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The motion-estimation search range required
for interframe encoding with the MPEG-2 video
compression standard depends on a number
of factors, including video content, video
resolution, elapsed time between reference
and predicted pictures, and, just as
significantly, pragmatic considerations in
implementing a cost-effective solution. In this
paper we present a set of experimental results
that provide a probabilistic characterization

of the size of motion vectors for different
types of video, from well-known standard test
sequences to fast-paced sports sequences to
action movie clips. We study the impact of
search range on compression efficiency and
video quality. Finally, and on the basis of these
results, we conclude with recommendations
for target search ranges suitable for high-
quality compression of standard and high-
definition video.

1. Introduction
The most effective video compression standards [1-4]
use the motion-compensated picture difference (MCPD)

technique to achieve high degrees of compression at
acceptable levels of picture quality. For the purposes of
this paper, an MPEG-2 MCPD is generated by three
steps:

1. Segmenting a target picture into a grid of macroblocks
of 16 X 16 pixels.

2. Predicting the pixel values in each target macroblock
by estimating the translational displacement (motion)
between macroblocks in the target picture and
macroblocks in one or two reference pictures.

3. Subtracting the target macroblocks from their predicted
values to generate an MCPD picture.

Two types of MCPD pictures exist in MPEG-2: P- and B-
pictures. P-pictures use only one reference picture, which
is temporally located before the target picture. B-pictures
use two references: one before and one after the target
picture. A third type of picture in MPEG-2, the so-called
I-picture, is not motion-compensated. Recent reviews of
MPEG-2 include [5] and [6].

When generating an MPEG** compressed stream,
it is common to define an m-parameter to indicate the
distance in picture periods between target P-pictures
and their corresponding reference pictures. An m = 1
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sequence is made up of P- and I-pictures only, and each
P-picture in the sequence is motion-compensated on

the basis of the previous P- or I-picture. In anm = 3
sequence, two B-pictures are typically sandwiched between
pairs of P-pictures. Because in MPEG only P- and I-
pictures can be used as reference pictures, the largest
distance between target and reference pictures occurs
when P-pictures are encoded. It turns out that the larger
the distance between target and reference pictures, the
larger the displacements found in step 2 above. In the
remainder of this paper, we attempt to characterize the
statistics for the maximum size of these displacements;
thus, we concern ourselves primarily with the prediction of
P-pictures at m = 3.

In the full-search method for motion estimation, the
prediction step for a P-picture is performed by comparing
each target macroblock against all possible candidate
“matching” macroblocks in a search window centered
around the macroblock in the same spatial location of the
reference picture. A displacement motion vector of zero
(MV = 0) indicates that the best-matching macroblock is
located at the center of the search window. By definition,
half of the horizontal and vertical sizes of this search
window are the horizontal and vertical “search ranges”
of the motion-estimation process. The displacement that
corresponds to the best macroblock match defines the
prediction macroblock motion vector whose value is
transmitted as part of the MPEG-2 data. For interlaced
video, in which alternating lines of pixels in a macroblock
correspond to two separate video fields,” it is possible to
improve the accuracy of the matching by separately
predicting each field, at the cost of having to transmit two
MYV values instead of one. These options in MPEG-2 are
known as adaptive frame/field motion compensation.

Puri et al. [7] suggested that a suitable search range in
the MPEG-2 Main Profile at Main Level (MP@ML) is
[15 + 16(m — 1)]. This empirical formulation suggests
that for m = 3, all we require is a search range of =47
in both horizontal and vertical directions. As we will see,
however, this range is insufficient for robust encoding in
MP@ML. What then is the necessary motion-estimation
search range required for effective P-picture encoding?
The answer to this question depends on a number of
factors, including video content, target video resolution,
m-value, and pragmatic considerations of technology and
cost limitations. Very little experimental data has been
reported that helps a designer choose a search range
under the constraints of limited chip size, or, equivalently,
limited computation. What are the effects on bit rate and
peak signal-to-noise ratio (PSNR) of MPEG-2 coded video

IIn practice, m-values larger than 3 are not used; therefore, they are not
considered here.

