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The PowerPC 601™ microprocessor (601) is the
first member of a family of processors that
support IBM’s PowerPC Architecture™. The 601
is a general-purpose processor based on a
superscalar design point. As with any
development effort, the 601 development
program had several different, often
conflicting, design goals. The most important
requirements were support for the PowerPC
Architecture, a short development cycle,
competitive performance and cost,
compatibility with existing POWER
applications, and support for muitiprocessing.
This paper describes several aspects of the
601 design and discusses some of the design
trade-offs considered in those areas.

Introduction—design goals and fundamental
design decisions

The PowerPC 601™ microprocessor was developed as part
of the PowerPC™ alliance between IBM, Motorola, and
Apple. The original agreement specified an initial ““road
map”’ calling for the development of four microprocessors:
the 603, for low-end desktop and portable computers; the
604, for desktop computers and low-end servers; the 620,
for high-end servers; and the 601, which was intended to

provide a competitive PowerPC processor to the
marketplace very quickly [1].

The road map (Figure 1) established the basic ground
rules and goals for the 601 design point: Implement the
PowerPC Architecture™, bring it to market as quickly as
possible, offer competitive performance and features, and
make it cost-effective. These four goals formed the basic
backbone for all design decisions related to the chip.
Some of these decisions were made early and constitute
fundamental principles that formed the core structure of
the design. Others were made during the design process,
and represent interesting trade-offs among various design
alternatives.

The first goal of the 601 was to implement the PowerPC
Architecture. In general, the PowerPC Architecture [2]
was derived from the IBM POWER architecture [3].
Changes were made to add key missing features and to
enable more efficient implementations by eliminating some
instructions and relaxing the specifications of less
significant “‘corner’” cases [2].

In addition to implementing the PowerPC Architecture,
the 601 was also required to support the user-level
environment of the POWER Architecture™. This was
necessary to provide a temporary bridge for the software
development team as they migrated from designs providing
the full POWER Architecture support to the new
implementations of the PowerPC Architecture.
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Performance

‘‘Road map’’ of the PowerPC processor strategy. The locations
of the processors on the plot show gualitative, not quantitative,
relationships.

Table 1 PowerPC 601 microprocessor performance
targets.

Benchmark 50 MHz 66 MHz
SPECint92 45 60
SPEC{p92 60 80

The second and probably the most challenging goal
was the requirement for a very short development cycle.
Through customer negotiations and careful consideration,
we set a goal of achieving working 601 modules by
September 1992—just one year for a design cycle that
included design, verification, and fabrication. To achieve
this objective, several fundamental decisions were made
early in the project. First, we decided to exploit a proven
CMOS process technology to reduce manufacturing risk
(a 0.6-um minimum feature size and four levels of metal).
Second, we chose to leverage the same structured custom
design methodology that had been used successfully for
the development of several previous generations of
processors. This methodology blends the productivity
advantage of design automation tools with the ability to
address difficult problems with full custom design. The
combination reduces the time and risk associated with the
development of such complex devices. Third, we decided
to take advantage of technology that existed at both IBM
and Motorola. From IBM, the RISC single-chip (RSC)
design served as a starting point for the 601 [4]. Although
significant changes were made to this base design to
achieve the performance and feature goals of the project,
much of the logic in the fixed-point and the floating-point
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units was reusable. In addition, we were fortunate to retain
much of the original RSC design team to work on the 601
processor. From Motorola, we borrowed many of the bus
protocol concepts defined in the MC88110 processor

as a starting point for the 601 bus interface.

A third objective of the 601 project was to offer
competitive performance [5]. In order to achieve this, the
processor core employs a superscalar machine organization
with three execution units. These units can operate
concurrently, so that up to three instructions can be
executed in each processor cycle. The processor also
includes an integrated 32KB unified cache, a high-
performance bus interface [6], and support for
multiprocessing. These features provide high-bandwidth
access to memory and efficient support for cooperative
memory sharing. Table 1 summarizes the key performance
goals of the 601.

The final objective of the 601 design was low cost. This
was achieved primarily by the selection of a high-volume
process and by minimizing the chip area. In addition, the
cache on the 601 chip includes redundancy to increase the
effective manufacturing yield. A fully static LSSD design
approach is employed to achieve very high testability and
accurate failure diagnostics. The cost of the 601 module
was further reduced through the use of an economical
package.

Figure 2 is a high-level block diagram of the PowerPC
601 processor, which illustrates how the different
functional units interface with one another. The major
elements are the three execution units (branch unit, fixed-
point unit, and floating-point unit), the fetch and dispatch
unit, the cache, and the bus interface unit (BIU). The BIU
interfaces primarily with the cache. All data entering or
leaving the chip do so via the BIU and cache. An eight-
word bus from the cache feeds the instruction fetch and
dispatch unit at a rate of up to eight instructions per
processor clock. The dispatch unit has three unique buses
for dispatching instructions—one for each execution unit.
Two words of the eight-word cache data bus feed load
data to the floating-point unit; one word feeds load data
to the fixed-point unit. For store operations there is a
corresponding data bus to the cache from the floating-point
and fixed-point units.

Cache unit

Central to the design of the 601 is the cache, which is
shown in a block diagram in Figure 3. At a high level, the
601 cache is a 32KB copy-back cache, and is used to hold
both instructions and data. It has an eight-way set-
associative organization and uses an LRU replacement
policy. The line size is 64 bytes, which is divided into two
32-byte sectors. The cache contains a single read/write
port which is the main access point for all cache
operations. Cache operations can be initiated by the fixed-
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point unit, the floating-point unit, the instruction fetcher,
the bus interface unit, and the bus snooping* unit. Cache
arbitration logic determines which requestor receives
access to the cache on each cycle. The tag directory is
accessed in parallel with the cache, and contains
information used to determine whether the requested
address currently resides in the cache. The cache
directory has two access ports. The first one operates in
synchronization with the main cache access port and can
perform a read and a write each cycle. The second port
is a read-only port which is used by the snoop unit to
determine whether or not a particular address observed on
the bus interface exists in the cache. In the event that it
does, the snoop unit arbitrates for access to the main
read/write port in order to perform the necessary

state change and/or copy-back operation required by

the coherency protocol. The trade-offs associated

with the final design are described in the subsections

that follow.

