
by M. Alfonseca
A. OrtegaDetermination

of fractal
dimensions
from equivalent
L systems

This paper revises a few existing methods for
computing fractal dimensions, underlines their
dependency on the graphical properties of the
curves, and proposes and discusses a new
method, based on the representation of
fractals by means of Lindenmayer systems,
that makes use of the structure of L systems
to compute the fractal dimension. The method
is implemented in Prolog, and its limitations
and usefulness are discussed.

Introduction
The concept of dimension is very old and seems easy and
evident. We live in a space with three dimensions: length,
width, and depth. Some of the objects in our environment
are approximately bidimensional: a sheet of paper, a
picture, a tabletop. Others have a single prevalent
dimension: a distant road, a pencil line drawn on paper.
What we call dimension may sometimes be defined as the
number of directions in which movement is allowed.

Things appear very clear and elegant: Dimensions are
consecutive integers: 0 (a point), 1 (a line), 2 (a surface),
3 (a volume), with no doubtful cases. Some do exist,
however, as Mandelbrot proved in his famous book on
fractals [1]. Depending on the size of the observer, a ball
of thread can be considered as

● A point (zero dimensions) if the observer is very large
(a mountain, a planet) or very far away.

● A sphere (three dimensions) if the observer is
comparable to the size of the ball (a human being) and
is located near the ball.

● A twisted line (one dimension) if the observer is smaller
than the ball (an ant) and very near it.

● A twisted cylinder (three dimensions) if the observer is
much smaller than the ball (a bacterium).

● A set of isolated points (zero dimensions) if the
observer is even smaller and can see the atoms.

● A set of spheres (three dimensions), if the observer’s
size is comparable to that of the atoms.

● And so forth.

In 1890, the Italian mathematician Giuseppe Peano
defined a curve with several strange properties, which
was called a monstrous curve. It is a line (and therefore
appears to be one-dimensional), but it fills a square (in
the sense that it goes through every point in the square)
and therefore could be considered two-dimensional.
Another curious property of this curve is that it has no
tangent or derivative at any point.

There are many other famous monstrous curves, such as
the one devised by Helge von Koch in 1904, with a shape
that reminds us of a snowflake. Like the Peano curve, it
has no derivative at any point, and its longitude is infinite,

�Copyright 2001 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/01/$5.00 © 2001 IBM

IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001 M. ALFONSECA AND A. ORTEGA

797

even though its size is limited. Its dimension seems to be
larger than 1, although it does not fill the plane, and thus
cannot reach 2.

In 1919, Hausdorff proposed a new definition of
dimension, applicable to such doubtful cases, to
distinguish them from normal surfaces and lines. With
his definition, monstrous curves in the plane may have
a fractional dimension between 1 and 2. Thus, Peano’s
curve has a Hausdorff dimension of 2, and Von Koch’s
snowflake has a Hausdorff dimension of

log �4�

log �3�
� 1.2618595071429 (1)

Other alternative definitions of dimension were
proposed during the twentieth century [2, 3]. Most are
similar to the Hausdorff dimension and have the same
value in many cases, but differ in details and special
circumstances—for example, the Hausdorff–Besicovitch
dimension, the Minkowsky dimension, and the box-
counting dimension. Most of them are known as fractal
dimensions, and they are used in different situations.

The name fractal, introduced in 1975 by Mandelbrot
[1, 4], applies to objects that have some special properties,
such as self-similarity (containing copies of themselves),
underivability at every point, and/or a fractal dimension
greater than their integer topological dimension. They are
appropriate for the description of natural shapes, and
have been used successfully to code and compress images
[5–7].

Fractals have been generated or represented by
different means, such as fractional Brownian movements,
recursive mathematical families of equations (such as
those that generate the Mandelbrot set), and recursive
transformations (generators) applied to an initial shape
(the initiator). This paper discusses only the latter.

L systems, devised in 1968 by Lindenmayer [8], are
also called parallel-derivation grammars, and differ from
Chomsky grammars because derivation is not sequential
(a single rule is applied at every step) but parallel (as
many rules as possible are applied at every step).