2 This paper focuses on frame-structure MPEG-2 encoding. However, the results
are general and also apply to field-structure coding.
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with a constrained search range? What is the search range
required for 95% or 99% macroblock coverage? What is
the impact of a constrained search range on subjective
video quality? These issues are all addressed in this paper.

Because an enormous number of computations are
required for a full-search motion-estimation algorithm
in MPEG-2 MP@ML, most hardware and software
implementations of motion estimation are based on
hierarchical techniques [8]. However, hierarchical methods
also result in suboptimal motion-vector estimates.
Furthermore, for a given computational capacity in a
hierarchical approach, the larger the search range, the less
optimal or accurate the vector estimates. A hierarchical
motion-estimation design with computation or chip size
limitations must thus balance the desire for a large search
range that covers “all” possible cases, with the accuracy of
the vector estimates that are suitable for the “majority” of
cases.

Other factors affecting the quality of MPEG-2 encoding
are the magnitudes of motion vectors and motion-vector
differences in contiguous macroblocks. This is the case,
for example, because “0” motion vectors can be very
efficiently coded in MPEG-2 P-pictures, and also because
MVs are coded using a differential pulse code modulation
(DPCM) technique. Thus, simply choosing the MV with
the “best match” (i.e., one with a minimum of motion-
compensated pixel differences), without considering the
absolute and differential size of the resulting MV value,
can actually turn out to be a suboptimal choice. In this
paper we study the requirements for motion-estimation
search range in the context of a practical hierarchical
implementation that takes MV sizes and differences into
account.

2. A hierarchical search algorithm

The results in this paper were obtained from software
simulations. Limitations of time and computation dictated
that we also use a hierarchical motion-estimation
algorithm for most of the simulation work. However, we
believe that our conclusions remain valid for the case of
other similarly hierarchical algorithms or even for the full-
search algorithm. In what follows we briefly summarize the
main features of the hierarchical algorithm used for this
work. We label it the HS algorithm (for hierarchical
search) as opposed to FS (for full search).

The HS algorithm is a refinement of an algorithm
reported in [9]; it is a three-stage hierarchical approach.
In the first stage, here referred to as coarse search, the
dimensions of both the target and reference pictures are
reduced by a factor of 4 in the horizontal direction. With
HS, we maintain full vertical resolution to preserve the
field structure of interlaced video. The FS algorithm is
then applied to find the best coarse frame and field MVs
for the reduced macroblock size of 16 X 4. As opposed to
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other hierarchical algorithms, in which the coarse search is
performed on reduced images obtained by subsampling,
HS decimates pictures by averaging pixels. This approach
is more accurate and helps to reduce the effects of picture
noise in the MV estimates. In the second stage, the
horizontal component of the MVs is refined to one-pixel
accuracy by using full-size target and reference pictures.
Finally, the third stage further refines the resolution of the
MVs to half-pixel resolution. The mean PSNR loss of HS
compared with the FS algorithm is about 0.3 dB [10],
which is arguably below the threshold of visibility for
picture impairment.

Most of our simulations have been performed with a
search range of either =192 X *168 (frame-basis) or
+320 X *£280, whatever was appropriate for the content
at hand. The source video was made up of picture
sequences of size 720 X 480. Larger search ranges were
certainly not necessary for the video and film that we
chose in our simulations, although we intentionally looked
for difficult, fast-action content.

The cost functions we used to measure the accuracy of
macroblock “matching” are empirical formulations which
incorporate previously explained facts, i.e., that optimum is
not only a function of minimizing the motion-compensated
prediction error, but also a function of the magnitude of
the motion vectors and the coded motion-vector differences.’
The specific cost functions we used in this study are

CF(i,j) = SAE(, j)
+w MV G, )l + MV (G, j) =MV, j = D]
+ w [IMV, (i, )] + MV, (i, j) = MV, j = 1)]]
and

Cf (i, j) = SAE, (i, j)

w,
+ j[lMVX’(i,j)\ + MV, j) - MV (G, j = DI]

w
o [IMVIG, I+ MV, ) = MV, j = DI,

where CF is the cost function for a frame MV and Cf,
are the cost functions for the top- and bottom-field motion
vectors of a macroblock located at row, column (i, j). SAE
represents the sum of absolute values of the prediction
error (in the case of field prediction, the SAE
computation is based on half the number of pixels of the
frame-prediction computation). MV, and MV represent
the horizontal and vertical components of frame motion
vectors; MV, M V}f represent field motion-vector
components measured in frame units. After substantial

3 C. Gonzales, J. Kouloheris, W. Lam, H. Yeo, and C. J. Kuo, “A Family of Cost
Functions for Motion Estimation in MPEG-2,” work in preparation.
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experimentation, we determined that w, = w =4
(see Footnote 3).