& Cache size, organization, and geometry

Many different cache structures have been used in the
industry. The most obvious parameter that varies is the
cache size itself. In general, the larger the cache, the
better the processor performs; however, a larger cache
also takes up more of the available circuit area for a
particular die size. A second design consideration is the
overall organization of the cache. A design can combine
instructions and data into a single unified cache structure,
or it can use separate, or split, caches for instructions and
data. Split caches tend to provide higher bandwidths, since
both an instruction and a data access can occur on the
same cycle, but unified caches are more area-efficient.
The associativity of the cache can also be varied [7]. In
general, greater associativity increases the effective hit rate
and reduces the probability of cache thrashing (which
occurs when many neighboring accesses lie in the same
congruence class), but caches with greater associativity
can present difficult timing problems to the design. Line
size is a fourth design consideration. Larger line sizes
typically have greater hit rates; however, as the line size
increases, the need for additional interface bandwidth also
increases. This can increase the trailing-edge effect and
reduce performance.

Although much of the 601 logic evolved from the RSC
design, the RSC cache was not adequate to support the
601 performance goals; a larger cache was needed in order
to lower the cache miss rate. The fact that larger caches
yield lower miss rates is revealed by the measurements

*Snooping is a method of maintaining data coherency when there are several
different memory locations in a system where the same data could reside, such as
main memory, processor caches, and 1/0 device buffers. To maintain coherency,
each device “listens” to the bus and follows a certain protocol to guarantee that
only one device can modify memory at a time, and that when a given device
requests data, it will receive the most recent copy {7]. There is more discussion of
snooping in subsequent sections of this paper.
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Table 2 Cache miss ratios related to the design of the 601
cache [8].

Cache configuration Overall
miss rate
Combined, 8 KB, 64-byte line, 0.0342
two-way set-associative
(RSC-like)
Split, 16KB inst. and 16KB 0.0109

data, 64-byte line, eight-way
set-associative*

Combined, 32 KB, 64-byte 0.0091
line, eight-way set-
associative (601 cache)

*The miss rates for a split instruction and data cache were combined assuming a 0.3
ratio of data accesses to instruction accesses.

shown in Table 2, which were made [8] against the SPEC™
benchmark suite. The RSC employed an 8KB, write-
through, combined instruction/data cache. As Table 2
shows, moving from an RSC-like cache to a 601-like cache
lowers the miss ratio from greater than 3% to less than
1%. Lower miss rates correspond to reduced cycles per
instruction (CPI) averages for the machine and therefore
higher overall performance.

We chose to use a unified cache structure (in which
instructions and data both reside in a single cache) for two
primary reasons. First, unified caches require less silicon
area for a particular cache size than does a split cache
organization. This was a very important factor in achieving
the 601 die size. Second, a unified cache has slightly better
performance in some cases, as shown in Table 2. This
is because the combined instruction/data cache can
automatically adjust for the varying demand of instructions
versus data. As a result, the applications can effectively
see larger available cache space than they do for the split
cache organization. One serious drawback of a unified
cache is that the available bandwidth is effectively halved
(only one port for both data and instruction accesses).
Several features were added to the design to compensate
for this lost bandwidth. First, the access width from the
cache was increased so that up to eight words could be
fetched from the cache on each cycle. This additional
bandwidth is especially important for instruction fetching,
since the superscalar execution units can execute several
instructions each cycle during peak operation. The
additional bandwidth was also necessary because
instruction fetches were prioritized low in the arbitration
scheme. Another design feature allows the cache to
perform a complete read-modify-write every cycle. This
permits stores to execute using only one cycle of cache
bandwidth. Finally, to prevent arbitration decisions from
stalling instruction execution, queueing is provided
between the cache and the execution units. These queues
are used to temporarily hold lower-priority cache access
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requests while other, higher-priority cache operations take
place.

We also chose to divide the 64-byte cache line into two
sectors of 32 bytes each. The sectoring satisfies the micro-
architectural requirement of 32-byte coherency size and
also reduces the trailing-edge effect. The selection of an
eight-way set-associative organization allows indexing into
the cache using only address bits that are not translated.
(Translation occurs on 4KB page boundaries. The bits that
index into the cache come from the offset within the page.)
This eliminates the difficult timing problem of translating a
virtual address bit and attempting to index into the cache
in the same cycle with that bit. Figure 4 shows the pipeline
for loads and stores and shows that the portion of the address
used to index into the cache and cache tags does not go
through the memory management unit to be translated.

As another design consideration, caches can be blocking
or nonblocking after a miss is detected: Blocking caches
do not allow further accesses to occur, while nonblocking
caches do allow such accesses. Obviously, nonblocking
caches have the ability to perform better if programmers
choose to make use of the function by interleaving
accesses to different addresses (so that if one is a miss,
the other one has some chance of being a hit, since it
references a different cache line). However, nonblocking
caches are more complicated, which can lengthen the
development cycle. The 601 was designed to be one-level
nonblocking: One miss of a given type (load, fetch, or
store) can be outstanding without blocking the cache, but
a second miss of that type does block the cache. This
requires only one target register to be held and one
datum to be held, which is logically simple to manage and
requires very few resources. Performance is increased by
allowing cache hits to be processed after the first miss.
Once a second miss occurs, the cache access point is
occupied with the miss, and the cache becomes blocking.

& Cache coherency
The cache was also required to be coherent with respect to
other caches in the system and main memory. The 601 bus
interface was largely derived from the bus interface on the
Motorola MC88110 microprocessor. This interface features
a bus snooping mechanism as the memory coherency
control mechanism, which allows multiple processors and
other devices to cooperatively share system memory.

