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An  overview is  presented  of  our  work  on 
a  highly  parallelizable  route  planner  that 
efficiently  finds  an  optimal  route  between two 
points;  both  serial  and  massively  parallel 
implementations  are  described.  We  compare 
the  advantages  and  disadvantages of the 
associated  search  algorithm  relative  to  other 
search  algorithms,  and  conclude  with  a 
discussion  of  future  extensions  and  related 
applications. 

Introduction 
Route planning addresses the question of how “best” to 
go  from  point A to point B. Solutions are important for 
routing and scheduling manned  and  unmanned  air, land, 
and sea vehicles. The best route may be the one that is 
fastest, safest, cheapest, or smoothest, or it may be the 
one that covers the largest search area. It usually is one 
that optimizes some combination of these factors. The 
famous traveling salesman problem is NP-complete; i.e., 

there is no  known  polynomial  time  algorithm for finding  an 
optimal solution. The shortest-path route-planning problem 
has polynomial complexity which is not as bad, but still 
poses a challenge for today’s computers operating on real- 
time applications. This overview covers various aspects of 
the route-planning problem  and focuses on algorithms we 
have developed and associated insights we have gained 
over the past eight years. 

Route-planning  example 
Consider the pilot of a medical rescue helicopter on a 
stormy night who needs to plan a route from a hospital to 
the scene of an accident. The pilot wants to avoid the 
worst areas of the storm but also must arrive quickly to 
save the patient. There is likely to be a conflict between a 
safer route that avoids the worst of the storm but takes 
longer,  and a short, direct route that is faster but more 
dangerous. The pilot also wants to avoid  flying near radio 
towers, transmission lines, and developed areas with 
tall buildings, since the reduced visibility makes them 
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west neighbors. The most important aspect of the CA 
paradigm  is that local processes, considering only data 
known to an individual  cell  and its neighbors,  can  lead to 
the solution of problems of global extent. 

Processing proceeds by transforming the array at time t 
to a new array at time t + 1. The new state of a cell  is 
determined by a rule based on the cell’s past state, and on 
the past state of its neighbors. The following  is  an  example 
of a rule:  “If exactly three neighbors have a state of 1, 
then set own state to 1, otherwise set own state to 0.” In a 
very simple case, for a two-dimensional (2D) array with 
only two states per cell, and  with only eight neighbors per 
cell, there are 2’12 possible rules. (There are 29 = 512 
possible states of the neighborhood, and for each 
neighborhood state the rule  may specify a change to 0 or ~. . 

1.) Since there are usually  more dimensions, states, and 
neighbors, it is clear that complex behavior can result. 

Two rescue situations: (a)  There is sufficient time for the route to 
avoid the most dangerous  areas. (b) Greater urgency forces use of 
the riskier route. From [l], reproduced with permission. processing. Medium- or coarse-grain parallel processing 

Cellular automata algorithms are well suited to parallel 

implies a relatively small  number of processors working 
simultaneously on a single  problem  (e.g., 4, 10, or 64). It is 

especially dangerous. For longer  flights,  fuel consumption 
may  affect his or her decision. Factors such as these can 
be combined  and prioritized and thereby become the 
optimization criteria used by a computer to select the best 
route automatically. 

Figure 1 illustrates two examples: a) a relatively relaxed 
situation in which the flight  plan avoids the town and 
almost  all of the storm area, and b) a more urgent situation 
in which a direct path is chosen that passes straight 
through  town  and the storm, deviating only  slightly  from 
a straight line. In the case of three-dimensional (3D) 
planning, flight altitude is also optimized. The  pilot  may  fly 
higher  in areas where the cloud cover ceiling permits, 
because he  can thus go faster and reduce the risk of 
crashing into a hill or obstacle. With a lower cloud cover 
he  may need to fly lower and slower to obtain better 
visibility. 

The route-planning application we have developed is 
designed to determine a route for  military helicopters 
optimizing  similar  risk criteria. Our early work on this 
specific application is covered in [2]. 

