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This  paper  describes  the  instruction  cache 
unit  (ICU) of the IBM POWER2'" processor, 
with  emphasis  on  improvements  over the 
original POWER ICU design.  The POWER2 ICU 
incorporates  a  new  compare-branch  scheme 
that  minimizes  processing  time  penalties,  a 
second  branch  processor,  increased  branch 
look-ahead  capability,  and  doubled  instruction- 
fetch  and  instruction-dispatch  bandwidth. 

Introduction 
IBM introduced the POWER-based  RISC  System/6000@ 
(RS/6000) workstation in February of 1990. This system 
was well received in the industry and  helped  IBM capture 
a sizable share of the workstation market. The  POWER2TM 
processor goals were to build on the strengths of the 
original  POWER  design  and to overcome its shortcomings. 

The POWER  and  POWER2 systems partition instruction 
processing across three units: the instruction cache unit 
(ICU), the fixed-point  unit (FXU), and the floating-point 
unit (FPU). This paper describes the overall organization 
of the POWER2 ICU, as well as the improvements over 
the previous design. Figure 1 is a block diagram of the 
POWER2 ICU. The primary functions of the ICU are the 
following: 

Fetch all instructions. 
Execute branch and  logic  on condition register 

Dispatch instructions to the FXU and FPU. 
instructions. 

Process interrupts. 
Maintain the architected condition, count, and link 

Maintain interrupt control registers. 
Provide engineering support processor (ESP) functions. 

registers. 

To improve performance over that of the existing 
POWER-based RS/6000 systems, the ICU designers 
focused  on enhancing branch and superscalar performance 
while  minimizing the cache miss penalty. The  POWER2 
ICU design addressed these challenges by 

Designing a new compare-branch scheme. 
Adding a second branch processor to allow processing of 

Increasing branch look-ahead capability. 
Doubling the instruction fetch bandwidth both from 

Doubling the instruction buffers. 
Enabling instruction cache accesses during cache miss 

Doubling the dispatch bandwidth to the other functional 

two branches in a single cycle. 

cache and  from  memory. 

processing. 

units. 

Architected  registers 
The ICU maintains the architected registers involved in 
processing branch instructions and interrupts. User- 
accessible registers include the condition register (CR), the 
link register (LR), and the count register (CTR). The other 
registers include the machine state register (MSR), the 
save restore registers, and the segment registers. 
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Condition register (CR) 
The CR consists of eight  4-bit  fields.  The ICU tests these 
fields to determine the outcome of conditional branch 
instructions. Many events can modify the CR bits. 
Compare instructions can alter any field.  Most register-to- 
register instructions include a record bit; setting the bit 
causes an update to a predefined CR  field. Move to 
condition register (MCR) instructions can alter any 
combination of the eight  fields. Logic on condition register 
(LCR) instructions alter a single CR bit. Finally, the ICU 
can restore a previous CR value if an interrupt occurs. 

The CR interlock logic provides a lock  bit for each 
of the eight CR fields. Lock bits are set (reserving the 
corresponding fields)  when the ICU dispatches CR setting 
instructions to the FXU or FPU; the lock bits are reset 
upon instruction completion. The ICU dispatches or holds 
instructions that read or update a CR  field based on the 
setting of the lock bit associated with the source or target 
field. 

Link register (LR) 
Subroutine calls use the LR extensively. A subroutine call 
usually translates into a branch instruction with its link 
bit set; the link  bit  specifies that the ICU must save the 

538 address of the next sequential instruction (the return 
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address) in the LR. A special form of the branch 
instruction, which uses the contents of the LR as the target 
address, supports returns from subroutine calls. Because 
the entire 32-bit value becomes the target address, this 
instruction also allows  branching beyond the limitations 
of the normal branch displacement fields. 

