
of the 
PowerPC 601 
microprocessor 

P. T. Patel 

To produce a  marketable PowerPC" 
microprocessor on a short development 
schedule, the logic had to be designed in 
a  manner flexible enough to allow quick 
modifications without sacrificing high 
performance and density when customized 
cells were  required. This was accomplished 
for  the PowerPC 601'" microprocessor (601) 
with a high-level design-language description, 
which was synthesized for a  gate-level 
implementation and simulated for functional 
verification. In a similar way, the physical 
design strategy for the 601 struck an attractive 
balance  between  a highly automated, flexible 
floorplan and the additional density that had to 
be available for limited, well-conceived manual 
placements. Finally, a rigorous test strategy 
was  implemented, which has proved very 
useful in analyzing the processor and in 
assembling 601-based  systems. Careful 
adherence to  this methodology led to a 
successful first-pass physical implementation, 
leaving the second iteration for additional 
customer requests. 

Introduction 
When the alliance between Motorola Inc., IBM, and  Apple 
Computer Corporation was formed to develop state-of-the- 
art microprocessors, a complete family of products was 

planned. Three of the originally announced processors 
would take two or three years to develop; it was uniquely 
the goal of the 601 project to bring to market quickly an 
attractive design that balanced cost and performance. An 
impressive set of architectural features were to be included 
in a die  10.95 mm square, running at 50 MHz under worst- 
case processing conditions. By each of these criteria, the 
PowerPC 601TM microprocessor meets or exceeds the initial 
goals. This paper describes the design  methodology  which 
was essential to this development, with  specific details 
about logic  design,  physical  design, testability, and the 
verification approach. 

Overview of design methodology 
The design tools for the PowerPC 601 resulted from 
evolutionary changes to the tool set used to build the 
previous IBM  RISC  System/6000@  (RS/6000) chips [l-31. 
Two PowerPC 601 design tasks were performed on 
mainframes. Now, however, the proprietary tool set runs 
entirely on a workstation platform, using a common 
database for enhanced productivity. The 601 logic 
designers described the chip in a proprietary high-level 
language called Design Structure Language (DSL). The 
DSL compilers accept hardware constructs in a program- 
like manner and support many levels of hierarchy for a 
macro design approach. Figure 1 shows the flow  of 
operations from the DSL designs to two distinct tasks- 
behavioral verification  and logical-to-physical design. Early 
in the DSL-level  design, and more intensely as the gate- 
level  design became available, the testability features were 

"Copyright 1994 by International Business Machines Corporation. Copying in  printed  form for private use is permitted without payment of royalty provided that (1) each 
reproduction is done without alteration and (2) the Journal reference and JBM copyright notice are included on the first page. The title and abstract, but no other portions, of 
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other 

portion of this paper must be obtained from  the Editor. 621 

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 T. B. BRODNAX ET AL. 



Logic design 

- 
Logic  entry 
language 

Boolean 
equivalence f- database 

Chip 

Behavioral 

I 

PowerPC 60 1 microprocessor design methodology. 

integrated and evaluated. To further ensure that the 
verification model was equivalent to the gate-level 
description, a Boolean comparison was made between the 
two designs. 

Computing resources 
The shared resources for the PowerPC 601 synthesis and 
simulation consisted of more than 100 clustered IBM 
RS/6000 workstations running under the control of a 
resource manager  called Qmanager. Qmanager used a 
prioritized queue structure to dispatch, generate, and then 
simulate test cases in the background on the designer’s 
workstations, thus taking advantage of any unused CPU 
resources. A dedicated server, MenuCtrl, was used for the 
automatic management and submission of test cases to 
Qmanager. The defect management server, Xorbit, 
provided the designer of a particular logical unit with the 
ability to manage reports on logic defects found  during the 
development phase of the PowerPC 601. BlackHole 
maintained simulation history and status files, which 
served as the ultimate record of design progress and as the 
basis for all simulation status reporting. Qmanager also 
distributed synthesis jobs and testability jobs to the 
clustered workstations. These jobs did  not require the 
automated gathering of statistics that the verification jobs 
required, but they did  benefit  from the load-balancing 

622 routines of Qmanager. 

Logic synthesis 
The 601 control logic was partitioned into 38 random logic 
macros (RLMs). The IBM synthesis tool, BooleDozer”’, 
implemented the logic  in a technology-independent form, 
then mapped  it into the technology library developed for 
the 601 [4]. The library was composed of “books” which 
had been implemented by the physical designers. The 
resulting logic  from the initial  mapping was optimized for 
area. At this point, BooleDozer applied a number of 
transforms to the logic to attempt to realize the timing 
relationships in the logic designers’ assertion files, even if 
the macros grew in cell count. The physical  designer  could 
control the amount of area he was willing to sacrifice for a 
given  timing improvement. The transforms performed 
simple  tasks-increasing power (and size) of a gate, 
duplicating  logic to alleviate fan-out problems, swapping 
pins, or remapping a function to faster gates (e.g., 
AND/OR to NANDWAND). The assertion files were 
critical; overly relaxed assertions might have allowed 
synthesis to leave unacceptable paths when RLMs were 
tied together, while overly aggressive assertions might 
have contradicted each other, causing timing problems and 
burdensome extra logic. Late in the development process, 
the global assertion file generator partitioned chip timing 
paths into RLM assertions, which saved roughly 10%  of 
our RLM cells (a much-needed improvement for our 
floorplan team) and helped reduce some of the critical 
paths. Synthesis also provided two ways for the user to 
“hide” an intended implementation from synthesis. This 
feature was used sparingly, since the transforms usually 
optimized the logic as well or better than the designers 
could. 

