Multiscale
simulations

of copper
electrodeposition
onto a resistive
substrate

During the initial stages of copper electrodeposition onto a thin
seed layer, a nonuniform potential distribution arises, resulting in
local variations in growth rate and deposit morphology. Early
stages of morphology evolution during copper electrodeposition are
of practical importance but have not been well studied. Here, a new
multiscale approach is developed for numerical simulation of the
effect of a macroscopic potential distribution along a seed layer on
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microscopic local roughness evolution. The key contribution is a
generic method for coupling multiple computer codes, and the
demonstration of its use. The macroscopic code passes the

local potential at ten points along the seed layer to ten kinetic
Monte Carlo codes, each of which simulates additive-free copper
electrodeposition and roughness evolution on an initially flat
surface. Periodically, each Monte Carlo code computes the local
film thickness and passes it back to the resistance code, which
updates the potential distribution for the next iteration. Results
are obtained for a wide range of parameter space including both
constant-potential and constant-current operation. A confirmation
procedure was developed to verify that the multiscale approach
(using small Monte Carlo simulation domains with periodic
boundary conditions) does not significantly alter the physical

accuracy of the simulations.

Introduction

Precise control of film uniformity and morphology during
the fabrication of electrodeposited on-chip copper
interconnections is essential [1]. During the initial stages
of electrodeposition, the electrical resistance of the barrier
film/seed layer causes potential variations between the
center of the wafer and the periphery, where electrical
contact is made [2]. Owing to the potential dependence of
nucleation, growth, and roughness evolution processes,
the deposit morphology can thus vary with radial
position and can adversely affect product quality. The
development of mathematical models for predicting
roughness evolution in the presence of a potential
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distribution represents an important technological
objective; in addition, careful experimental measurements
on roughness evolution contain information about
growth processes that can be extracted only by
mathematical analysis of the data. For interconnect
applications, a multiscale modeling approach is required
which integrates a macroscopic continuum model (for the
potential distribution in the resistive substrate) with
multiple microscopic stochastic models (of morphology
evolution at various positions along the wafer).
Moreover, not only are the length scales widely disparate,
but so also are the time scales, which range from fast local
stochastic events associated with potential-dependent
electrodeposition and surface roughness evolution, to
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slow variations that occur at longer time scales as the
electrical resistance changes during growth of the metal
film. The challenge of simulating coupled dynamic
processes that span wide ranges of time and length scales
is of broad interest [3]. Multiscale methods are now
beginning to emerge that provide a systematic and correct
connection between events at different scales. The novel
feature of the present work is a generic method for
coupling multiple codes so that they interact with one
another in a stable manner during the course of a
multiscale simulation of distributed behavior.

Several processing approaches have been suggested for
ameliorating electrical resistance effects during thin-film
electrodeposition. Landau et al. [4] reduced resistance
effects during deposition onto thin seed layers by
lowering the sulfuric acid concentration, thereby creating
a lower-conductivity electrolyte while increasing the
copper concentration; this is possible because reducing
the sulfuric acid concentration enhances the copper
solubility. Takahashi [5] proposed methods of
maintaining a more uniform current distribution during
initial stages of deposition onto 500-A-thick Ta barrier
films, where the film resistance dominates over solution
resistance. He used organic additives that reduce the
exchange current density of the deposition reaction and
decrease the cupric ion concentration while keeping the
sulfuric acid concentration fixed. He also suggested
starting the deposition process at a low applied current
and then gradually increasing the applied current,
keeping the plating rate at the center of the electrode
at a certain percentage of the plating rate at the outer
edge of the electrode once deposition progressed. These
improvements focus on minimizing the “terminal effect,”
by which the deposit occurs preferentially near the
electrical contact point because of significant electrical
resistance in the electrode.

Mathematical models of electrodeposition onto
resistive substrates have been carried out to date with
continuum models that simulate macroscopic phenomena
associated with the potential distribution and reaction
rate variation across the wafer [6], as well as convective
mass transfer and the effect of deposit thickness evolution
[7]. More recently, Matlosz et al. [8] simulated
electrodeposition onto resistive substrates; their
model included deposit growth and varying substrate
conductance that resulted from the growth. Lanzi and
Landau [9] simulated the terminal effect for general
geometry cells and estimated the magnitude of the current
nonuniformity that results from the terminal effect in
systems where Tafel kinetics are present. Kawamoto [10]
computed the secondary current distribution for 2D cells
with a resistive electrode without considering transient
deposit growth. Deligianni et al. [11] simulated a cup
plater with a continuous peripheral contact and passive
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elements that helped shape the potential field to give an
almost uniform current distribution. They accounted

for film growth in the model by changing the sheet
conductance over time, but kept the seed layer thickness
constant. While such continuum models can address the
issue of the nonuniform potential distribution, they have
a blind spot that blocks them from addressing small-scale
stochastic events such as nucleation, growth, surface
roughening, and morphology evolution during the early
stages of electrodeposition.

The objective of the present work is to simulate
behavior over the entire wafer while also predicting local
morphology evolution. A novel multiscale simulation
approach is described that utilizes a generic method for
linking multiple computer codes. The macroscopic code
passes the local potential at ten points along the seed
layer to ten kinetic Monte Carlo codes, each of which
simulates additive-free copper electrodeposition and
roughness evolution on an initially flat surface.
Periodically, each Monte Carlo code computes the local
film thickness and passes it back to the resistance code
which updates the potential distribution for the next
iteration. Speed-up arises in large part because the Monte
Carlo codes do not simulate the entire radius of the wafer,
nor do they pass information to one another. The validity
of this approach is analyzed with a confirmation
procedure. Simulation results are presented for both
constant potential (because scientific experiments on
nucleation and growth are usually carried out at constant
potential) and constant current (which is typically used
for industrial plating operations). The method provides a
“reusable” multiscale simulation approach that has the
potential for contributions well beyond the specific
application demonstrated here.

