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The  PowerPC  601”  microprocessor  (601) is the 
first  member  of a  family  of  processors  that 
support IBM’s PowerPC  Architecture”.  The  601 
Is a  general-purpose  processor  based  on  a 
superscalar  design  point. As with  any 
development  effort,  the  601  development 
program  had  several  different,  often 
conflicting,  design  goals.  The  most  important 
requirements  were  support  for  the  PowerPC 
Architecture,  a  short  development  cycle, 
Competitive  performance  and  cost, 
compatibility  with  existing  POWER 
applications,  and  support  for  multiprocessing. 
This  paper  describes  several  aspects  of  the 
601  design  and  discusses  some  of  the  design 
trade-offs  considered  in  those  areas. 

Introduction-design  goals  and  fundamental 
design  decisions 
The PowerPC 6Olm microprocessor was developed as part 
of the PowerPCm alliance between IBM, Motorola, and 
Apple.  The  original agreement specified  an  initial “road 
map” calling for the development of four microprocessors: 
the 603, for  low-end desktop and portable computers; the 
604, for desktop computers and  low-end servers; the 620, 
for high-end servers; and the 601, which was intended to 

provide a competitive PowerPC processor to the 
marketplace very quickly [ 11. 

The road map (Figure 1) established the basic ground 
rules and goals for the 601 design  point:  Implement the 
PowerPC Architecturem, bring  it to market as quickly as 
possible, offer competitive performance and features, and 
make it cost-effective. These four goals formed the basic 
backbone for all  design decisions related to the chip. 
Some of these decisions were made early and constitute 
fundamental principles that formed the core structure of 
the design. Others were made  during the design process, 
and represent interesting trade-offs  among various design 
alternatives. 

Architecture. In general, the PowerPC Architecture [2] 
was derived from the IBM  POWER architecture [3]. 
Changes were made to add key missing features and to 
enable more efficient implementations by eliminating some 
instructions and relaxing the specifications of less 
significant “comer” cases [2]. 

the 601 was also required to support the user-level 
environment of the POWER Architecturem. This was 
necessary to provide a temporary bridge for the software 
development team as they migrated  from designs providing 
the full  POWER Architecture support to the new 
implementations of the PowerPC Architecture. 

The first  goal of the 601 was to implement the PowerPC 

In  addition to implementing the PowerPC Architecture, 
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“Road map” of the PowerPC processor strategy. The locations 
of the processors on the plot show qualitative, not quantitative, 
relationships. 

Table 1 PowerPC 601 microprocessor  performance 
targets. 

Benchmark 50 MHz 66 MHz 

SPECint92 45 
SPECfp92 60 

60 
80 

The second and probably the most challenging  goal 
was the requirement for a very  short development cycle. 
Through customer negotiations and careful consideration, 
we set a goal of achieving working 601 modules by 
September 1992-just one year for a design cycle that 
included  design, verification, and fabrication. To achieve 
this objective, several fundamental decisions were made 
early in the project. First, we decided to exploit a proven 
CMOS process technology to reduce manufacturing risk 
(a 0.6-pm  minimum feature size and four levels of metal). 
Second, we chose to leverage the same structured custom 
design methodology that had been used successfully for 
the development of several previous generations of 
processors. This methodology blends the productivity 
advantage of design automation tools with the ability to 
address difficult problems with full custom design. The 
combination reduces the time  and risk associated with the 
development of such complex devices. Third, we decided 
to take advantage of technology that existed at both IBM 
and Motorola. From IBM, the RISC single-chip  (RSC) 
design served as a starting point for the 601 [4]. Although 
significant changes were made to this base design to 
achieve the performance and feature goals of the project, 

606 much of the logic in the fixed-point  and the floating-point 
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units was reusable. In addition, we were fortunate to retain 
much  of the original  RSC  design  team to work on the 601 
processor. From Motorola, we borrowed many of the bus 
protocol concepts defined  in the MC88110 processor 
as a starting point for the 601 bus interface. 

A third objective of the 601 project was to offer 
competitive performance [5]. In order to achieve this, the 
processor core employs a superscalar machine organization 
with three execution units. These units can operate 
concurrently, so that up to three instructions can be 
executed in each processor cycle. The processor also 
includes an integrated 32KB  unified cache, a high- 
performance bus interface [6],  and support for 
multiprocessing. These features provide high-bandwidth 
access to memory and  efficient support for cooperative 
memory sharing. Table 1 summarizes the key performance 
goals of the 601. 

The final objective of the 601 design was low cost. This 
was achieved primarily by the selection of a high-volume 
process and by minimizing the chip area. In addition, the 
cache on the 601 chip includes redundancy to increase the 
effective manufacturing yield. A fully static LSSD design 
approach is  employed to achieve very high testability and 
accurate failure diagnostics. The cost of the 601 module 
was further reduced through the use of an  economical 
package. 

601 processor, which illustrates how the different 
functional units interface with one another. The major 
elements are the three execution units (branch unit,  fixed- 
point unit, and  floating-point unit), the fetch and dispatch 
unit, the cache, and the bus interface unit (BIU). The BIU 
interfaces primarily  with the cache. All data entering or 
leaving the chip do so via the BIU and cache. An eight- 
word bus from the cache feeds the instruction fetch and 
dispatch unit at a rate of up to eight instructions per 
processor clock. The dispatch unit has three unique buses 
for dispatching instructions-one  for each execution unit. 
Two words of the eight-word cache data bus feed  load 
data to the floating-point  unit; one word feeds load data 
to the fixed-point  unit. For store operations there is a 
corresponding data bus to the cache from the floating-point 
and  fixed-point units. 

Figure 2 is a high-level block diagram of the PowerPC 

Cache unit 
Central to the design of the 601 is the cache, which  is 
shown in a block diagram in Figure 3. At a high level, the 
601 cache is a 32KB copy-back cache, and  is  used to hold 
both instructions and data. It has an eight-way set- 
associative organization and uses an LRU replacement 
policy. The line size is 64 bytes, which  is  divided into two 
32-byte sectors. The cache contains a single readhi te  
port which  is the main access point for all cache 
operations. Cache operations can be initiated by the fixed- 
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point unit, the floating-point unit, the instruction fetcher, 
the bus interface unit, and the bus snooping* unit.  Cache 
arbitration logic determines which requestor receives 
access to the cache on each cycle. The tag directory is 
accessed in parallel with the cache, and contains 
information used to determine whether the requested 
address currently resides in the cache. The cache 
directory has two access ports. The first one operates in 
synchronization with the main cache access port and  can 
perform a read and a write each cycle. The second port 
is a read-only port which is used by the snoop unit to 
determine whether or not a particular address observed on 
the bus interface exists in the cache. In the event that it 
does, the snoop unit arbitrates for access to the main 
readhrite port in order to perform the necessary 
state change and/or copy-back operation required by 
the coherency protocol. The  trade-offs associated 
with the final  design are described in the subsections 
that follow. 

