
Highly
parallelizable
route planner
based on
cellular
automata
algorithms

by P. N. Stiles
I. S. Glickstein

An overview is presented of our work on
a highly parallelizable route planner that
efficiently finds an optimal route between two
points; both serial and massively parallel
implementations are described. We compare
the advantages and disadvantages of the
associated search algorithm relative to other
search algorithms, and conclude with a
discussion of future extensions and related
applications.

Introduction
Route planning addresses the question of how “best” to
go from point A to point B. Solutions are important for
routing and scheduling manned and unmanned air, land,
and sea vehicles. The best route may be the one that is
fastest, safest, cheapest, or smoothest, or it may be the
one that covers the largest search area. It usually is one
that optimizes some combination of these factors. The
famous traveling salesman problem is NP-complete; i.e.,

there is no known polynomial time algorithm for finding an
optimal solution. The shortest-path route-planning problem
has polynomial complexity which is not as bad, but still
poses a challenge for today’s computers operating on real-
time applications. This overview covers various aspects of
the route-planning problem and focuses on algorithms we
have developed and associated insights we have gained
over the past eight years.

Route-planning example
Consider the pilot of a medical rescue helicopter on a
stormy night who needs to plan a route from a hospital to
the scene of an accident. The pilot wants to avoid the
worst areas of the storm but also must arrive quickly to
save the patient. There is likely to be a conflict between a
safer route that avoids the worst of the storm but takes
longer, and a short, direct route that is faster but more
dangerous. The pilot also wants to avoid flying near radio
towers, transmission lines, and developed areas with
tall buildings, since the reduced visibility makes them

“Copyright 1994 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) theJowMl reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-selvice systems. Permission to republish any other

portion of this paper must be obtained from the Editor. 167

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 P. N. STILES AND I. S. GLICKSTEIN

I t

west neighbors. The most important aspect of the CA
paradigm is that local processes, considering only data
known to an individual cell and its neighbors, can lead to
the solution of problems of global extent.

Processing proceeds by transforming the array at time t
to a new array at time t + 1. The new state of a cell is
determined by a rule based on the cell’s past state, and on
the past state of its neighbors. The following is an example
of a rule: “If exactly three neighbors have a state of 1,
then set own state to 1, otherwise set own state to 0.” In a
very simple case, for a two-dimensional (2D) array with
only two states per cell, and with only eight neighbors per
cell, there are 2’12 possible rules. (There are 29 = 512
possible states of the neighborhood, and for each
neighborhood state the rule may specify a change to 0 or ~. .

1.) Since there are usually more dimensions, states, and
neighbors, it is clear that complex behavior can result.

Two rescue situations: (a) There is sufficient time for the route to
avoid the most dangerous areas. (b) Greater urgency forces use of
the riskier route. From [l], reproduced with permission. processing. Medium- or coarse-grain parallel processing

Cellular automata algorithms are well suited to parallel

implies a relatively small number of processors working
simultaneously on a single problem (e.g., 4, 10, or 64). It is

especially dangerous. For longer flights, fuel consumption
may affect his or her decision. Factors such as these can
be combined and prioritized and thereby become the
optimization criteria used by a computer to select the best
route automatically.

Figure 1 illustrates two examples: a) a relatively relaxed
situation in which the flight plan avoids the town and
almost all of the storm area, and b) a more urgent situation
in which a direct path is chosen that passes straight
through town and the storm, deviating only slightly from
a straight line. In the case of three-dimensional (3D)
planning, flight altitude is also optimized. The pilot may fly
higher in areas where the cloud cover ceiling permits,
because he can thus go faster and reduce the risk of
crashing into a hill or obstacle. With a lower cloud cover
he may need to fly lower and slower to obtain better
visibility.

The route-planning application we have developed is
designed to determine a route for military helicopters
optimizing similar risk criteria. Our early work on this
specific application is covered in [2].

Cellular automata and route planning
Cellular automata (CA) were invented by John von
Neumann in 1948 [3], and are sometimes referred to as his
other computer architecture. They consist of one-, two-, or
higher-dimensional arrays of “cells” in which each cell
communicates with neighboring cells to solve a variety of
spatial-temporal problems. The cells may be real physical
processors in a parallel computer or virtual entities
processed serially. For a simple two-dimensional CA, each

168 cell may be connected only to its north, south, east, and

often awkward, complicated, and inefficient to break a
problem into 10 or 64 parts. However, many problems
break up naturally into thousands of parts. As such, the
simplicity of CA algorithms makes them aesthetically
pleasing, easy to understand, easy to code, and easy to
parallelize.

Consider the contour lines shown in Figure 1. They
were generated from an x, y , z data set by the following
CA-like algorithm we have developed:

1. Each pixel (cell) computes its elevation bin EB (e.g.,
0-99, 100-199, e) as the floor FL of c1 X z + cq,
where c1 and c2 are constants.

neighboring pixels to the east and south.

contour line.

2. Each pixel compares its own bin with that of

3. If either neighbor is different, the pixel marks itself as a

Because of the local nature of CA algorithms, they can
run efficiently on massively parallel processors (MPPs)
with thousands of processing elements. This occurs
because the primary information flow does not depend on
fully interconnected processors; each processing element
can be assigned to one map cell or to a set of map cells,
and it can run an algorithm independently of most other
processing elements.

covered in this paper are based on this CA paradigm. They
were designed for efficient operation on MPPs once such
processors became available. Fortunately, the CA
algorithms also run well on serial processors.

The PRP algorithms operate within a multidimensional
cellular search space where there is a cost associated with

The parallelizable route planner (PRP) algorithms

P. N. STILES AND I. S . GLICKSTEIN IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994

travel through each cell. (A 2D cell is a small square area,
a 3D cell is a small volume, and a 4D cell is a small
volume at some instant in time.) This cost is a single
positive integer that represents a nonlinear weighted
combination of many different factors such as distance,
fuel consumed, and risks encountered. The “best” route is
defined to be the lowest-cost route, where the route cost is
simply the summation of map costs for all cells traversed.
The quality of the solution is determined by the accuracy
with which the map costs model the real world and reflect
the user’s priorities and constraints.

