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During the initial stages of copper electrodeposition onto a thin
seed layer, a nonuniform potential distribution arises, resulting in
local variations in growth rate and deposit morphology. Early
stages of morphology evolution during copper electrodeposition are
of practical importance but have not been well studied. Here, a new
multiscale approach is developed for numerical simulation of the
effect of a macroscopic potential distribution along a seed layer on
microscopic local roughness evolution. The key contribution is a
generic method for coupling multiple computer codes, and the
demonstration of its use. The macroscopic code passes the
local potential at ten points along the seed layer to ten kinetic
Monte Carlo codes, each of which simulates additive-free copper
electrodeposition and roughness evolution on an initially flat
surface. Periodically, each Monte Carlo code computes the local
film thickness and passes it back to the resistance code, which
updates the potential distribution for the next iteration. Results
are obtained for a wide range of parameter space including both
constant-potential and constant-current operation. A confirmation
procedure was developed to verify that the multiscale approach
(using small Monte Carlo simulation domains with periodic
boundary conditions) does not significantly alter the physical
accuracy of the simulations.

Introduction
Precise control of film uniformity and morphology during

the fabrication of electrodeposited on-chip copper

interconnections is essential [1]. During the initial stages

of electrodeposition, the electrical resistance of the barrier

film/seed layer causes potential variations between the

center of the wafer and the periphery, where electrical

contact is made [2]. Owing to the potential dependence of

nucleation, growth, and roughness evolution processes,

the deposit morphology can thus vary with radial

position and can adversely affect product quality. The

development of mathematical models for predicting

roughness evolution in the presence of a potential

distribution represents an important technological

objective; in addition, careful experimental measurements

on roughness evolution contain information about

growth processes that can be extracted only by

mathematical analysis of the data. For interconnect

applications, a multiscale modeling approach is required

which integrates a macroscopic continuum model (for the

potential distribution in the resistive substrate) with

multiple microscopic stochastic models (of morphology

evolution at various positions along the wafer).

Moreover, not only are the length scales widely disparate,

but so also are the time scales, which range from fast local

stochastic events associated with potential-dependent

electrodeposition and surface roughness evolution, to

�
Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

Contact author: R. C. Alkire at r-alkire@uiuc.edu.

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 T. O. DREWS ET AL.

49

0018-8646/05/$5.00 ª 2005 IBM



slow variations that occur at longer time scales as the

electrical resistance changes during growth of the metal

film. The challenge of simulating coupled dynamic

processes that span wide ranges of time and length scales

is of broad interest [3]. Multiscale methods are now

beginning to emerge that provide a systematic and correct

connection between events at different scales. The novel

feature of the present work is a generic method for

coupling multiple codes so that they interact with one

another in a stable manner during the course of a

multiscale simulation of distributed behavior.

Several processing approaches have been suggested for

ameliorating electrical resistance effects during thin-film

electrodeposition. Landau et al. [4] reduced resistance

effects during deposition onto thin seed layers by

lowering the sulfuric acid concentration, thereby creating

a lower-conductivity electrolyte while increasing the

copper concentration; this is possible because reducing

the sulfuric acid concentration enhances the copper

solubility. Takahashi [5] proposed methods of

maintaining a more uniform current distribution during

initial stages of deposition onto 500-Å-thick Ta barrier

films, where the film resistance dominates over solution

resistance. He used organic additives that reduce the

exchange current density of the deposition reaction and

decrease the cupric ion concentration while keeping the

sulfuric acid concentration fixed. He also suggested

starting the deposition process at a low applied current

and then gradually increasing the applied current,

keeping the plating rate at the center of the electrode

at a certain percentage of the plating rate at the outer

edge of the electrode once deposition progressed. These

improvements focus on minimizing the ‘‘terminal effect,’’

by which the deposit occurs preferentially near the

electrical contact point because of significant electrical

resistance in the electrode.

Mathematical models of electrodeposition onto

resistive substrates have been carried out to date with

continuum models that simulate macroscopic phenomena

associated with the potential distribution and reaction

rate variation across the wafer [6], as well as convective

mass transfer and the effect of deposit thickness evolution

[7]. More recently, Matlosz et al. [8] simulated

electrodeposition onto resistive substrates; their

model included deposit growth and varying substrate

conductance that resulted from the growth. Lanzi and

Landau [9] simulated the terminal effect for general

geometry cells and estimated the magnitude of the current

nonuniformity that results from the terminal effect in

systems where Tafel kinetics are present. Kawamoto [10]

computed the secondary current distribution for 2D cells

with a resistive electrode without considering transient

deposit growth. Deligianni et al. [11] simulated a cup

plater with a continuous peripheral contact and passive

elements that helped shape the potential field to give an

almost uniform current distribution. They accounted

for film growth in the model by changing the sheet

conductance over time, but kept the seed layer thickness

constant. While such continuum models can address the

issue of the nonuniform potential distribution, they have

a blind spot that blocks them from addressing small-scale

stochastic events such as nucleation, growth, surface

roughening, and morphology evolution during the early

stages of electrodeposition.

The objective of the present work is to simulate

behavior over the entire wafer while also predicting local

morphology evolution. A novel multiscale simulation

approach is described that utilizes a generic method for

linking multiple computer codes. The macroscopic code

passes the local potential at ten points along the seed

layer to ten kinetic Monte Carlo codes, each of which

simulates additive-free copper electrodeposition and

roughness evolution on an initially flat surface.

Periodically, each Monte Carlo code computes the local

film thickness and passes it back to the resistance code

which updates the potential distribution for the next

iteration. Speed-up arises in large part because the Monte

Carlo codes do not simulate the entire radius of the wafer,

nor do they pass information to one another. The validity

of this approach is analyzed with a confirmation

procedure. Simulation results are presented for both

constant potential (because scientific experiments on

nucleation and growth are usually carried out at constant

potential) and constant current (which is typically used

for industrial plating operations). The method provides a

‘‘reusable’’ multiscale simulation approach that has the

potential for contributions well beyond the specific

application demonstrated here.

