
K. J. Nowka
G. D. Carpenter

B. C. Brock

The design
and application
of the PowerPC
405LP energy-
efficient system-
on-a-chip
The PowerPC� 405LP system-on-a-chip (SoC) processor,
which was developed for high-content, battery-powered
application space, provides dynamic voltage-scaling and on-
the-fly frequency-scaling capabilities that allow the system and
applications to adapt to changes in their performance demands
and power constraints during operation. The 405LP operates
over a voltage supply range of 1.95 to 0.9 V with a range of
power efficiencies of 1.0 to 3.9 MIPS/mW when executing the
Dhrystone benchmark. Operating system and application
software support allow the applications to take full advantage
of the energy-efficiency capabilities of the SoC. This paper
describes the organization of the SoC design, details the
capabilities provided in the design to match the performance
and power consumption with the need of the application,
describes how these capabilities are employed, and presents
measured results for the PowerPC 405LP processor.

Introduction
The high-content battery-powered segment of the
marketplace continues to demand greater performance
while strictly limiting the power consumption of device
electronics. This market segment includes information
appliances such as Web pads, advanced personal digital
assistants (PDAs), cell phones, and small-form-factor
PCs. Peak performance demands can exceed 500 MIPS.
Such applications are also characterized by significant
fractions of idle time. During active computation, their
required performance tends to vary widely and rapidly as
a function of the workload. The constraints of battery
lifetime and low-cost packaging place stringent limits on
standby and active power consumption. During peak
activity, the power consumption of the processor core is
best kept at or below about 500 mW. Because these
applications may have long periods of inactivity, the
standby power of the inactive processor and the energy
consumption of the sleep monitor must be minimized. To
address battery-powered applications, we have developed a

voltage-scalable system-on-a-chip (SoC) platform [1]
in the IBM 0.18-�m, 1.8-V bulk CMOS foundry process
[2, 3]. The processor contains a 32-bit PowerPC* core
with instruction and data caches. The SoC uses IBM
CoreConnect* technology [4] to integrate a rich set of
memory and I/O interfaces. In addition, on-chip hardware
accelerators have been developed to improve the
performance of important tasks and decrease their power
consumption. A block diagram of the SoC is shown in
Figure 1.

Dynamic performance and energy control
The performance of a processor is determined by the
frequency of operation and the number of operations
that can be completed on average per processor clock
cycle. The maximum frequency of the processor can be
accurately modeled by the Sakurai �-power delay model
[5], which uses a fitting parameter � to represent the
degree of velocity saturation (� � 2 implies no velocity
saturation, and � � 1 implies full velocity saturation). The

�Copyright 2003 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/03/$5.00 © 2003 IBM

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 K. J. NOWKA ET AL.

631

delay, Td, of switching a load capacitance through a
transistor is modeled as

Td � kVDD/�VDD � Vt�
�,

where VDD is the supply voltage and Vt is the threshold
voltage of the transistor. By using this model, the
frequency of the system is determined by the summation
of delays along a critical path through the logic:

f � 1/�¥i Tdi� � 1/¥i �ki VDD/�VDD � Vt� i
��. (1)

The dynamic power consumed in a CMOS transistor
resulting from the switching of the load capacitance, CL,
through a voltage, VDD, at a frequency, f, is

P �
1
2

CLVDD
2 f.

The dynamic power consumed in a chip is the sum of the
power of all switching nodes. It can be modeled as the
power of switching the average switching capacitance of
the system, Csw, through a voltage of VDD:

P �
1
2

CswVDD
2 f. (2)

Examination of Equation (2) shows that if the slight
voltage dependence of the switching capacitance is
ignored, the dynamic power consumption of a system is
quadratically more sensitive to power-supply voltage than
is the frequency. Voltage-scaled systems [6 – 8] take

advantage of this greater sensitivity to improve the power
efficiency of the operation of the system by reducing the
power-supply voltage and thereby reducing both the
frequency of operation and the power consumption when
demands on the system are low. Dynamic voltage-scaled
systems adjust the supply voltage dynamically to meet
performance demands while minimizing power
consumption [9 –13]. The dynamic energy consumption
is reduced quadratically with the decreasing supply,
while the commensurate maximum frequency decreases
approximately linearly near the nominal supply and
superlinearly farther from the nominal supply. For battery-
powered applications in which both energy efficiency and
performance are crucial, voltage scaling allows a wide
range of options in the tradeoff between performance
and power consumption.

