Implementation
of the
PowerPC 601
microprocessor

. Brodnax
. Billings

by T.B
\Y

. C. Glenn
T

To produce a marketable PowerPC™
microprocessor on a short development
schedule, the logic had to be designed in

a manner flexible enough to allow quick
modifications without sacrificing high
performance and density when customized
cells were required. This was accomplished
for the PowerPC 601™ microprocessor (601)
with a high-level design-language description,
which was synthesized for a gate-level
implementation and simulated for functional
verification. In a similar way, the physical
design strategy for the 601 struck an attractive
balance between a highly automated, flexible
floorplan and the additional density that had to
be available for limited, well-conceived manual
placements. Finally, a rigorous test strategy
was implemented, which has proved very
useful in analyzing the processor and in
assembliing 601-based systems. Careful
adherence to this methodology led to a
successful first-pass physical implementation,
leaving the second iteration for additional
customer requests.

Introduction

When the alliance between Motorola Inc., IBM, and Apple
Computer Corporation was formed to develop state-of-the-
art microprocessors, a complete family of products was

planned. Three of the originally announced processors
would take two or three years to develop; it was uniquely
the goal of the 601 project to bring to market quickly an
attractive design that balanced cost and performance. An
impressive set of architectural features were to be included
in a die 10.95 mm square, running at 50 MHz under worst-
case processing conditions. By each of these criteria, the
PowerPC 601™ microprocessor meets or exceeds the initial
goals. This paper describes the design methodology which
was essential to this development, with specific details
about logic design, physical design, testability, and the
verification approach.

® Overview of design methodology

The design tools for the PowerPC 601 resulted from
evolutionary changes to the tool set used to build the
previous IBM RISC System/6000® (RS/6000) chips [1-3].
Two PowerPC 601 design tasks were performed on
mainframes. Now, however, the proprietary tool set runs
entirely on a workstation platform, using a common
database for enhanced productivity. The 601 logic
designers described the chip in a proprietary high-level
language called Design Structure Language (DSL). The
DSL compilers accept hardware constructs in a program-
like manner and support many levels of hierarchy for a
macro design approach. Figure 1 shows the flow of
operations from the DSL designs to two distinct tasks—
behavioral verification and logical-to-physical design. Early
in the DSL-level design, and more intensely as the gate-
level design became available, the testability features were
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PowerPC 601 microprocessor design methodology.

integrated and evaluated. To further ensure that the
verification model was equivalent to the gate-level
description, a Boolean comparison was made between the
two designs.

& Computing resources

The shared resources for the PowerPC 601 synthesis and
simulation consisted of more than 100 clustered IBM
RS/6000 workstations running under the control of a
resource manager called Omanager. Qmanager used a
prioritized queue structure to dispatch, generate, and then
simulate test cases in the background on the designer’s
workstations, thus taking advantage of any unused CPU
resources. A dedicated server, MenuCrrl, was used for the
automatic management and submission of test cases to
Qmanager. The defect management server, Xorbit,
provided the designer of a particular logical unit with the
ability to manage reports on logic defects found during the
development phase of the PowerPC 601. BlackHole
maintained simulation history and status files, which
served as the ultimate record of design progress and as the
basis for all simulation status reporting. Qmanager also
distributed synthesis jobs and testability jobs to the
clustered workstations. These jobs did not require the
automated gathering of statistics that the verification jobs
required, but they did benefit from the load-balancing
routines of Qmanager.
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Logic design

& Logic synthesis

The 601 control logic was partitioned into 38 random logic
macros (RLMs). The IBM synthesis tool, BooleDozer™,
implemented the logic in a technology-independent form,
then mapped it into the technology library developed for
the 601 [4]. The library was composed of ‘“books”” which
had been implemented by the physical designers. The
resulting logic from the initial mapping was optimized for
area. At this point, BooleDozer applied a number of
transforms to the logic to attempt to realize the timing
relationships in the logic designers’ assertion files, even if
the macros grew in cell count. The physical designer could
control the amount of area he was willing to sacrifice for a
given timing improvement. The transforms performed
simple tasks—increasing power (and size) of a gate,
duplicating logic to alleviate fan-out problems, swapping
pins, or remapping a function to faster gates (e.g.,
AND/OR to NAND/NAND). The assertion files were
critical; overly relaxed assertions might have allowed
synthesis to leave unacceptable paths when RLMs were
tied together, while overly aggressive assertions might
have contradicted each other, causing timing problems and
burdensome extra logic. Late in the development process,
the global assertion file generator partitioned chip timing
paths into RLM assertions, which saved roughly 10% of
our RLM cells (a much-needed improvement for our
floorplan team) and helped reduce some of the critical
paths. Synthesis also provided two ways for the user to
““hide”” an intended implementation from synthesis. This
feature was used sparingly, since the transforms usually
optimized the logic as well or better than the designers
could.