To achieve coherency, the 601 cache implements
the standard MESI protocol (with states of modified,
exclusive, shared, and invalid). The cache MESI state is
maintained on a 32-byte line sector, rather than a whole
line, to match the coherency size defined for the 601 bus
interface. The addresses of operations on the 601 bus
interface are snooped (monitored) and compared to
the contents of the cache (and associated queues), and
appropriate measures (as specified by the MESI coherency
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protocol) are taken to ensure that the most recent copy
of the data is provided to the requester, whether the
requester is the local processor, or another processor or
device on the 601 bus. To provide this function, the 601
cache was equipped with a second port (read-only), to
which the snoop address has exclusive access. Processor
activity continues through the normal (read-write) port,
and is interrupted only when a snoop hit requires a state
change in the cache or requires data to be pushed from
the cache.

Fetcher and branch units

One of the areas of the chip which was significantly
affected by the structure of the cache was the instruction
flow logic, including the fetcher, dispatcher, and branch
processing unit. Because the cache is unified, it was
necessary to ensure that a continuous stream of
instructions can be supplied to the dispatcher without
having to access the cache every cycle. The fetcher
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accomplishes this with an eight-entry instruction queue
between the cache and the execution units. This queue is
fed by an eight-word bus from the cache so that up to
eight sequential instructions can be fetched in a single
cycle. The instruction queue can supply the dispatcher for
several cycles, even at the peak dispatch rate of three
instructions per cycle. A block diagram of the instruction
queues is shown in Figure 5.

The term dispatch queue refers to the bottom four
positions of the instruction queues. Branch and floating-
point instructions can be dispatched from all four positions
in the dispatch queues. Up to three instructions can be
dispatched in a single processor cycle (a maximum of one
to each execution unit). The branch processor executes the
four main branch instructions (b, bc, belr, and bectr),
including the absolute and link update forms of those
instructions. Floating-point arithmetic operations are
dispatched to the FPU; all other instructions are
dispatched to the FXU.

M. T. VADEN ET AL.
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Block diagram of the data paths to and from the instruction queues
and dispatch queues.

Branches can cause an increase in the cache bandwidth
required by the fetcher. The 601 microprocessor cannot
afford to fetch both the target and the sequential paths of a
branch because of both cache bandwidth constraints and
die size constraints. For performance reasons, the 601
cannot afford to simply stop fetching instructions when it
reaches a conditional branch; thus, the 601 employs branch
prediction in order to process branches efficiently. In order
for branch-prediction mechanisms to help performance,
they must either be very accurate or have a short recovery
time when branches are mispredicted. Dynamic branch- .
prediction algorithms tend to be more accurate than static
algorithms, but require large branch history tables in order
to work. Because of the die size constraint on the 601, it
was necessary to use a static prediction mechanism and to
concentrate on reducing the misprediction recovery time.
Another advantage of this approach is that it depends less
on program behavior and is less subject to anomalous
behavior.

The 601 branch processor uses a compiler-assisted
branch-prediction mechanism with which the compiler can
set a bit in the branch instruction to tell the processor
whether the branch is likely to be taken or not taken. This
mechanism achieves an accuracy which is similar to that of
many dynamic schemes but uses significantly less hardware.
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Another advantage of this mechanism is that it allows
the 601 to predict branches very quickly.

The 601 dispatcher can dispatch branches from any
of the bottom four elements of the instruction queue.
Branches can be dispatched ahead of their program order
with respect to the other instructions in the dispatch
queues. For example, a branch that follows an FXU
instruction in program order can be dispatched before the
FXU instruction is dispatched. (Since FXU instructions
can be dispatched only from 1Q0, this out-of-order
dispatch occurs frequently). Branch dispatch, decoding,
execution, prediction, and cache arbitration for the target
instruction all occur on the same cycle. On the next cycle,
branch target instructions are available from the cache
(assuming that the fetch address has been placed in the
cache and not been preempted by a higher-priority cache
access). This quick turnaround of branches, in addition to
the early dispatch of branches, helps contain the unified-
cache contention problem by getting branch target fetches
to the cache early enough that if contention does occur,
the queue may still have instructions available for the
dispatcher. Simulation has shown that in most cases, the
instruction queue does not drain completely before a fetch
can refill it. The one notable exception to this is when a
stream of memory access instructions occurs (e.g., eight
load instructions). In this case, the memory access
instructions all access the cache before a fetch can access
it (memory access instructions always have higher priority
than fetches), so the instruction following the last memory
access instruction cannot be fetched until the last memory
access instruction has cleared the integer execute stage.

To minimize the impact of branch misprediction, the
601 processor was designed to have a fast misprediction
recovery mechanism. Several key design features support
misprediction recovery: condition register coherency
checking, condition register forwarding, same-cycle
prediction resolution, and delayed instruction queue
purging. These features are now described in detail.

In order to resolve branches as soon as the condition
register dependency is resolved, the pipeline control logic
scans all instructions ahead of the branch, looking for
condition register dependencies, and then signals the
branch unit when the condition register is coherent. On the
cycle when the condition register is coherent, the branch
unit checks its prediction; if it is correct, it can predict
another branch the next cycle. If the branch prediction is
incorrect, any instructions from the predicted path are
purged, and the fetch address is changed to the correct
path.

One of the most important performance issues for
branch processing is the time required to execute a
compare instruction and get the results to the branch
processing unit in order to resolve a dependent conditional
branch. We refer to this time as the compare-branch
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latency. In the 601, the results of compare instructions are
forwarded to the branch processing unit from the integer
execution stage. The integer unit contains a specialized
compare unit (see Figure 6) which quickly calculates the
results of a compare instruction and forwards the results to
the branch processor. If the condition register is coherent,
the dependent conditional branch is resolved on the same
cycle. If the branch has been mispredicted, the request
for the correct target address can be sent to the cache,
also on the same cycle as that in which the compare was
evaluated.

