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We describe the development of a scoring
function designed to model the hydrophobic
effect in protein folding. An optimization
technique is used to determine the best
functional form of the hydrophobic potential.
The scoring function is expanded using
the Chebyshev polynomials, for which the
coefficients are determined by minimizing
the Z-score of native structures in the
ensembles of alternate conformations. (The
Z-score is the score relative to the mean,
measured in units of standard deviation.) The
derived effective potential is tested on decoy
sets conventionally used in such studies.
The function is able to discriminate very well
between correct and incorrect folds, despite

the fact that it simply counts the number of
neighbors of each amino acid. Our results
show that the techniques of Z-score
optimization and Chebyshev expansion work,
and work well. Our results also confirm that
hydrophobic effect is one of the principal
driving forces in protein folding.

Introduction
A potential function which distinguishes native and native-
like conformations from non-native structures is essential
to protein structure prediction [1–10].

In this work we present three major ideas, each of
which is used to design a potential function. First, we
define a very simple effective potential for protein
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structure prediction. This potential is designed to mirror
the hydrophobic interaction and simply counts the number
of neighbors of each amino acid. Second, we introduce a
novel method of representing the shape of a potential
which makes no assumptions about the functional form
of the potential. Third, we utilize a recently developed
procedure [11, 12] to train our potential by adjusting
the parameters of the function to minimize the Z-score
of sets of native structures with respect to alternate
conformations. Finally, we evaluate our derived effective
energy by applying it to decoys from the Decoys’R’Us
[13] database.

We initially chose to model the hydrophobic interaction
as a test for our procedures of Z-score optimization and
Chebyshev polynomial expansion. We were surprised to
discover that the effective potential came to possess
significant discriminating power. The investigation of this
power, which would illuminate the role of the hydrophobic
effect in proteins, is important and interesting. Because we
are already testing several new concepts in this paper, we
relegate the investigation of the hydrophobic effect to
another work.

Hydrophobic interaction
Every attempt to predict the three-dimensional structure
of a protein’s native state demands knowledge of the
interaction potential between amino acids [2, 5, 14]. Since
the classic work of Kauzmann [15] it has generally been
believed [16] that one of the most important forces
involved in folding is the hydrophobic effect. During the
folding process, residues with charged and polar side
chains remain exposed to the solvent, and those with
hydrophobic side chains segregate into the interior
of a globular protein [17, 18].

Series of experiments [19 –22] as well as theoretical
studies [16, 23–27] show evidence that the nonspecific
interaction and placement of hydrophobic residues is a
more critical determinant of protein structure than local
sequence-dependent interactions. These results suggest
that hydrophobic forces must be included in any theoretical
expression of the conformation energy of a polypeptide.
In addition, it may be possible to achieve significant
discrimination between the ground state and alternate
states of a polypeptide using only information about
the arrangement of hydrophobic residues. Huang
et al. [5] have shown that hydrophobic potentials
alone can distinguish 99% of the correct folds for a
suitably chosen set of alternatives, namely threaded
decoys. Similar results have been reported by Cassari
and Sippl [28].

In this paper we derive a hydrophobic potential which
has significant power to discriminate among a challenging
set of alternate conformations from the Decoys’R’Us

(http://dd.stanford.edu) database [13, 29]. The novel aspect
of our work is that in deriving an optimal hydrophobic
potential, the only assumptions we make are that the
hydrophobic interaction is residue-specific and that its
strength depends on the accessible surface area of each
amino acid. We let the optimization procedure dictate the
very form of the interaction. The discrimination power
of this rather simple potential compares favorably with
potentials of much greater complexity.

Optimization strategies
There are currently two main approaches to extracting
coarse-grained potentials between pairs of amino acids.
The first approach, pioneered by Miyazawa and Jernigan
[26], is based on the quasi-chemical approximation. It
derives conformational energies by comparing the
distributions of amino acids occurring in native
structures of proteins to those of the random
compact conformations. This approach has been
used by many researchers [14, 30 –33], and it was
well reviewed by Sippl [34] as well as by Wodak and
Roman [35].

The main flaw of potentials of mean force is that the
quasi-chemical approximation may not be valid [36].
Recently Thomas and Dill [37] tested the method on
exactly solvable lattice models. They showed that although
the extracted and exact potentials do have common
elements (which accounts for the current popularity of
potentials of mean force), the two indeed do not correlate
very well.