Model descriptions

This section contains a description of the macroscopic
resistance model, the microscopic Monte Carlo model,
and the code linkage by which they were coupled to form
the multiscale model.

Resistance model

The resistance model is based on several assumptions:

1) The counter electrode is configured so that the primary
current distribution would be uniform in the absence of
electrode resistance effects. 2) The electrical double layer
and the mass transfer diffusion boundary layer attain a
steady state rapidly compared with the slow transient
process of deposit thickening. 3) A substantial number
of electrical contact points are made around the edge

of the wafer so that azimuthal potential variations are
negligible. 4) Only one copper electrodeposition reaction
occurs, and there are no additives in the deposition bath.
5) From a macroscopic viewpoint, the surface of the
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working electrode remains smooth during the course

of deposition; surface roughness is treated solely in the
Monte Carlo simulations. 6) The ohmic resistance in the
solution is negligible with respect to other resistances

in the cell. 7) The electrolyte contains an excess of
supporting electrolyte so that migration of copper ions in
the solution is negligible. 8) The solution is stirred such
that the cupric ions are uniformly accessible to the surface
at all points. Many of these simplifying assumptions can
readily be modified in order to deal with more complex
situations. Lists of the symbols used may be found in
appendices at the end of the paper.

The general approach used for the model follows the
procedures outlined in detail previously [7]. Resistance to
the passage of electrons through the seed/barrier layer
obeys Ohm’s law,

: de,,(r, 1)

l(r,t):—oT. (1)
The electronic current in the metal phase, i(r, £), varies in
the radial direction depending on the cross-sectional area
and the reaction rate distribution,

AHC DO iy, iy ’

The electrodeposition reaction rate, j(r, ), also varies with
radial position across the wafer; it is described by the
Butler—Volmer equation, which includes the local surface
concentration at the electrode,

wpnFi(r,1) ¢ (r t (orp—)nFy(r,0)
e e G G

C

The overpotential in Equation (3), #(r, t), is the sum of the
charge-transfer overpotential and the concentration
overpotential and is defined as

n(r, 1) = [y, (r, 1) = 671 = by, — &) (4)

The applied potential is related to the various
overpotentials by the expression

[(pn, — 7)) — (ds, — )] = [¢n, — b, (7, 1)]
+ [l 0) — ]
+ [¢m(ra t) - (]5;()’, t)]

— [, — ), ()
where the ohmic overpotential is
Ng = [bg, = byl 1)), (6)
the concentration overpotential is
ne = 16,(r,0) = 6], (7
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and the charge-transfer overpotential is

0, = [y (r, 1) = ¢, 0] = [y, — $¢]. (8)

The concentration overpotential is related to the
concentration difference across the diffusion boundary
layer by

s -4 = (5 m(“E2), )

The local deposition rate, j(r, ), can also be obtained
from the concentration difference across the diffusion
layer in conjunction with the mass-transfer coefficient,

J(r,t) = —=nFklc, —c (r,1)]. (10)

The following dimensionless parameters are used to
rewrite the equations in dimensionless form:

. RnFi,
~ RToH,’
H(r,1)
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The parameter & represents the ratio of ohmic resistance
to charge-transfer resistance. The parameter I' is the ratio
of ohmic resistance to mass-transfer resistance.

Equations (1)—(10) can be combined in dimensionless
form to give

i !
(RAD ) =
& ap (@, +,)
‘R (@t ®) 1 +re ' (o, —1)(®,_+,)
‘ 14+ £ D@,T0) ’
T
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where the prime refers to differentiation with respect to
R . Equation (11) was solved repeatedly during the course
of a deposition simulation which, in this work, lasted
120 s. The time step between macroscopic simulations
was 0.005 s, so that 24,000 simulations were carried out.
At each time step, the deposit thickness distribution,
A(r, t), was provided by the Monte Carlo code.

Constant potential
Constant-potential simulations are performed by solving
Equation (11) with the boundary conditions

@ (0,7)=0 (12)
and
®_(1,7) =0. (13)

Equation (12) is a symmetry boundary condition that
describes the potential gradient in the electrode at the
center of the wafer. Equation (13) is the boundary
condition at the electrical contact point at the edge of
the wafer.

The dimensionless current distribution can then be
computed as

J(R,7) = </;i> [ @t D@t (g
CD

The foregoing equations and dimensionless variables
completely describe the resistance model when a constant
potential is applied. In the coupled simulations described
below, deposit thickness information is obtained from the
Monte Carlo simulation codes. (If the resistance code
were not coupled to the Monte Carlo code, the deposit
thickness would be computed from Faraday’s law.) The
overpotential in the electrode that is passed to the Monte
Carlo model is

= ¢, + b, (r.1) — b . (15)

A linear equation solver that uses LU (lower—upper)
decomposition with back substitution [12] was used to
solve Equation (11) with boundary conditions (12) and
(13). The equation was linearized about a trial solution
and placed in finite difference form. When the code was
run standalone for one iteration with 50 equally spaced
nodes, the simulation took less than one second to
complete on a Silicon Graphics SGI Origin** 2000.

