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Techniques are proposed for transparently
recapturing part of the capacity of a cyclic
redundancy check (CRC) and using the
recaptured capacity to carry a secondary
communication channel. To do this, a
transmitter induces CRC violations in
outbound packets of a primary channel
according to a set of error templates that
are known to both the transmitter and the
receiver, and that map one-to-one onto

a set of secondary-channel-data words. The
receiver corrects the errors by constrained
trial and error to deduce which template
the transmitter used, and consequently the
intended secondary data. Imposing a P-bit-
per-packet secondary channel is shown

to reduce the performance of the primary
channel’s CRC as though the degree of the
generator polynomial had been reduced by
P, where P is an integer. The technique is

©Copyright 2001 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

extended to recapture CRC capacity in
fractional-bit increments by permitting only
certain codewords to bear the secondary
channel. A further extension uses a set of
generators mapped one-to-one onto the

set of secondary-channel words and known
a priori to both the transmitter and receiver.
A secondary channel is provided by selecting
each packet’s primary-channel CRC generator
in response to a desired secondary-channel
word. A variant of this technique improves
the performance of the CRC by selecting

the generator according to transmission
performance or packet length rather than
carrying a secondary channel.

Introduction
Several techniques are proposed here for transparently
recapturing a small portion of the capacity of a cyclic
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redundancy check (CRC) that is used to protect a data
packet from transmission errors, and employing the
recaptured capacity to carry a secondary communication
channel. To do this, a transmitter purposefully induces
CRC violations in outbound packets of a primary
communication channel according to a set of error
patterns or templates that are known a priori to both the
transmitter and the receiver, and that correspond to words
of data carried by the secondary channel. The receiver
corrects these deliberate errors by constrained trial

and error, thereby deducing which error pattern the
transmitter used and which secondary data the transmitter
intended. So, in a sense, a variety of template-matching
multiplexing is proposed.

The discussion begins with a conventional explanation
of how a CRC works, and goes on to summarize a well-
known model for evaluating its performance. Next, the
basic technique is presented for embedding a secondary
channel in the CRC of a primary channel, a variation of
the technique is developed, a table-lookup implementation
is described, and the performance model is extended to
encompass the foregoing. The model shows that imposing
a P-bit-per-packet secondary channel reduces the
performance of the primary channel’s CRC as though
the degree of the generator polynomial had been reduced
by P, as would be expected intuitively. In effect, the
secondary channel recaptures P bits of capacity from
the CRC, where P is an integer.

Attention then turns to extending the basic technique to
recapture CRC capacity in fractional-bit increments. The
extension works by permitting only certain codewords to
bear the secondary channel. Again, the performance
model is brought along, and its implications and
limitations are discussed.

Finally, two complementary variations of the basic
technique are proposed. Neither is based on inducing
CRC violations. Rather, the first variation selects a
generator packet-by-packet from a pre-established set
of possibilities which are mapped one-to-one onto the
set of secondary-channel words. Secondary data is carried
implicitly by association with the choice of the generator
itself. A mechanism is included for resolving ambiguity
that arises when a packet is a codeword according to more
than one of the generators. In the second of the two
variations, which does not bear a secondary channel, the
transmitter improves the performance of the CRC by
selecting the generator packet-by-packet in response to
changes in transmission performance or packet length.

Operation and nomenclature of the cyclic
redundancy check

The cyclic redundancy check is based upon the division
algorithm for the ring of polynomials with coefficients
taken from an algebraic field. For any two polynomials
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I(x) and G(x), there exist two unique polynomials Q(x),
a quotient, and R(x), a remainder, such that

I(x) = Q(x)G(x) + R(x),

where the degree of R(x) is less than the degree of G(x).
In the context of data communications, I(x) is aptly called
the “information,” and G(x) the “generator.”

A data packet to be transmitted, here called T(x), is
formed by adding the information /(x) and the remainder
R(x):

T(x) =I(x) + R(x) = Q(x)G(x) + R(x) + R(x).

Again in the context of data communications, the
polynomials’ coefficients are normally drawn from the field
of integers modulo-2. As a result, the algebraic operation
“addition” is the same as the logical operation “exclusive-

2

or,” and

R(x) + R(x) = 0.

Hence,

T(x) =I(x) + R(x) = Q(x)G(x),

which shows that the packet, or more precisely the
corresponding polynomial, is a multiple of the generator.
Ordinarily, a packet is formed by shifting the information
bits up k places to make room for the remainder. This is
equivalent to multiplying I(x) by x*, where & is the degree
of the generator polynomial. With the shift, the packet
becomes

T(x) = I(x)x* + R(x).

