifting excessively. An additional test of the validity

of the integrator involves running multiple short runs of

the same simulation over the same time interval, but with

a series of shorter timesteps. For short simulations

with small timesteps, the change in energy over time

should increase quadratically with timestep in a manner

that is very sensitive to integration errors [15].

Figure 1(a) shows a plot of the conserved quantity

during a short molecular simulation, along with its

constituent energy terms. On this scale, the conserved

quantity appears constant, and fluctuations of the

individual terms appear to cancel out to keep the sum

constant. Figure 1(b) shows a closeup of a series of

conserved quantity plots for the same simulation, but at

different timesteps, showing that the conserved quantity

does vary slightly, and that the fluctuations increase with

increasing timestep. Note that the vertical scale is greatly

magnified to reveal fluctuations that are small on the scale

of the actual conserved quantity. In this view, the curves

appear roughly the same shape, but the quadratically

increasing scale is not evident. Figure 1(c) shows the same

plots, but with the vertical scale decreasing quadratically

with the timestep size. This view allows a direct

comparison of the behavior of the simulations over time,

and the quadratic relationship is evident. There is a slight

departure of the curves at later time due to the slightly

different trajectory taken by the simulations, but this

is a small effect on short simulations.

A more complex simulation involving constant

temperature and pressure appears in Figure 2(a), which

shows abrupt changes in conserved quantity that appear

to scale with timestep, although quadratic behavior is not

directly evident.2 When each plot is scaled quadratically

with timestep, as shown in Figure 2(b), the departure

is immediately evident and linked to the code related

to temperature control. Although this test does not

guarantee that the simulation is working correctly, it is a

1The conserved quantity can be simply the total energy, in the case of a constant
volume and energy simulation, or, more generally, it is the Hamiltonian, which can
include terms related to temperature and pressure control. Some molecular dynamics
simulations do not allow for the calculation of such a conserved quantity, but Blue
Matter provides a conserved quantity for all of its simulation modes, which allows for
important validation tests.
2Here, the conserved quantity includes terms for the energy transferred to the heat
bath and the piston that controls pressure.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 F. SUITS ET AL.

477



sensitive test of subtle errors that would otherwise be

hard to find, and it serves as a necessary, though not

sufficient, sign of a correctly implemented algorithm.

The end result of these and many other validation

procedures appears in Figure 2(c), which is a plot of

energy over time for a 20K-atom simulation of lipid

molecules. The ability to do extended runs of large

systems without significant drift of the conserved quantity

provides confidence in the simulation results and allows

long runs with constant energy to yield results that

provide useful kinetic information, as described in the

next section.

Protein kinetics study
As described in the Introduction, two common but very

different ways to study a protein are via thermodynamics

Figure 1

(a) Energy components during a short molecular dynamics simulation, with the conserved quantity equal to the sum of four constituent 
energy terms. On this scale, there is some slight variation in the individual terms, but the conserved quantity appears nearly constant, and 
the fluctuations in the terms amount to very little net change. (b) Closeup of the conserved quantity shown in (a) for three repeats of the 
same simulation, but with successively doubled timesteps. Note that the initial energy is identical in the three runs, but the fluctuations 
increase dramatically with timestep. Also note that the seemingly large fluctuations in this plot are closeups of the conserved quantity curve 
in (a), which does reveal structure on this finer scale. (c) Another plot of the information in (b), but with the energy change scaled by the 
square of the inverse timestep. If the energy fluctuations were proportional to the square of the timestep and if each simulation followed the 
same configurations in time, the three curves would line up exactly. Here they line up very well, indicating a properly implemented 
integrator, but with slight departure toward the end due to slight differences in configurations over time.
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Figure 2

(a) Plot similar to Figure 1(b), but for a more complicated simulation involving temperature and pressure control. The periodic jumps are 
due to sudden randomizations of the atom velocities to maintain constant temperature. Despite the abrupt changes to the system, the 
conserved quantity should still show the quadratic behavior with timestep, and on this constant scale, it is difficult to tell whether this holds. 
(b) Quadratic scaling of the changes in conserved quantity, similar to Figure 1(c), reveals that the simulations are initially behaving 
quadratically with timestep, but the temperature control causes sudden changes that are not quadratic. This not only indicates that there is an 
error in the integrator but helps identify its location in the code. (c) Energy trace of a multinanosecond simulation shows virtually no drift 
over time. This is the result of careful analysis of the behavior of the conserved quantity as a sensitive probe of integration errors, and it 
provides confidence in the long simulations necessary for biologically relevant results.
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and kinetics. Established methods exist to generate

ensembles of proteins at a given temperature on the basis of

molecular dynamics [16], and the resulting distribution of

conformations represents the ‘‘canonical ensemble’’ at that

temperature. Kinetic information tends to be more elusive,

largely because the timescales of protein processes are so

much longer (microseconds) comparedwith the timestep of

the simulation (femtoseconds)—a factor of one billion.