Constant current

Constant-current boundary conditions were used for a
process operating at 15 mA/cm2 which, on a 300-mm-
diameter wafer (707 cmz), would support 10.6 A. The
current density was the nominal value based on the
projected area of a planar wafer; i.e., no account was
taken of any additional surface area created by features.
The current entering the peripheral contacts to the wafer
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seed layer thus remained constant at 10.6 A during the
course of the simulation. The boundary condition for
constant-current operation is
@ (1,1)=——
WL ==,
where E = [nFI/RToH(r,t)] represents the ratio of
ohmic resistance to charge-transfer resistance. Equations
(10), (12), (13), and (16) were solved with a nonlinear
equation solver [12] that used a globally convergent
Newton—Raphson method.

(16)

Monte Carlo code

Stochastic simulations of electrochemical deposition of
copper onto an initially flat, featureless copper surface
were carried out with a kinetic Monte Carlo (KMC) code.
The procedures used were very similar to those reported
in detail elsewhere [13], and are briefly summarized here.
The simulation space for the Monte Carlo code [14, 15]
consisted of a cubic lattice which was sized at the
mesoscale [16] and whose blocks or “pseudoparticles”
represented clusters of molecules of a given species in
the deposition bath [17-20]. Blocks were assumed to be
homogeneous in both phase and composition. The typical
block size used for simulations in this study was 100 nm.
In such a block, there would be approximately 8.5 X 107
Cu’" ions for the concentration used in this work. The
size of the Monte Carlo domain used was 50 blocks wide,
50 blocks high, and 50 blocks deep. While it is clear
that smaller block sizes would be required for detailed
applications, the effort in the present work was directed
toward developing the computational methodology. In
other recent work using more efficient Monte Carlo
methods, for example, we have reported on the use

of 0.5-nm blocks for trench-infill simulations [21], as
well as atomic-scale pseudoparticles for nucleation
simulations [22].

Following the general approach described in Reference
[13], the Monte Carlo domain had periodic boundary
conditions in the x and y directions, an impenetrable
boundary at the electrode surface (in the z direction), and
a link to a small-scale 1D continuum code at the top
boundary in the z direction. At the electrode surface, the
reaction mechanism followed a two-step process. First,
Cu”" ions arriving at the surface by bulk diffusion react
by a one-electron transfer and adsorption of Cu" onto the
surface:

2. —
Cu' e —Cu'.
The cuprous adions move by surface diffusion to a second
location, where they react via a second one-electrode

transfer and become incorporated into the crystal
lattice:
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Cu' +e —Cu

The value of overpotential used for the electrochemical
reactions was obtained from the macroscopic resistance
code. The top boundary of the Monte Carlo domain was
linked to a small-scale 1D finite difference code that
provided diffusion fluxes of Cu”" into the Monte

Carlo domain; the Monte Carlo code provided the
concentration of Cu’" to the small-scale continuum code.
The small-scale continuum code domain was 50 um thick,
which corresponded to the same value of mass-transfer
coefficient as was used in the macroscopic resistance code.
Concentrations used internally by the Monte Carlo code
were not shared with the macroscopic resistance code; in
more recent work, we have developed improved Monte
Carlo algorithms that eliminate altogether the need to
handle bulk diffusion phenomena in the stochastic

code.

The time step used for KMC simulations was selected
as the inverse of the largest frequency in the system, so
that the “full dynamics” of the system would be captured
2.8 X 10° s for the system at hand [13]). At a given
Monte Carlo time step, a pseudoparticle can make a
maximum of only one move. The possible moves include
bulk diffusion, reaction/adsorption, and surface
diffusion. The moves made by a pseudoparticle are a
function of the location of the particle in the simulation
space and the number and type of nearest neighbors. For
each macroscopic time step (0.005 s), there were 1.8 X 10
Monte Carlo time steps.

Upon completion of the each time step in the resistance
code, the surface roughness was stored. At the completion
of the entire computation, the surface roughness
evolution data were evaluated by the well-established
method of scaling analysis of the interface width [23].
According to that approach, the root-mean-squared
height of the roughness of self-affine surfaces scales
as

WL, 1) = L“f(#), (17)

where the two exponents, o and f3, respectively
characterize the spatial and temporal evolution of the
surface roughness. The function f(¢/ L/ /f) behaves as
(Z/Lz/ﬁ)ﬁ for (t/La/ﬁ) < 1, for which h t’g7 and
f(z/L“/ﬁ) approaches a constant for (t/Ld/ﬂ) > 1,

for which /o L” [23]. Therefore, the spatial scaling
exponent « may be found by computing the slope of
the initial points in a plot of the surface roughness as
a function of distance across the surface. The temporal
scaling exponent f is determined by computing the
slope of a log plot of saturation roughness, which

is the limit of the roughness over large distances
across the surface, as a function of time.
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Diagram of the code linkage and information passed between the
resistance model and the Monte Carlo simulation codes.

Code linkage
The resistance model was linked to multiple Monte Carlo
simulation codes to perform coupled simulations, as
shown in Figure 1. The coupled simulation follows a
standard “master—worker” computational paradigm,
where the resistance model is the master code and the
Monte Carlo simulations are the workers. The following
example sequence begins after the resistance model runs
for one time step to obtain a pseudo-steady-state solution
for the potential distribution in the electrode by solving
Equation (11). Since the resistance model is linked to ten
Monte Carlo codes, the local overpotential, Equation (15),
is averaged over five-node segments and passed to the
ten Monte Carlo simulation codes. Each Monte Carlo
simulation code then runs for a pre-set amount of time
(0.005 s), after which it computes the average deposit
thickness across the surface and passes that value back to
the resistance model. Since there are fewer Monte Carlo
simulations than there are nodes in the resistance code,
the resistance model uses a spline-fitting routine [12] for
the deposit thickness to estimate a value of the deposit
thickness at each node of the continuum code. After all
of the Monte Carlo simulation codes have passed their
average deposit thickness to the resistance model, the
resistance model runs again. This sequence is repeated
(24,000 times for the results given here) until the specified
amount of deposition time (120 s for the results given
here) has been completed. A 120-s simulation typically
required three to four days to complete. It was found that
almost all of the time required for the coupled simulations
was consumed by the Monte Carlo simulations.

