POWER?2
instruction
cache unit

|. Barreh
T. Golla

B. Arimilli
J. Jordan

by J.
R.
L.
P.

This paper describes the instruction cache
unit (ICU) of the IBM POWER2™ processor,
with emphasis on improvements over the
original POWER ICU design. The POWER2 ICU
incorporates a new compare-branch scheme
that minimizes processing time penalties, a
second branch processor, increased branch
look-ahead capability, and doubled instruction-
fetch and instruction-dispatch bandwidth.

Introduction
IBM introduced the POWER-based RISC System/6000®
(RS/6000) workstation in February of 1990. This system
was well received in the industry and helped IBM capture
a sizable share of the workstation market. The POWER2™
processor goals were to build on the strengths of the
original POWER design and to overcome its shortcomings.
The POWER and POWER? systems partition instruction
processing across three units: the instruction cache unit
(ICU), the fixed-point unit (FXU), and the floating-point
unit (FPU). This paper describes the overall organization
of the POWER?2 ICU, as well as the improvements over
the previous design. Figure 1 is a block diagram of the
POWER?2 ICU. The primary functions of the ICU are the
following:

e Fetch all instructions.

¢ Execute branch and logic on condition register
instructions.

e Dispatch instructions to the FXU and FPU.

* Process interrupts.

¢ Maintain the architected condition, count, and link
registers.

e Maintain interrupt control registers.

e Provide engineering support processor (ESP) functions.

To improve performance over that of the existing
POWER-based RS/6000 systems, the ICU designers
focused on enhancing branch and superscalar performance
while minimizing the cache miss penalty. The POWER2
ICU design addressed these challenges by

e Designing a new compare-branch scheme.

¢ Adding a second branch processor to allow processing of
two branches in a single cycle.

¢ Increasing branch look-ahead capability.

¢ Doubling the instruction fetch bandwidth both from
cache and from memory.

¢ Doubling the instruction buffers.

e Enabling instruction cache accesses during cache miss
processing.

¢ Doubling the dispatch bandwidth to the other functional
units.

Architected registers

The ICU maintains the architected registers involved in
processing branch instructions and interrupts. User-
accessible registers include the condition register (CR), the
link register (LR), and the count register (CTR). The other
registers include the machine state register (MSR), the
save restore registers, and the segment registers.

©Copyright 1994 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

637

J. I. BARREH ET AL.

538

Instruction reload bus

Cache reload
buffer

¥ L]
Cache
directories TLB

[] [] ¥ Instruction cache
[Hit logic]
Instruction MUXing
Instruction buffe
nstruct
T:Gg::} Architected | _ on buffers
stack registers Decode
I i
3 Dispatch MUXing
! Logicon
l Branch condition register
processing operations
] I
Four-word instruction
P-bus interface bus (I-bus)
to FXU and FPU
Processor bus

o

gg ICU internal logical partitioning.

® Condition register (CR)
The CR consists of eight 4-bit fields. The ICU tests these
fields to determine the outcome of conditional branch
instructions. Many events can modify the CR bits.
Compare instructions can alter any field. Most register-to-
register instructions include a record bit; setting the bit
causes an update to a predefined CR field. Move to
condition register (MCR) instructions can alter any
combination of the eight fields. Logic on condition register
(LCR) instructions alter a single CR bit. Finally, the ICU
can restore a previous CR value if an interrupt occurs.
The CR interlock logic provides a lock bit for each
of the eight CR fields. Lock bits are set (reserving the
corresponding fields) when the ICU dispatches CR setting
instructions to the FXU or FPU; the lock bits are reset
upon instruction completion. The ICU dispatches or holds
instructions that read or update a CR field based on the
setting of the lock bit associated with the source or target
field.

® Link register (LR)

Subroutine calls use the LR extensively. A subroutine call
usually translates into a branch instruction with its link
bit set; the link bit specifies that the ICU must save the
address of the next sequential instruction (the return

J. I. BARREH ET AL.

address) in the LR. A special form of the branch
instruction, which uses the contents of the LR as the target
address, supports returns from subroutine calls. Because
the entire 32-bit value becomes the target address, this
instruction also allows branching beyond the limitations

of the normal branch displacement fields.