Finally, a decision must be made as to whether a
macroblock is coded with frame or field motion
compensation, or, alternatively, with no motion
compensation (intra-macroblock). The criteria for making
such a decision are based on an algorithm similar to that
in Test Model 4 of MPEG-2 [11].

3. Simulation results

® [nterpretation of experimental results

The horizontal and vertical components of motion vectors
(x and y, respectively) behave like random processes;

as such, their statistics can be characterized by their
probability density functions, f(x) and f(y), or
alternatively by their corresponding probability
distribution functions, F(x) and F(y). An approximation
of the density functions can be obtained from histograms
of motion-vector components representing the frequency
of occurrence of vector values for a picture or set of
pictures. For the purpose of evaluating search-range
requirements, we are more interested in the cumulative
distribution functions of motion-vector components.
Figure 1 shows these functions for the well-known set

of MPEG test sequences. Note that we evaluate the
cumulative distribution functions for the absolute value
of motion-vector components; this is because we are
interested in investigating only motion-estimation search
ranges that are symmetrical around 0.

It is important to understand how these plots were
derived in order to interpret them correctly. As previously
explained, macroblocks in a P-picture can be coded as
intra-, frame-predicted, or field-predicted. In the case
of field-predicted macroblocks, there exist two motion
vectors per macroblock. In the case of frame-predicted
macroblocks, only one motion vector per macroblock is
used, whereas no motion vectors are specified for intra-
macroblocks. Since we wish to make “motion-vector
statistics” correspond to actual “picture area statistics,”
we use the following rules in deriving f and F from the
experimental data:

1. Frame-motion vectors are counted twice in calculating
forF.

2. Intra-macroblocks are counted as two zero-motion
vectors in calculating F.

In this manner, when calculating F, two motion vectors
are always used for every macroblock in a P-picture. Thus,
a value of MV = x, corresponding to F(MV ) = 0.9,
indicates that 90% of the total pixel area in P-pictures can
be “coded” with motion vectors MV = x, (note that this
90% includes “unpredicted” intra-macroblocks). We refer
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MPEG test sequence motion vector statistics: (a) and (b) respectively show the histogram of the horizontal and vertical components; (c) and
(d) are the corresponding estimated distribution functions (95% and 99% statistics are indicated with dotted lines).

to x, as the 90% probability search range for the
x-component of motion vectors.

® Short-term versus long-term statistics

To experimentally describe the f and F statistics, we must
collect macroblock motion-vector measurements for one
or more pictures. The elapsed time of the observations is
very important. As one might expect, the statistics are
heavily dependent on video content, and their behavior
tends to appear stationary only from one scene change to
the next. It should be clear, for example, that measuring
the long-term statistics of motion vectors for the length of
a two-hour movie will tell us very little about the short-
term statistics of each individual scene in the movie. In
this paper we are interested in both long-term and short-
term behavior of motion-vector statistics. Long-term
statistics provide us with an indication of the value of the
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required motion-estimation search range for effective
video compression, where by effective we mean
compression with optimum video quality “most of the
time.” Short-term statistics provide us with an indication
of the value of the required motion-estimation search
range for robust video compression, where by robust we
mean compression with close-to-optimum video quality*
“all the time.” Clearly, robust encoding is a desirable
objective; however, one must deal with practical
considerations such as the tradeoff between accuracy
and search range when limited computational power is
available.

We report on the results of simulation studies for
several video sequences. The sequences we tested
comprise three different groups: 1) the MPEG-2 set of

4 In this paper we measure video quality by either peak signal-to-noise ratio
(PSNR) or a subjective evaluation of picture quality.
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test sequences, with which many practitioners of the
MPEG-2 standard are familiar; 2) a set of sports-related
test sequences which were deliberately chosen to stress the
requirements for large search ranges; 3) several minutes
of 24-frame-per-second film material, representative of
typical action movie content.