Model descriptions
This section contains a description of the macroscopic

resistance model, the microscopic Monte Carlo model,

and the code linkage by which they were coupled to form

the multiscale model.

Resistance model

The resistance model is based on several assumptions:

1) The counter electrode is configured so that the primary

current distribution would be uniform in the absence of

electrode resistance effects. 2) The electrical double layer

and the mass transfer diffusion boundary layer attain a

steady state rapidly compared with the slow transient

process of deposit thickening. 3) A substantial number

of electrical contact points are made around the edge

of the wafer so that azimuthal potential variations are

negligible. 4) Only one copper electrodeposition reaction

occurs, and there are no additives in the deposition bath.

5) From a macroscopic viewpoint, the surface of the
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working electrode remains smooth during the course

of deposition; surface roughness is treated solely in the

Monte Carlo simulations. 6) The ohmic resistance in the

solution is negligible with respect to other resistances

in the cell. 7) The electrolyte contains an excess of

supporting electrolyte so that migration of copper ions in

the solution is negligible. 8) The solution is stirred such

that the cupric ions are uniformly accessible to the surface

at all points. Many of these simplifying assumptions can

readily be modified in order to deal with more complex

situations. Lists of the symbols used may be found in

appendices at the end of the paper.

The general approach used for the model follows the

procedures outlined in detail previously [7]. Resistance to

the passage of electrons through the seed/barrier layer

obeys Ohm’s law,

iðr; tÞ ¼ �r
d/

m
ðr; tÞ
dr

: ð1Þ

The electronic current in the metal phase, i(r, t), varies in

the radial direction depending on the cross-sectional area

and the reaction rate distribution,

d½Hðr; tÞiðr; tÞr�
dr

¼ �jðr; tÞr: ð2Þ

The electrodeposition reaction rate, j(r, t), also varies with

radial position across the wafer; it is described by the

Butler–Volmer equation, which includes the local surface

concentration at the electrode,

jðr; tÞ ¼ i
0
e
aTnFgðr;tÞ

RT �
c
s
ðr; tÞ
c
b

� �
e
ðaT�1ÞnFgðr;tÞ

RT

� �
: ð3Þ

The overpotential in Equation (3), g(r, t), is the sum of the

charge-transfer overpotential and the concentration

overpotential and is defined as

gðr; tÞ ¼ ½/
m
ðr; tÞ � /

�
s
� � ½/e

m
� /

e

s
�: ð4Þ

The applied potential is related to the various

overpotentials by the expression

½ð/�
m
� /

�
s
Þ � ð/e

m
� /

e

s
Þ� ¼ ½/�

m
� /

m
ðr; tÞ�

þ ½/s

s
ðr; tÞ � /

�
s
�

þ ½/
m
ðr; tÞ � /

s

s
ðr; tÞ�

� ½/e

m
� /

e

s
�; ð5Þ

where the ohmic overpotential is

gX ¼ ½/�
m
� /

m
ðr; tÞ�; ð6Þ

the concentration overpotential is

g
c
¼ ½/s

s
ðr; tÞ � /

�
s
�; ð7Þ

and the charge-transfer overpotential is

g
s
¼ ½/

m
ðr; tÞ � /

s

s
ðr; tÞ� � ½/e

m
� /

e

s
�: ð8Þ

The concentration overpotential is related to the

concentration difference across the diffusion boundary

layer by

/
s

s
ðr; tÞ � /

�
s
¼ RT

nF

� �
ln

c
s
ðr; tÞ
c
b

� �
: ð9Þ

The local deposition rate, j(r, t), can also be obtained

from the concentration difference across the diffusion

layer in conjunction with the mass-transfer coefficient,

jðr; tÞ ¼ �nFk½c
b
� c

s
ðr; tÞ�: ð10Þ

The following dimensionless parameters are used to

rewrite the equations in dimensionless form:

n ¼
R

2

0
nFi

0

RTrH
0

;

Aðr; tÞ ¼ Hðr; tÞ
H

0
ðr; tÞ ;

C ¼
n
2
F

2
kc

b
R

2

0

RTrH
0

;

R
a
¼ r

R
0

;

b
CD

ðsÞ ¼
H

�
R

0
i
�
nF

RTrH
0

;

C
s
ðr; tÞ ¼

c
s
ðr; tÞ
c
b

¼
1þ n

C
e
a
T
ðU

m
þU

a
Þ

1þ n
C

e
ða

T
�1ÞðU

m
þU

a
Þ
;

U
a
¼ nF

RT

� �
½ð/�

m
� /

�
s
Þ � ð/e

m
� /

e

s
Þ�;

and

U
m
¼ nF

RT

� �
½/

m
ðr; tÞ � /

�
m
�:

The parameter n represents the ratio of ohmic resistance

to charge-transfer resistance. The parameter C is the ratio

of ohmic resistance to mass-transfer resistance.

Equations (1) – (10) can be combined in dimensionless

form to give

ðR
a
AU

0

m
Þ0 ¼

nR
a

e
a
T
ðU

m
þU

a
Þ �

1þ n
C
e
a
T
ðU

m
þU

a
Þ

1þ n
C
e
ða

T
�1ÞðU

m
þU

a
Þ

0
B@

1
CAe

ða
T
�1ÞðU

m
þU

a
Þ

2
64

3
75;

ð11Þ
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where the prime refers to differentiation with respect to

R
a
. Equation (11) was solved repeatedly during the course

of a deposition simulation which, in this work, lasted

120 s. The time step between macroscopic simulations

was 0.005 s, so that 24,000 simulations were carried out.

At each time step, the deposit thickness distribution,

A(r, t), was provided by the Monte Carlo code.