A case of interest is when the condition register is
already coherent for a conditional branch which is being
predicted. In this case, the 601 can actually resolve the
branch in the same cycle in which it is being predicted.
The branch processor can then execute another conditional
branch on the next cycle. Even if the branch is
mispredicted, there is no penalty.

Another way in which the 601 minimizes the penalty for
mispredicted branches is through its purging mechanism.
When a branch is predicted as taken, there are typically
several instructions in the instruction queue from the
sequential path. There is also a delay of at least one cycle
(possibly more) before target instructions for the branch
arrive at the instruction queue. The 601 does not purge
the sequential instructions when a branch is predicted
as taken. If the branch is determined to have been
mispredicted before the target instructions come from the
cache, the sequential instructions are kept, and the target
instructions are thrown away. This is more efficient than
immediately purging the sequential instructions and then
having to refetch them after the branch has been resolved.
If the target instructions arrive at the instruction queue
before the branch is resolved, they overwrite the
sequential instructions which have been left in the queue.

o Instruction address translation mechanism

The instruction fetcher uses a four-entry, fully associative
translation cache referred to as the translation shadow
array (TSA). The TSA is used to provide fast translation
ability to the fetcher without dual-porting the unified TLB
and segment registers. Each TSA entry is capable of
holding one translation object, either a block or a page
translation.

The TSA behaves as a simple associative memory; a hit
is determined by a comparison of the effective page of the
address with the effective pages which are contained in
the TSA. When a hit occurs, the real page number is
returned—there is no knowledge of the actual translation
mechanism imbedded in the TSA. In order to support
variable page sizes, the comparators used for the effective
page numbers have masks which cause only the
appropriate bits to be compared (this function is trivial
to add to a logical comparator).
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PowerPC 601 fixed-point unit (FXU) pipeline. The execute stage
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As with any cache, coherency is a significant concern.
The TSA is kept coherent with the page tables and
segment registers by hardware. Whenever an instruction
which affects the state of the virtual memory management
subsystem (such as a TLB invalidate) occurs, the TSA is
completely purged. When a tIbi is snooped on the bus, the
tibi address is sent to the fetcher, which purges the entire
TSA and then forwards the snooped tlbi to the memory
management unit. With these two mechanisms, hardware
ensures that no changes can occur to the virtual memory
environment without the TSA being updated (i.e., the TSA
is completely coherent, and therefore invisible to the
programmer).

® (Cycle-time constraints

The 601 design point had several design constraints on it,
including a performance and cycle-time constraint. The
worst-case cycle time for the 601 was 20 ns, with nominal
cycle time of 15 ns. With the short design cycle allotted for
implementation, every design was carefully studied to see
that cycle-time requirements would be met.

A potential timing problem in the instruction queue and
dispatch logic was the ripple-hold effect, which is caused
by stalls in lower pipeline stages that must hold upper
pipeline stages. It was not reasonable for stalls in any of
the execution units to cause a hold in the instruction
queue, yet still expect the 601 to meet its targeted cycle
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time. Three different solutions were employed to solve
this problem, one for each execution unit.

The branch unit had the simplest solution. Since it is
a single stage, checking all dependency information at
dispatch time prevents most stalls from occurring. The
only stalls that can occur involve dependencies on the
condition register. These paths were carefully hand-tuned.

The floating-point unit has a separate queue element
before its decode stage. This element is used to buffer
the dispatch stage from stalls in the floating-point unit.
Dispatch is held if and only if the floating-point queue is
full. The floating-point queue-full signal is available at the
start of the cycle, so it is not a problem for instruction
dispatch and queue movement cycle timing.

The integer unit decode stage can be loaded directly
from the cache or from the instruction queue. It is loaded
in parallel with queue 0 (IQ0—the lowest element in the
instruction queue), with the same instruction most of the
time. However, in order to isolate the instruction queue
movement from the movement of instructions in the FXU,
1Q0 is allowed to advance on the first cycle in which FXU
decode is held (i.e., FXU decode stalls). In the next cycle,
IQ0 and FXU decode contain different instructions. Once
they contain different instructions (a fact known at the
beginning of the cycle), IQO is held if it contains an FXU
instruction. When FXU decode is no longer held, it is
loaded with the instruction in IQ0 (or, if 1Q0 is empty, the
instruction moving into 1Q0). Now decode and IQ0 contain
the same instruction again, and processing continues as
usual. Thus, the ripple hold from the integer unit is broken
at the interface between integer decode and the bottom of
the dispatch queue.

Fixed-point unit (FXU)

The 601 fixed-point unit (FXU) is a single execution unit
that handles all of the integer arithmetic, logical, rotate,
and shift instructions. In addition, loads, stores, and cache
control instructions are partially implemented in the FXU
and partially implemented in the cache and memory
subsystem. The FXU (Figure 6) is divided into subunits,
each of which has logic dedicated to executing a particular
class of FXU instructions. Add, subtract, multiply, and
divide instructions are implemented in the main adder
subunit. The logical subunit implements rotate, shift, and
logical instructions. The fast-compare subunit is dedicated
to comparing two operands quickly, so that early results
can be forwarded to the branch unit for conditional branch
resolution. The load/store subunit has logic which is used
for calculating the effective address, control for unaligned
accesses, control for string instructions and load/store
multiple instructions, and interrupt detection for alignment
interrupts and data storage interrupts. Some logic, such

as the MQ register and the state counter for multicycle
operations, is shared across subunits. These subunits are
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not separate execution units that can concurrently execute
instructions. Only one instruction can be in FXU execute

at a time. For example, if there is a load in FXU execute,
the logical subunit and fast-compare subunit are idle.

