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Design of a
solid-state file
using flash
EEPROM

by H. Niijima

This paper presents dynamic sector allocation,
clustered sector allocation, and background
garbage collection—mechanisms that are key
algorithms in solid-state files (SSFs) using
flash EEPROMSs. Dynamic sector allocation
resembles a log-structured file system, which
sequentially writes all data modifications to the
SSF. Clustered sector allocation is a technique
for using the dynamic sector allocation
mechanism in an SSF that incorporates a
NAND flash EEPROM architecture. Dynamic
sector allocation inevitably accumulates
obsolete data on the SSF. This “garbage”
must be erased in order to secure free space
on the SSF. The garbage collection mechanism
is a free-space-management method performed
as a background process in the SSF. These
three mechanisms are closely related and work
collaboratively to enable flash EEPROMSs to
perform well in spite of the serious inherent
limitations of the devices. We simulated the
behavior of several SSFs and observed that
30% of the storage area of the SSFs must be
used as a work area in order to ensure an
acceptably low rate of memory-erase
operations. We also demonstrated that the
lifetime of the SSF is long enough for use in
most personal computers. Finally, we have
developed SSFs using the NAND type of flash

EEPROMs that incorporate the above
mechanisms.

Introduction

It has recently been predicted that flash EEPROM
(electrically erasable and programmable read-only memory)
technology will be a mainstay of the next generation of
semiconductor devices [1, 2]. This technology is also
expected to be employed to replace secondary storage
systems such as hard disk drives (HDDs), rather than
simply replacing ROMs and EPROMs (erasable
programmable ROMs) [1, 3].

Current flash-memory devices involve some problems
that must be solved if they are to be used to realize SSFs
(solid-state files, i.e., secondary storage systems that use
semiconductor memory devices instead of other storage
media, such as magnetic storage devices). The most
serious problem is that flash devices currently on the
market have write/erase endurance (described in the
section of flash EEPROM characteristics below) of only
10° cycles at most [4]. Consequently, increasing the
lifetime of SSFs under this inherent endurance limitation
is the most important issue for realizing practical SSFs
with flash-memory devices.

In this paper, we deal with SSFs for personal computers
(the issues are different when dealing with systems used
in business and industry), and our primary target is to
develop SSFs that are fully compatible with HDDs for
PCs. Typical PC operating systems, such as PC DOS
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and 0S/2®, create system areas on HDDs that tend to
become write hot-spots; i.c., the areas are modified very
frequently. If SSFs using flash EEPROMs should emulate
the HDDs as currently designed, write hot-spots would
reduce the lifetimes of the SSFs severely. In HDDs,
logical sectors are directly and statically mapped to
physical sectors on the storage media; for example, the
first logical sector is written on the first physical sector of
the HDD. To allow flash EEPROMs to be used for SSFs,
we propose the dynamic sector allocation mechanism, in
which logical sectors are mapped dynamically to physical
sectors on the SSFs in such a way as to avoid write-
hot-spot sectors. With the dynamic sector allocation
mechanism, the lifetime of the SSF system can be
increased to a practical level.

This mechanism resembles a log-structured file system
(LFS) [5-10] that writes modifications to disk sequentially
in a log or journal structure. Since each successive write
operation (log) is performed on the next sequential location
(physically), each write causes the overwritten data to
become invalid. Over time, all space will be used up, and
a ““‘copy-and-compact” operation will be necessary for
acquiring free space. Consequently, for LFSs (and also
for the dynamic sector allocation mechanism), retrieving
information from the log and managing the free space for
writing new data are the key issues that must be resolved.
The main purposes of LFSs are a) improving write
performance by replacing a number of small, random
write operations with a single, large sequential write, and
b) improving the performance of recovery from a “crash”
by using the characteristics of the log structure. The main
purposes of the dynamic sector allocation mechanism, on
the other hand, are preventing the creation of write hot-
spots on the SSFs, and improving write performance by
eliminating the erase operation as a direct part of the write
operation in flash devices. In the dynamic sector allocation
mechanism, the log structure is concealed from the host
and maintained by the SSF itself. To alleviate the
write/erase restrictions of flash EEPROMSs, the log
structure is intentionally segmented and scrambled among
the devices. This makes it impossible to distinguish new
data from old data according to the physical location of the
data on the SSF. To allow this mechanism to be adopted
for SSFs using NAND flash EEPROMs, we also propose
the clustered sector allocation mechanism.

Another important key for practical realization of SSFs
with flash memory devices is concealing the long erasure
time of the devices. For this purpose, we propose a
background garbage collection mechanism by which
the system automatically prepares blank sectors in the
background, so that, under ideal conditions, the erasure
time can be completely hidden. The background garbage
collection mechanism that we implemented in the SSF
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system has another feature: It evens out the number
of erasure operations over all the sectors.

To analyze the behavior of SSFs using the above
mechanisms, we wrote a PC DOS file-system simulator
and an SSF simulator. For the simulation, we created a
technique called the FAT monitor. This is not actually part
of the control mechanism of the SSFs; it is implemented
as a device driver on an operating system. However, it
greatly improves the performance of the SSFs by notifying
them of the occurrence of erase-file operations on the host.

The paper is organized as follows. The following
sections briefly review secondary storage systems using
semiconductor devices, and the characteristics of flash
EEPROMs currently on the market. This is followed by a
discussion of the problems to be solved regarding SSFs
using flash EEPROMs and a presentation of the control
algorithms of the SSFs. In the next part, we give the
results of simulating SSFs using our control algorithms and
discuss their implications. Finally, we estimate the lifetime
of SSFs using flash EEPROMs.

Secondary storage systems using
semiconductor memory devices

Secondary storage systems based on semiconductor
memory technology are divided into two categories:

those with volatile memory devices, such as SRAMs and
DRAMs, and those with nonvolatile memory devices, such
as flash devices. Those using volatile memory devices are
further classified into two types, depending on whether
they are protected against power loss by batteries.
Because of the random accessibility for both read and
write operations of storage systems based on volatile
memory devices, such storage systems are typically used
for extended main memory. They can also be used as so-
called RAM disks. Such storage systems have very simple
structures, being organized as flat memory; however, they
require special treatment because batteries are needed,
except when the secondary storage systems are used solely
as temporary memories. Furthermore, the combination

of DRAMs and batteries involves a problem of battery
durability due to the power consumption of DRAM refresh
cycles, while the combination of SRAMs and batteries is
Very expensive.

