
A framework for
eGovernance
solutions

P. A. Mittal
M. Kumar

M. K. Mohania
M. Nair

N. Batra
P. Roy

A. Saronwala
L. Yagnik

This paper presents a framework which simplifies the task of
developing, deploying, and managing complex, integrated, and
standards-compliant eGovernance solutions. The framework
enables development, configuration, integration, and
management of solutions at a higher semantic level. It also
provides commonly used services such as access to citizen and
property records, access control and authentication services,
public key infrastructure, and support for digital signatures.
The ability to manage solutions at a higher semantic level
enables administrators who are not proficient in programming
to customize solutions in order to address specific needs of the
different national, state, and local governments. This includes
the ability to customize interfaces for multiple local languages
used in government transactions and to customize workflows to
conform to the organizational structure and policies to manage
access to and retention of government records.

1. Introduction
The term eGovernance refers to the process of using
information technology for automating both the internal
operations of the government and its external interactions
with citizens and other businesses. Automation of internal
operations reduces their cost and improves their response
time while at the same time allowing government
processes to be more elaborate in order to increase their
effectiveness. Automation of interactions with citizens
reduces the overhead for both the government and the
citizens, thus creating value for the economy. As an
example, consider an online service that can be provided
by the transport department for the renewal of driving
licenses, currently a leading eGovernance application in
India. At present, the application works as follows: The
applicant visits the regional transport office, completes the
renewal form on paper, and submits the form to a clerk,
along with a photograph, proof of residence, proof of
date of birth, and transaction fee. The clerk processes the
application form manually. The applicant typically has to
wait in the office for several hours before receiving the
renewed driving license. Besides the inconvenience to
the applicant, previous traffic violations are not properly
verified, and there is no provision for easy management
of expired license records.

With the deployment of the eGovernance framework,
we expect the following improvements. In a typical
scenario, persons visiting the state government portal can
choose to renew their driving licenses by completing the
renewal forms online. In the future, the information could
be digitally signed by the citizen to ensure nonrepudiation
using the public key infrastructure of the eGovernance
framework, possibly managed by the government. The
solution verifies the applicant�s digital signature,
residential address, and traffic violation records in
real time using the citizen records maintained in the
framework and support for inter-agency collaboration. It
then requests that the applicant make online payment for
the renewal fees by means of credit card, debit card, etc.
On verifying the payment details with a payment server,
the application is added to the list of driving license
applications to be approved, and a notification is sent to
the approving authority in the government. The approving
authority logs on to the state portal, views the pending
renewal applications, and approves or rejects them.
Approved applications are automatically forwarded to
the license printing application. The driving license card
is then sent to the applicant by courier. The system
periodically archives or purges the renewal applications
and archives the expired driving license records. The

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 P. A. MITTAL ET AL.

717

accepted and rejected applications may have to be purged
on different schedules.

The design and development of such complex solutions 1

poses significant challenges. One such challenge is that in
current development environments [1– 4], the application
developers have to work at a low level of abstraction. This
means taking care of low-level issues such as interprocess
messaging, tools integration, and data modeling while
defining the application logic. Similarly, solution
reconfiguration and management requires the solution
administrator to have a detailed understanding of the
application logic, making the task time-consuming and
error-prone. Handling these challenges effectively requires
highly skilled and experienced information technology (IT)
professionals, increasing development costs for effective
eGovernance solutions. Solution administrators typically
lack these IT skills, rendering change management
impossible.

In solutions developed to date [5– 8], each eGovernance
solution has customized existing products to address an
individual government agency requirement. However, this
might not always be the most economical way to develop a
solution. In most industries, around 85% of the processes
are same across companies within that industry. A similar
fraction of the processes can be expected to be similar
across different government solutions. Clearly, it is
desirable to develop these processes once and then reuse
them for many solutions. This is also likely to be true for
data models, user interfaces, etc. For example, the address
verification process in the driving license renewal solution
considered above can be reused while developing a
passport renewal solution. Similarly, the traffic violation
record verification process can be offered as a service
to insurance businesses to be reused in a car insurance
solution. Lack of information (metadata) on available
processes and components and difficulty in customizing
these for a specific need currently hinder their reuse for
multiple solutions.

One can readily conclude from the preceding discussion
that there is a need for a framework that can simplify
the development, deployment, and management of
eGovernance solutions. The eGovernance framework
proposed in this paper addresses the requirements
identified in the preceding discussion by

● Enabling modeling of a hierarchy of building blocks that
can be used to abstract government process to a higher
semantic level.

● Enabling specification of workflow for government
processes independent of standards; the platform takes

care of generating the deployable solution that conforms
to the appropriate standards.

● Enabling reuse of effort across solutions by providing
tools to develop generic, parameterized applications
or processes that can be stored in a repository with
appropriate metadata and effectively reused by various
applications with appropriate customization.

● Extending programming models to specify the
customization points in an application or solution
during development, and intuitive interfaces to enable
modification of solutions easily after deployment without
the need for the business user to modify the application
source code.

● Extending programming models to simplify specification
of multilingual and multidevice interfaces.

● Providing tools to author the wrappers for the legacy
applications and workflows integrating multiple
applications to automate processes spanning several
government agencies.

The current framework prototype described in this
paper will evolve with customer engagements. The
approach is to maximize the reuse of available tools and
middleware. In the initial stages, the focus of the effort is
on the Indian eGovernment market; however, the platform
can be extended to suit the needs of other countries as
well.

The rest of the paper is organized as follows. Section 2
presents the key requirements of eGovernance solutions.
Section 3 describes a model for eGovernance solutions
and discusses the framework components in relation to the
solution model. Section 4 describes how the eGovernance
framework simplifies solution development, deployment,
and management. The eGovernance framework architecture
and the detailed description of its components appear in
Section 5. Section 6 explains the framework with sample
scenarios and user interfaces. Section 7 discusses the
prior work in this area, and Section 8 presents the
conclusions and future directions.

2. Requirements of an eGovernance solution
To understand how the eGovernance framework simplifies
the task of developing eGovernance solutions, it is
instructive to acquire a perspective on what constitutes
an eGovernance solution and the aspects in which
eGovernance solutions differ from enterprise solutions.
Over the last few years, eGovernance has been
implemented as isolated applications for specific
government departments, creating a complex web of
interactions among departments that deliver similar
services to customers. Counter to this trend, today�s need
is for government to present a single face to citizens. To
address these forces, government must transform its
isolated, fragmented framework into a collaborative,

1 In this paper we use the term application to refer to a programming asset
developed by a vendor under one contract. The term solution is used to refer to a
collection of applications, possibly deployed on heterogeneous platforms, that are
integrated to enable the delivery of a government function.

P. A. MITTAL ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

718

externally focused, segment-centric operating model. The
segment approach reorganizes services from a holistic
understanding of customer needs that span traditional
organizational boundaries. This in turn provides to the
citizen an integrated view based on a specific eGovernment
function. Some representative requirements of typical
eGovernance solutions are presented below.

● Security and privacy Authentication requirements for
government solutions are significantly more stringent
than those for typical business applications. The dealings
of an individual with a business are less common than
those of an individual with a government, since most
of us file taxes and apply for driving licenses. While
businesses can limit their liability by requiring payments
before goods are shipped, government cannot afford to
deal with imposters with profit motives or malicious
intent. Identity theft is only one of the problems that
can be caused by poor authentication in eGovernance
applications. The sheer volume of information that
governments maintain on individuals makes privacy
issues extremely important. Since all eGovernance
applications require strong authentication processes,
possibly involving multiple government agencies, it is
imperative to offer authentication as a government-
managed service in the eGovernance infrastructure, as
proposed in this paper. The government, or its delegate
agency, must manage the public key infrastructure
needed for this purpose.

● Electronic receipts and payments A large number of
government applications require the ability for users
(citizen or business) to make and receive payments
for services received from the government, often
maintenance of or information on records such as
property deeds. Electronic forms of payment are not yet
popular in developing countries. Because governments,
compared with businesses, have fewer methods for
collection from delinquent payees, robust payment
methods are essential services for the eGovernance
framework.