Logic design hierarchy 
For many of the challenging functions in our dataflow, 
customized memory elements, multiplexors, and arithmetic 
functions were employed. These circuits (designated off- 
the-shelf, or OTS) provided optimal timing and density. 
In parallel with the synthesis of the RLMs, the dataflow 
weaver (Figure 1) took all chip DSL and mapped the OTS 
circuits (which required no synthesis) into one file with the 
OTS circuits connected and with prototypes for the RLMs. 
These prototypes were “footprints” which contained the 
signal  I/O for each RLM. The weaver output, a gate- 
level description of the chip’s  OTS blocks with  RLM 
prototypes, was the “parent” input to our parent/child 
program. The “children” were the individual  gate-level 
files for the RLMs. A “flattener” then tied the OTS gates 
and the individual RLMs into one “flattened” description 
of the entire chip. 

T. B. BRODNAX  ET AL. IBM J. RES. DEVELOP.  VOL. 38 NO. 5 SEPTEMBER 1994 



Static timing analysis 
Static timing analysis for the 601 was performed using 
IBM’s mainframe-based tool, the Early Timing Estimator 
(ETE). Design-specific  input to  ETE included the gate- 
level description, capacitances and resistance-capacitance 
(RC) delays, chip inputloutput assertions, and the clock 
waveform. Estimates based on fan-outs and input gate 
capacitances were used before floorplan-based RCs and 
capacitances were available. The technology-based timing 
library was composed of rules generated by the physical 
designers responsible for each macro. The rules included 
five  coefficient delay equations-the intrinsic delay, two 
capacitance-based terms, and two terms based on input 
rise or fall  times.  Timing rules for memory elements and 
latches typically had checks to ensure that the input data 
arrived before the clock by a margin equal to or exceeding 
the setup time  defined  in the rule. These elements also 
typically included clock-to-data-out, which initiated a new 
cycle. Figure 2 shows the typical latch scheme of the 601; 
logic gates were placed between latches using the L2 clock 
phase and latches using the L1 clock phase, facilitating 
simple static timing analysis. ( A n  exception for cycle 
stealing is presented in the next section.) If a path was too 
long, ETE detected that a check had been missed  and 
reported a negative slack for the path. It then became the 
responsibility of the logic designers to correct such paths. 

Tuning methods 
Wherever possible, traditional simple methods were 
employed to tune paths with negative slacks. These 
methods included altering logic,  changing fan-outs, altering 
the floorplan to improve loads, requesting enhancements to 
the technology library, and  modifying the timing assertions 
that were given to logic synthesis. An interactive graphics 
browser, annotated with  timing information, was employed 
by the designers in order to understand paths more 
quickly than by simply browsing  through ETE reports. 

Not all tuning methods used during 601 development 
were straightforward, however. The designer of the 
instruction fetch and dispatch logic encountered a problem 
for which a more elaborate solution was necessary. 
A typical timing  problem for an  aggressive dispatcher 
is in decoding instructions to determine their dispatch 
destinations. In the 601, the dispatcher took advantage of 
two things to relieve this problem. First, the cache data 
were available shortly before the end of the cycle in order 
to allow the data-in rotator to load data appropriately; 
second, LSSD (level-sensitive scan design [ 5 ] )  rules 
allowed the placement of logic between any two latches 
having  different clock phases. Figure 3 shows how the 
rotated data are loaded into the L1 registers in the 
instruction queue while the L1 clock is high; during this 
clock phase, polarity-hold latches reflect their input on the 
output after some buffer-like delay. However, the L2 clock 

LL-l Random  logic  cloud 

9 Random  logic  cloud 

I I L2 

Ordinary latch usage. 

I Cache 

I 

I Rotator 
I I 

I LI I 
1 L2 I 

Decode  logic 

I L1 I 
I 1 L2 

I 
Random  logic  cloud 

1 L1 I 
I 1 L2 

[ Cycle-stealing use of latches in the 601. 

623 

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 T. B. BRODNAX ET AL. 



PowerPC 601 microprocessor die photograph 

is  low, so the cache data do not pass to the output of 
the L2 latch until some time after the L2 clock rises 
(designating the beginning of the next cycle). The 601 
dispatcher decodes instructions from the L1 latch elements 
in the instruction queue so that decoding can be started on 
the same cycle as cache access. The decode information 
is then stored in L2 latches. During the beginning of the 
cycle, when the decodes are actually finished, the L2 clock 
is  high; thus, the decode information is passed directly 
through the latches to the dispatch logic. 

Using the LlLL2 logic  had several positive effects. 
First, the decode logic  is started in the cache access cycle 
without having to be broken up by the setup time of an L1 
latch to store partial results. Also, the decode logic is kept 
together, resulting in simplification  and  allowing a minimal 
space implementation. Because of the time  gained by 
moving the decodes into the cache access clock, very 
little tuning  had to be done here. Another benefit of this 
approach is that the data-in to data-out path is faster than 
the clock to data-out path in the latches used in the 601. 
This means that the latch burden was smaller for this 
section of  logic than for sections using the standard 
approach. 

The unfortunate effect of using the Ll-L2 logic was that 
static timing analysis was made more  difficult. Since there 
was no longer a simple launch point for the L2 data being 
fed by the decode logic, the standard static timing methods 624 

T. B. BRODNAX ET AL. 

did not work here. We  did use the standard methods, 
except that the setup times into the L2 latches were set 
at the rise of the L2 clock, and then the arrival time was 
adjusted back enough to make the setup, and the launch 
time was adjusted forward by the same amount. This 
scheme extends the range of paths ordinarily analyzed by 
our timing tool, Em, without sacrificing the thoroughness 
that has contributed to past successes. 

Boolean  equivalence  checking 
The scheme of simulating a compiled  model of the DSL 
would have been inadequate if the gate-level description 
which fed the physical design of the chip had not been 
equivalent to the compiled  model  being simulated. This 
concern was dealt with by comparing the model  with the 
gate-level description by doing a Boolean equivalence 
check. This check was done on each RLM,  verifymg 
that synthesis made no logical mistakes in its 
transforms. 