Storage systems based on nonvolatile memory
technology are suitable for replacing HDDs, since they
need not be protected by batteries. Flash memories are the
most promising of the nonvolatile semiconductor devices,
although they have many practical drawbacks. As
described in the following section, they have significant
lifetime limitations in comparison with DRAMSs and
SRAMs; however, with novel control algorithms that
overcome the limitations of flash memories, SSFs can
enjoy the advantages of flash devices—nonvolatility and
lower bit cost than SRAMs and DRAMs.
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Among several products utilizing flash EEPROMs on
the market is the Intel® FlashFile™ subsystem [11]. This
emulates HDDs by means of a device driver on the host
computer and a flash card that consists of a plane array
of flash EEPROMs. The data on the flash card can be
accessed through calls to DOS and BIOS. The file system
deals with the flash card as a large flash device; i.e., the
written data are accumulated on the card. Once the card is
full, the entire contents must be erased explicitly at one
time. Since the behavior is different from that of HDDs,
the user must remain aware of it.

SunDisk® is a product conforming to JEIDA Ver.4.1 and
PCMCIA™ Ver.2.1 with interfaces compatible with the
ATA (AT-attachment) [12]. This type of card behaves exactly
as do HDDs with ATA interfaces. The SunDisk Corporation
manufactures a unique type of flash device [13, 14] that
erases and writes cells by 576-byte units. Since the devices
can erase and write sector by sector (512 bytes of user
data and 64 bytes of system data), SunDisk can directly
replace old data with new data. Although the direct
replacement is somewhat slow because of the requirement
to erase the sector at the time of the sector write
operation, it makes the control algorithm much simpler.

Flash EEPROM characteristics

Virtually all current flash EEPROMs can be classified into
two main types of devices, NOR and NAND [1-3]. (As
mentioned above, the SunDisk Corporation manufactures
a unique type of device for its own products.) All types of
flash EEPROM devices, however, have the following
common characteristics:

* Write (““program’’) operations can change the value of a
bit from 1 to 0.'

¢ Erase operations are needed to change the value from
0to 1.

e Write operations take much longer than read operations.

e Erase operations take much longer than write operations.

¢ The number of write/erase operations allowed over the
lifetime of each memory cell is strictly limited.

¢ The memory is divided into blocks, and all the cells in a
block are erased at the same time.

The limited endurance (number of write/erase cycles
permitted) is related to the reliability of the memory cells
[15], which are gradually degraded (e.g., the threshold
voltage, V_, shifts) by write and erase operations. It
requires more time to write and erase the cells as the
number of write/erase operations that have been performed
increases. With an excessive number of write/erase
operations, the cells cannot be written or erased because

! The standard notation for flash memory cells refers to the programmed state as 0
and the erased state as 1.
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of a large V. shift; in the worst case, the cells are
physically broken down. As a result of the V7 shift, data-
retention time is also degraded, and errors occur. Since
the write and erase times of the cells inevitably change, a
verification operation during write and erase operations is
required. If the verification indicates a failure, the write or
erase operation in progress is repeated a number of times.
If the operation cannot be completed successfully within a
specified number of retries, the cells are considered to

be “broken.”” Dealing with broken cells is a part of the
system implementation. (Sections of storage containing
broken cells are marked as bad sectors, as described
below.) The system is also responsible for the verification
process, but some flash EEPROMs provide automatic
verification mechanisms. One should never write or erase
cells more times than the specified endurance, even if the
verification process is successful, because this may result
in read errors after a long time lapse.

In current NOR and NAND devices, the block is much
larger than a sector (the unit of data access handled by the
host system), which is 512 bytes for most current HDDs
for PCs. It is also larger than the unit of data for write
operations. NOR devices, for example, can write the
cells byte by byte and can erase them in 64KB (kilobyte)
blocks.

Methods for writing and reading NOR devices are
similar to those for accessing SRAMs, since both types
of device have random-access capability. Along with this
capability, a NOR device can overwrite a byte in any
location “‘bit by bit” without disturbing other cells on the
chip. By virtue of the overwrite capability, it can program
a byte from the bit pattern 11111110 to 11111100 and then
to 00111100 and so on. This capability, of course, does
not allow the bit pattern to be changed from 00000000 to
00000001, since the erase operation is needed to change
any bit from 0 to 1.

Methods for accessing NAND devices, on the other
hand, are very different from those for accessing SRAM
and NOR devices. In the case of the Toshiba® 16Mb’
NAND EEPROM that we use in our SSF product, a block
is organized into 16 pages, each of which consists of 264
bytes. The page is the unit for reading and writing, while
the block is the one for erasure. The device is provided
with a 264-byte data register through which the system can
access the data for read and write operations. For a read
operation, a whole page in the memory block is transferred
to the data register at one time; the system then reads the
register sequentially. It takes about 25 us to transfer a
page to the register and 80 ns/byte to read the register
sequentially. For a write operation, the system first fills the
data register sequentially and then transfers the data to a

2 The reader should be careful to observe the difference between the notations Mb
(megabit) and MB (megabyte).
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Table 1 Characteristics of flash EEPROMs.

Toshiba NAND Intel NOR
(16 Mb) (8 Mb)
Write (program) 1-0 1—-0
Access unit Page (264 bytes) 1 byte
Access method Random by page* Random by byte

Read access time

25 ps (array to register)

85 ns (random)

80 ns (serial register access)

Write time of sector’ 0.3 ms 3ms
(512 bytes)

Erase block size 16 pages (264 bytes each) 64 KB

Erase time of block’ ms 300 ms

Write/erase
endurance

250,000 cycles

100,000 cycles

*Writing must be sequential by page.
"Excluding possible retry operations.

page, taking 300 us on average for the latter operation.
The architecture allows pages to be read at random, but
the location of pages to be written is restricted. The pages
must be written sequentially within a block, since writing a
page destroys the data in all succeeding pages in the block.
This limitation raises the need for a special treatment to
invalidate the data sectors in NAND devices; such a
treatment is discussed later in this paper.