This is also an area in which IT can dramatically
increase government efficiency. In an ongoing study of
actual government processes, it has been observed that
each government agency has its own departments for
collecting payment. With proper business reengineering
and workflow integration capabilities, unified payment
collection can be offered as a service to all government
agencies.

● Record management Government processes deal with
a large number of records managed by different
departments. The records have different contexts; some
are more permanent in nature than others. For example,
felony convictions are permanent records, while traffic
misdemeanors must be deleted or archived after a

certain time duration. The eGovernance framework
must provide a record management system to
electronically capture, preserve, manage, protect, and
ultimately dispose of records. Proper audit trails are
also important. The system must be as automated
as possible to minimize the involvement of skilled
database administrators; at the same time, it must be
customizable to the needs of different agencies and
different record types. Tools and services for record
management will be the most widely used services
of the eGovernance framework. (Record-keeping by
governments or temples may be credited with driving
the invention of writing itself, albeit on clay tablets, in
Sumerian times.) Compared with developed countries,
relaxed accountability standards for government
employees in developing countries make record
management and the preceding requirements essential
for the eGovernance framework.

● Intuitive graphical/conversational interfaces Literacy in
developing countries is significantly lower than that in
developed countries. The eGovernance applications
should be as accessible to literacy-challenged users as
to literate ones. Furthermore, even literate users may
require their native vernacular instead of English
as a medium of communication. This requires the
applications to communicate with the user in the user�s
preferred language, by means of intuitive graphical
and conversational interfaces. For example, the
denomination of an Indian currency note is written in 15
different regional languages on the currency bill itself!

The penetration and adoption rate of cell phones
compared with PCs in developing countries is much
higher than that in developed countries. From the
perspective of a developing country, the eGovernance
application must be able to provide consistent
interaction for users regardless of the type of access
device—laptop, desktop, personal digital assistant,
(PDA), or cell phone. The important issue related to
supporting interactions through such mobile devices is
that the applications have to deal gracefully with
occasional disconnects from the network.

● Record virtualization Typically, government departments
contain multiple subdepartments distributed across
geographical locations. The eGovernance IT
infrastructure, comprising browser-based clients, Web
servers, application servers, and database servers, must
be deployed in a distributed manner. Location of the
database servers is perhaps the most critical decision,
because the records being maintained by various
agencies are likely to be required by applications of
other agencies. This has been identified as a critical
requirement in multiple ongoing customer dialogues,
described later in the section on customer engagement
experience. High availability of these records is critical

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 P. A. MITTAL ET AL.

719

to the smooth operation of the eGovernance infrastructure.
Record location can be made transparent to the
applications by making it available as a Web service and
encoding it in XML-based standards. This also enables
applications to access heterogenous data from disparate
and distributed sources without being aware of or
concerned about the complexity involved in accessing
the data.

● Service integration Government departments must
communicate and interoperate with their suboffices
in remote areas of the country as well as with other
departments and businesses. This requires the ability to
connect to pre-packaged applications as well as to the
legacy applications developed by different vendors,
involving both application connectivity and process
integration. Currently, in the absence of any
eGovernance standards or reference architecture across
the country, solution vendors are developing government
applications in an ad hoc manner, on various platforms,
using different programming languages and runtime
environments. The eGovernance framework prescribes
open-standards-based interoperability guidelines,
analogous to the eGovernment Interoperability
framework [9], to allow solutions to be created on the
basis of reusable building blocks that span multiple
government departments.

● Solution customizability In the eGovernance
environment, government processes must be modified
periodically to reflect changes in organization, policies,
work realignment, etc. For example, the target group
characteristics for a social welfare scheme may change
over a period of time, or the policy to grant approval
of the layout of a new building must be modified in the
future. It is important that the developed applications
should be flexible enough to allow such changes, even
after deployment. Moreover, this reconfiguration process
must typically be carried out by officials not skilled in
IT. Thus, the eGovernance application should provide
an intuitive user interface to define, manage, and modify
these processes. As a related issue, an eGovernance
application deployed across the country has to be aware
of the local culture, local government policies and
procedures, etc. The application should be customizable
along these dimensions as well.

The representative requirements presented above are
not specific to a particular application or country. While
these requirements arise in enterprise (commercial)
applications as well, they become more significant in
eGovernance applications for a variety of reasons—the
sheer scale (for example, India is a country with more
than a billion people, with only a small fraction on the
privileged side of the “digital divide,” and usability is a
major issue); the higher stakes involved in security and

privacy; the lack of reliable infrastructure (reliable
connectivity, for example, could be a major issue in
remote rural areas); and, most significantly, the budgetary
constraints. While a development platform that reduces
the complexity of addressing one or more of the above
requirements benefits application development in general,
it will have a much stronger impact on the development
of eGovernance applications in particular. How this is
enabled by the proposed eGovernance framework is
discussed in the next section.

3. eGovernance solution components and the
eGovernance framework
In this section, we describe the common components of
various eGovernance solutions and discuss various IT
technologies that comprise the eGovernance framework
[10]. We then discuss how the development, deployment,
and management of the various components of the
eGovernance solutions are supported by the technologies
of the eGovernance framework. Finally, we discuss how
the framework helps in integrating the solution
components into customizable processes.

The eGovernance solution components can be organized
in three tiers, as shown in Table 1, with the first tier
representing the information services that use Internet
technologies to provide access to information. A range
of solutions can be built based on access to public
information alone. With proper authentication, in order
to protect privacy, access can be extended to personal
information for individuals. The next tier of solution
components add transactional capabilities to the services,
enabling citizens to initiate and interact with various
government processes. Components in this tier also enable
employees of a government agency or department to
initiate/interact with processes of other government
departments. The third tier (data mining and analysis)
represents the strategic future of eGovernance solutions,
which will enable the on-demand vision of a government
that is responsive to social, economic, and political
changes and resilient to these changes because of
the flexibility provided by the new capabilities of
eGovernance. eGovernance will enable governments
to extract trends from the transactional data, make
meaningful forecasts from these trends, and implement
the necessary policy decisions rapidly.

The eGovernance framework, like frameworks for many
industries, can be viewed as comprising three technology
layers: the enablers or tools for development of
eGovernance solution components, the middleware or
framework services for runtime support of eGovernance
applications or solution components, and the solution
environment, which helps in creating effective inter-agency
processes from the solution components. These three
layers comprise the technology view of an eGovernance

P. A. MITTAL ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

720

solution. The eGovernance framework proposed in
this paper is expected to simplify the development,
deployment, and management of eGovernance solutions.
While solutions are currently developed as isolated
applications for specific departments, the goal is to
develop applications and solution components that can be
used by multiple organizations and that are designed to
share information with related components, becoming part
of an integrated solution. As illustrated in Table 2 and
discussed in detail below, the enablers (tools), middleware

(services), and solution environment provide support for
the eGovernance solution components in all three tiers of
Table 1.

Enablers, or tools
The enablers are the tools used to develop the high-level
reusable building blocks of an eGovernance solution. The
building blocks become part of the framework services
layer. They provide eGovernance application-specific
semantics, allowing application development at a higher

Table 1 Model for the eGovernance solution.

Revenue Law and order Health and
basic education

Public works Planning controls
(licensing and

permits)

Information services
� Public information
� Personal data

� Instructions for
compliance

� Police
advisories

� Interaction
with judiciary

� Educational
material

� Postings for
RFP/RFQs
(tenders)

� Contract
awards

� Rules and
regulations

� File tracking

Transactional
services

� Payments for
permits,
licenses

� Tax
filings

� Online
complaints

� Tracking
progress in
investigation

� Patient health
records

� Appointments
for public
hospitals

� Procurement
contracts

� Driving license
renewal

� Birth and death
registration

Data mining and
analysis

� Regional
compliance
trends and
enforcement
measures

� Trends in crime
and violations;
deployment of
resources

� Early warning
of epidemics;
deployment
of control
measures

� Fraud detection
in contract
awarding and
procurement

� Population
growth forecast
and related
control measure

Table 2 eGovernance framework: Solution components and technology.

