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This paper presents dynamic sector allocation, 
clustered sector allocation, and background 
garbage ~ h - ~ ~  that are key 
algorithms in solid-state files (SSFs) using 
flash EEPROMs. Dynamic sector allocation 
resembles  a log-structured file system, which 
sequentially writes all data modifications to the 
SSF. Clustered sector allocation is a technique 
for  using  the dynamic sector allocation 
mechanism in an SSF that incorporates a 
NAND flash EEPROM architecture. Dynamic 
sector allocation inevitably accumulates 
obsolete data on the SSF. This “garbage” 
must be  erased in order to secure free space 
on the SSF.  The garbage collection mechanism 
is a  free-space-management method performed 
as  a background process in the SSF. These 
three mechanisms are closely related and work 
collaboratively to enable flash EEPROMs to 
perform well in spite of the serious inherent 
limitations of the devices. We simulated the 
behavior of several SSFs and observed that 
30% of the storage area of the SSFs must be 
used as  a work area in order to ensure an 
acceptably low rate of  memory-erase 
operations. We also demonstrated that the 
lifetime of the SSF is long enough for use in 
most personal computers. Finally, we  have 
developed SSFs using the NAND type of flash 

EEPROMs that incorporate the above 
mechanisms. 

Introduction 
It has recently been predicted that flash EEPROM 
(electrically erasable and  programmable read-only memory) 
technology will be a mainstay of the next generation of 
semiconductor devices [l, 21. This technology is also 
expected to be employed to replace secondary storage 
systems such as hard disk drives (HDDs), rather than 
simply  replacing  ROMs  and EPROMs (erasable 
programmable  ROMs) [l, 31. 

Current flash-memory devices involve some problems 
that must be solved if they are to be used to realize SSFs 
(solid-state jiles, i.e., secondary storage systems that use 
semiconductor memory devices instead of other storage 
media, such as magnetic storage devices). The most 
serious problem  is that flash devices currently on the 
market have write/erase endurance (described in the 
section of flash EEPROM characteristics below) of only 
lo6 cycles at most [4]. Consequently, increasing the 
lifetime of SSFs under this inherent endurance limitation 
is the most important issue for  realizing practical SSFs 
with  flash-memory devices. 

(the issues are different when dealing  with systems used 
in business and industry), and our primary target is to 
develop SSFs that are fully compatible with HDDs for 
PCs.  Typical PC operating systems, such as PC DOS 

In this paper, we deal  with SSFs for personal computers 
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and OS/2@, create system areas on  HDDs that tend to 
become write hot-spots; i.e., the areas are modified very 
frequently. If SSFs using  flash EEPROMs should emulate 
the HDDs as currently designed, write hot-spots would 
reduce the lifetimes of the SSFs severely. In HDDs, 
logical sectors are directly and statically mapped to 
physical sectors on the storage media;  for example, the 
first  logical sector is written on the first  physical sector of 
the HDD. To allow  flash EEPROMs to be used for SSFs, 
we propose the dynamic sector allocation mechanism, in 
which logical sectors are mapped  dynamically to physical 
sectors on the SSFs in such a way as to avoid write- 
hot-spot sectors. With the dynamic sector allocation 
mechanism, the lifetime of the SSF system can be 
increased to a practical level. 

This mechanism resembles a log-structured  file system 
(LFS) [5-101 that writes modifications to disk sequentially 
in a log or journal structure. Since each successive write 
operation (log)  is performed on the next sequential location 
(physically), each write causes the overwritten data to 
become invalid.  Over  time,  all space will be used up,  and 
a “copy-and-compact’’ operation will be necessary for 
acquiring free space. Consequently, for LFSs (and also 
for the dynamic sector allocation mechanism), reuieving 
information  from the log and  managing the free space for 
writing  new data are the key issues that must be resolved. 
The main purposes of LFSs are a) improving write 
performance by replacing a number of small,  random 
write operations with a single,  large sequential write, and 
b) improving the performance of recovery from a “crash” 
by using the characteristics of the log structure. The  main 
purposes of the dynamic sector allocation mechanism,  on 
the other hand, are preventing the creation of write hot- 
spots on the SSFs, and  improving write performance by 
eliminating the erase operation as a direct part of the write 
operation in flash devices. In the dynamic sector allocation 
mechanism, the log structure is concealed from the host 
and  maintained by the SSF itself. To alleviate the 
write/erase restrictions of flash EEPROMs, the log 
structure is intentionally segmented and scrambled among 
the devices. This makes it  impossible to distinguish  new 
data from  old data according to the physical location of the 
data on the SSF. To allow this mechanism ta be adopted 
for SSFs using  NAND  flash EEPROMs, we also propose 
the clustered sector allocation mechanism. , 

Another important key for practical realization of SSFs 
with  flash memory devices is concealing the long erasure 
time of the devices. For this purpose, we propose a 
background garbage  collection mechanism by which 
the system automatically prepares blank sectors in the 
background, so that, under ideal conditions, the erasure 
time can be completely hidden. The background garbage 

532 collection mechanism that we  implemented in the SSF 

system has another feature: It evens out the number 
of erasure operations over all the sectors. 

To analyze the behavior of SSFs using the above 
mechanisms,  we wrote a PC DOS file-system simulator 
and  an SSF simulator. For the simulation, we created a 
technique called the FAT monitor. This is not actually part 
of the control mechanism of the SSFs; it is implemented 
as a device driver on an operating system. However, it 
greatly improves the performance of the SSFs by notifying 
them of the occurrence of erase-file operations on the host. 

The paper is organized as follows. The following 
sections briefly review secondary storage systems using 
semiconductor devices, and the characteristics of flash 
EEPROMs currently on the market. This is followed by a 
discussion of the problems to be solved regarding SSFs 
using  flash EEPROMs and a presentation of the control 
algorithms of the SSFs. In the next part, we give the 
results of simulating SSFs using our control algorithms and 
discuss their implications.  Finally,  we estimate the lifetime 
of SSFs using  flash EEPROMs. 