On a relatively small 2D map that contains only 15 X 15
map cells, there are over eight billion distinct routes from
one corner to the other (assuming a limitation that the
motion is constrained to one of three directions-e.g., for
the start location at the top left to a goal at bottom right,
the motion would be limited to right, down, or right/down).
A more realistic map with 1000 X 1000 cells and eight
directions of travel therefore has an extremely large
number of paths. Additionally, in 3D planning there are 26
possible directions. Better route-planning solutions are
obtained when other factors such as time, speed, and fuel
are considered. This paper primarily presents the 2D case,
which is relatively easy to explain and conceptualize.

Parallelizable Route Planner (PRP) algorithms
This section discusses the serial implementation of the
PRP algorithms we have developed. The parallel
implementation is discussed in the MPP implementation
section. Parallelizable route-planner algorithms determine
the lowest-cost path from point A (the start) to point B
(the goal), using the stages 1) cost estimation, 2) ellipse or
corridor constraints, 3) search, 4) digital indiscrimination.

Cost estimation
Cost estimation is a domain-dependent function that
establishes the “cost” or grid value for each cell. For
example, the cost to traverse a cell through the middle of a
town might be ten times higher than the cost to traverse
a cell outside the town. Taken together, the set of cost
values are referred to as the map cost (M C) array.
A significant amount of time and knowledge is required
to develop an effective, relevant set of factors and their
relative weightings.

Ellipse or com‘dor constraints
Ellipse or corridor constraints can be applied to the search
to improve the processing performance and reduce
memory requirements. An ellipse, with foci at the start and
goal and a major axis of length d , applies when the path is
constrained to be no greater than d . A corridor can be
defined by a human user as a width along with a series
of points marking the center of the corridor. A corridor

constraint can also be generated by an automated process
such as the quadtree search described later.

Search
The optimizing search algorithm of the PRP has two
elements: cost minimization and path generation. Cost
minimization uses the map cost array as input and
generates a best cost (B C) array as output. At completion
of cost minimization, each cell in the BC array contains
the cost of the cheapest path from that cell to the goal.
Path generation uses the BC array as input and produces
the optimal path coordinates from the start to the goal.

The PRP search algorithm is described in Figure 2, and
illustrations of major steps appear in Figures 3, 4, and 5.
Several aspects worth noting are discussed in the following
paragraphs.

For a 2D search, a von Neumann neighborhood
consisting of only four neighbors (to the north, south, east,
and west) is used during cost minimization. However,
a Moore neighborhood consisting of eight neighbors
(diagonals included) is used for path generation. This is
because four-neighbor cost minimization runs faster on a
serial processor than eight-neighbor cost minimization.
Since eight-neighbor path generation is used in either case,
the results obtained are usually the same. (Although cost
minimization using eight neighbors can find a path between
diagonally adjacent high-cost cells that a four-neighbor
version cannot find, on real data where a particular cell is
not very much different in cost from its neighboring cells,
this difference does not significantly affect the solution.)

Performing the test against BCsta,, (the value of the best
cost propagation array for the cell containing the path start
position) in step 3 of Figure 2 represents a design trade-off.
If this test is not applied, when the algorithm terminates
every cell in the BC array contains the cost of the best
path from itself back to the goal. (See the section on
Ford’s algorithm regarding a proof of this statement.)
This is useful because an optimal solution from any start
location can be rapidly determined without performing a
new cost-minimization phase. For instance, if an aircraft
deviates from the planned route, a new start location
can be selected, and path generation can immediately
determine a new optimal route from that location to the
goal location G. Additionally, multiple routes originating
from various start locations can be generated rapidly.

On the other hand, when the BCstart test is applied,
the solution is reached significantly faster because many
possible paths are never searched. The exact improvement
depends on many factors, which include the cost map
data, the start and goal positions, and the number of
dimensions.

An ideal implementation uses the BCStart test to generate
the solution rapidly, and then removes the test to finish
processing the BC array when there is more time available.

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 P. N. STILES AND I. S. GLICKSTEIN

I. &hIizatan
Set all BC, = 00 fmaximum integer)

All MF, = false
Except edge/ellipse/corridor map cells BC, = o

PRP search algorithm (2D serial implementation).

The BC array is originally initialized to co (maximum if the BC array had been fully reinitialized. (Unfortunately,
integer). Under some circumstances it does not require the same is not true when the map costs increase. In that
complete reinitialization, and the processing will then case, the BC array must be fully reinitialized.)
converge sooner. For example, if map costs are reduced,
the BC array can be left unaltered. The cells that had their Digital indiscrimination
map costs changed must be added to the TODO list and When regions of map costs are equal, a grid-based
have their mail flags set. Then the algorithm begins at step algorithm is incapable of recognizing the difference

170 3 shown in Figure 2 and will run to completion faster than between any two paths of the type shown in Figure 6.

P. N. STILES AND I. S. GLICKSTEIN IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 P. N. STILES AND I. S. GLICKSTEIN

Implementation 4 ran approximately ten times faster
than implementation 1 because of the introduction
of a preliminary PRP search algorithm. The faster
implementation was also optimal, unlike the slower one.
Implementation 11 ran approximately ten times faster
than implementation 8 because of the use of faster
hardware.
The speed of Ada relative to C is evident from
implementations 13 and 14. Four Ada implementations
were studied: two brand-name compilers were used
(which produced similar results), and two formulations of
the cost-minimization routine were evaluated on each
compiler. The 2.7-second time reported for Ada was the

/
0 = Another equal-cost solution

f Digital indiscrimination.

to the 16 four-cell configurations that may have to be
straightened. Note that F is independent of the location
of these configurations, even though it is computed from
their coordinates. If F matches one of the 16 precomputed
values, an appropriate adjustment to the path is made if it
does not increase the path cost and if the path has not
already been adjusted in the opposite direction at this
location. If an adjustment is made, the window is backed
up by either one or two path positions (depending on
which of the four cells is affected), and the process
continues until the goal is reached.

This algorithm works quite well in practice, but it
does have a limitation. If there are higher-cost map cells
between the original path and the final desired path, it is
unable to complete the transformation. In a recently
published paper regarding path estimation on binary cost
maps [4], a “smoothing phase” is described which might
overcome this limitation and provide an even better
solution to the digital indiscrimination problem.