Physical design 
The PowerPC 601 microprocessor was fabricated using 
IBM’s proprietary 0.6-pm  minimum-feature process 
technology. The technology includes four levels of signal 
interconnection, a silicide layer for local interconnections, 
and a fifth, coarse level of metal  for connecting chip I/Os 
to the module substrate. As a cost-saving measure, one 
wiring plane was deleted when wiring the chip. The chip 
die, shown in Figure 4, contains 2.8 million transistors in a 
120-mm2 area. The chip is  packaged in a 304-pin ceramic 
quad flat pack using IBM C4 flip-chip solder-ball 
technology. 

Physical design  for the PowerPC 601 microprocessor 
was done with the IBM VLSI Interactive Design 
Automation System (VIDAS). This has proved to be a 
successful method  for semicustom integrated circuits for 
each of the RISC System/6000 chips. As in  most  VIDAS- 
based chips, many critical design processes for the 601 
were conducted in parallel. The primitive library, 
comprising RLM books and OTS books assembled at  the 
transistor level, was developed in parallel with  global 
floorplanning,  logic  design,  logic verification, timing 
analysis, and  tuning. Top-down floorplanning was 
followed, except for pieces of the chip for which the need 
for high customization was identified early. The eight-way 
set-associative cache RAM and its associated TAG 
directory are two obvious circuits which required a high 
degree of customization. The  flexible manner in which 
control logic was synthesized and laid out allowed the 601 
logic designers to make reasonable changes during the 
week when lithography masks were built for the chip. 
Finally, the VIDAS system had the necessary hooks for 
physical  design checking, which minimized the possibility 
of any physical design errors. 

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 



Global floorplanning 
The 601 was designed  on  an  image of multiple stacks, or 
placement columns. No perimeter area was allocated for 
input/output circuits; these were placed within the stacks, 
as can be seen in the die photo of Figure 4, where most 
of the off-chip drivers are in the third stack from the left. 
Placement of macros (both RLM and  OTS macros) was 
done in two steps. First the macros were assigned to 
stacks. This was followed by placement within the stacks; 
initially a coarse placement was done, and this led to finer 
stack placement. Both  floorplanning steps were done with 
a tool  called CPLACE. The chip floorplanner could control 
as many of the placements manually as he believed 
necessary by interacting with CPLACE. 

called  POWERBUS.  This  program connected the power 
service terminals (PSTs) of each macro on a given  plane 
and routed other planes at  user-specified frequencies. 
Once the power buses were placed, the wiring evaluation 
(WEVAL) tool was run. WEVAL performed global routing 
on the chip, which was divided into user-specified  grid 
sizes. WEVAL reported high congestion areas where 
wiring densities would  lead to unwirable nets, suggesting 
areas where adjustments were necessary. Following  wiring 
evaluation and its resulting floorplan adjustments, channel 
optimization (CHOPT) placed wiring bays in areas 
identified  by WEVAL in the dataflow and reserved 
necessary porosity in the RLMs. A tool called RLMIOS 
was used to place control logic input/output pins in the 
optimal locations before the RLMs were actually built. 

The hierarchical nature of the design system can be 
appreciated by looking  at Figure 4. Notice that the space 
above the cache had some special constraints on  it, 
primarily the effect of the cache’s low porosity. A physical 
block had to be  placed there which was the correct size 
and had a low  number of fan-outs to or from the rest of 
the chip. The floating-point unit was a good fit when 
turned sideways and treated as one wiring stack. VIDAS 
had the flexibility to support this. 

Primitive design 
The circuit library used for the 601 chip was designed 
jointly at IBM Austin, Texas and IBM  Burlington, 
Vermont. The circuit library was divided into two 
portions-RLM circuits and  OTS components. The RLM 
circuits (low-level functional blocks such as inverters, 
NAND gates, and And-Or-Invert circuits) were used to 
construct the control logic for the chip dataflow. The OTS 
components included  more complex functions such as 
data registers, multiplexors, adders, and  memory arrays. 
These components were highly customized. The 32KB 
cache is the best example of the densities possible 
in this arrangement; it contains almost two thirds of the 
transistors in roughly one third of the chip area (Figure 4). 

The next step  was to route the power buses with a tool 

IBM J. RES.  DEVELOP.  VOL. 38 NO. 5 SEPTEMBER 1994 

The OTS components were designed in four-bit increments 
and stitched together to obtain a desired component width. 
The density of the circuit designs benefited  from the use 
of silicide  local interconnections between diffusions and 
polysilicon  and studded contacts between wiring levels. 
Another aspect of the macro design  is the timing 
characteristic of the function. The macro designer runs 
a transistor-level simulator to generate the ETE library 
discussed in the previous section. 

Control logic 
The control logic construction began in parallel with the 
global  wiring effort. RLMs consist of a number of rows of 
standard cells that are wired to one another in accordance 
with the logic  specification from synthesis. In addition, the 
previously mentioned  RLM constraints (I/O locations and 
porosity) were honored. Placement of the RLM books was 
done with CPLACE, while the wiring was done with a 
maze router, LGWIRE. Global  wiring at the chip level 
was also done by LGWIRE. 

Tuning interaction with poorplanning 
Throughout the entire design process, timing information 
was provided by an  RC delay estimator and calculator and 
the static timing tool, ETE. The RC estimator-calculator 
was run  in  mixed mode,  using actual calculations for wired 
nets and estimates for the unwired nets. This allowed the 
designers to tune their logic  with the most accurate delay 
estimates and calculations available. 