® Statistics for standard MPEG sequences

Table 1 lists the MPEG test sequences we used in our
experiments, including our attempt to describe their
content. The term simple motion means few objects
moving at slow speeds; complex motion means one or
more objects moving at moderate to high speeds; zoom
and camera panning are self-descriptive. We measured
motion-vector statistics for sixty pictures in each test
sequence at m = 1 and m = 3.

While we are interested primarily in m = 3, it is useful
to observe how search-range requirements scale with m.
For most sequences, motion vectors do not scale linearly
with m, as one might erroneously assume. In fact, Table 2
shows that only in the case of simple motion and camera
panning is the scaling approximately linear. For all other
cases, the motion-vector search range required for m = 3
is typically less than the linear rule would predict.

The picture-by-picture statistics for these sequences are
shown in Figure 2. In this figure we show the average
motion-vector component, the 95% probability search
range, and the 99% probability search range, for the
horizontal and vertical components at m = 3. Also shown
are the percentage of intra-macroblocks (note that, as one
would expect, the number of intra-macroblocks correlates
well with the amount of motion). Each of these sequences
corresponds to a single video scene, and each of them
shows an approximately statistically stationary behavior.
Their overall statistics have already been presented in
Figure 1. We observe in Table 2 that for even a 99%
probability search range, MV = 120 and MV = 72 in all
cases. To achieve 99% coverage for MV, only Carousel
requires a search range of +120. This means that when we
limit the horizontal search range to =120, fewer than

Table 2 Experimental results for m = 1 and m = 3.

Table 1 Description of MPEG-2 test sequences.

Motion Simple  Complex  Zoom Camera
sequence motion  motion (infout)  panning
Cheerleaders I
Flower Garden v v
Mobile and Cal. I I 4
Susie I
Table Tennis v v
Football I 7
Carousel I I

1% of the macroblocks in this sequence may become
“unpredictable” and may have to be coded as intra-
macroblocks, thus adding to the roughly 6% intra-
macroblocks required by these sequences to start with.
This small increment has an imperceptible impact on
coding efficiency or video quality, as we later see. To
achieve 95% coverage, we see from Figure 1 and Table 2
that MV’ = 100 and MVy = 40. Once again, only
Carousel requires MV_ = 100; if we limited the search
range to this value, the number of intra-macroblocks for
this sequence could potentially double to about 10%
(see Figure 2). As we later see, objective and subjective
measurements of video quality suggest that, even at 95%
search range, video quality degradation appears to be
below the threshold of human perception.

® Statistics of sports sequences

Action sports stress the requirements for motion-estimation
search range. For this reason we chose to simulate a set
of six different sports clips of interlaced 60-Hz video,

as shown in Table 3. We captured 30 seconds for

each clip, and sampled two pictures every 0.5 second.
These two pictures were separated by three picture
periods such that the simulation results correspond to

m = 3. The contents of each sequence are described in
Table 3. The term close-up shot indicates that the height
of the person or persons that the camera is tracking is
greater than one half of the picture height; otherwise we

FMV) = 0.95 F(MVy) =0.95 FMV) = 0.99 F(MVy) = 0.99
m =1 m =3 m =1 m =3 m =1 m =3 m =1 m =3

Cheerleaders 16 42 14 40 38 75 38 72
Flower Garden 11 32 2 6 15 40 8 20
Mobile and Cal. 3 9 2 4 28 36 4 16
Susie 2 4 1 4 4 7 3 10
Table Tennis 8 22 6 8 19 44 14 18
Football 39 60 16 40 52 92 32 68
Carousel 38 100 10 26 55 120 40 54
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MPEG test sequence motion vector statistics for m = 3: (a) Horizontal; (b) vertical; (c) intra macroblock (%).

label it a long shot. In close-up shots, tracking a moving Figure 3 shows the picture statistics for all of these
object can result in extremely fast panning of the more sequences. The two basketball sequences appear to be
distant background. the most demanding in terms of horizontal and vertical