An alternate strategy was originally suggested by
Maiorov and Crippen [38], and has since been the subject
of considerable activity [11, 38 – 42]. The basic idea is to
parameterize a suitably chosen Hamiltonian and then to
adjust the parameters in such a way that a collection of
native states assumes either the lowest or one of the
lowest energies compared with an ensemble of incorrectly
folded alternate structures. We use a variation of the
second method to optimize our potential.

Theory

Simplified representation of the protein
It is currently believed that all-atom potentials are
required to properly model the dynamics of protein
folding [43]. The high level of detail combined with the
(relatively) slow speed of today’s computers limits the
time scale over which we can follow the folding process to
the order of one ms. Levitt [44] developed a now common
solution to the burden of computational complexity: Avoid
a detailed description of the amino acid by representing
the side chain with a point approximating the centroid of the
side chain. In our model the virtual side chain is a point
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3.0 Å from the Ca along the Ca–Cb vector, where Ca

and Cb refer to the alpha and beta carbons of the
polypeptide chain. We position the Gly centroid at
the Ca atom.

The model can be used [3, 5, 45] with either a fixed
centroid distance or a sequence-dependent distance.
Simplicity motivated our choice of a fixed distance,
although performance does improve somewhat with a
sequence-dependent centroid location.

Hydrophobic potential
When a hydrophobic residue is buried in the interior of
the protein, it will necessarily have many neighboring
residues. Viswanadhan [46] has shown that the average
number of neighbors within 10 Å of a given residue
correlates well with its hydrophobicity. For this reason, we
assume that the energy contribution from each residue will
depend on the number of residues within a 10-Å shell
surrounding it. Explicitly,

Ei 5 Ea~n!, (1)

where a denotes a specific amino acid type, and n is the
number of neighbors. We want to represent Ea(n) as a
linear combination of suitably chosen appropriate basis
functions. Our choice of a basis differs from Crippen’s
[40]; we decided to represent our potential as a linear sum
of Chebyshev polynomials (see Appendix A). Since the
Chebyshev representation is most naturally applied to
functions defined on the interval [21, 1], we transform
the functional dependence of E on n as follows:

Ei 5 EaSn 2 10

n 1 10D . (2)

The transformation n 3 (n 2 10)/(n 1 10) maps the
possible number of near neighbors [0, `] to an interval
[21, 1]. We chose 10 as the crossover point because 10
is roughly the number of neighbors with which an amino
acid becomes buried. It is not necessary to choose this
parameter exactly, but getting it in the right ballpark
helps the Chebyshev expansion converge more rapidly.

The final functional form for the hydrophobic energy
of a protein length N becomes

Eburial 5 O
i51

N

Ei 5 O
i51

N O
k

Ca,kTk Sn 2 10

n 1 10D , (3)

where a indexes the amino acid type, k is the order of
the Chebyshev polynomial Tk , and n is the number
of neighbors within a 10-Å radius of the amino
acid i.

Because we want the resolution of our potential to be
of order 0.1 (recall that the number of neighbors is an

integer quantity), we choose to retain terms no higher
than O6 in the Chebyshev expansion. (See the section on
methods for a fuller explanation.) In addition, the 0th
term is omitted because it is a sum of constants and
contributes equally to any conformation of the same
protein. We then have 20 3 6 5 120 coefficients Ca,k ,
which completely determine the potential.

Our representation of the potential has several highly
desirable properties. First, it assumes nothing of the form
of the interaction other than the fact that the energy
depends on the amino acid type and its degree of burial.
Optimization of the discriminating power of the potential
will determine the very functional form of the interaction.
Second, choosing the Chebyshev expansion allows us to
represent the interaction with great accuracy using a very
small number of parameters. This reduction in the number
of parameters is paramount for any optimization scheme.

Z-score optimization
Our optimization scheme follows the general outline of
the method of Mirny and Shakhnovich [11]. We choose
a training set and construct alternate structures for each
chosen protein. We then optimize the parameters of our
Hamiltonian to minimize the average Z-score of the native
structures relative to their corresponding alternates. (The
details of the computation are described in the section
on methods, and also in [12].) We decided to optimize
the average Z-score and not the harmonic mean as in
Reference [11] because during minimization the individual
Z-scores may have different signs, thus rendering the
harmonic mean useless. As soon as all of our Z-scores
became negative, the minimizer switched to the harmonic
mean. The final results for the two methods did not differ
appreciably.