Count register (CTR) 
The  32-bit  CTR serves multiple purposes. As its name 
implies, this register can hold the iteration count for 
a loop. A form of the branch conditional instruction 
decrements the count and tests the resulting value; the 
outcome affects whether the conditional branch is taken. 
Second, like the LR, the CTR also  can supply the target 
address for long branches. Finally, across supervisor call 
boundaries, the save and restore process for the MSR 
involves the CTR. 

Machine state register (MSR) 
Bits in the MSR enable or disable processor features 
such as external (and other) interrupt enables, privileged 
instruction access, FPU access, interrupt addressing, and 
instruction and data relocation. 

Save restore registers 
Save restore register 0 saves the return address on 
interrupts. Save restore register 1 saves the contents of 
the MSR and the interrupt status on interrupts; it restores 
the MSR during a return from interrupt instruction. 

Segment registers 
The FXU maintains the sixteen segment registers which 
define the current effective-to-virtual address translation. 
The FXU broadcasts any segment register changes using 
the processor bus (P-bus). The ICU monitors the P-bus 
and maintains a shadow copy of these registers to improve 
the performance for instruction address translation. 

Program counter stack (PCS) 
To allow precise interrupts, the ICU maintains multiple 
copies of the link, count, and condition registers. The 
program counter stack (PCS) retains up to four backup 
copies of each of these registers and restores their contents 
if required because of an interrupt. When the ICU 
dispatches an interrupt-causing (IC) instruction, the PCS 
logic  flags the instruction. If the ICU dispatches an ICU 
instruction that modifies any of these three registers after 
the flagged IC instruction, the ICU backs up that particular 
register on its corresponding backup stack. In general, 
only the first ICU instruction to modify one of these 
registers after an IC instruction requires a backup of that 
register; additional operations on that register do not. If  an 
IC instruction does cause an interrupt, the ICU uses these 
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backup stacks to restore the registers to their state prior to 
the IC instruction, and then the ICU removes the backup 
copies. 

The  ability to restore snapshots of these registers using 
the backup copies allows the ICU to execute past the 
interrupt-causing instructions. However, the FXU and 
FPU do not execute past an instruction that causes an 
interrupt; therefore, any of their instructions which modify 
these ICU registers do not require register backup copies 
(because they will  not  have to back out of any changes). 
If the FXU (or FPU) finishes executing a marked IC 
instruction successfully and the backup is no longer 
needed, the backup copy is removed. 

Instruction  fetching 
Most computers execute programs in a manner  which 
provides the same results as if all instructions executed 
one at a time. Early computers included a program counter 
that pointed to the current instruction. In concept, all 
instructions prior to the current instruction were complete, 
and  all instructions following the current instruction had 
yet to start. 

in superscalar designs, the high degree of instruction-level 
parallelism blurs the concept of a program counter, 
possibly to the point of nonexistence. However, in a 
processor which supports precise interrupts, an  effective 
program counter usually exists for interrupt processing; the 
interrupt processing mechanism receives a single current 
address; prior instructions are complete, and  following 
instructions have not  begun. 

superscalar processor effectively has its own view of the 
current instruction. In the POWER2 ICU, two hardware 
registers maintain the program counter equivalents for the 
fetch and dispatch stages. The instruction fetch address 
register (IFAR) points to the current instruction being 
fetched along  an expected, or guessed, instruction stream 
path. The instruction address register (IAR) points to the 
current instructions being dispatched. The ICU usually 
increments the IAR each cycle by the number of 
dispatched instructions. 

On the basis of the IAR contents and branch 
instructions which logically  follow the current dispatch 
instruction, the branch unit determines the expected 
instruction stream path based on a guess algorithm. 
(For POWER  and  POWER2, the guess algorithm  for 
unresolved, conditional branches is  not taken.) The ICU 
adjusts the IFAR each cycle to prefetch instructions which 
the dispatch stage might need. By prefetching instructions 
along  an expected path, the ICU overlaps instruction 
cache accesses with useful work. Usually the IFAR is 
many instructions ahead of where the IAR is currently 
pointing. 