The application manager that controls the workflow
sequencing operations and exchange of information
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Set of base case physical parameters and dimensionless parameters used in the coupled simulations.

Resistance code physical parameters

Symbol Parameter Value
oy Tafel slope 0.5
Pcu Density of copper 8.96 (mole/cmB)
M Molecular weight of Cu 63.546 (g/g-mole)
o Electrode conductivity 5 % 10° (1/Q-cm)
R Ideal gas constant 8.31 (J/g-mole-K)
T Temperature 294 (K)
n Cu charge equivalents 2 (eq/mole)
R, Electrode radius 15 (cm)
F Faraday’s constant 96,500 (C/eq)
i Exchange current density 1x107° (A/cmz)
H, Initial deposit thickness 1x10° (cm)
k Mass-transfer coefficient 12x10° (cm/s)
¢, Cu”" bulk concentration sx10* (mole/cms)
o, Dimensionless applied potential -10
1 Applied current 10.6 A

Resistance code dimensionless variables

Operating conditions ¢ r Bor

® = —10,H, = 1% 10 (cm) 3.55 411.65 30.26
®, = ~10, H, = 5 x 10 ° (cm) 7.11 823.30 4331
®, = —10, H, = 1% 10"° (cm) 35.55 4,116.52 91.19
I=106Hy=1x10" (cm) 3.55 411.65 26.65
1=106,H,=5x 10 ° (cm) 7.11 823.30 53.31
I=106,Hy=1x10 ° (cm) 35.55 4,116.52 266.54

Monte Carlo code physical parameters
Parameter Value

Cu”" bulk diffusion rate
cu’t adsorption rate

cu”t adsorption Tafel slope
Cu" surface diffusion rate

cu’ step energy barrier

6.0 x 10° (am’/s)
150 (nm/s)
0.339

8 2
2.0 X 10" (nm~/s)

Z15% 107 )
_2

Cu" broken face energy barrier =50 X 10 7 Q)
Cu’ new face energy barrier 50 x 102 J)
Cu” incorporation rate 2.0 x 10* (nmz/s)
Cu” incorporation transfer coefficient -0.4

Cu” incorporation transfer coefficient contribution from Cu 0.2

between the individual models is similar to those reported
in previous work [14]. The application manager is generic
in the sense that users can change the codes that are
linked together as well as the number of codes that
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are linked together, such as the number of Monte Carlo
simulations linked to the resistance model. The models
are linked via direct port connections. Information is
passed between the models in files. The following example
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illustrates how the linkage is performed, beginning when
the resistance model has completed one time step. The
resistance model writes multiple files, each with a
different overpotential, which triggers the resistance
model application manager to alert the Monte Carlo
application manager of the existence of the files. The
Monte Carlo simulation codes then read and continue
the simulations with the new overpotentials. When each
Monte Carlo simulation code completes its time step, the
code writes a file that contains the average deposit height
in the Monte Carlo domain, which is passed to the
resistance model. When all Monte Carlo codes have
written their files, the resistance model application
manager runs the resistance model, and a new sequence
begins. These iterations continue until a user-specified
amount of deposition time is reached.

Simulations were performed on an SGI R10000
machine and an SGI Power Challenge** with ten R8000
CPUs located at Indiana University. A 120-s coupled
simulation required three to four days to complete on
these machines. Simulations were also performed at
the National Center for Supercomputing Applications
(NCSA) at the University of Illinois with use of an SGI
Origin 2000, and required comparable time to complete.
The distributed system used to demonstrate the linkage
for an electrodeposition application is but one of many
such continuum/stochastic multiscale systems that could
be investigated with the general approach described
here.

Results and discussion

To demonstrate the multiscale modeling approach,
simulations were carried out assuming constant applied
potential and constant applied current. The set of base
case parameters used in all of the simulations, along with
the values of key dimensionless parameters, are listed in
Table 1. The set of operating conditions included three
simulations run with different seed layer thicknesses
(100 A, 500 A, and 1,000 A) for both constant-potential
and constant-current conditions. One simulation was
performed with a different initialization of the random
number generator in the Monte Carlo simulation codes
to determine the variation in the outputs in both the
continuum and Monte Carlo codes as a function of the
initial state of the random number generator. Finally, a
confirmation procedure was implemented to show that
the use of small Monte Carlo simulations with a single
applied potential and periodic boundary conditions to
represent deposition on a larger surface does not lead
to physical inaccuracies.

Constant-potential simulations

The initial potential distribution in the wafer for all
three seed layer thicknesses with a dimensionless applied
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Initial potential distribution in the wafer for seed layer thicknesses
of 100 A, where B, = 91.19 (Curve A), 500 A, where B, =
43.31 (Curve B), and 1,000 A, where Bep = 30.26 (Curve C), at a
constant applied potential of &, = —10 (dimensionless) and using
base case physical parameters.

potential of —10 is shown in Figure 2. As the seed layer
thickness decreases, the electrical resistance in the seed
layer increases. For the seed layer thickness of 100 A, the
potential in the metal at the center of the wafer (R, = 0)
is nearly equal in magnitude to the applied potential.
Under such conditions, most of the applied potential is
consumed by ohmic effects, with the result that the local
deposition rate is very low.