PRP evolution
In general, the PRP must function in real time. This
typically means finding a solution in tens of seconds or
less. The search algorithm, which is by far the most time-
consuming portion of the PRP, has been hosted on various
processors in several languages. Table 1 contains some
relevant data points. The first three entries refer to A*
search algorithms used before PRP was developed. (A*
search is described later.) The performance has improved
steadily over the years as a result of algorithm, hardware,

172 and software changes. For example,

fastest of four Ada implementations measured, and had
a 70% longer execution time than the C version. An
effective optimization in C is to use a pointer to BCstan,
rather than indexing into the array each time. Ada also
has a pointer mechanism, but the Ada algorithm using
pointers took 22% longer than Ada without pointers
(3.3 seconds rather than 2.7).
The fastest implementation (12) used a mature PRP cost-
minimization algorithm hosted on an MPP. This parallel
implementation is discussed in more detail later.

Quadtree route-planning technique
Computing a route plan for a very large area at high
resolution (e.g., for a map area several hundred miles on a
side and a resolution of several hundred feet) requires a
large amount of CPU time and memory. To solve such a
problem, a common approach is to use a hierarchical
planner that first performs a poor-resolution search to
identify a coarse path, and then performs a higher-
resolution search to optimize the path while constraining
the solutions to be in the vicinity of the coarse path. There
are serious drawbacks to this approach, however, because
a very good optimal path that is only a few cells wide can
easily be averaged with the surrounding area and then
“not noticed” by the initial search. If the initial coarse
path goes north, for example, when in fact the optimal
path is south, the second-stage search at high resolution
will not find the optimal path.

To provide a dynamically adaptable level of resolution
appropriate to the problem under consideration, we have
developed a quadtree-based technique (see Figure 7). This
two-stage search process is also a hierarchical planner that
first identifies a coarse path (though not by sacrificing
resolution), and then completely optimizes the route within
a corridor centered on the coarse path. In the example
shown in the figure, 502 quadtree squares suffice to
represent the original 4096 map cells; therefore, and the
search space is reduced to approximately 10% of the
original.

P. N. STILES AND I. S. GLICKSTEIN IBM J . RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994

Table 1 Evolution of PRP search algorithm.

No. Year Hardware Software Notes Map size Time Normalized
(cells) (SI speed'

I 2

3

4

5

6

7

8

9

10

11

12

13

14

1986

1986

1987

1987

1987

1987

1987

1988

1988

1990

1990

1991

1992

1992

Symbolics
3675

IBM
PCIAT~

Symbolics
3675

Symbolics
3675

IBM PCIAT

IBM PCIAT

IBM PCIAT

IBM PS12"
16 MHz
80386

IBM PSI2
16 MHz
80386

IBM PSI2
16 MHz
80386

IBM PSI2
i860-based
Wizard
accelerator

CM-2 by
Thinking
Machines

IBM
RSl6000
320

IBM
RSl6000
320

ARTJLISP

DOS, Prolog

ART, LISP

ART, LISP

DOS, Pascal

DOS, Pascal

DOS, Pascal

DOS, C

DOS, C

DOS, C

A I X ~ , c

C

AIX, C

AIX, AdaTM

Original A* route planner.
Moved in 1 of 3 possible
directions. Not optimal.

Same as above

A* enhanced for 8
directions and
backtracking if
necessary. Optimal.

Initial 2D PRP search
algorithm. Optimal. Path
history saved.

Same as above

Improved 2D PRP-much
less memory required,
since path history not
saved.

First 3D: x, y , z

2D

Second 3D: x, y , z

Time dimension added to
2D

2D

True parallel processing,
2D

2D

2D

30 x 20

30 x 20

30 x 20

30 x 20

30 x 20

30 X 20

30 x 20 x 3

140 x 82

140 x 82 x 3

1200

40

5 300

120

5.3

0.5

2.6

10

150

30 X 30 X 30 17

140 x 82 1

1024 x 1024 5.9

128 x 128 1.6

128 x 128 2.7

1

30

<4

10

226

2600

1400

2296

460

3176

23 OOO

355 449

20 480

12 136

'Normalized speed = 2 x total number of map cellsitime in seconds to solve average problem. (The factor of 2 sets the normalized speed of first implementation to 1.)

The quadtree route planner processing sequence is as
follows:

1. Thresholding. The cell costs (at best resolution) are 3.
divided into two groups: a high-cost and a low-cost
group.

2. Quadtree build. Logically this process can be thought of
as dividing the map into four quarters and examining
each quarter. If a quarter consists only of high-cost
or low-cost cells, it is not processed; otherwise it is

subdivided into quarters again. The process is continued
as long as necessary down to the best/highest resolution
until all areas are high- or low-cost.
Neighbor identification. In a 2D cost map, each cell
has one neighbor north, south, east, and west. In the
quadtree data structure, a given quadtree element has a
variable number and size of neighbors in each direction.
For the route-planning search to proceed efficiently,
these neighbors must be identified. This is a very
computationally expensive step, and significant effort

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 P. N. STILES AND 1 . S. GLICKSTEIN

location I I
High resolution
where map costs
differ

Goal location *.
"d-

"

Optimal path

Reduced resolution
where all map cost
are equal
"*-.*- -

l.i ".."_" " . ~ ^ ."" I.~ "." ." . ".

Example of quadtree route planning. Resolution adapts to problem for faster processing. From [l], reproduced with permission.

has gone into a highly optimized algorithm to identify
the neighbors of each quadtree element.'

4. Quadtree search. This is an algorithm very similar in
nature to the PRP cost-minimization algorithm that finds
an optimal coarse route from start to goal.

coarse quadtree path are identified. For this purpose we
have developed a technique that uses a variant of
Bressenham's circle algorithm to mark all the cells
within a corridor.'

6. Corridor search. The PRP search algorithm operates at
full resolution to optimize the route. The original pre-
threshold cell map costs are used.