L systems are highly appropriate for representing fractal
objects obtained by means of recursive transformations
[9]. The initiator maps to the axiom of the L system, and
the generator becomes the set of production rules, while
recursive applications of the generator to the initiator
correspond to successive derivations of the axiom. The
fractal corresponds to the limit of the word derived from
the axiom when the number of derivations tends to
infinity. Something else is needed, however: a graphic
interpretation that makes it possible to convert each
of the words generated by the L system into a visible
graphic object.

Two different families of graphic interpretations of
L systems have been used: turtle graphics and vector
graphics. In a previous paper [10] we proved a fractal-
equivalence theorem between two families of L systems,
one associated with a turtle graphics interpretation,
the other with vector graphics. The two families are
interesting because they can be used to represent most
of the fractals in the literature. Our theorem makes it
possible to focus here on turtle graphics without a
significant loss of generality.

In another previous paper [11], we described a
preliminary version of the algorithm presented here,
written in APL2. The current paper, however, contains a
full treatment of the different special cases that may arise,
which would make our definition of fractal dimension
invalid or divergent. We also consider in detail the
problems due to the fact that a fractal curve may be self-
overlapping. The algorithm is also applied to a new class
of fractals, defined by L systems with more than one
nontrivial symbol. Most of the examples in this paper are
different, and have been chosen to demonstrate these new
and problematic cases. Finally, a version of the algorithm
is provided that has been written in Prolog, rather than
APL2.

Calculating the fractal dimension of self-similar
curves
A wide spectrum of techniques have been used to estimate
the fractal dimension of self-similar curves [12–14]. We
mention here two of the most important.

Ruler dimension estimation
This method computes the fractal dimension of a line as a
function of two measurements taken while “walking” the
fractal line in a number of discrete steps. We take as unity
the distance between the beginning and the end of the
fractal line to be walked. The first measurement is p l , the
length of the step used, or pitch length, which must be
constant during the whole walk. The second is the number
of steps needed to reach the end of the walk by following
the fractal curve, N(p l).

We call Dpl
the number for which the following relation

holds:

N� pl� � p
l

�Dp
l . (2)

If we take logarithms on both sides of this equation, we
obtain

log �N� pl�� � �Dpl
log � pl�. (3)

The fractal dimension is the limit of Dp
l

when p l tends to
zero:

M. ALFONSECA AND A. ORTEGA IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001

798

Dpl
� lim

pl30�

��log �N� pl��

log � pl�
� . (4)

Box dimension estimation
This method computes the fractal dimension of a line as a
function of two measurements taken while covering the
fractal line with a number of discrete boxes. If we call
N(d) the number of boxes of linear size d necessary to
cover a set of points distributed in a two-dimensional
plane, the box dimension is defined as the exponent Db

in the equation

N�d� � d �Db. (5)

If we take logarithms on both sides of this equation, we
obtain

log �N�d�� � �Db log �d�. (6)

The fractal dimension is defined as the limit of Db when d
tends to zero:

Db � lim
d30�

��log �N�d��

log �d� � . (7)

There are many variations to this simple scheme. Some
of them assign a weight to each box, depending on the
number of points it contains. Instead of counting the
number of boxes, another variation estimates the
information entropy for the set of boxes, where the
number of points is considered to be the information.

Alternative ways of calculating the box dimension
change the shape and the nature of the set of boxes.
Square-shaped boxes are usually used to define the grid,
but they can be placed at any position and orientation.
Families of concentric circular boxes with increasing
radius are also used.

Calculating the fractal dimension from the
equivalent L system
All of the techniques described in the previous paragraphs
attempt to measure the fractal dimension as a ratio
between how much the curve grows in length and how
much it advances. We have tried to reach the same result
by operating directly on the L system that represents the
fractal curve, without performing any graphical
representation.

Each word in the derivation represents a given
configuration of the recursive generation of the fractal
curve. The production rules embody the allowed
transformation between configurations. Therefore, the
growth of the words is related to the corresponding
growth of the curve. The graphic interpretation of the
L system makes it possible to assign bidimensional
coordinates to the letters in each word. Once these

coordinates have been computed, it is straightforward
to obtain the distance between different points. These
distances may be used as a measure of how much the
curve grows in length. Performing operations on strings
should be an easier method of computing the fractal
dimension than the computation of a limit.