Secondary  storage  systems  using 
semiconductor  memory  devices 
Secondary storage systems based on semiconductor 
memory technology are divided into two categories: 
those with volatile memory devices, such as SRAMs and 
DRAMs,  and those with  nonvolatile  memory devices, such 
as flash devices. Those using volatile memory devices are 
further classified into two types, depending on whether 
they are protected against power loss by batteries. 
Because of the random accessibility for both read  and 
write operations of storage systems based on volatile 
memory devices, such storage systems are typically used 
for extended main  memory. They can also be used as so- 
called RAM dish. Such storage systems have very simple 
structures, being  organized as flat  memory; however, they 
require special treatment because batteries are needed, 
except when the secondary storage systems are used solely 
as temporary memories. Furthermore, the combination 
of  DRAMs and batteries involves a problem of battery 
durability due to the power consumption of DRAM refresh 
cycles, while the combination of SRAMs and batteries is 
very expensive. 

technology are suitable for replacing HDDs, since they 
need not be protected by batteries. Flash memories are the 
most  promising of the nonvolatile semiconductor devices, 
although they have many practical drawbacks. As 
described in the following section, they have  significant 
lifetime limitations in comparison with  DRAMs  and 
SRAMs; however, with  novel control algorithms that 
overcome the limitations of flash memories, SSFs can 
enjoy the advantages of  flash devices-nonvolatility  and 
lower bit cost than SRAMs and DRAMs. 

Storage systems based on nonvolatile memory 
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Among several products utilizing  flash EEPROMs on 
the market is the Intel@ FlashFileTM subsystem [ll]. This 
emulates HDDs by means of a device driver on the host 
computer and a flash card that consists of a plane array 
of flash EEPROMs. The data on the flash card can be 
accessed through calls to DOS and BIOS. The file system 
deals with the flash card as a large  flash device; i.e., the 
written data are accumulated on the card. Once the card is 
full, the entire contents must be erased explicitly at one 
time. Since the behavior is  different  from that of HDDs, 
the user must  remain aware of it. 

SunDisk@ is a product conforming to JEIDA Ver.4.1  and 
PCMCIAm  Ver.2.1  with interfaces compatible with the 
ATA (AT-attachment) [12]. This type of card  behaves  exactly 
as do HDDs  with  ATA  interfaces.  The  SunDisk  Corporation 
manufactures a unique type of flash device [13,  141 that 
erases and writes cells by 576-byte units. Since the devices 
can erase and write sector by sector (512 bytes of user 
data and 64 bytes of system data), SunDisk can directly 
replace old data with new data. Although the direct 
replacement is somewhat slow because of the requirement 
to erase the sector at the time of the sector write 
operation, it makes the control algorithm  much simpler. 

Flash EEPROM characteristics 
Virtually all current flash EEPROMs can be  classified into 
two main types of devices, NOR and NAND [l-31. (As 
mentioned above, the SunDisk Corporation manufactures 
a unique type of device for its own products.) All types of 
flash EEPROM devices, however, have the following 
common characteristics: 

Write (“program”) operations can change the value of a 
bit  from 1 to 0.’ 
Erase operations are needed to change the value from 
0 to 1. 
Write operations take much  longer  than read operations. 
Erase operations take much  longer  than write operations. 
The number of write/erase operations allowed over the 
lifetime of each memory  cell  is strictly limited. 
The memory  is  divided into blocks, and  all the cells in a 
block are erased at the same time. 

The limited endurance (number of write/erase cycles 
permitted) is related to the reliability of the memory cells 
[15], which are gradually degraded (e.g., the threshold 
voltage, V,, shifts) by write and erase operations. It 
requires more  time to write and erase the cells as the 
number of write/erase operations that have been performed 
increases. With  an excessive number of write/erase 
operations, the cells cannot be written or erased because 

and the erased state as 1. 
1 The standard notation for flash memory cells refers to the programmed state as 0 

of a large V, shift; in the worst case, the cells are 
physically broken down.  As a result of the V, shift, data- 
retention time  is also degraded, and errors occur. Since 
the write and erase times of the cells inevitably change, a 
verification operation during write and erase operations is 
required. If the verification indicates a failure, the write or 
erase operation in progress is repeated a number of times. 
If the operation cannot be completed successfully within a 
specified  number of retries, the cells are considered to 
be “broken.” Dealing  with broken cells is a part of the 
system implementation. (Sections of storage containing 
broken cells are marked as bad sectors, as described 
below.) The system is also responsible for the verification 
process, but some flash EEPROMs provide automatic 
verification  mechanisms.  One should never write or erase 
cells more times than the specified endurance, even if the 
verification process is successful, because this may result 
in read errors after a long  time lapse. 

In current NOR and  NAND devices, the block is  much 
larger than a sector (the unit of data access handled by the 
host system), which is 512 bytes for  most current HDDs 
for  PCs. It is also larger than the unit of data for write 
operations. NOR devices, for example, can write the 
cells byte by byte and can erase them in 64KB (kilobyte) 
blocks. 

Methods for writing and  reading  NOR devices are 
similar to those for accessing SRAMs, since both types 
of device have random-access capability. Along  with this 
capability, a NOR device can overwrite a byte in any 
location “bit by bit” without disturbing other cells on the 
chip.  By virtue of the overwrite capability, it can program 
a byte from the bit pattern 11111110 to 11111100 and then 
to 00111100 and so on. This capability, of course, does 
not  allow the bit pattern to be  changed  from 00000000 to 
00000001, since the erase operation is needed to change 
any bit  from 0 to 1. 

Methods for accessing NAND devices, on the other 
hand, are very different  from those for accessing SRAM 
and NOR devices. In the case of the Toshiba@ 16Mb2 
NAND  EEPROM that we use in our SSF product, a block 
is  organized into 16puges, each of which consists of  264 
bytes. The  page  is the unit  for  reading  and  writing,  while 
the block is the one for erasure. The device  is provided 
with a 264-byte data register through  which the system can 
access the data for read  and write operations. For a read 
operation, a whole page  in the memory  block  is transferred 
to the data register at one time; the system then reads the 
register sequentially. It takes about 25 ps  to transfer a 
page to the register and 80 nsbyte  to read the register 
sequentially. For a write operation, the system first fills the 
data register sequentially and then transfers the data to a 

2 The reader should be careful to  observe the difference between the notations Mb 
(megabit) and MB (megabyte). 533 
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Table 1 Characteristics of flash  EEPROMs. 

Toshiba NAND 
(1 6 Mb) 

Write  (program) 
Access unit 
Access method 
Read access time 

Write time of sector’ 
(512 bytes) 

Erase block size 
Erase time of block’ 
Writelerase 

endurance 

1 - 0  
Page (264 bytes) 

Random  by  page* 
25 ps (array to register) 

80 ns (serial register access) 
0.3 ms 

16 pages (264  bytes each) 
6 ms 

250,000  cycles 

1 + 0  
1 byte 

Random  by  byte 
85 ns (random) 

3 ms 

64 KB 
300 ms 

100,000  cycles 

*Writing  must be sequential by page. 
‘Excluding possible retry operations. 

page, taking 300 ps  on average for the latter operation. 
The architecture allows  pages to be read at random, but 
the location of pages to be written is restricted. The pages 
must be written sequentially within a block, since writing a 
page destroys the data in  all succeeding pages in the block. 
This  limitation raises the need for a special treatment to 
invalidate the data sectors in NAND devices; such a 
treatment is discussed later in this paper. 