5. Corridor build. Cells within a desired distance of the

Kogge at the IBM Federal Systems Company, Owego, NY, and related work
1 Some key insights into quadtree algorithms were obtained from the work by P. M

similar to that documented in [SI.
2 P. N. Stiles, unpublished work, 1990. 174

This quadtree technique produces mixed results. On a
relatively small 2D map, such as one containing 250 X 250
cells or less, it usually takes longer to execute quadtree
steps 2 and 3 than to just run the PRP search at high
resolution. On larger maps (such as those containing
500 X 500 cells), the benefit of the quadtree technique
depends on the map cost data. For example, it would
perform poorly on a worst-case highflow-cost checkerboard
pattern. For some real-world aircraft route planning test
cases, the total time for the quadtree approach is 112 or 1/3
that of the PRP search, which represents a significant
improvement. In other cases on the same map, the
quadtree approach takes two or three times longer. To
make effective use of the quadtree technique, therefore,
would require using heuristics or map cost data sampling
to estimate on a case-by-case basis which approach is most
likely to require less time.

P. N. STILES AND 1. S . GLICKSTEIN IBM J . RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994

Comparison with other algorithms
Many search and optimization techniques can be applied to
the route-planning problem. Some are quite similar to the
search algorithm of the PRP, while others are entirely
different. This section primarily discusses alternative
techniques that include a spectrum of interesting, efficient,
or widely used algorithms. Some experienced readers may
find little to recommend some of these techniques for the
route-planning problem-particularly simulated annealing
and genetic algorithms. They are included here, however,
because we devoted a considerable amount of time to
investigating the use of these techniques, and would like to
point others in potentially more useful directions.

Dynamic programming
In [6] , the following graph notation is introduced:

A graph G(V, E) is a structure which consists of a set
of vertices V = { v l , v2, - * e } and a set of edges E =
{el, e,, a}; each edge e is incident to the elements of
an unordered pair of vertices {u, v } .
Z(e) is the length of edge e .
h(v) is the label of a vertex v assigned by a shortest-path

T is a set of temporarily assigned vertices.
s is the start vertex.
g is the goal ~ e r t e x . ~

For the route-planning problem under consideration, the
graph is assumed to be finite and undirected, and all edges
are assumed to be of nonnegative length.

Dynamic programming, as typified by Dijkstra’s
shortest-path algorithm, is similar to the PRP search
algorithm. Dijkstra’s shortest-path algorithm is expressed
in [6] as

1. h(s) + 0 and for all v # s, A(v) + a.

2. T - V.
3. Let u be a vertex in T for which h(u) is minimum.

5 . For every edge u +e v , if v E T and h(v) > h(u) +
I(e), then h(v) + h(u) + Z(e).

6 . T + T - {u} and go to step 3.

With a little thought, it is clear that this algorithm will
determine an optimal path, because the search proceeds
by expanding the lowest-cost vertices first, and optimal
wavefronts are generated that work their way out through
the search space; an optimal decision at each step
produces a globally optimal solution. Unlike the PRP
search algorithm, with which each map cell (vertex) may

algorithm.

4. If u = g, stop.

3 In [6] use is made of s and f to represent the start and goal vertices, respectively;
here they are designated ass and g.

120

100

2 80

F 6 0
B

20-

50 100 150 200 250 300 350 1

Map cells along one axis (n)

D

Serial performance of PRP search algorithm. Processing time
increases approximately as 0(n3) . These cost-minimization times
were measured for random map cost data (uniform distribution
ranging 1 to 100) on an Intel is60 processor (IBM Wizard card in
a PS/2) with the cost-minimization algorithm implemented in the
C programming language.

I75

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 P. N. STILES AND I. S . GLICKSTEIN

be processed multiple times, in Dijkstra’s algorithm each
cell is processed only once.

According to [6] , the number of operations for Dijkstra’s
algorithm is O(IV(’). For a 2D grid consisting of n X n
= N map cells or vertices, this would be O(n4). The serial
number of operations for the two-dimensional PRP has
been experimentally determined by three separate analyses
to be 9 (n 3) , which is substantially better. One set of
measured data is illustrated in Figure 8.

Dijkstra’s shortest-path algorithm. In Dijkstra’s step 3,
h(u) for the entire set T must either be kept sorted or
repeatedly searched to produce a minimum h(u) for each
vertex processed. This is a computationally expensive
step. A second advantage is that knowledge of both the
start and goal locations can be used more effectively to
speed up processing by the PRP algorithm than by
Dijkstra’s algorithm. For Dijkstra’s algorithm, it is possible
to propagate optimal wavefronts simultaneously from both
the start and the goal, and as soon as they connect with
one another, an optimal path has been found. The PRP
search algorithm has the advantage that it propagates from
many cells simultaneously-the start cell, the goal cell, and
all cells connecting them along a straight line or a corridor
center line (Figure 2). Additionally, in the PRP search
algorithm a global bound on the optimal path is computed

The PRP search algorithm has several advantages over

at the beginning and applied to limit the search on an
ongoing basis; there is no obvious way to make this
improvement to Dijkstra’s algorithm.

world test cases the PRP search algorithm ran 20 to 25
times faster. For unusual data sets where the optimal
path is very complex, such as a spiral maze, Dijkstra’s
algorithm can be faster. A related characteristic of the PRP
search algorithm is that the processing time is highly
dependent on the data.

so-far’’ characteristic not shared by Dijkstra’s shortest-
path algorithm. It begins with a straight-line path from
start to goal and therefore has a solution available
immediately. As time proceeds, better and better solutions
become available until finally, at termination, the globally
optimal solution is produced. If processing must be
terminated early to meet a real-time deadline, path
generation can be executed at any time to generate the
best path discovered at that point in time.

h(u) step in Dijkstra’s algorithm presents a very serious
disadvantage. For the algorithm to proceed, all of the
labels h(u) must be compared against one another, or kept
in a sorted list, in order for the minimum choice to be
processed next. With 1000 or 10 000 processors in the
MPP, this becomes an untenable communications or
shared-memory problem. In contrast, the local and
potentially random processing nature of vertices in the
PRP search algorithm permits multiple processors to
proceed independently of one another as long as they can
share information about the cells on the edge of the area
they are each processing (i.e., if processor i operates
on a square area of map, and processor j operates on an
adjacent square area, they must both be able to access a
single common column of map-cost and best-cost array
values where they join).