Physical design checking 
The final phase of the 601 physical  design was to check the 
design to ensure that no process ground rule was violated 
and that the physical implementation matched the logic 
design.  Using the Hierarchical Design  Verification (HDV) 
system, each RLM  and  OTS was checked for ground  rule 
constraints and logical-to-physical comparisons. At the 
global level, HDV  verifies that no  global wire crosses 
macro internal wires, no macro shape interferes with other 
macro shapes, and intermacro connections are correct; it 
also checks for global wire ground  rule violations. HDV 
provided fast responses, which  allowed  logic changes late 
in the design process without affecting the schedule. 

Functional  verification 
Pre-manufacturing verification of the PowerPC 601 
microprocessor required the development of several 
key methodologies for chip simulation. Both gate-level 
simulation and behavioral simulation were used effectively 
during the design  and development stages of the project 
from  initial  logic entry to silicon production. A custom 
hardware platform was designed  and  built to accommodate 
silicon verification after manufacturing. This evaluation 
board (called the JUDGE board) was designed  in parallel 

T. B. BRODNAX ET A L .  

625 



with the 601 and was available at the same time as the first 
physical chip implementation. 

Functional simulation allowed the logic designers to 
correct any defects and to verify the processor completely 
before implementing it in  silicon, thus significantly 
reducing the time and expense required to develop the 
601. In particular, behavioral simulation had the advantage 
of allowing the processor to be modeled in a variety of 
configurations with the inclusion of high-level memory and 
1/0 simulations, while gate-level simulation modeled 
specific  timing relationships among the different 
components of the chip. The goal of functional verification 
was  to ensure that the high-level description (DSL) of the 
chip implemented the function specified by the PowerPC 
Architecturem and met the  stated goals of the PowerPC 
601 microprocessor (e.g., performance, architectural 
enhancements). The functional verification process 
involved running streams of instructions (test cases) 
through the processor model and comparing the results 
with those obtained from a reference model. The reference 
model was an architectural simulator, which  is essentially 
the same for any PowerPP-compliant microprocessor 
with  few changes for processor-specific architectural 
features. 

During  simulation, the processor model could be 
simulated by behavioral models of various system 
components. Because the 601 is a general-purpose 
microprocessor, the behavioral models were written 
to simulate many different types of systems. Thus, by 
adjusting the behavior of the stimuli at the chip boundary, 
the designers were able to simulate the processor for 
virtually any environment in which it  might be used, 
before any specific system environment had been specified. 

The chip verification methodology was key in delivering 
a high-quality first implementation within the severely 
constrained schedule. The following sections discuss the 
simulation environment, the verification methodology, and 
the JUDGE board used for hardware bring-up  and 
verification. 

Simulation  environment 
Two simulators were used by the 601 project: Texsim, a 
two-state behavioral simulator, and  Aussim, an event- 
driven gate-level simulator. Texsim was used to verify the 
logical correctness of the design,  while  Aussim was used 
to verify that the physical implementation of the design 
functioned properly. 

Included in the Texsim simulation environment were 
simulations written in DSL; they simulated system 
components such as main  memory, I/O space, the bus 
arbiter, and an alternate bus master. Most  simulation was 
run  in single-cycle mode, wherein only one clock phase 
is  used. This was possible because Texsim was delay- 

626 independent and ignored race conditions; thus, the L1 

latches always caused a cycle delay, while L2 latches 
always passed data from input to output in a single cycle. 
Some simulation was done with a multicycle model,  in 
which the full two-phase clocking was implemented. 
The multicycle model  allowed verification of logic which 
related to clock generation and control, such as LSSD 
and self-test function, as well as the engineering support 
processor (ESP) interface (used for chip/software 
bring-up).  The  final type of Texsim  model was the 
multiprocessor (MP)  model, a single-cycle  Texsim  model 
that used three 601 processors in the same system model. 

There were several support tools for general Texsim 
simulation and  debugging. Test cases contained initial 
conditions, an instruction stream, and final conditions. 
They could be generated by hand, or by a test case 
generator (random test program  generator-RTPG) which 
included the reference model  in order to correctly generate 
ending conditions. It  was possible to generate an all 
events trace (AET) of the execution of a test case on the 
simulation platform. The AET could be viewed with a 
debugging tool which displayed a cycle-by-cycle trace 
of any signal in the model  (including both latch and 
combinatorial signals, as well as the contents of array 
structures). The designer  could use this debugging tool to 
find logic  bugs quickly-in this environment, finding a logic 
bug was far easier than in a lab environment where only 
limited  information about the state of the chip on a given 
cycle was generally available. Finally, it was possible to 
start the processor model in different states with the same 
test case. The cache could be started empty or with data 
from any source, as could the TLB. The procedure was 
controlled by a program  called the run-time executive 
(RTX),  which  initialized the model for each test case 
(or injected a test case into a model which was already 
running). 

The  Aussim environment was somewhat less elaborate 
than the Texsim environment (Texsim was the primary 
simulator used during the development of the 601). Aussim 
is an event-driven gate-level simulator which uses 
information  from static-timing runs to generate a time- 
based simulation  (in contrast to the cycle-based simulation 
of Texsim). Events were scheduled on gate inputs based 
on the arrival time of the signals  in the static-timing run. 
Aussim test cases were all hand-generated. There was a 
display tool for Aussim test cases which  allowed designers 
to view internal signals on a time-step by time-step basis. 
The Aussim  model was generated from synthesized logic, 
so not  all of a designer’s internal signals were available as 
in Texsim, but the model  more closely resembled the 
actual implementation of the processor. 