Cache size, organization, and geometry 
Many  different cache structures have been used in the 
industry. The most obvious parameter that varies is the 
cache size itself.  In general, the larger the cache, the 
better the processor performs; however, a larger cache 
also takes up more of the available circuit area for a 
particular die size. A second design consideration is the 
overall organization of the cache. A design can combine 
instructions and data into a single  unified cache structure, 
or it can use separate, or split, caches for instructions and 
data. Split caches tend to provide higher bandwidths, since 
both an instruction and a data access can occur on the 
same cycle, but unified caches are more  area-efficient. 
The associativity of the cache can also be varied [7]. In 
general, greater associativity increases the effective  hit rate 
and reduces the probability of cache thrashing (which 
occurs when many neighboring accesses lie  in the same 
congruence class), but caches with greater associativity 
can present difficult  timing problems to the design. Line 
size is a fourth design consideration. Larger line sizes 
typically have greater hit rates; however, as the line size 
increases, the need for additional interface bandwidth also 
increases. This can increase the trailing-edge  effect  and 
reduce performance. 

Although  much of the 601 logic evolved from the RSC 
design, the RSC cache was not adequate to support the 
601 performance goals; a larger cache was needed in order 
to lower the cache miss rate. The fact that larger caches 
yield lower miss rates is revealed by the measurements 

*Snooping  is  a  method  of  maintaining  data  coherency  when  there  are  several 
different  memory  locations  in a  system  where  the  same  data  could  reside,  such  as 
main  memory,  processor  caches,  and 1/0 device  buffers. To maintain  coherency, 
each  device  “listens”  to  the  bus and follows  a  certain  protocol  to  guarantee  that 
only one  device  can  modify  memory  at  a  time,  and  that  when  a  given  device 
requests  data, it will  receive  the  most  recent  copy [7]. There is more discussion  of 
snooping  in  subsequent  sections  of  this  paper. 
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Block diagram of the  PowerPC 601 processor showing the rela- 
tionships  among  the  major  functional units. 

1 
1 1  

Cache access 
arbitration 

32 KB 

Cache  data 
may 

32 KB 

Cache access 

@-byte line 

I 
5 

2  Floating-point  stores 
1 Cache reload operations  from  the 6 0 1  bus 

3 Fixed-point  requests,  including  floating-point  loads 
4 Instruction  fetches 
5 From 6 0 1  addxss bus 

607 

M. T. VADEN ET AL. 



Table 2 Cache  miss  ratios  related to the design of the 601 
cache [8]. 

Cache configuration  Overall 
miss rate 

Combined, 8 KB, 64-byte line, 0.0342 
two-way set-associative 
(RSC-like) 

Split, 16KB  inst. and 16KB  0.0109 
data,  64-byte  line,  eight-way 
set-associative* 

Combined, 32 KB, 64-byte  0.0091 
line,  eight-way set- 
associative  (601 cache) 

'The miss rates for a split instruction and  data cache were combined assuming a 0.3 
ratio of data accesses  to instruction accesses. 

shown in  Table 2, which were made [8] against the SPECTM 
benchmark suite. The  RSC employed an 8KB, write- 
through, combined instructionldata cache. As Table 2 
shows, moving  from  an  RSC-like cache to a 601-like cache 
lowers the miss ratio from greater than 3% to less than 
1%. Lower miss rates correspond to reduced cycles per 
instruction (CPI) averages for the machine  and therefore 
higher overall performance. 

We chose to use a unified cache structure (in which 
instructions and data both reside in a single cache) for two 
primary reasons. First, unified caches require less silicon 
area for a particular cache size than does a split cache 
organization. This was a very important factor in  achieving 
the 601 die size. Second, a unified cache has slightly better 
performance in some cases, as shown in Table 2. This 
is because the combined instruction/data cache can 
automatically adjust for the varying demand of instructions 
versus data. As a result, the applications can effectively 
see larger available cache space than they do for the split 
cache organization. One serious drawback of a unified 
cache is that the available bandwidth is effectively halved 
(only one port for both data and instruction accesses). 
Several features were added to the design to compensate 
for this lost bandwidth. First, the access width from the 
cache was increased so that up to eight words could be 
fetched from the cache on each cycle. This additional 
bandwidth is especially important for instruction fetching, 
since the superscalar execution units can execute several 
instructions each cycle during  peak operation. The 
additional bandwidth was also necessary because 
instruction fetches were prioritized low  in the arbitration 
scheme. Another design feature allows the cache to 
perform a complete read-modify-write every cycle. This 
permits stores to execute using only one cycle of cache 
bandwidth. Finally, to prevent arbitration decisions from 
stalling instruction execution, queueing  is provided 
between the cache and the execution units. These queues 

608 are used to temporarily hold lower-priority cache access 
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requests while other, higher-priority cache operations take 
place. 

We also chose to divide the 64-byte cache line into two 
sectors of  32 bytes each. The sectoring satisfies the micro- 
architectural requirement of 32-byte coherency size and 
also reduces the trailing-edge  effect. The selection of  an 
eight-way set-associative organization allows  indexing into 
the cache using  only address bits that are not translated. 
(Translation occurs on 4KB page boundaries. The bits that 
index into the cache come from the offset  within the page.) 
This eliminates the difficult  timing  problem of translating a 
virtual address bit  and attempting to index into the cache 
in the same cycle with that bit. Figure 4 shows the pipeline 
for  loads  and stores and  shows  that the portion of the address 
used to index  into the cache and  cache  tags does not  go 
through the memory  management  unit to be translated. 

or nonblocking after a miss is detected: Blocking caches 
do not  allow further accesses to occur, while  nonblocking 
caches do allow such accesses. Obviously,  nonblocking 
caches have the ability to perform better if programmers 
choose to make  use of the function by interleaving 
accesses to different addresses (so that if one is a miss, 
the other one has some chance of being a hit, since it 
references a different cache line). However, nonblocking 
caches are more complicated, which can lengthen the 
development cycle. The 601 was designed to be one-level 
nonblocking:  One  miss of a given type (load, fetch, or 
store) can be outstanding without blocking the cache, but 
a second miss of that type does block the cache. This 
requires only one target register to be held  and one 
datum to be held,  which  is  logically  simple to manage  and 
requires very few resources. Performance is increased by 
allowing cache hits to be processed after the first  miss. 
Once a second miss occurs, the cache access point is 
occupied with the miss, and the cache becomes blocking. 