Ford’s algorithm
In [6], Ford’s shortest-path algorithm, which finds the
distance of all the vertices from a given vertex s, is
characterized as

We have implemented Dijkstra’s algorithm, and in real-

The PRP search algorithm also exhibits a useful “best-

With regard to implementation on an MPP, the minimum

1. A(s) + 0 and for every v f s, h(v) +“ m.

2. As long as there is an edge u +e v such that A(o) >
h(u) + l (e) , replace h(v) with h(u) + l (e) .

This 35-year-old algorithm was noticed and pointed out to
the authors several years after the PRP search algorithm
was developed. It is a concise generalized expression of
the cost-minimization element of the PRP search algorithm
and captures the most crucial, unique, and unintuitive
aspect of this algorithm-that even though the vertices can

176 be processed in any order (even random), the algorithm

will indeed terminate having produced the lowest-cost
distance from every vertex to the start (or goal) vertex.
(A proof of this statement is provided in [6].) The path can
be generated directly from h(v) without having saved any
other information during the search. This was a pleasant
and unexpected realization during development of the
PRP, because earlier efforts had stored path history in
memory or left pointers for path generation. (The path-
generation phase is not discussed in [6].) Ford’s algorithm
is shown to be O(lEl IV I), and as is the case with
Dijkstra’s algorithm, this is equivalent to O(N2) or O(n4)
for a 2D grid.

There are many ways to implement Ford’s statement
“as long as there is an edge.” The technique developed for
the PRP and presented in Figure 2 performed significantly
faster than earlier approaches utilizing geometric sweeps to
iteratively process the vertices. The current PRP method
initially focuses processing along the straight line
which connects the start and the goal, and thereafter
processes changed cells on a first-come, first-served
basis.

As indicated previously, the PRP cost-minimization
algorithm takes advantage of the knowledge of both
endpoints (start and goal) rather than just the one used
in Ford’s algorithm, producing a much faster solution.

A* search
The term A* designates an optimal best-first search
technique that, like Dijkstra’s shortest-path algorithm, is
used quite extensively. (Two examples may be found in [7]
and [8].) The A* algorithm explores the search space by
computing a cost function for each possible next position,
and then selecting the lowest-cost position to add to the
path and from which to generate more possible positions.
All paths in the search space are explicitly represented
using pointers from each position back to the previous
position from which it was derived.

The cost function is

ci = U C ~ , ~ + ,

where acs,, is the actual cost from start to an intermediate
position i , and eci,g is the estimated cost from i to the goal.
If the actual cost from position i to the goal is greater than
or equal to the estimate (eci,J of this cost, the solution is
guaranteed to be optimal. The accuracy of the estimate
will affect the speed of the solution and the amount of
memory needed.

witnessed the performance of other implementations, we
have found that this algorithm is generally unsatisfactory
for route planning because the time and/or memory
requirements are often excessive. One reason for this is
the explicit path representation. Another is evident in a
situation such as when the goal is surrounded by a high-

Having implemented several versions of A*, and having

P. N. STILES AND 1. S . GLICKSTEIN IBM J. RES. DEVELOP. VOL. 3R NO. 2 MARCH 1994

cost region. In this case the algorithm expands the search
space almost everywhere else first, and eventually
consumes all available memory.

representation of A* is that the algorithm can readily
factor in constraints that are dependent on the path
encountered thus far. For example, the cost associated
with traversing three connected cells may be higher than
the cost of traversing the same three cells spread out
across the map (e.g., a pilot encountering three separate
ten-second episodes of lost visibility may have a safer
route than one with a single thirty-second loss).

We have developed a modified version of A* (not
necessarily optimal, but faster) to impose aircraft turn-rate
limiting constraint^.^ This algorithm can replace the path-
generation element of the PRP search algorithm. It
executes after PRP cost minimization and uses the best
cost value at each cell as a very good lower bound
estimate ecL,g. Though it often performs quite well, it is not
entirely reliable, since in some cases it runs out of memory
for reasons already discussed.

disadvantage as Dijkstra’s algorithm-a global collection of
possible next positions must be available to all processors
so that the best (lowest-cost) can be expanded for the next
stage.

However, an advantage of the explicit path

For an MPP implementation, A* has the same

Potential field methods
Another route-planning technique utilizes artificial potential
fields that “repel” the path from obstacles and high-cost
regions, and “attract” the path to the goal and to desirable
regions [9]. The potential field affects the entire path
simultaneously (not just one position), and uses
optimization techniques to alter the path so that it passes
through an accumulated minimum potential. In contrast to
the previous algorithms discussed, this technique does not
guarantee an optimal global solution upon algorithm
termination. Although various methods are used to reduce
this problem, the solution may be trapped in a local field
minimum. (Local minima may also cause difficulties for
several of the algorithms discussed subsequently. An
example would be a northern route that passes through a
low-cost valley in a high-cost region. The optimal route
may be farther south, but the solution can converge to the
northern route, having gotten “stuck” in the low-cost
valley. This happens because most routes near the
northern route are poorer, and the algorithm can accept a
locally optimal solution even though it is not globally
optimal.) In some applications this may be an acceptable
trade-off, since this technique is purported to be much
faster than more thorough graph-searching algorithms.

1 P. N. Stiles, unpublished work, 1990.

Simulated annealing
Simulated annealing [lo, 111 is a relatively general
optimization technique that can be parallelized and applied
to problems with a complex search space to provide an
approximate, though not necessarily optimal, solution.
Simulated annealing seeks to minimize an objective
function (e.g., path cost) by utilizing stochastic processes.
It selects a feasible initial solution and then iteratively 1)
produces random perturbations of the previous solution to
generate a new possible solution, and 2) decides whether
or not to accept the new solution. The new solution is
always accepted if it is better than the previous
solution, and it is sometimes accepted if it is worse. A
“temperature” value is initially set high and is decreased
at each iteration. If the new solution is worse, it is
accepted with probability e-(AE’T), where AE = E,,, -
Eprevious; E,,, is the value of the objective function for the
new solution (for example, the cost of traversing a path
described by the current route solution) and Eprevious is
the value of the objective function for the previous
solution.

The authors are not familiar with any papers specifically
detailing the use and results of simulated annealing for
route planning, although it has been suggested for such
use. The nature of the route-planning search space is such
that small perturbations of the path produce very different
solution costs, which again leads to problems with local
minima. For a search space with this characteristic, a
simulated annealing algorithm would have difficulty
converging to a good solution.