Uniprocessor verification methodology 
Three major cycle simulation strategies were used to verify 
the 601: unit simulation, architectural verification (AW), 

T. B. BRODNAX  ET AL. IBM J. RES. DEVELOP.  VOL. 38 NO. 5 SEPTEMBER 1994 



and implementation verification (IVP). Each strategy was 
emphasized in a different stage of the project. The first 
stage of the design process was initial  high-level  design of 
the processor, which was completed in approximately two 
months. After extensive review of the design  from the first 
stage, the second stage of the design process was entered: 
design entry, in which initial DSL entry occurred. This 
stage took from six weeks to two months. The third stage 
involved tying the different  modular pieces of the design 
together. Finally, in the fourth stage, the design was 
placed in various simulated system environments. 

emphasized was unit  simulation. This occurred during and 
after initial DSL entry and consisted of testing each of the 
major functional modules of the processor independently. 
The different functional modules of the 601 included the 
bus interface unit, the cache unit, the instruction fetcher 
and branch unit, the integer execution unit, the integer 
assist unit, the floating-point unit, and the test interface 
unit. The interfaces between these units were defined 
(from both a functional and static-timing perspective) in 
the initial  design phase (stage one above). Thus, each 
module  could be simulated independently by building a 
behavior simulation for the rest of the processor around it. 
A number of different methods were used to implement 
unit simulation. 

For pieces of logic which contained a small  number of 
inputs and easily predictable outputs (i.e., little internal 
state), exhaustive simulation was often used. This ensured 
that the function which was intended to be implemented 
actually was implemented (it did  not ensure that the 
correct function was intended in the first place). By 
breaking the module into submodules, the debugging 
process at the module level was made easier. If the 
submodules work as they are supposed to, a failure at the 
module level  implies that either the submodules’ definition 
or their interconnection is wrong. 

For the integer and floating-point execution units, 
standard test cases were used, and the instructions were 
fed to the units one at a time  from a simulated memory 
hierarchy. The results of the test cases typically included 
registers contained in the unit under test, so the standard 
method of checking the end results made sense in the unit 
simulation environment for these modules. 

The first cycle-simulation verification strategy to be 

For some of the more control-flow-oriented units 
(e.g., the cache and the fetch unit), a more rule-oriented 
approach was taken. For the fetch unit, a set of rules 
about the behavior of the module was defined. Then a 
random stream of instructions was fed to the design, and 
the behavior of the design was checked against the rules. 
It was assumed that the execution units would correctly 
execute an instruction once it was dispatched to them, so 
there was little or no result checking for the fetch-unit 
simulation. When a rule was broken, a snapshot of the 

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 

state of the simulation was taken. The snapshot included 
the previous several hundred cycles and a random number 
seed so that the simulation could be recreated once the 
bug was fixed  (in order to verify the fix). 

The second cycle simulation strategy to be emphasized 
was the AVP strategy, which was used once the functional 
modules had been tied together to form a chip simulation 
model. The AVP strategy was directed toward verifying 
the architectural correctness of the design, and involved 
running automatically generated test cases through the 
model. The test cases increased with  difficulty as the 
implementation of the design became more functionally 
stable. The first  AVP test cases had only one instruction 
each; next came test  cases with ten instances of the same 
instruction, and finally, alternating instructions. After this 
stage, more tools were introduced into the methodology. 

The first phase of AVP testing used a fairly static  set of 
test cases (several hundred at each of the three levels). A 
single set of biasings in the RTPG can actually generate 
many  different test cases, varying anything from the 
translation state of the machine (virtual versus real mode) 
to the instruction stream and dependencies, to exceptional 
data cases. A given set of biasings for RTPG  is referred 
to as an  RTPG  menu. The platform for running cycle 
simulation was a network of RISC System/6000 computers 
and RT  PCs@. An RTPG  menu could be created and then 
submitted to a set of resource control programs. The 
program which kept track of the RTPG menus in the 
system was called MenuCtrZ, while the program which 
handled the computation servers was called Qmanager 
(see above). Menu control would  submit a menu to 
Qmanager multiple  times, and each submission would 
create multiple test cases which were then automatically 
run against the most current chip model. If a test case 
passed, it was simply discarded, but if it  failed, the failing 
test case and some run-time information (the information 
needed to recreate the failing  condition-e.g.,  random 
number generation seeds) were sent to a storage location 
for fails. Statistics for each menu were kept in a database 
(BlackHole). Using this strategy, hundreds of millions 
of cycles of simulation were run on a daily basis. 

The third cycle simulation strategy to be emphasized 
was the IVP strategy. A specific implementation will 
generally have edge conditions and complicated controls 
related to a specific set of conditions or operations. 
The AVP strategy was not biased toward any specific 
implementation, and therefore was not the best way to find 
defects in these specific areas (where defects often reside). 
The IVP strategy was aimed at these areas. The IVP 
strategy was also used to exercise sections of  logic which 
were never exercised by random test-case generation 
(e.g., certain hardware bring-up modes). 

defined  which  had to be tested in concert with various 
For each functional unit, specific  edge conditions were 

T. B. BRODNAX ET AL. 

627 



monitors monitors monitors 

PowerPC 601 bus . 

PowerPC 601 multiprocessor simulation model. 

adverse situations. For example, the floating-point  unit 
might have had a set of tests involving conditions for 
which two operands were denormalized numbers. The 
test cases generated as part of the IVP strategy were 
sometimes generated automatically but were often hand- 
coded. 

Automatic generation was used for some units which 
had excessive edge  conditions-largely the control- 
oriented units (instruction fetcher, cache unit, memory 
unit). It was possible to run a program during simulation 
which monitored signals  in the model for a specific event 
or set of events. These monitor programs would look for 
events or sequences of events and then send the test case 
back to the designer, along  with a report of the event 
which was found. These test cases were then stored as a 
regression suite for the unit in question. The report of the 
event found was then put into a database which kept track 
of which events of the desired set of events had been 
found. When a set of related events was not found by the 
monitor programs, the designers could  gain  insight into 
which parts of the design were being tested by the random 
AVP strategy, and could either get RTPG ‘‘ked’’ in order 
for it to cover that class of events, or concentrate their 
efforts on those areas with handwritten test cases. 