As another design consideration, caches can be  blocking 

Cache  coherency 
The cache was also required to be coherent with respect to 
other caches in the system and  main  memory.  The  601 bus 
interface was largely derived from the bus interface on the 
Motorola MC88110 microprocessor. This interface features 
a bus snooping mechanism as the memory coherency 
control mechanism,  which  allows  multiple processors and 
other devices to cooperatively share system memory. 

To achieve coherency, the 601 cache implements 
the standard MESI protocol (with states of modified, 
exclusive, shared, and invalid). The cache MESI state is 
maintained on a 32-byte  line sector, rather than a whole 
line, to match the coherency size defined  for the 601 bus 
interface. The addresses of operations on the 601 bus 
interface are snooped (monitored) and compared to 
the contents of the cache (and associated queues), and 
appropriate measures (as specified by the MESI coherency 
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protocol) are taken to ensure that the most recent copy 
of the data is provided to the requester, whether the 
requester is the local processor, or another processor or 
device on the 601 bus. To provide this function, the 601 
cache was equipped with a second port (read-only), to 
which the snoop address has exclusive access. Processor 
activity continues through the normal  (read-write) port, 
and  is interrupted only when a snoop hit requires a state 
change in the cache or requires data to be pushed from 
the cache. 

Fetcher  and  branch  units 
One of the areas of the chip which was significantly 
affected by the structure of the cache was the instruction 
flow  logic,  including the fetcher, dispatcher, and branch 
processing unit. Because the cache is  unified, it was 
necessary to ensure that a continuous stream of 
instructions can be supplied to the dispatcher without 
having to access the cache every cycle. The fetcher 

accomplishes this with  an eight-entry instruction queue 
between the cache and the execution units. This queue is 
fed by an  eight-word bus from the cache so that up to 
eight sequential instructions can be fetched in a single 
cycle. The instruction queue can supply the dispatcher for 
several cycles, even at the peak dispatch rate of three 
instructions per cycle. A block diagram of the instruction 
queues is shown in Figure 5. 

The term dispatch queue refers to the bottom four 
positions of the instruction queues. Branch and  floating- 
point instructions can be dispatched from  all four positions 
in the dispatch queues. Up to three instructions can be 
dispatched in a single processor cycle (a maximum  of one 
to each execution unit). The branch processor executes the 
four main branch instructions (b, bc,  bclr, and bcctr), 
including the absolute and  link update forms of those 
instructions. Floating-point arithmetic operations are 
dispatched to the FPU; all other instructions are 
dispatched to the FXU. 



Cache  data-eight w o r d s  
Instruction 
queue 

i 

stages 

Block diagram of the data  paths to and from the instruction queues 
and dispatch queues. 

Branches can cause an increase in the cache bandwidth 
required by the fetcher. The 601 microprocessor cannot 
afford to fetch both the target and the sequential paths of a 
branch because of both cache bandwidth constraints and 
die size constraints. For performance reasons, the 601 
cannot afford to simply stop fetching instructions when  it 
reaches a conditional branch; thus, the 601 employs branch 
prediction in order to process branches efficiently.  In order 
for branch-prediction mechanisms to help performance, 
they must either be very accurate or have a short recovery 
time  when branches are mispredicted. Dynamic branch- 
prediction algorithms tend to be more accurate than static 
algorithms, but require large branch history tables in order 
to work. Because of the die size constraint on the 601, it 
was necessary to use a static prediction mechanism  and to 
concentrate on reducing the misprediction recovery time. 
Another advantage of this approach is that it depends less 
on  program behavior and  is less subject to anomalous 
behavior. 

The 601 branch processor uses a compiler-assisted 
branch-prediction mechanism  with  which the compiler can 
set a bit in the branch instruction to tell the processor 
whether the branch is likely to be taken or not taken. This 
mechanism achieves an accuracy which is similar to that of 
many  dynamic  schemes  but  uses  significantly  less  hardware. 61 0 
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Another  advantage of this  mechanism is that it  allows 
the 601 to predict branches very quickly. 

The 601 dispatcher can dispatch branches from any 
of the bottom four elements of the instruction queue. 
Branches can be dispatched ahead of their program order 
with respect to the other instructions in the dispatch 
queues. For example, a branch that follows  an FXU 
instruction in  program order can be dispatched before the 
FXU instruction is dispatched. (Since FXU instructions 
can be dispatched only from IQO, this out-of-order 
dispatch occurs frequently). Branch dispatch, decoding, 
execution, prediction, and cache arbitration for the target 
instruction all occur on the same cycle. On the next cycle, 
branch target instructions are available from the cache 
(assuming that the fetch address has been placed in the 
cache and  not been preempted by a higher-priority cache 
access). This quick turnaround of branches, in addition to 
the early dispatch of branches, helps contain the unified- 
cache contention problem by getting branch target fetches 
to the cache early enough that if contention does occur, 
the queue may  still have instructions available for the 
dispatcher. Simulation has shown that in most cases, the 
instruction queue does not drain completely before a fetch 
can refill it. The one notable exception to this is when a 
stream of memory access instructions occurs (e.g.,  eight 
load instructions). In this case, the memory access 
instructions all access the cache before a fetch can access 
it (memory access instructions always have higher priority 
than fetches), so the instruction following the last memory 
access instruction cannot be fetched until the last memory 
access instruction has cleared the integer execute stage. 

To minimize the impact of branch misprediction, the 
601 processor was designed to have a fast misprediction 
recovery mechanism. Several key design features support 
misprediction recovery: condition register coherency 
checking, condition register forwarding, same-cycle 
prediction resolution, and delayed instruction queue 
purging. These features are now described in detail. 

In order to resolve branches as soon as the condition 
register dependency is resolved, the pipeline control logic 
scans all instructions ahead of the branch, looking for 
condition register dependencies, and then signals the 
branch unit when the condition register is coherent. On the 
cycle when the condition register is coherent, the branch 
unit checks its prediction; if it  is correct, it can predict 
another branch the next cycle. If the branch prediction is 
incorrect, any instructions from the predicted path are 
purged, and the fetch address is  changed to the correct 
path. 