C. A. GONZALES, H. YEO, AND C. J. KUO IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999



300
Tennis Football Ice skating Basketball I Basketball IT Hockey Soccer
250 |
200 ® Segment 1
SEREYS
100 |
0 1 ]
0 20 40 60 80 100 120 140 160 180 200
Sequence length (s)
(a)
300
250 |
Mean
200 | —_— 999,
. 95% .
S 150}
100
50
0 Y A b #AS
0 20 40 60 80 100 120 140 160 180 200
Sequence length (s)
(b)
30
251
g 20f
.MS L
5 stk
E
g 10r
=
0 ] ] ] MW ! -u-.uxl".\
0 20 40 60 80 100 120 140 160 180 200
Sequence length (s)
(©)

Sports sequence motion vector statistics for m = 3 (each sequence is 30 seconds long): (a) Horizontal; (b) vertical; (c) intra macroblock (%).

motion. Also identified in this figure is a portion of video more detail in Section 4. To compare “Basketball I” and
with large motion vectors which is indicated as Segment 1. ~ “Basketball II,” the close-up sequence requires a larger
The short-term statistics of this segment are studied in overall search. This is seen more easily in Table 4 and
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Figure 4, where long-term (30-second) statistics for each
sequence are shown. The overall 99% probability search
range requirement is MV = 123 and MV = 84,
whereas the 95% probability search range is MV = 77

Table 3 Description of sports sequence contents.

Zoom
(in/out)

Motion
sequence

Close-up shot Long shot

’/
P

Tennis
Football II
Ice Skating
Basketball 1
Basketball 1T
Hockey
Soccer

A W W W WA

XYY Y X

and MVy = 50. Both of these ranges are defined by the
statistics of “Basketball I1.”

® Statistics of movie sequences

To complete our experiments, we simulated film at 24
pictures per second. This content was provided to us
through the courtesy of a movie studio, as an example of
typical action material. Four different movie clips with
different time lengths, labeled Movie 1 through Movie 4,
were used. We sampled pairs of progressive pictures
corresponding to m = 3 (after telecine inversion) every
half second. We intentionally avoided those cases in which
the two pictures in a pair belonged to different scenes
(these cases should not be handled with MCPD
techniques). The clips contain a variety of material
ranging from low motion, e.g., people talking, to extreme
motion, e.g., close-up of horseback riding scene.

Picture statistics for these clips are shown in Figures 5-7.
Long-term averages are shown in Table 5 and Figure 8.
The largest averages correspond to Movie 2, which has a
99% macroblock coverage with a search range of MV = 103
and MV = 61. In contrast, the corresponding 95%
range is MV = 46 and MV = 35.

In Figures 5-7 we have also identified a number of
segments that significantly exceeded the 99% search range
for Movie 2; they are labeled Segment 2, Segment 3, and
Segment 4. Segment 2 was chosen because of its large
vertical motion. In the next section of this paper, we analyze
the short-term statistics of these segments more closely.

Table 4 Experimental results for m = 3. The 95% and 99% probability search ranges are compared.

FMV) = 0.95 F(MVy) =0.95 FMV ) = 0.99 F(MVy) = 0.99
Tennis 54 18 82 42
Football 46 20 78 40
Ice Skating 59 18 82 40
Basketball 1 50 22 102 54
Basketball 1T 77 50 123 84
Hockey 44 10 71 20
Soccer 22 8 64 18

C. A. GONZALES, H. YEO, AND C. J. KUO
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Movie 1 motion vector statistics for m = 3: (a) Horizontal; (b) vertical; (c) intra macroblock (%).