DSL checkers-simulation monitors written in DSL 
which monitored the design for invalid  states-formed 
another verification  mechanism  which was used throughout 
the development of the 601. These checkers monitored the 
design,  looking for logically incorrect states or state 

transitions  which  did  not  cause the test case to fail, or which 
would  aid the designer  in  debugging a failing test case. 

Multiprocessor  verification  methodology 
Support for multiprocessing was a key goal for the 
PowerPC 601 microprocessor and for the PowerPC 
Architecture. This was difficult to achieve, given the 
vast solution space for MP systems, and in particular 
the amount and complexity of logic required to support 
symmetric MP systems. Given the aggressive schedule that 
had been set for the PowerPC 601 and the requirement for 
high-quality functionality, the PowerPC 601 had to provide 
the right set of minimum-complexity features to support 
MP,  and  it  had to obtain a very high level of functionality 
in the first physical implementation. 

When  implementing the MP verification  methodology, 
the verification designers concentrated on  verifying 
multiprocessing on both a uniprocessor model, as 
described earlier, and a tightly coupled shared-memory 
system model, as shown in Figure 5. The shared-memory 
model was necessary to ensure shared-memory interaction 
among  multiple processors for the verification of 
serialization, coherency, and synchronization. The 
methodology consisted of the combination of IVPs, 
monitors, and a custom MP test-case generator. Although 
a subset of IVPs was developed, generating many of the 
events with IVPs was difficult  and  time-consuming because 
they relied on precise sequencing of the implementation. 
Therefore, the designers used a custom MP test-case 



generator and  specifically biased menus to produce random 
test cases for a three-way processor model.  Memory 
coherency was difficult to verify with random test cases, 
because many types of failures might never cause a test- 
case failure. To address this problem, a coherency monitor 
was designed  and  included  with each processor in the MP 
model to monitor bus transactions that did not originate 
from that processor. If such a transaction was detected 
and if that transaction was marked coherent, the monitor 
would check the cache and  all other pipeline positions 
that required snooping to determine whether a matching 
address was found. If found, the monitor generated 
expected signal outputs for the PowerPC 601 as well as 
expected internal state changes. When the appropriate 
state change should have occurred, the monitor checked 
that the changes were correct. If not, the monitor 
interrupted the PowerPC 601 and terminated the test 
case. In addition, other monitors were designed to 
verify memory-cache coherency within the multiprocessor 
model. 

Gate-level simulation 
Behavioral simulation is clearly the most  efficient 
method for testing pipeline interaction in  an evolving 
design. Unfortunately, there exists a limited set of 
tests which require some timing data from the actual 
implementation. Aussim was used with handwritten tests 
to test a number of operations: checking for faults on the 
601 bus, ensuring that the test features worked but were 
not enabled during normal operation, ensuring that the 
power-on-reset function was correct, and ensuring that 
synchronous I/O functioned as expected. 

Silicon evaluation board (JUDGE) 
The JUDGE board was designed  in parallel with the 601 
processor. At the time of first physical implementation, the 
JUDGE board was available to test the first parts which 
came from the fabrication facility. The JUDGE board was 
designed to allow the designers to bring up the 601 chip 
independently of an actual system in order to avoid 
having to deal with system bring-up problems (dividing 
the problem into two pieces reduces it to more easily 
manageable tasks) and because a system-independent test 
bed was desirable for a processor which was to be  used by 
many diverse systems. The JUDGE board implemented 
the bus protocol using FPGAs, which allowed the 
designers to easily alter the bus parameters. Rather than 
running  an operating system and applications, the JUDGE 
board used the ESP interface in the 601 to load test cases 
(just  like the ones run  in simulation) into the machine. This 
gave a much more controlled environment for debugging 
the processor. The JUDGE board could be considered a 
logical extension of the overall verification methodology 

1BM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 

for the 601, rather than a custom system designed around 
the 601. 

Test strategy 

General philosophy 
IBM has used level-sensitive scan design (LSSD) [5] 
stuck-fault testing as the backbone of its test generation for 
many years. The LSSD strategy, partitioning the chip into 
observable scan strings of a few hundred latches, has 
enabled a variety of chips to be successfully tested for 
manufacturing defects. The PowerPC 601 also incorporates 
dynamic built-in  self test (BIST), weighted random pattern 
testing (WRPT)  [6], and IBM’s newest test dynamic delay 
transition test with constrained timings. 

It is always a difficult  challenge to maintain the delicate 
balance between physical constraints and logical  and test 
features. Since the 601 was a derivative of the RISC 
System/6000  single-chip (RSC) processor, a test structure 
already existed at the beginning of the 601 design  effort. 
Because of the rigid test structures put  in  place by the 
RSC chip, the 601 designers had  only to enhance the 
existing  RSC structures, with careful attention to all new 
components added to this chip. For example, the simple 
8KB cache RAM used  on RSC was replaced with  an  eight- 
way set-associated, read-modify-write 32KB cache which 
requires a more complex test strategy. 

This elaborate test strategy may seem expensive, but it 
provides two significant services after the chip has been 
manufactured. First, the test strategy allows us to detect 
a variety of manufacturing defects-both those which 
affect static performance and those which  affect dynamic 
performance. Additionally, the observability features are 
invaluable in debugging a specific instance of the 601 
inserted in a system. Ordinarily, system developers 
have very little data to analyze when they encounter an 
unexpected result in a hardware system, but the common 
on-chip processor (COP) addresses this concern. 