Packets constructed in this way are known to be the
codewords of a shortened cyclic code [1].

The number of bits needed to convey a polynomial
as a word of data is one greater than the degree of the
polynomial. Thus, if the degree of I(x) is N — k — 1, the
degree of the polynomial T(x) that represents the packet
is N — 1, which corresponds to a packet of length N bits.
Of the N bits, the remainder R(x) corresponds to a field
of length k bits, here called the “redundancy bits.” Thus,
the packet is conveyed by N — k information bits followed
by k redundancy bits.

To detect the presence of errors introduced by
transmission impairment, the receiver evaluates an
incoming packet to see whether it is still a multiple of the
generator, i.e., a codeword. If the packet is a codeword,
the receiver presumes that the information received is
the same as the information sent; if the packet is not a
codeword, the receiver presumes that the information
received was unintentionally altered in transit.

Performance of a CRC

Because a CRC is linear, the sum of two codewords is a
codeword. Suppose that the transmitter sends 7'(x), and
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the receiver receives T(x) + e(x), where e(x) represents
a pattern of errors imposed upon T(x) by transmission
impairment. Because T(x) is a codeword, and because
the sum of two codewords is a codeword, the sum

T(x) + e(x) is also a codeword whenever e(x) is itself

a codeword. This means that the CRC cannot detect
transmission errors caused by error patterns that are
themselves codewords. Whenever e(x) is a multiple of
G(x), a packet contaminated by e(x) passes the CRC
check because it is a codeword, although not the intended
codeword.

The problem of undetected errors is a central problem
in the study of CRCs, and therefore a subject that is well
examined in the literature. Boudreau et al., for example,
gather and summarize a number of results that concern
undetected errors [2], and note the following: A CRC that
is based on a primitive degree-k generator polynomial fails
to detect the fraction 2 of all error patterns that have a
length (the span from the pattern’s first bit-error to its
last) greater than k + 1. When all error patterns are equally
likely to occur, the fraction of undetected error patterns is
the probability of undetected error. This is now re-derived
in preparation for some new results.

Let the transmission process be modeled as a binary
symmetric channel (BSC) with a crossover probability
(bit-error probability) of ¢ = 0.5. The BSC provides the
receiver with a stream of random bits, which the receiver
frames into a stream of packets. The length of the
information (i.e., not including the redundancy) is N — k
bits. Each possible binary pattern of the information
defines a codeword, where the appropriate redundancy
bits follow deterministically. Because there are 2"
patterns of information bits, there are 2" * codewords.
Overall, the packet length is N bits, and these N bits
define 2" patterns which appear at random. A random
pattern leads to an undetected error if it happens to be
a codeword other than the codeword intended by the
transmitter. The probability of occurrence of such an
event, and therefore the probability of undetected error,
is

P =" =12

=27"-27" (1)
which for large N becomes the familiar
p.=2"

This completes the groundwork.

Secondary channels

A secondary channel carried transparently by a primary
channel may be used for a number of purposes, for
example
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» To support a second logical link that carries traffic from
a second end user or application, thereby providing a
kind of multiplexing.

» To carry network-management traffic between nodes
deep within a network that are unseen by any end user.

» To convey a digital signature that accompanies traffic
on a primary channel.

e To supplement the transmission capacity of a primary
channel, for example by conveying a control field
implicitly rather than explicitly.

This last application may be useful in its own right to
shorten a primary-channel packet, as well as providing an
alternative to redesigning the packet’s format when the
bits of a control field have all been assigned yet a need
arises for additional control function.

The basic technique

In its most basic form, the secondary channel works by
altering the bits of primary-channel packets in accordance
with a set of error patterns or templates that are known

a priori to both the transmitter and the receiver. The
transmitter induces deliberate CRC violations by altering
bits of an outbound packet, and the receiver determines
that bits of an incoming packet have been altered—by the
transmitter deliberately or by transmission impairment
accidentally—using the CRC.

Rather than discard an incoming packet when the CRC
indicates a violation, the receiver perturbs the packet
using the commonly known set of error patterns. If a
codeword emerges, the receiver presumes that the
transmitter intended to send data across the secondary
channel, and that in doing so the transmitter employed
the particular error pattern that resulted in the emergence
of the codeword. If a codeword does not emerge, the
receiver discards the incoming packet as flawed in transit.