An alternate strategy would have been to insist that
each of the native structures assumed the lowest energy
with respect to the decoys [9, 47]. We prefer to minimize
Z-score for several reasons. First, it is quite probable that
despite our best efforts, the native conformations of some
of the proteins in our training set are not the ground state
of that particular sequence. Our optimization procedure
allows non-native states to occasionally occupy states
of lower energy than native. A related motive is to
allow “near-native” states to be lower than the native
conformation. At this stage of protein structure prediction
development, we consider picking, say, a 1-Å structure
from a set of decoys a success. A second advantage of
using Z-score minimization is speed. The computational
complexity of the optimization depends only on the
number of parameters in the Hamiltonian and on the
number of training sequences; it does not depend on the
number of structures in each ensemble of the training set
(see Appendix B).
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Results

Construction of training sets
We trained our function on a set of 71 sequences, listed in
Table 1.

The structures were selected using three criteria. First,
to ensure variety in our training set, the sequence identity
of the structures was less than 35%. Second, to reinforce
structural variation, each protein was chosen from a
different SCOP (protein classification database) [48]
family. Finally, to avoid structures of low quality, we kept
only proteins with a SPASI (structure quality database)
[49] score of #0.25.

Each member of our training set consists of the
native structure and a set of one thousand alternate
conformations (“decoys”). For each sequence we
perturbed the native structure (starting the Monte Carlo
trajectory with the native structure allows us to generate
near-native decoys easily) with a simulated annealing
routine [50, 51] and produced 1000 alternate
conformations. We designed the decoy-generation
procedure to produce decoys for which the root mean
square deviation (RMSD) from native ranged from 0 to
the radius of gyration (RG) of the native structure. In
addition, the simulated annealing was designed to
produce structures with RG similar to that of the
native conformation, thus ensuring compactness.

We wanted to force the function to differentiate
between native structure and alternate structures that have
a relatively low (1– 6) a-carbon (CA) RMSD from the
native. Typically training sets are generated by threading
onto diverse alternate structures [29]. It thus becomes
exponentially difficult to produce decoys with near-
native RMSDs [52]; as a result, the decoy set is “not
challenging.” We felt that just as threading decoys are
considered insufficient for testing a potential, they should
be equally inadequate for training one.

Training
The training procedure attempts to find the lowest average
Z-score for all of the ensembles corresponding to the
training proteins (listed in Table 1). The reader should
consult Equation (B6) and surrounding paragraphs. The

parameter space consists of 20 3 6 5 120ck . Because
a priori we have no notion what the Z-score surface looks
like, and also because 120 variables is a relatively large
number, we chose to minimize with a simplex version of
the simulated annealing procedure [50]. The temperature
is decreased linearly from t 5 100 (an arbitrary “large”
value) to t 5 1023. The annealing is restarted several
times. At the end of the run, the result is refined with
a downhill simplex method [51], which is equivalent to
setting t 5 0.

We cannot be certain that each of the proteins in our
training set represents a true minimum of energy. Several
things could go wrong: It is possible that co-factors
unlisted in the PDB file were present either in vitro
or in vivo; the shape of the molecule might have been
significantly distorted by crystallization; or the molecule
might also actually be a dimer or a multi-mer. To safeguard
against these errors, we ensured self-consistency by
removing from the training set all proteins that did not
achieve a Z-score lower than 20.5. This value is high
enough to allow small disulfide-rich proteins to be
included in the training set. Three proteins were removed
from the initial set; our final training set consists of 68
proteins.

The final average Z-score for the training set is 23.48.
Figure 1 is a plot of the energy function for three
representative amino acids, showing the burial preferences
for hydrophobic valine, hydrophilic arginine, and
intermediate glycine. Val prefers many neighbors, while
Arg would rather have only a few neighbors. (Recall that
our reference state consists only of compact structures;
thus, even a hydrophilic residue must have neighbors.)
Finally, the burial preferences of Gly are between those of
Arg and Val. When examining Figure 1, the reader should
note that energy values for fewer than two neighbors and
30 or more neighbors are arbitrary. All residues have at
least two neighbors, and, because of their excluded
volume, no residues have more than 50 neighbors.

Discrimination power
Recently, the evaluation of functions has been made
convenient by a database of decoy sets [13] (http://
dd.stanford.edu). We tested our potential on two families

Table 1 Proteins in the initial training set.