Information services Transactional services Data mining and
analysis

Solution
environment

� Single, unified portal for
information access to
citizens, businesses and
employees

� Messaging between
heterogeneous systems

� Collaboration across
various departments

� Workflow spanning
multiple agencies

� Change management

Services � Multilingual content
management

� Authentication and
privacy

� Multidevice access
management

� Data models and
government record
services

� Commonly used process
patterns

� Payment services

� Data integration
� Data analysis

Tools � Content authoring and
management

� User role and account
creation

� Multiple device authoring

� Record management
policies specification

� Business object creation
� Legacy wrapper
development

� Data attribute
mapping for record
virtualization

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 P. A. MITTAL ET AL.

721

semantic level. The low-level details are incorporated
by the development platform as it generates the code.
The building blocks can be customized to address the
requirements of the application being developed through
wizards. (A wizard is software that guides the developer,
through a set of screens, to easily customize a solution
component for a specific application.) The following
enablers address the representative requirements listed
in the previous section:

● Security and privacy enabler This helps create the
components responsible for user account maintenance,
user authentication (log-in, password management), as
well as access control. The wizard available with this
enabler customizes associated policies such as password
policies and access control policies. It relies on the
public key infrastructure of the framework services.

● Electronic receipts and payments enabler This helps build
the application component responsible for supporting
the financial transactions for multiple government
agencies. Again, the accompanying wizard can be
used to specify the entities involved (i.e., government
agencies and the financial institutions taking care of the
transactions) and customize the agency-specific payment
policies.

● Record management enabler This helps in specifying the
policies for management of transactional records at a
higher level in terms of business objects and in tying
these policies to the relevant information sources. The
policies may pertain to retention (archival/deletion
schedule) for records, audit trails for changes,
encryption policies for storage and transmittal, logging
of requests, and acknowledgment of successful
transmission.

● Interface enabler This helps build the citizen-facing
graphical and multilingual conversational interfaces for
the application using reusable user interface components
and technologies for language translation, speech-to-
text, and text-to-speech features. The wizard also allows
the developer to author the user interface in a device-
independent manner and then select the client devices
that should be able to access the resulting application.

● Record virtualization and data integration enabler This
helps to provide a virtual view of the government
records for the eGovernance applications. The
accompanying wizard allows the developer to specify
the named data sources or virtual records and their
schema/attribute mappings, etc., while their actual
location is specified at the application deployment time.

In addition to the prepackaged enablers, the
eGovernance framework can be extended with new
enablers and the accompanying configuration wizards.
Development organizations can create their own enablers

or extend existing enablers for their own use, thereby
creating a hierarchy of enablers.

Middleware framework services and reusable assets
The framework services layer provides the domain-specific
services and data models that can be used in multiple
government solutions, possibly across different
departments. For example, a large number of government
applications refer to common entities such as citizen, land,
and establishment. The data models and corresponding
records for these entities can be reused, not only saving
development time and effort but also ensuring consistency
of data and ease of sharing it across applications. Access
to the citizen database, land records database, etc.
can be supported using Web-services-based interfaces.
Government applications also have similar processes,
such as user identification and authentication, address
verification, medical certificate verification, audit,
and logging. These processes can be provided as the
framework services to be used across multiple government
solutions. These services use the high-level reusable
building blocks, created using the enablers in the
preceding section, such as access control policies, payment
policies, record management policies, business objects, and
multilingual interfaces.

The generic forms of frequently used applications or
solution components themselves can be offered as Web
services from the eGovernance middleware. The driving
license renewal and the passport renewal applications are
examples of application templates that can be reconfigured
and reused with customizations in different solutions.
Each solution implemented using customized application
templates may differ in its look and feel or some of the
processes, but the core application logic does not change.
This addresses the important issue of reusability of
programming assets by vendors developing government
applications, who need to develop similar applications,
with minor variations, for various state governments,
across multiple countries.

The eGovernance framework will initially incorporate
frequently used assets such as the common data entities,
their use-case diagrams, commonly used processes and
services, and application templates. Furthermore, the
framework will provide the capability for the developers
and the domain experts to create, categorize, and store
new assets, the details for which are discussed in the
section on framework architecture.

The commonality among the eGovernance applications
and solution components may not be limited to the
common data models and the services described above.
Every industry has a set of processes that implement the
typical services provided by the industry. Business experts
abstract these into identifiable industry patterns. Examples

P. A. MITTAL ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

722

of some common patterns observed in government
processes are lodgement with and without payment,
auditing, procurement and tendering (RFQ), and public
complaint. For instance, the lodgement without payment
pattern enables the citizens to submit and/or register
documents for various government services. Examples
of government services that can be developed using this
pattern are registration of deeds, companies, dealerships,
licenses and permits; applications for caste certificates,
nativity certificates, and birth certificates; and filing of tax
returns. The eGovernance framework provides the ability
to use the eGovernance patterns in facilitating the
development and deployment of government applications.
It also provides a few predefined patterns encountered
frequently in government application requirements.

Solution environment
The solution environment provides developers and
solution managers with the capabilities necessary to create
and manage solutions spanning processes in multiple
government agencies by integrating the applications,
solution components, and processes across these agencies.
This involves defining new services, integrating legacy
services by developing wrappers around them, and
messaging between applications. These capabilities are
built on top of existing integration solutions such as the
WebSphere* Business Integrator [11]. The WebSphere
Business Integrator delivers five key integration
capabilities: Model, Integrate, Connect, Monitor, and
Manage. These capabilities are supported by a common
framework consisting of tooling, business objects, and
adapter framework, a services-oriented architecture, and
a browser-based graphical user interface (GUI). Further,
multiple templates can be created using the WBI to
handle process variations in different states. The
accompanying wizard hides much of the complexity
involved in this customization and also ensures that the
above tasks are done in a standards-compliant manner.

In addition to the integration capabilities, effective
solutions also require the involvement of government
employees in the eGovernance processes. The framework
will employ IBM portal technologies [12] to bring
employees of different relevant agencies, information from
independent government record repositories, and portlets
for different government applications in one Web-browser-
based view to enable involvement of employees from
various government agencies in the solutions spanning
them. The portal server provides quick integration with
back-end systems to build portlets for integration with
relational databases, domino databases, and enterprise
applications (SAP**, Siebel**), etc. The eGovernment
portal can be further integrated with content management
tools such as the DB2* Content Manager [13]. This tool

can integrate and leverage all forms of content—
document, Web, image, rich media—across diverse
business processes and applications, including Siebel,
PeopleSoft**, and SAP. It also helps in Web content
development without the need for programming skills.

4. Simplifying eGovernance solution
development, deployment, and management
In this section, we describe how the eGovernance
framework simplifies solution development, deployment,
and management. This addresses the ways in which a
developer can create a new solution, an administrator can
configure and deploy it in different environments, and a
business user can manage it after deployment.

Solution development
Let us first see how the framework helps a software
developer in the solution development process. The
framework provides tools and services to enable
application modeling at a higher, semantic level. The
solution components encapsulate the industry standards
and best practices, leading to the development of high-
quality, interoperable applications. Moreover, the
framework implementation is based on the open extensible
Eclipse [14, 15] platform, which provides an integrated
development environment with a uniform look and feel.
This allows the developers to seamlessly use multiple
application development tools from various vendors.
Additional details are given later in the paper.

Furthermore, the framework reduces the solution
development time by providing the capability to reuse
assets across solutions developed by multiple vendors.
Specifically, it allows the developer to package a set
of related artifacts as an asset and store the asset in a
repository tagged with a set of keywords, description
and, if needed, the metadata to facilitate its reuse. The
metadata may include the configurable parameters of the
asset. While developing an application, another developer
can search the repository for available assets based on the
keywords. For each asset returned, the developer can read
its description and may decide to use it in the application.
The framework provides a wizard that reads in the asset
metadata and assists the developer in using the asset in
the given application.