® Count register (CTR)

The 32-bit CTR serves multiple purposes. As its name
implies, this register can hold the iteration count for

a loop. A form of the branch conditional instruction
decrements the count and tests the resulting value; the
outcome affects whether the conditional branch is taken.
Second, like the LR, the CTR also can supply the target
address for long branches. Finally, across supervisor call
boundaries, the save and restore process for the MSR
involves the CTR.

® Machine state register (MSR)

Bits in the MSR enable or disable processor features
such as external (and other) interrupt enables, privileged
instruction access, FPU access, interrupt addressing, and
instruction and data relocation.

® Save restore registers

Save restore register 0 saves the return address on
interrupts. Save restore register 1 saves the contents of
the MSR and the interrupt status on interrupts; it restores
the MSR during a return from interrupt instruction.

® Segment registers

The FXU maintains the sixteen segment registers which
define the current effective-to-virtual address translation.
The FXU broadcasts any segment register changes using
the processor bus (P-bus). The ICU monitors the P-bus
and maintains a shadow copy of these registers to improve
the performance for instruction address translation.

® Program counter stack (PCS)

To allow precise interrupts, the ICU maintains multiple
copies of the link, count, and condition registers. The
program counter stack (PCS) retains up to four backup
copies of each of these registers and restores their contents
if required because of an interrupt. When the ICU
dispatches an interrupt-causing (IC) instruction, the PCS
logic flags the instruction. If the ICU dispatches an ICU
instruction that modifies any of these three registers after
the flagged IC instruction, the ICU backs up that particular
register on its corresponding backup stack. In general,
only the first ICU instruction to modify one of these
registers after an IC instruction requires a backup of that
register; additional operations on that register do not. If an
IC instruction does cause an interrupt, the ICU uses these

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

backup stacks to restore the registers to their state prior to
the IC instruction, and then the ICU removes the backup
copies.

The ability to restore snapshots of these registers using
the backup copies allows the ICU to execute past the
interrupt-causing instructions. However, the FXU and
FPU do not execute past an instruction that causes an
interrupt; therefore, any of their instructions which modify
these ICU registers do not require register backup copies
(because they will not have to back out of any changes).
If the FXU (or FPU) finishes executing a marked IC
instruction successfully and the backup is no longer
needed, the backup copy is removed.

Instruction fetching

Most computers execute programs in a manner which
provides the same results as if all instructions executed
one at a time. Early computers included a program counter
that pointed to the current instruction. In concept, all
instructions prior to the current instruction were complete,
and all instructions following the current instruction had
yet to start.

In many of today’s high-performance systems, especially
in superscalar designs, the high degree of instruction-level
parallelism blurs the concept of a program counter,
possibly to the point of nonexistence. However, in a
processor which supports precise interrupts, an effective
program counter usually exists for interrupt processing; the
interrupt processing mechanism receives a single current
address; prior instructions are complete, and following
instructions have not begun.

However, aside from interrupts, each pipeline stage in a
superscalar processor effectively has its own view of the
current instruction. In the POWER?2 ICU, two hardware
registers maintain the program counter equivalents for the
fetch and dispatch stages. The instruction fetch address
register (IFAR) points to the current instruction being
fetched along an expected, or guessed, instruction stream
path. The instruction address register (IAR) points to the
current instructions being dispatched. The ICU usually
increments the IAR each cycle by the number of
dispatched instructions.

On the basis of the AR contents and branch
instructions which logically follow the current dispatch
instruction, the branch unit determines the expected
instruction stream path based on a guess algorithm.

{For POWER and POWER?2, the guess algorithm for
unresolved, conditional branches is not taken.) The ICU
adjusts the IFAR each cycle to prefetch instructions which
the dispatch stage might need. By prefetching instructions
along an expected path, the ICU overlaps instruction
cache accesses with useful work. Usually the IFAR is
many instructions ahead of where the IAR is currently
pointing.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

To fetch instructions, the ICU must generate addresses,
translate addresses, and access the instruction cache.
The instruction fetch mechanism attempts to fetch eight
instructions per cycle, including fetch requests which
span cache-line boundaries. The fetch logic places the
instructions in one of the two instruction buffers (target or
sequential), as space allows. Later sections of this paper
describe these buffers and the subsequent dispatch of
instructions.