In many of today’s high-performance systems, especially 

However, aside from interrupts, each pipeline stage in a 
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To fetch instructions, the ICU must generate addresses, 
translate addresses, and access the instruction cache. 
The instruction fetch mechanism attempts to fetch eight 
instructions per cycle, including fetch requests which 
span cache-line boundaries. The fetch  logic places the 
instructions in one of the two instruction buffers (target or 
sequential), as space allows. Later sections of this paper 
describe these buffers  and the subsequent dispatch of 
instructions. 

Fetch address generation 
The fetch logic prefetches instructions along  an expected, 
or guessed, instruction stream path. The fetch logic 
attempts to have at least six instructions in the sequential 
instruction buffer at all times to facilitate multiple 
instruction dispatch. The ICU normally increments the 
IFAR by the number of instructions stored in the 
instruction buffer by the fetch logic; this normal operation 
occurs while sequential code is  being executed. If there 
is a branch, the ICU may  load the IFAR with the target 
address of the branch. The ICU treats interrupts and 
returns from interrupts as special cases of branches; the 
interrupt logic provides the target address for an interrupt, 
and save restore register 0 provides the address for a 
return from interrupt instruction. 

Address translation 
The ICU must translate fetch addresses in order to access 
the cache arrays and cache directories. The address 
translation logic provides a mechanism  for translating the 
effective address of an instruction to a virtual address and 
then to a real  memory address. (If translation is not 
enabled, the real address is simply the effective address.) 
When a translation cannot complete because the 
instruction translation lookaside buffer (I-TLB) does not 
contain the necessary translation information, the ICU 
uses the P-bus to request that the FXU complete the 
translation. The FXU translates the virtual address and 
returns the real address on the P-bus. The ICU uses the 
translation to update an entry in the TLB. The ICU does 
not request a translation until the ICU is sure that the 
dispatch stage will require the associated instruction. For  a 
more detailed description of  POWER2 address translation, 
see the paper by Shippy and  Griffith  in this issue [l]. 

Translation lookaside buffer (TLB) 
This small cache provides a mechanism  for  improving 
the speed of translating a virtual address to a real page 
number.  This two-way set-associative table contains 64 
entries (congruence classes) in each set. Each two-word 
entry contains the segment ID, bits 4 through 13 of the 
virtual address, the real  page number, page protection bits, 
a valid bit, and parity bits. The TLB replacement policy  is 
least recently used (LRU). 
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Instruction  cache 
The  32KB instruction cache is a two-way set-associative 
design  with 128 lines (congruence classes) per set; each 
line  is 128 bytes, or 32 instructions. The cache allows the 
fetching of eight words in parallel, even when the access 
crosses cache-line boundaries, as long as the instructions 
are in the cache and the fetch does not cross a page 
boundary. The cache implements  an LRU replacement 
algorithm. 

In the POWER implementation, the instruction cache 
is  not accessible while a cache line  is  being  filled  from 
memory.  The  POWER2  design alleviates this problem by 
adding a cache reload  buffer (CRB). This ICU CRB  is 
similar to the CRB  which  is present in the POWER  and 
POWER2 data cache units; it holds a single cache line of 
information, and it permits access to the cache during a 
cache-line reload. When a cache request is made, the 
cache logic searches both the cache directories and 
the CRB. 

Cache directories 
Logically, for each cache request, the cache logic searches 
a directory to determine whether the data are present and, 
if present, where the data reside. POWER2 physically 
implements two distinct cache directories-one  for even 
cache lines and one for  odd cache lines-as  did the original 
POWER implementation [2]. This allows access to 
directory entries for two adjacent lines (odd and even) 
during one cycle, enabling the prefetching of instructions 
across cache-line boundaries. 

A cache directory contains one entry (or tag) per 
cache line; a one-to-one mapping exists between a cache 
directory tag  and its associated cache line in the cache 
storage array. The cache directory entry consists of the 
20-bit  real  page number, a valid bit, and parity bits. Since 
the cache is a two-way set-associative design, the cache 
logic compares the 20 high-order address bits of a cache 
request with two directory tags. A match signals a cache 
hit; the directory tag that matches dictates which cache 
line contains the required data. 