PowerPC 405LP system organization
The PowerPC 405LP SoC was developed to take
advantage of the power-efficiency potential of dynamic
voltage scaling (DVS). This SoC design consists of a high-
performance embedded 32-bit PowerPC processor core.
The processor core for this design was based upon an
existing, fixed-voltage PowerPC 405 core [14]. The core
includes a five-stage pipelined CPU with a hardware
multiply–accumulate unit, hardware division, static branch
prediction support, and a 64-entry, fully associative
translation lookaside buffer. Single-cycle-access, two-way
set-associative 16-KB SRAM instruction and data caches
are connected to the processor core.

The processor core connects to external SDRAM, and
to external memory, storage, and network through the
PCMCIA/Compact Flash interface by way of the 64-bit
processor local bus (PLB). An integrated liquid crystal
display (LCD) controller is also attached to the PLB.
Lower-bandwidth on-chip peripheral bus (OPB) I/O
interfaces include dual universal asynchronous
receivers–transmitters (UARTs), an I2C interface,
general-purpose I/O lines, an audio coder– decoder
(CODEC), and a touch panel controller interface.

A custom dedicated speech accelerator, an instruction
decompression engine [15], and a data encryption standard
(DES) accelerator core are included on the SoC to
accelerate key tasks (Figure 2). The SoC contains a low-
voltage phase-locked-loop (PLL) core and a real-time-
clock (RTC) core for on-chip clock generation, as well as
a clock power-management core and a sleep-management
core. Figure 2 shows a die photograph of the SoC after
processing of the third level of metal. The die is 6.02 mm
on a side and is ringed by peripheral I/O pads. This device
was fabricated by using the IBM CMOS 7sf, 0.18-�m
bulk CMOS process [2, 3] with five levels of copper
interconnect. This technology has a nominal supply voltage
of 1.8 V, threshold voltages of 0.43 V/�0.38 V for

Figure 1

PowerPC system-on-a-chip structure.

PLB-OPB

bridge

D
M

A

c
o
n
tr

o
ll

e
r

Processor local bus (PLB)

16K

I-cache

16K

D-cache

32b PowerPC

CPU core

Low-power

PLL

Speech

accel

C
O

D
E

C

in
te

rf
a
c
e

RTC

In
te

rr
u
p
t

c
o
n
tr

o
ll

e
r

G
P

IO

SDRAM

controller

RAM/ROM

peripheral

controller

PCMCIA/CFII

LCD

controller

U
A

R
T

II
C

Sleep/standby

management

T
o
u
c
h
 p

a
n
e
l

in
te

rf
a
c
e

Clock

power

management

DES

crypto

accel

CPU core and caches

I/O and memory interfaces

Clock, power, sleep units

Accelerators

U
A

R
T

O
n
-c

h
ip

 P
e
ri

p
h
e
ra

l
B

u
s

(O
P

B
)

Code decompression

K. J. NOWKA ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

632

n-MOS/p-MOS devices, and a gate-oxide thickness of
3.5 nm.

The PowerPC processor core satisfies the performance
demands of the information appliance applications.
Additional capabilities were developed for this processor
to reduce both the active and the standby power
consumption of the device. The active power consumption
is reduced when resource demands are lowered through
the use of dynamic voltage scaling, dynamic frequency
scaling, and unit- and register-level functional clock gating
[16]. In addition, dedicated hardware accelerators perform
key tasks more efficiently. Finally, the SoC integration
allows this design to avoid costly off-chip accesses.

The measured power consumption for the PowerPC
SoC while executing the synthetic benchmark Dhrystone
Version 2.1 [17, 18] is 570 mW. These measurements are
for nominal hardware with a 1.8-V supply voltage and a
processor clock frequency of 333 MHz. The performance
under these conditions corresponds to 500 MIPS. When
the supply is lowered to 0.85 V, the nominal hardware
SoC consumes just 33 mW at 66 MHz. This represents
a frequency range of 5:1 with a power range of 17:1.

For periods of device inactivity, several levels of standby
power reduction can be achieved [1]. Simply lowering the
voltage and frequency to their minimum levels saves
standby power while allowing a very rapid transition to full
performance. By disabling the clocks, a low-leakage sleep
state can be entered in which further power can be saved
in standby mode. For periods of extended inactivity, the

405LP supports two hibernation modes: One mode
requires the software to write any necessary state to some
persistent storage, while the second mode requires the
state of the machine to be moved to nonvolatile storage
by way of the scan-chain prior to hibernation.