4. Picture quality and coding efficiency with a
constrained search range

The experiments presented in Section 3 showed that the
most demanding content in terms of motion-estimation

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

search range was that of sports video. On the basis of
those measurements, we suggest that a search range
somewhere between the 95% and the 99% statistics of
our sports video clips is sufficient to guarantee close-to-
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Movie 2 and Movie 3 motion vector statistics for m = 3: (a) Horizontal; (b) vertical; (c) intra macroblock (%).

optimum coding results for even critical applications. More for all applications of MPEG-2 encoding of CCIR 601 video
concretely, we recommend a search range in the interval resolution. We observe, however, that over short periods of
80 =MV =120, 50 = MVy =85 time, short-term statistics can exceed this recommended
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Movie 4 motion vector statistics for (m = 3): (a) Horizontal; (b) vertical; (c) intra macroblock (%).

search range significantly. Several examples were singled impact on picture quality (or, alternately, coding efficiency)
out in Section 3 and labeled as Segments 1-4. Using these ~ of MPEG compression with a constrained search range. We
segments and other video samples, we now wish to study the  study this impact with subjective and objective measures.
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Factors affecting picture quality in MPEG-2 coding are
numerous, and their interaction is complex. Some of the
factors that relate to the presence of motion include 1)
motion-estimation search range; 2) human perception in
the presence of fast motion; 3) picture complexity (motion
tends to produce blurred images of low complexity); 4)
number of unpredicted (intra-) macroblocks; and 5) data

rate. Predicting the effect of a constrained search range
in the presence of fast-moving images is difficult because
of the complex interactions of all of these factors. For
example, does it matter if a few extra macroblocks cannot
be motion-compensated when most of a picture is blurred
and of low complexity? What is the impact on image
quality of adding a few more unpredicted macroblocks to
an already significant percentage of intra-macroblocks?
Even if all of these elements matter quantitatively, do
they matter subjectively? That is, can the eye perceive the
impact on quality in the presence of fast motion? At what
data rate can the human eye perceive these effects? In
practice, these complex interactions cannot be predicted;
they can only be measured by experiments. That is the
goal of this section.

® Objective measurements of video quality and compression
efficiency

In this section we measure the impact on PSNR of
compressing video at constant bit rates as a function of
motion-estimation search range. We also present an
alternative view: the impact on compressed bit rate when
coding with a constrained search range at constant PSNR.
While we recognize that PSNR is not a perfect measure of
video quality, relative values of PSNR do correlate with
subjective evaluation of quality. This is particularly true
for PSNR values below 38 dB; above 38 dB, video tends
to be of “high” quality, and changes in PSNR are very
difficult to observe.

We focus on a couple of examples from the MPEG-2
test sequences, as well as on the short segments that we
identified in Section 3 as cases that fall outside the search
range we recommend. From the MPEG test set we choose
two sequences, “Carousel” and “Mobile and Calendar,” as
examples of high motion and low motion, respectively.
(We have experimented with the remainder of the
sequences and find that these two are most representative
of these two extremes.) Figures 9 and 10 respectively
show the results of our simulations for the MPEG-2 test
sequences and the selected video segments. The sequences
in Figure 9 are more difficult to compress than those in
Figure 10: We observe that at 4 Mbps the sequences in
Figure 9 result in a PSNR well below 38 dB, whereas
those in Figure 10 result in a PSNR well above 38 dB.

Table 5 Experimental results for m = 3. The 95% and 99% probability horizontal search ranges are compared.

F(MV,) = 0.95 F(MV,) = 0.95 F(MV,) = 0.99 F(MV,) = 0.99
Movie 1 37 25 72 61
Movie 2 46 35 103 61
Movie 3 23 19 51 43
Movie 4 2 11 53 29
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Figure 9

Two views of video quality (PSNR) as a function of search range (M\[, MVy): Search range is changed maintaining an approximately
constant horizontal-to-vertical component ratio. In this figure Mobile & Calendar, Carousel, and Basketball are shown.
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Figure 10

Two views of video quality (PSNR) as afunction of search range (MV, , M\/y): Search range is changed maintaining an approximately constant
horizontal-to-vertical component ratio. In this figure segments 2—4 from the movie sequences are shown.
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The results in Figures 9 and 10 are based on actual
MPEG-2 encoding experiments at search ranges of 4 X 4,
8 X 6,16 X 12,32 X 22, 60 X 42, 100 X 70, 128 X 90,
and 200 X 140. For all of these, the ratio of horizontal
to vertical search range is approximately constant and
proportional to 100/70.

It is interesting to note that movie segments 2—4 are the
“easiest” to compress, despite having the largest apparent
requirement for search range. Even at 2 Mbps, these
segments result in a PSNR greater than 36 dB, compared
to 30 dB or less for the sequences in Figure 9. Figure 10
also shows that constraining the search range to 100 X 70
has an insignificant impact on PSNR or data rate.