One  of the most important performance issues for 
branch processing is the time required to execute a 
compare instruction and  get the results to the branch 
processing unit in order to resolve a dependent conditional 
branch. We refer to this time as the compare-branch 
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latency. In the 601, the results of compare instructions are 
forwarded to the branch processing unit from the integer 
execution stage. The integer unit contains a specialized 
compare unit (see Figure 6 )  which quickly calculates the 
results of a compare instruction and forwards the results to 
the branch processor. If the condition register is coherent, 
the dependent conditional branch is resolved on the same 
cycle. If the branch has been mispredicted, the request 
for the correct target address can be sent to the cache, 
also on the same cycle as that in which the compare was 
evaluated. 

A case of interest is  when the condition register is 
already coherent for a conditional branch which is being 
predicted. In this case, the 601 can actually resolve the 
branch in the same cycle in which it is  being predicted. 
The branch processor can then execute another conditional 
branch on the next cycle. Even if the branch is 
mispredicted, there is  no penalty. 

mispredicted branches is  through its purging  mechanism. 
When a branch is predicted as taken, there are typically 
several instructions in the instruction queue from the 
sequential path. There is also a delay of at least one cycle 
(possibly more) before target instructions for the branch 
arrive at the instruction queue. The 601 does not purge 
the sequential instructions when a branch is predicted 
as taken. If the branch is determined to have been 
mispredicted before the target instructions come from the 
cache, the sequential instructions are kept, and the target 
instructions are thrown away. This is  more  efficient than 
immediately purging the sequential instructions and  then 
having to refetch them after the branch has been resolved. 
If the target instructions arrive at the instruction queue 
before the branch is resolved, they overwrite the 
sequential instructions which have been left in the queue. 

Another way in which the 601 minimizes the penalty for 

Instruction address translation  mechanism 
The instruction fetcher uses a four-entry, fully associative 
translation cache referred to as the translation shadow 
array (TSA). The TSA is used to provide fast translation 
ability to the fetcher without dual-porting the unified TLB 
and segment registers. Each TSA entry is capable of 
holding one translation object, either a block or a page 
translation. 

The TSA behaves as a simple associative memory; a hit 
is determined by a comparison of the effective  page of the 
address with the effective  pages which are contained in 
the TSA.  When a hit occurs, the real  page  number  is 
returned-there  is no knowledge of the actual translation 
mechanism  imbedded in the TSA.  In order to support 
variable page sizes, the comparators used for the effective 
page numbers have masks which cause only the 
appropriate bits to be compared (this function is trivial 
to add to a logical comparator). 

PowerPC 601 fixed-point unit (FXU) pipeline. The execute stage 
is divided into separate subunits. 

As with any cache, coherency is a significant concern. 
The TSA is kept coherent with the page tables and 
segment registers by hardware. Whenever an instruction 
which affects the state of the virtual memory management 
subsystem (such as a TLB invalidate) occurs, the TSA is 
completely purged.  When a tlbi is snooped on the bus, the 
tlbi address is sent to  the fetcher, which purges the entire 
TSA and then forwards the snooped tlbi to the memory 
management unit. With these two mechanisms, hardware 
ensures that no changes can occur to the virtual memory 
environment without the TSA being updated (i.e., the TSA 
is completely coherent, and therefore invisible to the 
programmer). 

Cycle-time constraints 
The 601 design  point  had several design constraints on it, 
including a performance and cycle-time constraint. The 
worst-case cycle time for the 601 was 20 ns, with  nominal 
cycle time of  15 ns. With the short design cycle allotted for 
implementation, every design was carefully studied to see 
that cycle-time requirements would be met. 

A potential timing  problem  in the instruction queue and 
dispatch logic was the ripple-hold effect,  which  is caused 
by stalls in lower pipeline stages that must  hold  upper 
pipeline stages. It was not reasonable for stalls in any of 
the execution units to cause a hold  in the instruction 
queue, yet still expect the 601 to meet its targeted cycle 



time. Three different solutions were employed to solve 
this problem, one for each execution unit. 

The branch unit had the simplest solution. Since it is 
a single stage, checking all dependency information at 
dispatch time prevents most stalls from occurring. The 
only stalls that can occur involve dependencies on the 
condition register. These paths were carefully hand-tuned. 

The floating-point  unit has a separate queue element 
before its decode stage. This element is used to buffer 
the dispatch stage from stalls in the floating-point unit. 
Dispatch is  held if and  only if the floating-point queue is 
full.  The  floating-point  queue-full  signal  is available at the 
start of the cycle, so it  is  not a problem for instruction 
dispatch and queue movement cycle timing. 

The integer unit decode stage can be  loaded directly 
from the cache or from the instruction queue. It is loaded 
in parallel with queue 0 (IQO-the lowest element in the 
instruction queue), with the same instruction most of the 
time. However, in order to isolate the instruction queue 
movement from the movement of instructions in the FXU, 
IQO is  allowed to advance on the first cycle in which FXU 
decode is  held  (i.e., FXU decode stalls). In the next cycle, 
IQO and FXU decode contain different instructions. Once 
they contain different instructions (a fact known at the 
beginning of the cycle), IQO is  held if it contains an FXU 
instruction. When FXU decode is no longer  held,  it  is 
loaded with the instruction in IQO (or, if  IQO is empty, the 
instruction moving into IQO). Now decode and IQO contain 
the same instruction again, and processing continues as 
usual. Thus, the ripple  hold  from the integer unit  is broken 
at the interface between integer decode and the bottom of 
the dispatch queue. 

Fixed-point  unit (FXU) 
The 601 fixed-point  unit (FXU) is a single execution unit 
that handles all  of the integer arithmetic, logical, rotate, 
and  shift instructions. In addition, loads, stores, and cache 
control instructions are partially implemented in the FXU 
and partially implemented in the cache and memory 
subsystem. The FXU (Figure 6) is  divided into subunits, 
each of which has logic dedicated to executing a particular 
class of FXU instructions. Add, subtract, multiply,  and 
divide instructions are implemented in the main adder 
subunit. The logical subunit implements rotate, shift, and 
logical instructions. The fast-compare subunit is dedicated 
to comparing two operands quickly, so that early results 
can be forwarded to the branch unit for conditional branch 
resolution. The load/store subunit has logic which is used 
for calculating the effective address, control for unaligned 
accesses, control for string instructions and load/store 
multiple instructions, and interrupt detection for alignment 
interrupts and data storage interrupts. Some logic, such 
as  the MQ register and the state counter for multicycle 
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not separate execution units that can concurrently execute 
instructions. Only one instruction can be in FXU execute 
at a time. For example, if there is a load  in FXU execute, 
the logical subunit and fast-compare subunit are idle. 