& Logic design hierarchy

For many of the challenging functions in our dataflow,
customized memory elements, multiplexors, and arithmetic
functions were employed. These circuits (designated off-
the-shelf, or OTS) provided optimal timing and density.

In parallel with the synthesis of the RLMs, the dataflow
weaver (Figure 1) took all chip DSL and mapped the OTS
circuits (which required no synthesis) into one file with the
OTS circuits connected and with prototypes for the RLMs.
These prototypes were ““footprints’> which contained the
signal I/O for each RLM. The weaver output, a gate-

level description of the chip’s OTS blocks with RLM
prototypes, was the ““parent’ input to our parent/child
program. The ““children” were the individual gate-level
files for the RLMs. A ““flattener” then tied the OTS gates
and the individual RL.Ms into one ‘“flattened”” description
of the entire chip.
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® Static timing analysis
Static timing analysis for the 601 was performed using
IBM’s mainframe-based tool, the Early Timing Estimator ]

(ETE). Design-specific input to ETE included the gate- L LI |

level description, capacitances and resistance—capacitance L L2 _
(RC) delays, chip input/output assertions, and the clock |

waveform. Estimates based on fan-outs and input gate ( Random logic cloud j
capacitances were used before floorplan-based RCs and l

capacitances were available. The technology-based timing ] L1 ]

library was composed of rules generated by the physical 1 L2 ]
designers responsible for each macro. The rules included 1

five coefficient delay equations—the intrinsic delay, two C Random logic cloud )

capacitance-based terms, and two terms based on input
rise or fall times. Timing rules for memory elements and
latches typically had checks to ensure that the input data [ L1 |

arrived before the clock by a margin equal to or exceeding [ 12 |
the setup time defined in the rule. These elements also
typically included clock-to-data-out, which initiated a new
cycle. Figure 2 shows the typical latch scheme of the 601;
logic gates were placed between latches using the L2 clock
phase and latches using the L1 clock phase, facilitating
simple static timing analysis. (An exception for cycle
stealing is presented in the next section.) If a path was too
long, ETE detected that a check had been missed and
reported a negative slack for the path. It then became the
responsibility of the logic designers to correct such paths.

Ordinary latch usage.

® Tuning methods
Wherever possible, traditional simple methods were Cache
employed to tune paths with negative slacks. These RAM
methods included altering logic, changing fan-outs, altering
the floorplan to improve loads, requesting enhancements to T
the technology library, and modifying the timing assertions r Rotator J
that were given to logic synthesis. An interactive graphics T
browser, annotated with timing information, was employed | Li |
by the designers in order to understand paths more ‘ l L2 ]
quickly than by simply browsing through ETE reports.
Not all tuning methods used during 601 development ( Decode logic )
were straightforward, however. The designer of the
instruction fetch and dispatch logic encountered a problem [ L1 |
for which a more elaborate solution was necessary. [ 12 ]
A typical timing problem for an aggressive dispatcher T
is in decoding instructions to determine their dispatch ( Random logie cloud )
destinations. In the 601, the dispatcher took advantage of
two things to relieve this problem. First, the cache data
were available shortly before the end of the cycle in order r Lr I
to allow the data-in rotator to load data appropriately; 1 12 |
second, LSSD (level-sensitive scan design [5]) rules
allowed the placement of logic between any two latches
having different clock phases. Figure 3 shows how the
rotated data are loaded into the L1 registers in the
instruction queue while the L1 clock is high; during this
clock phase, polarity-hold latches reflect their input on the
output after some buffer-like delay. However, the L2 clock

Cycle-stealing use of latches in the 601.
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PowerPC 601 microprocessor die photograph.

is low, so the cache data do not pass to the output of

the L2 latch until some time after the L2 clock rises
(designating the beginning of the next cycle). The 601
dispatcher decodes instructions from the L1 latch elements
in the instruction queue so that decoding can be started on
the same cycle as cache access. The decode information

is then stored in L2 latches. During the beginning of the

_cycle, when the decodes are actually finished, the L2 clock

is high; thus, the decode information is passed directly
through the latches to the dispatch logic.