Operation of the transmitter

To encode a P-bit-per-packet secondary channel, the
transmitter draws from M = 2" pre-established error
patterns [E,(x), i = 0 to M — 1]. The set of error
patterns maps one-to-one onto the set of P-bit words that
are to be sent across the secondary channel. For example,
to provide a two-bit-per-packet secondary channel, the
transmitter has M = 4 error patterns in its catalog,
consisting of E(x), E,(x), E,(x), and E,(x). The pattern
E (x) identifies the two-bit word 00 to be sent across the
secondary channel, E (x) identifies the two-bit word 01 to
be sent, and so forth.

To construct an outbound packet, the transmitter
computes redundancy bits conventionally from the
primary-source information, appends the redundancy bits
to the primary-source information bits, and then induces a
deliberate CRC violation in the outgoing packet by adding
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one of the error patterns. With these operations, the
outbound packet becomes

T(x) = I(x)x* + R(x) + E(x),

where E,(x) corresponds to the desired secondary-channel
word.

The receiver has in its catalog the same error patterns
mapped one-to-one onto the same set of P-bit secondary-
channel words. To determine which error pattern the
transmitter used, the receiver adds the various error
patterns to the incoming packet and evaluates the CRC
of each resulting sum, advancing through the catalog
until a positive check is found. In effect, the receiver
tries to invert the operation of the transmitter by template
matching (constrained trial and error), in order to deduce
the transmitter’s choice of an error pattern. To do this,
the receiver performs the operations

T(x) + E(x) = [I(x)x" + R(x) + E(x)] + E,(x)

= U()x" + R@)] + [E(x) + E(x)],
searching over the range j = 0 toj = M — 1 for j such that
E(x) + E(x) =0, (2)

at which point the CRC gives a positive check. The

value of j that satisfies Equation (2) is the value of j the
transmitter used in selecting an error pattern, and reveals
the corresponding secondary-channel-data word intended
by the transmitter.

Choosing the error patterns

With the possible exception of an all-zero error pattern,
none of the error patterns [E,(x), i = 0 to M — 1] is
allowed to be a codeword. Further, it is important to note
that the error patterns E,(x) are not necessarily the P-bit
secondary-channel words themselves. This is because new
codewords are introduced by adding the error patterns to
the existing codewords. In the extended codeword space,
maximizing the minimum Hamming distance between
codewords optimizes CRC performance. Error patterns
should be devised with this in mind. Moreover, the error
patterns should be devised, to the extent possible, so that
the extended set of codewords is distributed symmetrically
in N-space [3].

When the secondary channel is known a priori to be
operating, i.e., each packet is known or assumed to carry
both primary-channel and secondary-channel data, E(x)
may advantageously be the all-zero error pattern. Then,
when the receiver detects no errors in a packet, the
receiver outputs the secondary-channel word that is paired
with E (x), which most logically may be the all-zero
secondary-channel word.

Conversely, when packets that carry secondary-channel
data are intermingled with packets that do not carry
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secondary-channel data, and the receiver must deduce
which is which, packet by packet, E (x) should not be the
all-zero error pattern. Then, when the receiver detects

no errors in a packet, the receiver presumes that the
secondary channel is inactive rather than sending the
all-zero secondary-channel word.

Of the two options, the first—assigning the all-zero
pattern to £ (x)—provides the better performance,
because it introduces fewer new codewords than its
alternative. For this reason, the performance models
developed below assume that the secondary channel
is always operating. The models are easily adapted,
however, to fit the alternative option if desired.

A variation of the basic technique for providing a
secondary channel

The transmitter described above alters the outgoing
packet by adding the error pattern after the redundancy
bits are computed. This requires the receiver to
reconstitute the primary-channel information by
subtracting the error pattern that was added by the
transmitter. As an alternative that does not require the
receiver to perform this subtraction, the transmitter may
construct the outgoing packet as follows: The error
pattern and the primary information are added, and the
redundancy bits are computed after the addition. But the
primary information is sent without the addition of the
error pattern. Here, the packet to be transmitted is given by

T(x) = I(x)x" + p(x),
where p(x) is the remainder computed such that
I(0)x" + E(x) + p(x) = Q' (0)G(x).

The receiver inverts the operation of the transmitter in
the general way already described, again using constrained
trial and error to find a positive CRC check.

To achieve this same result, however, it is not necessary
for the transmitter to add the error pattern to the primary
information in order to find p(x). Rather, R(x)—
the remainder of the primary information computed
conventionally according to the CRC—may be modified
as proposed in [4]. Let 8,(x) be the remainder found
by treating E,(x) as an information field in its own
right; i.e., §,(x) is the remainder that makes E,(x)

a codeword:

E(x) + 8(x) = Q(x)G(x).
Then, as a consequence of linearity,
p(x) = R(x) + 8(x).