Cache arrays 
The cache arrays provide  local storage for instructions 
fetched from  main storage (and for some instruction 
predecode bits which are described later). The  32KB cache 
consists of  16 cache arrays of 2 KB each. Eight arrays 
supply data for even cache lines; the other eight supply 
data for odd cache lines. The organization of the arrays is 
such that any eight sequential addresses in a cache line 
access one word from each of the eight associated arrays. 

Addressing for the eight storage arrays for the even 
cache lines is independent of the addressing for the eight 
arrays for odd cache lines. By addressing one group of 

540 arrays using the IFAR contents and addressing the other 
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group with the address of the first word in the next cache 
line, a fetch request can access one word  from each of the 
16 arrays. As a result, the ICU can fetch eight sequential 
instructions (within the same page) every cycle, including 
eight-word blocks that span cache-line boundaries. 

Cache miss processing 
When the fetch logic requests an instruction that is not in 
the cache or CRB, the ICU uses the P-bus to request a 
cache-line reload from the storage control unit (SCU). The 
CRB address register (IFAR-R) holds the address of the 
cache line currently in the CRB.  At the beginning of a 
cache miss, the cache logic copies the CRB contents 
(which were filled  during the previous cache miss) into the 
cache. The IFAR-R addresses the cache and directories 
as the cache receives the copy of the line  from the CRB. 
After the CRB contents have been emptied into the cache, 
the ICU copies the current cache miss address from the 
IFAR into the IFAR-R  in preparation for the reload data. 
This also frees the IFAR to access the cache, if necessary, 
during the cache miss sequence once the initial  reload data 
return. The cache miss address in the IFAR-R routes the 
reload data into the proper CRB locations. 

As instructions come into the CRB, they are also 
forwarded (or bypassed) to the fetch  unit.  The IFAR keeps 
track of the reload data and adjusts the address by the 
number of instructions bypassed so that instruction 
fetching can continue from the point where bypass has 
stopped. Instruction bypass can be stopped by a cache-line 
wrap, full instruction buffers, a machine check, an SVC- 
type instruction, or a branch which changes the sequential 
instruction stream. 

During a cache-line reload, as instructions arrive on 
the instruction reload bus, the ICU partially decodes the 
instructions. The predecode logic creates  a 6-bit  tag 
which  identifies  invalid opcodes, FXU instructions, FPU 
instructions, instructions that affect cache miss processing, 
and ICU instructions. The ICU stores these predecode 
tags  with the associated instruction in the instruction 
cache. 

Instruction  buffers 
The instruction buffers  hold instructions prefetched 
from the cache by the prefetch mechanism (IFAR and 
associated logic). These buffers supply up to six 
instructions within a single cycle for dispatch and  allow 
inspection of two subsequent instructions for  use  in branch 
prefetching. Sixteen sequential instruction buffer entries 
hold prefetched instructions from the sequential stream; 
eight target instruction buffer entries hold instructions from 
a guessed branch taken path. Each buffer entry contains 40 
bits of instruction, predecode tag,  and parity information. 

When the ICU encounters an unresolved conditional 
branch, the fetch logic uses one instruction buffer  for 
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sequential instruction stream fetching and the other buffer 
for fetching instructions along a branch path. If the branch 
is not taken, the ICU discards instructions fetched along 
the branch path, the sequential buffer supplies instructions 
to the dispatch stage, and instruction fetching along the 
sequential path resumes. When a branch is taken, the ICU 
dumps the target buffer into the sequential stream buffer; 
dispatch continues along this new sequential stream. 