Using the L1-1.2 logic had several positive effects.
First, the decode logic is started in the cache access cycle
without having to be broken up by the setup time of an L1
latch to store partial results. Also, the decode logic is kept
together, resulting in simplification and allowing a minimal
space implementation. Because of the time gained by
moving the decodes into the cache access clock, very
little tuning had to be done here. Another benefit of this
approach is that the data-in to data-out path is faster than
the clock to data-out path in the latches used in the 601.
This means that the latch burden was smaller for this
section of logic than for sections using the standard
approach.

The unfortunate effect of using the L1-L2 logic was that
static timing analysis was made more difficult. Since there
was no longer a simple launch point for the L2 data being
fed by the decode logic, the standard static timing methods
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did not work here. We did use the standard methods,
except that the setup times into the L2 latches were set

at the rise of the L2 clock, and then the arrival time was
adjusted back enough to make the setup, and the launch
time was adjusted forward by the same amount. This
scheme extends the range of paths ordinarily analyzed by
our timing tool, ETE, without sacrificing the thoroughness
that has contributed to past successes.

® Boolean equivalence checking

The scheme of simulating a compiled model of the DSL
would have been inadequate if the gate-level description
which fed the physical design of the chip had not been
equivalent to the compiled model being simulated. This
concern was dealt with by comparing the model with the
gate-level description by doing a Boolean equivalence
check. This check was done on each RLM, verifying
that synthesis made no logical mistakes in its
transforms.

Physical design

The PowerPC 601 microprocessor was fabricated using
IBM’s proprietary 0.6-um minimum-feature process
technology. The technology includes four levels of signal
interconnection, a silicide layer for local interconnections,
and a fifth, coarse level of metal for connecting chip I/Os
to the module substrate. As a cost-saving measure, one
wiring plane was deleted when wiring the chip. The chip
die, shown in Figure 4, contains 2.8 million transistors in a
120-mm’ area. The chip is packaged in a 304-pin ceramic
quad flat pack using IBM C4 flip-chip solder-ball
technology.

Physical design for the PowerPC 601 microprocessor
was done with the IBM VLSI Interactive Design
Automation System (VIDAS). This has proved to be a
successful method for semicustom integrated circuits for
each of the RISC System/6000 chips. As in most VIDAS-
based chips, many critical design processes for the 601
were conducted in parallel. The primitive library,
comprising RLM books and OTS books assembled at the
transistor level, was developed in parallel with global
floorplanning, logic design, logic verification, timing
analysis, and tuning. Top-down floorplanning was
followed, except for pieces of the chip for which the need
for high customization was identified early. The eight-way
set-associative cache RAM and its associated TAG
directory are two obvious circuits which required a high
degree of customization. The flexible manner in which
control logic was synthesized and laid out allowed the 601
logic designers to make reasonable changes during the
week when lithography masks were built for the chip.
Finally, the VIDAS system had the necessary hooks for
physical design checking, which minimized the possibility
of any physical design errors.
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® Global floorplanning

The 601 was designed on an image of multiple stacks, or
placement columns. No perimeter area was allocated for
input/output circuits; these were placed within the stacks,
as can be seen in the die photo of Figure 4, where most
of the off-chip drivers are in the third stack from the left.
Placement of macros (both RLM and OTS macros) was
done in two steps. First the macros were assigned to
stacks. This was followed by placement within the stacks;
initially a coarse placement was done, and this led to finer
stack placement. Both floorplanning steps were done with
a tool called CPLACE. The chip floorplanner could control
as many of the placements manually as he believed
necessary by interacting with CPLACE.

The next step was to route the power buses with a tool
called POWERBUS. This program connected the power
service terminals (PSTs) of each macro on a given plane
and routed other planes at user-specified frequencies.
Once the power buses were placed, the wiring evaluation
(WEVAL) tool was run. WEVAL performed global routing
on the chip, which was divided into user-specified grid
sizes. WEVAL reported high congestion areas where
wiring densities would lead to unwirable nets, suggesting
areas where adjustments were necessary. Following wiring
evaluation and its resulting floorplan adjustments, channel
optimization (CHOPT) placed wiring bays in areas
identified by WEVAL in the dataflow and reserved
necessary porosity in the RLMs. A tool called RLMIOS
was used to place control logic input/output pins in the
optimal locations before the RLMs were actually built.

The hierarchical nature of the design system can be
appreciated by looking at Figure 4. Notice that the space
above the cache had some special constraints on it,
primarily the effect of the cache’s low porosity. A physical
block had to be placed there which was the correct size
and had a low number of fan-outs to or from the rest of
the chip. The floating-point unit was a good fit when
turned sideways and treated as one wiring stack. VIDAS
had the flexibility to support this.