The turtle graphics interpretation
As stated before, two different graphic interpretations may
be used to relate a given L system to a fractal curve. We
have proved elsewhere [10] the equivalence of two wide
families of systems in both sets. Therefore, in this paper
we consider only the turtle graphics interpretation.
A fractal generated by means of the vector graphics
interpretation may be converted by our algorithm
to an equivalent L system that uses the turtle graphics
interpretation.

Created in 1980 by Papert [15], turtle graphics describes
the trail left by an invisible “turtle,” whose state at every
instant is defined by its position and the direction in which
it is looking. The state of the turtle changes as it moves a
step forward or as it rotates by a given angle in the same
position.

Turtle graphics interpretations can exhibit different
levels of complexity. The version we use here is the
following:

● The angle step of the turtle is � � (2k�/n), where
k and n are two integers.

● The alphabet of the L system can be expressed as
the union of the four disjoint subsets: N, D, M,
{�, �, (,)}. The symbols in the alphabet are
graphically interpreted as follows:

● � increases the turtle angle by �.
● � decreases the turtle angle by �.
● (stacks the current position and orientation of the

turtle.
●) moves the turtle invisibly to the position and

orientation stacked at the top of the stack and pops it.
● A in N leaves the turtle state unchanged. We call A

a nongraphic letter.
● F in D moves the turtle one step forward, in the

direction of its current angle, leaving a visible trail.
We call F a draw letter.

● f in M moves the turtle one step forward, in the
direction of its current angle, with no visible trail.
We call f a move letter.

In summary, a given fractal may be represented by means
of two components: an L system and a turtle graphics
interpretation, with a given angle step. The length of the
step (the scale) is reduced at every derivation in the
appropriate way, so that the curve always occupies the
same space.

IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001 M. ALFONSECA AND A. ORTEGA

799

A string under a turtle graphics interpretation is said
to be angle-invariant if the directions of the turtle at the
beginning and the end of the string are the same. We
call AID0L (angle-invariant D0L, where D0L describes a
deterministic context-free L system [10]) the set of D0L
systems such that the right-hand side of all of their rules
is an angle-invariant string. In the following we restrict
ourselves to AID0L systems.

Fractal curves represented by a single symbol
The fractal curves described in this section can be
represented by an L system which contains a single
draw symbol and no move or nongraphic symbols.
The production set, therefore, consists of a single rule,
apart from the trivial rules for symbols �, �, (, and).

Informally, the algorithm takes advantage of the fact
that the right side of the only applicable rule provides a
symbolic description of the fractal generator, which can
thus be completely described by a single string. Our
algorithm computes two numbers: The first is the length
N of the visible walk that follows the fractal generator
(equal in principle to the number of draw symbols in the
generator string, but see below). The second is the
distance d in a straight line from the start to the endpoint
of the walk, measured in turtle step units (this number can
also be deduced from the string). The fractal dimension is
then

D �
log �N�

log �d�
. (8)

The scale reduction at every derivation is such that,
starting with an axiom equal to the left side of the only
rule, the distance between the origin and the end of
the graphical representation of the strings is always the
same. The example given below illustrates the use of the
algorithm.

The PD0L scheme

F ��� F�F��F�F

� ��� �

� ��� � (9)

with axiom F��F��F and a turtle graphic
interpretation, where {F} is a draw symbol and the step
angle is 60�, represents the fractal whose fifth derivation
appears in Figure 1 (Von Koch snowflake curve).

The only string to be considered is

F�F��F�F. (10)

This string describes the fractal generator. The number of
steps along the walk (N) is the number of draw symbols
in the string, 4 in this case. The distance d between the
extreme points of the generator, computable from the
string by applying to it the turtle interpretation, is 3.
Therefore, the dimension is

D �
log �4�

log �3�
� 1.2618595071429 . . . , (11)

in accord with the results obtained by other methods,
specified by Mandelbrot in Reference [1], p. 42.