® Fetch address generation

The fetch logic prefetches instructions along an expected,
or guessed, instruction stream path. The fetch logic
attempts to have at least six instructions in the sequential
instruction buffer at all times to facilitate multiple
instruction dispatch. The ICU normally increments the
IFAR by the number of instructions stored in the
instruction buffer by the fetch logic; this normal operation
occurs while sequential code is being executed. If there

is a branch, the ICU may load the IFAR with the target
address of the branch. The ICU treats interrupts and
returns from interrupts as special cases of branches; the
interrupt logic provides the target address for an interrupt,
and save restore register 0 provides the address for a
return from interrupt instruction.

S Address translation

The ICU must translate fetch addresses in order to access
the cache arrays and cache directories. The address
translation logic provides a mechanism for translating the
effective address of an instruction to a virtual address and
then to a real memory address. (If translation is not
enabled, the real address is simply the effective address.)
When a translation cannot complete because the
instruction translation lookaside buffer (I-TLB) does not
contain the necessary translation information, the ICU
uses the P-bus to request that the FXU complete the
translation. The FXU translates the virtual address and
returns the real address on the P-bus. The ICU uses the
translation to update an entry in the TLB. The ICU does
not request a translation until the ICU is sure that the
dispatch stage will require the associated instruction. For a
more detailed description of POWER? address translation,
see the paper by Shippy and Griffith in this issue [1].

& Translation lookaside buffer (TLB)

This small cache provides a mechanism for improving

the speed of translating a virtual address to a real page
number. This two-way set-associative table contains 64
entries (congruence classes) in each set. Each two-word
entry contains the segment ID, bits 4 through 13 of the
virtual address, the real page number, page protection bits,
a valid bit, and parity bits. The TLB replacement policy is

least recently used (LRU). 539

J. I. BARREH ET AL.

540

Instruction cache

The 32KB instruction cache is a two-way set-associative
design with 128 lines (congruence classes) per set; each
line is 128 bytes, or 32 instructions. The cache allows the
fetching of eight words in parallel, even when the access
crosses cache-line boundaries, as long as the instructions
are in the cache and the fetch does not cross a page
boundary. The cache implements an LRU replacement
algorithm.

In the POWER implementation, the instruction cache
is not accessible while a cache line is being filled from
memory. The POWER? design alleviates this problem by
adding a cache reload buffer (CRB). This ICU CRB is
similar to the CRB which is present in the POWER and
POWER? data cache units; it holds a single cache line of
information, and it permits access to the cache during a
cache-line reload. When a cache request is made, the
cache logic searches both the cache directories and
the CRB.

® Cache directories
Logically, for each cache request, the cache logic searches
a directory to determine whether the data are present and,
if present, where the data reside. POWER2 physically
implements two distinct cache directories—one for even
cache lines and one for odd cache lines—as did the original
POWER implementation [2]. This allows access to
directory entries for two adjacent lines (odd and even)
during one cycle, enabling the prefetching of instructions
across cache-line boundaries.

A cache directory contains one entry (or tag) per
cache line; a one-to-one mapping exists between a cache
directory tag and its associated cache line in the cache
storage array. The cache directory entry consists of the
20-bit real page number, a valid bit, and parity bits. Since
the cache is a two-way set-associative design, the cache
logic compares the 20 high-order address bits of a cache
request with two directory tags. A match signals a cache
hit; the directory tag that matches dictates which cache
line contains the required data.

® Cache arrays
The cache arrays provide local storage for instructions
fetched from main storage (and for some instruction
predecode bits which are described later). The 32KB cache
consists of 16 cache arrays of 2 KB each. Eight arrays
supply data for even cache lines; the other eight supply
data for odd cache lines. The organization of the arrays is
such that any eight sequential addresses in a cache line
access one word from each of the eight associated arrays.
Addressing for the eight storage arrays for the even
cache lines is independent of the addressing for the eight
arrays for odd cache lines. By addressing one group of
arrays using the IFAR contents and addressing the other

J. I. BARREH ET AL.

group with the address of the first word in the next cache
line, a fetch request can access one word from each of the
16 arrays. As a result, the ICU can fetch eight sequential
instructions (within the same page) every cycle, including
eight-word blocks that span cache-line boundaries.