Table 1 summarizes the characteristics of currently
available flash EEPROM devices.

Considerations regarding SSFs that use
flash EEPROMs

Many factors must be taken into account before
implementing an SSF with the use of flash EEPROM
devices. The most important are

e How to extend the lifetime of the SSF, in view of the
strict limitation on the number of erase-and-rewrite
operations possible.

e How to develop an effective algorithm for the erase
operation, so that the erase overhead will be almost
hidden.

In order to extend the lifetime of an SSF, emphasis
must be placed on avoiding excessive write operations
on any memory cells of the SSF. To prevent write/erase
operations to a specific cell from exceeding the limit, an
erase count, which is the count of write/erase operations
to a cell, must be maintained for all cells in the SSF.
(Since all cells in a block are erased at the same time,
the erase count may be maintained only for each block.)

In the PC DOS file system, the file allocation table and
directory areas are overwritten whenever a file is written
onto a disk. This means that these system areas might
reach the maximum allowable erase count and become
‘““worn out’ within a few hours. Furthermore, the erase
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counts for blocks in which work files, such as swap data
files, reside increase rapidly and soon reach the maximum.
On the other hand, the erase counts for the blocks in
which mostly read-only files, such as PC DOS system
files, reside are small and rarely increased. When the
erase count of a block reaches its maximum, without
mechanisms for re-mapping the ‘“worn-out” block to

a new one, the SSF is unable to perform further write
operations, despite its potential for writing to other blocks.
To avoid this situation and to extend the practical lifetime
of an SSF, it is necessary to balance the erase count of all
physical blocks.

Another issue concerns performance of write operations.
If the SSF writes individual sectors to the flash EEPROM
as PC HDDs write to their storage media, performance
may suffer. Consider, for example, an SSF with a 4KB
block and a 512-byte sector. Writing one sector onto the
SSF requires the mechanism to manage the sector in the
SSF as follows: 1) Copy the block that holds the sector
into a work area in volatile memory (e.g., an SRAM)
located in the SSF unit. 2) Erase the SSF block.

3) Replace the sector in the SRAM with the new data.

4) Write the block data in the SRAM back to the same
physical location as the original block. This procedure
obliges the SSF to read and write a 4KB block for every
sector write operation, which makes the write performance
poor; moreover, it shortens the life of the SSF. The
procedure also creates a problem of protecting the integrity
of data from an unexpected power failure that might cause
the loss of the original data of the block on the SRAM
when the block is being erased. A practical write algorithm
should avoid this kind of procedure. From a performance
point of view, an erase operation should not be a part

of the write operation, since it takes from several
milliseconds to hundreds of milliseconds to erase one
block.
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SSF control mechanism

To solve the problems mentioned above, both dynamic
sector allocation and background garbage collection
mechanisms are used; thus, the limitations of flash
EEPROMs are reduced, allowing practical implementation
of an SSF.

® Dynamic sector allocation

Dynamic sector allocation writes all modifications to the
SSF in sequential sectors. The method has two main aims.
The first is to prolong the lifetime of the SSF by avoiding
creation of write hot-spots anywhere in the flash
EEPROM, so that write operations are performed with
equal frequency throughout the SSF. The second aim

is to reduce the sector write time by eliminating the

erase operation as a necessary preliminary to the write
operation. The key strategies of the method are as follows:

1. The old data in the physical sector are not erased,
but another sector, already erased by the background
garbage collection mechanism, is selected for the write
operation.

2. The relation between the logical sector address and
the physical sector address is stored in an address
translation table (ATT) on volatile memory, such as
SRAM or DRAM, in the SSF unit.

The logical sector address (LA) is managed by the host
operating system, while the physical sector address (PA)
indicates the location of the corresponding physical sector
in the flash EEPROM in the SSF. Since only the ATT
relates the LA to the PA, keeping the ATT consistent at
all times is the most important issue related to the dynamic
sector allocation mechanism. One approach is to use a
battery backup for the SRAMs or DRAMs that store the
ATT. This requires battery replacement during the SSF
lifetime, and might result in loss of data if the battery were
improperly replaced or used up. Another approach is to
transfer a ““snapshot’ (an exact copy) of the ATT onto the
flash EEPROM every few operations. In this case, the
overhead of the storage time of the ATT is not negligible,
and the possibility of losing the ATT on account of an
unexpected power failure still exists. In addition,
increasing the number of write operations in the SSF
inevitably reduces the lifetime of the SSF.

Our approach differs from both of the above. We do not
keep the contents of the ATT during power-off; instead,
the ATT is reconstructed during every SSF power-up
sequence. This approach requires information for
reconstructing the ATT to be written on the EEPROM
devices. Since our SSF is mainly intended for use in PC
environments, we cannot expect the ‘‘shut-down”
operation to take a snapshot or to save any information
before system power-off. This means that the information
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DRAM

Flash EEPROM
Address
translatiop table
(ATT)
Reverse
LA PA Data Flag pointer
1 System sector
2 Invalid 2
3 \ valid | 91
Valid 2 | Block
) Invalid | 18
Old .| Valid N
Valid { 35
N
N+1 New
System sector
Valid 41
Valid | 59
Valid 7 | Block
Old blank sector pointer —! Blank Sy
New blank sector pointer — Blank
Blank

Dynamic sector allocation mechanism for NOR type of flash
EEPROM.

for reconstructing the ATT should always be maintained
on the SSFs in preparation for power-off. Since power-on
and power-off are frequent operations in PC environments,
the information must be very robust. The dynamic sector
allocation and garbage collection mechanisms work
together to maintain the information. The following
sections give the details of our approach.

Implementation of dynamic sector allocation depends on
the characteristics of the flash EEPROMs used. First we
describe an implementation using a NOR flash EEPROM
architecture, then one with a NAND flash memory.