Combining  all of these functions in one functional unit 
simplifies the FXU design  in several ways. First, there are 
no synchronization problems among FXU instructions. 
For example, the completion ordering between an  add 
instruction and a load instruction is implicit in the 601, 
since they are dispatched to the FXU in  program order 
and executed in order. If loads were implemented  in a 
separate load/store execution unit, complicated logic  would 
be needed to determine completion ordering. Knowledge 
of the instruction order at completion  is required because 
the PowerPC Architecture supports a precise interrupt 
model for most types of interrupts. Second, the evaluation 
of register hazards becomes more complex when there are 
multiple execution units that read and write the same 
register file.  New problems arise; for example, when 
there is more than one execution unit, the difficulty  of 
maintaining proper instruction ordering is increased, 
as is the number of result-forwarding paths. 

of these functions are combined into one execution unit; 
certain logic elements can be shared in the merged 601 
FXU that would have to be duplicated in a design  with 
multiple execution units for FXU instructions. For 
example, the state counter for the multiply  and  divide 
instructions can also be  used as the state counter for 
string loads and stores in the 601 FXU. 

The penalty for using a single execution unit for  all 
of these functions is that these instructions cannot be 
executed concurrently, thus reducing the instructions per 
clock figure  of merit  for the 601. However, it was felt that 
the overall performance objectives could be  met without 
using separate FXU execution units. Given that belief, the 
decision was made to use the single FXU unit-a simpler 
design  which  would require less chip area and reduce the 
time to market. The next section introduces the 601 FXU 
design  and presents some of the key design  trade-offs. 

In addition, there is  an overall saving of space when all 

Arithmetic and logical instructions 
Arithmetic and  logical instructions have three stages in the 
FXU pipeline: the FXU decode stage, the FXU execute 
stage, and the FXU ALU writeback stage. All of the 
arithmetic and  logical instructions flow  through these 
stages in order; however, the multiply and divide 
instructions are held  in the execute stage for several cycles 
of processing before moving to the writeback stage. (These 
instructions are called multicycle instructions, since they 
remain  in execute  for  more  than  one  cycle.)  The  decode  stage 
is  used  for  reading  the  register  file  and  generating  constants 
that are used as instruction  source  operands.  The  execute 
stage  has  the  logic  where  the  actual  arithmetic or logical 
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manipulation of the  data  is  performed.  The  writeback  stage 
is  used  for  writing the results  back to the register  file. 

As previously mentioned, there are several subunits 
within the FXU execute stage. It is notable that there is no 
separate subunit for the multiply  and  divide instructions, 
as  there was in some previous implementations of the 
POWER Architecture [3]. The multiply  and  divide 
instructions are implemented by holding the instructions in 
execute for several cycles and iteratively using the FXU 
main adder complex. Not implementing a separate subunit 
for the multiply  and  divide instructions saves chip area at 
the expense of performance. The following analysis looks 
at this trade-off  in  more detail. 

The multiply instructions are implemented  using a 
Booth-encoded four-bit step, so that four bits of the 
multiplier are processed every cycle. It takes nine cycles 
to complete the multiply  for a 32-bit  multiplier (one setup 
cycle and eight  multiply steps). Completion  in  five cycles 
is supported for multipliers [8] that are in the range 
-215 5 X 5 215 - 1. Combining the multiply functions 
in the main adder subunit added hardware to the subunit: 
a 36-bit  CSA, a 36-bit four-way m w  (multiplexor), and 
some additional ports on the right  mux  and result mux. 
However, all  of this added hardware is considerably less 
than a separate multiplier  would require. 

single multiplexor port to the dataflow  logic. There is a 
considerable amount of control logic,  but that would  still 
be required if implemented in a separate unit. 

The performance cost of this approach can be analyzed 
to the first order by calculating a weighted clocks-per- 
instruction figure of merit. Examination of dynamic traces 
from the SPEC benchmark suites reveals that the total 
frequency of use of FXU multiply instructions is less than 
0.4%, and the total frequency of use of  all FXU divide 
instructions is less than 0.04%. The  number of execution 
cycles for instructions other than  multiply and divide 
instructions is one. The number of cycles required for a 
multiply instruction is usually five and sometimes nine. As 
a simplifying assumption, an average of seven processor 
cycles per multiply  is assumed. The number of cycles for 
each divide  is 36. Furthermore, we assume that the FXU 
is  fed a continuous stream of instructions. For the 601, the 
weighted  CPI  would be 

Weighted  CPI = 0.9956 * 1 + 0.004 * 7 + 0.0004 * 36 

Including the divide instructions in the FXU adds only a 

= 1.038. 

Now assume that a separate multiply  and  divide  unit can 
execute multiply instructions in two cycles and  divide 
instructions in  18 cycles. For a design  with the separate 
multiply  and  divide unit, the weighted  CPI  would be 

Weighted  CPI = 0.9956 * 1 + 0.004 * 2 + 0.0004 * 18 

= 1.0102. 
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The cost in performance in terms of weighted  CPI for 
the 601 implementation versus the hypothetical design 
with a separate multiply and divide subunit is about 
2.8%. This loss in performance was traded for smaller 
chip area. 

Loads and stores 
Loads and stores are also executed within the FXU on the 
601 chip. The execution is pipelined across four stages: 
the FXU decode stage, the FXU execute stage, the cache 
access stage, and a register writeback stage for loads only 
(see Figure 4). During the execute stage the effective 
address (EA) of the load or store is calculated, and the 
address is translated by the MMU. Simultaneously, the 
arbitration for cache access on the next cycle occurs while 
the load/store is in FXU execute. The translated address 
(real address) is available at the end of the cycle. In the 
following cycle, the cache access occurs for both loads 
and stores. Data are written into the cache for stores on 
this cycle; data are read  from the cache on loads. Load 
data are also formatted on this cycle as specified by the 
instruction. For example, load algebraic instructions do the 
sign extension of the target data at this point. The access 
of the cache tag directory straddles the boundary between 
the execute stage and the cache access stage. 

The load/store subunit in the FXU has its own 32-bit 
adder to generate the effective address (EA). Because this 
adder is dedicated to generating the effective address, it 
does not have the burden of being surrounded by unrelated 
logic,  and  it  is therefore faster than the main adder 
subunit. The dedicated 32-bit EA adder provides the 
address about one third of the way through the cycle, 
allowing two thirds of the cycle for translation. 