Table 1 summarizes the characteristics of currently 
available flash EEPROM devices. 

Considerations regarding SSFs that use 
flash EEPROMs 
Many factors must be taken into account before 
implementing an SSF with the use of flash  EEPROM 
devices. The most important are 

How to extend the lifetime of the SSF, in view of the 
strict limitation  on the number of erase-and-rewrite 
operations possible. 
How to develop an  effective  algorithm for the erase 
operation, so that the erase overhead will be almost 
hidden. 

In order to extend the lifetime of an SSF, emphasis 
must be placed  on  avoiding excessive write operations 
on any memory cells of the SSF. To prevent write/erase 
operations to a specific  cell  from exceeding the limit,  an 
erase count, which  is the count of writelerase operations 
to a cell, must be maintained for all cells in the SSF. 
(Since all cells in a block are erased at the same time, 
the erase count may be maintained only for each block.) 

In the PC DOS file system, the file allocation table and 
directory areas  are overwritten whenever a file is written 
onto a disk. This means that these system areas mght  
reach the maximum  allowable erase count and become 

534 “worn out” within a few hours. Furthermore, the erase 
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counts for blocks in which work files, such as swap data 
files, reside increase rapidly  and soon reach the maximum. 
On the other hand, the erase counts for the blocks in 
which  mostly read-only files, such as PC  DOS system 
files, reside are small  and rarely increased. When the 
erase count of a block reaches its maximum, without 
mechanisms for re-mapping the “worn-out” block to 
a new one, the SSF is  unable to perform further write 
operations, despite its potential for writing to other blocks. 
To avoid this situation and to extend the practical lifetime 
of an SSF, it is necessary to balance the erase count of  all 
physical blocks. 

Another issue concerns performance of write operations. 
If the SSF writes individual sectors to the flash EEPROM 
as PC HDDs write to their storage media, performance 
may  suffer. Consider, for example, an SSF with a 4KB 
block  and a 512-byte sector. Writing one sector onto the 
SSF requires the mechanism to manage the sector in the 
SSF as follows: 1) Copy the block that holds the sector 
into a work area in volatile memory  (e.g.,  an  SRAM) 
located in the SSF unit. 2) Erase the SSF block. 
3 )  Replace the sector in the SRAM with the new data. 
4) Write the block data in the SRAM back to the same 
physical  location as the original block. This procedure 
obliges the SSF  to read and write a 4KB block for every 
sector write operation, which makes the write performance 
poor; moreover, it shortens the life  of the SSF. The 
procedure also creates a problem of protecting the integrity 
of data from an unexpected power failure that might cause 
the loss of the original data of the block on the SRAM 
when the block is  being erased. A practical write algorithm 
should avoid this kind of procedure. From a performance 
point of view, an erase operation should not  be a part 
of the write operation, since it takes from several 
milliseconds to hundreds of milliseconds to erase one 
block. 
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SSF control  mechanism 
To solve the problems mentioned above, both dynamic 
sector allocation and background garbage collection 
mechanisms are used; thus, the limitations of flash 
EEPROMs are reduced, allowing practical implementation 
of an SSF. 

Dynamic sector allocation 
Dynamic sector allocation writes all modifications to the 
SSF in sequential sectors. The method has two main  aims. 
The first is to prolong the lifetime of the SSF by avoiding 
creation of write hot-spots anywhere in the flash 
EEPROM, so that write operations are performed with 
equal frequency throughout the SSF. The second aim 
is to reduce the sector write time by eliminating the 
erase operation as a necessary preliminary to the write 
operation. The key strategies of the method are as follows: 

1. The old data in the physical sector are not erased, 
but another sector, already erased by the background 
garbage collection mechanism, is selected for the write 
operation. 

the physical sector address is stored in  an address 
translation  table (ATT) on volatile memory, such as 
SRAM or DRAM, in the SSF unit. 

2. The relation between the logical sector address and 

The logical sector address (LA) is  managed by the host 
operating system, while the physical sector address (PA) 
indicates the location of the corresponding physical sector 
in the flash EEPROM in the SSF. Since only the AT” 
relates the LA to the PA,  keeping the ATT consistent at 
all times is the most important issue related to the dynamic 
sector allocation mechanism.  One approach is to use a 
battery backup for the SRAMs or DRAMS that store the 
ATT. This requires battery replacement during the SSF 
lifetime,  and  might result in loss of data if the battery were 
improperly replaced or used  up. Another approach is to 
transfer a “snapshot” (an exact copy) of the ATT onto the 
flash EEPROM every few operations. In this case, the 
overhead of the storage time  of the A l T  is not  negligible, 
and the possibility of losing the ATT on account of an 
unexpected power failure still exists. In addition, 
increasing the number of write operations in the SSF 
inevitably reduces the lifetime of the SSF. 

keep the contents of the A l T  during power-off; instead, 
the A’IT is reconstructed during every SSF power-up 
sequence. This approach requires information for 
reconstructing the A’IT to be written on the EEPROM 
devices. Since our SSF is  mainly intended for use  in PC 
environments, we cannot expect the “shut-down” 
operation to take a snapshot or  to save any information 
before system power-off. This means that the information 

Our approach differs  from both of the above. We do not 

DRAM Flash EEPROM 
Address 

translation table 
(Al l3  . ,  

LA 
Reverse 

System  sector 

3 
Block 

1 ............................ I 

I I 
I 

........................... 
Valid 

N 

N +  ‘[-------I \ New 
I ’ \ I svstem  sector I 

Old  blank sector  pointer 
New blank sector  pointer 

f EEPROM. 
1 

Dynamic  sector  allocation  mechanism for NOR type of flash 

for reconstructing the AlT should always be maintained 
on the SSFs in preparation for power-off. Since power-on 
and power-off are frequent operations in PC environments, 
the information must be very robust. The dynamic sectm 
allocation and garbage collection mechanisms work 
together to maintain the information. The following 
sections give the details of our approach. 

the characteristics of the flash EEPROMs used. First we 
describe an implementation using a NOR  flash  EEPROM 
architecture, then one with a NAND flash  memory. 

Implementation of dynamic sector allocation depends on 

Control  algorithm  using NOR flash EEPROMs 
It  is comparatively easy to implement dynamic sector 
allocation  when the SSF uses a NOR type of flash 
EEPROM, since the NOR type has the following 
advantages over the NAND  type: 

1. Capability for byte-by-byte random read and write 

2. No restriction on the order in  which memory cells are 
access. 

written. 