® Cache miss processing

When the fetch logic requests an instruction that is not in
the cache or CRB, the ICU uses the P-bus to request a
cache-line reload from the storage control unit (SCU). The
CRB address register (IFAR_R) holds the address of the
cache line currently in the CRB. At the beginning of a
cache miss, the cache logic copies the CRB contents
(which were filled during the previous cache miss) into the
cache. The IFAR_R addresses the cache and directories
as the cache receives the copy of the line from the CRB.
After the CRB contents have been emptied into the cache,
the ICU copies the current cache miss address from the
IFAR into the IFAR_R in preparation for the reload data.
This also frees the IFAR to access the cache, if necessary,
during the cache miss sequence once the initial reload data
return. The cache miss address in the IFAR_R routes the
reload data into the proper CRB locations.

As instructions come into the CRB, they are also
forwarded (or bypassed) to the fetch unit. The IFAR keeps
track of the reload data and adjusts the address by the
number of instructions bypassed so that instruction
fetching can continue from the point where bypass has
stopped. Instruction bypass can be stopped by a cache-line
wrap, full instruction buffers, a machine check, an SVC-
type instruction, or a branch which changes the sequential
instruction stream.

During a cache-line reload, as instructions arrive on
the instruction reload bus, the ICU partially decodes the
instructions. The predecode logic creates a 6-bit tag
which identifies invalid opcodes, FXU instructions, FPU
instructions, instructions that affect cache miss processing,
and ICU instructions. The ICU stores these predecode
tags with the associated instruction in the instruction
cache.

Instruction buffers
The instruction buffers hold instructions prefetched
from the cache by the prefetch mechanism (IFAR and
associated logic). These buffers supply up to six
instructions within a single cycle for dispatch and allow
inspection of two subsequent instructions for use in branch
prefetching. Sixteen sequential instruction buffer entries
hold prefetched instructions from the sequential stream;
eight target instruction buffer entries hold instructions from
a guessed branch taken path. Each buffer entry contains 40
bits of instruction, predecode tag, and parity information.
When the ICU encounters an unresolved conditional
branch, the fetch logic uses one instruction buffer for

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

sequential instruction stream fetching and the other buffer
for fetching instructions along a branch path. If the branch
is not taken, the ICU discards instructions fetched along
the branch path, the sequential buffer supplies instructions
to the dispatch stage, and instruction fetching along the
sequential path resumes. When a branch is taken, the ICU
dumps the target buffer into the sequential stream buffer;
dispatch continues along this new sequential stream.

The instruction buffer logic controls instruction buffer
updates and supplies instructions to the decode and
dispatch multiplexers. The information necessary to
manage these buffers includes the following:

® Which branches are taken.

¢ When synchronizing operations must occur.

¢ How many instructions are being fetched from the
cache.

¢ How many instructions are being dispatched.

e How many instructions are in the instruction buffer.

» Where the next instruction for dispatch is in the
instruction buffer.

¢ How much space exists in the FXU and FPU instruction
buffers.

¢ Whether special-purpose register contention exists
between instructions.

The ICU can steer any sequential or target buffer entry
to the first dispatch port and the entries immediately
following to the remaining dispatch ports.

Instruction dispatch

The ICU dispatches instructions from either the sequential
or target instruction buffers, depending on whether the
ICU is in sequential dispatch mode or target dispatch
mode. In sequential dispatch mode, the ICU fully decodes
six instructions and inspects two more for branches,
assuming the sequential buffers have valid instructions.
Full decoding identifies the instruction type from the
instruction tags, opcodes, and extended opcodes. If the
seventh or eighth instruction is a branch, and the target
address is available, the ICU can prefetch the target. The
ICU can dispatch up to six instructions from the sequential
buffers: four FXU/FPU instructions and two ICU
instructions (either two branches or one branch and one
LCR instruction). The dispatch logic evaluates all six
instructions in parallel.

In target dispatch mode, the ICU can fully decode and
dispatch up to four instructions, none of which may be
ICU instructions. In some cases, the fetch logic can
prefetch branches in target buffers. To determine whether
the ICU can dispatch a particular instruction, the dispatch
logic examines all conditions and interlocks established
by previous instructions, up to and including the given
instruction. The ICU routes instructions that meet the

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 19%4

conditions for dispatch to the CR control logic, the branch
processors, or the four-word instruction bus.