Combining all of these functions in one functional unit
simplifies the FXU design in several ways. First, there are
no synchronization problems among FXU instructions.
For example, the completion ordering between an add
instruction and a load instruction is implicit in the 601,
since they are dispatched to the FXU in program order
and executed in order. If loads were implemented in a
separate load/store execution unit, complicated logic would
be needed to determine completion ordering. Knowledge
of the instruction order at completion is required because
the PowerPC Architecture supports a precise interrupt
model for most types of interrupts. Second, the evaluation
of register hazards becomes more complex when there are
multiple execution units that read and write the same
register file. New problems arise; for example, when
there is more than one execution unit, the difficulty of
maintaining proper instruction ordering is increased,
as is the number of result-forwarding paths.

In addition, there is an overall saving of space when all
of these functions are combined into one execution unit;
certain logic elements can be shared in the merged 601
FXU that would have to be duplicated in a design with
multiple execution units for FXU instructions. For
example, the state counter for the multiply and divide
instructions can also be used as the state counter for
string loads and stores in the 601 FXU.

The penalty for using a single execution unit for all
of these functions is that these instructions cannot be
executed concurrently, thus reducing the instructions per
clock figure of merit for the 601. However, it was felt that
the overall performance objectives could be met without
using separate FXU execution units. Given that belief, the
decision was made to use the single FXU unit—a simpler
design which would require less chip area and reduce the
time to market. The next section introduces the 601 FXU
design and presents some of the key design trade-offs.

® Arithmetic and logical instructions

Arithmetic and logical instructions have three stages in the
FXU pipeline: the FXU decode stage, the FXU execute
stage, and the FXU ALU writeback stage. All of the
arithmetic and logical instructions flow through these
stages in order; however, the multiply and divide
instructions are held in the execute stage for several cycles
of processing before moving to the writeback stage. (These
instructions are called multicycle instructions, since they
remain in execute for more than one cycle.) The decode stage
is used for reading the register file and generating constants
that are used as instruction source operands. The execute
stage has the logic where the actual arithmetic or logical
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manipulation of the data is performed. The writeback stage
is used for writing the results back to the register file.

As previously mentioned, there are several subunits
within the FXU execute stage. It is notable that there is no
separate subunit for the multiply and divide instructions,
as there was in some previous implementations of the
POWER Architecture [3]. The multiply and divide
instructions are implemented by holding the instructions in
execute for several cycles and iteratively using the FXU
main adder complex. Not implementing a separate subunit
for the multiply and divide instructions saves chip area at
the expense of performance. The following analysis looks
at this trade-off in more detail.

The multiply instructions are implemented using a
Booth-encoded four-bit step, so that four bits of the
multiplier are processed every cycle. It takes nine cycles
to complete the multiply for a 32-bit multiplier (one setup
cycle and eight multiply steps). Completion in five cycles
is supported for multipliers [8] that are in the range
-2% = X = 2% — 1. Combining the multiply functions
in the main adder subunit added hardware to the subunit:
a 36-bit CSA, a 36-bit four-way mux (multiplexor), and
some additional ports on the right mux and result mux.
However, all of this added hardware is considerably less
than a separate multiplier would require.

Including the divide instructions in the FXU adds only a
single multiplexor port to the dataflow logic. There is a
considerable amount of control iogic, but that would still
be required if implemented in a separate unit.

The performance cost of this approach can be analyzed
to the first order by calculating a weighted clocks-per-
instruction figure of merit. Examination of dynamic traces
from the SPEC benchmark suites reveals that the total
frequency of use of FXU multiply instructions is less than
0.4%, and the total frequency of use of all FXU divide
instructions is less than 0.04%. The number of execution
cycles for instructions other than multiply and divide
instructions is one. The number of cycles required for a
multiply instruction is usually five and sometimes nine. As
a simplifying assumption, an average of seven processor
cycles per multiply is assumed. The number of cycles for
each divide is 36. Furthermore, we assume that the FXU
is fed a continuous stream of instructions. For the 601, the
weighted CPI would be

Weighted CPI = 0.9956 * 1 + 0.004 = 7 + 0.0004 = 36
= 1.038.

Now assume that a separate multiply and divide unit can
execute multiply instructions in two cycles and divide
instructions in 18 cycles. For a design with the separate
multiply and divide unit, the weighted CPI would be

Weighted CPI = 0.9956 * 1 + 0.004 = 2 + 0.0004 = 18
= 1.0102.
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The cost in performance in terms of weighted CPI for
the 601 implementation versus the hypothetical design
with a separate multiply and divide subunit is about
2.8%. This loss in performance was traded for smaller
chip area.

® Loads and stores

Loads and stores are also executed within the FXU on the
601 chip. The execution is pipelined across four stages:
the FXU decode stage, the FXU execute stage, the cache
access stage, and a register writeback stage for loads only
(see Figure 4). During the execute stage the effective
address (EA) of the load or store is calculated, and the
address is translated by the MMU. Simultaneously, the
arbitration for cache access on the next cycle occurs while
the load/store is in FXU execute. The translated address
(real address) is available at the end of the cycle. In the
following cycle, the cache access occurs for both loads
and stores. Data are written into the cache for stores on
this cycle; data are read from the cache on loads. Load
data are also formatted on this cycle as specified by the
instruction. For example, load algebraic instructions do the
sign extension of the target data at this point. The access
of the cache tag directory straddles the boundary between
the execute stage and the cache access stage.

The load/store subunit in the FXU has its own 32-bit
adder to generate the effective address (EA). Because this
adder is dedicated to generating the effective address, it
does not have the burden of being surrounded by unrelated
logic, and it is therefore faster than the main adder
subunit. The dedicated 32-bit EA adder provides the
address about one third of the way through the cycle,
allowing two thirds of the cycle for translation.