Problems in the previous definition
● The distance d in the denominator may be zero.

Computed by our formula, D becomes zero. An example
is the PD0L scheme

F ��� F�F�F�F�

� ��� �

� ��� � (12)

with a step angle of 90�. We exclude these cases
because they do not usually give rise to fractal curves,
but to the same figure indefinitely repeated (in the
example, a square).

● The distance d in the denominator may be 1. Computed
by our formula, D becomes infinite. An example is the
PD0L scheme

F ��� F�F��F��F�

� ��� �

� ��� � (13)

Figure 1

Von Koch snowflake curve, a well-known example of a fractal with a
fractional dimension.

M. ALFONSECA AND A. ORTEGA IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001

800

with a step angle of 60�. We also exclude these cases
because in every step of derivation the curve expands
and is not limited to a finite space; therefore, it is
not a fractal in the strict sense.

● The length N of the visible walk may not be equal to
the number of draw symbols in the generator string.
This may happen in two ways:

● The turtle graphic associated with the string passes
more than once along a set of points with a nonzero
measure, as in the PD0L scheme

F ��� F�FF���F��F�FF���F��F��F

� ��� �

� ��� � (14)

with a step angle of 45� and axiom F��F��F��F.
Figure 2 represents the generator of the corresponding
fractal curve and its third derivation. Our algorithm
has been refined to take this case into account in such
a way that the appropriate value of N is computed,
where such sets of points are counted only once. This
means that the value of N may be noninteger, as in
this case, where its value is not 10 (the number of F in
the string), but 9.4142 . . . (8 plus the square root of 2).

● The turtle graphic associated with a derivation of the
string passes more than once along a set of points
with a nonzero measure, as in the PD0L scheme

F ��� F�FF�F�FF�F

� ��� �

� ��� � (15)

with a step angle of 90� and axiom F�F�F�F. Figure 3
represents the generator of the corresponding fractal
curve and its fourth derivation. In this case, we replace
the definition of fractal dimension we are using with

D � lim� log �N�

log �d�� , (16)

where the limit is taken on the string of derivations
from axiom F. Our algorithm computes this case by
taking a certain number of derivations until the
quotient converges. The resulting dimension is
approximately equal to 1.6, rather than 1.77, as
computed from the string.

Fractal curves represented by several equivalent
symbols
Our algorithm is also immediately applicable to those L
systems with more than one rule, where all of the right
parts of the rules give rise to identical fractal dimensions.
Let us examine a couple of examples:

● The PD0L scheme

F ��� �G�F�G�

G ��� �F�G�F�

� ��� �

� ��� � (17)

with axiom F and a turtle graphic interpretation, where
{F, G} are draw symbols and the step angle is 60�,

Figure 3

Curve that passes twice through the same set of points, although its
generator does not.

Figure 2

Curve obtained from a generator that passes twice through the same
set of points.

IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001 M. ALFONSECA AND A. ORTEGA

801

represents the fractal whose first five derivations appear
in Figure 4. In this example, there are two strings to be
considered:

�G�F�G�

�F�G�F�. (18)

Applying our algorithm to each of them, we obtain the
same estimation of the fractal dimension, 1.58496
Therefore, the fractal dimension of the corresponding
curve must be the same, in accord with Mandelbrot’s
results [1].

● The PD0L scheme

F ��� �A��A�

A ��� �F��F�

� ��� �

� ��� � (19)

with axiom A��A��A��A��A��A and a turtle
graphic interpretation, where A is a nongraphic symbol,
F is a draw symbol, and the step angle is 30�, provides
another way to represent the Von Koch snowflake curve
in Figure 1, where only one of every two derivations
generates a visible curve. In this example, there are two
strings to be considered:

�A��A�

�F��F�. (20)

Applying our algorithm to each of them, we obtain the
same estimation of the fractal dimension, 1.261859
Therefore, the fractal dimension of the corresponding
curve is again the same. Alternatively, taking advantage
of the fact that one of every two steps is invisible, we
could consider the result of the following two-step
derivation:

F3 �A��A�3 ��F��F����F��F��. (21)

The string ��F��F����F��F�� can also be
considered a description of the fractal generator.
Applying our algorithm to it, we again obtain a result of
1.261859

● The PD0L scheme

P���PFU�F�Q�F�PF

Q���Q�F�PFR��F��Q�F�

R���R��F��Q�F�S���F���R��F��

S���S���F���R��F��T��F��S���F���

T���T��F��S���F���U�F�T��F��

U���U�F�T��F��PFU�F�

F����

� ��� �

� ��� � (22)

with axiom P��P��P and a turtle graphic
interpretation, where F is a graphic symbol, {P, Q, R, S,
T, U} are nongraphic symbols, � is the empty string, and
the step angle is 60�, provides another way to represent
the Von Koch snowflake curve in Figure 1. In this
example, the dimension estimated by our algorithm gives
the correct dimension for every symbol after the first
iteration: 1.261859

In this example there are several apparently different
rules. In fact, the rules are very dissimilar. After
carefully studying them one could state the following:

● The number of symbols on the right side is always
equal to 8.

● Four of the eight symbols are graphics.

Therefore, the rules are structurally similar.

The algorithm
The crucial part of the algorithm is the computation of
N, the length of the visible walk followed by the fractal
generator or the sequence of derived strings, where
repeated walks are eliminated. To do this, we need

Figure 4

Fractal curve represented by two rules with the same derived dimension.

M. ALFONSECA AND A. ORTEGA IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001

802

to derive an exact unambiguous representation of all
of the points in the walk, together with information
about the visibility of each step. A typical Cartesian x–y
representation is not appropriate, for we are dealing with
irrational numbers for most turtle angle steps, and the
precision of real numbers in a computer is finite, which
means that only a subset of rational numbers can be
represented. Our representation takes into account the
fact that the turtle approach ensures that any point of
interest in the plane can be reached by a finite sequence of
unitary vectors taken from a set of n, where � � (2k�/n)
is the turtle angle step. Thus, taking into account
that vector addition is commutative, we can represent each
point by a set of n integer numbers stating how many
vectors of each kind are needed to reach that point from
the origin by following the turtle movements, without
specifying the order of the vectors.

To make the representation unique for every point, we
must make sure that the walk from the origin to the point
is minimal. We do this by performing the following
additional computations on the set of integers that
represent a point:

● For every n, we eliminate all n-sided regular polygons,
represented by sequences of all ones.

● For odd n, we eliminate all smaller regular polygons
with a number of sides that is a prime submultiple of n.
They are easily recognized as sequences of ones and
zeros.

● For even n (where, for every vector in the set, its
opposite vector is in the set), we have to be subtler:
A part of any regular polygon with a number of sides
an odd prime submultiple of n, longer than half the
polygon, can be replaced by a smaller set of vectors
going around the remainder of the polygon in the
opposite direction. This can also be done easily by
looking at the sequences of ones and zeros in the point
representation.

For example, let � be 60�, which means that n � 6.
The turtle walk defined by

F��F��F��F��F��F

can be defined by the set of integers: (3, 0, 2, 0, 1, 0),
which means that we must make three steps with angle 0�,
two with angle 120�, and one with angle 240�. This can be
obtained immediately from the string by counting walks
according to directions. Since n is even, we have to reduce
polygons. The sequence (1, 0, 1, 0, 1, 0), which is included
in (3, 0, 2, 0, 1, 0), represents a triangle (a polygon of
three sides, where 3 is an odd prime submultiple of n).
The sequence can be replaced by (0, 0, 0, 0, 0, 0), the
remainder polygon in the opposite direction. The point
representation thus becomes (2, 0, 1, 0, 0, 0). Next, we

observe that the sequence (1, 0, 1, 0, 0, 0), contained in
the latter, represents two sides of a triangle, which can be
replaced by the vector corresponding to the third side in
the opposite direction, (0, 1, 0, 0, 0, 0). Thus, the point
reached by the above turtle string can be reduced to
(1, 1, 0, 0, 0, 0). Figure 5 shows the original string walk,
plus those corresponding to the three subsequent
representations of the endpoint. The last one is the
minimum, which we take as the canonical representation
of the endpoint.