The instruction buffer  logic controls instruction buffer 
updates and supplies instructions to the decode and 
dispatch multiplexers. The information necessary to 
manage these buffers includes the following: 

Which branches are taken. 
When synchronizing operations must occur. 
How many instructions are being fetched from the 

How many instructions are being dispatched. 
How many instructions are in the instruction buffer. 
Where the next instruction for dispatch is in the 

How  much space exists in the FXU and FPU instruction 

Whether special-purpose register contention exists 

cache. 

instruction buffer. 

buffers. 

between instructions. 

The ICU can steer any sequential or target  buffer entry 
to the first dispatch port and the entries immediately 
following to the remaining dispatch ports. 

Instruction  dispatch 
The ICU dispatches instructions from either the sequential 
or target instruction buffers, depending on whether the 
ICU is in sequential dispatch mode or target dispatch 
mode. In sequential dispatch mode, the ICU fully decodes 
six instructions and inspects two  more  for branches, 
assuming the sequential buffers have valid instructions. 
Full  decoding  identifies the instruction type from the 
instruction tags, opcodes, and extended opcodes. If the 
seventh or eighth instruction is a branch, and the target 
address is available, the ICU can prefetch the target. The 
ICU can dispatch up to six instructions from the sequential 
buffers:  four FXU/FPU instructions and two ICU 
instructions (either two branches or one branch and one 
LCR instruction). The dispatch logic evaluates all six 
instructions in parallel. 

dispatch up to four instructions, none of which may  be 
ICU instructions. In some cases, the fetch logic can 
prefetch branches in target buffers. To determine whether 
the ICU can dispatch a particular instruction, the dispatch 
logic examines all conditions and interlocks established 
by previous instructions, up to and  including the given 
instruction. The ICU routes instructions that meet the 

In target dispatch mode, the ICU can fully decode and 
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conditions for dispatch to the CR control logic, the branch 
processors, or the four-word instruction bus. 

The ICU conditionally dispatches instructions following 
unresolved conditional branches. When the ICU or FXU 
resolves the branch, either the FXU and FPU execute the 
conditionally dispatched instructions (if the branch is not 
taken), or the ICU or FXU cancels the instructions 
(if the branch is taken). The ICU can dispatch only one 
conditional instructional stream. The ICU cannot dispatch 
a second unresolved branch nor the instructions that 
follow. 

Branch processing 
The ICU routes branches in the dispatch window to the 
branch processors. The ICU has two independent branch 
processors; therefore, it can handle  up to two branches per 
cycle. When the POWER2 ICU encounters two branch 
instructions in the current dispatch cycle, one of the 
following cases is true: 

First  branch is taken - No processing of the second 

First  branch is unresolved - No further branch 
branch is necessary. 

processing is possible that cycle. 

- The  ICU treats both branches as NO OPs and the 
branches cause no lost cycles. 
First  branch is not taken and the second branch is taken 
- The ICU generates the target address of the second 
branch using the second branch processor. 

unresolved - Same as the preceding case. 

First  branch is not taken and second branch is not taken 

First  branch is not taken and second branch is 

When the ICU encounters unresolved branches, it sends 
a branch packet to the FXU. The packet specifies the 
condition register bit on which the branch depends, as well 
as whether the branch should be taken if the condition is 
true. The ICU dispatches instructions past the unresolved 
branch and marks them as conditional. When the ICU has 
conditionally dispatched four instructions, or when the 
sequential stream becomes interlocked for any reason 
other than FXU/FPU lack of buffer space, the ICU 
switches to target dispatch. The ICU marks these 
instructions as target instructions, and holds them 
on the instruction bus (I-bus) until the branch is 
resolved. 