Control algorithm using NOR flash EEPROMs

It is comparatively easy to implement dynamic sector
allocation when the SSF uses a NOR type of flash
EEPROM, since the NOR type has the following
advantages over the NAND type:

1. Capability for byte-by-byte random read and write
access.

2. No restriction on the order in which memory cells are
written.

Figure 1 illustrates the principles of the dynamic sector
allocation mechanism for a NOR architecture. It shows a
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Table 2

Sector status flags.

Sector Flag
status
Blank 111
Being written 110
Valid 100
Invalid 000

DRAM used to store the ATT, and blocks of NOR devices
in the SSF, two of which are shown to the right side. The
logical sector address is the index into the table, while the
table value is the corresponding PA. The first sector in
every block is reserved as a system sector, and is followed
by data sectors. The status of a data sector may be blank,
valid, or invalid. Blank indicates that the sector has been
erased and can be written to. Valid indicates that the
sector holds data that can be used. Invalid indicates that
the sector holds old data (garbage). The upper block in the
figure is shown to be full of data, some valid and some
invalid. In the lower block, the first three data sectors are
used, and the remaining sectors, still unused, are blank.
The physical address at which the contiguous group of
blank sectors begins is pointed to by the controller in
the SSF. This address is referred to as the blank sector
pointer. In Figure 1, the blank sector pointer points to the
fourth data sector in the lower block. The system sector
holds block-management data such as the erase count,
described above, and the bad-sector location map of the
block, which indicates the locations of sectors in the block
that are unusable owing to cell failure, if any. Every data
sector consists of three components: user data, flag, and
reverse pointer. User data are raw data written by the host
system. The flag shows the sector status (blank, valid, or
invalid). The reverse pointer gives the LA of the user data
in the sector; for example, in Figure 1, logical sector 2 is
stored in the third physical data sector of the upper block
and contains reverse pointer = 2. (Note that the reverse
pointer in the first data sector of that block also equals 2,
but it contains invalid data.)

Some of the advantages of using the NOR type of
flash EEPROM rather than the NAND type lie in flag
management. Overwrite operations onto any type of flash
EEPROM are ordinarily prohibited; however, an overwrite
operation to a byte of a NOR device is possible if no bit in
the byte is changed from 0 to 1. Thanks to characteristics
1 and 2 given above and the overwrite capability, the
status of a sector is easily modified by consecutively
altering its flag from 111 to 110 to 100 to 000, as shown in
Table 2. The status being written shown in the table means
that the sector is neither blank, valid, nor invalid. This
status is provided to allow resumption of a suspended
write operation in the event of unexpected power failure.
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When a sector with this status is found during the power-
up sequence of the SSF, the controller should notify the
host system of the existence of a write failure and
invalidate the sector by changing the flag to invalid.

The read and write operations are as follows:

Example of a read operation: To read sector 2 (LA = 2),

1. Get the PA from entry 2 of the ATT (PA = the third
data sector in the upper block of Figure 1).

2. Getthedatafieldoftheindicatedphysicalsector.

Example of a write operation:  To write sector N (LA = N),

1. Find the physical sector pointed to by the blank sector
pointer (the sector designated §,), and change the flag
value in S, from 111 to 110, to indicate that S, is being
written.

2. Write the new data from the host in the data field of S, .

3. Write the number N in the reverse-pointer area of S,
to indicate that S, holds the data for LA = N.

4. Access the ATT to find the PA of the sector where the
old data for LA = N are located (the fifth data sector in
the upper block in Figure 1), and change the flag of that
sector from 100 to 000 to indicate that it is invalid.

5. Change the flag of S, to 100 to indicate that S, holds
valid data.

6. Write the address of S, in the Nth entry of the ATT,
to indicate that S, is the physical sector containing
the new data for logical sector N.

7. Change the blank sector pointer to the next physical
sector. If that sector is marked as a bad sector in the
system sector of the block, move the pointer once
more. If there are no more blank sectors in the current
block, the blank sector pointer should be set to point to
the first data sector of the blank block that is always
maintained in the SSF by the background garbage
collection mechanism.

Since the ATT on the DRAM is lost when the power is
turned off, the table must be reconstructed during every
power-up sequence of the SSF by scanning both the
reverse pointers and the flag fields of all the data sectors.
The reconstruction process finds all the sectors with valid
flags and places their PAs into the ATT at the entries
indicated by the reverse pointers. This process may
take about half a second for small SSFs, but it varies
significantly, depending upon the flash devices used, the
SSF capacity, and the implementation (architecture) of the
SSF. The size of the ATT also depends on the capacity
of the SSF. In the case of a 32MB SSF, there are 64K
sectors. To translate 64K sector addresses, an ATT
of 64K entries with 16 bits per entry is required, which
equals 128 KB.
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Control algorithm using NAND flash EEPROMs

In the Toshiba 16Mb NAND flash EEPROM, 264 bytes
(a page) of data are transferred between the data register
and the memory array at a time, and access is allowed only
on a page basis, not byte by byte. Furthermore, the order
of writing the pages in a block is strictly sequential, from
the lowest page address to the highest. These restrictions
imply that sector invalidation must be achieved in some
way other than the simple flag-overwriting operation
employed for dynamic sector allocation on NOR devices.
Here, the clustered sector allocation mechanism, which is
very similar to the dynamic sector allocation mechanism,
is employed for recognizing valid sectors. (Note that the
objective of sector invalidation is to provide a means

for distinguishing a valid sector from others during the
construction of the ATT if more than one physical sector
contains the same reverse pointer value.) With the
clustered sector allocation mechanism, overwriting a
sector is not necessary for invalidating old data.

Clustered sector allocation
We define a new structure called a cluster. Each cluster
consists of a small number of blocks (e.g., 2-16), which is
the same for all clusters. The SSF controller erases all the
blocks contained in a cluster at one time. In that sense, the
cluster is a logical erasure unit, behaving in the same way
as the block of Figure 1. The number of blocks in a cluster
is one of the key factors affecting the efficiency of garbage
collection and the lifetime of the SSF, as we discuss later.