® Primitive design

The circuit library used for the 601 chip was designed
jointly at IBM Austin, Texas and IBM Burlington,
Vermont. The circuit library was divided into two
portions—RLM circuits and OTS components. The RLM
circuits (low-level functional blocks such as inverters,
NAND gates, and And-Or-Invert circuits) were used to
construct the control logic for the chip dataflow. The OTS
components included more complex functions such as
data registers, multiplexors, adders, and memory arrays.
These components were highly customized. The 32KB
cache is the best example of the densities possible

in this arrangement; it contains almost two thirds of the
transistors in roughly one third of the chip area (Figure 4).
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The OTS components were designed in four-bit increments
and stitched together to obtain a desired component width.
The density of the circuit designs benefited from the use
of silicide local interconnections between diffusions and
polysilicon and studded contacts between wiring levels.
Another aspect of the macro design is the timing
characteristic of the function. The macro designer runs

a transistor-level simulator to generate the ETE library
discussed in the previous section.

® Control logic

The control logic construction began in parallel with the
global wiring effort. RLMs consist of a number of rows of
standard cells that are wired to one another in accordance
with the logic specification from synthesis. In addition, the
previously mentioned RLM constraints (I/O locations and
porosity) were honored. Placement of the RLM books was
done with CPLACE, while the wiring was done with a
maze router, LGWIRE. Global wiring at the chip level
was also done by LGWIRE.

® Tuning interaction with floorplanning

Throughout the entire design process, timing information
was provided by an RC delay estimator and calculator and
the static timing tool, ETE. The RC estimator—calculator
was run in mixed mode, using actual calculations for wired
nets and estimates for the unwired nets. This allowed the
designers to tune their logic with the most accurate delay
estimates and calculations available.

® Physical design checking

The final phase of the 601 physical design was to check the
design to ensure that no process ground rule was violated
and that the physical implementation matched the logic
design. Using the Hierarchical Design Verification (HDV)
system, each RLM and OTS was checked for ground rule
constraints and logical-to-physical comparisons. At the
global level, HDV verifies that no global wire crosses
macro internal wires, no macro shape interferes with other
macro shapes, and intermacro connections are correct; it
also checks for global wire ground rule violations. HDV
provided fast responses, which allowed logic changes late
in the design process without affecting the schedule.

Functional verification

Pre-manufacturing verification of the PowerPC 601
microprocessor required the development of several

key methodologies for chip simulation. Both gate-level
simulation and behavioral simulation were used effectively
during the design and development stages of the project
from initial logic entry to silicon production. A custom
hardware platform was designed and built to accommodate
silicon verification after manufacturing. This evaluation
board (called the JUDGE board) was designed in parallel
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with the 601 and was available at the same time as the first
physical chip implementation.

Functional simulation allowed the logic designers to
correct any defects and to verify the processor completely
before implementing it in silicon, thus significantly
reducing the time and expense required to develop the
601. In particular, behavioral simulation had the advantage
of allowing the processor to be modeled in a variety of
configurations with the inclusion of high-level memory and
1/O simulations, while gate-level simulation modeled
specific timing relationships among the different
components of the chip. The goal of functional verification
was to ensure that the high-level description (DSL) of the
chip implemented the function specified by the PowerPC
Architecture™ and met the stated goals of the PowerPC
601 microprocessor (e.g., performance, architectural
enhancements). The functional verification process
involved running streams of instructions (test cases)
through the processor model and comparing the results
with those obtained from a reference model. The reference
model was an architectural simulator, which is essentially
the same for any PowerPC™-compliant microprocessor
with few changes for processor-specific architectural
features.

During simulation, the processor model could be
simulated by behavioral models of various system
components. Because the 601 is a general-purpose
microprocessor, the behavioral models were written
to simulate many different types of systems. Thus, by
adjusting the behavior of the stimuli at the chip boundary,
the designers were able to simulate the processor for
virtually any environment in which it might be used,

before any specific system environment had been specified.

The chip verification methodology was key in delivering
a high-quality first implementation within the severely
constrained schedule. The following sections discuss the
simulation environment, the verification methodology, and
the JUDGE board used for hardware bring-up and
verification.

® Simulation environment

Two simulators were used by the 601 project: Texsim, a
two-state behavioral simulator, and Aussim, an event-
driven gate-level simulator. Texsim was used to verify the
logical correctness of the design, while Aussim was used
to verify that the physical implementation of the design
functioned properly.