Figure 1 shows how multiple developers (independent
software vendors, or ISVs), each developing their own
independent eGovernance applications, share assets
among themselves through a central repository of
assets. It is clear that good specifications by architects
of eGovernance applications call for the application
developers to package all potential assets as reusable
components. This repository can be owned by the
government and can be hosted and managed by the

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 P. A. MITTAL ET AL.

723

government or by an independent third party. Figure 2
shows how a particular developer reuses a given asset in
the repository for related requirements across multiple
government customers.

Solution deployment
This section describes how the framework simplifies the
task of deploying a solution. As discussed earlier, an
eGovernance application typically has to be integrated
with a diverse set of other applications to create a

solution. To keep the deployment complexity to a
minimum, it is important that the application being
developed adhere to certain standards—DCA21 standards,
standards for Web services, data exchange, business
processes, messaging and connectivity standards, etc. This
allows for easy integration with other components and
applications in the deployment environment. For instance,
a Java 2 Platform Enterprise Edition (J2EE) [16, 17]
application can be packaged as a set of WAR and EAR
files that can easily be deployed on any J2EE-compliant
application server. Developing the application at a higher
semantic level using the enablers has the advantage that
standards compliance is now the onus of the enabler;
the generated modules are guaranteed to be standards-
compliant, and, as a result, easily deployable. Consider the
renewal of driving license example described in Section 1.
The driving license solution may comprise multiple,
distributed component applications. For instance, there
may be one standalone application deployed by the
state police department to handle verification of traffic
violations, another by a municipal corporation to handle
address verifications, and yet another deployed by a
participating financial institution to handle online
payments. These applications, if developed on the basis of
the proposed framework, will be Web services that can
integrate easily across multiple departments, using the
BPEL4WS [18] standard. In another scenario, if the online
payments application already exists on an enterprise
information system, the solution environment of the
framework can use the J2EE Connector (J2C) connectivity
standard [19] to wrap the legacy application. The wrapped
legacy application can then be invoked like any other Web
service. Since the interface between the driving license
application and the financial institution application is
standards-compliant, the transport department has the
liberty to replace one financial institution with another
with no disruption in service. In yet another scenario, if
the J2EE-compliant [16, 17] driving license application
has to communicate with the police department legacy
application using WebSphere Message Queue [12], the
framework solution environment supports the
communication based on JMS [20, 21].

In addition to adherence to standards, there are
building blocks that ease solution deployment in different
environments such as access from different devices,
specification of captions in multiple languages, and access
to data from disparate and distributed data sources by
simplifying the associated configuration and attribute
mappings. Also, the administrator can easily define
the security policies or record management policies
according to the needs of the specific customer. Thus,
the framework assists an administrator in solution
deployment.

Multiple ISVs reusing and sharing assets.

Figure 1

eGov F/w

app1

ISV_1

a
ss

e
t_

1

asset_3

asset_4 a
ss

e
t_

5

Search

Customize

Use assets

Add a

new

asset

Search

Customize

Use assets

Add a

new

asset

Search

Customize

Use assets

Add a

new

asset

eGov F/w

app2

ISV_2

eGov F/w

app3

ISV_3

Central asset repository

a
ss

e
t_

2

Single ISV customizing an application for different customers.

Figure 2

eGovernance framework

App1 for

Customer_1

App1 for

Customer_2

App1 for

Customer_3

App1 for

Customer_4

Customer-specific components

Common reusable assets

comprising App1

P. A. MITTAL ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

724

Solution management
Next, let us look at the complexity of managing the
eGovernance solutions. The need to make changes
in solutions arises from changes in the policies, laws,
business processes, and even standards as and when
they are upgraded. For example, the government might
stipulate at a later time that the driving license be
renewed only if the applicant has a clean tax record. This
verification requirement adds more fields to the forms
[for example, the Personal Account Number (PAN), which
is similar to the Social Security Number in the U.S.] and
requires the taxation department application to be added
to the workflow as well. It is important that government
applications be flexible enough to incorporate these
changes without substantial reprogramming effort and with
as little downtime as possible. Change management in
applications developed using the framework requires little
effort, since the building blocks allow the reuse of earlier
development effort to the maximal extent possible. The
developer changes the application process at the semantic
level and modifies the associated building blocks. The
framework then regenerates the affected modules and
integrates them in the deployed application.

In certain cases, the platform can also provide the
capability for automated change management of the
application; that is, it allows the facility of reconfiguring
a deployed, running application without looking at the
application source code. This requires twofold support,
both at the time of application development and after
the application is deployed. It involves the anticipation
of possible future modifications to business process
or application logic and the creation of appropriate
customization points in the application at the time of
application development. The eGovernance platform
enables development of easy-to-customize applications
by providing a solution customizability enabler. The
accompanying wizard helps the application developer
to identify the portions of business logic that may be
reconfigured by the end user in order to specify the
configurable parameters, and the processing required to
translate the reconfigured logic into application code. An
associated tool provides intuitive interfaces to help the
end user modify the application after deployment. It
allows the end user to modify the parameter values to suit
the changed process, policy, or standard, and automatically
performs the required modification to the application logic.

There is yet another way in which the framework helps
a business user manage the eGovernance applications.
Some of the building blocks of the framework separate
the business rules and operational policies from the
application logic. For example, the record management
enabler encapsulates the data administration policies, the
security enabler captures the access control policies, and
the payment enabler creates payment policies. These

policies can be changed without requiring changes to
application source code. An asset may also use externally
defined rules in a process. This provides the capability
for online change management of the application, thus
allowing the reconfiguration of a deployed, running
application without any downtime.

5. Framework architecture
Figure 3 shows the high-level architecture of the
eGovernance framework, based on the framework
components described in Section 3. The top of the figure
shows various government applications such as commercial
tax, land records administration, health, police, transport,
and education. The process modeling and development
tool provides the capabilities for integrating citizens,
employees, and applications across government agencies
for the solution environment layer. It allows the solution
developers or administrators to either create a new
process flow or choose one from an existing set of
eGovernance patterns which capture the typical high-level
semantic process flow. For example, to create a renewal
of driving license solution as described in Section 1, the
solution creator chooses the lodgement with payment
pattern. This pattern includes the following steps: citizen
authentication and access control to the government

High-level architecture of the eGovernance framework.

Figure 3

Commercial

tax

Land

records
EducationHealth Police Transport

Process modeling and development tool

(Flexible workflow using reusable assets)

Existing products

Open standards

Asset wizard
Assets

Asset repository

ECLIPSE

Enabler wizard

Solution

customizability

Record management Interface

Data integration

SecurityReceipts and payments

Enablers

Pattern wizard Govt. patterns

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 P. A. MITTAL ET AL.

725

portal, application form with multiple language support,
online data input including payment details, electronic
form submission with digital signatures, electronic
acknowledgment, input validation, automated workflows,
electronic status tracking, e-mail notification of results,
and generation and dispatch of necessary documents.

The process flow can be further customized, using the
pattern wizard, by providing the details of each step in the
process. The developer can either implement a process
step from scratch using the existing development tools
at a low level, or use the framework services described in
Section 3, which allow application development at a higher
semantic level. Each service caters to a requirement
common across multiple government applications. The
framework allows the packaging of these common services
as assets, and facilitates the customization and reuse of
these assets by multiple vendors. The solution developer
can use the asset wizard to search for an asset on the
basis of category names, select the asset, and view it in the
appropriate viewer. For instance, the address verification
Java** application requires a different viewer than the
citizen data model. Examples of assets relevant to the
driving license renewal solution are multilingual interfaces,
online payment processing, digital signature verification,
the address verification process, and the citizen data
model. An asset can be a front end to an existing
application or solution component providing the desired
functionality, or it can provide the functionality by native
implementation. For example, the online payment
processing asset could be a wrapper to a legacy payment
application, based on open standards such as Java
Connector Architecture (J2C) [19]. Similarly, the digital
signature verification asset can use third-party libraries
for the public key infrastructure based on open security
standards.