System capabilities for dynamic voltage and
frequency scaling
Providing a broad range of active operating points
requires additional capabilities in the power supply and its
distribution, and clock generation and its distribution.

Power-supply capabilities
To support data voice switching (DVS) in this SoC, the
power distribution has been divided into four distinct
domains (Figure 3): two persistent1 voltage domains, one
dynamically voltage-scaled domain, and one internally
derived domain. The I/O drivers and receivers are
powered by a persistent 3.3-V supply. The real-time clock
and the logic associated with controlling the voltage of the
cores are powered by a persistent, battery-backed 1.8-V
supply. The supply voltage for the logic in the processor
core, the caches, the peripheral SoC cores, and the
accelerators is dynamically varied between 1 V and 1.8 V.

1 The supply is at a fixed voltage and is not turned off.

Figure 2

PowerPC SoC die photograph.

Sleep

mgr

Speech

accel

LCD

PLL

External bus ctrl

DRAM

ctrl

Instruction

decompression

Direct

memory access

(DMA)

I/O

interfaces

I/O

interfaces

CPU core and caches

DES

accel

Figure 3

SoC supply domains and signal interfaces.

Real-

time

clock

Wakeup

Reset

SoC logic/

LSSD scan

latches

System

clocks

freeze

control

IIC

control

Scan

chains

Scan

control

logic

S
u

sp
e
n
d

 c
o

n
tr

o
l

lo
g
ic

Battery

I/
O

 d
o
m

a
in

D
ri

v
e
rs

,
re

ce
iv

e
rs

Battery-

backed

domain

S
c
a
la

b
le

 V
D

D
 d

o
m

a
in

Reset

logic

I/O freeze state

Shutdown

Select

dc/dc

converters

3.3 V

1.0 V–1.8 V

PLL-

derived

domain

PowerPC

SoC

External

power

supplies

PLL

S
e
ri

a
l

N
V

R
A

M

E
x

te
rn

a
l

b
u
se

s
S

D
R

A
M

S
R

A
M

R
O

M
E

x
te

rn
a
l

d
e
v
ic

e
s

Reset

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 K. J. NOWKA ET AL.

633

Finally, the phase-locked loop (PLL) [19] is powered by
an on-chip linear regulator, which derives a constant 1-V
supply from the dynamically varying logic supply. The
power domains and the signal interfaces between the
domains are shown in Figure 3.

An on-chip supervisor controls the external dc-to-dc
converter, which provides the logic supply. Under software
control, the supervisor requests changes to the logic
supply voltage during active operation and requests
shutdown of the logic supply during hibernation.

Because of potential voltage differences encountered in
traversing supply domains, voltage-translating level-shifters
are employed at the domain interfaces. In addition,
because the logic supply is not persistent during
hibernation, signals passing from the logic domain to the
persistent I/O supply domain and the persistent battery-
backed domain are latched by level-shifters at these
interfaces.

Clock generation subsystem capabilities
The clock generation subsystem is key to supporting a
voltage-scalable design. The system clocks can be derived
from several sources: a low-frequency external source,
which is used for the real-time clock, an external auxiliary
clock, the PLL reference clock, or the clock from the on-
chip PLL.

The PLL uses an interleaved five-stage voltage-
controlled ring oscillator [20]. The voltage-controlled
oscillator (VCO) tuning range is 513 to 1017 MHz across
full process corners. Duty-cycle correction is accomplished
through a divide-by-two of frequency performed in the
output path-level shifter. Adjustment to the output clock
frequency can be performed on-the-fly by modifying the
output clock divider through a write operation to a control
register. This allows adjustment of the frequency across a
range of 1⁄2 to 1/128th of the VCO frequency. A glitchless
output multiplexor avoids spurious clock pulses during this
operation and allows for clock freezing for sleep and
hibernation modes.

These on-the-fly frequency-modification techniques
can be used to provide dynamic frequency scaling for
additional active power reduction. When the performance
demands of the application decrease, the system software
can lower the operating frequency. Under software
control, at a given supply voltage, the frequency of the
core can be varied from the maximum frequency down to
1/64th of the maximum. This allows the frequency to be
dynamically set as low as 4.2 MHz.