Cellular  automata  and  route  planning 
Cellular automata (CA) were invented by John von 
Neumann  in  1948 [3], and are sometimes referred to as his 
other computer architecture. They consist of one-, two-, or 
higher-dimensional arrays of “cells” in which each cell 
communicates with  neighboring cells to solve a variety of 
spatial-temporal problems. The cells  may be real physical 
processors in a parallel computer or virtual entities 
processed serially. For a simple  two-dimensional  CA,  each 

168 cell  may be connected only to its north, south, east, and 

often awkward, complicated, and  inefficient to break a 
problem into 10 or 64 parts. However, many problems 
break up naturally into thousands of parts. As such, the 
simplicity of  CA algorithms  makes  them aesthetically 
pleasing, easy to understand, easy to code, and easy to 
parallelize. 

Consider the contour lines shown in Figure 1. They 
were generated from  an x, y ,  z data set by the following 
CA-like  algorithm  we have developed: 

1. Each pixel (cell) computes its elevation bin EB (e.g., 
0-99,  100-199, e )  as the floor FL of c1 X z + cq, 
where c1 and c2 are constants. 

neighboring  pixels to the east and south. 

contour line. 

2. Each pixel compares its own  bin with that of 

3. If either neighbor  is  different, the pixel marks itself as a 

Because of the local nature of CA algorithms, they can 
run  efficiently on massively parallel processors (MPPs) 
with thousands of processing elements. This occurs 
because the primary information  flow does not depend on 
fully interconnected processors; each processing element 
can  be  assigned to one map cell or to a set of map cells, 
and it can  run an algorithm independently of most other 
processing elements. 

covered in this paper are based on this CA paradigm. They 
were designed  for  efficient operation on MPPs once such 
processors became available. Fortunately, the CA 
algorithms also run  well on serial processors. 

The  PRP  algorithms operate within a multidimensional 
cellular search space where there is a cost associated with 

The  parallelizable route planner (PRP) algorithms 
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travel through each cell. (A 2D cell  is a small square area, 
a 3D cell is a small volume, and a 4D cell is a small 
volume at some instant in time.) This cost is a single 
positive integer that represents a nonlinear weighted 
combination of many different factors such as distance, 
fuel consumed, and risks encountered. The “best” route is 
defined to be the lowest-cost route, where the route cost is 
simply the summation of  map costs for all cells traversed. 
The quality of the solution is determined by the accuracy 
with which the map costs model the real world  and  reflect 
the user’s priorities and constraints. 

On a relatively small 2D map that contains only 15 X 15 
map cells, there are over eight  billion distinct routes from 
one corner to the other (assuming a limitation that the 
motion  is constrained to one of three directions-e.g., for 
the start location at the top left to a goal at bottom right, 
the motion  would be limited to right,  down, or right/down). 
A more realistic map  with 1000 X 1000 cells and  eight 
directions of travel therefore has an extremely large 
number of paths. Additionally, in 3D planning there are 26 
possible directions. Better route-planning solutions are 
obtained when other factors such as time, speed, and  fuel 
are considered. This paper primarily presents the 2D case, 
which is relatively easy to explain  and conceptualize. 

Parallelizable Route Planner  (PRP) algorithms 
This section discusses the serial implementation of the 
PRP algorithms we have developed. The  parallel 
implementation is discussed in the MPP  implementation 
section. Parallelizable route-planner algorithms determine 
the lowest-cost path from  point A  (the  start) to point B 
(the goal), using the stages 1) cost estimation, 2) ellipse  or 
corridor constraints, 3) search, 4) digital  indiscrimination. 

Cost estimation 
Cost estimation is a domain-dependent function that 
establishes the “cost” or grid value for each cell. For 
example, the cost to traverse a cell  through the middle of a 
town  might  be ten times higher than the cost to traverse 
a cell outside the  town.  Taken together, the set of cost 
values are referred to as the  map cost ( M C )  array. 
A significant amount of time  and  knowledge  is required 
to develop an effective, relevant set of factors and their 
relative weightings. 

Ellipse or com‘dor  constraints 
Ellipse or corridor constraints can  be  applied to the search 
to improve the processing performance and reduce 
memory requirements. An ellipse, with  foci at the start and 
goal  and a major axis of length d ,  applies when the path is 
constrained to be no greater than d .  A corridor can be 
defined  by a human user as a width  along  with a series 
of points marking the center of the corridor. A corridor 

constraint can also be generated by an automated process 
such as the quadtree search described later. 