Figure 1 illustrates the principles of the dynamic sector 
allocation mechanism for a NOR architecture. It shows a 

! 
! 
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Table 2 Sector status flags. 

Sector 
status 

Flag 

Blank 
Being  written 
Valid 
Invalid 

111 
110 
100 
000 

DRAM used to store the A m ,  and blocks of NOR devices 
in the SSF, two of which are shown to the right side. The 
logical sector address is the index into the table, while the 
table value is the corresponding PA. The first sector in 
every block is reserved as a jystem sector, and  is  followed 
by data sectors. The status of a data sector may  be blank, 
valid, or invalid. Blank indicates that the sector has been 
erased and can be written to.  Valid indicates that the 
sector holds data that can be used. Invalid indicates that 
the sector holds old data (garbage), The upper black in the 
figure is shown to be full of data, some valid and some 
invalid. In the lower block, the first three data sectors are 
used, and the remaining sectors, still unused, are blank. 
The physical address at which the contiguous group of 
blank sectors begins is pointed to by the controller in 
the SSF. This address is referred to as the blank sector 
pointer. In Figure 1, the blank sector pointer points to the 
fourth data sector in the lower block. The system sector 
holds block-management data such as the erase count, 
described above, and the bad-sector location map of the 
block, which indicates the locations of sectors in the block 
that are unusable owing to cell failure, if any. Every data 
sector consists of three components: user data, flag, and 
reverse pointer. User data are raw data written by the host 
system.  The flag shows the sector status (blank, valid, or 
invalid). The reverse pointer gives the LA of the user data 
in the sector; for example, in Figure 1, logical sector 2 is 
stored in the third  physical data sector of the upper block 
and contains reverse pointer = 2. (Note that the reverse 
pointer in the first data sector of that block also equals 2, 
but it contains invalid data.) 

Some of the advantages of using the NOR type of 
flash EEPROM rather than the NAND type lie  in  flag 
management. Overwrite operations onto any type of flash 
EEPROM are ordinarily prohibited; however, an overwrite 
operation to a byte of a NOR device is possible if no  bit in 
the byte is changed horn 0 to 1. Thanks to characteristics 
1 and 2 given above and the overwrite capability, the 
status of a sector is easily modified by consecutively 
altering its flag from 111 to 110 to 100 to 000, as shown in 
Table 2. The status being  written shown in the table means 
that the sector is neither blank, valid, nor  invalid. This 
status is provided to allow resumption of a suspended 

536 write operation in the event of unexpected power failure. 

When a sector with this status is  found  during the power- 
up sequence of the SSF, the controller should notify the 
host system of the existence of a write failure and 
invalidate the sector by  changing the flag to invalid. 

The read and write operations are as follows: 

Example of a read operation: To read sector 2 (LA = 2), 

1. Get the PA  from entry 2 of the ATT (PA = the third 

2. Getthedatafieldoftheindicatedphysicalsector. 
data sector in the upper block of Figure 1). 

Lhmple of a write  Operation: To write sector N (LA = N), 

1. Find the physical sector pointed to by the blank sector 
pointer (the sector designated S,), and change the flag 
value in S, from 111 to 110, to indicate that S, is  being 
written. 

2. Write the new data from the host  in the data field  of S,. 
3. Write the number N in the reverse-pointer area of S,, 

4. Access the ATT to find the PA  of the sector where the 
to indicate that S, holds the data for LA = N .  

old data for LA = N are located (the fifth data sector in 
the upper block in Figure l), and change the flag  of that 
sector from 100 to 000 to indicate that it  is  invalid. 

5. Change the flag  of S, to 100 to indicate that S, holds 

6. Write the address of S, in the Nth entry of the ATT, 
to indicate that S, is the physical sector containing 
the new data for  logical sector N. 

7. Change the blank sector pointer to the next physical 
sector. If that sector is  marked as a bad sector in the 
system sector of the block, move the pointer once 
more. If there are no  more blank sectors in the current 
block, the blank sector pointer should be set to point to 
the first data sector of the blank block that is  always 
maintained in the SSF by the background garbage 
collection mechanism. 

valid data. 

Since the ATT on the DRAM is lost when the power is 
turned off, the table  must be reconstructed during every 
power-up sequence of the SSF by scanning both the 
reverse pointers and the flag fields of  all the data sectors. 
The reconstruction process finds all the sectors with  valid 
flags  and places their PAS into the ATT at the entries 
indicated by the reverse pointers. This process may 
take about half a second for small SSFs, but it varies 
significantly,  depending  upon the flash devices used, the 
SSF capacity, and the implementation (architecture) of the 
SSF. The size of the ATT also depends on the capacity 
of the SSF. In the case of a 32MB SSF,  there are 64K 
sectors. To translate 64K sector addresses, an ATT 
of 64K entries with 16 bits per entry is required, which 
equals 128 KB. 
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Control algorithm using NAND jlash EEPROMs 
In the Toshiba 16Mb  NAND  flash EEPROM, 264 bytes 
(a page) of data are transferred between the data register 
and the memory array at a time, and access is allowed  only 
on a page basis, not byte by byte. Furthermore, the order 
of writing the pages in a block  is strictly sequential, from 
the lowest page address to the highest. These restrictions 
imply that sector invalidation must be achieved in some 
way other than the simple  flag-overwriting operation 
employed  for dynamic sector allocation on NOR devices. 
Here, the clustered sector allocation mechanism,  which  is 
very similar to the dynamic sector allocation mechanism, 
is  employed for recognizing valid sectors. (Note that the 
objective of sector invalidation  is to provide a means 
for distinguishing a valid sector from others during the 
construction of the ATT if more than one physical sector 
contains the same reverse pointer value.) With the 
clustered sector allocation mechanism, overwriting a 
sector is not necessary for  invalidating  old data. 

Clustered sector allocation 
We define a new structure called a cluster. Each cluster 
consists of a small  number of blocks (e.g.,  2-16), which is 
the same for all clusters. The SSF controller erases all the 
blocks contained in a cluster at one time. In that sense, the 
cluster is a logical erasure unit, behaving in the same way 
as the block of Figure 1. The  number of blocks in a cluster 
is one of the key factors affecting the efficiency of garbage 
collection and the lifetime of the SSF, as we discuss later. 