1a1x 1a32 1aep 1aho 1aie 1ail 1ako 1aly 1amx 1arb
1bb9 1bd8 1bea 1bfg 1bgf 1ble 1bm8 1bv1 1c25 1cby
1cex 1cfr 1chd 1cyw 1dun 1fna 1gpr 1gvp 1hoe 1hyp
1i1b 1ifc 1kid 1koe 1kte 1lcl 1lfb 1lki 1lxa 1mjc
1msc 1nkd 1noa 1pbv 1pdo 1pht 1pne 1ptf 1r69 1rcb
1rpl 1sfp 1tfe 1tig 1tlk 1tud 1tul 1utg 1vcc 1vie
1wer 1whi 1who 1xat 2end 2igd 2pii 2pth 2rn2 2tgi
3pte
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of decoy sets. The first, also known as the Park–Levitt
set [29], was produced by perturbing the loop degrees of
freedom of the native structure and then selecting protein-
like conformations. This set has been used in several
comparisons of potentials [29, 32, 53]. The second family
of decoys was produced by Kesar and Levitt by using
minimization with a complex potential which contains a
significant pairwise component. We selected the K–L
family because pairwise potentials are easily deceived by
this set, possibly because each member of the set is a
local minimum of a pairwise potential. The performance
of our potential is summarized in Tables 2 and 3. For
comparison we also display the Z-scores of two other
potentials. Shell is a Myazawa–Jernigan [26] pairwise
contact potential, and DB is a complex potential reported
by Simons et al. [53]. We chose the Shell potential
because, although slightly dated, its basic features are the
same as those of most modern potentials [32]. The DB
potential was chosen because, considering its performance
in the latest CASP, it is one of the best discriminating
functions available. Tables 2 and 3 show the Z-scores for
the three potentials, as well as the rank of the native and
the first near-native conformations in each decoy set.
(We define “near-native” structures to be closer than
3.5 Å RMSD from the native fold.) We do not know
the performance of the scoring function of Simons et al.
on the Kesar–Levitt set because the scoring function
was not available at the time of this writing.

The performance of our burial function is surprisingly
strong. Our potential counts only the number of neighbors
around each residue. The Shell potential does the same,
but each neighboring amino acid brings a different
contribution (in other words, it is pairwise residue
specific). The DB potential is very complex, containing
pairwise components of different burial classes, a
secondary structure packing term, and other contributions.
However, we manage to achieve Z-scores which are very
close to those of our colleagues. Even more significantly,
we achieve excellent discrimination of near-native decoys,
which is crucial for structure prediction.

The Kesar–Levitt set unveiled further surprises. Shell
does predictably badly on the set because the decoys
were minimized with a potential which has a pairwise
component. The performance of our function, however,
remains similar to its performance on the P–L decoy set.
We were unable to evaluate the discrimination of near-
natives because the decoy sets in the K–L family do not
have near-native structures.

Two proteins presented us with some difficulty: 2cro
and 4pti. The latter has three disulfide bonds which
stabilize it and probably reduce the protein’s tendency
to be hydrophobically stable. The reason for the
stubbornness of 2cro is unclear. We can take partial

Figure 1

Burial preferences for Val, Arg, and Gly. Regions containing fewer
than two neighbors and more than 30 neighbors do not contribute to
discrimination.
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Table 2 Performance of scoring functions on the Park–
Levitt decoy set. The set contains approximately 700 decoys of
each protein. The three elements separated by colons in the
right-hand columns are native rank : near-native rank : Z-score.

Protein Burial Shell (M–J) Simons et al.

1ctf 1 : 1 : 22.9 13 : 1 : 22.3 1 : 1 : 23.5
1r69 2 : 1 : 22.4 4 : 2 : 22.4 1 : 7 : 22.0
1sn3 3 : 1 : 22.1 14 : 1 : 22.1 1 : 1 : 22.2
2cro 60 : 1 : 21.3 19 : 1 : 21.8 371 : 6 : 21.2
3icb 10 : 1 : 21.6 3 : 1 : 22.5 1 : 2 : 22.8
4pti 62 : 9 : 21.7 5 : 2 : 22.3 21 : 23 : 22.3
4rxn 6 : 2 : 22.2 2 : 1 : 22.8 21 : 3 : 22.8

ave 22.0 22.3 22.4

Table 3 Performance of scoring functions on the Kesar–
Levitt decoy set. The set contains 500 decoys of each protein.
Most of the proteins in this collection do not have near-native
decoys. The three elements separated by colons in the right-
hand columns are native rank : near-native rank : Z-score.