Also, access to the tag directory can start during 
execute, because the index into the cache and tag  is 
limited to bits within the page  offset  and  need not be 
translated. This  is a benefit of organizing the cache as 
at least eight-way set-associative. The cycle stealing for 
access to the cache tag directory and the completion of the 
translation in execute are key in permitting a two-cycle, 
pipelined  load  and store access. Consequently, load target 
data are available for use by a subsequent instruction 
with only a single cycle of latency (Le.,  an instruction 
immediately  following a load that wants to use the load 
data stalls for only one cycle). This  is true for any fixed- 
point  load; no extra cycles are required for loads with  sign 
extension or byte reversal, because the data formatting is 
completed in the cache access stage. The cache access and 
formatting of the data make up one of the longest timing 
paths in the 601. 

Support of user-level POWER instructions 
Some user-level POWER instructions were not carried 
over to the PowerPC architecture; however, these 
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instructions were implemented  on the 601 to provide 
binary compatibility with the POWER architecture. These 
include the absolute value instructions (abs and nabs), the 
difference or zero instructions (doz and dozi), and the MQ 
instructions. 

The abs and nabs were implemented  using the 
rotateflogical subunit and the main adder subunit. The 
main adder always generated the two’s  complement of 
the operand, while the logical subunit just forwarded the 
operand unchanged.  The results were selected according 
to the sign  bit of the original operand. 

The difference or zero instructions were implemented 
using the main adder subunit and the fast comparator 
subunit. The  main adder always provides the difference 
result. The select between 0’s and the difference result is 
determined from the output of the fast comparator. 

have much impact, we  must note that implementations 
with  much more aggressive cycle times might have 
difficulty  implementing these instructions as single-cycle 
instructions. 

While  implementing these instructions on the 601  did not 

Floating-point  unit (FPU) 
The floating-point  unit (Figure 7) is a pipelined execution 
unit that implements  all of the nonoptional floating-point 
instructions in the PowerPC architecture. There are four 
primary stages in the pipeline: decode, multiply, add, and 
writeback. There is also a queue position before decode 
that allows the dispatcher to dispatch a floating-point 
instruction even when the decode stage is busy. Every 
instruction passes through each stage (from decode to 
writeback); however, some instructions (such as a double- 
precision multiply operation) spend more than one cycle in 
a given stage. Floating-point load instructions are executed 
in the FXU, however, rather than the FPU, because the 
FXU has the effective address-generation logic and the 
interfaces to the memory management  unit and cache. 
Floating-point store operations are jointly implemented  in 
the FPU and the FXU. The FXU provides the address, 
and the FPU provides the data. 

closer examination. Floating-point stores have to go 
through the FXU to generate the effective address (which 
is calculated from ked-point GPRs). The data, of course, 
come from the floating-point FPRs, so floating-point stores 
are also dispatched to the FPU. Several things were done 
to avoid synchronizing the two pipelines. First, dispatch of 
the floating-point store occurs separately (independently) 
to the FXU and the FPU, and the flow  of the instruction 
through the two  pipelines  is  not interlocked. However, 
because of the difference in pipeline  length  and dispatch 
latency between floating-point instructions and  fixed-point 
instructions, floating-point store data may not be available 

The 601 implementation of floating-point stores deserves 
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order to keep from  blocking the FXU pipeline  with a 
floating-point store while  waiting for the store data, there 
is a queue between the FXU and the cache that holds the 
floating-point store request until the data are available from 
the floating-point  unit. This allows the FXU to continue 
execution of subsequent instructions. When the store 
data are available from the FPU, the address and control 
information is taken from this queue and sent to the cache. 
The presence of a floating-point store in this queue blocks 
other stores (fixed or floating)  from accessing the cache. 
However, loads (fixed or floating)  may “go around” the 
store in the floating-point store queue as long as they do 
not reference the same address. This allows loads at the 
top of a loop to be issued for the next iteration of the loop 
while the processor is  waiting  for store data from the FPU. 
In this way the 601 logic reduces the effect of load latency 
on the execution of subsequent floating-point instructions. 

The 601 FPU also has the ability to compress a floating- 
point store operation that is storing the result of the 
previous floating-point instruction. An example of this is 
shown in the double-precision Linpack loop described in 
the next paragraph. The fmadd produces a result in F03, 
and the stfdu places the contents of F03 in memory. For 
most  floating-point operations, an instruction dependent on 
the result of the previous instruction has to wait in the 
decode stage until the result is available. However, the 601 
can complete the store on the same cycle as the previous 
instruction, if that previous instruction is generating the 
data to be stored. This provides the floating-point data 
sooner, reducing the chance of stalling the FXU pipeline. 

The  design of the floating-point  multiplier  involved one 
of the more  significant  trade-offs between processor 
performance and die size. The floating-point  multiplier is 
only wide  enough to perform half  of a double-precision 
multiply operation in a single cycle. Therefore, double- 
precision  multiply operations must pass through the 
multiplier  twice  in order to complete the multiply. 
However, a single-precision multiply operation need only 
pass through the multiplier once and can complete in one 
cycle. By using a half-wide  multiplier, the peak throughput 
for multiply and accumulate instructions is half  of what it 
would be with the wider multiplier. Lowering the peak 
throughput degrades the overall floating-point performance, 
but not as significantly as one might think at first. As an 
example, consider the execution of the following code 
sequence (the core Linpack loop): 

Double-precision Linpack loop 

loop: lfdu FO1, 0x8 (G05) 
lfdu F02, 0x8 (G04) 
fmadd F03, FO1,  F02,  F03 
stfdu F03, 0x8 (G06) 
bc loop I* until counter=O *I 
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8 Logical block diagram of the PowerPC 601 floating-point unit (FPU). 

Only two of the five instructions are executed in the FPU. 
Three instructions (the loads and the store) are executed in 
the FXU. The branch, of course, is executed in the branch 
processor. This loop takes six cycles per iteration on the 
601. When the same loop is recoded with  single-precision 
instructions and operands, it also takes six cycles per 
iteration on the 601. The timing of the loop is dominated 
by the fact that the branch cannot access the cache 
because it has a lower priority than the two loads and the 
store. If the loop is unrolled, the effect of the branch is 
minimized and the longer execution time of the double- 
precision fmadd instruction can be revealed. Code with a 
higher concentration of floating-point  multiply and 

accumulate instructions is affected  more by the decision 
to have a half-wide  multiplier. 

The benefit of using a half-wide  multiplier  is a savings 
in chip area required for the floating-point  unit. The 
multiply-add unit of the 601 takes up about 4 mm’. A 
double-precision unit would take up approximately twice 
the space (8 mm’). The space saved is between three and 
four percent of the die size. 

Bus  interface  unit  (BIU) 
The bus interface unit (BIU) in the 601 processor consists 
of the queueing registers and control logic to connect the 
unified cache to external memory  and to the I/O interface. 
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Block diagram of the PowerPC 601 bus interface  unit (BIU). 