As our first experiment with Blue Matter molecular

dynamics, we chose a novel approach to determine kinetic

information about a small protein by running many

short, independent simulations in parallel in order to

piece together the behavior of a typical protein over a

long period of time. The technique involved starting a

number of independent runs (237) of a protein from a

wide range of initial configurations and tracking their

changing shape over time. Different configurations were

divided into bins, and the time spent in each bin, along

with the probability of transitioning to other bins,

allowed a Markov model of the folding process that, in

theory, could predict the folding rate and the equilibrium

(canonical) ensemble.

The protein in the study was the beta-hairpin from the

C-terminus of protein G, which is a 16-residue peptide

commonly used in protein simulations because of its rich

folding behavior despite its small size [17]. An early

step in analyzing a protein simulation is to determine

observables that characterize the state of the protein

with regard to its degree of foldedness. Two common

observables are the number of hydrogen bonds formed

and the radius of gyration, but many others can be

defined [18]. Hydrogen bonds are part of what gives a

protein its shape, and the folded configuration consists

of a number of native bonds. An arbitrary protein

configuration may consist of some native bonds and other

non-native bonds that may be obstructing or assisting the

path to the folded configuration. The radius of gyration

captures the extent of the protein, with a small value

indicating a compact structure. For the hairpin, the

number of native bonds and the radius of gyration

together define a 2D space into which a given protein

configuration can be plotted.

Figure 3(a) is a rendering of a folded configuration of

the beta-hairpin created with the Prototype Protein Viewer

[19]—the visualization component of the Blue Matter

framework. This is a standard ‘‘stick’’ view of the protein,

but with a novel representation of the hydrogen bonds

as striped tubes with thickness proportional to their

energies. This is a relatively direct view of the molecule

layout and provides precise location of the individual

atoms, but it does not convey the underlying forces

responsible for the shape, except for the hydrogen bonds.

In contrast, Figure 3(b) shows the ribbon shape of the

peptide pioneered by Richardson [20], along with novel

representations of other structural components, such

as salt bridges and sidechain–sidechain contacts. This

is a reduced, abstract view of an otherwise opaque

arrangement of atoms; it conveys in one image many of

the forces dictating the shape of the protein and their

spatial relationship. These representations were very

Figure 3

(a) Simple “stick” view of the beta-hairpin, but with striped tubes to show the hydrogen bonds. The hairpin shape is evident, with the 
hydrogen bonds linking the two “legs” together and the “turn” of the hairpin on the left side. This depiction includes all of the atoms of the 
protein except the nonpolar hydrogens, which do not play a role in hydrogen bonding. The green spheres represent the counter-ions of 
sodium in the simulation. The actual simulation has 1,660 water molecules surrounding the protein, but these are not shown here to avoid 
obscuring the hairpin. (b) A more abstract representation of the hairpin designed to convey some of the forces that define the configuration, 
with the protein shown as a ribbon colored according to the chain of amino acid residues. The green striped tube on the left is a salt bridge 
near the turn; native hydrogen bonds are blue, while nonnative are red, and both show a thickness proportional to the energy of the bond. 
The gray bonds represent sidechain–sidechain contacts that provide additional structural linkage. The five nearest waters are also shown.

(a) (b)
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helpful in interpreting the many protein simulations

performed for this kinetics study.

If one selects thousands of hairpin configurations

randomly from an ensemble at a given temperature,

a distribution appears as shown in Figure 4(a). When

this scatterplot is instead shown as a log histogram,

it represents the ‘‘free-energy surface’’ at the given

temperature and depicts the relative distribution of

configurations in the canonical ensemble. Figure 4(b)

depicts the resulting histogram as a surface in three

dimensions, with height proportional to the log of the

probability density. In each figure, the strong vertical

bands are due to the successive numbers of native

hydrogen bonds, and the L-shaped appearance captures

extended, nonbonded configurations in the upper left and

collapsed, fully folded configurations in the lower right.