In Figure 3(a), the dimensionless deposit thickness
profile is shown for all seed layer thicknesses after 120 s
of deposition. The values of the dimensionless deposit
thickness are much larger as the seed layer thickness
decreases because of the manner in which the deposit
thickness is nondimensionalized. In all of the simulations,
the deposit thickness at the contact end is two to three
times thicker than it is at the center of the wafer. The
fact that this phenomenon occurs in the same manner
independently of the thickness of the initial seed
layer indicates that the temporal evolution of the
potential distribution in the wafer occurs in a similar
manner for all seed layer thicknesses. If the potential
distribution did not evolve in a similar manner, it would
leave a footprint in the thickness profile because the
deposit would grow differently.

The distribution of the spatial scaling exponent o after
120 s of deposition for all constant-potential simulations
is shown in Figure 3(b). The simulations closest to the
electrical contact point (R, = 1) tend to have higher
values of «, implying that the surface is rougher near the
electrical contact end. Considering microscopic events
treated by the Monte Carlo code, the higher charge-
transfer overpotential at the contact side would result in

T. O. DREWS ET AL.

55



56

60 F

—— Bep = 30.26 (1,000 A)
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After 120 s of deposition for seed layer thicknesses of 100 A (Bep
= 91.19), 500 A (B, = 43.31), and 1,000 A (B, = 30.26), at a
constant applied potential of ® = —10 and using base case
physical parameters: (a) deposit thickness profile; (b) spatial
scaling exponent distribution; (c) temporal scaling exponent
distribution.

cuprous pseudoparticle ions having less time to move by
diffusion along the surface to find low-energy sites to

incorporate into the metal. It is also seen in Figure 3(b)
that the average value of o decreases everywhere along the
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1.1
- —=— £ =0.035 (1,000 A)
: -m- £=0.35(1,000A)
0.9 -m- £=3.55(1,000 A)
o 08} —— £="7.11(5004)
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0.001 0.0l 0.1 1 10 100

Current density B, (dimensionless)

Reaction rate ratio vs. current density at different values of the
parameter & The reaction rate ratio is the ratio of the reaction rate
at the center of the wafer to the reaction rate at the electrical
contact point.

wafer as the seed layer thickness decreases owing to the
higher ohmic resistance (thus lower charge-transfer
overpotential) associated with thinner seed layers.
Moreover, the value of « at the electrical contact point
decreases as seed layer thickness decreases; although
the value of o at the electrical contact point would be
expected to remain constant because the applied potential
remains constant, the fact that five nodes in the
continuum code are averaged together to compute the
potential in the electrode that is passed to the Monte
Carlo code causes average potentials at the contact to
be not identical for all seed layer thicknesses.

The distribution of the temporal scaling exponent f3
after 120 s of deposition is shown in Figure 3(c) for all
seed layers. The values of f§ for a given position across the
wafer decrease as the seed layer thickness increases. The
observed variation in f is attributed to the fact that
from the beginning to the end of the simulation, the
potential in the metal changes more at the center of
the wafer than at the electrical contact point.

Constant-current simulations

Simulations performed with only the resistive code

are depicted in Figure 4 in order to show the effect of
macroscopic parameters on the current distribution. The
ordinate gives the ratio of the reaction rate at the center
of the wafer to the reaction rate at the electrical contact
point (a value of 1 corresponds to a uniform current
distribution). The 1,000-A (¢ = 3.55), 500-A (¢ = 7.11),
and 100-A (¢ = 35.55) simulations show that the current
distribution is not uniform, even at low current densities,
since the reaction rate ratio is less than 1. Decreasing the
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B), and 1,000 A, where B, = 26.65 (Curve C), at a constant applied
current of / = 10.6 A and using base case physical parameters.

exchange current density by one order of magnitude (to
& = 0.35) for a 1,000-A-thick seed layer failed to provide
a uniform current distribution, although decreasing it by
two orders of magnitude (to ¢ = 0.035) provided a nearly
uniform current distribution for low applied currents.

When a constant current is applied, the initial potential
distribution in the seed layer depends on its thickness,
as seen in Figure 5. The variation in the potential
distribution as a function of the seed layer thickness
is greater for the constant-current results presented in
Figure 5 than for the constant-potential conditions
presented in Figure 2 because the potential required to
satisfy the current demand for the constant-current
simulations changes as a function of the seed layer
thickness. Moreover, the potential required to meet the
current for the 100-A-thick seed layer is twice as large as
the potential applied in the example constant-potential
simulations.

The resistive code alone was used to provide the results
illustrated in Figure 6(a) for the dimensionless deposit
thickness profile for all three seed layer thicknesses after
120 s of deposition. The same trends are observed here
as in the constant-potential simulations associated with
Figure 3(a); in all of the simulations, the deposit thickness
at the contact end is two to three times thicker than it is at
the center of the wafer. The fact that the deposit thickness
at the contact end is two to three times thicker than it is at
the center of the wafer regardless of the initial seed layer
thickness indicates that the temporal evolution of the
potential distribution in the wafer occurs in a similar
manner for all seed layer thicknesses.
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After 120 s of deposition for seed layer thicknesses of 100 A (B¢,
= 266.54), 500 A (B, = 53.31), and 1,000 A (B, = 26.65), at a
constant applied current of / = 10.6 A and using base case physical
parameters: (a) deposit thickness profile; (b) spatial scaling
exponent distribution; (c) temporal scaling exponent distribution.