A logical block  diagram of the BIU is  shown in Figure 8. 
The 601 interface design  had the following  goals  and 

constraints. 
First, the 601 had to support a general-purpose, high- 

performance memory interface capable of high-speed 
instruction and data transfer using burst reads and writes. 
A queueing mechanism that would  allow processor 
performance optimization by supporting out-of-order 
memory references was needed. Customer needs dictated 
that 601 memory operations generally follow the Motorola 
MC88110 RISC microprocessor interface protocol. 

Second, 1/0 device support using strongly ordered 
61 6 readhrite operations was needed. A separate I/O address 

space, as opposed to memory-mapped I/O, was needed to 
support existing I/O architectures. Because of pin-count 
limitations, this I/O bus protocol had to be  mapped onto 
the memory bus signal  lines. 

coherency, was needed. 
Third, multiprocessor support, including cache 

Bus description 
The 601 bus consists of a 32-bit address bus and a 64-bit 
data bus with control signals that allow a split-transaction 
bus protocol: Address bus transfers can complete on the 
address bus, followed later by the associated data bus 
transfer. While the data bus transfer for one operation is 
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Pipeline operation of the PowerPC 601 address and data buses. 

pending, the address bus can be used to initiate a 
subsequent transfer, thus allowing address and data 
transfers to be “pipelined” on the bus, as shown in 
Figure 9. This allows the 601 bus to have  multiple 
operations outstanding on the bus: The address bus tenure 
for several operations from  different bus master devices 
can be placed on the bus, awaiting data bus tenure to 
complete the transfer. The 601 places a maximum  of 
two operations on the address bus and does not start 
subsequent operations until the data bus tenure for one of 
the previous operations has completed. 

operating the data bus in a burst mode, in which four data 
transfers of sequential data (32 bytes total) can be made 
for each address placed on the bus. This allows a peak 
bandwidth of more than 400 megabytes per second in a 
66-MHz 601 system. 

The 601 bus further incorporates an additional bus 
protocol for inputloutput device support on the bus. 
This protocol provides strongly ordered bus operations 
and synchronous error-reporting capability. This is 
implemented on the 601 bus by placing two 32-bit address 
words on the bus during address bus tenure, allowing a 
to/from device address and  additional device control 
information to be appended to the normal  32-bit 
address. Synchronous error reporting is accomplished by 
having the 1/0 device respond to a transfer with an 
address-only positive or negative acknowledgment before 
the processor  continues  execution of the instruction  stream. 

A block diagram of the 601 BIU is shown in Figure 8. 
Central to the operation of the BIU is the cache address 
register (CAR), which holds the address and operation 
codes for all accesses to the cache or to the 601 external 

High data bandwidth on the bus is  maintained by 

B IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 

bus. The CAR is  used to simultaneously access the cache 
directory and the cache data array, and, depending on the 
state of the cache, the CAR contents can be copied into 
one of two read queues or one of three write queues. 

The read queues are used to queue noncacheable data 
loads and instruction fetches and to queue cacheable loads, 
fetches, and store operations which miss in the cache. 

The write queues are used to queue noncacheable and 
cacheable write-through stores, cache sector replacement 
copy-back operations (cast-outs), and cache sector-push 
operations caused either by cache manipulation 
instructions or by snoop activity on the bus. 

This  read and write queueing mechanism  is  used to 
improve overall processor performance by freeing cache 
bandwidth when a cache miss occurs and  prioritizing 
operations placed on the bus. As an example, consider the 
case of  an instruction prefetch which misses in the cache. 
The operations which  must occur are the following: 

1. Accessing the cache directoly to determine the cache 

2. Selection of the least recently used  line in the cache. 
If this line contains modified data, it must be written 
back to memory before that cache location can be used. 

allowing the cache to be updated with the read data. 

If these operations were to be performed directly from 
the CAR,  it  would essentially block all cache accesses 
until both the write and read operations were completed on 
the bus. With the read and write queueing  mechanism, the 
following  can occur: The copy-back data and address can 
be copied  from the cache to a write queue while the read 

miss. 

3. The read operation must be completed on the bus, 
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operations address is  placed in the read queue. The CAR 
is then freed for other loads, fetches, stores, etc., while 
the priority arbiter in the BIU allows the read operation 
to precede the lower-priority copy-back operation. 

Memory queue-to-bus priority arbitration 
The priority for placing operations from the memory queue 
onto the bus is important for two reasons: First, careful 
prioritization can improve processor performance by 
getting instructions and data to the appropriate function 
unit in the processor or attached device to avoid stalls. 
Second, proper prioritization alleviates potential bus 
deadlock in coherent memory systems. 

In general, the priority used in the 601, and the 
reasoning behind  it, is as listed below  in  declining order 
of priority: 

1. Snoop copy-back  (snoop push  caused  by  the  bus 
coherency logic). The  snoop  copy-back  is of highest 
priority  for two reasons: 

To avoid the deadlock  situation  described below. 
For overall system performance: In the  snoop 
copy-back case,  another  processor  or  bus device 
is accessing the  data  which  are modified in the 
601 cache.  This  operation  is retried by  the  other 
device on  the  bus until the 601 has  written  the 
modified data  back  into  the  bus memory. 

flush (dcbf) or  store (dcbst)  operations. These 
operations  are not  considered  critical for 
performance,  but were placed high in the priority 
to simplify the logic. 

3. Programmable  input/output  (PIO) operations which 
have not been retried. P I 0  operations, especially 
read operations,  may  take a long time to complete, 
and will stall the  processor.  By placing the initial 
portions of a P I 0  high on  the priority list, the P I 0  
operation  can  be  started.  Once it has  been placed 
on  the  bus,  subsequent  portions of the P I 0  
operation  are assigned a low  priority so that 
other regular memory  operations pending in the 
read  queue  can be  placed on  the bus. 

flush, store, invalidate, or zero). These  operations 
must be placed on  the  bus  and  complete  execution 
there before the fixed-point unit in the  processor 
logic can progress, and  are therefore  given 
relatively high priority. 

5. Read operations  caused  by a load or a fetch. These 
operations  may stall the  processor  because of 
register dependencies  or  lack of instructions, and 
are  therefore of relatively high priority. 

6. Noncacheable  write operations. These  operations 
61 8 must complete in order  and must complete before 

2. Program-initiated  push caused  by  data  cache block 

4. Address-only cache  operations  (data  cache block 

any  data  cache synchronization operation (sync) 
listed below. 

7. Synchronizing  operations. The  sync  is placed 
here  to  ensure  that all noncacheable  load/store 
operations  are  executed and clear  the  processor 
before the  sync completes. 