The ICU conditionally dispatches instructions following
unresolved conditional branches. When the ICU or FXU
resolves the branch, either the FXU and FPU execute the
conditionally dispatched instructions (if the branch is not
taken), or the ICU or FXU cancels the instructions
(if the branch is taken). The ICU can dispatch only one
conditional instructional stream. The ICU cannot dispatch
a second unresolved branch nor the instructions that
follow.

® Branch processing

The ICU routes branches in the dispatch window to the
branch processors. The ICU has two independent branch
processors; therefore, it can handle up to two branches per
cycle. When the POWER2 ICU encounters two branch
instructions in the current dispatch cycle, one of the
following cases is true:

o First branch is taken — No processing of the second
branch is necessary.

o First branch is unresolved — No further branch
processing is possible that cycle.

o First branch is not taken and second branch is not taken
— The ICU treats both branches as NO OPs and the
branches cause no lost cycles.

o First branch is not taken and the second branch is taken
— The ICU generates the target address of the second
branch using the second branch processor.

o First branch is not taken and second branch is
unresolved — Same as the preceding case.

When the ICU encounters unresolved branches, it sends
a branch packet to the FXU. The packet specifies the
condition register bit on which the branch depends, as well
as whether the branch should be taken if the condition is
true. The ICU dispatches instructions past the unresolved
branch and marks them as conditional. When the ICU has
conditionally dispatched four instructions, or when the
sequential stream becomes interlocked for any reason
other than FXU/FPU lack of buffer space, the ICU
switches to target dispatch. The ICU marks these
instructions as target instructions, and holds them
on the instruction bus (I-bus) until the branch is
resolved.

If the FXU resolves the branch, the FXU notifies the
ICU of the outcome of the branch. Similarly, if the ICU
decides the branch, the ICU notifies the FXU. The ICU
resolves the branch if the ICU or FPU computes the
dependent CR value (or if the ICU receives the CR change
on the same cycle in which the packet is sent, a boundary
case). Depending on whether the branch is taken, the FXU
and FPU either execute the conditional instruction stream

J. I. BARREH ET AL.

541

542

1 2 3 4 5 6

Fetch Sequential] Target - |SequentiallSequentiallSequential}Sequential

" CMP BCIC4C5C6]T1 T2 T3] C8 C9
Dispatch | o3| ™ @7 T4 |ciocul
Decode CMP Cl{C2 C3{C4 C5{C6 C7
Execute CMP C‘l C2 C3|C4 C5({C6 C7

|
FXU resolves the branch and forwards

the outcome to the functional units.

POWER?2 timing: Branch not taken.

or latch the target instructions from the I-bus. Figures 2
and 3 illustrate the timing characteristics for the taken and
not-taken cases for the following code:

CMP

BC

c1

C2

C3 T1
C4 T2
C5 T3
C6 T4
C1 TS

Figure 2 shows that there is no penalty for a correctly
guessed (not taken) conditional branch. As Figure 3 shows,
the POWER?2 implementation requires only one idle
pipeline cycle after a mispredicted (taken) branch. The
POWER implementation incurred as much as a three-cycle
penalty. By fetching the target path and placing the target
instructions on the I-bus, the POWER?2 design eliminates
two of these guessed wrong branch penalty cycles.

Interrupt processing

Two categories of interrupts exist. Some interrupts (for
example, divide by zero, storage protection exceptions, or
invalid operation) occur as the result of an instruction. In
contrast, asynchronous interrupts (for example, system
reset, machine check, external, and floating-point
imprecise) occur with no predictable relation to the
instructions being executed.

As a result of the high degree of instruction-level
parallelism, POWER? systems may recognize interrupt
conditions earlier than a sequential machine. For all
recoverable interrupts, when the ICU services an
interrupt, the machine state requires a single current
address at which execution is to resume upon the return

J. I. BARREH ET AL.

from the interrupt. Instructions prior to this current
instruction are complete; future instructions have not
begun. When an instruction causes an interrupt, the
offending instruction becomes the current instruction when
the ICU services the interrupt. Therefore, the ICU cannot
recognize an interrupt associated with an instruction until
all previous instructions have completed, thereby ensuring
that the previous instructions will not later cause interrupts.