Basic test elements 
The 601 test strategy starts first at the primitive  level, the 
book. When a book is designed  and physically created, 
it  is tested for 100% stuck-fault coverage. All physical 
designers are responsible for making their designs 100% 
stuck-fault testable. They also use the stuck-fault patterns 
in a switch-level simulator to prove equivalency between 
the test model  and the physical  model.  In many instances, 
the physical designer must  make  modifications to enhance 
testability at the primitive phase of a design. An example 
of this’ is a subtle change to the design of a two-to-one 
multiplexor  which makes a significant  difference in the 

S. F. Oakland  and  P. E. Perry, “Testability Analysis of Selector Circuits,” IBM 
internal memo, January 1991. 

T. B. BRODNAX ET AL. 

629 



s1- 

*o$ 

T 

Traditional 2:l multiplexor. 
”” ~ 

testability. Figure 6 shows a more traditional multiplexor 
design which has untestable faults when both selects are 
on. Figure 7, however, shows that a simple  modification 
leads to a 100% testable version. A known output state 
of the multiplexor is present when both selects are off, 
and another known output state is present when both 
selects are on and opposite values are on the data ports. 
Testability is evaluated at each level of the hierarchy 
beyond the primitive book: the RLMs, the merged  OTS 
books, supermacros (combinations of RLMs and OTS 
smaller than the entire chip), and  finally, the chip itself. 
Extensive test generation and  fault analysis along  with 
redesign of the test macros brings these pieces to a 99% 
test coverage range.  At this time,  full chip analysis begins, 
with a search for redundancies and untested faults. Work 
is coordinated with the logic designers, as they tune their 
logic, to aid the test engineer in  removing  global 
redundancies and to increase fault coverage. 

Test features 
It has long been known that LSSD static stuck-fault 
coverage alone leaves a variety of manufacturing defects 
undetected, encouraging the 601 design  team to employ 
several additional test strategies. Increased clock 
frequencies and densities emphasize the need for these 
new strategies, which target the manufacturing defects that 

630 LSSD misses, namely opens, resistive paths, and slow 

T. B. BRODNAX ET AL. 

transiting paths. These test features concentrate on the 
dynamic performance issues on this chip, along  with I,, 
testing. 

stuck-fault coverage greater than 99.97% and a dynamic 
transition fault coverage greater than 90%. In  addition to 
LSSD and  WRPT tests, the 601 testing methodology also 
includes static I,, test, engineering support processor 
functional tests, parametric test, logic  BIST, and array 
BIST. Static I,, test is used to test the limits of the 
quiescent current and to detect shorts to V,, or ground. 
The functional tests include “sort AVPs,” which 
specifically exercise certain critical paths of the chip, 
and a suite of A W s  that exercise the instructions and chip 
1/0 pins. The 601 also has partial Joint Test Activities 
Group (JTAG) compatibilities built  in to allow the use of 
the IEEE 1149.1 interface features. The COP is used to 
control the BIST.  The  logic BIST uses the pseudorandom 
pattern generator and the multiple-input scan register to 
generate and compress the signature. Two types of array 
BIST were implemented. One array BIST tests all of the 
arrays in parallel and is controlled by the COP.  The  local 
cache array BET, which is initiated by the COP but 
controlled by the BIST controller, was built into the cache. 
Both array BISTs could  run in a pseudorandom or a 
deterministic mode. The PowerPC 601 test engineers 
implemented  timing tests based on estimates from the 
static timing analysis of the chip. Rather than simply 
running  all patterns at a given frequency, the clock pulse 
is altered depending on the paths being exercised. This 
dynamic testing provides more  timing information than 
simply the chip’s operational frequency. 

Common on-chip processor (COP) 
The COP serves as a powerful diagnostic engine. It not 
only controls the chip’s  BIST, but also serves  as the 
interface for debugging and analyzing the 601 processor 
chip and surrounding elements on the planar board. As the 
interface to the ESP, it allows the design  engineer to run 
instructions on the processor, stop the processor, and 
unload the contents of every memory element of the 
processor. The  design engineer can then analyze 
unexpected conditions, reload all the memory elements 
in the processor to any desired state, and restart the 
processor to continue with the rest of the instructions. 
During BIST, the COP  fully controls all the operations 
necessary to perform both a global BIST (logic  and array) 
and a cache BIST. It also serves as a powerful diagnostic 
tool,  in conjunction with the ESP, to analyze all array 
failures. This is accomplished by running BIST on a test 
planar board with two 601s on it.  On this test board, one 
601 is a module  known to be free of defects and the other 
is the one under test. Software in the ESP is  run to output 

The objectives for 601 test were to achieve static 

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 



information concerning  the failing array’s data  and 
address,  and  the possible  physical failing location  on  the 
chip. The COP,  in  conjunction with  the  ESP,  provides 
control  and  observability to all of the functional testing 
procedures  used  on  the 601. 

Summary 
We  continue  to  develop this  design system for other 
projects. As  stated  above, it  allowed us to  deliver  the first 
implementation of the  PowerPC  architecture in less  than a 
year.  The  core of this design system is now commercially 
available for consideration by all integrated  circuit  design 
centers.’ 

We achieved a successful first  physical  implementation, 
leaving the  second iteration for additional customer 
requests.  At 66 MHz,  the  PowerPC 601 microprocessor 
attains 62.6 SPECint92TM and 72 S P E c f ~ 9 2 ~ ,  based  on 
measurements  on  the  IBM  RISC System/6000  Model 250. 
The  success of the design team in applying  state-of-the-art 
CMOS technology in a compact single chip gives the 601 
an  outstanding price/performance ratio  and  makes it  well 
suited  for a wide range of system designs [7, 81. It  exceeds 
the  performance of larger processors  which  use  the  more 
complicated  (and  expensive)  BiCMOS  technology. The 
design  methodology and  its  creative application have 
allowed us to  make  the 601 available at a fraction of the 
price, size,  and  power  consumption of processors  with 
comparable performance. 