The dynamic voltage- and frequency-scaling capabilities
provided by the power and clocking subsystems require a
software infrastructure to manage the performance and
power consumption of the SoC. By specifying the possible
device operating points, managing the state of the device,
initiating changes in the power operating state, and

by implementing power policies through a power
management system, the operating system and application
software can take advantage of the improved energy
efficiency.

Operating system power management
architecture

Background
We are currently examining a general and flexible dynamic
power management architecture for embedded systems.
Although the concepts should be applicable to a broad
class of operating systems and scalable processors, our
initial focus and implementation will be for embedded
Linux** for the PowerPC 405LP. There are several
existing research and production implementations of
processor voltage and frequency scaling for other
processors [6 –12]. Our research extends and augments the
capabilities of these systems in several important ways.

We recognize that the overriding power management
goal in portable systems is to reduce system-wide energy
consumption. The current generation of embedded
processors are so power-efficient that the SoC processor
may no longer be the major energy consumer in systems
that include high-performance memories and large color
displays. Therefore, a dynamic power management system
that is concerned only with voltage- and frequency-scaling
the processor core may be of limited use. Our dynamic
power management architecture supports the ability of the
PowerPC 405LP to rapidly scale internal and external bus
frequencies, either in concert with or independent of the
CPU frequency. Scaling bus frequencies at key points can
produce significant reductions in system-wide energy
consumption.

Another observation is that the breakdown of system-
wide energy consumption, as well as the most effective
way to manage this consumption, is highly application2

dependent. Therefore, a dynamic power management
architecture must be flexible enough to support multiple
platforms with differing requirements. We believe that
requirements for simplicity and flexibility are best
served by leaving the workings of the dynamic power
management completely transparent to most tasks and
even to the core of the operating system itself. Our
current research prototype requires no changes to
programs or to the well-understood process management
implementation of the operating system in order to
achieve significant results. Furthermore, the tasks that
control the system-wide power management policies
can run entirely in user space and communicate their
requirements to the operating system through a small set

2 Throughout this section we use the terms system and application to indicate a
complete embedded system (e.g., a cell phone or PDA) and the terms program and
task to refer to software.

K. J. NOWKA ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

634

of system calls. The architecture also supports the ability of
tasks to set their own power–performance characteristics
for those special cases in which this is required.

Architecture
Our dynamic power management architecture for
embedded Linux is based on a hierarchy of abstract
objects. We generally expect a complete power
management framework to be defined in advance for
each application, by a system designer familiar with
the characteristics of the embedded processor and any
special features and requirements of the application. A
parameterized framework is used by the operating system
to control low-level details of the power management
strategy, while a higher-level management task controls
the overall dynamic power consumption of the application.

The dynamic power management hierarchy is illustrated
in Figure 4(a). In the following, the dynamic power
management architecture is described from the bottom up.

1. Operating points
The lowest-level object in the power management
architecture is the operating point. An operating point
encapsulates a set of mutually constrained physical and
abstract parameters that bear on a dynamic power
management policy. At any given point in time, the system
is executing at a particular operating point, and a dynamic
power management system could properly be defined as
the set of rules and procedures that move the system from
operating point to operating point as the system evolves.
By their nature, operating points are processor- and
application-dependent. Operating points for the PowerPC
405LP currently specify a core voltage level, CPU and
bus frequencies, memory timing parameters, and other
clocking-related data. The system designer is responsible
for defining as many operating points as are necessary
for the power management needs of the application. We
explain below how the system selects an operating point
and shifts from one operating point to another.

2. Device management and operating point congruence classes
The states of on-board and external peripheral devices have
a tremendous influence on system-wide energy consumption
and on the choice of operating point. For example, the
PowerPC 405LP has an on-board LCD controller which uses
an SDRAM framebuffer.3 If the LCD controller is enabled,
any valid operating point for the system must specify a bus
frequency high enough to satisfy the refresh rate of the display,
which is ultimately controlled by a variable pixel clock
frequency that is also specified by the operating point.
When the LCD is disabled (for example, when a PDA is
used simply as an MP3 player), significant system-wide energy
reductions may be achieved by reducing these frequencies.