We can use Figure 1 for an explanation of the clustered
sector allocation mechanism, noting that this mechanism
does not require the flag area shown in the figure and that
a block in Figure 1 represents a cluster, since a block and
a cluster behave identically. A physical sector on the SSF
consists of two pages of the NAND flash EEPROM—528
bytes. Of these, 512 bytes contain user data, and the rest
are used for sector management, such as reverse pointer
and error correction code (not shown in Figure 1). As in
the NOR type of flash EEPROM, the erase counts and
bad-sector location maps reside in the system sectors. A
unique cluster sequence number is also held in the system
sector. This number is used by the garbage collection
mechanism as follows. The clusters are initially numbered
from 1 to B, (the total number of clusters in the SSF) and
are used in sequential order. When a cluster is made blank
by the garbage collection mechanism, its former cluster
sequence number is no longer used, and it is assigned a
number one larger than S__, the largest sequence number
currently used in the system. In each cluster, the data
sectors are written in order, from the lowest address
number to the highest (from the top data sector to the
bottom in Figure 1).

Now, suppose that the host requests the SSF to write a
sector with LA = N. The SSF controller writes both the
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Cluster 1 Cluster 2 Cluster 3 Cluster 4
Cluster
sequence
number 41 23 35 58 =38
max
Number
of garbage
sectors 3 2 5 0
Valid Valid Invalid
Invalid Invalid Invalid -~
. R . Blank
Invalid Valid Invalid sector
Valid Valid Valid |Copy pointer
Tnvalid Valid Invalid
Valid Invalid Invalid
l Erase

59 =385 +1

Cluster sequence number
max

Number of garbage sectors 0

Blank cluster

Garbage collection mechanism.

sector data and N, the value of the reverse pointer, onto
the physical sector to which the blank sector pointer
points, and changes the PA value of the Nth LA entry
in the ATT to point to the new physical sector. In the
procedure, sector invalidation is performed only implicitly,
since the cluster sequence number and the fact that
physical sectors are written in order within the cluster
imply what data sectors are valid. When more than one
sector is found to contain the same LA value, the sector in
the cluster with the largest sequence number is the valid
sector; if more than one sector with the LA value is in that
cluster, the sector with the largest PA is the valid one.
During the power-on sequence, the ATT reconstruction
process is carried out by scanning through all the sectors
in succession, from top to bottom, in all the clusters, in
order of the cluster sequence numbers. To speed up the
reconstruction process, the clusters are sorted, in advance,
in order of the cluster sequence numbers.

In the clustered sector allocation mechanism, managing
the cluster sequence number is important. Figure 2 shows
how the number is handled when the cluster is made blank
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by the background garbage collection mechanism. Let the
maximum sequence number of all the clusters be S

(58 in Figure 2), whose initial value is B_. If cluster 3,
whose cluster sequence number is 35, should be erased,
the cluster is renumbered as S, + 1 (59) at the end of the
erase operation. As a result, cluster 3 will have the new
maximum sequence number and will be the last of the
blank clusters to be used for writing. This numbering
algorithm helps prevent any cluster from being written
excessively. (The discussion of the background garbage
collection mechanism in the following subsection indicates
how clusters that otherwise would rarely be written are
written more frequently.)

Space must be provided in the system sectors to store
the cluster sequence numbers. The maximum value ever
attained by the numbers is proportional to the ratio of the
total capacity of the SSF to the cluster size. For example,
if we choose a cluster of 32 KB for a 320MB SSF, the
SSF will contain 10* clusters. If the endurance of the flash
EEPROMs is 10° cycles (the largest value currently given
by manufacturers) and all clusters are written an equal
number of times, the cluster sequence number may have
a maximum value of

10° x 10* = 10" < 2*.

Thus, 34 bits is sufficient to hold the cluster sequence
number. The size of a cluster may be set to a few
kilobytes, depending upon the block size of the NAND-
type flash EEPROMs. It is not practical, however, to
choose a small size for a cluster, because the space
occupied by the system sector in every cluster is hardly
negligible.

In summary: 1) The clustered sector allocation
mechanism does not need explicit sector invalidation;
therefore, the flag area is unnecessary. 2) The clustered
sector allocation mechanism provides a way to prevent any
cluster from being written excessively. 3) The clustered
sector allocation mechanism requires a sorting operation
at the power-up sequence, which may take hundreds of
milliseconds.

® Background garbage collection

Dynamic sector allocation inevitably accumulates
unnecessary data on the SSF, which must be erased

in order to provide free space for the SSF. Garbage
collection is a free-space-management mechanism
performed as a background process in the SSF. The
overall performance of the SSF is very sensitive to when
and how the free space (blank sectors) is maintained. Free-
space management is one of the most difficult issues in log-
structured-type systems. Careless garbage collection (the
term cleaning is used in most LFS implementations) makes
data very fragmented. On HDDs, data fragmentation
causes significant performance degradation, since HDDs
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lack random access capabilities. With dynamic sector
allocation and garbage collection mechanisms on the SSF,
data fragmentation is not a significant concern, because of
the random sector-access capability of flash EEPROMs.
On the other hand, the mechanism for the SSF must take
account of the limited write/erase endurance of flash
EEPROMs. Without this limitation, garbage collection
could be performed in the background as often as desired
with no need to worry about the erase-count management.
Three principles of garbage collection are emphasized:

1. Start the garbage collection as late as possible in order
to improve the efficiency of garbage collection.

2. Prepare enough blank sectors to accommodate data
immediately when requested by the host.

3. Keep the number of erase operations as even as
possible over all the clusters.

Here, we use the term cluster to denote the unit that is
erased at one time, which may consist of only one block.
When a cluster is erased by the garbage collection process,
in preparation for being used again, the efficiency of the
garbage collection (E ) for that cluster is defined as the
fraction of garbage sectors in the cluster. (When all the
data sectors in the cluster are garbage, the efficiency is 1.)
The lower the efficiency, the higher the number of valid
sectors that must be copied onto other clusters before the
erasure, as we describe below. As the number of copied
sectors increases, the lifetime of the SSF decreases. For
the sole purpose of improving the E, garbage collection
should begin as late as possible while satisfying the other
principles.