Search 
The optimizing search algorithm of the PRP has two 
elements: cost minimization  and path generation. Cost 
minimization uses the map cost array as input and 
generates a best cost ( B C )  array as output. At completion 
of cost minimization,  each  cell in the BC array contains 
the cost of the cheapest path from that cell to the goal. 
Path generation uses the BC array as input  and produces 
the optimal path coordinates from the start to the goal. 

The  PRP search algorithm  is described in Figure 2, and 
illustrations of major steps appear in Figures 3, 4, and 5. 
Several aspects worth noting are discussed in the following 
paragraphs. 

For  a 2D search, a von Neumann neighborhood 
consisting of only four neighbors (to the north, south, east, 
and west) is used during cost minimization. However, 
a Moore  neighborhood consisting of eight neighbors 
(diagonals included) is  used for path generation. This  is 
because four-neighbor cost minimization runs faster on a 
serial processor than eight-neighbor cost minimization. 
Since eight-neighbor path generation is  used in either case, 
the results obtained are usually the same.  (Although cost 
minimization  using  eight neighbors can find a path between 
diagonally adjacent high-cost cells that a four-neighbor 
version cannot find, on real data where a particular cell  is 
not very much  different  in cost from its neighboring  cells, 
this difference does not  significantly  affect the solution.) 

Performing the test against BCsta,, (the value of the best 
cost propagation array for the cell containing the path start 
position) in step 3 of Figure 2 represents a design trade-off. 
If this test is not  applied, when the algorithm terminates 
every cell in the BC array contains the cost of the best 
path  from  itself  back  to  the  goal. (See the section on 
Ford’s algorithm  regarding a proof  of this statement.) 
This is useful because an optimal solution from any start 
location can be  rapidly determined without performing a 
new cost-minimization phase. For instance, if an aircraft 
deviates from the planned route, a new start location 
can be selected, and  path generation can  immediately 
determine a new  optimal route from that location to the 
goal location G. Additionally, multiple routes originating 
from various start locations can be generated rapidly. 

On the other hand, when the BCstart test is applied, 
the solution is reached significantly faster because many 
possible paths are never searched. The exact improvement 
depends on many factors, which  include the cost map 
data, the start and  goal positions, and the number of 
dimensions. 

An ideal  implementation uses the BCStart test to generate 
the solution rapidly,  and then removes the test to finish 
processing the BC array when there is  more  time  available. 
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I. &hIizatan 
Set all BC, = 00 fmaximum integer) 

All MF, = false 
Except  edge/ellipse/corridor map cells BC, = o  

PRP search algorithm (2D serial  implementation). 

The BC array is  originally  initialized to co (maximum if the BC array had been fully reinitialized. (Unfortunately, 
integer). Under some circumstances it does not require the same is not true when the map costs increase. In that 
complete reinitialization, and the processing will then case, the BC array must be fully reinitialized.) 
converge sooner. For example, if map costs  are reduced, 
the BC array can be left unaltered. The cells that had their Digital indiscrimination 
map costs changed must  be added to the TODO list and When regions of map costs  are equal, a grid-based 
have their mail  flags set. Then the algorithm  begins at step algorithm  is incapable of recognizing the difference 

170 3 shown in Figure 2 and  will  run to completion faster than between any two paths of the type shown in Figure 6. 
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Implementation 4 ran approximately ten times faster 
than implementation 1 because of the introduction 
of a preliminary PRP search algorithm. The faster 
implementation was also optimal,  unlike the slower one. 
Implementation 11 ran approximately ten times faster 
than implementation 8 because of the use of faster 
hardware. 
The speed of Ada relative to C is evident from 
implementations 13  and 14. Four Ada implementations 
were studied: two brand-name compilers were used 
(which produced similar results), and two formulations of 
the cost-minimization routine were evaluated on each 
compiler. The  2.7-second  time reported for  Ada was the 

/ 
0 = Another equal-cost solution 

f Digital  indiscrimination. 

to the 16 four-cell configurations that may have to be 
straightened. Note that F is independent of the location 
of these configurations, even though  it  is computed from 
their coordinates. If F matches one of the 16 precomputed 
values, an appropriate adjustment to the path  is  made if it 
does not increase the path cost and if the path has not 
already been adjusted in the opposite direction at this 
location. If an adjustment is made, the window  is backed 
up by either one or two path positions (depending on 
which of the four cells is  affected), and the process 
continues until the goal  is reached. 