Of the sequences in Figure 9, “Segment 1” (Basketball II)
shows the most sensitivity to search range, particularly
at low data rates. The loss of PSNR, due to our
recommendation for constrained search range, is limited
to less than 0.3 dB. In fact, at a 100 X 70 search range,
the loss is 0.1 dB or less. One interesting artifact is seen
in Figure 9(a): It appears that for “Mobile and Calendar”
the coding efficiency or video quality, as measured by
PSNR, actually decreases with increased search range!

We have noticed this effect in almost all other sequences
when the search range becomes larger than the 99%
statistics of the sequence. Careful examination of the data
shows that this effect can be explained by a combination
of our choice for motion-estimation cost function (Section 2)
and the frame/field/intra-coding decision algorithm.

What happens is that with a larger search range, larger
motion vectors are being selected, and more bits are
being used to code the motion-vector differences. These
additional bits, however, are not being sufficiently
compensated for by the corresponding savings in coding
smaller macroblock residual errors. We can think of other
cost and other intra/inter-macroblock decision functions
that could avoid this paradoxical behavior. However,

such functions are generally not of practical value. One
example is an algorithm in which we optimize the global
picture PSNR at a given target bit rate by trying out
various combinations of MPEG-2 coding and motion-
compensation modalities for individual macroblocks.

Such an algorithm, however, is simply impractical. As we
pointed out in Sections 1 and 2, in this paper we are
interested in practical results; thus, we believe that this
paradoxical effect will always be present with practical
implementations of MPEG-2 encoding and motion
compensation. Fortunately the effect is small and, as

far as we can tell from visual experiments, below the
threshold of visibility.

® Subjective measurements of video quality

We performed limited subjective evaluation experiments
using fourteen observers. Included among these fourteen
were five with experience in MPEG video coding. Our
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experiments followed closely the setup and procedures
used in the MPEG committee [12]. A subjective rating
from 0 to 5 was assigned in conformity with the following
quality scale: Bad (0-1), Poor (1-2), Fair (2-3), Good
(3-4), and Excellent (4-5).

The experiment comprised a number of sessions. For
any one session we tested multiple data rates and multiple
search ranges for one video segment and one observer. A
session consisted of presenting the observer with multiple
pairs of sequences, in which each pair consisted of one
reference sequence and one test sequence in random
order. Pairs of sequences were presented twice: the first
time for previewing, followed immediately by a second
time during which observers registered a quality score. All
reference sequences were MPEG coded with a search
range of 200 X 140, and at the same bit rate as the
corresponding test sequence. Three data rates (2, 4, and
6 Mbps) and three search ranges (30 X 22, 60 X 42, and
100 X 70) were chosen for the test sequences; thus, a total
of nine pairs were possible for each video segment. In
addition, we chose to repeat each pair (but in reverse
order of presentation) so as to test the consistency of the
observer’s evaluations. Thus, for each session, eighteen
pairs were presented to observers in a random order. In
addition, and in order to evaluate the effects of coding
impairment at the test data rates (without including
limitations of search range), we also paired the
uncompressed originals against the reference sequences.

We asked the assessors to judge the relative and
absolute quality of the sequences in each pair by
marking a score sheet during the scoring portion of the
presentation (we refer again to [12] for more details). To
help the assessors calibrate their evaluation of quality,
they were first shown the original sequence without
degradation and then the most degraded sequence, prior
to beginning the actual rating experiment. After this,
observers proceeded with the formal testing, in which,
as mentioned above, they did not know the order of
presentation, or, for that matter, the specific coding
parameters for which we were testing.

We calculated the average statistics for all observers.
The results for three representative video segments are
shown in Figure 11; these are the same as “Carousel,”
“Segment 1,” and “Segment 2” in Figures 9 and 10.