If the FXU resolves the branch, the FXU notifies the 
ICU of the outcome of the branch. Similarly, if the ICU 
decides the branch, the ICU notifies the FXU. The ICU 
resolves the branch if the ICU or FPU computes the 
dependent CR value (or if the ICU receives the CR change 
on the same cycle in which the packet is sent, a boundary 
case). Depending on whether the branch is taken, the FXU 
and FPU either execute the conditional instruction stream 
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1 2 3 4 5 6 

Fetch Sequential Sequential  Sequential  Sequential m e t  Sequential 

Dispatch C8  C9  T1  T2  T3 C4  C5  C6  CMP BC 
C1 C2C3 C10  C11  T4 C7 

Decode C6 Cl  C4  CS C2  C3 CMP  C1 
i 

Execute C6  C7 C4  C5 C2  C3 CMP C1 
I 
I 

FXLJ resolves  the  branch and forwards 
the  outcome to the functional units. 

or latch the target instructions from the I-bus. Figures 2 
and 3 illustrate the timing characteristics for the taken and 
not-taken cases for the following code: 

CMP 
BC 

c 2  clI 
c 3  T1 
c 4  T2 
c5 T3 
C6  T4 
c 7  T5 

Figure 2 shows that there is  no penalty for a correctly 
guessed (not taken) conditional branch. As Figure 3 shows, 
the POWER2 implementation requires only one idle 
pipeline cycle after a mispredicted (taken) branch. The 
POWER implementation incurred as much as  a three-cycle 
penalty. By fetching the target path and  placing the target 
instructions on the I-bus, the POWER2  design eliminates 
two of these guessed wrong branch penalty cycles. 

Interrupt  processing 
Two categories of interrupts exist. Some interrupts (for 
example, divide by zero, storage protection exceptions, or 
invalid operation) occur as the result of an instruction. In 
contrast, asynchronous interrupts (for example, system 
reset, machine check, external, and  floating-point 
imprecise) occur with  no predictable relation to the 
instructions being executed. 

As a result of the high degree of instruction-level 
parallelism,  POWER2 systems may recognize interrupt 
conditions earlier than a sequential machine. For all 
recoverable interrupts, when the ICU services an 
interrupt, the machine state requires a single current 

542 address at which execution is to resume upon the return 

nom me mrerrupr. lnsrructlons prlor to tnls current 
instruction are complete; future instructions have  not 
begun.  When  an instruction causes an interrupt, the 
offending instruction becomes the current instruction when 
the ICU services the interrupt. Therefore, the ICU cannot 
recognize an interrupt associated with  an instruction until 
all previous instructions have completed, thereby ensuring 
that  the  previous  instructions will  not later cause interrupts. 

Furthermore, hardware must suppress an interrupt 
condition if it occurs solely as an artifact of the superscalar 
implementation. For example, consider an instruction 
storage interrupt which  might occur when instructions 
are prefetched. If the fetched instruction is on a guessed 
instruction stream (beyond an unresolved conditional 
branch), or if a previously fetched branch instruction 
has not yet been executed, a possibility exists that this 
interrupt-causing fetch would  not occur in a sequential 
machine. Therefore, the instruction storage interrupt is  not 
valid  until the offending instruction is the next instruction 
to execute. 

In the case of multiple interrupts, the hardware must 
select a single interrupt to service. The architecture defines 
the system reset interrupt to be the highest-priority 
interrupt, so that it  will reset the machine even when other 
interrupts are pending.  In  POWER2, the system reset and 
machine check interrupts can occur at any time. Because 
of the serially reusable nature of the save and restore 
registers, the ICU recognizes all other interrupts 
sequentially. A predefined priority list orders these 
interrupts. 

Because the ICU cannot recognize  an interrupt 
associated with an instruction until all preceding 
instructions have completed, the interrupt ordering gives 
priority to instructions that are earlier in the instruction 
stream (and therefore further through the pipelines). In the 
list that follows, notice that, among interrupts caused by 
an instruction, the ICU gives preference to interrupt 
conditions that do not occur until the execute stage over 
interrupt conditions that are detectable in the dispatch 
stage. 