Distributions for the spatial scaling exponent o for all
seed layer thicknesses after 120 s of deposition are shown
in Figure 6(b). The simulations closest to the electrical
contact point have the highest values of o, indicating that
the surface is roughest there. Additionally, on average,
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the values of o decrease as the seed layer thickness
decreases. Lower values of o imply that the surface is less
rough because the root-mean-squared roughness is not
increasing rapidly over short length scales. Figure 5 shows
that the potential in the metal decreases as the initial seed
layer thickness is decreased, indicating that the current is
lower across the wafer for thinner seed layers. If the
current were lower, it is expected in the simulations that
the surface roughness would be lower because cuprous
pseudoparticles would have more time to move by surface
diffusion to low-energy sites on the surface and
incorporate into the metal.

The distribution of the temporal scaling exponent /3
after 120 s of deposition is shown in Figure 6(c) for all
seed layers. The values of f across the wafer decrease as
the seed layer thickness decreases. The observed variation
in f is attributed to the fact that the potential in the metal
changes more at the center of the wafer than at the
electrical contact point from the beginning to the end
of the simulation. The trends observed for the constant-
current simulations are similar to those observed for the
constant-potential simulations.

Simulation with different random seed numbers
Since it is a stochastic method, KMC simulations produce
results with fluctuations that are dependent on the seed
number used in the random number generator. Therefore,
one of the test simulations was repeated with a different
seed number in the random number generator in all of the
Monte Carlo simulation codes to determine the influence
of the seed number on the outputs of both the Monte
Carlo model and the resistance model. The simulation
selected for evaluation was a constant-potential
simulation with a dimensionless applied potential of
—10 and a l,OOO-A-thick seed layer. The effects of the
random seed number are expected to be similar for
other operating conditions.

The initial potential distributions for the two
simulations are identical because they are not a
function of anything generated in the Monte Carlo code
and are of a purely continuum nature. The final potential
distributions are expected to be different for each
simulation, however, since they depend on stochastic
results from the Monte Carlo code (i.e., the thickness
distribution as a function of time). For the test
comparison, it was found that the maximum potential
difference, which occurred near the center of the wafer,
was less than 10 mV or 0.8 dimensionless potential units,
which is 8% of the applied potential.

The ratio of the dimensionless deposit thickness at the
contact end to the dimensionless deposit thickness at the
center of the wafer was about 2 for both simulations [see
Figure 3(a)]. However, the deposit thickness profiles for
the two simulations differed by about 25%. Because of the
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exponential relation between potential and current shown
in Equation (3), we note that an 8% difference in potential
corresponds roughly to a 25% difference in current
density for the conditions at hand. The distributions of
the spatial scaling exponent o as well as those for the
temporal scaling exponent f§ were found to be sensitive
to the random seed number. The trend that the spatial
scaling exponent is larger at the contact end than at the
center of the wafer was observed in both simulations;
however, the values of the exponent vary by almost 25%
at the contact end [the variation at the center of the wafer
was lower, as noted in Figure 3(b)]. While the overall
trends that the temporal scaling exponent was smaller
at the contact end and increased across the wafer were
observed in both simulations, the value of the two
exponents was found to differ by about 75% at the
contact end [the variation at the center of the wafer was
lower, as noted in Figure 6(b)].

The influence of the seed number on potential, current,
and scaling results points to the need for making a
sufficient number of duplicate simulations with random
seed numbers in order to average out stochastic noise.
Although the coarse-grained stochastic results reported
in this study provide approximate representations of
behavior, the use of high-throughput computing methods
is recommended for obtaining accurate and statistically
significant results.

Confirmation procedure
Each Monte Carlo simulation code has periodic
boundary conditions in the x and y directions, which
means that none of the Monte Carlo simulation codes
pass pseudoparticles to one another. In a real system it is
in principle possible that copper ions in the solution could
move laterally across the wafer to regions where the
potential is different, which might affect the scaling
analysis results. The following confirmation procedure
was therefore carried out to assess whether the scaling
analysis results computed by the Monte Carlo
simulations are affected by the use of small simulation
domains with periodic boundary conditions. The
procedure for testing the approximation was to use a
single Monte Carlo domain that was twice as wide as
the original domains, and then apply the potentials
(which change over time) determined from the coupled
simulations at two adjacent nodes to separate halves
of the Monte Carlo domain. The potentials from two
adjacent nodes were averaged together, and the entire
simulation was performed with a single set of potentials.
Then scaling analysis was performed on each half of the
Monte Carlo domain.

The confirmation simulation used the average of the
potentials that were supplied to the two Monte Carlo
simulation codes which were closest to the electrical
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Table 2  Spatial scaling exponent « after 30, 60, 90, and 120 s of deposition for seed layer thickness of 1,000 A at a constant applied
potential of ® =—10 and using base case physical parameters. The confirmation simulation was split in half and the scaling exponents were

computed for each half.