The Diff data shown in Figure 11(a) were obtained by
subtracting the reference sequence score from the test
sequence score for each pair and for each observer. This
figure uses asterisks to show the average values of Diff for
all observers; also shown are the one-sigma intervals (68%
confidence intervals) for these statistics. Positive values of
Diff mean that, on the average, observers rated the test
sequences as being of higher quality than the reference
sequences. On the other hand, negative values indicate
that observers were able to perceive impairments in the
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Results of subjective quality experiments: (a) Average of test minus reference scores for fourteen observers (Diff). For each compressed data
rate, three Diff scores are shown. They correspond to three search ranges in the following order: 30 X 22, 60 X 42, and 100 X 70. Overall
Diff averages are shown with asterisks; the average of four selected experts are also shown with circles. (b) Average of absolute subjective
quality score.

sequences of limited search range, as compared to their
corresponding references. We note that differences in Diff
values of the order of 0.1 are statistically insignificant.

In fact, we believe that Diff values in the interval

—0.1 = Diff = 0.1 correspond to cases in which test

and reference sequences were indistinguishable.

For each video segment, we also analyzed separately the
results for a subgroup of four “expert” observers from the
pool of fourteen observers. “Experts” were selected from
the four largest scores resulting from an algorithm in
which, for each test-reference difference (or Diff score),
we counted the number of negative Diff scores and then
subtracted the number of positive Diff scores (zero
differences were excluded from this count). In other
words, this algorithm rewards observers who favored the
reference sequence over the test sequence, and penalizes
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those who favored test over reference. The results for these
“expert” groups are shown with black circles in Figure 11(a).

The results from subjective experiments tend to confirm
some of the trends and observations of the objective
PSNR measurements. However, they also demonstrate
that measuring differences in PSNR is much easier than
“seeing” the effects of those differences in compressed
MPEG video. In fact, the quality of sequences with
extreme and complex motion, such as “Segment 1”
(Basketball), appears to be unaffected by limitations in
search range! Only absolute data rate appears to have an
impact on subjective video quality. Clearly, the human eye
is not capable of discerning small improvements in PSNR
(due to increased search range,) when the video has much
disorganized motion. This conclusion appears to apply to
both expert and nonexpert observers.
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Humans appear to be a little more sensitive to
differences in PSNR when the motion is more organized
and predictable. Such is the case for “Carousel,” in which
statistically significant differences are observed in Figure 11,
particularly for low data rates and expert observers. In
fact, the effects of limited search range, when observable,
are more significant at the lower bit rates. It is important
to note, however, that at the 2-Mbps data rate, none of
the three sequences we tested are of acceptable quality.
As shown in Figure 11(b), all of the sequences were rated
as “poor” when coded at this rate. Thus, the fact that
observers could see that search-range-limited sequences
were somewhat worse than “poor” reference sequences is
of doubtful value. Regardless of data rate, however, we
could not find one example for which expert assessors
could tell the difference between a 100 X 70 and a
200 X 140 search range. We thus believe that this search
range is a conservative value we can use for robust
MPEG-2 encoding of CCIR 601 video.

5. Conclusions

Although our experimental data is strictly relevant only

to our particular experimental setup and to the video
sequences we tested, we believe that our conclusions

have a much wider validity. We have conducted our
experiments by using practical algorithms and intentionally
looking for a range of demanding sequences that we
believe stress the requirements for motion-estimation
search range.

On the basis of the experimental data we conclude that
for CCIR 601, 4:3 aspect ratio, video, and film, a search
range of around 100 X 70 is sufficient for robust motion
estimation. In fact, this may well be a conservative search
range to use. Even when this search range is clearly
exceeded by the 99% statistics of a video segment, we find
that objective differences in video quality are nonexistent
or insignificant, while subjective differences in video
quality are simply not observed. Furthermore, our
experiments show that further constraining the search
range will have an impact primarily on compression at
very low data rates, where the quality of the video is
poor, regardless of search range.

When these results are extrapolated for video with the
same number of samples per picture, but with an aspect
ratio of 16:9 instead of 4:3, the 100 X 70 search range
becomes a more symmetrical 75 X 70. Further
extrapolating from the CCIR 601 16:9 aspect ratio
to the ATSC 16:9, 1920 X 1080 high-definition format,
the required search range for robust MPEG-2
encoding becomes 200 X 158. The latter result
takes into account the different pixel shapes between
CCIR 601 720 X 480 and the ATSC 1920 X 1080
picture format.
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