Constant potential

Constant-potential simulations are performed by solving

Equation (11) with the boundary conditions

U
0

m
ð0; sÞ ¼ 0 ð12Þ

and

U
m
ð1; sÞ ¼ 0: ð13Þ

Equation (12) is a symmetry boundary condition that

describes the potential gradient in the electrode at the

center of the wafer. Equation (13) is the boundary

condition at the electrical contact point at the edge of

the wafer.

The dimensionless current distribution can then be

computed as

JðR
a
; sÞ ¼ n

b
CD

� �
½eaTðUm

þU
a
Þ � C

s
e
ða

T
�1ÞðU

m
þU

a
Þ�: ð14Þ

The foregoing equations and dimensionless variables

completely describe the resistance model when a constant

potential is applied. In the coupled simulations described

below, deposit thickness information is obtained from the

Monte Carlo simulation codes. (If the resistance code

were not coupled to the Monte Carlo code, the deposit

thickness would be computed from Faraday’s law.) The

overpotential in the electrode that is passed to the Monte

Carlo model is

g ¼ /
a
þ ½/

m
ðr; tÞ � /

�
m
�: ð15Þ

A linear equation solver that uses LU (lower–upper)

decomposition with back substitution [12] was used to

solve Equation (11) with boundary conditions (12) and

(13). The equation was linearized about a trial solution

and placed in finite difference form. When the code was

run standalone for one iteration with 50 equally spaced

nodes, the simulation took less than one second to

complete on a Silicon Graphics SGI
**

Origin
**

2000.

Constant current

Constant-current boundary conditions were used for a

process operating at 15 mA/cm
2
which, on a 300-mm-

diameter wafer (707 cm
2
), would support 10.6 A. The

current density was the nominal value based on the

projected area of a planar wafer; i.e., no account was

taken of any additional surface area created by features.

The current entering the peripheral contacts to the wafer

seed layer thus remained constant at 10.6 A during the

course of the simulation. The boundary condition for

constant-current operation is

U
0

m
ð1; sÞ ¼ �N

2p
; ð16Þ

where N ¼ ½nFI=RTrHðr; tÞ� represents the ratio of

ohmic resistance to charge-transfer resistance. Equations

(10), (12), (13), and (16) were solved with a nonlinear

equation solver [12] that used a globally convergent

Newton–Raphson method.

Monte Carlo code

Stochastic simulations of electrochemical deposition of

copper onto an initially flat, featureless copper surface

were carried out with a kinetic Monte Carlo (KMC) code.

The procedures used were very similar to those reported

in detail elsewhere [13], and are briefly summarized here.

The simulation space for the Monte Carlo code [14, 15]

consisted of a cubic lattice which was sized at the

mesoscale [16] and whose blocks or ‘‘pseudoparticles’’

represented clusters of molecules of a given species in

the deposition bath [17–20]. Blocks were assumed to be

homogeneous in both phase and composition. The typical

block size used for simulations in this study was 100 nm.

In such a block, there would be approximately 8.53 10
7

Cu
2þ

ions for the concentration used in this work. The

size of the Monte Carlo domain used was 50 blocks wide,

50 blocks high, and 50 blocks deep. While it is clear

that smaller block sizes would be required for detailed

applications, the effort in the present work was directed

toward developing the computational methodology. In

other recent work using more efficient Monte Carlo

methods, for example, we have reported on the use

of 0.5-nm blocks for trench-infill simulations [21], as

well as atomic-scale pseudoparticles for nucleation

simulations [22].

Following the general approach described in Reference

[13], the Monte Carlo domain had periodic boundary

conditions in the x and y directions, an impenetrable

boundary at the electrode surface (in the z direction), and

a link to a small-scale 1D continuum code at the top

boundary in the z direction. At the electrode surface, the

reaction mechanism followed a two-step process. First,

Cu
2þ

ions arriving at the surface by bulk diffusion react

by a one-electron transfer and adsorption of Cu
þ
onto the

surface:

Cu
2þ þ e

� ! Cu
þ
:

The cuprous adions move by surface diffusion to a second

location, where they react via a second one-electrode

transfer and become incorporated into the crystal

lattice:
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Cu
þ þ e

� ! Cu:

The value of overpotential used for the electrochemical

reactions was obtained from the macroscopic resistance

code. The top boundary of the Monte Carlo domain was

linked to a small-scale 1D finite difference code that

provided diffusion fluxes of Cu
2þ

into the Monte

Carlo domain; the Monte Carlo code provided the

concentration of Cu
2þ

to the small-scale continuum code.

The small-scale continuum code domain was 50 lm thick,

which corresponded to the same value of mass-transfer

coefficient as was used in the macroscopic resistance code.

Concentrations used internally by the Monte Carlo code

were not shared with the macroscopic resistance code; in

more recent work, we have developed improved Monte

Carlo algorithms that eliminate altogether the need to

handle bulk diffusion phenomena in the stochastic

code.

The time step used for KMC simulations was selected

as the inverse of the largest frequency in the system, so

that the ‘‘full dynamics’’ of the system would be captured

(2.83 10
�6

s for the system at hand [13]). At a given

Monte Carlo time step, a pseudoparticle can make a

maximum of only one move. The possible moves include

bulk diffusion, reaction/adsorption, and surface

diffusion. The moves made by a pseudoparticle are a

function of the location of the particle in the simulation

space and the number and type of nearest neighbors. For

each macroscopic time step (0.005 s), there were 1.83 10
3

Monte Carlo time steps.

Upon completion of the each time step in the resistance

code, the surface roughness was stored. At the completion

of the entire computation, the surface roughness

evolution data were evaluated by the well-established

method of scaling analysis of the interface width [23].

According to that approach, the root-mean-squared

height of the roughness of self-affine surfaces scales

as

hðL; tÞ ¼ L
a
f

t

L
a=b

� �
; ð17Þ

where the two exponents, a and b, respectively
characterize the spatial and temporal evolution of the

surface roughness. The function fðt=La=bÞ behaves as
ðt=La=bÞb for ðt=La=bÞ � 1; for which h} t

b
; and

fðt=La=bÞ approaches a constant for ðt=La=bÞ � 1;

for which h}L
a
[23]. Therefore, the spatial scaling

exponent a may be found by computing the slope of

the initial points in a plot of the surface roughness as

a function of distance across the surface. The temporal

scaling exponent b is determined by computing the

slope of a log plot of saturation roughness, which

is the limit of the roughness over large distances

across the surface, as a function of time.