Included in the Texsim simulation environment were
simulations written in DSL; they simulated system
components such as main memory, /O space, the bus
arbiter, and an alternate bus master. Most simulation was
run in single-cycle mode, wherein only one clock phase
is used. This was possible because Texsim was delay-
independent and ignored race conditions; thus, the L1
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latches always caused a cycle delay, while L2 latches
always passed data from input to output in a single cycle.
Some simulation was done with a multicycle model, in
which the full two-phase clocking was implemented.

The multicycle model allowed verification of logic which
related to clock generation and control, such as LSSD
and self-test function, as well as the engineering support
processor (ESP) interface (used for chip/software
bring-up). The final type of Texsim model was the
multiprocessor (MP) model, a single-cycle Texsim model
that used three 601 processors in the same system model.

There were several support tools for general Texsim
simulation and debugging. Test cases contained initial
conditions, an instruction stream, and final conditions.
They could be generated by hand, or by a test case
generator (random test program generator—RTPG) which
included the reference model in order to correctly generate
ending conditions. It was possible to generate an all
events trace (AET) of the execution of a test case on the
simulation platform. The AET could be viewed with a
debugging tool which displayed a cycle-by-cycle trace
of any signal in the model (including both latch and
combinatorial signals, as well as the contents of array
structures). The designer could use this debugging tool to
find logic bugs quickly—in this environment, finding a logic
bug was far easier than in a lab environment where only
limited information about the state of the chip on a given
cycle was generally available. Finally, it was possible to
start the processor model in different states with the same
test case. The cache could be started empty or with data
from any source, as could the TLB. The procedure was
controlled by a program called the run-time executive
(RTX), which initialized the model for each test case
(or injected a test case into a model which was already
running).

The Aussim environment was somewhat less elaborate
than the Texsim environment (Texsim was the primary
simulator used during the development of the 601). Aussim
is an event-driven gate-level simulator which uses
information from static-timing runs to generate a time-
based simulation (in contrast to the cycle-based simulation
of Texsim). Events were scheduled on gate inputs based
on the arrival time of the signals in the static-timing run.
Aussim test cases were all hand-generated. There was a
display tool for Aussim test cases which allowed designers
to view internal signals on a time-step by time-step basis.
The Aussim model was generated from synthesized logic,
so not all of a designer’s internal signals were available as
in Texsim, but the model more closely resembled the
actual implementation of the processor.

® Uniprocessor verification methodology

Three major cycle simulation strategies were used to verify
the 601: unit simulation, architectural verification (AVP),
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and implementation verification (IVP). Each strategy was
emphasized in a different stage of the project. The first
stage of the design process was initial high-level design of
the processor, which was completed in approximately two
months. After extensive review of the design from the first
stage, the second stage of the design process was entered:
design entry, in which initial DSL entry occurred. This
stage took from six weeks to two months. The third stage
involved tying the different modular pieces of the design
together. Finally, in the fourth stage, the design was
placed in various simulated system environments.

The first cycle-simulation verification strategy to be
emphasized was unit simulation. This occurred during and
after initial DSL entry and consisted of testing each of the
major functional modules of the processor independently.
The different functional modules of the 601 included the
bus interface unit, the cache unit, the instruction fetcher
and branch unit, the integer execution unit, the integer
assist unit, the floating-point unit, and the test interface
unit. The interfaces between these units were defined
(from both a functional and static-timing perspective) in
the initial design phase (stage one above). Thus, each
module could be simulated independently by building a
behavior simulation for the rest of the processor around it.
A number of different methods were used to implement
unit simulation.

For pieces of logic which contained a small number of
inputs and easily predictable outputs (i.e., little internal
state), exhaustive simulation was often used. This ensured
that the function which was intended to be implemented
actually was implemented (it did not ensure that the
correct function was intended in the first place). By
breaking the module into submodules, the debugging
process at the module level was made easier. If the
submodules work as they are supposed to, a failure at the
module level implies that either the submodules’ definition
or their interconnection is wrong.

For the integer and floating-point execution units,
standard test cases were used, and the instructions were
fed to the units one at a time from a simulated memory
hierarchy. The results of the test cases typically included
registers contained in the unit under test, so the standard
method of checking the end results made sense in the unit
simulation environment for these modules.

For some of the more control-flow-oriented units
(e.g., the cache and the fetch unit), a more rule-oriented
approach was taken. For the fetch unit, a set of rules
about the behavior of the module was defined. Then a
random stream of instructions was fed to the design, and
the behavior of the design was checked against the rules.
It was assumed that the execution units would correctly
execute an instruction once it was dispatched to them, so
there was little or no result checking for the fetch-unit
simulation. When a rule was broken, a snapshot of the
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state of the simulation was taken. The snapshot included
the previous several hundred cycles and a random number
seed so that the simulation could be recreated once the
bug was fixed (in order to verify the fix).