In general, our power management architecture
attempts to relieve the high-level power management task
from the responsibility of managing device states, and
from having to respond to changes in device states. This
feature is implemented in two ways. First, we expect low-
level device drivers to aggressively manage the power
consumption of the devices they control. For example,
if a PowerPC 405LP system is not currently producing or
consuming audio data, the device driver for the audio
CODEC interface is expected to power-down the external
CODEC; it also commands the on-board clock and power
manager to clock-gate the CODEC interface peripheral.
This may change the bandwidth (frequency) requirements
for the on-board peripheral bus, and hence trigger a change
in the operating point. This all happens without the
knowledge or intervention of the power management task.

When devices change state (and hence their
requirements for system resources), these state changes
are communicated to the operating system power
management system for a potential change in the
operating point. The next-higher-level object in the power
management hierarchy, the congruence class of operating
points, implements this feature. This object groups
together operating points that the system designer
has declared to be equivalent, in terms of a power
management strategy, adjusting for any constraints
imposed by devices. Simple rules are defined to3 The framebuffer is a dedicated memory that is used by the display subsystem.

Figure 4

(a) Fully enumerated power-management policy mapping each

operating state to a congruence class of operating points, only one

of which is selected at any given time. (b) Simplified power-

management policy mapping all task states to a common con-

gruence class of operating points.

Task�
Task�

Task Idle

(a)

Task�
Task�

Task
Idle

(b)

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 K. J. NOWKA ET AL.

635

automatically select one of several possibly valid operating
points from the congruence class whenever device states
change. This mechanism frees the power management task
to focus on high-level management while ensuring that the
system always operates at the best operating point (as
defined by the system designer) consistent with the current
policy and device states.

3. Operating states
The next-higher-level object in the dynamic power
management architecture is the operating state. This
concept refers to the dynamic state of the system as it
relates to power management and the choice of an
appropriate operating point. In our hierarchy, an
operating state object simply maps an abstract system
state to a congruence class of operating points.

The introduction of the concept of the operating state
was first motivated by the observation that significant
system-wide energy savings can be achieved by reducing
CPU and bus frequencies as well as core voltage while
the system is idle. Therefore, a mechanism is required to
specify a different operating point during the times when
programs are executing and the times when the system is
idle. This naturally leads to a distinction between a task
state and an idle state, each with a potentially different
operating point. The fact that the PowerPC 405LP can
scale frequencies with a latency measured in microseconds
means that this feature can be exploited for even relatively
short idle periods while the system is blocked on I/O
operations or timeouts. The transition from a task to an
idle operating point and back is smoothly and efficiently
managed by the operating system.

The concept of an operating state also provides for
task-specific operating points for power-aware tasks. The
dynamic power management architecture for the PowerPC
405LP includes several task operating states, each
associated with a particular power–performance level.
The default task state is expected to be used by the
large majority of tasks as most tasks now use the
default scheduling policy of the operating system.
Tasks with special requirements may be specified to
run in different task states.

Figure 4(a) shows an example in which each of the task
states specifies a special set of operating points for tasks
in that state via their congruence class mapping. For
example, the task� (task-minus) state may specify a set of
operating points that are more power-efficient but offer
lower performance than the default state, while the task�

state may specify high-performance but less efficient
operating points.

Alternatively, Figure 4(b) illustrates a policy in which
all of the task states reference the same congruence class.
Here, the activity of tasks in non-default states may simply
be used by the power management task to control the

global dynamic power management policy. For example,
if the power management task observes that most of
the system activity is in the task� operating state, it
may decide to change the overall power management
policy to a more power-efficient one.

4. Policies and power managers
The highest-level abstraction of our power management
architecture is the policy, which maps operating states
to congruence classes of operating points. A power
management system design specifies at least one policy,
and may specify as many different policies as necessary for
different situations. The policy in effect at any given point
in time completely controls the operating point of the
system in any operating state.

As an example, we consider the implementation of
a simple activity-based power manager for a dynamic
voltage-scalable system like the 405LP. Systems like
this use CPU utilization to drive the dynamic power
management policy. As system activity increases, the
power manager increases the system frequency (including
the core voltage) in an attempt to provide adequate
performance for the workload while minimizing power
consumption. These simple types of power managers have
been proven to be very effective for managing the diverse
workloads of portable information appliances.