Code linkage

The resistance model was linked to multiple Monte Carlo

simulation codes to perform coupled simulations, as

shown in Figure 1. The coupled simulation follows a

standard ‘‘master–worker’’ computational paradigm,

where the resistance model is the master code and the

Monte Carlo simulations are the workers. The following

example sequence begins after the resistance model runs

for one time step to obtain a pseudo-steady-state solution

for the potential distribution in the electrode by solving

Equation (11). Since the resistance model is linked to ten

Monte Carlo codes, the local overpotential, Equation (15),

is averaged over five-node segments and passed to the

ten Monte Carlo simulation codes. Each Monte Carlo

simulation code then runs for a pre-set amount of time

(0.005 s), after which it computes the average deposit

thickness across the surface and passes that value back to

the resistance model. Since there are fewer Monte Carlo

simulations than there are nodes in the resistance code,

the resistance model uses a spline-fitting routine [12] for

the deposit thickness to estimate a value of the deposit

thickness at each node of the continuum code. After all

of the Monte Carlo simulation codes have passed their

average deposit thickness to the resistance model, the

resistance model runs again. This sequence is repeated

(24,000 times for the results given here) until the specified

amount of deposition time (120 s for the results given

here) has been completed. A 120-s simulation typically

required three to four days to complete. It was found that

almost all of the time required for the coupled simulations

was consumed by the Monte Carlo simulations.

The application manager that controls the workflow

sequencing operations and exchange of information

Diagram of the code linkage and information passed between the 
resistance model and the Monte Carlo simulation codes.

Figure 1
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between the individual models is similar to those reported

in previous work [14]. The application manager is generic

in the sense that users can change the codes that are

linked together as well as the number of codes that

are linked together, such as the number of Monte Carlo

simulations linked to the resistance model. The models

are linked via direct port connections. Information is

passed between the models in files. The following example

Table 1 Set of base case physical parameters and dimensionless parameters used in the coupled simulations.

Resistance code physical parameters

Symbol Parameter Value

a
T

Tafel slope 0.5

q
Cu

Density of copper 8.96 (mole/cm
3
)

M Molecular weight of Cu 63.546 (g/g-mole)

r Electrode conductivity 5 3 10
5
(1/X-cm)

R Ideal gas constant 8.31 (J/g-mole-K)

T Temperature 294 (K)

n Cu charge equivalents 2 (eq/mole)

R
0

Electrode radius 15 (cm)

F Faraday’s constant 96,500 (C/eq)

i
0

Exchange current density 1 3 10
�3

(A/cm
2
)

H
0

Initial deposit thickness 1 3 10
�5

(cm)

k Mass-transfer coefficient 1.2 3 10
�3

(cm/s)

c
b

Cu
2þ

bulk concentration 5 3 10
�4

(mole/cm
3
)

U
a

Dimensionless applied potential �10

I Applied current 10.6 A

Resistance code dimensionless variables

Operating conditions n C b
DT

U
a
= �10, H

0
= 1 3 10

�5
(cm) 3.55 411.65 30.26

U
a
= �10, H

0
= 5 3 10

�6
(cm) 7.11 823.30 43.31

U
a
= �10, H

0
= 1 3 10

�6
(cm) 35.55 4,116.52 91.19

I = 10.6, H
0
= 1 3 10

�5
(cm) 3.55 411.65 26.65

I = 10.6, H
0
= 5 3 10

�6
(cm) 7.11 823.30 53.31

I = 10.6, H
0
= 1 3 10

�6
(cm) 35.55 4,116.52 266.54

Monte Carlo code physical parameters

Parameter Value

Cu
2þ

bulk diffusion rate 6.0 3 10
8
(nm

2
/s)

Cu
2þ

adsorption rate 150 (nm/s)

Cu
2þ

adsorption Tafel slope 0.339

Cu
þ
surface diffusion rate 2.0 3 10

8
(nm

2
/s)

Cu
þ
step energy barrier �1.5 3 10

�20
(J)

Cu
þ
broken face energy barrier �5.0 3 10

�22
(J)

Cu
þ
new face energy barrier 5.0 3 10

�22
(J)

Cu
þ
incorporation rate 2.0 3 10

4
(nm

2
/s)

Cu
þ
incorporation transfer coefficient �0.4

Cu
þ
incorporation transfer coefficient contribution from Cu 0.2
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illustrates how the linkage is performed, beginning when

the resistance model has completed one time step. The

resistance model writes multiple files, each with a

different overpotential, which triggers the resistance

model application manager to alert the Monte Carlo

application manager of the existence of the files. The

Monte Carlo simulation codes then read and continue

the simulations with the new overpotentials. When each

Monte Carlo simulation code completes its time step, the

code writes a file that contains the average deposit height

in the Monte Carlo domain, which is passed to the

resistance model. When all Monte Carlo codes have

written their files, the resistance model application

manager runs the resistance model, and a new sequence

begins. These iterations continue until a user-specified

amount of deposition time is reached.

Simulations were performed on an SGI R10000
**

machine and an SGI Power Challenge
**

with ten R8000
**

CPUs located at Indiana University. A 120-s coupled

simulation required three to four days to complete on

these machines. Simulations were also performed at

the National Center for Supercomputing Applications

(NCSA) at the University of Illinois with use of an SGI

Origin 2000, and required comparable time to complete.

The distributed system used to demonstrate the linkage

for an electrodeposition application is but one of many

such continuum/stochastic multiscale systems that could

be investigated with the general approach described

here.