Also, access to the tag directory can start during
execute, because the index into the cache and tag is
limited to bits within the page offset and need not be
translated. This is a benefit of organizing the cache as
at least eight-way set-associative. The cycle stealing for
access to the cache tag directory and the completion of the
translation in execute are key in permitting a two-cycle,
pipelined load and store access. Consequently, load target
data are available for use by a subsequent instruction
with only a single cycle of latency (i.e., an instruction
immediately following a load that wants to use the load
data stalls for only one cycle). This is true for any fixed-
point load; no extra cycles are required for loads with sign
extension or byte reversal, because the data formatting is
completed in the cache access stage. The cache access and
formatting of the data make up one of the longest timing
paths in the 601.

o Support of user-level POWER instructions
Some user-level POWER instructions were not carried
over to the PowerPC architecture; however, these
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instructions were implemented on the 601 to provide
binary compatibility with the POWER architecture. These
include the absolute value instructions (abs and nabs), the
difference or zero instructions (doz and dozi), and the MQ
instructions.

The abs and nabs were implemented using the
rotate/logical subunit and the main adder subunit. The
main adder always generated the two’s complement of
the operand, while the logical subunit just forwarded the
operand unchanged. The results were selected according
to the sign bit of the original operand.

The difference or zero instructions were implemented
using the main adder subunit and the fast comparator
subunit. The main adder always provides the difference
result. The select between 0’s and the difference result is
determined from the output of the fast comparator.

While implementing these instructions on the 601 did not
have much impact, we must note that implementations
with much more aggressive cycle times might have
difficulty implementing these instructions as single-cycle
instructions.

Floating-point unit (FPU)

The floating-point unit (Figure 7) is a pipelined execution
unit that implements all of the nonoptional floating-point
instructions in the PowerPC architecture. There are four
primary stages in the pipeline: decode, multiply, add, and
writeback. There is also a queue position before decode
that allows the dispatcher to dispatch a floating-point
instruction even when the decode stage is busy. Every
instruction passes through each stage {from decode to
writeback); however, some instructions (such as a double-
precision multiply operation) spend more than one cycle in
a given stage. Floating-point load instructions are executed
in the FXU, however, rather than the FPU, because the
FXU has the effective address-generation logic and the
interfaces to the memory management unit and cache.
Floating-point store operations are jointly implemented in
the FPU and the FXU. The FXU provides the address,
and the FPU provides the data.

The 601 implementation of floating-point stores deserves
closer examination. Floating-point stores have to go
through the FXU to generate the effective address (which
is calculated from fixed-point GPRs). The data, of course,
come from the floating-point FPRs, so floating-point stores
are also dispatched to the FPU. Several things were done
to avoid synchronizing the two pipelines. First, dispatch of
the floating-point store occurs separately (independently)
to the FXU and the FPU, and the flow of the instruction
through the two pipelines is not interlocked. However,
because of the difference in pipeline length and dispatch
latency between floating-point instructions and fixed-point
instructions, floating-point store data may not be available
for cache access when the store address is available. In
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order to keep from blocking the FXU pipeline with a
floating-point store while waiting for the store data, there
is a queue between the FXU and the cache that holds the
floating-point store request until the data are available from
the floating-point unit. This allows the FXU to continue
execution of subsequent instructions. When the store
data are available from the FPU, the address and control
information is taken from this queue and sent to the cache.
The presence of a floating-point store in this queue blocks
other stores (fixed or floating) from accessing the cache.
However, loads (fixed or floating) may “‘go around”” the
store in the floating-point store queue as long as they do
not reference the same address. This allows loads at the
top of a loop to be issued for the next iteration of the loop
while the processor is waiting for store data from the FPU.
In this way the 601 logic reduces the effect of load latency
on the execution of subsequent floating-point instructions.
The 601 FPU also has the ability to compress a floating-
point store operation that is storing the result of the
previous floating-point instruction. An example of this is
shown in the double-precision Linpack loop described in
the next paragraph. The fmadd produces a result in FO3,
and the stfdu places the contents of FO3 in memory. For
most floating-point operations, an instruction dependent on
the result of the previous instruction has to wait in the
decode stage until the result is available. However, the 601
can complete the store on the same cycle as the previous
instruction, if that previous instruction is generating the
data to be stored. This provides the floating-point data
sooner, reducing the chance of stalling the FXU pipeline.
The design of the floating-point multiplier involved one
of the more significant trade-offs between processor
performance and die size. The floating-point multiplier is
only wide enough to perform half of a double-precision
multiply operation in a single cycle. Therefore, double-
precision multiply operations must pass through the
multiplier twice in order to complete the multiply.
However, a single-precision multiply operation need only
pass through the multiplier once and can complete in one
cycle. By using a half-wide multiplier, the peak throughput
for multiply and accumulate instructions is half of what it
would be with the wider multiplier. Lowering the peak
throughput degrades the overall floating-point performance,
but not as significantly as one might think at first. As an
example, consider the execution of the following code
sequence (the core Linpack loop):

Double-precision Linpack loop

loop: Ifdu  FO1, O0x8 (GO05)
idu FO02, O0x8 (GO4)
fmadd F03, FO1, F02, FO3
stidu FO03, 0x8 (G06)
bc loop  /* until counter=0 *
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Only two of the five instructions are executed in the FPU.
Three instructions (the loads and the store) are executed in
the FXU. The branch, of course, is executed in the branch
processor. This loop takes six cycles per iteration on the
601. When the same loop is recoded with single-precision
instructions and operands, it also takes six cycles per
iteration on the 601. The timing of the loop is dominated
by the fact that the branch cannot access the cache
because it has a lower priority than the two loads and the
store. If the loop is unrolled, the effect of the branch is
minimized and the longer execution time of the double-
precision fmadd instruction can be revealed. Code with a
higher concentration of floating-point multiply and
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Logical block diagram of the PowerPC 601 floating-point unit (FPU).

accumulate instructions is affected more by the decision
to have a half-wide multiplier.

The benefit of using a half-wide multiplier is a savings
in chip area required for the floating-point unit. The
multiply-add unit of the 601 takes up about 4 mm?*. A
double-precision unit would take up approximately twice
the space (8 mm?). The space saved is between three and
four percent of the die size.