This relationship suggests a convenient implementation
in which the full set [§,(x),i = 0 to M — 1] is
precomputed and kept in nonvolatile memory at the
transmitter. The transmitter constructs an outgoing packet
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conventionally (i.e., without regard to the secondary
channel), and then modifies the redundancy bits in
response to the desired secondary-channel word. To do
this, the P-bit secondary-channel word is used as an
address to the nonvolatile memory. From the memory
location selected, 8,(x) is read out and then added to
the redundancy bits of the outbound packet.

Performance implications

Unfortunately, the embedded secondary channel does

not come at no cost; rather, it comes at the expense of
reducing the performance of the primary channel’s CRC.
Adding M — 1 nonzero error patterns to a primary-source
codeword gives rise to M — 1 new codewords (adding the
all-zero error pattern does not produce a new codeword),
so there are now 2" * + (M — 1)2"* codewords. Hence,
the probability of an undetected error, P, which is just
the probability that the at-random BSC produces a packet
that is by chance a codeword, but not the intended
codeword, is

P, =[2"* =1+ M -1)2""2"

=MQ2 " -27", (3)
which for large N becomes
P, =M27™.

As before, let M = 2°, where M error patterns (one of
which is all-zero) are used to support a P-bit-per-packet
secondary channel. With this substitution, Equation (3)
may be recast as

p =2"% "N 4)

Comparing Equation (4) with Equation (1) shows that
the probability of undetected primary-channel error that
results when a CRC supports a P-bit-per-packet secondary
channel is the same as the probability of undetected error
that would have resulted had the generator polynomial
been reduced from degree k to degree k — P, and the
secondary channel carried explicitly by redeploying the P
redundancy bits that were freed. In effect, the secondary
channel steals P bits from the capacity of the CRC,
where the theft is implicit and transparent except for its
performance impact. The difference between an implicit
and an explicit secondary channel is, of course, that the
implicit channel preserves both the CRC mechanism and
the packet format unchanged, whereas the explicit theft
and redeployment of redundancy bits does not.

Recapturing the capacity of fractions of
redundancy bits

The methods described thus far permit every packet
to bear secondary-channel data. This enables a P-bit-
per-packet secondary channel to recapture P bits of
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redundancy, where P is an integer. The technique is now
extended to recapture fractional bits of redundancy by
restricting the secondary channel to ride upon only
selected codewords. Here, a codeword that is used to
carry secondary-channel information is called a bearer
codeword.

Performance implications of fractional-bit recapture
In the extreme case, let the secondary channel ride upon
the occurrences of only a single bearer codeword. When
the transmitter has secondary-channel data to send, it
waits until the primary source provides the bearer
codeword. The bearer codeword is then altered by adding
one of the M — 1 nonzero error patterns. But this time
only M — 1 new codewords are introduced, rather than
(M — 1)2"* new codewords as before, since only a single
codeword bears the secondary channel. Consequently, the
probability of undetected error over a BSC with ¢ = 0.5
and a single bearer codeword is

P =2"+Mm-22" )

Comparing fractional-bit recapture with full-bit
recapture

It is interesting to examine the decrease in primary-
channel CRC performance that accompanies the use of
one codeword as a bearer codeword. At what point does
the performance loss become a full bit of primary-channel
CRC capacity (i.e., the effect of operating the secondary
channel is equal to the effect of reducing the generator
from degree k to degree k — 1)? When one bit of
primary-channel CRC capacity is taken away explicitly

by reducing the degree of the generator polynomial, the
probability of undetected error is given by Equation (1) as

P =2"%"_2™ (6)
Solving Equations (5) and (6) simultaneously gives
M—1=2""

Thus, the following are equivalent: N — k error
patterns applied to one bearer codeword, and one nonzero
error pattern applied to N — k bearer codewords. Looked
at another way, when the number of error patterns
applied to a single bearer codeword is equal to the
number of primary-channel information patterns, the
number of codewords is doubled. Hence, the primary-
channel CRC performance is decreased as though the
degree of the generator polynomial had been reduced
from degree k to degree k — 1. Effectively, the single-
bearer-codeword fractional channel operates at its
maximum capacity when 2" error patterns are used—
one full bit is stolen from the performance of the CRC.
Conversely, a one-bit-per-packet secondary channel
(M — 1 = 1) carried by a single bearer codeword
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effectively recaptures the fraction 1/2"* of one bit
of capacity from the primary channel’s CRC.