The second principle is important from the point of
view of SSF performance. Usually, garbage collection is
conducted in the background, to conceal its operation
time. Only when the number of data sectors to be written
from the host exceeds the number of blank sectors left in
the SSF must the host wait for garbage collection. The
collection takes more than a hundred milliseconds, since
the erasure operation for a block in flash EEPROMs
requires several tens of milliseconds. Consequently, should
the situation occur frequently, the operation of writing to
the SSF will be much slower than in the case of HDDs. To
avoid this situation, garbage collection should be repeated
as frequently and promptly as possible. (We discuss this
contradiction below.)

The third principle is also an important issue for garbage
collection mechanisms for SSFs, inasmuch as this
mechanism solely determines which cluster should be
selected for erasure. In order to write and erase clusters
with equal frequency throughout the SSF, there must be
a means to erase a cluster that is full of valid data (e.g.,

a cluster containing a system program).
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Clearly, the requirements of the first two principles are
contradictory. We have observed that for an SSF using
16Mb NAND flash EEPROMs, keeping between 16 KB
and 64 KB of blank sectors in the SSF is sufficient to
satisfy the second principle. This value, however, will vary
significantly, depending on the balance between the write
and erase performances of the flash EEPROMs. When the
erase operation is much slower than the write operation, a
larger number of blank sectors must be provided in order to
keep up with the data writing. In accordance with the above
considerations, garbage collection is practiced as follows:

1. Begin garbage collection when
a cluster is full of garbage, or
the number of blank sectors falls below a
specified threshold value, ¢,. (As discussed in the
following section, the value of #, is selected
experimentally to keep write-performance
degradation negligible.)

2. Select a cluster for erasure, as follows:

A. If the difference between the maximum and
minimum erase counts in the SSF surpasses a
specified threshold value, ¢, (chosen
experimentally), select the cluster with the
minimum erase count.

B. Otherwise, if one cluster has the maximum
number of garbage sectors, select it.

C. Otherwise, more than one cluster has the
maximum number of garbage sectors; from them,
select the one with the minimum erase count.

3. Copy the first valid sector, if any, in the selected
cluster, into the sector to which the blank sector
pointer points. Update the blank sector pointer and
ATT appropriately. Repeat until all the valid sectors
have been copied.

4. Erase the selected cluster.

5. Initialize the cluster. This operation includes writing
the updated erase count and rewriting the bad-sector
location map in the system sector. When the
clustered sector allocation mechanism is utilized, the
appropriate cluster sequence number should also be
written during this operation.

(Other mechanisms, not discussed here because of our
wish to avoid presenting minute details, prevent failures
due to power loss during the garbage collection process.)
Figure 2 shows the progress of the process. The
assumptions are that §__ = 58, that only cluster 4 is
blank, and that the threshold number of blank sectors to
be reserved in the SSF, ¢,, is the same as the number of
sectors in a cluster (6 in Figure 2). Once a sector has
been written into cluster 4, the number of blank sectors
is unable to satisfy ¢,, so garbage collection starts. If
criterion A of step 2 above is not satisfied, cluster 3 is
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selected for erasure by criterion B. Cluster 3 is erased
after the valid sectors (only one in Figure 2) in the cluster
are moved into the sector pointed to by the blank sector
pointer (the first data sector in cluster 4). When the
erasure operation of cluster 3 is finished, §__ is
incremented to 59, which is the new cluster sequence
number assigned to cluster 3.

Because the number of blank sectors is changed only
by a write operation, the decision concerning whether
or not to start garbage collection is made only after write
operations. Once the garbage collection operation has been
started, it is carried out with the lowest priority in the
SSF; that is, it may be suspended so that write-sector
requests by the host can be fulfilled first. Only when all
blank sectors have been used up as a result of write-sector
requests from the host does the garbage collection
operation move into the foreground and become a top-
priority process, at which time the host must wait until the
garbage collection in the SSF is finished before completing
the write-sector requests.

® SSF simulation
We wrote an SSF simulator to enable us to analyze the
SSF performance. Because our primary target is to
develop an SSF that is compatible with HDDs in the PC
DOS environment, we also wrote a PC DOS simulator
of the behavior of the PC DOS file system. The PC DOS
file system maintains a file allocation table (FAT) and a
directory. Each time a file is written, both the FAT and the
directory are examined and overwritten. Actually, there
are two copies of the FAT in the file system, both of
which are updated at almost the same time. The PC DOS
simulator simulates this mechanism; that is, three sectors
(one for the directory and two for the FATSs) are always
updated when a file is written or erased. One major
difference between this simulator and PC DOS is the }
method of allocating sectors on the SSF in logical address :
space. When writing a large file, PC DOS initially uses
large contiguous areas on the disk; consequently, areas
with small numbers of free sectors tend to be left unused.
The PC DOS simulator, on the other hand, does not try to
find contiguous areas, even for large files. When allocating
space for a file, it always scans the FAT from the
beginning and allocates the first free sector it finds (if any) |
to the file. This scan continues until all the sectors needed
for the file have been successfully allocated. The difference
between the two allocation algorithms in logical address
space will never cause any difference as to where the data
are written physically on the SSF, since the SSF writes all
data onto flash EEPROM sequentially, in exactly the same
way as a log-structured file system does.

The SSF simulator uses every mechanism described in 1
this paper, namely, dynamic sector allocation, background |
garbage collection, and clustered sector allocation. The 53?
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Yes Usage < U ~ 5%
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Usage > U + 5%
No
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: ‘w
Create a file of
size [1..2FS]

Erase a file

-

Operation of the SSF simulator. RND = a random number between
0 and 1; [X..Y] = a random integer from X to Y.

threshold value for the necessary number of blank sectors,
t,, is fixed at 64 (32 KB), a value chosen experimentally.
If the number of blank sectors goes below ¢, , garbage
collection is automatically triggered. As explained in the
previous section, the smaller the threshold, the greater
the write-performance degradation caused by foreground
garbage collection. Since time was not simulated, we did
not measure write-performance degradation; nevertheless,
write-performance degradation due to foreground garbage
collection was observed to be almost negligible for the
value of 32 KB chosen for the threshold. Throughout our
studies, the efficiency of garbage collection, the main
subject of the simulation, was not very sensitive to the
threshold, unless we selected too large a value (e.g., the
same number of sectors as data sectors). During the
simulation, we calculated the value of £ o

number of garbage sectors in a cluster

® " number of data sectors in a cluster

number of sectors copied

number of data sectors in a cluster ’

and the average efficiency of garbage collection (E ),
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1 G
Eo=g 2 B,
k=1

where E_ (k) = efficiency of the kth garbage collection
and G = number of garbage collections performed in the
simulation. The value of E_gc is one of the key parameters
of both the performance and the lifetime of the SSF, since
a low value of E_gc indicates that a large number of sectors
have to be copied. The copy operation increases the
write/erase count of the flash EEPROMs and requires a
great deal of time, which increases the probability that
foreground garbage collection will be needed.