It can easily be proved that this algorithm correctly
computes the canonical integer representation of the
endpoint of any turtle string. Thus, we can unambiguously
locate and eliminate repeated walks (even parts of turtle
movements, as in the example in Figure 3), simply by
comparing any visible turtle step with all of the previous
ones and replacing canonical representations of endpoints.
A simple algorithm can do this with a complexity of
O(N 2).

Figure 5

Obtaining the canonical representation of a point, independently of
the path by which it was reached.

1

1

2

2

3

3

4

4

5

5
6

6

Canonical conversion

Possible vectors

sin(60)

sin(60)

sin(60)

sin(60)

1 � cos(60)

1 � cos(60)

1 � cos(60)

1 � cos(60)

IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001 M. ALFONSECA AND A. ORTEGA

803

Prolog implementation of the algorithm
The Prolog predicate in the listing below computes the
fractal dimension of the fractal curve defined by an L
system. The predicate receives the following arguments:

● Left: the left symbol of a rule in the L system.
● Draw: the set of draw symbols.
● Move: the set of move symbols.
● Nograph: the set of nongraphic symbols.
● Angle: the angle step of the turtle.
● InitialPoint: the coordinates of the initial point of the

curve, usually (0, 0).
● N: the number of derivations.

The predicate returns the result of the computation
in variable FractalDimension.

A set of facts describing the rules of the PD0L
scheme must be stated before invoking the predicate
fractal_dimension. These facts can be read from a
file:

fractal_dimension(Left, Draw, Move,

Nograph, Angle,

InitialPoint, N,

FractalDimension) ��

% FIRST THE NTH DERIVATION IS OBTAINED

% FROM AXIOM ACCORDING TO THE PRODUCTION

% RULES.

get_nth_derivation_from_axiom(Left, N,

String),

% THEN, THE GRAPHIC INTERPRETATION OF THE

% RESULTING STRING IS CALCULATED IN ORDER

% TO GET THE POINT REACHED.

string_to_end_point(String, Draw, Move,

Nograph, Angle,

InitialPoint,

LastPoint),

% THE EUCLIDEAN DISTANCE BETWEEN THE TWO

% POINTS IS CALCULATED.

distance(InitialPoint, LastPoint,

Distance),

% THE EFFECTIVE LENGTH (WITHOUT

% OVERLAPPING SEGMENTS) DEPICTED BY THE

% CURVE IS CALCULATED.

string_to_effective_length(String, Draw,

Move, Nograph,

Angle,

EffectiveLength),

% AND FINALLY THE FRACTAL DIMENSION IS

% ESTIMATED.

FractalDimension is

log(EffectiveLength)/log(Distance).

Conclusions
The L system that represents a fractal curve with a turtle
graphics interpretation has proved to contain enough
information for the computation of the fractal dimension
of the curve, for an interesting family of systems. In some
cases, the computation may have to be applied to a
sequence of derivations, and thus will be exponentially
slow, but this is a consequence of the inherent exponential
growth of fractal curves. However, in many other cases it
is not necessary to compute this limit, and the appropriate
dimension can be obtained in one or two steps.

Fractals represented by L systems associated with a
vector graphics interpretation are automatically covered by
our algorithm, if they have previously been converted to
equivalent L systems with a turtle graphics interpretation,
using the algorithm described in Reference [10].

In the future, we will try to extend the method to more
complicated turtle graphics interpretations and to different
types of L systems, such as those which have rules whose
left symbols do not lead to the same results. The primary
handicap with these systems is that they have not been
well documented. Most of the fractals in the literature
belong to the same class as the examples in this paper.

Acknowledgment
This paper has been sponsored by the Spanish
Interdepartmental Commission of Science and Technology
(CICYT), Project No. TEL1999-0181.

References
1. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H.

Freeman and Company, New York, 1977.
2. K. Falconer, Fractal Geometry: Mathematical Foundations

and Applications, John Wiley & Sons, Chichester,
England, 1990.