Underlying the high-level semantic modeling of
eGovernance solutions using the assets is the support
provided by the enablers—the development tools to build
the reusable assets and customize these to suit the needs
of a particular solution. The customization of an asset
may be done manually using the edit tools provided in
the framework, or it may be guided by an accompanying
wizard. Guided customization works only for configurable
assets. The framework provides tools to facilitate the
creation of configurable assets and their accompanying
wizards. For instance, in the address verification asset, the
data source table name and the data fields to be verified
may be configurable. Similarly, the digital signature
verification asset could allow the developer to choose the
digital signature algorithm, the key size, etc. An XML-
based configuration language is defined to capture the
configurable features of an asset. The wizard uses the
configuration file of the asset to guide the developer
through its customization. Figure 3 shows the various

enablers described in Section 3. The solution
customizability enabler was discussed in the section
on solution management.

Implementation approach
The approach described in Figure 3 reuses several existing
tools and products to build the framework. The framework
was developed on the open source Eclipse [14, 15] platform.
The Eclipse platform is built on a methodology for
discovering, integrating, and running modules called plug-ins.
Each tool provider develops its tool as a separate plug-in
and exposes its tool-specific user interface (UI) in the
Eclipse platform workbench. When the platform is launched,
the user is presented with an integrated development
environment (IDE) composed of the set of available
plug-ins. A simple tool can be a single plug-in, while more
complex tools may consist of many separate plug-ins.
The Eclipse component architecture allows developers
to easily integrate tools developed by multiple vendors.

The process modeling and development tool shown in
Figure 3 provides a unifying wrapper for new and existing
tools, assets, and solution components. The developers
define a high-level business process model. Different
modeling languages are used in the existing tools to
capture various aspects of application modeling. For
example, WebSphere Message Queue Workflow [11] uses
its own workflow modeling language. WebSphere Studio
[3, 4] supports BPEL [16] for process choreography, and
the Struts [22, 23]-based Web application editor, WBI
Modeler [11], has its own business processing modeling
language. RAD builder [24] stores the Web application
model in a different format, and Rational XDE [1] is
based on unified modeling language [25]. Many of these
tools are based on the Eclipse platform. The framework
attempts to unify some of the existing modeling language
plug-ins to provide an integrated high-level semantic
modeling tool. Specification of the various steps in the
pattern and mechanisms to reuse it are being devised
and will evolve with the future customer engagements.

The process components in the framework service
layer are implemented as a combination of Web-based
application, enterprise Java development, connection to
legacy applications, messaging, Web services, workflow
definition, etc. Each component may use reusable assets
and may be used as an asset itself. The framework could
reuse the asset packaging and repository capabilities
provided in the Rational XDE [1], based on the reusable
asset specification [26]. The framework also provides
common services and data models. It currently has data
models for citizen, land, and establishment from past
experiences. These are being further refined with the
inputs from ongoing customer engagements. Other
data models that have been identified from customer
discussions include social welfare schemes, agricultural

P. A. MITTAL ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

726

commodities, property tax, etc. The common services over
these data models and common government processes are
evolving with real customer engagements. Some of the
common processes identified thus far are described in the
next section.

For the enabler layer, the framework reuses existing
Eclipse-based tools and builds Eclipse plug-ins to interface
with existing non-Eclipse tools. New plug-ins will also be
developed to fill any gaps in the existing tools as new
requirements emerge from early deployment. Currently,
the interface enabler allows the development of
conversational interfaces using the Eclipse-based
WebSphere Voice Toolkit [27, 28]. The technology has
been extended to support speech recognition for the
Indian, English, and Hindi languages. The multidevice
enabler supports the development of interfaces to
different devices based on the Everyplace Toolkit [29, 30].
The record management enabler has been developed for
the IBM DB2 database. It includes the Policy Driven
Database Administration (PDDA) [31] engine to provide
record management service. The technology provides a
tool for policy specification and business object creation
as well as runtime support to execute high-level policies.
It enables government officials to specify the data
administration and operational policies of their
departments at a higher level in terms of business objects
and their attributes. These officials are usually not IT
experts and are thus not familiar with the task of database
administration. For example, the Secretary of the Ministry
of Railways can formulate the data administration and
operational policies of the Ministry in terms of intuitive
policy language and terms relevant to domain semantics,
such as refund policy dependent on window relative to train
departure and approvals required. A domain expert defines
the mapping between the objects and the underlying
databases of the eGovernance application once, and all
application developers and solution administrators can
subsequently take advantage of it. The policy maker need
not have any knowledge about the underlying database
schema or about database administration. Furthermore,
while defining policies, it is very natural for the policy
maker to specify that the policy should be executed only
in a particular context. For example, an archival process
may have to be executed only on the next holiday. The
system supports such policies by associating various
contexts with the policies. It has a predefined set of
contexts such as WEEKEND, AFTER OFFICE HOURS,
and HOLIDAYS. The policy maker is also allowed to
define a new custom context; this enables the policy maker
to incorporate the organizational calendar during policy
specification. Finally, these policies are automatically
deployed and executed at the appropriate times by the
PDDA execution engine. The abstract architecture of
autonomic database administration based on policies is

shown in Figure 4. For further details, refer to [32, 33].
The solution customizability enabler is in the requirements
analysis phase. The receipts and payments enabler will
be developed by reusing the capabilities in WebSphere
Commerce Payments [33]. The remaining enablers will
evolve with actual customer engagements, described in
the next section.

Customer engagement experience
This section describes the insights obtained from past
and ongoing customer engagements. We have been in
discussions with several state governments and government
organizations at the IBM India Research Laboratory. One
of the proofs of concepts developed for a customer
successfully demonstrated the capabilities of the record
management enabler and the speech interface enabler. It
was a farmer-oriented project for rapid collection and
dissemination of market information to facilitate its
efficient and timely utilization. The objective was to
computerize market-related information (market fee,
market charges, total arrivals, prices, storage, dispatches
with destination, mode of transportation, costs, sold and
unsold stocks, etc.). The information was collected
at the local market sites and sent to a central site for
consolidation. The consolidated information was then
made available to the producers, traders, and consumers
to enable them to derive maximum benefits from their
transactions. Using the record management enabler,
business objects were defined to represent the market
commodities. The wizard was used to specify policies
such as the following:

1. Notify the market site administrators whenever some
new commodity is added at the central site.

2. Notify the market site administrator whenever the
minimum sales price of a commodity is less than the
specified minimum selling price for that commodity.

Policy-Driven Database Administration (PDDA) architecture.

Figure 4

Policy

definition
Translator

Business

object

repository

XML

PDDA

Configuration

file (XML)

Metadata

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 P. A. MITTAL ET AL.

727

3. Back up data for perishable commodities on a daily
basis and for nonperishable commodities on a weekly
basis.

The speech interface enabler was used, by illiterate
farmers using a conversational interface, to navigate the
consolidated market information on the Web. It used
the technology for speech recognition in Hindi, the
local language. There is a requirement, however,
to do speech recognition for the various dialects of
Hindi and a multitude of other local languages used
in India. The customer also wants to support dynamic
text-to-speech generation for various local languages.
These are some of the market needs that must be
addressed.

In an ongoing customer discussion, there is a
requirement to measure the effectiveness of various social
welfare schemes by a composite index and track the
progress of each individual at each phase in his lifetime.
Currently the services are delivered separately by each
involved department, and individual metrics are used to
measure the effectiveness of the scheme. The data is not
captured effectively at the point of service delivery and is
not consolidated across departments. We have submitted
an approach document based on our eGovernance
framework to address the customer requirements, and the
initial response is very positive. The proposed approach
includes a multidevice data capturing process based on
the multidevice enabler, a consolidated data layer across
different departments based on the record virtualization
and data integration enabler, a lifecycle tracking process
spanning various departments and different phases in a
citizen�s lifetime, and specification of the composite index,

target group characteristics, access policies to consolidated
data, and metrics to determine impact in an easily
modified manner using the solution customizability
enabler. The lifecycle tracking process can be designed as
a reusable asset to address similar requirements by the
health department, the urban development department,
etc.