The second cycle simulation strategy to be emphasized
was the AVP strategy, which was used once the functional
modules had been tied together to form a chip simulation
model. The AVP strategy was directed toward verifying
the architectural correctness of the design, and involved
running automatically generated test cases through the
model. The test cases increased with difficulty as the
implementation of the design became more functionally
stable. The first AVP test cases had only one instruction
each; next came test cases with ten instances of the same
instruction, and finally, alternating instructions. After this
stage, more tools were introduced into the methodology.

The first phase of AVP testing used a fairly static set of
test cases (several hundred at each of the three levels). A
single set of biasings in the RTPG can actually generate
many different test cases, varying anything from the
translation state of the machine (virtual versus real mode)
to the instruction stream and dependencies, to exceptional
data cases. A given set of biasings for RTPG is referred
to as an RTPG menu. The platform for running cycle
simulation was a network of RISC System/6000 computers
and RT PCs®. An RTPG menu could be created and then
submitted to a set of resource control programs. The
program which kept track of the RTPG menus in the
system was called MenuCtrl, while the program which
handled the computation servers was called Omanager
{see above). Menu control would submit a menu to
Qmanager multiple times, and each submission would
create multiple test cases which were then automatically
run against the most current chip model. If a test case
passed, it was simply discarded, but if it failed, the failing
test case and some run-time information (the information
needed to recreate the failing condition—e.g., random
number generation seeds) were sent to a storage location
for fails. Statistics for each menu were kept in a database
(BlackHole). Using this strategy, hundreds of millions
of cycles of simulation were run on a daily basis.

The third cycle simulation strategy to be emphasized
was the IVP strategy. A specific implementation will
generally have edge conditions and complicated controls
related to a specific set of conditions or operations.

The AVP strategy was not biased toward any specific
implementation, and therefore was not the best way to find
defects in these specific areas (where defects often reside).
The IVP strategy was aimed at these areas. The IVP
strategy was also used to exercise sections of logic which
were never exercised by random test-case generation

(e.g., certain hardware bring-up modes).

For each functional unit, specific edge conditions were
defined which had to be tested in concert with varions 627
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adverse situations. For example, the floating-point unit
might have had a set of tests involving conditions for
which two operands were denormalized numbers. The
test cases generated as part of the IVP strategy were
sometimes generated automatically but were often hand-
coded.

Automatic generation was used for some units which
had excessive edge conditions—largely the control-
oriented units (instruction fetcher, cache unit, memory
unit). It was possible to run a program during simulation
which monitored signals in the model for a specific event
or set of events. These monitor programs would look for
events or sequences of events and then send the test case
back to the designer, along with a report of the event
which was found. These test cases were then stored as a
regression suite for the unit in question. The report of the
event found was then put into a database which kept track
of which events of the desired set of events had been
found. When a set of related events was not found by the
monitor programs, the designers could gain insight into
which parts of the design were being tested by the random
AVP strategy, and could either get RTPG “‘fixed”’ in order
for it to cover that class of events, or concentrate their
efforts on those areas with handwritten test cases.

DSL checkers—simulation monitors written in DSL
which monitored the design for invalid states—formed
another verification mechanism which was used throughout
the development of the 601. These checkers monitored the
design, looking for logically incorrect states or state
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transitions which did not cause the test case to fail, or which
would aid the designer in debugging a failing test case.

® Multiprocessor verification methodology

Support for multiprocessing was a key goal for the
PowerPC 601 microprocessor and for the PowerPC
Architecture. This was difficult to achieve, given the

vast solution space for MP systems, and in particular

the amount and complexity of logic required to support
symmetric MP systems. Given the aggressive schedule that
had been set for the PowerPC 601 and the requirement for
high-quality functionality, the PowerPC 601 had to provide
the right set of minimum-complexity features to support
MP, and it had to obtain a very high level of functionality
in the first physical implementation.