We can use Figure 1 for an explanation of the clustered 
sector allocation mechanism,  noting that this mechanism 
does not require the flag area shown in the figure  and that 
a block in Figure 1 represents a cluster, since a block  and 
a cluster behave identically. A physical sector on the SSF 
consists of two pages of the  NAND  flash EEPROM-528 
bytes. Of these, 512 bytes contain user data, and the rest 
are used for sector management, such as reverse pointer 
and error correction code (not shown in Figure 1). As  in 
the NOR type of flash EEPROM, the erase counts and 
bad-sector location maps reside in the system sectors. A 
unique cluster sequence number is also held  in the system 
sector. This number is used by the garbage collection 
mechanism as follows. The clusters are initially  numbered 
from 1 to Bn (the total number of clusters in the SSF) and 
are used in sequential order. When a cluster is  made  blank 
by the garbage collection mechanism, its former cluster 
sequence number  is  no  longer used, and it is assigned a 
number one larger than S,,, the largest sequence number 
currently used in the system. In each cluster, the data 
sectors  are written in order, from the lowest address 
number to the highest  (from the top data sector to the 
bottom in Figure 1). 

sector with LA = N. The SSF controller writes both the 
Now, suppose that the host requests the SSF to write a 

Cluster 1 

Cluster 
sequence 
number 41 

Number 
of garbage 
sectors  3 

Invalid 

Invalid 

Cluster  2 

23 

2 

Valid 

Valid 

Cluster 3 Cluster 4 

35  58 = S,, 

5 0 

sector 
Valid copy pointer 

Invalid 

i Erase 
Cluster  sequence number 59 = S,, + 1 
Number of garbage  sectors 

Blank i cluster 

' Garbage collection  mechanism. 

sector data and N, the value of the reverse pointer, onto 
the physical sector to which the blank sector pointer 
points, and changes the PA value of the Nth LA entry 
in the ATT to point to the new  physical sector. In the 
procedure, sector invalidation  is  performed  only  implicitly, 
since the cluster sequence number  and the fact that 
physical sectors are written in order within the cluster 
imply what data sectors are valid. When  more than one 
sector is found to contain the same LA value, the sector in 
the cluster with the largest sequence number is the valid 
sector; if more than one sector with the LA value is in that 
cluster, the sector with the largest PA  is the valid one. 
During the power-on sequence, the ATT reconstruction 
process is carried out by scanning through  all the sectors 
in succession, from top to bottom, in  all the clusters, in 
order of the cluster sequence numbers. To speed up the 
reconstruction process, the clusters are sorted, in advance, 
in order of the cluster sequence numbers. 

In the clustered sector allocation mechanism,  managing 
the cluster sequence number  is important. Figure 2 shows 
how the number  is  handled when the cluster is made blank 537 
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by the background garbage collection mechanism. Let the 
maximum sequence number of  all the clusters be S,,, 
(58 in Figure 2) ,  whose initial value is Bn.  If cluster 3, 
whose cluster sequence number  is 35, should be erased, 
the cluster is renumbered as Sma + 1 (59) at the end of the 
erase operation. As a result, cluster 3 will have the new 
maximum sequence number  and  will be the last of the 
blank clusters to be used for writing. This numbering 
algorithm helps prevent any cluster from  being written 
excessively. (The discussion of the background garbage 
collection mechanism in the following subsection indicates 
how clusters that otherwise would rarely be written are 
written more frequently.) 

Space must be provided in the system sectors to store 
the cluster sequence numbers. The  maximum value ever 
attained by the numbers is proportional to the ratio of the 
total capacity of the SSF to the cluster size. For example, 
if we choose a cluster of 32 Kl3 for a 320MB SSF, the 
SSF will contain lo4 clusters. If the endurance of the flash 
EEPROMs is lo6 cycles (the largest value currently given 
by manufacturers) and  all clusters are written an  equal 
number of times, the cluster sequence number  may have 
a maximum value of 

lo6 x lo4 = 10'" < 234. 

Thus, 34 bits is sufficient to hold the cluster sequence 
number. The size of a cluster may be set to a few 
kilobytes, depending  upon the block size of the NAND- 
type flash EEPROMs. It is  not practical, however, to 
choose a small size for a cluster, because the space 
occupied by the system sector in every cluster is hardly 
negligible. 

mechanism does not  need  explicit sector invalidation; 
therefore, the flag area is unnecessary. 2 )  The clustered 
sector allocation  mechanism provides a way to prevent any 
cluster from  being written excessively. 3) The clustered 
sector allocation  mechanism requires a sorting operation 
at the power-up sequence, which  may take hundreds of 
milliseconds. 

In  summary: 1) The clustered sector allocation 

Background garbage  collection 
Dynamic sector allocation inevitably accumulates 
unnecessary data on the SSF, which  must be erased 
in order to provide free space for the SSF. Garbage 
collection is a free-space-management mechanism 
performed as a background process in the SSF. The 
overall performance of the SSF is very sensitive to when 
and how the free space (blank sectors) is maintained. Free- 
space management  is one of the most  difficult issues in log- 
structured-type systems. Careless garbage collection (the 
term cleaning is  used in most LFS implementations) makes 
data very fragmented. On HDDs, data fragmentation 

538 causes significant performance degradation, since HDDs 

lack  random access capabilities. With dynamic sector 
allocation  and  garbage collection mechanisms on the SSF, 
data fragmentation is not a significant concern, because of 
the random sector-access capability of flash EEPROMs. 
On the other hand, the mechanism for the SSF must take 
account of the limited write/erase endurance of flash 
EEPROMs. Without this limitation, garbage collection 
could  be  performed  in the background as often as desired 
with no need to worry about the erase-count management. 
Three principles of garbage  collection are emphasized: 

1. Start the garbage collection as late as possible in order 

2 .  Prepare enough blank sectors to accommodate data 

3 .  Keep the number of erase operations as even as 

to improve the efficiency of garbage collection. 

immediately when requested by the host. 

possible over all the clusters. 

Here, we use the term cluster to denote the unit that is 
erased at one time, which may consist of only one block. 
When a cluster is erased by the garbage collection process, 
in preparation for being used again, the ejicienq of the 
garbage  collection (Egc)  for that cluster is  defined as the 
fraction of garbage sectors in the cluster. (When all the 
data sectors in the cluster are garbage, the efficiency  is 1.) 
The lower the efficiency, the higher the number of valid 
sectors that must  be copied onto other clusters before the 
erasure, as we describe below. As the number of copied 
sectors increases, the lifetime of the SSF decreases. For 
the sole purpose of improving the Egc, garbage collection 
should begin as late as possible  while  satisfying the other 
principles. 