A pattern appears to emerge from the customer
requirements described above, namely for data collection
from various field offices and transmission (offline or
online) to a central office for consolidation, processing,
and analysis. The pattern is not limited to the scenarios
described above and is applicable in tax returns, allotment
of civil supplies, etc. The section on middleware
framework services and reusable assets lists some of the
other patterns identified while studying the government
processes in past customer engagements.

In yet another ongoing customer engagement, we are in
the process of studying the various department processes
to identify the commonalities for reuse. Our initial
understanding reveals the following candidates as reusable
assets or framework services—the unified payment system,
the complaint management system, the billing system, the
utility approval process, various acknowledgment forms,
rural and urban household data models, application forms
for various licenses, etc. As mentioned earlier, the
objective is to evolve the proposed eGovernance
framework—tools, services, and solutions—to address
the real customer requirements.

6. User interface and sample scenarios
This section describes the user interface of the
eGovernance framework using a sample scenario. The
starting point for rapid application development using the
framework is the selection of the domain. The framework
has been described for the eGovernance domain; however,
it can be generalized to other domains such as banking,
insurance, retail, and telecommunications. Each reusable
component is associated with one or more domains. The
selection of the domain by the developer creates an IDE
that is customized for the selected domain. The remaining
section describes the scenario for developing a driving
license renewal application. The scenario shows
how a developer can reuse configurable assets and
enablers to rapidly create a new application using
the framework.

To develop the application for renewal of a driving
license, the developer can select the lodgement with
payment pattern from the list of government patterns and
search for the relevant assets to customize the pattern.
The developer may find an application template that can
be rapidly customized for this specific need or may use
individual assets to customize the various steps of the

Categorization of eGovernment assets — driving license renewal.

Figure 5

P. A. MITTAL ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

728

process flow. Figure 5 shows that the assets can be
categorized as belonging to various government
departments such as Transport, Passport, Land Records,
Health, and Commercial Tax. If required, the category
names and asset organization can be customized by the
developer. An asset may include processes, implemented
applications, requirements documents, UML class
diagrams, etc. For example, the Common category may
include assets such as Registration, Log-in, Payment,
Procurement Requirements and Test Plan, and Fund
Monitoring Class Diagram. Similarly, as shown in
Figure 5, the Transport department includes assets such
as Renewal of Driving License, Renewal of Registration
Certificate, and Authorization for Tourist Permit. The
developer can click on any asset to see its details. The
details of the Renewal of Driving License asset, shown in
Figure 5, include a driving license renewal form that is
processed by the verification logic using the citizen and
driving license data sources, followed by the payment logic
and printing and courier of the renewed driving license.
The developer can customize the application template
for a specific implementation. It is also possible for the
developer to reuse the building blocks such as address
verification, medical certificate verification, payment, the
citizen data model, and the associated class diagrams to
build a passport renewal application and save the asset
under the Passport category. In the next set of screens,
some components of the driving license renewal
application are described in detail.

The developer can click on the driving license renewal
form to see its contents in detail, as shown in Figure 6.
There is a list of eGovernment custom tags that capture
the common form elements used in the eGovernment
applications: Address, Date, Class of Vehicle, Applicant
Declaration, etc. The developer can drag and drop these
custom tags on the application form. Each custom tag
comprises a plurality of form fields that map to one
or more data sources. For example, the Address tag
comprises fields such as Street 1, Street 2, City, State,
Country, and Pin Code from the Citizen data source. The
developer can further customize the tag, for instance by
deselecting the field Country from the Address tag for a
specific implementation. Similarly, the Class of Vehicle
tag refers to the various types of vehicles in the Driving
License data source. Figure 7 depicts the specification
of user interfaces in local languages. It shows how the
developer can specify the caption for the Address tag and
its constituents in different languages. It also shows that
the developer can customize the label of the field for
each implementation. Further, the developer can use
the interface enabler and the multidevice enabler for
appropriate customization based on the deployment
environment.

The developer can click on the Verification logic block,
shown in Figure 5, to see its contents. The business logic
in an application can be modeled at a high level using
building blocks such as relational database operations
(RDB action), inter-application messaging, Web service
invocation, connection to legacy systems, and business
process, including staff events and code snippets. These
building blocks are empowered by the appropriate
enablers or tools for low-level code generation.
For example, the RDB action may use the record
virtualization enabler to achieve data integration across
disparate databases. The Verification block, as shown

Driving license renewal form — eGovernment custom tags.

Figure 6

Specification of user interfaces in local languages.

Figure 7

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 P. A. MITTAL ET AL.

729

in Figure 8, comprises an RDB action to verify the
applicant�s address, Java code to verify the medical fitness
certificate, another RDB action to validate previous
license details, and a Web service invocation to check
traffic violation details. These building blocks can be
customized for a specific implementation of the driving
license application or reused in another government
application. The framework allows the specification of
logic with no knowledge of standards required, since the
high-level building blocks generate applications that
conform to appropriate standards. For instance, the
messaging building block generates code complying with
the Java Messaging Standard (JMS) [20, 21], and the
legacy connectivity is based on Java Connector
Architecture (J2C) [19].

An asset in the framework can be saved either as a
template or as an application. A template is a configurable
component that can be converted to a customized
application by a developer. Each building block in the
template business logic is labeled as mandatory or
optional. The optional building block can be deselected at
the time of template customization. Further, a building
block may also support configurable parameters whose
values can be specified during customization. For example,
in the Verification logic template, the Validate Previous
License Details block, shown in Figure 8, may be optional
and allow the parameters to be validated from the
previous driving license to be configurable. The developer
can choose to validate one or more parameters such as
the driving license number, the applicant�s date of birth,
the date of expiration, or the class of vehicle. The template
logic can generate customized application code based on
the dynamic selection of these parameters. Similarly, the
Check Traffic Violations block may be mandatory and may
support different implementations such as RDB action
or messaging-based, J2C-based, or Web-service-based

implementations. The developer can select the
implementation type and specify the appropriate
configurable parameters. To develop such customizable
components, both for ease of development and for ease
of change management after deployment, the solution
customizability enabler may be used.

Other enablers such as the receipts and payments
enabler, the security and privacy enabler, and the record
Management enabler can also be used to create the
required building blocks. These building blocks and the
associated services constitute an integral part of the
application being developed.

7. Related work
The development, deployment, and management of
complex, integrated solutions respectively require highly
skilled developers, experienced administrators, and IT-
knowledgeable business users, primarily because of
the complexity involved in working at a low level of
abstraction and dealing with multiple proprietary
technologies.

Vassilakis et al. [34] propose an approach to handling
electronic service lifecycles that balances responsibilities
between domain experts and IT professionals. This
approach enables a more holistic management of the
electronic service lifecycle by employing modeling
and representation in high levels of abstraction and
incorporating tools for automatically generating operative
service instances from these high-level descriptions.
Several application development tools such as WebSphere
Studio Application Developer [3, 4] allow rapid
development of J2EE-compliant applications [16, 17]
based on open standards such as XML [35] for data
interchange, J2C [19] for application connectivity, and
JMS [20, 21] for messaging. Tools such as StrutsWizard
[2] simplify the development of applications based on
design patterns such as Struts [22, 23], and other tools
such as DB3NF [36] allow easy creation of scalable
Web applications based on Microsoft technologies.
The WebSphere Voice Toolkit [27, 28] helps create
VoiceXML* applications rapidly, using an integrated
development environment. The Everyplace Toolkit [29, 30]
allows developers to quickly and easily develop Web
applications targeted to multiple devices with different
characteristics. Though the proposed approaches and tools
do simplify application development to some extent, they
do not address all of the issues involved in developing
eGovernance applications as described in this paper. They
support standards for low-level requirements such as
connectivity, messaging, and data exchange, but the need
to abstract high-level building blocks such as security, data
integration, and record management is not addressed. As
described earlier, the task is even more challenging for

Verification logic block — high-level building blocks.

Figure 8

P. A. MITTAL ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

730

eGovernance solutions because of the scale, higher stakes
in security, lack of reliable infrastructure, budgetary
constraints, and low level of IT awareness among
government officials and the common public.