Results and discussion
To demonstrate the multiscale modeling approach,

simulations were carried out assuming constant applied

potential and constant applied current. The set of base

case parameters used in all of the simulations, along with

the values of key dimensionless parameters, are listed in

Table 1. The set of operating conditions included three

simulations run with different seed layer thicknesses

(100 Å, 500 Å, and 1,000 Å) for both constant-potential

and constant-current conditions. One simulation was

performed with a different initialization of the random

number generator in the Monte Carlo simulation codes

to determine the variation in the outputs in both the

continuum and Monte Carlo codes as a function of the

initial state of the random number generator. Finally, a

confirmation procedure was implemented to show that

the use of small Monte Carlo simulations with a single

applied potential and periodic boundary conditions to

represent deposition on a larger surface does not lead

to physical inaccuracies.

Constant-potential simulations

The initial potential distribution in the wafer for all

three seed layer thicknesses with a dimensionless applied

potential of �10 is shown in Figure 2. As the seed layer

thickness decreases, the electrical resistance in the seed

layer increases. For the seed layer thickness of 100 Å, the

potential in the metal at the center of the wafer (R
a
= 0)

is nearly equal in magnitude to the applied potential.

Under such conditions, most of the applied potential is

consumed by ohmic effects, with the result that the local

deposition rate is very low.

In Figure 3(a), the dimensionless deposit thickness

profile is shown for all seed layer thicknesses after 120 s

of deposition. The values of the dimensionless deposit

thickness are much larger as the seed layer thickness

decreases because of the manner in which the deposit

thickness is nondimensionalized. In all of the simulations,

the deposit thickness at the contact end is two to three

times thicker than it is at the center of the wafer. The

fact that this phenomenon occurs in the same manner

independently of the thickness of the initial seed

layer indicates that the temporal evolution of the

potential distribution in the wafer occurs in a similar

manner for all seed layer thicknesses. If the potential

distribution did not evolve in a similar manner, it would

leave a footprint in the thickness profile because the

deposit would grow differently.

The distribution of the spatial scaling exponent a after

120 s of deposition for all constant-potential simulations

is shown in Figure 3(b). The simulations closest to the

electrical contact point (R
a
= 1) tend to have higher

values of a, implying that the surface is rougher near the

electrical contact end. Considering microscopic events

treated by the Monte Carlo code, the higher charge-

transfer overpotential at the contact side would result in

Initial potential distribution in the wafer for seed layer thicknesses 
of 100 Å, where   CD � 91.19 (Curve A), 500 Å, where   CD � 
43.31 (Curve B), and 1,000 Å, where    CD � 30.26 (Curve C), at a 
constant applied potential of �a � �10 (dimensionless) and using 
base case physical parameters.

Figure 2
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cuprous pseudoparticle ions having less time to move by

diffusion along the surface to find low-energy sites to

incorporate into the metal. It is also seen in Figure 3(b)

that the average value of a decreases everywhere along the

wafer as the seed layer thickness decreases owing to the

higher ohmic resistance (thus lower charge-transfer

overpotential) associated with thinner seed layers.

Moreover, the value of a at the electrical contact point

decreases as seed layer thickness decreases; although

the value of a at the electrical contact point would be

expected to remain constant because the applied potential

remains constant, the fact that five nodes in the

continuum code are averaged together to compute the

potential in the electrode that is passed to the Monte

Carlo code causes average potentials at the contact to

be not identical for all seed layer thicknesses.

The distribution of the temporal scaling exponent b
after 120 s of deposition is shown in Figure 3(c) for all

seed layers. The values of b for a given position across the

wafer decrease as the seed layer thickness increases. The

observed variation in b is attributed to the fact that

from the beginning to the end of the simulation, the

potential in the metal changes more at the center of

the wafer than at the electrical contact point.

Constant-current simulations

Simulations performed with only the resistive code

are depicted in Figure 4 in order to show the effect of

macroscopic parameters on the current distribution. The

ordinate gives the ratio of the reaction rate at the center

of the wafer to the reaction rate at the electrical contact

point (a value of 1 corresponds to a uniform current

distribution). The 1,000-Å (n = 3.55), 500-Å (n = 7.11),

and 100-Å (n = 35.55) simulations show that the current

distribution is not uniform, even at low current densities,

since the reaction rate ratio is less than 1. Decreasing the

After 120 s of deposition for seed layer thicknesses of 100 Å  (   CD 
� 91.19), 500 Å (  CD � 43.31), and 1,000 Å (  CD � 30.26), at a 
constant applied potential of �a � �10 and using base case 
physical parameters: (a) deposit thickness profile; (b) spatial 
scaling exponent distribution; (c) temporal scaling exponent 
distribution.

Figure 3
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exchange current density by one order of magnitude (to

n = 0.35) for a 1,000-Å-thick seed layer failed to provide

a uniform current distribution, although decreasing it by

two orders of magnitude (to n = 0.035) provided a nearly

uniform current distribution for low applied currents.

When a constant current is applied, the initial potential

distribution in the seed layer depends on its thickness,

as seen in Figure 5. The variation in the potential

distribution as a function of the seed layer thickness

is greater for the constant-current results presented in

Figure 5 than for the constant-potential conditions

presented in Figure 2 because the potential required to

satisfy the current demand for the constant-current

simulations changes as a function of the seed layer

thickness. Moreover, the potential required to meet the

current for the 100-Å-thick seed layer is twice as large as

the potential applied in the example constant-potential

simulations.

The resistive code alone was used to provide the results

illustrated in Figure 6(a) for the dimensionless deposit

thickness profile for all three seed layer thicknesses after

120 s of deposition. The same trends are observed here

as in the constant-potential simulations associated with

Figure 3(a); in all of the simulations, the deposit thickness

at the contact end is two to three times thicker than it is at

the center of the wafer. The fact that the deposit thickness

at the contact end is two to three times thicker than it is at

the center of the wafer regardless of the initial seed layer

thickness indicates that the temporal evolution of the

potential distribution in the wafer occurs in a similar

manner for all seed layer thicknesses.