The second principle  is important from the point of 
view of SSF performance. Usually, garbage collection is 
conducted in the background, to conceal its operation 
time.  Only  when the number of data sectors to be written 
from the host exceeds the number of blank sectors left in 
the SSF must the host  wait  for garbage collection. The 
collection takes more than a hundred milliseconds, since 
the erasure operation for a block in  flash EEPROMs 
requires several tens of milliseconds. Consequently, should 
the situation occur frequently, the operation of writing to 
the.SSF will be much slower than in the case of HDDs. To 
avoid this situation, garbage  collection should be repeated 
as frequently and promptly as possible.  (We discuss this 
contradiction below.) 

collection mechanisms for SSFs, inasmuch as this 
mechanism solely determines which cluster should be 
selected for erasure. In order to write and erase clusters 
with  equal frequency throughout the SSF, there must be 
a means to erase a cluster that is  full of valid data (e.g., 
a cluster containing a system program). 

The  third  principle  is also an important issue for  garbage 
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Clearly, the requirements of the first  two principles are 
contradictory. We  have observed that for an SSF using 
16Mb NAND  flash EEPROMs, keeping between 16 KB 
and 64 KB of blank sectors in the SSF is  sufficient to 
satisfy the second principle. This value, however, will vary 
significantly, depending on the balance between the write 
and erase performances of the flash EEPROMs. When the 
erase operation is  much slower than the write operation, a 
larger  number  of  blank sectors must be provided  in order to 
keep up with the data writing.  In  accordance  with  the  above 
considerations,  garbage  collection is practiced as follows: 

1. Begin garbage  collection when 
a cluster  is full of garbage, or 
the number of blank sectors falls below  a 
specified threshold  value, t , .  (As discussed in the 
following section,  the  value oft, is  selected 
experimentally to  keep write-performance 
degradation negligible.) 

2. Select a cluster  for  erasure,  as follows: 
A. If the difference between  the maximum  and 

minimum erase  counts in the  SSF  surpasses a 
specified threshold  value, te (chosen 
experimentally),  select the  cluster  with  the 
minimum erase  count. 

B. Otherwise, if one  cluster  has  the maximum 
number of garbage sectors, select it. 

C. Otherwise, more than one  cluster  has  the 
maximum  number of garbage sectors; from  them, 
select the  one with the minimum erase  count. 

3. Copy  the first valid sector, if any, in the  selected 
cluster,  into  the  sector  to which the blank sector 
pointer  points. Update  the blank sector pointer  and 
ATT appropriately.  Repeat until all the valid sectors 
have been  copied. 

4. Erase  the  selected cluster. 
5. Initialize the cluster.  This operation includes  writing 

the updated erase  count and  rewriting the  bad-sector 
location map in the  system  sector. When the 
clustered  sector allocation  mechanism is utilized, the 
appropriate  cluster  sequence number  should  also  be 
written during  this  operation. 

(Other mechanisms, not discussed here because of our 
wish to avoid presenting minute details, prevent failures 
due to power loss during the garbage collection process.) 

Figure 2 shows the progress of the process. The 
assumptions are that Smm = 58, that only cluster 4 is 
blank, and that the threshold number of blank sectors to 
be reserved in the SSF, t,, is the same as the number of 
sectors in a cluster (6 in Figure 2). Once a sector has 
been written into cluster 4, the number of blank sectors 
is unable to satisfy t , ,  so garbage collection starts. If 
criterion A of step 2 above is  not satisfied, cluster 3 is 

selected for erasure by criterion B. Cluster 3 is erased 
after the valid sectors (only one in Figure 2) in the cluster 
are moved into the sector pointed to by the blank sector 
pointer (the first data sector in cluster 4). When the 
erasure operation of cluster 3 is finished, Smax is 
incremented to 59, which  is the new cluster sequence 
number  assigned to cluster 3. 

Because the number of blank sectors is  changed only 
by a write operation, the decision concerning whether 
or not  to start garbage collection is  made  only after write 
operations. Once the garbage collection operation has been 
started, it  is carried out with the lowest priority in the 
SSF; that is,  it  may  be suspended so that write-sector 
requests by the host can be  fulfilled  first.  Only when all 
blank sectors have been used up as a result of write-sector 
requests from the host does the garbage collection 
operation move into the foreground and become a top- 
priority process, at which  time the host  must wait until the 
garbage collection in the SSF is  finished before completing 
the write-sector requests. 

SSF simulation 
We wrote an SSF simulator to enable us to analyze the 
SSF performance. Because our primary target  is to 
develop an SSF that is compatible with HDDs in the PC 
DOS environment, we also wrote a PC DOS simulator 
of the behavior of the PC  DOS  file system. The PC DOS 
file system maintains afile allocation  table (FAT) and a 
directory. Each time a file is written, both the FAT and the 
directory are examined  and overwritten. Actually, there 
are two copies of the FAT in the file system, both of 
which are updated at almost the same  time.  The  PC DOS 
simulator simulates this mechanism; that is,. three sectors 
(one for the directory and two for the FATS) are always 
updated when a file is written or erased. One  major 
difference between this simulator and PC DOS  is the 
method of allocating sectors on the SSF in logical address 
space. When  writing a large  file,  PC DOS initially uses 
large contiguous areas on the disk; consequently, areas 
with  small numbers of free sectors tend to be left unused. 
The PC  DOS simulator, on the other hand, does not try to 
find contiguous areas, even for large  files.  When  allocating 
space for a file, it always scans the FAT from the 
beginning  and allocates the first free sector it finds (if any) 
to the file. This scan continues until all the sectors needed 
for the file have been successfully allocated. The  difference 
between the two allocation algorithms in logical address 
space will never cause any difference as to where the data 
are written physically  on the SSF, since the SSF writes all 
data onto flash  EEPROM sequentially, in exactly the same 
way as a log-structured file system does. 

The SSF simulator uses every mechanism described in 
this paper, namely, dynamic sector allocation, background 
garbage collection, and clustered sector allocation. The 534 
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f Operation of the SSF simulator. RND = a  random  number  between 
0 and 1; [X..Y] = a random  integer  from X to Y. 

threshold value for the necessary number of blank sectors, 
t , ,  is k e d  at 64 (32 KB), a value chosen experimentally. 
If the number of blank sectors goes below t , ,  garbage 
collection is automatically triggered. As explained in the 
previous section, the smaller the threshold, the greater 
the write-performance degradation caused by foreground 
garbage collection. Since time was not simulated, we  did 
not measure write-performance degradation; nevertheless, 
write-performance degradation due to foreground garbage 
collection was observed to be almost  negligible for the 
value of 32 KB chosen for the threshold. Throughout our 
studies, the efficiency of garbage collection, the main 
subject of the simulation, was not very sensitive to the 
threshold, unless we selected too large a value (e.g., the 
same number of sectors  as data sectors). During the 
simulation, we calculated the value of Egc, 

number of garbage sectors in a cluster 
E =  

gc number of data sectors in a cluster 

number of sectors copied 

number of data sectors in a cluster ' 
= I -  

540 and the average ejiciency of garbage collection (q), 

k = l  

where Eg,(k)  = efficiency of the kth garbage collection 
and G = number of garbage collections performed in the 
simulation.  The value of is one of the key parameters 
of both the performance and the lifetime of the SSF, since 
a low value of q indicates that a large  number of sectors 
have to be copied. The copy operation increases the 
write/erase count of the flash EEPROMs and requires a 
great deal of time,  which increases the probability that 
foreground garbage collection will  be needed. 