At present, software vendors offer eGovernance
solutions by integrating existing products and by
customizing those for a specific eGovernance application
[5– 8]. The existing solutions also require customization
to adapt to regional languages, local tax structures, and
government policies. This customization is done using
proprietary technologies, data schemas, and standards.
This not only creates islands of applications that do
not inter-operate, it also limits the reuse of solution
components across different government applications,
leading to duplication of efforts and increased
development costs. The concept of reusable assets or
solution components has been detailed very well in the
Reusable Asset Specification [26]. Tools such as Rational
XDE [1] conform to this specification. However, the scope
of an “asset” is limited to packaging the related artifacts
together and providing support to search these assets and
use them as is. Solution components such as the processes
very often require customization. Application templates,
by their very definition, require the developer to specify
some parameters to develop an application. The
WebSphere Studio [4, 24] does introduce a set of
templates, each of which stores a description of an
application along with customized settings. These settings
enable wizard-driven specification of parameters and
automatic generation of code to produce a complete
operational application. Further, an associated tool,
the RAD builder [24], enables the development of new
application templates. However, the template language is
proprietary, and the customizability is limited to HTML
tags and relational database (RDB) operations. The
tool does not support the development of customizable
processes or business logic other than RDB operations.
Moreover, there is no emphasis on the development
of easily reconfigurable solutions to enable change
management once the solution is deployed.

A tangential but related effort is described in [37] to
understand new models of collaboration for delivering
government services. While that study is more focused on
the kinds of services and business relations required, the
proposed framework can possibly provide the technical
infrastructure for the delivery of the same. The network-
infrastructure-related efforts for digital government are
described in [38], which proposes a scalable architecture
for collection of data over wide-area networks. The E-
Rulemaking concept described in [39] can be another
potential service to be offered by the eGovernance
framework, in addition to the services described in
this paper.

The framework described in this paper attempts to
address the various gaps in the offerings available today,
specifically in the light of government applications and
multivendor development.

8. Conclusions and future directions
This paper has described the eGovernance framework,
an eGovernance solution development platform that will
lower the cost of developing, deploying, and managing
government solutions. The framework provides
repositories of solution components such as security
handlers, record management components, and user
interface components. It also provides data models for
entities such as citizens, businesses, and establishments,
and repositories for actual data corresponding to these
entities so that all eGovernance applications can share
them. The solution components are customizable for each
solution independently through a wizardlike interface.

The solution components and data models in the
framework are described at a higher semantic level, and
they are built with customization points that can be
programmed through a policy administration interface
which is fairly intuitive and intended for solution
managers who may not be well versed in application
development. It also allows applications to be easily
modified after deployment to reconfigure the existing
eGovernance process in response to government policy
changes. The platform also enables sharing of development
effort across applications developed by multiple vendors
through reuse of assets.

Acknowledgments
The authors wish to thank Dilip Antony Joseph, Manish
Bhide, Ajay Gupta, Mukul Joshi, and Shree Raman for
their contribution in developing the policy management
aspects of the framework.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Siebel Systems, Inc.,
SAP AG, PeopleSoft, Inc., or Sun Microsystems, Inc.

References
1. Rational XDE; see http:www.ibm.com/developerworks/

rational/products/xde/.
2. StrutsWizard; see http://www.strutswizard.com/index.shtml.
3. U. Wahli, I. Brown, F. Ferraz, M. Schumacher, and H.

Sjostrand, WebSphere Studio Application Developer Version 5
Programming Guide, ISBN: 0738499579, 2003; IBM
Redbook, see http://www.redbooks.ibm.com/redbooks/
SG246957/.

4. WebSphere Studio Application Developer (WSAD); see
http://www-3.ibm.com/software/awdtools/studioappdev/.

5. Arkansas Office of Motor Vehicles; see http://www-
3.ibm.com/software/success/cssdb.nsf/CS/JMAY-
5DHNGF?OpenDocument&Site�software/.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 P. A. MITTAL ET AL.

731

6. California Franchise Tax Board; see http://www-3.ibm.com/
software/success/cssdb.nsf/CS/JMAY-5DHPAP?
OpenDocument&Site�software/.

7. Ministry of Justice uses Web-Services; see http://www-
3.ibm.com/software/success/cssdb.nsf/CS/LEOD-
5KJV36?OpenDocument&Site�software/.

8. Rational Rapid Developer Delivers J2EE applications at
Large State Regulatory Agency; see http://www-3.ibm.com/
software/success/cssdb.nsf/CS/JENS-5SBJF2?
OpenDocument&Site�software/.

9. e-Government Interoperability Framework; see http://
www.govtalk.gov.uk/schemasstandards/
egif_document.asp?docnum�731/.

10. IBM Endowment for the Business of Government, E-
Government 2003, M. A. Abramson and T. L. Morin, Eds.,
Rowman & Littlefield Publishers Inc., Lanham, MD, 2003.

11. L. Gavin, G. Diederichs, P. Golec, H. Greyvenstein, K.
Palmer, S. Rajagopalan, and A. Viswanathan, An EAI
Solution using WebSphere Business Integration (V4.1),
ISBN: 0738426547, 2003; IBM Redbook, see http://
www.redbooks.ibm.com/redbooks/SG246849/.

12. M. Galic, A. Halliday, A. Hatzikyriacos, M. Munaro, S.
Parepalli, and D. Yang, A Secure Portal Using WebSphere
Portal V5 and Tivoli Access Manager, ISBN: 073849853X,
2003; IBM Redbook, see http://www.redbooks.ibm.com/
redbooks/SG246077/.

13. W. D. Zhu, S. Jefferson, M. Adair, M. Pepper, and H.
Martens, Content Manager On Demand Guide, ISBN:
0738429422, 2003; IBM Redbook, see http://
www.redbooks.ibm.com/redbooks/SG246915/.

14. Eclipse; see http://www.eclipse.org/.
15. E. Gamma and K. Beck, Contributing to Eclipse: Principles,

Patterns, and Plugins, First Edition, ISBN: 0321205758,
Addison-Wesley Publishing Co., Inc., Reading, MA, 2003.

16. Java 2 Platform, Enterprise Edition (J2EE); see http://
java.sun.com/j2ee/.

17. R. Johnson, Expert One-on-One J2EE Design and
Development, ISBN: 0764543857, Wrox Press, John Wiley
& Sons, Inc., Hobokon, NJ, 2003.

18. S. Chatterjee and J. Webber, Developing Enterprise Web
Services: An Architect�s Guide, ISBN: 0131401602,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 2003.

19. J2EE Connector Architecture (J2C); see http://
java.sun.com/j2ee/connector/.

20. Java Message Service API (JMS); see http://java.sun.com/
products/jms/.

21. S. Terry, Enterprise JMS Programming, First Edition;
ISBN: 0764548972, John Wiley & Sons, Inc., New York,
2002.

22. T. Husted, C. Dumoulin, G. Franciscus, D. Winterfeldt,
and C. McClanahan, Struts in Action: Building Web
Applications with the Leading Java Framework, ISBN:
1930110502, Manning Publications Company, Greenwich,
CT, 2002.

23. Struts Framework; see http://jakarta.apache.org/struts/.
24. Rapid Application Technologies in WebSphere Studio;

see http://www7b.software.ibm.com/wsdd/zones/studio/rad/.
25. J. Arlow and I. Neustadt, UML and the Unified Process:

Practical Object-Oriented Analysis and Design, ISBN:
0201770601, Addison-Wesley Publishing Co., Reading,
MA, 2001.

26. Reusable Asset Specification; see www.rational.com/ras/
index.jsp/.

27. R. Credle, G. Kempny, S. Dadhich, E. Dietrich, J. Hu,
and J. Poggioli, IBM WebSphere Voice Systems Solutions,
ISBN: 073842773X, 2003; IBM Redbook, see http://
www.redbooks.ibm.com/redbooks/SG246884/.

28. Websphere Voice Toolkit; see http://www.alphaworks.
ibm.com/tech/voicetoolkit/.

29. Everyplace Toolkit for WebSphere Studio; see http://www-
3.ibm.com/software/pervasive/products/mobile_apps/
everyplace_toolkit.shtml.