Time Confirmation Confirmation
(s) simulation oc‘cl simulation azc)
(from the (from 1.5 cm to

3.0 cm from the
electrical contact

electrical contact
point to 1.5 cm

Monte Carlo
simulation o
(from the electrical
contact point to
1.5 cm from the

Monte Carlo
simulation o
(from 1.5 cm to
3.0 cm from the
electrical contact

from the electrical point) electrical contact point)

contact point) point)
30 0.828 1.014 0.984 1.027
60 0.790 0.916 0.938 0.660
90 0.831 0.846 1.004 0.793
120 0.773 0.704 0.852 0.848

Table 3 Temporal scaling exponent f after 120 s of deposition for seed layer thickness of 1,000 A at a constant applied potential of

®, = —10 and using base case physical parameters. The confirmation simulation was split in half and the scaling exponents were computed
for each half.
Time Confirmation Conﬁrmallan Monte Carlo Monte Carlo
. . a . . a . . b
(s) simulation simulation ﬁ simulation f§ simulation f§
(from the (from 1.5 cm to (from the electrical (from 1.5 cm to

3.0 cm from the
electrical contact

electrical contact
point to 1.5 cm

3.0 cm from the
electrical contact

contact point to
1.5 cm from the

from the electrical point) electrical contact point)
contact point) point)
120 0.181 0.198 0.100 0.197

contact point for a dimensionless potential of —10
and a seed layer thickness of 1,000 A. The results of
the confirmation simulation and the two standalone
simulations are summarized in Tables 2 and 3. In Table 2,
the values of the spatial scaling exponent o for four
different times are presented. The confirmation domain
was split into two identical domains so that scaling
analysis could be performed on each part. The values of
o for each side of the domain should not differ much in
the confirmation simulation, but at 30 s the values were
significantly different, as may be seen in Table 2 (0.828 vs.
1.014). Because of the stochastic nature of the Monte
Carlo simulations, the effect appears to be “washed out”
after some time. In the original simulations, the values of
o at 30 and 120 s were similar (0.984 vs. 1.027 and 0.852
vs. 0.848, respectively), and the values of « at 60 and 90 s
were quite different (0.938 vs. 0.660 and 1.004 vs. 0.793,
respectively). In general, the values of o« computed from
the confirmation simulation and the individual Monte
Carlo simulation codes were not drastically different
(with the exception of one simulation at 60 s, which we
attributed to simulation noise).

It is possible to estimate the components of the
variance in o for the confirmation procedure and the
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original Monte Carlo simulation codes. The variance can
be regarded as having three independent components:
the variance due to the random noise in the simulation
codes; the variance due to the application of different
potentials to the simulations coupled to the resistance
code; and the variance due to the periodic boundary
condition assumption.

The variance due to the random noise in the simulation
codes can be estimated directly from the confirmation
procedure simulation,

4
random % ; ( 1 8)

where ocZ is the spatial scaling exponent for the
confirmation simulation associated with the electrical
contact point and rxf is the spatial scaling exponent
associated with the neighboring simulation.

The variance that is due to the application of different
potentials to the Monte Carlo simulation codes that were
coupled to the resistance code is

4

o 1 a b2
0 tandom + 4051ngle potential g Z(“t - % ) ’ (19)
i=1
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where o is the spatial scaling exponent associated with
the Monte Carlo simulation code at the electrical contact
point and o is the spatial scaling exponent associated
with the Monte Carlo simulation code next to the
electrical contact point. The factor of 4 in Equation (19)
takes into account the variance due to the different
potentials in the Monte Carlo simulation codes.

The variance that is due to the periodic boundary
condition assumption can then be estimated from

4
2 2 2 1 a a2
Grandom + O-single potential + GBC = 3 E (ai - O(Ci) (20)
i=1
or
4
2 2 1 )1
Jrandom + Jsingle potential + O-BC g 2 : O( - O( . ( )

However, the two should produce slightly different results
because the time variance in the potential is greater
farther from the electrical contact point.

From the data glven in Table 2, amn dom = 0.018,

T ingle potential — (3.0067 aBC computed from Equation (20)
is 0.006, and o5 computed from Equation (21) is 0.003.
Clearly, the largest variance in the system is due to the
stochastic noise in the Monte Carlo simulation code,
which is indicated by the fact that aran dom
larger than the next biggest variance. The other variances
are relatively small by comparison. The fact that

Jsmgle potential is small indicates that our average potential
assumption across the entire Monte Carlo domain in the
confirmation simulation does not introduce large errors
into the simulations. Furthermore, the values computed
for ach indicate that our methodology for linking the
Monte Carlo simulation codes to the resistance code
where the codes all have periodic boundary conditions
does not introduce significant error into the scaling
analysis results. Additionally, as predicted, the value

of O'ZBC computed from Equation (20) is greater than
that computed from Equation (21).

The values of the temporal scaling exponent f at 120 s
of deposition are shown in Table 3. The values of f for
each side of the domain should not differ much in the
confirmation simulation, just as the values of o should not
differ. In the confirmation simulation, the values of f did
not differ drastically and were similar to the values
computed from the two Monte Carlo simulation codes.

The confirmation procedure gives some insight into the
relative sources of uncertainty. It has been shown that
assuming small Monte Carlo domains with a single
applied potential and periodic boundary conditions
introduces variations that are small compared with the
fluctuations due to the stochastic noise in the Monte
Carlo simulation codes. It is therefore concluded that
the computational cost of using larger domains

is three times
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cannot be justified for the current study and that the
approximations made by using small Monte Carlo
domains each having a single applied potential and
periodic boundary conditions do not drastically alter the
physical accuracy of the simulations.

Conclusions

A method is developed for linking multiple simulation
codes to create a multiscale simulation that includes
continuum as well as stochastic phenomena. The method
is demonstrated by application to the electrodeposition of
copper on a resistive seed/barrier layer. The macroscale
code considers the effect of radial potential distribution in
the metal film on the electrochemical reaction rate
distribution. The microscale code simulates local
adsorption—reaction and surface diffusion events
associated with deposition of 100-nm pseudoparticles
from an additive-free solution onto an initially flat
featureless copper surface. The situation is inherently
multiscale in the sense that the macroscopic (continuum)
potential distribution exerts a significant effect on

the local microscopic (stochastic) roughness which,
moreover, changes in time as the deposit grows thicker.
Simulations were carried out for the arrangement shown
in Figure 1, where the macroscale code was linked to ten
Monte Carlo simulation codes.