Unlike the PRP search algorithm, which focuses
processing along the straight-line path between start and
goal and then only to map cells that have changed,
simulated annealing is essentially a random undirected
process, and is even likely to waste processing by
repeatedly exploring the same solutions.

computationally intractable for an optimal search strategy
like that of the PRP search algorithm, simulated annealing
may be a good alternative. Otherwise, it appears to be
less well suited than some of the other alternatives
discussed.

For applications that are so large they are

Genetic algorithms
Genetic algorithm (GA) search is a very intriguing idea that
was invented by John Holland in 1975 and is thoroughly
explored in [12] by Goldberg. He classifies traditional
search algorithms as

Calculus-based: gradient or hill-climbing search

Enumerative: dynamic programming (and the PRP search

Random: simulated annealing.

algorithms.

algorithm).

I

177

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 P. N. STILES AND 1. S . GLICKSTEIN

Holland states that a unique strength of genetic
algorithms is that there is a structured, yet randomized,
information exchange. Genetic algorithm search applies
to large, complex problems that cannot be solved by
enumerative methods, and situations in which any good
solution, as opposed to the best solution, will suffice. It
also applies to complex search spaces that would violate
continuity or derivative constraints usually imposed by
calculus-based algorithms. Since the route-planning
problem search space can be highly nonlinear, such
calculus-based search techniques are seldom, if ever,
attempted.

The GA algorithms use search strings that are coded
solutions. For route planning, a string could represent a
path from A to B. A population of many simultaneous
search strings is used, and since they are modeled after
biological evolution, they evolve over time in such a way
that the “fittest” tend to survive. (A low-cost path is more
fit to survive than a high-cost path.) Three primary
operators used are reproduction, crossover, and mutation.
Reproduction selects pairs of search strings that will
survive into the next generation after undergoing
crossover. It favors those with the best “payoff” (lowest
cost), but even low-payoff strings can survive with some
probability. This process tends to keep the best substrings
in the search population. For route planning, the substrings
could be path segments. Crossover operates on each pair
of strings selected by reproduction and exchanges
randomly selected substrings between them. Mutation
guards against premature loss of good substrings by
occasionally generating new substrings that are patched
into the search strings or replace existing portions.

We have spent considerable time developing a genetic
algorithm route planner, but results to date have been very
disappointing. The paths tend to become complex and loop
back on themselves, and the search population often
converges to a poor solution even when a good solution is
close by. Perhaps with more effort a method could be
found to constrain the crossover process so that loops
would not form; and perhaps with better mutation or a
different algorithm formulation the search would usually
converge to a good solution. However, Goldberg admits
that genetic algorithms do not work well on a problem with
a “deceptive needle-in-haystack” search space-where the
best solution is surrounded by bad solutions. As explained
above, the route-planning problem under investigation
often has this property.

Neural networks
Huse has presented a locally connected, fixed-weight
neural network paradigm [13] that finds “optimal/
near-optimal” paths. The world is represented by a grid,

178 and each (x , y) location is represented by a unique node

P. N. STILES AND I. S. GLICKSTEIN

of the neural network. Interconnection weights are fixed
values ranging from zero to less than one, and are based
upon the ease of movement from one neuron to its
respective north, south, east, and west neighbors (e.g., a
good road = 0.9 and a lake = 0). The output value of the
goal node is initialized and maintained at 1000. The outputs
of nodes with connection weight = 0 are initialized to 0.
The outputs of all other neurons are initialized to 1. For
the processing stage, the output value of each neuron is
updated as follows:

Neuron output + max(NcNo, ScSo, EcEo, WcWo),

where N = north, S = south, E = east, W = west,
c = connection weight, and o = output value.

All of the neurons are updated simultaneously in this
manner until the output levels are stable. Then, beginning
at the start, the path is selected by choosing the highest
neighboring node for the next position. This algorithm is
essentially the same as a parallel implementation of Ford’s
algorithm and also the NASA invention discussed below.
Unlike the PRP search algorithm, it does not make use of
the speedup possible by knowledge of both the start and
goal.

Huse also states that the solution is not optimal because
there can be competing nodes with the same output value,
in which case the path selection is purely arbitrary, This is
the digital indiscrimination problem, and no solution is
offered in [13].

Another neural network implementation has been
presented by Welker and Barhorst [14]. Constraint-
satisfaction neural networks were investigated. Of the
three types of models analyzed, a Boltzmann machine
model worked the best. This Boltzmann machine neural
network technique is very similar in nature to simulated
annealing; most of the comments in that section (e.g., the
tendency to become trapped in a local energy minimum)
are applicable here. Additionally, the functional operation
of the algorithm depends on some simplifymg assumptions
that would probably be violated in a real-world application.
For example, since the path must flow continuously in one
direction from start to goal, a path which temporarily
heads in the wrong direction to avoid a high-cost region is
not permitted.

Dedicated hardware
A unique and interesting approach to the route-planning
problem has been presented by Carroll [15]. He has
described an integrated circuit designed in the late 1970s
that used a fine-grained parallel processor architecture to
perform the computationally expensive portion of a maze-
solving algorithm. Travel through the maze in different
directions is represented by continuously variable weights
incorporated as analog parameters affecting interprocessor
communication of digital data. Using analog VLSI, the

IBM I. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994

traversal cost is represented via capacitance discharge
rates that directly/physically control the speed of
wavefront propagation from cell to cell. The first path
to reach the goal in real time is thus the lowest-cost
path.

Unlike many maze-solving algorithms that incorporate
only binary traversal costs, this circuit has at least three
different traversal costs: low, medium, and high. The
dynamic range required for the map costs depends on the
application. If the route planner is used for robot obstacle
avoidance where a cell is either occupied or empty, a
one-bit dynamic range may suffice. If the route planner
primarily optimizes fuel consumption but also avoids very
high-cost regions, a much larger dynamic range may be
necessary. The PRP route planner uses a 16-bit integer for
the map cost value that provides a fairly good dynamic
range. Some map regions can be “really bad” (e.g., 1000
times worse than normal), yet if the path is forced to go
through them, the smaller variations in map cost are still
factored into the solution.