Note that the distribution of configurations indicates that

the hairpins do not simply fold and remain folded, but

instead are constantly changing from one configuration

to another. However, this thermodynamic picture tells us

nothing about how a given hairpin moves about this

landscape. That perspective requires a kinetics study.

For the kinetics experiment, we selected 237 starting

configurations distributed around the free-energy

landscape and launched independent simulations using

Blue Matter on an IBM SP* computer. Each simulation

involved 256 protein atoms, 1,660 water molecules, and

three counter-ions to balance the charge in the system.3

(It is not uncommon for protein–water simulations to

be dominated by the computational costs of the water

molecules). As each of the protein systems evolved in

time, its trajectory on the free-energy landscape captured

the folding and unfolding process of an individual

protein. Figure 5 is a unique visualization that combines

the kinetic data from the independent trajectories with

the thermodynamic data from the canonical ensemble.

By running all systems in parallel and starting them

distributed around the free-energy surface, we were able

to track the behavior of individual proteins in different

sections of the landscape at the same time. This

embarrassingly parallel technique was well suited to an

IBM SP computer rather than a tightly coupled shared

memory machine, since the different simulations were

independent and did not communicate with one another

while they were running. This is in contrast to other

simulations that require a large number of atoms and

many processors in parallel working on a single molecular

system.

After running each of the trajectories for

approximately one nanosecond, most of the free-energy

Figure 4

(a) Scatterplot of configurations from a replica-exchange simulation of the hairpin showing the increasing spread of points with 
temperature. Each configuration appears as a small transparent square colored according to temperature. The vertical axis represents the size 
of the central region of the hairpin; the horizontal axis corresponds to the number of native hydrogen bonds. The upper left is fully 
unfolded; the lower right is fully folded. (b) Free-energy landscape of (a) as a 3D surface based on data from a single temperature. The 
relative occupation of the bonded areas is evident, as is the separation of bonded from nonbonded configurations.
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3These were NVE runs using the OPLSAA force field and SPC water in a 38-Å box.
P3ME electrostatics provided fully periodic boundary conditions, and heavy-atom
hydrogens were rigidly constrained, allowing one-femtosecond timesteps. (An NVE
simulation has a constant number of particles, constant volume, and constant energy.
OPLSAA = optimized potential for liquid simulation—all atom. SPC = single point
charge. P3ME = particle-particle particle-mesh Ewald.)

F. SUITS ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

480



surface had been visited by at least one trajectory, and

together they provided good statistical coverage of

the entire region. By dividing the area into bins and

statistically determining the mean time in each bin, along

with the likelihood of transitioning into the other bins, a

transition matrix was defined for the process, which was

then modeled using Markov methods. The full theory

behind this technique is described in [21], but Figure 6 is a

visualization of the transition matrix as a pattern of

directed arcs, with probability flux depicted as thickness

along each tube. The combination of the static

thermodynamic information in the free-energy landscape

with a reduced but easily interpreted view of the path of a

protein along the surface is abstractly visualized as hops

between bins with corresponding branching probabilities.

The full results of the simulation are described in [22],

which presents the first publication of simulation work

done with Blue Matter as part of the Blue Gene project.

Although the behavior of the hairpin turned out to be too

complex to be Markovian in our simple binning scheme,

the technique shows promise for modeling protein

transitions on the basis of data from multiple independent

runs. We did not perform the simulation on Blue Gene

hardware (since it did not yet exist), but the experiment was

consistent with the research goals of the Blue Gene project

andexercisedBlueMatter alongwith its analysis framework.

Lipid–cholesterol bilayer membrane system

The next system we studied was a lipid bilayer consisting

of 20K atoms, corresponding to a substantial increase

in system size from the hairpin. Lipid membranes are

biologically important because they form the cell wall and

control the transfer ofmaterial into andout of the cell. They

are also important as the location where many proteins

perform their function, as described in the final section.

Figure 7 shows a cross section of the lipid–cholesterol

simulation, with two layers of lipid forming the bilayer,

a layer of water on the outside, and cholesterols

interspersed among the lipids as they would be in a real

membrane.4 A key role of analysis for this system is to

Figure 5

Combination of the static, thermodynamic view of the free-energy 
landscape from Figure 4(b) with kinetics from several independent 
trajectories of the hairpin system started from a range of initial 
configurations. Each trajectory is colored differently and explores 
its own region of the free-energy landscape. A single, very long 
simulation would gradually explore the entire landscape, showing 
local behavior similar to that seen in each of the short simulations.