Although the ICU can select the current instruction in 
an arbitrary manner for the asynchronous floating-point 
imprecise  and external interrupts, all previous instructions 
must have completed when the ICU services the interrupt. 
Therefore, the asynchronous floating-point  imprecise and 
external interrupts must  wait  until all previously initiated 
instructions complete to ensure that outstanding operations 
cannot produce an interrupt. 

exclusive; because they cannot be present simultaneously, 
the priority list does not differentiate among  them.  The  list 
groups them together and assigns  them a common priority 
level.  The  POWER2 interrupt priority ordering is as 
follows: 

Some types of interrupts are known to be mutually 
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1. System  reset. 
2. Machine  check. 
3. Program counter interrupt-execution. These  interrupts 

are mutually  exclusive and  assume a priority  based 
on the  instruction  sequence.  They  are  trace,  trap, 
alignment, data  storage,  and floating-point enabled 
exception. 

interrupts  are mutually exclusive  and  have  no  priority 
order.  They  are  the program interrupts (privilege, 
invalid operation),  supervisor call, and floating-point 
unavailable. 

4. Instruction  dispatch interrupts-dispatch. These 

5. Floating-point  imprecise interrupt. 
6. External  interrupt. 
7. Instruction  storage interrupt-fetch. 

Interrupt state machine 
A state machine validates  and prioritizes interrupts. 
The machine starts in a “no  interrupts pending” state. 
Occurrences of interrupt  conditions  (requests  or signals) 
cause  transitions  based on the conditions and their 
respective priorities. Once a  pending state is entered,  the 
ICU  accepts  and  processes  the  interrupt,  or a  higher- 
priority  interrupt  becomes pending  (overriding the lower- 
priority  interrupt),  or  the  interrupt condition  is cleared 
(canceling the pending  interrupt). 

Interrupt process execution 
When the  ICU  accepts an interrupt,  the  ICU  saves 
the  state  and  transfers  control  to  the  interrupt handler 
software. Saving the  state involves storing  the  current 
MSR and  the  address  at  which  the  interrupt  occurred 
(or  the  address of the next instruction if the  interrupt is 
asynchronous).  For  some  interrupts,  the  ICU  stores  the 
cause of the  interrupt.  The  interrupt  state machine returns 
to  the “no interrupts pending” state.  The MSR and  the 
type of interrupt  determine  the  interrupt  vector  to which 
the machine branches.  The  ICU  alters  the MSR according 
to type of interrupt. 

P-bus interface 
The  ICU,  the  FXU,  and  the  SCU  use  the  P-bus  to 
communicate.  P-bus interface logic monitors  the P-bus to 
detect  commands  that  the  ICU must execute  or  co-execute 
with  the  FXU.  It  also  generates  and  receives  service 
requests  from  the  other  chips  on  the P-bus. These  services 
include address translation, segment register update, 
special-purpose  register  access,  cache  operations (for 
example,  cache-line invalidate or cache-line flush), TLB 
invalidates, or cache-line  reloads. The  P-bus  state machine 
controls  the  P-bus interface on the ICU. Because  the  P-bus 
state machine reloads  the  I-cache  and  I-TLB, it also 
controls  the  instruction buffers, the  IFAR,  the  cache 
arrays  and  directories, and the  TLB. 

1 2 3 4 5 6 

Fetch 

T1 T2 CMP  C1 )X<’ Execute 

T3 T4 TI T2 C2 C3 CMPC1 Decode 

T1 T2 T3 C4C5 C6 CMP  BC Dispatch 

Sequentia  Sequential Sequential  Target  Sequential 

C1 C2C3 T4 C l  

\ 

I 
FXU resolves  the  branch  and  forwards 
the  outcome to the  functional  units. 

Sequential 4 
POWER2 timing: Branch taken. 

Summary 
The  POWER2  ICU builds on the  strengths of the  POWER 
ICU  and  improves  important  functions  such  as  branch 
processing. It  doubles  the instruction  reload  bandwidth, 
instruction  fetch bandwidth, and instruction dispatch 
to  FXU  and  FPU.  The design adds a second  branch 
processor  to facilitate  the execution of two  branches in 
one cycle. It  also implements  a new  scheme  to improve 
compare-branch  code  sequences. 
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