Furthermore, hardware must suppress an interrupt
condition if it occurs solely as an artifact of the superscalar
implementation. For example, consider an instruction
storage interrupt which might occur when instructions
are prefetched. If the fetched instruction is on a guessed
instruction stream (beyond an unresolved conditional
branch), or if a previously fetched branch instruction
has not yet been executed, a possibility exists that this
interrupt-causing fetch would not occur in a sequential
machine. Therefore, the instruction storage interrupt is not
valid until the offending instruction is the next instruction
to execute.

In the case of multiple interrupts, the hardware must
select a single interrupt to service. The architecture defines
the system reset interrupt to be the highest-priority
interrupt, so that it will reset the machine even when other
interrupts are pending. In POWER?, the system reset and
machine check interrupts can occur at any time. Because
of the serially reusable nature of the save and restore
registers, the ICU recognizes all other interrupts
sequentially. A predefined priority list orders these
interrupts.

Because the ICU cannot recognize an interrupt
associated with an instruction until all preceding
instructions have completed, the interrupt ordering gives
priority to instructions that are earlier in the instruction
stream (and therefore further through the pipelines). In the
list that follows, notice that, among interrupts caused by
an instruction, the ICU gives preference to interrupt
conditions that do not occur until the execute stage over
interrupt conditions that are detectable in the dispatch
stage.

Although the ICU can select the current instruction in
an arbitrary manner for the asynchronous floating-point
imprecise and external interrupts, all previous instructions
must have completed when the ICU services the interrupt.
Therefore, the asynchronous floating-point imprecise and
external interrupts must wait until all previously initiated
instructions complete to ensure that outstanding operations
cannot produce an interrupt.

Some types of interrupts are known to be mutually
exclusive; because they cannot be present simultaneously,
the priority list does not differentiate among them. The list
groups them together and assigns them a common priority
level. The POWER? interrupt priority ordering is as
follows:

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

1. System reset.

2. Machine check.

3. Program counter interrupt—execution. These interrupts
are mutually exclusive and assume a priority based
on the instruction sequence. They are trace, trap,
alignment, data storage, and floating-point enabled
exception.

4. Instruction dispatch interrupts—dispatch. These
interrupts are mutually exclusive and have no priority
order. They are the program interrupts (privilege,
invalid operation), supervisor call, and floating-point
unavailable.

5. Floating-point imprecise interrupt.

. External interrupt.

7. Instruction storage interrupt—fetch.

(=)

® [nterrupt state machine

A state machine validates and prioritizes interrupts.

The machine starts in a “no interrupts pending’’ state.
Occurrences of interrupt conditions (requests or signals)
cause transitions based on the conditions and their
respective priorities. Once a pending state is entered, the
ICU accepts and processes the interrupt, or a higher-
priority interrupt becomes pending (overriding the lower-
priority interrupt), or the interrupt condition is cleared
(canceling the pending interrupt).

® [nterrupt process execution

When the ICU accepts an interrupt, the ICU saves

the state and transfers control to the interrupt handler
software. Saving the state involves storing the current
MSR and the address at which the interrupt occurred

(or the address of the next instruction if the interrupt is
asynchronous). For some interrupts, the ICU stores the
cause of the interrupt. The interrupt state machine returns
to the ‘‘no interrupts pending” state. The MSR and the
type of interrupt determine the interrupt vector to which
the machine branches. The ICU alters the MSR according
to type of interrupt.

P-bus interface

The ICU, the FXU, and the SCU use the P-bus to
communicate. P-bus interface logic monitors the P-bus to
detect commands that the ICU must execute or co-execute
with the FXU. It also generates and receives service
requests from the other chips on the P-bus. These services
include address translation, segment register update,
special-purpose register access, cache operations (for
example, cache-line invalidate or cache-line flush), TLB
invalidates, or cache-line reloads. The P-bus state machine
controls the P-bus interface on the ICU. Because the P-bus
state machine reloads the I-cache and I-TLB, it also
controls the instruction buffers, the IFAR, the cache
arrays and directories, and the TLB.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 1994

1 2 3 4 5 6
Fetch Sequential| Target [Sequential{Sequential Sequential| Sequential
. CMP BC|c4C5 C6[T1 T2 T3
Disparch |~ oy ¢ T4
Decode CMPCL| C2 C3|TI T2 | T3 T4
Execute eMP Cl| <7 | TI T2 | T3 T4
‘ FalS

FXU resolves the branch and forwards
the outcome to the functional units.

e g

POWER? timing: Branch taken.