3. Masaya Yamaguti, Masayoshi Hata, and Jun Kigami,
“Mathematics of Fractals,” Translation of Mathematical
Monographs, Volume 167, American Mathematical
Society.

4. S. D. Casey and N. F. Reingold, “Self-Similar Fractal
Sets: Theory and Procedure,” IEEE Computer Graph. &
Appl. 14, 73– 82 (1994).

5. M. F. Barnsley, Fractals Everywhere, Academic Press, Inc.,
Boston, 1988.

6. T. Bedford, F. M. Dekking, M. Breeuwer, M. S. Keane,
and D. van Schooneveld, “Fractal Coding of Monochrome
Images,” Signal Process: Image Commun. 6, 405– 419
(1994).

7. K. Culik II and S. Dube, “New Methods for Image
Generation and Compression,” Proceedings of the
Conference on Facts and New Trends in Computer Science,
H. Maurer, Ed., Springer-Verlag, Berlin, 1991, pp. 69 –90.

8. A. Lindenmayer, “Mathematical Models for Cellular
Interactions in Development” (in two parts), J. Theor.
Biol. 18, 280 –315 (1968).

9. K. Culik II and S. Dube, “L-Systems and Mutually
Recursive Function Systems,” Acta Informat. 30, 279 –302
(1993).

10. M. Alfonseca and A. Ortega, “A Study of the
Representation of Fractal Curves by L Systems and Their
Equivalences,” IBM J. Res. & Dev. 41, 727–736 (1997).

M. ALFONSECA AND A. ORTEGA IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001

804

11. M. Alfonseca and A. Ortega, “Using APL2 to Compute
the Dimension of a Fractal Represented as a Grammar,”
APL Quote Quad 30, 13–23 (2000).

12. F. M. Dekking, “Recurrent Sets,” Adv. Math. 44, 78 –104
(1982).

13. F. M. Dekking, “Recurrent Sets: A Fractal Formalism,”
Technical Report 82-32, Technische Hogeschool, Delft,
Netherlands, 1982.

14. TruSoft International Inc., Benoit application:
http://www.trusoft-international.com/benoit.html.

15. S. Papert, Mindstorms: Children, Computers, and Powerful
Ideas, Basic Books, New York, 1980.

Received January 21, 2001; accepted for publication
August 16, 2001

Manuel Alfonseca Universidad Autónoma de Madrid,
Campus de Cantoblanco, 28049 Madrid, Spain
(Manuel.Alfonseca@ii.uam.es). Dr. Alfonseca is a professor at
the University. He was formerly a Senior Technical Staff
Member at IBM, having worked from 1972 to 1994 at the
IBM Scientific Center in Madrid. Dr. Alfonseca was one of
the developers of the APL/PC interpreter and related
products; he has worked on computer languages, simulation,
complex systems, graphics, artificial intelligence, object
orientation, and theoretical computer science, and has
published several books and about 170 technical papers, as
well as 60 papers on popular science in a major Spanish
newspaper. He is an award-winning author of 21 published
books for children. Dr. Alfonseca holds a doctorate in
electronics and an M.Sc. in computer science from the
Universidad Politécnica de Madrid. He is a member of the
Spanish Computer Society (SCS), the New York Academy of
Sciences, the IEEE Computer Society, the ACM, the British
APL Association, and the Spanish Association of Scientific
Journalism.

Alfonso Ortega Universidad Autónoma de Madrid, Campus
de Cantoblanco, 28049 Madrid, Spain (Alfonso.Ortega@ii.uam.es).
Dr. Ortega is currently a lecturer at the University, and is
also currently assigned for a year to CIEMAT (Center for
Research on Energy and Environment). Formerly he was
a lecturer at the Universidad Pontificia de Salamanca and
worked at LAB2000 (an IBM subsidiary) as a software
developer. He holds a doctorate in computer science from
the Universidad Autónoma. Dr. Ortega has published ten
technical papers on computer languages, complex systems,
graphics, and theoretical computer science, and has
collaborated in the development of several software
products.

IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001 M. ALFONSECA AND A. ORTEGA

805