® Simulation parameters

The parameters used in the simulations are as follows:
redundant area, average file size, average usage, and
cluster size. In order for a dynamic sector allocation
mechanism to be implemented, some space must be
reserved for blank and garbage sectors. For this purpose,
the SSF keeps a ““redundant’ area hidden from the host
system; for example, a 10MB SSF might actually have an
11MB capacity, with 1 MB used as the redundant area.
One concern is how much redundancy should be provided.
We denote the average file size FS (in number of sectors)
and select file sizes at random from one sector to 2 X FS
sectors to be written onto the SSF. Average usage
(denoted U) is the fraction of the user space (this excludes
the redundant area and system sectors) occupied by valid
data. For a specified value of U, the PC DOS simulator
causes the valid sectors to occupy user space in the

range from U — 5% to U + 5%. (For example, when

U = 70%, the fraction of valid sectors in user space

is restricted to the range 65%-75% by the simulator.)

As noted previously, the clustered sector allocation
mechanism is implemented in the simulator. Cluster sizes
of 16 KB, 32 KB, and 64 KB were chosen. For all the
simulations, combinations of file-write and file-erase
operations were simulated until a total of 10° file creations
and erasures had been performed. The flowchart of the
simulator is shown in Figure 3.

® FAT monitor

The SSF fully emulates an HDD but neither manages nor
is aware of the logical structure of file-system components
such as the FAT and the directory. PC DOS erases files
simply by updating the FAT and the directory to indicate
that the area previously allocated is now free. If the SSF is
ignorant of the fact that a file has been erased, the physical
sectors that were occupied by the file will still have the
valid attribute and be copied into a new cluster during
garbage collection. Obviously, this copy operation wastes
both time and SSF lifetime. To avoid this situation, we
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developed a mechanism called the FAT monitor and
employed it for this simulation. This mechanism, used in
a device-driver layer of PC DOS, monitors modifications
of the FAT. When the FAT is modified by an erase
command, the FAT monitor instructs the SSF to mark the
appropriate data sectors invalid, since they are logically
erased. (For NAND architectures, the FAT monitor marks
the deleted sectors invalid in the ATT entry. Since the
garbage collection mechanism refers to the table entry for
every copy operation, the deleted sectors are not copied.)
The drawback of the mechanism is that it is unable to
handle the PC DOS undelete command, which recovers
““deleted”” files under the assumption that the file itself is
left on the recording medium. (Being ignorant of file
erasure is an appropriate strategy for SSF hardware.
Since it may be used for many types of file systems, SSF
hardware should not be aware of the specific file system.)

o Simulation results
Figure 4 shows the effect of the FAT monitor mechanism.
In all the experiments run, the values of 1’5_gc when the FAT
monitor is used exceéed the values when it is not used.
When the two lines for U = 90% are compared, it
is observed that the larger the FS, the greater the
improvement brought about by the FAT monitor. This
conclusion is reasonable, since when larger files are
erased, the FAT monitor marks more sectors in one
cluster as garbage, which improves the efficiency of
garbage collection. The remaining simulation results were
calculated with the FAT monitor mechanism present.

Figure 4 also shows the effect of I on the value of E_gc .
Under low usage conditions, there is much free space,
which allows a large number of garbage sectors to stay in
the SSF, so the SSF controller can delay starting garbage
collection. The longer garbage collection is delayed, the
greater the accumulation of garbage sectors in the clusters.
Thus, when the usage is low enough, high values of E_gc are
expected, even without the FAT monitor mechanism. The
result observed concerning varying FS is that larger files
give higher values of E_gc . If a file is smaller than a cluster,
it generally occupies only a part of a cluster (but can
overlap two clusters). When the file is erased, even with
the FAT monitor mechanism, only part of the cluster is
invalidated as garbage. Since files are written and erased
randomly in this simulation, the invalidated area is so
fragmented that it is difficult for the garbage collection
process to find a cluster full of garbage. Thus, the value
of E,, decreases.

Figure 5 shows the impact of the redundant area on
the value of E_gc . In these simulation runs, the size of the
SSF (10 MB) excludes the redundant area. The results
show that E_gc increases as the usage decreases and the
redundant area increases. As expected, when U is 50% or
less, even a small redundant area results in an ideal value
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of E_?; . This is reasonable, since at least half of the user
space can be used to hold garbage, just like a redundant
area. Consider the results for a IMB redundant area.
When U is over 90%, the garbage collection mechanism
hardly ever finds a cluster whose fraction of garbage
sectors is over 50%. When U = 80%, E_gc is around 70%.
This implies that if E_ = 70% is acceptable, around 8 MB
out of the 10MB SSF (excluding the 1MB redundant area)
can be used on average, even when writing and erasing
small files (FS = 25 sectors).

Figure 6 shows that when the cluster size decreases, the
value of E_gc increases. This is obvious, since the same
number of garbage sectors is a larger fraction of a smaller
cluster. The selection of the cluster size is a trade-off
between the efficiency of garbage collection and the system
area overhead. As we mentioned in a previous section,
there is a system sector in every cluster. The smaller the
cluster, the larger the fraction of space occupied by the
system sectors. In addition, smaller cluster size results in a
larger number of clusters on the SSF, which requires more
time for sorting their sequence numbers during power-up.
We observed that 64 sectors per cluster seems to be a
good value for an SSF with a few tens of megabytes.