Bus interface unit (BIU)
The bus interface unit (BIU) in the 601 processor consists
of the queueing registers and control logic to connect the

unified cache to external memory and to the I/O interface. 615
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Block diagram of the PowerPC 601 bus interface unit (BIU).

A logical block diagram of the BIU is shown in Figure 8.

The 601 interface design had the following goals and
constraints.

First, the 601 had to support a general-purpose, high-
performance memory interface capable of high-speed
instruction and data transfer using burst reads and writes.
A queueing mechanism that would allow processor
performance optimization by supporting out-of-order
memory references was needed. Customer needs dictated
that 601 memory operations generally follow the Motorola
MC88110 RISC microprocessor interface protocol.

Second, I/O device support using strongly ordered
read/write operations was needed. A separate 1/O address
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I Address bus I

space, as opposed to memory-mapped 1/0, was needed to
support existing I/O architectures. Because of pin-count
limitations, this I/O bus protocol had to be mapped onto
the memory bus signal lines.

Third, multiprocessor support, including cache
coherency, was needed.

& Bus description

The 601 bus consists of a 32-bit address bus and a 64-bit
data bus with control signals that allow a split-transaction
bus protocol: Address bus transfers can complete on the
address bus, followed later by the associated data bus
transfer. While the data bus transfer for one operation is
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i Pipeline operation of the PowerPC 601 address and data buses.

pending, the address bus can be used to initiate a
subsequent transfer, thus allowing address and data
transfers to be ““pipelined” on the bus, as shown in
Figure 9. This allows the 601 bus to have multiple
operations outstanding on the bus: The address bus tenure
for several operations from different bus master devices
can be placed on the bus, awaiting data bus tenure to
complete the transfer. The 601 places a maximum of

two operations on the address bus and does not start
subsequent operations until the data bus tenure for one of
the previous operations has completed.

High data bandwidth on the bus is maintained by
operating the data bus in a burst mode, in which four data
transfers of sequential data (32 bytes total) can be made
for each address placed on the bus. This allows a peak
bandwidth of more than 400 megabytes per second in a
66-MHz 601 system.

The 601 bus further incorporates an additional bus
protocol for input/output device support on the bus.

This protocol provides strongly ordered bus operations
and synchronous error-reporting capability. This is
implemented on the 601 bus by placing two 32-bit address
words on the bus during address bus tenure, allowing a
to/from device address and additional device control
information to be appended to the normal 32-bit

address. Synchronous error reporting is accomplished by
having the I/O device respond to a transfer with an
address-only positive or negative acknowledgment before
the processor continues execution of the instruction stream.

A block diagram of the 601 BIU is shown in Figure 8.
Central to the operation of the BIU is the cache address
register (CAR), which holds the address and operation
codes for all accesses to the cache or to the 601 external
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bus. The CAR is used to simultaneously access the cache
directory and the cache data array, and, depending on the
state of the cache, the CAR contents can be copied into
one of two read queues or one of three write queues.

The read queues are used to queue noncacheable data
loads and instruction fetches and to queue cacheable loads,
fetches, and store operations which miss in the cache.

The write queues are used to queue noncacheable and
cacheable write-through stores, cache sector replacement
copy-back operations (cast-outs), and cache sector-push
operations caused either by cache manipulation
instructions or by snoop activity on the bus.

This read and write queueing mechanism is used to
improve overall processor performance by freeing cache
bandwidth when a cache miss occurs and prioritizing
operations placed on the bus. As an example, consider the
case of an instruction prefetch which misses in the cache.
The operations which must occur are the following:

1. Accessing the cache directory to determine the cache
miss.

2. Selection of the least recently used line in the cache.
If this line contains modified data, it must be written
back to memory before that cache location can be used.

3. The read operation must be completed on the bus,
allowing the cache to be updated with the read data.

If these operations were to be performed directly from
the CAR, it would essentially block all cache accesses
until both the write and read operations were completed on
the bus. With the read and write queueing mechanism, the
following can occur: The copy-back data and address can
be copied from the cache to a write queue while the read
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operations address is placed in the read queue. The CAR
is then freed for other loads, fetches, stores, etc., while
the priority arbiter in the BIU allows the read operation
to precede the lower-priority copy-back operation.

& Memory queue-to-bus priority arbitration
The priority for placing operations from the memory queue
onto the bus is important for two reasons: First, careful
prioritization can improve processor performance by
getting instructions and data to the appropriate function
unit in the processor or attached device to avoid stalls.
Second, proper prioritization alleviates potential bus
deadlock in coherent memory systems.

In general, the priority used in the 601, and the
reasoning behind it, is as listed below in declining order
of priority:

1. Snoop copy-back (snoop push caused by the bus
coherency logic). The snoop copy-back is of highest
priority for two reasons:

& To avoid the deadlock situation described below.

& For overall system performance: In the snoop
copy-back case, another processor or bus device
is accessing the data which are modified in the
601 cache. This operation is retried by the other
device on the bus until the 601 has written the
modified data back into the bus memory.

2. Program-initiated push caused by data cache block
flush (dcbf) or store (dcbst) operations. These
operations are not considered critical for
performance, but were placed high in the priority
to simplify the logic.

3. Programmable input/output (PIO) operations which
have not been retried. PIO operations, especially
read operations, may take a long time to complete,
and will stall the processor. By placing the initial
portions of a PIO high on the priority list, the PIO
operation can be started. Once it has been placed
on the bus, subsequent portions of the PIO
operation are assigned a low priority so that
other regular memory operations pending in the
read queue can be placed on the bus.

4. Address-only cache operations (data cache block
flush, store, invalidate, or zero). These operations
must be placed on the bus and complete execution
there before the fixed-point unit in the processor
logic can progress, and are therefore given
relatively high priority.

5. Read operations caused by a load or a fetch. These
operations may stall the processor because of
register dependencies or lack of instructions, and
are therefore of relatively high priority.

6. Noncacheable write operations. These operations
must complete in order and must complete before
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any data cache synchronization operation (sync)
listed below.