Figure 6

Depiction of a Markov model of the hairpin folding process 
deduced from observed transitions in many short trajectories. The 
circles are at the centers of bins defined on the landscape, and the 
arcs depict the probability flux flowing between the bins. The 
size of each circle depicts the expected occupancy of the bin, and 
the color conveys the bin lifetime, with blue to red representing 
short to long.
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4This simulation consisted of 72 SDPC lipid molecules and 24 cholesterols in two
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characterize the way in which cholesterols interact with

the lipids. One way to do this is with histograms of the

atoms in the vicinity of the cholesterol, which can then be

sliced and shown as the isolines in Figure 8(a). Three-

dimensional visualization helps here by avoiding the

need to slice the volume and instead showing a three-

dimensional isosurface of the histogram [Figure 8(b)].

This immediately conveys the density of neighboring

atoms around the cholesterol and reveals preferential

associations at an atomistic level that can be accessed

only via simulations such as these. Additional details

of membrane simulation and analysis are discussed in

the next section, which describes a lipid–cholesterol

membrane and its interaction with an embedded

membrane protein, rhodopsin.

Rhodopsin simulation on Blue Gene/L

Membrane proteins are the focus of more than half of the

contemporary drug targets [24]. It is difficult to obtain

structural detail for membrane proteins at atomic

resolution because of the challenges of growing crystals of

proteins in a membrane environment [25, 26]. In addition

to structure, the functional dynamics are accessible

via spectroscopic techniques [27–29]. The added

complexity of the membrane environment must be

included in membrane protein studies, since the

composition of the membrane can have dramatic

effects on the function of a protein [30–32].

Simulation of membrane protein environments has

received a direct benefit from recent advances in

supercomputing. The ability to produce tens to hundreds

of nanoseconds of a fully atomistic simulation of

membrane environments has produced detailed

characterization of their structure and dynamics to a

degree previously unavailable and at a scale inaccessible

by experiment. As a result, simulation can offer

additional insight into the structure, dynamics, and

environment of the membrane proteins themselves [33].

Rhodopsin is a member of the signaling protein family

known as G-protein-coupled receptors (GPCRs) [34–37].

It functions as the first step in the signal cascade

Figure 7

Cross-sectional view of a lipid–cholesterol bilayer membrane with 
water molecules on each side. Each blue strand is one chain of a 
lipid, and each lipid has two chains plus a head group. Cholesterols 
are interspersed in the lipids and shown as the gray molecules. The 
lipid–cholesterol system is split horizontally into two leaflets, 
consistent with the structure found in a cell wall, which acts as a 
permeable barrier between two solutions.

Figure 8

(a) Average neighborhood of a cholesterol molecule showing the 
density of adjacent atoms in a horizontal slice through each choles-
terol. This 2D view shows preferential associations along each 
“face” of the molecule, but is hard to interpret, since it represents 
only a single slice through a complicated 3D interaction. (b) The 
same information as in (a), but shown as 3D isosurfaces in the 
context of a model of the cholesterol. In addition, the proximity of 
water molecules is shown as the red isosurface above. This use of 
3D analysis immediately conveys the three dimensions of the 
cholesterol neighborhood in ways that would be difficult to 
assemble from multiple 2D slices as shown in (a).

(a)

(b)
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that results in the perception of light [38], but has the

distinction of being the only GPCR whose structure is

known with atomic resolution [25]. Although other

workers have used molecular dynamics to study

rhodopsin in a membrane environment [33], we have

chosen to apply the capabilities of BG/L to simulate

rhodopsin in a more complex, native-like environment

of polyunsaturated lipids with cholesterol.

Setting up a large-scale simulation is technically

demanding and requires a lengthy equilibration protocol.

This is complicated by the fact that it is difficult to

determine the point in time at which equilibrium has been

reached. For a system as complex as rhodopsin in a two-

component lipid matrix with cholesterol, the equilibration

time alone can extend to tens of nanoseconds. Until

recently, this would have represented the full time allotted

to a complete simulation, because of the limited

computing resource available.