Although the use of a single bearer codeword
recaptures CRC capacity in fractional-bit increments,
there are at least three drawbacks: 1) the capacity of the
secondary channel is capped at one full bit per packet,

2) the timing of the secondary channel is awkward due to
stochastic variation in interarrival times of the bearer
codeword, and 3) the codewords are inopportunely
clustered without regard to symmetry or minimum
Hamming distance.

The situation can be improved by using more than
one of the codewords as bearers. Specifically, let A4 be
the number of bearer codewords put at the disposal
of the secondary channel, where 0 = 4 = 2", The
performance of the primary-channel CRC is then given by

P =[2""-1+wm-14)2"
or
P =2"+Wm-1nAae™-27" (7)

To express A as a fraction of the total number of primary-
source codewords available for use as bearer codewords,
let

A=a2"h,

where 0 = a < 1. With this substitution, Equation (7)
becomes

P =2"+aM—-12"-2" (8)

Equation (8) reduces to Equation (5) for a = 2°7",
which is the case of the single bearer codeword, and to
Equation (3) for a« = 1, which is the case in which all of
the codewords are employed as bearers. The use of the
fraction « in this way serves to illustrate the recapture of
fractional-bit capacity from the primary-channel CRC by
the secondary channel, where the fraction recaptured
increases as the number of bearer codewords increases.

Performance when all patterns are not equally
probable

The performance models developed thus far assume

that all patterns of unintentional transmission errors

are equally likely to occur, or equivalently that the
transmission process can be modeled properly as a BSC
with ¢ = 0.5. Four arguments support the use of this
model:

1. This is the standard way of evaluating CRC
performance, with longstanding acceptance.

2. The model applies to any CRC that has a primitive
generator without regard to nuances of a particular
generator’s behavior.

3. The mathematics is straightforward.
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4. The model is accurate and complete in a number of
useful situations, for example when applied to fiber-
optic transmission that is interrupted by route
switching, and when applied to wireless transmission
in a deep, extended fade.

Nevertheless, in 1976 Leung-Yan-Cheong and Hellman
[3] demonstrated that models of this sort give a limit (as
block length N becomes large and as ¢ approaches 0.5)
but not necessarily a bound on P . Witzke and Leung [5]
and Castagnoli et al. [1] develop this proposition further.
It follows, then, that the performance of the techniques
proposed here is an open question for smaller values of
N and e. In any case, the question can be answered for a
particular generator polynomial and a particular set of
error patterns by heroic but straightforward persistence,
applying the weight distribution of the code or of its dual,
as described by Castagnoli et al.

Conveying a secondary channel by selecting
from a set of generators

Another way to support a P-bit-per-packet secondary
channel is to provide the transmitter and receiver with a
set of M = 2" different generator polynomials, [G,(x),

i = 0toM — 1], which map one-to-one onto the set of
secondary-channel words. For each packet, the transmitter
computes redundancy bits for the primary-channel data
using the generator that is paired with the desired
secondary-channel data. A two-bit-per-packet secondary
channel, for example, draws from four different
generators. When the secondary-channel word is 00,

the redundancy bits are computed from the primary
information according to G (x); when the secondary-
channel word is 01, the redundancy bits are computed
according to G (x), and so on.

In principle, the receiver evaluates an incoming
packet according to all M generators and deduces which
generator the transmitter used by noting which generator
gives the receiver a positive check. In practice, however,
things do not work so simply, since an occasional packet
may be a codeword in the space of more than one of the
generators. When this happens, the receiver’s CRC checks
positive according to more than one of the generators,
and the output of the secondary channel is ambiguous.

To eliminate such ambiguity, the transmitter first
constructs a packet according to the generator that
corresponds to the desired secondary-channel word, and
then—before sending the packet—checks the packet
using all of the other generators (or, equivalently, the
transmitter computes redundancy bits according to each of
the M generators, and looks for duplicates). If the packet
is found not to be a codeword in any space except the
space according to the intended generator, the packet is
sent. Otherwise (i.e., when the packet is a codeword in the
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space of more than one generator), the transmitter adds
to the packet an error pattern that uniquely identifies the
intended generator.

When the receiver determines that an inbound packet
does not check according to any of the generators, the
receiver adds the various error patterns, again looking
through the possibilities by constrained trial and error for
the error pattern that was employed by the transmitter
and the attendant secondary-channel word. In effect, one
of the techniques mentioned above is used sparingly to
signal the choice of generator implicitly over a secondary
channel, or, more precisely, over a tertiary channel, to
resolve occurrences of ambiguity.