Distributions for the spatial scaling exponent a for all

seed layer thicknesses after 120 s of deposition are shown

in Figure 6(b). The simulations closest to the electrical

contact point have the highest values of a, indicating that

the surface is roughest there. Additionally, on average,

Initial potential distribution at seed layer thicknesses of 100 Å, 
where   CD � 266.54 (Curve A), 500 Å, where   CD � 53.31 (Curve 
B), and 1,000 Å, where   CD � 26.65 (Curve C), at a constant applied 
current of I � 10.6 A and using base case physical parameters.

Figure 5
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the values of a decrease as the seed layer thickness

decreases. Lower values of a imply that the surface is less

rough because the root-mean-squared roughness is not

increasing rapidly over short length scales. Figure 5 shows

that the potential in the metal decreases as the initial seed

layer thickness is decreased, indicating that the current is

lower across the wafer for thinner seed layers. If the

current were lower, it is expected in the simulations that

the surface roughness would be lower because cuprous

pseudoparticles would have more time to move by surface

diffusion to low-energy sites on the surface and

incorporate into the metal.

The distribution of the temporal scaling exponent b
after 120 s of deposition is shown in Figure 6(c) for all

seed layers. The values of b across the wafer decrease as

the seed layer thickness decreases. The observed variation

in b is attributed to the fact that the potential in the metal

changes more at the center of the wafer than at the

electrical contact point from the beginning to the end

of the simulation. The trends observed for the constant-

current simulations are similar to those observed for the

constant-potential simulations.

Simulation with different random seed numbers

Since it is a stochastic method, KMC simulations produce

results with fluctuations that are dependent on the seed

number used in the random number generator. Therefore,

one of the test simulations was repeated with a different

seed number in the random number generator in all of the

Monte Carlo simulation codes to determine the influence

of the seed number on the outputs of both the Monte

Carlo model and the resistance model. The simulation

selected for evaluation was a constant-potential

simulation with a dimensionless applied potential of

�10 and a 1,000-Å-thick seed layer. The effects of the

random seed number are expected to be similar for

other operating conditions.

The initial potential distributions for the two

simulations are identical because they are not a

function of anything generated in the Monte Carlo code

and are of a purely continuum nature. The final potential

distributions are expected to be different for each

simulation, however, since they depend on stochastic

results from the Monte Carlo code (i.e., the thickness

distribution as a function of time). For the test

comparison, it was found that the maximum potential

difference, which occurred near the center of the wafer,

was less than 10 mV or 0.8 dimensionless potential units,

which is 8% of the applied potential.

The ratio of the dimensionless deposit thickness at the

contact end to the dimensionless deposit thickness at the

center of the wafer was about 2 for both simulations [see

Figure 3(a)]. However, the deposit thickness profiles for

the two simulations differed by about 25%. Because of the

exponential relation between potential and current shown

in Equation (3), we note that an 8% difference in potential

corresponds roughly to a 25% difference in current

density for the conditions at hand. The distributions of

the spatial scaling exponent a as well as those for the

temporal scaling exponent b were found to be sensitive

to the random seed number. The trend that the spatial

scaling exponent is larger at the contact end than at the

center of the wafer was observed in both simulations;

however, the values of the exponent vary by almost 25%

at the contact end [the variation at the center of the wafer

was lower, as noted in Figure 3(b)]. While the overall

trends that the temporal scaling exponent was smaller

at the contact end and increased across the wafer were

observed in both simulations, the value of the two

exponents was found to differ by about 75% at the

contact end [the variation at the center of the wafer was

lower, as noted in Figure 6(b)].

The influence of the seed number on potential, current,

and scaling results points to the need for making a

sufficient number of duplicate simulations with random

seed numbers in order to average out stochastic noise.

Although the coarse-grained stochastic results reported

in this study provide approximate representations of

behavior, the use of high-throughput computing methods

is recommended for obtaining accurate and statistically

significant results.

Confirmation procedure

Each Monte Carlo simulation code has periodic

boundary conditions in the x and y directions, which

means that none of the Monte Carlo simulation codes

pass pseudoparticles to one another. In a real system it is

in principle possible that copper ions in the solution could

move laterally across the wafer to regions where the

potential is different, which might affect the scaling

analysis results. The following confirmation procedure

was therefore carried out to assess whether the scaling

analysis results computed by the Monte Carlo

simulations are affected by the use of small simulation

domains with periodic boundary conditions. The

procedure for testing the approximation was to use a

single Monte Carlo domain that was twice as wide as

the original domains, and then apply the potentials

(which change over time) determined from the coupled

simulations at two adjacent nodes to separate halves

of the Monte Carlo domain. The potentials from two

adjacent nodes were averaged together, and the entire

simulation was performed with a single set of potentials.

Then scaling analysis was performed on each half of the

Monte Carlo domain.

The confirmation simulation used the average of the

potentials that were supplied to the two Monte Carlo

simulation codes which were closest to the electrical
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contact point for a dimensionless potential of �10
and a seed layer thickness of 1,000 Å. The results of

the confirmation simulation and the two standalone

simulations are summarized in Tables 2 and 3. In Table 2,

the values of the spatial scaling exponent a for four

different times are presented. The confirmation domain

was split into two identical domains so that scaling

analysis could be performed on each part. The values of

a for each side of the domain should not differ much in

the confirmation simulation, but at 30 s the values were

significantly different, as may be seen in Table 2 (0.828 vs.

1.014). Because of the stochastic nature of the Monte

Carlo simulations, the effect appears to be ‘‘washed out’’

after some time. In the original simulations, the values of

a at 30 and 120 s were similar (0.984 vs. 1.027 and 0.852

vs. 0.848, respectively), and the values of a at 60 and 90 s

were quite different (0.938 vs. 0.660 and 1.004 vs. 0.793,

respectively). In general, the values of a computed from

the confirmation simulation and the individual Monte

Carlo simulation codes were not drastically different

(with the exception of one simulation at 60 s, which we

attributed to simulation noise).