A NASA technical brief [16] describes a patent
application for a “Processor [that] Would Find Best
Paths on Map.” This invention is essentially a hardware
implementation of Ford’s shortest-path algorithm. A cost
would be assigned to each map cell, and each cell would
be represented by a microprocessor (which could be
analog or partly analog.) The cost could be stored as the
voltage on a capacitor. One microprocessor would be
designated as the start (or goal), and would send out a
constant maximum signal to its nearest neighbors. Each
other processor would take whichever of the signals from
its nearest neighbors was the maximum one, scale it down
according to the cost assigned to that map cell, and
transmit the resulting signal to its nearest neighbors.

Lockheed/Sanders and FMC) have built dedicated
hardware route planners. From the limited information
available, they appear to be custom-designed accelerators
used to solve dynamic programming algorithms.

certainly interesting and clever, it is probably not practical
or affordable in most cases to design and build a piece of
dedicated hardware to solve a single type of problem,
especially if a generic MPP algorithm can do the job just
as well.

Additionally, several companies (including

Though some of these hardware approaches are

Massively parallel processor (MPP)
implementation
The cellular automata concept has been discussed (in the
section following the Introduction) and a rationale has
been provided indicating that it is very well suited to
fine-grain parallel processor implementation. For route
planning, if each map cell had its own processor, the PRP
cost-minimization step could be simply

MPP processing of PRP search algorithm. Processing time
increases linearly with map dimension as long as there is a pro-
cessing element available for each map cell.

1. Compute the cost c from c = BCi t MCj (where i is

2. If c < BCj, then BC, = c .
any cell and j is a neighboring cell).

This assumes that no global broadcast of information
is available. If the MPP has an efficient broadcast
mechanism, which is not uncommon, step 2 can be
modified to add the additional condition “if c < BC,l,t,”
and the performance should improve.

Figure 9 shows the results obtained when the two-
dimensional PRP search algorithm was hosted’ on a
Connection Machine@ CM-2.6 The CM-2 is an MPP with
65536 simple processing elements. The results confirm that
the algorithm performs very well on a true MPP. The x
axis is the number of map cells (n) along one side of a
square map (total map cells N = n x n). They axis is the
actual time in CPU seconds needed to solve a problem
with a randomized cost map which has the MC elements
set between 1 and 100 with a uniform distribution. The
start was located at position (3, 3) and the goal at (n/2, nn).
There is an obvious breakpoint located at n = 256
(N = 65536) because the Connection Machine has 65536
processors. The processing time increased as O(n) as long
as there was a processor available for each map cell in the
problem, which indicates that the time depends roughly
on the distance from start to goal. It increased as
O(n 2.4) when there were not enough processors available.
Performance of O(n2.4) was somewhat better than that of

5 By J. N. Fenner, IBM Federal Systems Company, Gaithersburg, MD.
6 Thinking Machines Corporation, 245 Fifth St., Cambridge, MA 02142. 179

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 P. N. STILES AND 1. S. GLlCKSTEIN

the serial algorithm, which increases as O(n ’) because the
number of processors on the MPP constitutes a large
portion of the number of map cells.

An interesting observation was made pertaining to
the number of neighbors processed. In the serial PRP
implementation, the cost minimization runs significantly
faster if four neighbors are considered rather than eight.
On the Connection Machine, better performance was
obtained when cost minimization considered eight
neighbors. This is because, using such a machine, the
information spreads out faster and causes idle processors
to function sooner. For the same reason, the initialization
step that immediately sets a path from start to goal also
improves processor efficiency. Other optimizations are
possible on the MPP, such as initializing all map cells
with a simple Manhattan distance path.

in a small study’ that hosted the PRP search algorithm on
a simulator for a new MPP computer (designated as
Execube) being developed at IBM Owego.

Equally promising parallel speedup results were obtained

Extensions and related applications
Current work in the area of route planning is primarily
focused on explicitly including time and speed in the
optimization. The route planner described here assumed a
fixed-cost map for the duration of the problem. But what if
the storm front in the original example were to be moving?
At a faster speed, the helicopter might get through before
the storm moved in. A preliminaryx, y , t search algorithm
has been developed to deal with such possibilities, but
more work remains to be done.

In addition to the route-planning application, the authors
have developed a CA approach to situation assessment
which correlates evidence from multiple sources to help
locate objects of interest in space and time. It also predicts
the likely future locations of those objects. Evidence of an
object’s location propagates from cell to cell on the basis
of terrain, context of the situation, and characteristics of
the object. Early work has been presented in [17].

Other CA-like applications reported in the literature
include image processing, classification, target detection,
and signal processing. It takes a different approach to
solve problems in a massively parallel manner, and
Norman Margolus of MIT provides motivation to do so
[18]. He states that cellular automata constitute an
important general approach to massively parallel
computation. The uniform arrays of simple processors
used by the CA approach are a good match for the
capabilities of parallel digital hardware. Taking advantage
of the locality and scalability provided by CA, extremely
high-performance MPPs can be built. Margolus states,
“It is the possibility of making efficient use of this level of

180 ’ By M. C. Dapp, IBM Federal Systems Company, Owego, NY.

performance which can be made available only in a CA
format which makes it so important to discover what
computations of practical interest can be cast into this
mold.”

Summary
Our work on an efficient cellular automata parallelizable
route planner has been described. The details of the PRP
optimal search algorithm were presented; its performance
was analyzed relative to other search and optimization
techniques, and was shown to provide advantages over
those techniques.

Various supporting and related algorithms were also
described, including a quadtree algorithm for reducing the
search space of a large map area, and a contour line
algorithm which illustrates the simplicity and efficiency of
cellular automata.

prevalent, the benefits obtained by using cellular automata
techniques for route planning and other applications should
become more apparent.

Acknowledgments

As massively parallel processors become more

The following individuals have contributed in various
ways to portions of the work described in this paper: Dr.
William Camp, Michael Dapp, Steve Felter, Jack Fenner,
Maurice Hutton, Jim King, Dr. Peter Kogge, Greg Olsen,
Mark Robinson, David Sieber, and Ron Vienneau. Michael
Benesh and David Thompson from ENSCO Inc. also
contributed. Additionally, the authors wish to thank Frank
Kilmer, David Simkins, Ron Vienneau, and several
manuscript reviewers for their suggested improvements
to this manuscript.

PC/AT, PS/2, and AIX are registered trademarks, and Ada is a
trademark, of International Business Machines Corporation.