Summary

The POWER?2 ICU builds on the strengths of the POWER
ICU and improves important functions such as branch
processing. It doubles the instruction reload bandwidth,
instruction fetch bandwidth, and instruction dispatch

to FXU and FPU. The design adds a second branch
processor to facilitate the execution of two branches in
one cycle. It also implements a new scheme to improve
compare-branch code sequences.

Acknowledgments

The logic designers of the ICU would like to thank Greg
Grohoski and Charles Moore for their contribution to the
definition of the POWER2 ICU. We would also like to
thank John Groot, who did the physical layout and wiring
of the chip, and Pat Pena, who handled the overall
simulation of the ICU.

POWER?2 is a trademark, and RISC System/6000 is a
registered trademark, of International Business Machines
Corporation.

References

1. D. J. Shippy and T. W. Griffith, “POWER?2 Fixed-Point,
Data Cache, and Storage Control Units,”” IBM J. Res.
Develop. 38, No. 5, 503-524 (September 1994, this issue).

2. G. F. Grohoski, J. A. Kahle, L. E. Thatcher, and C. R.
Moore, ‘““Branch and Fixed-Point Instruction Execution
Units,”” IBM RISC System/6000 Technology, Order No.
SA23-2619, IBM Corporation, 1990, pp. 24-32; available
through IBM branch offices.

Received September 3, 1993; revised manuscript
received June 20, 1994; accepted for publication June
21, 1994

J. I. BARREH ET AL.

543

544

Jama |. Barreh IBM RISC System/6000 Division, 11400
Burnet Road, Austin, Texas 78758 (JAMA at AUSVM6).

Mr. Barreh received B.S. and M.S. degrees in electrical
engineering from the Illinois Institute of Technology in 1985
and 1987, respectively. In 1987 he joined IBM, initially
working on the RISC System/6000 processor. He also worked
on the instruction cache unit of the POWER?2 processor. He is
currently a Staff Engineer working on a memory controller

for the PowerPC 620™. Mr. Barreh has received an IBM

First Invention Achievement Award.

Robert T. Golla IBM RISC System/6000 Division, 11400
Burnet Road, Austin, Texas 78758 (GOLLA at AUSVME6).
Mr. Golla received his B.S. degree in electrical engineering
from the University of Houston in 1986, and his M.S. degree,
also in electrical engineering, from the University of Texas
at Austin in 1990. He joined IBM in 1986 as a logic design
engineer, and initially worked on the RISC System/6000
microprocessor. From 1989 to 1992, he acted as team
leader on the instruction cache chip for the POWER2
microprocessor. Currently, Mr. Golla is a Staff Engineer
working on the PowerPC 603™ microprocessor. He has
received an IBM First Invention Achievement Award.

L. Baba Arimilli IBM RISC System/6000 Division, 11400
Burnet Road, Austin, Texas 78758 (BABA at AUSVMG,).

Mr. Arimilli received an M.S. degree in electrical engineering
from Louisiana State University in 1986. He joined Texas
Instruments’ Semiconductor Division in 1986 in Houston,
where he worked on VRAM design. In 1987 he joined IBM in
Austin, where he currently works on high-end RISC processor
designs. Mr. Arimilli has received an IBM Invention
Achievement Award.

Paul J. Jordan IBM RISC System/6000 Division, 11400
Burnet Road, Austin, Texas 78758 (PJORDAN at AUSVMG).
Mr. Jordan graduated cum laude from Rice University in May
1990 with a B.S. degree in electrical engineering. On joining
IBM, he worked as an Associate Engineer on the instruction
cache unit design team for the POWER?2 processor during 1991
and 1992. He is currently a Senior Associate Engineer working
in PowerPC™ processor development.

PowerPC 620, PowerPC 603, and PowerPC are trademarks of International
Business Machines Corporation.

J. I. BARREH ET AL.

IBM J. RES. DEVELOP. VOL. 38 NO. 5 SEPTEMBER 19%