Example simulations are carried out over a range of
parameter space (Table 1) for both constant-potential
(Figures 2 and 3) and constant-current (Figures 5 and 6)
modes. The effect of dimensionless parameters on the
uniformity of the reaction rate distribution at the onset is
summarized (Figure 4). For both constant-potential and
constant-current modes, it was found that the spatial
scaling coefficients for roughness evolution [Figures 3(b)
and 6(b)] were highest at the contact point to the film
(and decreased toward the center) while the temporal
scaling coefficients [Figures 3(c) and 6(c)] were lowest at
the contact point (and increased toward the center).

By comparing a limited number of simulations that
were identical except for the use of different random seed
numbers for the Monte Carlo calculations, it was found
that the maximum potential difference in the potential
distribution was 8% of the applied potential, found
near the center of the wafer; the maximum difference
in deposit thickness was about 25%; the maximum
difference in values of scaling exponents was found at the
contact side and was 25% for the spatial exponent and
75% for the temporal exponent. The influence of the seed
number on potential, current, and scaling results points to
the need for making a sufficient number of duplicate
simulations with random seed numbers in order to
average out stochastic noise.

A confirmation procedure showed that fluctuations in
the scaling analysis results that can be attributed to the
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assumption of periodic boundary conditions are small
in comparison with fluctuations in the scaling analysis
results that are due to the stochastic noise in the Monte
Carlo codes (Tables 2 and 3). That is, the computational
approach which uses small Monte Carlo simulation
domains with periodic boundary conditions provides

an efficient method for multiscale calculations that

does not significantly alter the physical accuracy of

the simulations. It is therefore concluded that the
computation framework presented here could provide yet
more accurate results by averaging multiple duplicate
simulations with use of multiple random seed numbers, as
indicated in the previous paragraph.

Experimental measurements of roughness evolution
can be used to test the validity of numerical simulations.
Procedures were reported recently for estimating
values of the most sensitive parameters for copper
electrodeposition with a four-additive system [24]. The
procedures used experimental data and a multiscale
simulation code composed of a KMC code coupled to a
continuum code.

There are a large number of applications for which
multiscale continuum/stochastic systems could be
investigated with the method outlined in this paper. More
sophisticated codes could be used for the continuum
portion, including continuum codes that predict the
current and potential distribution in deposition tools,
as well as stochastic codes that incorporate additional
phenomena. Examples might include potential-dependent
nucleation directly onto barrier layers, the influence of
multiple solution additives on nucleation and roughness
evolution, and shape evolution during electrodeposition
in complex geometries such as rough surfaces and on-chip
trenches and vias.
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Appendix 1: List of symbols

A Height of the deposit; [dimensionless]

Reactant concentration in the bulk solution;

[g-mole/cm3]

¢. Reactant concentration at the electrode surface;

[g-mole/cm3]

C. Reactant concentration at the electrode surface;

[dimensionless]

Bulk diffusion coefficient; [nmz/s]

Surface diffusion coefficient; [nmz/s]

Energy (barrier); [J/molecule]

Faraday’s constant; [C/equivalent]

h  Root-mean-squared height; [cm]

H Height of deposit; [cm]

H Height of the deposit at the electrical contact point;

[cm]

H_ Initial height of the deposit; [cm]

i Current density in the electrode; [A/cmz]

i Current density in the electrode at the electrical
contact point; [A/cmz]

i, Exchange current density of the electrode reaction at

bulk concentrations; [A/cmz]

I Current; [A]

j  Local reaction rate (current density) along the

electrode surface; [A/cmz]

Local reaction rate (current density) along the

electrode surface; [dimensionless]

Mass transfer coefficient; [cm/s]

Reaction rate constant; [nm/s]

Length across surface; [cm]

Molecular weight; [g/mole]

Number of charge equivalents; [equivalents]

Radial position on the wafer; [cm]

Ideal gas constant; [J/(mole*K)]

Radius of the wafer; [cm]

Radial position; [dimensionless]

Time; [s]

Temperature; [K]

~

Eanlita

,_t
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=

N~ R XTI E N

Appendix 2: List of Greek symbols

o Spatial scaling exponent; [dimensionless]

+ Tafel slope; [dimensionless]

Bcp Current density in the electrode at the electrical
contact point; [dimensionless]

Temporal scaling exponent; [dimensionless]

Ratio of ohmic resistance to mass-transfer resistance;
[dimensionless]

Potential in the electrode; [V]

Potential in the electrode at the electrical contact
end; [V]
Potential in the electrode at equilibrium; [V]

o

- =

=]

3

S, 8 S S

Potential in the solution at the electrical contact end
of the cell; [V]

»
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[1]

random

single potential

Potential in the solution at equilibrium; [V]

Potential in the solution at the electrode surface; [V]
Applied potential; [dimensionless]

Potential in the electrode; [dimensionless]
Overpotential; [V]

Concentration overpotential in the solution; [V]
Charge-transfer overpotential at the electrode—
solution interface; [V]

Ohmic overpotential in the electrode; [V]

Density of copper; [g/cms]

Conductivity of metal electrode; [Qfl-cmil]
Variance in « due to periodic boundary conditions;
[dimensionless]

Variance in o due to the simulation noise;
[dimensionless]

Variance in o due to single applied potential;
[dimensionless]

Time; [dimensionless]

Ratio of ohmic resistance to charge-transfer
resistance; [dimensionless]

Ratio of ohmic resistance to charge-transfer
resistance; [dimensionless]
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