7. Synchronizing operations. The sync is placed
here to ensure that all noncacheable load/store
operations are executed and clear the processor
before the sync completes.

8. Dynamic reload of the other sector of a cacheable
read operation. These can be considered optional
bus operations, which may help processor
performance by prefetching instructions or data
which are in the same cache line as data or
instructions that the processor is actually using,
and are therefore of low priority.

9. Cast-out writes. Cast-out data can be written back
to the cache whenever it is convenient, and this
operation is therefore of very low priority.

10. Programmable input/output (PIO) operations which
have been retried. Programmable I/O operations, in
particular PIO load operations, consist of a request,
followed by data transfers, followed by an
acknowledgment. For comparatively slow I/O
systems, the PIO read operations may be retried
on the bus many times before the data become
available. By toggling retried I/O operations to
the lowest priority on the bus, any other normal
memory operations waiting in the queue can be
executed, improving bus utilization and potentially
improving performance.

& Bus deadlocks

In multi-master bus systems, which can include either
multiprocessor systems or uniprocessor systems with other
bus master devices, coherency between the memory
system and caches located in the various bus devices is
maintained by the basic MESI protocol. During an address
tenure, the transfer can be terminated with the snoop
response signal ADDRESS RETRY. A normal response
may terminate with the SHARED response. When the
SHARED response is given in response to a bus read
operation, the cached data are marked shared. When the
ADDRESS RETRY response is given, the operation is
terminated without data transfer and the snooped device is
given, through address bus arbitration, the opportunity to
use the bus to copy back the modified data from its cache
to main memory.

A significant bus deadlock occurs in systems in which
a device adapts a nonpended bus to the 601 bus. The
nonpended bus can initiate an operation which locks up
the nonpended bus until the operation is complete. If the
operation from the nonpended bus causes a snoop-push
operation by the 601, a deadlock may occur if the 601 has
simultaneously initiated bus operations to the nonpended
bus adapter.
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Figure 10 illustrates an example of the deadlock:
The 601 can issue a read operation to the bus adapter,
where the operation is queued until the adapter can
acquire access to the nonpended bus. At the same time, a
device on the nonpended bus can issue a read operation
through the bus adapter to the memory on the 601 bus.
With a coherent memory system on the 601 bus, the 601
may retry this read operation in order to write modified
data from its cache back to the memory. A deadlock can
occur: The 601-to-nonpended bus read cannot complete
until the nonpended bus is available. The nonpended bus
is not available until the nonpended bus-to-601 memory
read operation is completed. This memory read cannot
complete until the 601 can complete a snoop-push write
from its cache to the 601 memory. The snoop-push write
is not able to complete because the 601 write queues may
be full from previous operations, and, even if a write
queue is available, the data bus tenure for the write
operation cannot complete until the data bus tenure for
the previous 601-to-nonpended bus read operation is
complete.

This deadlock is resolved by using three mechanisms.

First, a special, high-priority snoop-push write queue
is reserved in the 601. Use of this queue is controlled
by using an input to the 601 (HIGH-PRIORITY SNOOP
REQUEST), which can be asserted by the nonpended bus
adapter as part of the attributes transferred during address
bus tenure. This allows a snoop-push write to be placed in
the 601 memory queue as the highest-priority operation.

Second, the 601 implements a DATA BUS WRITE
ONLY (DBWO) signal which, when asserted by the 601
bus arbitration logic, allows out-of-order data bus tenure,
thereby permitting the snoop-push write data bus tenure to
precede the data bus tenure for the pending read operation,
whose address bus tenure preceded the write tenure.

Third, restrictions are placed in the 601 bus arbitration
logic and the bus adapter logic to limit the number of reads
the 601 can place on the 601 bus once a read from the bus
adapter by the 601 is pending. This allows the snoop-push
write from the 601 to be placed on the bus if needed.

Summary

The 601 microprocessor is the first implementation of a
family of PowerPC microprocessors. The goals of the 601
product were to provide a PowerPC implementation that
would also serve as a software bridge from the POWER
architecture, and it had to be developed on a very tight
schedule in order to bring a PowerPC processor to the
marketplace quickly. The 601 was held to the specified
die size of 10.95 x 10.95 mm?.

The 601 also meets its original performance objectives in
terms of processor cycle time and performance against
industry standard benchmarks. The SPEC benchmarks for
some IBM products that use the 601 are shown in Table 3.
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Table 3 SPEC benchmark ratios for 601-based computers.

Benchmark name SPEC ratios for IBM
RISC System/6000
POWERstation™ models
Model 250 Model C10
008.espresso 58.4 76.9
022.1i 74.2 104.0
023.eqntott 76.9 107.8
026.compress 41.2 67.4
072.sc 85.2 121.8
085.gcc 51.6 77.7
Geometric mean:
SPECint92 62.6 90.5
013.spice2gb 43.4 68.9
015.doduc 56.4 79.1
034.mdljdp2 85.7 114.0
039.wave$ 48.6 63.6
047.tomcatv 94.3 129.9
048.ora 61.1 74.3
052.alvinn 160.9 220.3
056.ear 143.8 173.6
077.mdljsp2 47.6 63.2
078.swm256 63.9 81.5
089.su2cor 72.6 123.3
090.hydro2d 53.6 80.0
093.nasa7 72.1 117.2
094.fpppp 89.7 128.5
Geometric mean:
SPEC{p92 72.2 100.8
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Obviously, performance of a computer system is a function
of all the components—not just the processor. However,
the SPEC benchmark numbers provide some indication of
the performance of the PowerPC 601 microprocessor.

The effort of designing the 601 processor involved
many design trade-offs that tried to balance chip area,
performance, and design complexity (time to market). The
experience of the design team, the ability to extend and
reuse parts of the RISC single-chip design, and a design
philosophy of “‘keeping it simple” all contributed to the
success of the 601 processor, which is now being used [9]
in products by IBM, Apple, and even other companies that
were not part of the original PowerPC alliance.
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