The next question concerns the significance of a fixed
amount of redundancy for various SSF capacities. Figure 7
shows the contributions of 1 MB of redundancy to SSFs
with 10 MB, 20 MB, and 30 MB of total storage (excluding
the redundant area). The smaller the SSF capacity, the
higher the value of E_gc This implies that the work area
ratio, defined as the number of free sectors (blank and
invalid) divided by the total number of data sectors, affects
the value of E_.. We note that

number of free sectors

Work area ratio = -
total number of data sectors in the SSF

1-0N,_ +N

user redun
b
Nuser + Nredun
where N = number of data sectors in user space and
N = number of redundant data sectors.

redun

Figure 8 shows E_gc as a function of the work area ratio.
The points in the figure were acquired by varying both the
redundant area and the average usage for fixed values of
the average file size. For example, the points plotted by
solid triangles represent all the points plotted in Figure 5
(average file size = 25 sectors). Although the points were
obtained by varying both the redundant area and the
average usage, the group of points corresponding to the
same average file size forms a smooth curve. Thus, the
results show that the parameters of redundant area and
average usage have similar effects on the value of E_gc
Figure 8 illustrates the case of a 10MB SSF; the data
obtained for 20MB and 30MB SSFs are almost exactly the
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same. These results indicate that the value of the work
area ratio is the only significant parameter for the SSF
with regard to area usage (the others are cluster size and
SSF capacity). From Figure 8, therefore, we can estimate
the work area ratio necessary to provide a specified E_gc
value. For example, if the average file size = 25 sectors,
in order to keep the value of E_gc over 70%, about 30%

of all data sectors in the SSF must be free sectors. As
mentioned above, the parameters of redundant area and
average usage are considered equivalent; how to maintain
a work area ratio of 30% is an SSF design option. One
way is to provide redundancy; for example, an SSF with
a total capacity of 10 MB might be designated as a TMB
SSF, so that 3 MB can be reserved and concealed from
the user. With this approach, the value of E_gC can be kept
over 70%, even when the average usage is nearly 100%;
however, this approach has the drawback that a user can
never store more than 7 MB of data, even temporarily.
Another approach is to force the user to restrict the usage.
In this case, a 10MB SSF might be designated as a 9MB
SSF, and the user advised to keep data under 7 MB, on
the average. This approach is risky, since a user can store
data up to the point of causing a degradation of E_gc to less
than 30%; however, by keeping the average usage around
7 MB, the user is awarded an extra 2 MB for temporary
storage.

SSF lifetime estimation

The dynamic sector allocation and garbage collection
mechanisms even out the erase counts of the sectors; thus,
the SSF fails when almost all of its sectors have been
written a number of times equal to their write/erase limits.
In theory, we can write a number of sectors equal to

Endurance of a sector
X number of data sectors in the SSF

before the SSF is exhausted. In practice, we cannot write
that many sectors, since the write count also increases as
a result of the copy operation during garbage collection.
If a cluster consists of N data sectors, an average of N_

(1 — E, ) sectors are copied by the garbage collection
mechanism to a new cluster, so only N_ Egc sectors

are available as user data sectors. Taking this into
consideration, we see that the maximum number of sectors

that the user can write on the SSF during its lifetime is

S = endurance of a sector x (N __ + N _, ) X E_gc .

lifetime user redun

If garbage collection is hidden in the background, the
minimum lifetime of the SSF can be calculated by
determining how long it would take to write S, = sectors
at a speed corresponding to the minimum write time of
flash EEPROM (in other words, to write data at maximum
speed). In practice, however, this notion of minimum
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lifetime does not make much sense, since it assumes that a
user writes data onto the SSF all the time. To calculate a
practical lifetime, we assume that a user writes 100 MB
per day, which is quite a large number for personal use.
For our estimation, we make the following additional
assumptions: The total capacity of the SSF, which includes
redundant area, is 10 MB; the endurance of the flash
EEPROM is 2.5 x 10° write/erase cycles per block
(the value given by Toshiba for the device used in our
product); 100 MB (2 x 10’ sectors) a day are written; and
the average efficiency of garbage collection (E—gc) is 70%.
According to these assumptions, N _ + N_, =

user redun
10 MB/512 bytes = 2 x 10* sectors, so
Sipime = 2.5 X 10° x 2 x 10° x 0.7 = 3.5 x 10° sectors.
Writing on S ... . sectors will require

3.5 x 10’ sectors/2 x 10° sectors per day = 17500 days
> 47 years.

As mentioned in a previous section, the efficiency of
garbage collection is highly dependent on the usage of the
SSF. Even if the efficiency were downgraded to 50%, the
lifetime would still be about 34 years—quite sufficient for
most users. (One possible mode of operation when the

limit is reached is for the SSF to become write-protected 543!
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and return to a status of ‘‘write fail”” when an attempt is
made to write data.)

Summary

We have discussed the mechanisms of dynamic sector
allocation and background garbage collection. In addition,
we have demonstrated, by simulation, that solid-state
files using flash EEPROMs have acceptable lifetimes for
personal applications. The garbage collection mechanism
takes account of many restrictions of flash EEPROMs in
managing the free space on the SSF. These mechanisms
are fundamental and applicable to SSF implementations
using either NOR or NAND flash EEPROMSs; however, a
special mechanism, called clustered sector allocation, is
required when dynamic sector allocation is applied to an
SSF using the NAND type of flash EEPROM. SSFs using
these mechanisms possess the following characteristics:

e The write operation is fast because data are written onto
blank sectors that are erased beforehand.

e The SSF does not need battery protection against power
loss. This improves system reliability and data integrity.

* The erase operation is hidden from the host system.
Consequently, the host need not be concerned with the
device characteristics of the flash EEPROMs.

¢ About 30% of the total sectors of the SSF are needed for
a work area, to keep the efficiency of garbage collection
over 70%.

e The SSF lifetime is acceptable because a leveling
algorithm in the garbage collection mechanism ensures
that all the sectors in the SSF are written to the limit of
their endurance.

We have developed SSFs jointly with Toshiba
Corporation. The SSF products (PCMCIA Intelligent Flash
Memory) use 16Mb NAND flash EEPROMs and conform
to JEIDA Ver.4.1 and PCMCIA Ver.2.1 guidelines. The
SSFs utilize all the mechanisms presented in the paper.
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