Simulation parameters 
The parameters used  in the simulations are as follows: 
redundant area, average file size, average usage,  and 
cluster size. In order for a dynamic sector allocation 
mechanism to be implemented, some space must  be 
reserved for blank and  garbage sectors. For this purpose, 
the SSF keeps a "redundant" area hidden  from the host 
system; for example, a lOMB SSF might actually have an 
llMB capacity, with 1 MB used as the redundant area. 
One concern is  how  much redundancy should be provided. 
We denote the average file size FS (in  number of sectors) 
and select file sizes at random  from one sector to 2 X FS 
sectors to be written onto the SSF. Average usage 
(denoted 0 is the fraction of the user space (this excludes 
the redundant area and system sectors) occupied by valid 
data. For a specified value of 0, the PC DOS simulator 
causes the valid sectors to occupy user space in the 
range  from 0 - 5% to u + 5 % .  (For example, when 
u = 70%, the fraction of valid sectors in user space 
is restricted to the range 65%-75% by the simulator.) 
As noted previously, the clustered sector allocation 
mechanism  is  implemented in the simulator. Cluster sizes 
of 16 KB, 32 KB, and 64 KB were chosen. For all the 
simulations, combinations of file-write  and  file-erase 
operations were simulated until a total of lo6 file creations 
and erasures had been performed. The flowchart of the 
simulator is shown in Figure 3. 

FAT monitor 
The SSF fully emulates an  HDD but neither manages  nor 
is aware of the logical structure of file-system components 
such as the FAT and the directory. PC  DOS erases files 
simply by updating the FAT and the directory to indicate 
that the area previously allocated is  now free. If the SSF is 
ignorant of the fact that a file has been erased, the physical 
sectors that were occupied by the file  will still  have the 
valid attribute and be copied into a new cluster during 
garbage collection. Obviously, this copy operation wastes 
both time  and SSF lifetime. To avoid this situation, we 
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developed a mechanism  called the FAT monitor and 
employed it for this simulation. This mechanism, used in 
a device-driver layer of PC DOS, monitors modifications 
of the FAT.  When the FAT is  modified  by  an erase 
command, the FAT monitor instructs the SSF to mark the 
appropriate data sectors invalid, since they are logically 
erased. (For NAND architectures, the FAT monitor marks 
the deleted sectors invalid in the ATT entry. Since the 
garbage collection mechanism refers to the table entry for 
every copy operation, the deleted sectors are not copied.) 
The drawback of the mechanism  is that it is  unable to 
handle the PC  DOS undelete command, which recovers 
"deleted"  files under the assumption that the file itself  is 
left on the recording medium.  (Being ignorant of file 
erasure is an appropriate strategy for SSF hardware. 
Since it may be used for many types of  file systems, SSF 
hardware should not  be aware of the specific file system.) 

simulation results 
Figure 4 shows the effect of the FAT monitor mechanism. 
In all the experiments run, the values of q when the FAT 
monitor is used exceed the values when it  is not used. 
When the two lines for 0 = 90% are compared, it 
is observed that the larger the n, the greater the 
improvement brought about by the FAT monitor. This 
conclusion is reasonable, since when larger files are 
erased, the FAT monitor marks more sectors in one 
cluster as garbage,  which improves the efficiency of 
garbage collection. The remaining  simulation results were 
calculated with the FAT monitor mechanism present. 

Figure 4 also shows the effect of 0 on the value of q. 
Under low  usage conditions, there is  much free space, 
which allows a large  number of garbage sectors to stay in 
the SSF, so the SSF controller can delay starting garbage 
collection. The longer  garbage collection is delayed, the 
greater the accumulation of garbage sectors in the clusters. 
Thus, when the usage  is  low  enough,  high values of % are 
expected, even without the FAT monitor mechanism.  The 
result observed concerning varying n is that larger  files 
give  higher values of q. If a file is smaller than a cluster, 
it generally occupies only a part of a cluster (but can 
overlap two clusters). When the file is erased, even with 
the FAT monitor  mechanism,  only part of the cluster is 
invalidated as garbage. Since  files are written and erased 
randomly in this simulation, the invalidated area is so 
fragmented that it is  difficult for the garbage collection 
process to find a cluster full of garbage. Thus, the value 
of % decreases. 

Figure 5 shows the impact of the redundant area on 
the value of C. In these simulation runs, the size of the 
SSF (10 MB) excludes the redundant area. The results 
show that 5 increases as the usage decreases and the 
redundant area increases. As expected, when 0 is 50% or 
less, even a small redundant area results in an  ideal value 
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of q. This  is reasonable, since at least half  of the user 
space can be used to hold  garbage, just like a redundant 
area. Consider the results for a 1MB redundant area. 
When 0 is over 90%, the garbage collection mechanism 
hardly ever finds a cluster whose fraction of garbage 
sectors is over 50%. When 0 = SO%, % is around 70%. 
This  implies that if Egc = 70% is acceptable, around 8 MB 
out of the lOMB SSF (excluding the 1MB redundant area) 
can be used on average, even when writing and erasing 
small  files (E = 25 sectors). 

Figure 6 shows that when the cluster size decreases, the 
value of Egc increases. This is obvious, since the same 
number of garbage sectors is a larger fraction of a smaller 
cluster. The selection of the cluster size is a trade-off 
between the efficiency of garbage collection and the system 
area overhead. As we  mentioned in a previous section, 
there is a system sector in every cluster. The  smaller the 
cluster, the larger the fraction of space occupied by the 
system sectors. In addition, smaller cluster size results in a 
larger  number of clusters on the SSF, which requires more 
time  for sorting their sequence numbers during power-up. 
We observed that 64 sectors per cluster seems to be a 
good value for an SSF with a few tens of megabytes. 