Protein Burial Shell (M–J)

1bba 4 : 10 : 22.5 500 : 9 : 12.9
1ctf 1 : n/a : 23.5 16 : n/a : 21.9
1dtk 34 : n/a : 20.9 26 : 1 : 21.2
1fc2 9 : n/a : 22.1 321 : n/a : 10.4
1igd 1 : n/a : 22.8 10 : n/a : 22.0
2cro 250 : n/a : 20.4 46 : 2 : 21.3
2ovo 7 : n/a : 22.2 246 : n/a : 10.6
4pti 32 : n/a : 21.4 248 : 1 : 10.7
smd3 1 : n/a : 25.0 1 : n/a : 24.1

ave 22.3 20.7
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solace in the fact that other potentials have difficulty
with this protein as well.

Conclusion
Our initial aim was to test two procedures, Z-score
optimization and the Chebyshev expansion of the
potential, in a simulated predictive environment. We also
wanted to see how well the functional form in Equation (2)
captured the burial propensities of the various amino
acids. This we have accomplished. In addition, our
optimized potential, despite its simplicity, performed with
considerable strength and consistency. This positive result
is likely brought about by two factors. First, the hydrophobic
effect plays a significant role in protein folding. In addition,
our optimization procedure, the Chebyshev approximation,
or the form of the potential capture the hydrophobic
effect well.

The promising results of this work suggest clear avenues
for further investigation. We are currently working on
other components of the energy function, and we are
trying to generate better training sets. The significant role
of the hydrophobic effect also deserves further inquiry.

Appendix A: Chebyshev expansion
An excellent exposition of the Chebyshev expansion can
be found in Chapter 5 of Reference [54]. We briefly
restate some of the more useful properties of the
approximation. The Chebyshev polynomial of degree n
is defined by

Tn~ x! 5 cos ~n arccos x!. (A1)

Explicitly, the polynomials are the following:

T0~ x! 5 1;
T1~ x! 5 x;
T2~ x! 5 2 x 2

2 1;
T3~ x! 5 4x 3

2 3x;
T4~ x! 5 8x 4

2 8x 2
1 1;

. . .

Tn11~ x! 5 2 xTn~ x! 2 Tn21~ x!n $ 1. (A2)

Although the Tn are defined only on the interval [21, 1],
a simple change of variable allows the expansion to be
used to represent a function between two arbitrary limits,
[a, b]:

y 5
x 2

1
2

~b 1 a!

1
2

~b 2 a!
. (A3)

There are two main reasons for picking the Chebyshev
expansion. The first is that the error is spread out

smoothly over the approximated interval. In fact, the
Chebyshev approximating polynomial is very nearly the
same as the minimax polynomial. The second is that the
Chebyshev approximation achieves a very low error for
relatively few terms, thus leaving us fewer parameters
to deal with.

Appendix B: Z-score optimization
Our optimization scheme minimizes the average Z-score
of the training set native structures relative to their
respective decoys. For each ensemble the Z-score is
defined as

Z ;
V~0! 2 ^V~i!&

s
, (B1)

where the ^ & and s are, respectively, the ensemble
average and standard deviation, 0 denotes the native
conformation, and 0 # i # N runs over all of the
conformations in the ensemble.

Because our potential function is a linear combination
of terms,

V~i! 5 O
k50

kmax

ckVk~i!, (B2)

where the ck are the parameters we are optimizing,
we can achieve significant simplification. We substitute
Equation (B2) into Equation (B1). When the order of
summation on i and k is interchanged, the numerator
of Equation (B1) becomes

O
k50

kmax

ck3Vk~0! 2
1

N O
i50

N

Vk~i!4 . (B3)

Next we consider the denominator, which is the square
root of the variance. The variance of a linear sum can be
decomposed as follows:

var 1 O
k50

kmax

ckVk2 5 O
m50

kmax O
n50

kmax

cmcn cov ~Vm, Vn!, (B4)

in which the ensemble covariance matrix is defined as

cov ~Vm, Vn! ; ^~ xm 2 mm!~ xn 2 mn!&, (B5)

where m is the ensemble mean. Putting Equations (B3)
and (B4) together, we get

Z 5

Ok50
kmax ckFVk~0! 2

1

N O i50
N Vk~i!G

ÎOm50
kmax On50

kmax cmcn cov ~Vm, Vn!
. (B6)

The value of Equation (B6) is that one can precalculate
the actual basis functions Vk and the covariance matrix for
each ensemble. Consequent adjustment of the parameters
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ck requires us to simply perform matrix and vector
multiplication.
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