When implementing the MP verification methodology,
the verification designers concentrated on verifying
multiprocessing on both a uniprocessor model, as
described earlier, and a tightly coupled shared-memory
system model, as shown in Figure §. The shared-memory
model was necessary to ensure shared-memory interaction
among multiple processors for the verification of
serialization, coherency, and synchronization. The
methodology consisted of the combination of IVPs,
monitors, and a custom MP test-case generator. Although
a subset of IVPs was developed, generating many of the
events with IVPs was difficult and time-consuming because
they relied on precise sequencing of the implementation.
Therefore, the designers used a custom MP test-case
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generator and specifically biased menus to produce random
test cases for a three-way processor model. Memory
coherency was difficult to verify with random test cases,
because many types of failures might never cause a test-
case failure. To address this problem, a coherency monitor
was designed and included with each processor in the MP
model to monitor bus transactions that did not originate
from that processor. If such a transaction was detected
and if that transaction was marked coherent, the monitor
would check the cache and all other pipeline positions

that required snooping to determine whether a matching
address was found. If found, the monitor generated
expected signal outputs for the PowerPC 601 as well as
expected internal state changes. When the appropriate
state change should have occurred, the monitor checked
that the changes were correct. If not, the monitor
interrupted the PowerPC 601 and terminated the test

case. In addition, other monitors were designed to

verify memory-cache coherency within the multiprocessor
model.

® Gate-level simulation

Behavioral simulation is clearly the most efficient
method for testing pipeline interaction in an evolving
design. Unfortunately, there exists a limited set of

tests which require some timing data from the actual
implementation. Aussim was used with handwritten tests
to test a number of operations: checking for faults on the
601 bus, ensuring that the test features worked but were
not enabled during normal operation, ensuring that the
power-on-reset function was correct, and ensuring that
synchronous I/O functioned as expected.

® Silicon evaluation board (JUDGE)

The JUDGE board was designed in parallel with the 601
processor. At the time of first physical implementation, the
JUDGE board was available to test the first parts which
came from the fabrication facility. The JUDGE board was
designed to allow the designers to bring up the 601 chip
independently of an actual system in order to avoid

having to deal with system bring-up problems (dividing

the problem into two pieces reduces it to more easily
manageable tasks) and because a system-independent test
bed was desirable for a processor which was to be used by
many diverse systems. The JUDGE board implemented
the bus protocol using FPGAs, which allowed the
designers to easily alter the bus parameters. Rather than
running an operating system and applications, the JUDGE
board used the ESP interface in the 601 to load test cases
(just like the ones run in simulation) into the machine. This
gave a much more controlled environment for debugging
the processor. The JUDGE board could be considered a
logical extension of the overall verification methodology
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for the 601, rather than a custom system designed around
the 601.

Test strategy

® General philosophy

IBM has used level-sensitive scan design (LSSD) [5]
stuck-fault testing as the backbone of its test generation for
many years. The LSSD strategy, partitioning the chip into
observable scan strings of a few hundred latches, has
enabled a variety of chips to be successfully tested for
manufacturing defects. The PowerPC 601 also incorporates
dynamic built-in self test (BIST), weighted random pattern
testing (WRPT) [6], and IBM’s newest test dynamic delay
transition test with constrained timings.

It is always a difficult challenge to maintain the delicate
balance between physical constraints and logical and test
features. Since the 601 was a derivative of the RISC
System/6000 single-chip (RSC) processor, a test structure
already existed at the beginning of the 601 design effort.
Because of the rigid test structures put in place by the
RSC chip, the 601 designers had only to enhance the
existing RSC structures, with careful attention to all new
components added to this chip. For example, the simple
8KB cache RAM used on RSC was replaced with an eight-
way set-associated, read-modify-write 32KB cache which
requires a more complex test strategy.

This elaborate test strategy may seem expensive, but it
provides two significant services after the chip has been
manufactured. First, the test strategy allows us to detect
a variety of manufacturing defects—both those which
affect static performance and those which affect dynamic
performance. Additionally, the observability features are
invaluable in debugging a specific instance of the 601
inserted in a system. Ordinarily, system developers
have very little data to analyze when they encounter an
unexpected result in a hardware system, but the common
on-chip processor (COP) addresses this concern.

® Basic test elements

The 601 test strategy starts first at the primitive level, the
book. When a book is designed and physically created,

it is tested for 100% stuck-fault coverage. All physical
designers are responsible for making their designs 100%
stuck-fault testable. They also use the stuck-fault patterns
in a switch-level simulator to prove equivalency between
the test model and the physical model. In many instances,
the physical designer must make modifications to enhance
testability at the primitive phase of a design. An example
of this' is a subtle change to the design of a two-to-one
multiplexor which makes a significant difference in the

1S. F. Oakland and P. E. Perry, “Testability Analysis of Selector Circuits,”” IBM
internal memo, January 1991,
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Traditional 2:1 multiplexor.