Connection Machine is a registered trademark of Thinking
Machines Corporation.

References
1. I. S . Glickstein and P. N. Stiles, “Application of AI

Technology to Time-Critical Functions,” AZAAIIEEE
Digital Avionics Systems Conference (Paper No.

2. P. N. Stiles and I. S . Glickstein, “Route Planning,”
AIAA-88-4030), 1988.

Proceedings of AZAAIZEEE Tenth Digital Avionics System
Conference (IEEE Catalog No. 91CH3030-4), 1991, pp.
420-425.

Computer Science: Theory and Applications, F. F. Soulie,
Y. Robert, and M. Tchuente, Eds., Princeton University
Press, Princeton, NJ, 1987, p. xi.

4. P. Tzionas, Ph. Tsalides, and A. Thanailakis, “Cellular
Automata Based Minimum Cost Path Estimation on
Binary Maps,” Electron. Lett. 28, No. 17, 1653-1654

3. F. F. Soulie and Y. Robert, Automata Networks and

(1992).
5 . J. V. Oldfield, R. D. Williams, N. E. Wiseman, and M. R.

Brule, “Content-Addressable Memories for Quadtree-

P. N. STILES AND I. S. GLICKSTEIN IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994

Based Images,” Technical Report No. 8802, Syracuse
University CASE Center, Syracuse, NY, 1988.

6. S . Even, Graph Algorithms, Computer Science Press Inc.,
Potomac, MD, 1979.

7. G. J. Grevera and A. Meystel, “Searching for an Optimal
Path Through Pasadena,” Proceedings of the Third
International Symposium on Intelligent Control, IEEE
Catalog No. 0-8186-2012-9/89/0000/0308, 1988, pp. 308-319.

8. Z. Cvetanovic and C. Nofsinger, “Parallel Astar Search
on Message-Passing Architectures” (IEEE Publication No.
0073-1129/90/0000/0082), 1990, pp. 82-90.

9. C. W. Warren, “A Technique for Autonomous
Underwater Vehicle Route Planning,” ZEEE J. Oceanic
Eng. 15, No. 3, 199-204 (1990).

10. D. R. Greening, “A Taxonomy of Parallel Simulated
Annealing Techniques,” Research Report RC-14884 (No.
66639), IBM Thomas J. Watson Research Center,
Yorktown Heights, N Y , 1989.

11. S . Kirkpatrick, Jr., C. D. Gelatt, and M. P. Vecchi,
“Optimization by Simulated Annealing,” Science 220, No.
4598, 671-680 (1983).

Optimization, and Machine Learning (ISBN 0-201-15767-5),
Addison-Wesley Publishing Co, Inc., Reading, MA, 1989.

Network Paradigm,” Proceedings of the 3rd International
Conference on Industrial and Engineering (ACM
Publication No. 089791-372-8/90/0007/1054), 1990, pp.

14. K. B. Welker and J. F. Barhorst, “Analysis of Constraint

12. D. E. Goldberg, Genetic Algorithms in Search,

13. S . M. Huse, “Path Analysis Using a Predator-Prey Neural

1054-1062.

Satisfaction Neural Nets for Route Planning,” Proceedings
of the AUAIZEEE Tenth Digital Avionics System
Conference (IEEE Catalog No. 91CH3030-4), 1991,

15. C. R. Carroll, “A Neural Processor for Maze Solving,”
in Analog VLSI Implementations of Neural Systems,
C. Mead and M. 1. Ismail, Eds., Kluwer Academic Press,
Norwell, MA, 1989, pp. 1-26.

16. Technical Brief NPO-17716, NASA Jet Propulsion
Laboratory, Pasadena, CA, May 1990.

17. I. S . Glickstein and P. N. Stiles, “Situation Assessment
Using Cellular Automata Paradigm,” IEEE Aerospace &
Electron. Syst. Magazine 7, No. 1, 32-37 (1992).

18. N. Margolus, “Cellular Automata Machines: A New
Environment for Modeling,” Proceedings of the 1988
Rochester Fourth Conference, 1988, pp. 12-21.

pp. 454-459.

Received March 18, 1993; accepted for publication
November 10, 1993

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994

Peter N. Stiles IBM Federal Systems Company, Route 17C,
Owego, New York 13827 (STILES at OWGW6,
stiles@vnet.ibm.com). Mr. Stiles is an Advisory Engineer in
the Flight Systems Engineering Department. He joined IBM in
1979 after receiving a B.S. degree in physics from the State
University of New York at Binghamton. In 1987 he received
an M.S. degree in electrical engineering from Syracuse
University. He is currently working on the Rotorcraft Pilot’s
Associate program. For several years prior to that he was
principal investigator of an Independent Research and
Development (IR&D) project, exploring automated situation
assessment and mission planning capabilities via the
application of massive parallelism. Mr. Stiles received an IBM
Outstanding Technical Achievement Award for cognitive
decision aiding innovation related to the IR&D. He previously
worked on a variety of avionics programs in areas including
advanced cockpit controls and displays, voice recognition,
radar data processing and targeting, ASW acoustic signal
processing, Global Positioning System, and data link
applications.

Ira s. Glickstein IBM Federal Systems Company, Route
17C, Owego, New York 13827 (IRA at OWGW6,
ira@vnet.ibm.com). Mr. Glickstein is a Senior Engineer in the
Avionics Business Development Department at the Owego
facility. He received his B.E.E. degree from City College of
New York in 1961 and his professional engineering license
(New York) in 1965. He joined IBM in 1965 and was lead
engineer on a number of systems engineering projects and
principal investigator on IR&D projects in the areas of
advanced visionics, artificial intelligence, and object database
management systems. Mr. Glickstein received IBM
Outstanding Contribution Awards for “Weighted Checksum
Routine to Restore Altered Bits” and “Systems Engineering
Performance,” and an IBM Outstanding Innovation Award
for “Technical Proposal and Personal Computer Display
Simulation.” In 1990 he received an MS. in system science
and in 1992 a Certificate of Advanced Technical Studies in
natural and artificial biosystems from the Watson School,
Binghamton University, State University of New York, where
he is currently pursuing his Ph.D.

18

P. N. STILES AND 1. S. GLICKSTEIN