It is possible to estimate the components of the

variance in a for the confirmation procedure and the

original Monte Carlo simulation codes. The variance can

be regarded as having three independent components:

the variance due to the random noise in the simulation

codes; the variance due to the application of different

potentials to the simulations coupled to the resistance

code; and the variance due to the periodic boundary

condition assumption.

The variance due to the random noise in the simulation

codes can be estimated directly from the confirmation

procedure simulation,

r
2

random
¼ 1

3

X4
i¼1

ðaa
c
i
� a

b

c
i
Þ2; ð18Þ

where a
a

c
is the spatial scaling exponent for the

confirmation simulation associated with the electrical

contact point and a
b

c
is the spatial scaling exponent

associated with the neighboring simulation.

The variance that is due to the application of different

potentials to the Monte Carlo simulation codes that were

coupled to the resistance code is

r
2

random
þ 4r

2

single potential
¼ 1

3

X4
i¼1

ðaa
i
� a

b

i
Þ2; ð19Þ

Table 2 Spatial scaling exponent a after 30, 60, 90, and 120 s of deposition for seed layer thickness of 1,000 Å at a constant applied

potential of U
a
=�10 and using base case physical parameters. The confirmation simulation was split in half and the scaling exponents were

computed for each half.

Time

(s)

Confirmation

simulation a
a

c

(from the

electrical contact

point to 1.5 cm

from the electrical

contact point)

Confirmation

simulation a
b

c

(from 1.5 cm to

3.0 cm from the

electrical contact

point)

Monte Carlo

simulation a
a

(from the electrical

contact point to

1.5 cm from the

electrical contact

point)

Monte Carlo

simulation a
b

(from 1.5 cm to

3.0 cm from the

electrical contact

point)

30 0.828 1.014 0.984 1.027

60 0.790 0.916 0.938 0.660

90 0.831 0.846 1.004 0.793

120 0.773 0.704 0.852 0.848

Table 3 Temporal scaling exponent b after 120 s of deposition for seed layer thickness of 1,000 Å at a constant applied potential of

U
a
=�10 and using base case physical parameters. The confirmation simulation was split in half and the scaling exponents were computed

for each half.

Time

(s)

Confirmation

simulation b
a

c

(from the

electrical contact

point to 1.5 cm

from the electrical

contact point)

Confirmation

simulation b
b

c

(from 1.5 cm to

3.0 cm from the

electrical contact

point)

Monte Carlo

simulation b
a

(from the electrical

contact point to

1.5 cm from the

electrical contact

point)

Monte Carlo

simulation b
b

(from 1.5 cm to

3.0 cm from the

electrical contact

point)

120 0.181 0.198 0.100 0.197
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where a
a
is the spatial scaling exponent associated with

the Monte Carlo simulation code at the electrical contact

point and a
b
is the spatial scaling exponent associated

with the Monte Carlo simulation code next to the

electrical contact point. The factor of 4 in Equation (19)

takes into account the variance due to the different

potentials in the Monte Carlo simulation codes.

The variance that is due to the periodic boundary

condition assumption can then be estimated from

r
2

random
þ r

2

single potential
þ r

2

BC
¼ 1

3

X4
i¼1

ðaa
i
� a

a

c
i
Þ2 ð20Þ

or

r
2

random
þ r

2

single potential
þ r

2

BC
¼ 1

3

X4
i¼1

ðab
i
� a

b

c
i
Þ2: ð21Þ

However, the two should produce slightly different results

because the time variance in the potential is greater

farther from the electrical contact point.

From the data given in Table 2, r
2

random
¼ 0:018,

r
2

single potential
¼ 0:006; r

2

BC
computed from Equation (20)

is 0.006, and r
2

BC
computed from Equation (21) is 0.003.

Clearly, the largest variance in the system is due to the

stochastic noise in the Monte Carlo simulation code,

which is indicated by the fact that r
2

random
is three times

larger than the next biggest variance. The other variances

are relatively small by comparison. The fact that

r
2

single potential
is small indicates that our average potential

assumption across the entire Monte Carlo domain in the

confirmation simulation does not introduce large errors

into the simulations. Furthermore, the values computed

for r
2

BC
indicate that our methodology for linking the

Monte Carlo simulation codes to the resistance code

where the codes all have periodic boundary conditions

does not introduce significant error into the scaling

analysis results. Additionally, as predicted, the value

of r
2

BC
computed from Equation (20) is greater than

that computed from Equation (21).

The values of the temporal scaling exponent b at 120 s

of deposition are shown in Table 3. The values of b for

each side of the domain should not differ much in the

confirmation simulation, just as the values of a should not

differ. In the confirmation simulation, the values of b did

not differ drastically and were similar to the values

computed from the two Monte Carlo simulation codes.

The confirmation procedure gives some insight into the

relative sources of uncertainty. It has been shown that

assuming small Monte Carlo domains with a single

applied potential and periodic boundary conditions

introduces variations that are small compared with the

fluctuations due to the stochastic noise in the Monte

Carlo simulation codes. It is therefore concluded that

the computational cost of using larger domains

cannot be justified for the current study and that the

approximations made by using small Monte Carlo

domains each having a single applied potential and

periodic boundary conditions do not drastically alter the

physical accuracy of the simulations.

Conclusions
A method is developed for linking multiple simulation

codes to create a multiscale simulation that includes

continuum as well as stochastic phenomena. The method

is demonstrated by application to the electrodeposition of

copper on a resistive seed/barrier layer. The macroscale

code considers the effect of radial potential distribution in

the metal film on the electrochemical reaction rate

distribution. The microscale code simulates local

adsorption–reaction and surface diffusion events

associated with deposition of 100-nm pseudoparticles

from an additive-free solution onto an initially flat

featureless copper surface. The situation is inherently

multiscale in the sense that the macroscopic (continuum)

potential distribution exerts a significant effect on

the local microscopic (stochastic) roughness which,

moreover, changes in time as the deposit grows thicker.