Figure 9(a) shows a top view of the rhodopsin/lipid/

cholesterol system, looking down on the membrane

surface. The rhodopsin appears as a red ribbon; the green

and blue respectively represent the SDPE and SDPC5,

and the cholesterol atoms are shown as gray spheres. This

snapshot is from early in the simulation, before the

cholesterol distribution has had time to fully equilibrate.

Experimental diffusion rates for cholesterol are of the

order of 13 10�7 cm2/s [39], which means that many

nanoseconds of simulation time are required for the

cholesterol distribution to reach a steady state.

The changing cholesterol distribution around

rhodopsin as it progresses toward equilibrium appears

in Figure 9(b) as successive histograms of the radial

distribution of cholesterol over time. The counts of

cholesterol molecules at a given distance are shown on

the vertical scale, where the light color indicates greater

likelihood at that distance. Each vertical histogram is an

average of the cholesterols over a 250-picosecond time

window. The most likely range, which appears as a band

of gray across the time axis, is fairly stable, suggesting

that the setup protocol produced a configuration near

equilibrium. The minimum and maximum ranges of each

histogram, however, show a general trend downward.

The minimum distances decrease, which indicates that

equilibrium includes some cholesterols closely associated

with rhodopsin.

Another, simpler, way to characterize the equilibration

of the system is to study the mean radius of the

cholesterols over time, which amounts to a further

reduced representation of the histogram strip chart.

Figure 10(a) shows the time evolution of the mean radius

of cholesterol from the rhodopsin center of mass. The

clear oscillatory pattern indicates fluctuations in the

cholesterol distribution on a timescale of several

nanoseconds. The amplitude of the oscillations is

damping to a converged value, suggesting significant

progress toward equilibrium in approximately 25 ns.

Figure 10(b) suggests that in the first 30 ns, part

of the rhodopsin structure underwent a rotation of

approximately 10 degrees from the initial setup

conditions and then stabilized during the 30-ns to 40-ns

time frame. Further monitoring is needed to establish

stability in the overall rhodopsin orientation, since

protein motion occurs on a timescale of tens of

Figure 9

(a) Top view of the rhodopsin system, consisting of the rhodopsin 
protein, shown as the red ribbon, surrounded by the two-component 
lipid system, shown in green and blue, and the cholesterol, shown in 
gray. (b) This plot captures the equilibration of the rhodopsin 
system by showing the changing radial distribution of cholesterol 
over time. Each vertical slice is a histogram at that point in time of 
the radial distribution of cholesterol from the center of the protein. 
There is a fair amount of mixing evident, but with an overall 
declining trend that is largely equilibrated after 25 ns.

(a)

(b)
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5SDPE and SDPC are abbreviations for the chemical makeup of the lipids: SDPE
is 1-stearoyl-2-docosahexaenoyl-sn-glycerophosphoethanolamine, and SDPC is
1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine.
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nanoseconds. It is not clear how much of this rotation is

due to an internal conformational change in rhodopsin,

or whether it represents an overall rigid body rotation as

it adjusts to its environment; however, the fact that the

protein is not making significant angular changes greatly

simplifies the analysis of the neighboring lipid–cholesterol

environment.

Care must be taken to validate interpretations of the

rich detail offered by fully atomistic simulations of

complex environments, such as the one described here.

Each line of analysis should make contact with what

can be experimentally observed. For example, some

measurable spectroscopic quantities can be calculated

from the simulation and compared with experiment. Once

validated, the atomic detail can be examined further for

mechanistic insight that is inaccessible experimentally.

Simulation, once validated with experiment, can help

interpret experimental results by providing a greater level

of detail than is available with contemporary techniques.

Supercomputing resources such as BG/L have expanded

the level at which complex biological phenomena may

be studied. Most significantly, the newly harnessed

capability enables investigations that could not have

been attempted a few years ago. In this light, the

potential advances with BG/L are in kind, rather than

in degree. The rhodopsin simulations are ongoing and

will be investigated in detail using techniques such as

those described above.

Conclusion
The Blue Gene/L project has been on a dual path to

produce a massively parallel machine and associated

scalable software to make use of its power. As more

nodes of the machine become available, the scientific

possibilities increase tremendously, since the simulations

can then access more biologically interesting scales of

time and complexity. Much insight has already emerged

from Blue Matter simulations on an IBM SP computer

and on a BG/L computer of up to 512 nodes, and we look

forward to the completion of our work on rhodopsin and

the continuation onto more complex systems as the node

count expands.
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