8. Dynamic  reload of the  other  sector of a cacheable 
read operation. These  can be  considered  optional 
bus  operations, which may help processor 
performance  by prefetching instructions  or  data 
which are in the  same  cache line as  data  or 
instructions  that  the  processor  is actually using, 
and are  therefore of low  priority. 

9. Cast-out writes.  Cast-out data  can  be  written  back 
to  the  cache  whenever it is convenient, and  this 
operation  is  therefore of very low  priority. 

10. Programmable  input/output (PIO) operations which 
have been  retried.  Programmable 1/0 operations, in 
particular P I 0  load  operations, consist of a request, 
followed by  data transfers, followed by an 
acknowledgment. For comparatively  slow I/O 
systems,  the P I 0  read  operations  may  be retried 
on  the  bus  many times  before the  data  become 
available. By toggling retried 1/0  operations  to 
the lowest  priority on  the bus, any  other normal 
memory  operations waiting in the  queue  can  be 
executed, improving bus utilization and potentially 
improving  performance. 

Bus deadlocks 

In multi-master bus systems, which can include either 
multiprocessor systems or uniprocessor systems with other 
bus master devices, coherency between the memory 
system and caches located in the various bus devices is 
maintained by the basic MESI protocol. During  an address 
tenure, the transfer can be terminated with the snoop 
response signal  ADDRESS  RETRY. A normal response 
may terminate with the SHARED response. When the 
SHARED response is given  in response to a bus read 
operation, the cached data are marked shared. When the 
ADDRESS RETRY response is given, the operation is 
terminated without data transfer and the snooped device is 
given,  through address bus arbitration, the opportunity to 
use the bus to copy back the modified data from its cache 
to main  memory. 

A significant bus deadlock occurs in systems in which 
a device adapts a nonpended bus to the 601 bus. The 
nonpended bus can initiate an operation which locks up 
the nonpended bus until the operation is complete. If the 
operation from the nonpended bus causes a snoop-push 
operation by the 601, a deadlock may occur if the 601 has 
simultaneously initiated bus operations to the nonpended 
bus adapter. 
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Figure 10 illustrates an example of the deadlock: 
The 601 can issue a read operation to the bus adapter, 
where the operation is queued until the adapter can 
acquire access to the nonpended bus.  At the same time,  a 
device on the nonpended bus can issue a read operation 
through the bus adapter to the memory on the 601 bus. 
With  a coherent memory system on the 601 bus, the 601 
may retry this read operation in order to write modified 
data from its cache back to the memory. A deadlock can 
occur: The 601-to-nonpended bus read cannot complete 
until the nonpended bus is available. The nonpended bus 
is not available until the nonpended bus-to-601  memory 
read operation is completed. This memory read cannot 
complete until the 601  can complete a snoop-push write 
from its cache to the 601 memory. The snoop-push write 
is not able to complete because the 601 write queues may 
be full  from previous operations, and, even if a write 
queue is available, the data bus tenure for the write 
operation cannot complete until the data bus tenure for 
the previous 601-to-nonpended bus read operation is 
complete. 

This deadlock is resolved by using three mechanisms. 
First, a special, high-priority snoop-push write queue 

is reserved in the 601. Use of this queue is controlled 
by using  an input to the 601 (HIGH-PRIORITY SNOOP 
REQUEST), which can be asserted by the nonpended bus 
adapter as part of the attributes transferred during address 
bus tenure. This allows a snoop-push write to be placed  in 
the 601 memory queue as  the highest-priority operation. 

Second, the 601 implements  a  DATA  BUS  WRITE 
ONLY (DBWO)  signal  which, when asserted by the 601 
bus arbitration logic, allows out-of-order data bus tenure, 
thereby permitting the snoop-push write data bus tenure to 
precede the data bus tenure  for the pending  read  operation, 
whose address bus tenure preceded the write tenure. 

Third, restrictions are placed in the 601 bus arbitration 
logic and the bus adapter logic to limit the number of reads 
the 601 can place on the 601 bus once a read from the bus 
adapter by  the 601 is pending. This allows the snoop-push 
write from the 601 to be placed  on the bus if needed. 

Summary 
The 601 microprocessor is the first implementation of a 
family of PowerPC microprocessors. The goals of the 601 
product were to provide a PowerPC implementation that 
would also serve  as a software bridge  from the POWER 
architecture, and  it  had to be developed on  a very tight 
schedule in order to bring  a PowerPC processor to the 
marketplace quickly. The 601 was held to the specified 
die size of 10.95 X 10.95  mm'. 

The 601 also meets its original performance objectives in 
terms of processor cycle time and performance against 
industry standard benchmarks. The SPEC benchmarks for 
some IBM products that use the 601 are shown in Table 3. 
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System configuration in which bus deadlocks might occur. 

Table 3 SPEC  benchmark  ratios  for  601-based  computers. 

Benchmark name SPEC ratios for IBM 
RISC System/6OOO 

POWERstationrn models 

Model 250 Model ClO 

008.espresso 58.4  76.9 
022.li 74.2 104.0 
023.eqntott 76.9  107.8 
026.compress 41.2 67.4 
072.sc 85.2  121.8 
085.gcc 51.6  77.7 

Geometric  mean: 
SPECint92  62.6 90.5 

013.spice2g6 43.4  68.9 
O15.doduc 56.4  79.1 
034.mdljdp2 85.7 114.0 
039.wave5 48.6  63.6 
047.tomcatv 94.3  129.9 
048.ora 61.1  74.3 
052.alvinn 160.9  220.3 
056.ear 143.8 173.6 
077.mdljsp2 47.6  63.2 
078.swm256 63.9  81.5 
089.su2cor 72.6  123.3 
090.hydro2d 53.6 80.0 
093.nasa7 72.1  117.2 
094.fpPPP 89.7  128.5 

Geometric  mean: 
SPEW92 72.2  100.8 
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Obviously, performance of a computer  system is a function 
of all the components-not just  the  processor.  However, 
the SPEC benchmark  numbers provide some indication of 
the  performance of the  PowerPC 601 microprocessor. 

The effort of designing the 601 processor involved 
many design trade-offs that tried to balance chip area, 
performance, and design complexity (time to market). The 
experience of the design  team, the ability to  extend  and 
reuse parts of the RISC single-chip  design, and a design 
philosophy of “keeping it simple” all contributed  to  the 
success of the 601 processor,  which is now being used [9] 
in products  by IBM, Apple, and  even  other  companies  that 
were  not  part of the original PowerPC alliance. 
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