Acknowledgments 
This  was a unique  project  with aggressive  function, 
performance,  and  schedule goals. It required the 
cooperation of many  people  from Apple,  Motorola, and 
several divisions  within  IBM. In addition, the  project 
was  viewed  as a barometer  for  the health of the overall 
relationship of the alliance. In  the  end,  the  team  accepted 
these  expectations  and  met all of the  project goals. Beyond 
this specific work,  the design  methodology represents 
years of hard work  and clear  vision from  many people 
within  IBM.  Finally, the  authors  are grateful to  Terry 
Potter  for his numerous suggestions  improving the 
readability of this  paper. 

PowerPC, PowerPC 601, Booledozer, and PowerPC 
Architecture are trademarks, and RISC Systed6000 and 
RT PC  are registered trademarks, of International Business 
Machines Corporation. 

SPECint92 and SPECfp92 are trademarks of the Standard 
Performance Evaluation Corporation. 

2 IBM presentation at the 30th Design Automation Conference, June 1993. 

s1- 

2:1 Multiplexor with testability enhancement. 

References 
1. C. H. Feistel, H. Hoffman, G. B. Long, and G. A. 

Nusbaum, “Structured System Design  and Verification,” 
IBM RISC Systern/6000  Technology, Order No. SA23-2619, 
1990, p. 86; available through IBM branch offices. 

Villarrubia, “Semi-Custom Chip Design Methodology,” 
IBM RISC System/6000  Technology, Order No. SA23-2619, 
1990, p. 92; available through IBM branch offices. 

3. E. Seewann, S .  L. Runyon, R. K. Montoye, Q. Nguyen, 
and J. C.  Ridings, “VLSI Circuit Design for the RISC 
Systed6000 Processor,” IBM RISC System/6OOO 
Technology, Order No.  SA23-2619,  1990,  p.  98; available 
through IBM branch offices. 

Technology Mapper on a New Converging Algorithm,” 
Proceedings  of  the  29th  Design Automation Conference, 
Anaheim, CA, June 1992, IEEE, pp. 484-498. 

5. E. B. Eichelberger, “Method of Level-Sensitive Testing 
a Functional Logic System,” U.S. Patent 3,783,254, 
September 25,  1973. 

6.  F. Motika  and J. A. Waicukauski, “Weighted Random 
Pattern Testing Apparatus and Method,” U.S. Patent 
4,688,733, August 1981. 

Proceedings of COMPCON 1993, San Francisco, February 

2. J. W. Cagle, P. T. Patel, B. I. Waters, and P. G. 

4. D. Kung, R. Damiano, and T. Nix, “BDDMAP: A 

7. C.  R. Moore, “The PowerPC 601 Microprocessor,” 

1993, IEEE, pp. 109-116. 
8. Brian Case, “IBM Delivers First PowerPC 

Microprocessor,” Micmpmessor Report, Oct. 28, 1992,  p. 1. 

Received October 8, 1993; accepted for publication 
June 27, 1994 631 

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994 T. B. BRODNAX ET AL. 



Timothy B. Brodnax ZBM Systems Technology & 
Architecture Division, 11400 Burnet Road, Austin, Texas 
78758. Mr. Brodnax received the B.S.E.E. degree in electrical 
engineering from the University of California at Berkeley in 
1981  and the Master’s degree from the University of California 
at Los Angeles in  1982. Prior to joining IBM,  he was a 
member of the technical staff for Hughes Aircraft Company in 
Los Angeles.  Mr. Brodnax is currently an advisory engineer, 
working on POWEWPowerPC microprocessor designs. He 
holds one patent and has presented papers on various aspects 
of integrated circuit and processor design. 

Richard V. Billings ZBM Systems Technology & 
Architecture Division, 11400 Burnet Road, Austin, Texas  78758 
(RBILL at AUSTZN; rbill@austin.ibm.com). Mr. Billings is an 
advisory engineer in  design for testing in the PowerPC RISC 
processor development group. He joined IBM  in  1974 after 
graduating from the State University of New York at 
Morrisville. His assignments have included device and process 
design  and OEM test manufacturing. In 1986 he acquired his 
B.S.-equivalent degree while working on test manufacturing in 
the IBM General Technology Division at Manassas, Virginia. 
In his current position Mr.  Billings has been associated with 
test development for RISC System/6000  and PowerPC parts; 
he is lead test engineer for the PowerPC 601 and 630. 

Scott c. Glenn IBM RZSC System/6000 Division, 11400 
Burnet Road, Austin, Texas 78758. Mr. Glenn received the 
B.S. degree in computer engineering in  1989 from Baylor 
University in Waco, Texas. He joined IBM  in  1989 as a 
software engineer. Since that time  he has worked as a 
verification engineer for the RISC single-chip (RSC) 
microprocessor and as an engineer on the design  and 
verification of the PowerPC 601 microprocessor. He is 
currently working as a PowerPC consultant for the OEM area 
of the RISC System/6000  Division. 

P. T. Patel IBM Systems Technology & Architecture 
Division, 11400 Burnet Road, Austin, Texas  78758 
(PTPATEL at A U S W 6 ) .  Mr. Patel joined IBM  in Manassas, 
Virginia, in 1973  upon receiving the M.S.E.E. degree from the 
University of Connecticut. He worked in various bipolar 
circuit design activities there, then transferred in  1978 to 
Burlington, where  he worked on the 12L circuit technology. 
He transferred to Austin in  1980 and continued to work in the 
area of VLSI design. Mr. Patel was the lead designer on the 
memory management chip for the RT PC system; he  defined 
the design methodology for the RT PC, RISC System/6000, 
and PowerPC 601 designs. He was also the advisor to the 
design team for the RISC System/6000 processor chip set. He 
is currently a senior technical staff member in RISC processor 
development. 