Simulations were carried out for the arrangement shown

in Figure 1, where the macroscale code was linked to ten

Monte Carlo simulation codes.

Example simulations are carried out over a range of

parameter space (Table 1) for both constant-potential

(Figures 2 and 3) and constant-current (Figures 5 and 6)

modes. The effect of dimensionless parameters on the

uniformity of the reaction rate distribution at the onset is

summarized (Figure 4). For both constant-potential and

constant-current modes, it was found that the spatial

scaling coefficients for roughness evolution [Figures 3(b)

and 6(b)] were highest at the contact point to the film

(and decreased toward the center) while the temporal

scaling coefficients [Figures 3(c) and 6(c)] were lowest at

the contact point (and increased toward the center).

By comparing a limited number of simulations that

were identical except for the use of different random seed

numbers for the Monte Carlo calculations, it was found

that the maximum potential difference in the potential

distribution was 8% of the applied potential, found

near the center of the wafer; the maximum difference

in deposit thickness was about 25%; the maximum

difference in values of scaling exponents was found at the

contact side and was 25% for the spatial exponent and

75% for the temporal exponent. The influence of the seed

number on potential, current, and scaling results points to

the need for making a sufficient number of duplicate

simulations with random seed numbers in order to

average out stochastic noise.

A confirmation procedure showed that fluctuations in

the scaling analysis results that can be attributed to the

T. O. DREWS ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

60



assumption of periodic boundary conditions are small

in comparison with fluctuations in the scaling analysis

results that are due to the stochastic noise in the Monte

Carlo codes (Tables 2 and 3). That is, the computational

approach which uses small Monte Carlo simulation

domains with periodic boundary conditions provides

an efficient method for multiscale calculations that

does not significantly alter the physical accuracy of

the simulations. It is therefore concluded that the

computation framework presented here could provide yet

more accurate results by averaging multiple duplicate

simulations with use of multiple random seed numbers, as

indicated in the previous paragraph.

Experimental measurements of roughness evolution

can be used to test the validity of numerical simulations.

Procedures were reported recently for estimating

values of the most sensitive parameters for copper

electrodeposition with a four-additive system [24]. The

procedures used experimental data and a multiscale

simulation code composed of a KMC code coupled to a

continuum code.

There are a large number of applications for which

multiscale continuum/stochastic systems could be

investigated with the method outlined in this paper. More

sophisticated codes could be used for the continuum

portion, including continuum codes that predict the

current and potential distribution in deposition tools,

as well as stochastic codes that incorporate additional

phenomena. Examples might include potential-dependent

nucleation directly onto barrier layers, the influence of

multiple solution additives on nucleation and roughness

evolution, and shape evolution during electrodeposition

in complex geometries such as rough surfaces and on-chip

trenches and vias.
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Appendix 1: List of symbols
A Height of the deposit; [dimensionless]

c
b

Reactant concentration in the bulk solution;

[g-mole/cm
3
]

c
s

Reactant concentration at the electrode surface;

[g-mole/cm
3
]

C
s

Reactant concentration at the electrode surface;

[dimensionless]

D
b

Bulk diffusion coefficient; [nm
2
/s]

D
s

Surface diffusion coefficient; [nm
2
/s]

E Energy (barrier); [J/molecule]

F Faraday’s constant; [C/equivalent]

h Root-mean-squared height; [cm]

H Height of deposit; [cm]

H
�

Height of the deposit at the electrical contact point;

[cm]

H
0

Initial height of the deposit; [cm]

i Current density in the electrode; [A/cm
2
]

i
�

Current density in the electrode at the electrical

contact point; [A/cm
2
]

i
0

Exchange current density of the electrode reaction at

bulk concentrations; [A/cm
2
]

I Current; [A]

j Local reaction rate (current density) along the

electrode surface; [A/cm
2
]

J Local reaction rate (current density) along the

electrode surface; [dimensionless]

k Mass transfer coefficient; [cm/s]

k
rxn

Reaction rate constant; [nm/s]

L Length across surface; [cm]

M Molecular weight; [g/mole]

n Number of charge equivalents; [equivalents]

r Radial position on the wafer; [cm]

R Ideal gas constant; [J/(mole*K)]

R
0

Radius of the wafer; [cm]

R
a

Radial position; [dimensionless]

t Time; [s]

T Temperature; [K]

Appendix 2: List of Greek symbols
a Spatial scaling exponent; [dimensionless]

a
T

Tafel slope; [dimensionless]

b
CD

Current density in the electrode at the electrical

contact point; [dimensionless]

b Temporal scaling exponent; [dimensionless]

C Ratio of ohmic resistance to mass-transfer resistance;

[dimensionless]

/
m

Potential in the electrode; [V]

/
�
m

Potential in the electrode at the electrical contact

end; [V]

/
e

m
Potential in the electrode at equilibrium; [V]

/
�
s

Potential in the solution at the electrical contact end

of the cell; [V]
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/
e

s
Potential in the solution at equilibrium; [V]

/
s

s
Potential in the solution at the electrode surface; [V]

U
a

Applied potential; [dimensionless]

U
m

Potential in the electrode; [dimensionless]

g Overpotential; [V]

g
c

Concentration overpotential in the solution; [V]

g
s

Charge-transfer overpotential at the electrode–

solution interface; [V]

gX Ohmic overpotential in the electrode; [V]

q
Cu

Density of copper; [g/cm
3
]

r Conductivity of metal electrode; [X
�1
-cm

�1
]

r
2

BC
Variance in a due to periodic boundary conditions;

[dimensionless]

r
2

random
Variance in a due to the simulation noise;

[dimensionless]

r
2

single potential
Variance in a due to single applied potential;

[dimensionless]

s Time; [dimensionless]

n Ratio of ohmic resistance to charge-transfer

resistance; [dimensionless]

N Ratio of ohmic resistance to charge-transfer

resistance; [dimensionless]
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