The next question concerns the significance of a fixed 
amount of redundancy for various SSF capacities. Figure 7 
shows the contributions of 1 MB of redundancy to SSFs 
with 10 MB, 20  MB, and 30 MB of total storage (excluding 
the redundant area). The smaller the SSF capacity, the 
higher the value of G. This implies that the work  area 
ratio, defined as the number of free sectors (blank and 
invalid)  divided by the total number of data sectors, affects 
the value of q. We note that 

Work area ratio = 
number of free sectors 

total number of data sectors in the SSF 

- ( l  - o N u s e r  + Nredun - 
Nuser + Nredun 

7 

where Nuser = number of data sectors in user space and 
Nredun = number of redundant data sectors. 

Figure 8 shows % as a function of the work area ratio. 
The points in the figure were acquired by varying both the 
redundant area and the average usage  for  fixed values of 
the average file size. For example, the points plotted by 
solid  triangles represent all the points plotted in Figure 5 
(average file size = 25 sectors). Although the points were 
obtained by varying both the redundant area and the 
average usage, the group of points corresponding to the 
same average file size forms a smooth curve. Thus, the 
results show that the parameters of redundant area and 
average usage have similar  effects on the value of q. 
Figure 8 illustrates the case of a lOMB SSF; the data 
obtained for 20MB and 30MB SSFs  are almost exactly the 
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same. These results indicate that the value of the work 
area ratio is the only significant parameter for the SSF 
with  regard to area usage (the others are cluster size and 
SSF capacity). From Figure 8, therefore, we  can estimate 
the work area ratio necessary to provide a specified % 
value. For example, if the average file size = 25 sectors, 
in order to keep the value of over 70%, about 30% 
of all data  sectors in the SSF must be free sectors. As 
mentioned above, the parameters of redundant area and 
average usage are considered equivalent; how to maintain 
a work area ratio of 30% is  an SSF design option. One 
way is to provide redundancy; for example, an SSF with 
a total capacity of  10 MB might be designated as a 7MB 
SSF, so that 3 MB can be reserved and concealed from 
the user. With this approach, the value of % can be kept 
over 70%, even when the average usage is nearly 100%; 
however, this approach has the drawback that a user can 
never store more than 7 MB of data, even temporarily. 
Another approach is to force the user to restrict the usage. 
In this case, a 10MB SSF might  be  designated as a 9MB 
SSF, and the user advised to keep data under 7 MB, on 
the average. This approach is risky, since a user can store 
data up to the point of causing a degradation of to less 
than 30%; however, by keeping the average usage around 
7 MB, the user is awarded an extra 2 MB for temporary 
storage. 

SSF lifetime  estimation 
The dynamic sector allocation and  garbage collection 
mechanisms even out the erase counts of the sectors; thus, 
the SSF fails when almost all  of its sectors have been 
written a number of times equal to their write/erase limits. 
In theory, we can write a number of sectors equal to 

Endurance of a sector 

X number of data sectors in the SSF 

before the SSF is exhausted. In practice, we cannot write 
that many sectors, since the write count also increases as 
a result of the copy operation during  garbage collection. 
If a cluster consists of N, data sectors, an average of Nc 
(1 - q) sectors are copied by the garbage collection 
mechanism to a new cluster, so only Nc sectors 
are available as user data sectors. Taking this into 
consideration, we see that the maximum  number of sectors 
that the user can write on the SSF during its lifetime  is 

Slifetime = endurance of a sector X (Nus,, + Nredun) X Egc . 
If garbage collection is hidden in the background, the 
minimum  lifetime of the SSF can be calculated by 
determining how  long  it  would take to write Slifetime sectors 
at a speed corresponding to the minimum write time  of 
flash EEPROM (in other words, to write data at maximum 
speed). In practice, however, this notion of  minimum 

- 
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lifetime does not  make  much sense, since it assumes that a 
user writes data onto the SSF all the time. To calculate a 
practical lifetime,  we assume that a user writes 100 MB 
per day, which  is quite a large  number for personal use. 
For our estimation, we make the following  additional 
assumptions: The total capacity of the SSF, which includes 
redundant area, is 10 MB; the endurance of the flash 
EEPROM is 2.5 X lo5 write/erase cycles per block 
(the value given  by Toshiba for the device used in our 
product); 100 MB (2 X lo5 sectors) a day are written; and 
the average efficiency of garbage collection (q) is 70%. 

10 MB/512 bytes = 2 X lo4 sectors, so 

Slifetime = 2.5 x lo5 x 2 x lo4 x 0.7 = 3.5 x lo9 sectors. 

Writing  on Slifetime sectors will require 

3.5 X lo9 sectorsR X lo5 sectors per day = 17500 days 

According to these assumptions, Nus,, + Nredun = 

> 47 years. 

As mentioned  in a previous section, the efficiency of 
garbage collection is highly dependent on the usage of the 
SSF. Even if the efficiency were downgraded to SO%, the 
lifetime  would still be about 34 years-quite  sufficient  for 
most users. (One possible mode of operation when the 
limit is reached is  for the SSF to become write-protected 
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and  return  to a status of “write fail” when  an  attempt is 
made  to  write  data.) 

Summary 
We  have  discussed  the mechanisms of dynamic  sector 
allocation and background  garbage  collection. In addition, 
we  have  demonstrated,  by simulation, that solid-state 
files using flash EEPROMs  have  acceptable lifetimes for 
personal applications. The garbage  collection  mechanism 
takes  account of many restrictions of flash EEPROMs in 
managing the  free  space  on  the SSF. These mechanisms 
are fundamental  and applicable to SSF implementations 
using either  NOR or NAND flash EEPROMs;  however, a 
special mechanism, called clustered  sector allocation,  is 
required  when  dynamic  sector allocation  is  applied to  an 
SSF using the  NAND  type of flash EEPROM. SSFs using 
these  mechanisms  possess  the following  characteristics: 

The write operation is fast  because  data  are  written  onto 
blank sectors  that are erased beforehand. 
The SSF does  not  need  battery  protection against power 
loss. This  improves  system reliability and  data integrity. 
The  erase  operation is hidden  from  the  host  system. 
Consequently,  the  host  need  not  be  concerned with the 
device  characteristics of the flash EEPROMs. 
About 30% of the  total  sectors of the SSF are  needed  for 
a work  area,  to  keep  the efficiency of garbage  collection 
over 70%. 

algorithm  in the garbage  collection  mechanism ensures 
that all the  sectors in the SSF are  written  to  the limit of 
their  endurance. 

The SSF lifetime  is acceptable  because a leveling 

We have  developed SSFs jointly with Toshiba 
Corporation.  The SSF products (PCMCIA  Intelligent Flash 
Memory) use 16Mb NAND flash EEPROMs  and conform 
to  JEIDA Ver.4.1 and PCMCIA Ver.2.1 guidelines. The 
SSFs utilize  all the  mechanisms  presented in the  paper. 
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