We have implemented such a power manager in the
framework described here. In this design, power policies
are associated with CPU core voltages. The power
manager uses the mechanism of setting a policy to move
the system from voltage (and frequency) level to level.
Note that the abstraction relieves the power manager of
all of the low-level details: The policy describes consistent
operating points for the idle state as well as the task
states, regardless of the state of peripheral devices, and if
special operating points are required for non-default task
states, these are transparently encoded by the congruence
class mappings for those states. In fact, the power
manager task is not even aware of the particular voltages
and frequencies associated with the policies. The power
manager simply interprets a set of abstract rules, specified
by the system designer, that describe the events that
should move the system from power policy to power
policy.

The power manager operates by periodically querying
the power management system as to the amount of time
the application has been spending in the various operating
states. When system activity increases past a certain
threshold, indicated by the ratio of time spent in the
task state vs. the idle state, the rule set causes the power
manager to move to a higher performance (higher voltage
and frequency) policy. Decreases in system activity trigger
rules that move to a lower performance policy. The
power manager can query the system at relatively high

K. J. NOWKA ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

636

frequencies with minimal overhead. The result is a system
that provides both interactive responsiveness and very
power-efficient operation during idle periods.

System applications of energy-efficient
capabilities
Reducing power consumption through dynamic scaling can
be useful at the application level as well as the operating
system (OS) level. One of the more important and
demanding applications for small, highly portable devices
is displaying video content. One popular standard video
format is MPEG-4 for playing quarter video graphics array
(QVGA). This application is also good for demonstrating
how some applications can be made aware of power
management and thus more efficient. Delivering QVGA at
30 frames per second satisfies the high peak performance
demands and real-time deadlines of users of handheld
devices.

Two versions of the MPEG-4 player were written and
instrumented on the 405LP evaluation board. The first was
a standard implementation delivering QVGA at 30 frames
per second, while the second was a power-management-
aware version. Figure 5 shows oscilloscope traces from the
two MPEG-4 players running the same video clip. On the
left is the standard implementation, and on the right the
power-management-aware version. The scalable logic
supply voltage is shown in yellow in the bottom third of
both traces. The top two thirds contains the logic power
consumption of the 405LP in green and the total power
consumption of the 405LP in red. As the video is played,
the nature of the power consumption is highly dynamic.
Each frame consists of a high-power region as the CPU
is busy decoding the frame and converting YUV to RGB
color, followed by a period of low activity until the next
frame is needed at the next frame interval (33 ms later).
In the frame on the right, it can be seen that the duration
of the high processor demand varies from frame to frame.
In some cases, the frame calculation finishes just in time;
in others, the demand is low for more than 50% of the
frame interval. Because this duty cycle is determined by
the content of each frame, it is not easily predictable.
The application lends itself well to a power management
scheme that can respond quickly and dynamically to real-
time changes in workload. The workload changes are
rapid enough to require the applications rather than
the operating system to initiate power management.

To meet the peak rendering demand of this application,
the system is run at 266 MHz on the CPU and 133 MHz
on the memory bus. The trace on the left shows
that during the decode and color conversion phase,
approximately 550 mW is consumed by the 405LP logic,
and 700 mW in total. When the frame is completed, the
logic power drops to approximately 200 mW as the

demand on the CPU is reduced and the processor idles,
but the operating point is unchanged.

By rewriting the application to make it aware of the fast
dynamic scalability of the 405LP, significant power can be
saved during the low-demand state while waiting for the
next frame interval. In the right half of the oscilloscope
trace presented in Figure 5, it can be seen that when the
application has completed the frame calculation and there
is slack, it requests a change in the operating point of the
405LP to reach a much lower performance (CPU � 66 MHz
and memory � 66 MHz) and a more efficient (VDD logic
� 1.0 V) operating point. This lower operating point
is more than sufficient to sustain the demand between
frames. The result is that between frames the idle power
consumption drops to a few milliwatts, and the average
power consumption drops 25–30% as the video is played.

The transitions between operating frequencies are
occurring in less than 1 �s. The yellow trace at the bottom
shows the logic supply shifting between 1.8 and 1.0 V in
about 1 ms, limited here by the slew rate of the voltage
converter on the reference board. During these
transitions, the CPU is not stopped and can sustain other
real-time demands of the system, such as an MPEG-3
audio stream.

Summary
The PowerPC 405LP is a 5.8-million-transistor, 36-mm2

design optimized for energy efficiency. Measurements on
nominal hardware show that the SoC consumes 570 mW
when executing Dhrystone 2.1 at the nominal supply
voltage at a frequency of 333 MHz. This corresponds
to 500 Dhrystone MIPS. When the supply is lowered to
0.85 V, the nominal hardware SoC consumes just 33 mW
at 66 MHz. This represents a frequency range of 5:1 with
a power range of 17:1. The 405LP implements many

Figure 5

MPEG-4 decode measurements.