More specifically, when a packet is a codeword in the
space of more than one generator, the packet is altered
before transmission to become

T(x) = I(x)x" + R,(x) + d(x),

where R (x) is computed conventionally for I(x)x*
according to G,(x), and d,(x) is a distinguishing error
pattern associated uniquely with G,(x). The receiver
evaluates an incoming packet according to each generator.
Because of the addition of d,(x), however, the packet will
not check positively according to any of the generators.

The receiver then evaluates the set of packets
[T(x) + d;(x), for j = 0 to M — 1], where, for each
choice of j, the packet T(x) + d (x) is evaluated
according to the generator G,(x). Unless T(x) has been
corrupted by channel errors, T(x) + d,(x) will check
positively when and only when j = i, thereby identifying
the generator G,(x) used by the transmitter, and hence
identifying the secondary-channel word intended by the
transmitter.

Because of the unique associations of d,(x) with G,(x)
forj = 0 to M — 1, the complexity of the decoder grows
approximately linearly with M rather than according to M”
or combinatorially. In other words, it is not necessary for
the receiver to evaluate T(x) + d,(x) by any generator
except G,(x), as the receiver knows a priori that the
transmitter never uses the distinguishing error pattern
d,(x) except with generator G,(x).

The same performance model that holds for the basic
secondary-channel technique holds also for a secondary
channel that is conveyed by selecting a generator
polynomial as just described. Equation (3) again gives
the limit on the probability of undetected error, since
the introduction of M — 1 additional generators expands
the number of codewords by the factor M — 1.

Adapting the generator to the characteristics
of the channel

Even though every primitive generator polynomial
provides a CRC that obeys the limit on P mentioned
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earlier, individual approaches to the limit may differ
greatly, with one polynomial providing a significantly lower
P, over a first range of & or N, and another polynomial
providing a significantly lower P . over a second range.
The performance of the CRC may be improved by
exploiting these differences, using the multigenerator
technique described immediately above to adapt the CRC
to short-term changes in transmission performance or
block size by changing the generator. The choice of
generator may be signaled implicitly from transmitter to
receiver using the technique just developed, or signaled
explicitly by some other mechanism. Signaling may not be
necessary at all if the raw information needed to select the
proper generator is available to both the transmitter and
the receiver. This would often be the case when the
generator is selected according to block size, since the
block size would ordinarily be carried in the packet’s
header.

An apparent shortcoming of this proposition is that
the capacity devoted to signaling the choice of generator,
whether the signaling is implicit or explicit, might instead
be better used to carry additional redundancy bits. This
would presume that the performance of a higher-degree
generator is necessarily better than the performance of
a lower-degree generator for any value of € or N. The
presumption of superiority may be incorrect, however,
because a lower-degree generator that is carefully chosen
in view of particular values of ¢ or N may well outperform
a higher-degree generator that is chosen as a compromise,
for all values of € and N.

The veracity of this assertion is suggested, although not
broadly confirmed, by the large performance differences,
dependent upon packet length, among degree-16
generators evident in Figure 2 of Castagnoli et al. [1]
for a BSC with crossover probability ¢ = 10~°. There, the
probability of undetected error for packets between 130
and 150 bits in length, given a first degree-16 generator
polynomial, is about six orders of magnitude better than
the probability of undetected error given a second degree-
16 generator, whereas for packets between 150 and 250
bits in length, the performance of the second degree-16
generator exceeds the performance of the first degree-16
generator by about seven orders of magnitude. Given the
very large differences in performance among same-degree
generators, it is plausible to assume that the performance
of degree-k generators and the performance of degree-k’
generators, where k' is greater than k, would overlap over
various ranges of N and ¢.

Concluding remarks

A family of template-matching techniques for multiplexing
a secondary channel onto a primary channel has been
presented. These techniques recapture capacity
transparently from a cyclic redundancy check. An attempt
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has been made to discuss the techniques in a rigorous
way and to quantify aspects of their performance.
Nevertheless, Wicker observes that although CRCs are

one of the most widely used error-control methods, “they
are not so easily understood conceptually” [6]. This would

seem to be true, especially regarding undetected errors
when a CRC is modified as described here. Fortunately,
the literature offers a number of good theoretical and
practical papers that should help address such concerns
and suggest how to select generators and error patterns
for good results [7-11].
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