30. J. Rodriguez, E. Forestier, R. Guru, G. Kroner, L.
Patterson, H. Tran, A. Venancio, and G. Villavicencio,
WebSphere Everyplace Access Version 4.3 Handbook for
Developers, ISBN: 0738498750; IBM Redbook, see http://
www.redbooks.ibm.com/redbooks/SG247015/.

31. D. A. Joseph, M. Mohania, M. Kumar, M. Bhide, A.
Gupta, and M. Joshi, “Defining Data Administration
and Operational Policies at the Business Object Level
for E-Governance Applications, Proceedings of the First
International Conference on E-governance, December
2003; see http://dilu.tripod.com/research/projects/.

32. M. Bhide, S. Pandey, A. Gupta, and M. Mohania,
“Dynamic Access Control Framework Based on Events,”
Proceedings of the 19th International Conference on Data
Engineering (ICDE), India, 2003, pp. 765–767.

33. WebSphere Commerce Payments; see http://www-
306.ibm.com/software/genservers/commerce/payments/
lib.html.

34. C. Vassilakis, G. Laskaridis, G. Lepouras, S. Rouvas, and
P. Georgiadis, “A Framework for Managing the Lifecycle
of Transactional e-Government Services,” Telematics &
Informatics 20, No. 4, 315–329 (2003).

35. M. J. Young, XML Step by Step, Second Edition, ISBN:
0735614652, Microsoft Press, Redmond, WA, 2001.

36. DB3NF; see http://www.db3nf.com/overview/.
37. S. S. Dawes and L. Prefontaine, “Understanding New

Models of Collaboration for Delivering Government
Services,” Commun. ACM 46, No. 1, 40 – 42 (2003).

38. L. Golubchik, W. C. Cheng, and C. Chou, “Bistro: A
Scalable and Secure Data Transfer Service for Digital
Government Applications,” Commun. ACM 46, No. 1,
50 –51 (2003).

39. J. E. Fountain, “Prospects for Improving the Regulatory
Process Using E-Rulemaking,” Commun. ACM 46, No. 1,
63– 64 (2003).

Received December 5, 2003; accepted for publication

P. A. MITTAL ET AL. IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004

732

March 1, 2004; Internet publication September 16, 2004

Parul A. Mittal IBM Research Division, IBM India Research
Laboratory, Block I, Indian Institute of Technology (IIT), Hauz
Khas, New Delhi 110016 (mparul@in.ibm.com). Ms. Mittal
is a Research Staff Member at the IBM India Research
Laboratory, Delhi. She holds a B.Tech. degree in electrical
engineering from the Indian Institute of Technology (IIT),
Delhi and a Master of Science degree from the University of
Michigan, Ann Arbor, in computer science. Prior to joining
IBM, she worked at Hughes Software Systems in India. Her
primary research interests are in the area of eCommerce,
knowledge management, and eGovernance.

Manoj Kumar IBM Corporate Division, Route 100, Somers,
New York 10589 (manoj1@us.ibm.com). Dr. Kumar is the
Director of Corporate Technology Evaluation at IBM. He
served as the Director of the IBM India Research Laboratory
from 2000 to 2003. From 1983 to 2000, Dr. Kumar worked at
the IBM Thomas J. Watson Research Center in Yorktown
Heights, New York, where he led projects in electronic
commerce, video delivery and encoding technologies, and the
architecture and design of processors and parallel computers.
Dr. Kumar received his B.Tech. degree from the Indian
Institute of Technology in Kanpur, India, in 1979, and his
M.S. and Ph.D. degrees from Rice University in 1981 and
1984 respectively, all in electrical engineering.

Mukesh K. Mohania IBM Research Division, IBM India
Research Laboratory, Block I, Indian Institute of Technology
(IIT), Hauz Khas, New Delhi 110016 (mkmukesh@in.ibm.com).
Dr. Mohania received his Ph.D. degree in computer science
and engineering from the Indian Institute of Technology,
Bombay, in 1995. He is currently a manager at the IBM India
Research Laboratory. His areas of interest are distributed
databases, data warehousing, semi/unstructured databases,
XML data integration, data mining, and autonomic
computing. He has published more than 75 research papers in
these areas in leading international journals and conference
proceedings, and as book chapters. He has organized several
international conferences and workshops as program chair
and has edited several conference proceedings. In 2000, Dr.
Mohania received a Technical Achievement Award in the area
of Web database management and data warehousing from the
Association of Database and Expert Systems Applications in
Greenwich, U.K. He is a Senior Member of the IEEE.

Medha Nair IBM Research Division, IBM India Research
Laboratory, Block I, Indian Institute of Technology (IIT), Hauz
Khas, New Delhi 110016 (nmedha@in.ibm.com). Ms. Nair is a
software IT architect with the Software Group of IBM India.
She holds B.E. and M.E. degrees in computer science from
the Shri Govindram Seksaria Institute of Technology and
Science, Indore. She has 15 years of industry experience, more
than seven of them as a software architect in pre-sales. She
works primarily in the area of eGovernance in India.

Nipun Batra IBM Research Division, IBM India Research
Laboratory, Block I, Indian Institute of Technology (IIT), Hauz
Khas, New Delhi 110016 (nipbatra@in.ibm.com). Mr. Batra
is a Technical Staff Member at the IBM India Research
Laboratory, Delhi. He holds a B.Tech. degree in production
engineering from Pune University. Prior to joining the IBM
Research Laboratory, he worked with IBM Global Services,

Pune. He was also part of an aSAPXcess team with ASAP
Solutions. Mr. Batra works primarily in the area of
eCommerce and Eclipse technology.

Prasan Roy IBM Research Division, IBM India Research
Laboratory, Block I, Indian Institute of Technology (IIT), Hauz
Khas, New Delhi 110016 (prasan@in.ibm.com). Dr. Roy
is a Research Staff Member at the IBM India Research
Laboratory, Delhi. He holds a B.Tech. degree from the Indian
Institute of Technology, Delhi, and a Ph.D. degree from the
Indian Institute of Technology, Bombay, both in computer
science. Prior to joining IBM, he held faculty and research
positions at IIT-Bombay and Bell Laboratories. He works
primarily in the area of database systems, encompassing data
integration, XML storage, query optimization, and transaction
processing.

Anupam Saronwala IBM Research Division, IBM India
Research Laboratory, Block I, Indian Institute of Technology
(IIT), Hauz Khas, New Delhi 110016 (asaronwala@in.ibm.com).
Mr. Saronwala is responsible for managing research projects
and business development activities at the IBM India
Research Laboratory, New Delhi. Prior to joining IBM, he
had more than 18 years� experience in software research
and development, consulting and operations with leading
U.S. and Indian companies. He holds a M.S. degree in
computer engineering from Syracuse University, New York,
and a B.Tech. degree in electrical engineering from the
Indian Institute of Technology, Kanpur. His primary areas
of interest are in introducing leading-edge technologies
to emerging markets, specifically in the areas of pervasive
computing and eGovernance.

Lalit Yagnik IBM Research Division, IBM India Research
Laboratory, Block I, Indian Institute of Technology (IIT), Hauz
Khas, New Delhi 110016 (yagnikl@sg.ibm.com). Mr. Yagnik
heads the e-business Software Center of IBM India,
responsible for software technical solutions consulting. He
holds a Master of Science (Technology) degree from the Birla
Institute of Technology and Science in computer science and
has more than 25 years� experience in consulting, architecting,
and implementing software solutions. Joining IBM Australia
in 1985, he has led clients with technical solutions and
established software competency teams. Prior to his India
assignment in 2000, he was Director of Software Services at
SingaLab, a software R&D joint venture of IBM with the
Singapore government. His interests include technology
architectures for business innovation, eGovernance, database
systems, integration, Web services, and technology–
people–process synergy.

IBM J. RES. & DEV. VOL. 48 NO. 5/6 SEPTEMBER/NOVEMBER 2004 P. A. MITTAL ET AL.

733