50 ms 50 ms

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 K. J. NOWKA ET AL.

637

features to improve power efficiency when the SoC
is active: This device makes use of SoC technology to
integrate the full set of devices and interfaces demanded
by the battery-powered mobile market, thereby eliminating
power-inefficient off-chip interfaces. Under software
control, both the voltage and the frequency of the
processor can be modified, thereby allowing the
performance demands of the application to be met while
minimizing the dynamic power consumption. Unused
storage and functions are not clocked, eliminating
unnecessary energy consumption. Functional accelerators,
which can perform key tasks more efficiently than the
processor core, are included in the SoC.

In addition, the 405LP implements standby power-
reduction features to ensure that power is not wasted
when the SoC is inactive. This processor, under software
control, can enter both a low-leakage sleep state and a
state-preserving deep-sleep state to minimize standby
power consumption. By applying these techniques, the
active performance of the 405LP is not sacrificed, while
standby power can be reduced as low as 54 �W.

The ability of the 405LP to dynamically adapt to
changing requirements for performance and power is
supported by the operating systems. The OS architecture
for power management and the policies and power
managers required in order to use dynamic scalability have
been described. The MPEG-4 decode application is an
example application in which the capabilities of the
PowerPC 405LP have shown their value.

Acknowledgment
The PowerPC 405LP was developed jointly by the IBM
Austin Research Laboratory, the IBM Microelectronics
Division in Raleigh, NC, Burlington, VT, Austin, TX,
and Yasu, Japan, as well as the IBM Tokyo Research
Laboratory and the IBM Thomas J. Watson Research
Center.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds.

References
1. K. Nowka, G. Carpenter, E. MacDonald, H. Ngo, B. Brock,

K. Ishii, T. Nguyen, and J. Burns, “A 0.9V to 1.95V
Dynamic Voltage Scalable and Frequency Scalable 32-Bit
PowerPC Processor,” IEEE International Solid-State Circuits
Conference, Digest of Technical Papers, 2002, pp. 340 –341.

2. L. Su, S. Subbanna, E. Crabbe, P. Agnello, E. Nowak,
R. Schulz, S. Rauch, H. Ng, T. Newman, A. Ray, M.
Hargrove, A. Acovic, J. Snare, S. Crowder, B. Chen,
J. Sun, and B. Davari, “A High-Performance 0.08 �m
CMOS,” IEEE Symposium on VLSI Technology, Digest
of Technical Papers, 1996, pp. 12–13.

3. IBM Corporation, 0.18 Micron Technology, Product Brief,
Hopewell Junction, NY, February 21, 2003; see http://
www-3.ibm.com/chips/.

4. IBM Corporation, CoreConnect Bus Architecture, Product
Brief, Hopewell Junction, NY, September 1, 1999; see
http://www.chips.ibm.com/techlib/techlib.nsf/productfamilies/
CoreConnect_Bus_Architecture/.

5. T. Sakurai and A. Newton, “Alpha-Power Law MOSFET
Model and Its Applications to CMOS Inverter Delay and
Other Formulas,” IEEE J. Solid State Circuits 25, No. 2,
584 –594 (April 1990).

6. E. Vittoz, “Low-Power Design: Ways to Approach the
Limits,” IEEE International Solid-State Circuits Conference,
Digest of Technical Papers, 1994, pp. 14 –18.

7. M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-
Power Digital Design,” IEEE Symposium on Low Power
Electronics, Digest of Technical Papers, 1994, pp. 8 –11.

8. R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and
Threshold Voltage Scaling for Low Power CMOS,” IEEE
J. Solid-State Circuits 32, No. 8, 1210 –1216 (August 2000).

9. T. Burd and R. Brodersen, “Energy Efficient CMOS
Microprocessor Design,” Proceedings of the Twenty-Eighth
Hawaii International Conference on System Sciences, 1995,
pp. 288 –297.

10. K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A.
Chiba, Y. Watanabe, K. Matsuda, T. Maeda, and T.
Kuroda, “A 300 MIPS/W RISC Core Processor with
Variable Supply-Voltage Scheme in Variable Threshold-
Voltage CMOS,” Proceedings of the IEEE Conference on
Custom Integrated Circuits, 1997, pp. 587–590.