testability. Figure 6 shows a more traditional multiplexor
design which has untestable faults when both selects are
on. Figure 7, however, shows that a simple modification
leads to a 100% testable version. A known output state
of the multiplexor is present when both selects are off,
and another known output state is present when both
selects are on and opposite values arc on the data ports.
Testability is evaluated at each level of the hierarchy
beyond the primitive book: the RLMs, the merged OTS
books, supermacros (combinations of RLMs and OTS
smaller than the entire chip), and finally, the chip itself.
Extensive test generation and fault analysis along with
redesign of the test macros brings these pieces to a 9%
test coverage range. At this time, full chip analysis begins,
with a search for redundancies and untested faults. Work
is coordinated with the logic designers, as they tune their
logic, to aid the test engineer in removing global
redundancies and to increase fault coverage.

& Test features

It has long been known that LSSD static stuck-fault
coverage alone leaves a variety of manufacturing defects
undetected, encouraging the 601 design team to employ
several additional test strategies. Increased clock
frequencies and densities emphasize the need for these
new strategies, which target the manufacturing defects that
LSSD misses, namely opens, resistive paths, and slow

T. B. BRODNAX ET AL.

transiting paths. These test features concentrate on the
dynamic performance issues on this chip, along with I,
testing.

The objectives for 601 test were to achieve static
stuck-fault coverage greater than 99.97% and a dynamic
transition fault coverage greater than 90%. In addition to
LSSD and WRPT tests, the 601 testing methodology also
includes static I, test, engineering support processor
functional tests, parametric test, logic BIST, and array
BIST. Static [}, test is used to test the limits of the
quiescent current and to detect shorts to V7, or ground.
The functional tests include “‘sort AVPs,”” which
specifically exercise certain critical paths of the chip,
and a suite of AVPs that exercise the instructions and chip
I/O pins. The 601 also has partial Joint Test Activities
Group (JTAG) compatibilities built in to allow the use of
the IEEE 1149.1 interface features. The COP is used to
control the BIST. The logic BIST uses the pseudorandom
pattern generator and the multiple-input scan register to
generate and compress the signature. Two types of array
BIST were implemented. One array BIST tests all of the
arrays in parallel and is controlled by the COP. The local
cache array BIST, which is initiated by the COP but
controlled by the BIST controller, was built into the cache.
Both array BISTs could run in a pseudorandom or a
deterministic mode. The PowerPC 601 test engineers
implemented timing tests based on estimates from the
static timing analysis of the chip. Rather than simply
running all patterns at a given frequency, the clock pulse
is altered depending on the paths being exercised. This
dynamic testing provides more timing information than
simply the chip’s operational frequency.

& Common on-chip processor (COP)

The COP serves as a powerful diagnostic engine. It not
only controls the chip’s BIST, but also serves as the
interface for debugging and analyzing the 601 processor
chip and surrounding elements on the planar board. As the
interface to the ESP, it allows the design engineer to run
instructions on the processor, stop the processor, and
unload the contents of every memory element of the
processor. The design engineer can then analyze
unexpected conditions, reload all the memory elements

in the processor to any desired state, and restart the
processor to continue with the rest of the instructions.
During BIST, the COP fully controls all the operations
necessary to perform both a global BIST (logic and array)
and a cache BIST. It also serves as a powerful diagnostic
tool, in conjunction with the ESP, to analyze all array
failures. This is accomplished by running BIST on a test
planar board with two 601s on it. On this test board, one
601 is a module known to be free of defects and the other
is the one under test. Software in the ESP is run to output
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information concerning the failing array’s data and
address, and the possible physical failing location on the
chip. The COP, in conjunction with the ESP, provides
control and observability to all of the functional testing
procedures used on the 601.

Summary

We continue to develop this design system for other
projects. As stated above, it allowed us to deliver the first
implementation of the PowerPC architecture in less than a
year. The core of this design system is now commercially
available for consideration by all integrated circuit design
centers.

We achieved a successful first physical implementation,
leaving the second iteration for additional customer
requests. At 66 MHz, the PowerPC 601 microprocessor
attains 62.6 SPECint92™ and 72 SPEC{p92™, based on
measurements on the IBM RISC System/6000 Model 250.
The success of the design team in applying state-of-the-art
CMOS technology in a compact single chip gives the 601
an outstanding price/performance ratio and makes it well
suited for a wide range of system designs [7, 8]. It exceeds
the performance of larger processors which use the more
complicated (and expensive) BICMOS technology. The
design methodology and its creative application have
allowed us to make the 601 available at a fraction of the
price, size, and power consumption of processors with
comparable performance.
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