11. T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F.
Sano, A. Chiba, Y. Watanabe, K. Matsuda, T. Maeda, T.
Sakurai, and T. Furuyama, “Variable Supply-Voltage
Scheme for Low-Power High-Speed CMOS Digital Design,”
IEEE J. Solid-State Circuits 33, No. 3, 454–462 (March 1998).

12. T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A
Dynamic Voltage Scaled Microprocessor System,” IEEE
International Solid-State Circuits Conference, Digest of
Technical Papers, 2000, pp. 294 –295.

13. K. Nowka, G. Carpenter, E. MacDonald, H. Ngo, B.
Brock, K. Ishii, T. Nguyen, and J. Burns, “A 32-Bit
PowerPC System-on-a-Chip with Support for Dynamic
Voltage Scaling and Dynamic Frequency Scaling,” IEEE
J. Solid-State Circuits 37, 1441–1447 (November 2002).

14. IBM Corporation, PowerPC Embedded Cores, Product
Brief, Hopewell Junction, NY, June 1, 2000; see http://
www.chips.ibm.com/techlib/techlib.nsf/products/
PowerPC_405_Embedded_Cores/.

15. T. M. Kemp, R. K. Montoye, J. D. Harper, J. D. Palmer,
and D. J. Auerbach, “A Decompression Core for
PowerPC,” IBM J. Res. & Dev. 42, No. 6, 807– 812
(November 1998).

16. A. Correale, “Overview of the Power Minimization
Techniques Employed in the IBM PowerPC 4xx
Embedded Controllers,” IEEE Symposium on Low Power
Electronics, Digest of Technical Papers, 1995, pp. 75– 80.

17. R. P. Weicker, “Dhrystone: A Synthetic Systems
Programming Benchmark,” Commun. ACM 27, No. 10,
1013–1030 (1984).

18. R. P. Weicker, “Dhrystone Benchmark: Rationale for
Version 2 and Measurement Rules,” SIGPLAN Notices
23, No. 8, 49 – 62 (1988).

19. D. Boerstler, G. Carpenter, H. Ngo, and K. Nowka,
“Dynamically Scalable Low Voltage Clock Generation
System,” U.S. Patent 6,515,530, February 4, 2003.

20. D. Boerstler, “Multiphase Voltage Controlled Oscillator
with Variable Gain and Range,” U.S. Patent 6,353,369,
March 5, 2002.

Received November 18, 2002; accepted for publication
May 2, 2003

K. J. NOWKA ET AL. IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003

638

Kevin J. Nowka IBM Research Division, Austin Research
Laboratory, 11501 Burnet Road, Austin, Texas 78758
(nowka@us.ibm.com). Dr. Nowka received a B.S. degree in
computer engineering from Iowa State University in 1986
and M.S. and Ph.D. degrees in electrical engineering from
Stanford University in 1988 and 1995, respectively. In 1996 he
joined the IBM Austin Research Laboratory, where he has
conducted research on CMOS VLSI circuits and arithmetic
functions for application to the design of high-frequency and
low-power CMOS processors. Prior to his graduate work, he
was a Member of Technical Staff at AT&T Bell Laboratories.
He holds twenty patents related to processor design.

Gary D. Carpenter IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(carpentg@us.ibm.com). Mr. Carpenter received a B.S. degree
in electrical engineering from the University of Kentucky in
1983. He is a Research Staff Member at the IBM Austin
Research Laboratory, and is chief architect for ultralow-
power embedded processors. He has worked in the areas of
hardware system architecture, system design, and analog
circuit and logic design. Currently his focus is research
on energy-efficient circuits, processors, and systems.

Bishop C. Brock IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(bcbrock@us.ibm.com). Mr. Brock received an M.S. degree in
computer science from the University of Texas at Austin in
1987. He has been a Research Staff Member at the IBM
Austin Research Laboratory since 1997. While at IBM, Mr.
Brock has been active in the areas of scalable and low-power
system design, performance monitoring, and hardware and
software power-management techniques for embedded
systems. Prior to joining IBM, he worked in the areas of
automated reasoning and formal verification of hardware.

IBM J. RES. & DEV. VOL. 47 NO. 5/6 SEPTEMBER/NOVEMBER 2003 K. J. NOWKA ET AL.

639