This  algorithm works quite well in practice, but  it 
does have a limitation. If there are higher-cost map cells 
between the original  path  and the final desired path, it  is 
unable to complete the transformation. In a recently 
published paper regarding path estimation on binary cost 
maps [4], a “smoothing phase” is described which  might 
overcome this limitation  and provide an even better 
solution to the digital indiscrimination problem. 

PRP evolution 
In general, the PRP must function in real time. This 
typically means finding a solution in tens of seconds or 
less. The search algorithm,  which  is by far the most  time- 
consuming portion of the PRP, has been hosted on various 
processors in several languages. Table 1 contains some 
relevant data points. The  first three entries refer to A* 
search algorithms used before PRP was developed. (A* 
search is described later.) The performance has improved 
steadily over the years as a result of algorithm, hardware, 

172 and software changes. For example, 

fastest of four Ada implementations measured, and had 
a 70% longer execution time than the C version. An 
effective optimization in C is to use a pointer to BCstan, 
rather than indexing into the array each time.  Ada also 
has a pointer mechanism,  but the Ada  algorithm  using 
pointers took 22%  longer than Ada without pointers 
(3.3 seconds rather than 2.7). 
The fastest implementation (12) used a mature PRP cost- 
minimization  algorithm hosted on an  MPP.  This  parallel 
implementation  is discussed in more detail later. 

Quadtree  route-planning  technique 
Computing a route plan for a very large area at high 
resolution (e.g., for a map area several hundred miles  on a 
side and a resolution of several hundred feet) requires a 
large amount of CPU time  and memory. To solve such a 
problem, a common approach is to use a hierarchical 
planner that first performs a poor-resolution search to 
identify a coarse path, and  then performs a higher- 
resolution search to optimize the path while constraining 
the solutions to be  in the vicinity of the coarse path. There 
are serious drawbacks to this approach, however, because 
a very good  optimal path that is  only a few cells wide  can 
easily be  averaged  with the surrounding area and then 
“not noticed” by the initial search. If the initial coarse 
path goes north, for example, when  in  fact the optimal 
path  is south, the second-stage search at  high resolution 
will not find the optimal path. 

To provide a dynamically adaptable level of resolution 
appropriate to the problem under consideration, we have 
developed a quadtree-based technique (see Figure 7). This 
two-stage search process is also a hierarchical planner that 
first  identifies a coarse path (though not by sacrificing 
resolution), and then completely optimizes the route within 
a corridor centered on the coarse path. In the example 
shown in the figure,  502 quadtree squares suffice to 
represent the original 4096 map cells; therefore, and the 
search space is reduced to approximately 10%  of the 
original. 
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Table 1 Evolution of PRP search algorithm. 

No. Year Hardware Software Notes Map  size Time Normalized 
(cells) (SI speed' 

I 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1986 

1986 

1987 

1987 

1987 

1987 

1987 

1988 

1988 

1990 

1990 

1991 

1992 

1992 

Symbolics 
3675 

IBM 
PCIAT~ 

Symbolics 
3675 

Symbolics 
3675 

IBM  PCIAT 

IBM PCIAT 

IBM  PCIAT 

IBM  PS12" 
16 MHz 
80386 

IBM  PSI2 
16  MHz 
80386 

IBM  PSI2 
16 MHz 
80386 

IBM  PSI2 
i860-based 
Wizard 
accelerator 

CM-2  by 
Thinking 
Machines 

IBM 
RSl6000 
320 

IBM 
RSl6000 
320 

ARTJLISP 

DOS, Prolog 

ART, LISP 

ART, LISP 

DOS, Pascal 

DOS, Pascal 

DOS, Pascal 

DOS, C 

DOS, C 

DOS, C 

A I X ~ ,  c 

C 

AIX, C 

AIX, AdaTM 

Original A* route planner. 
Moved in 1 of 3 possible 
directions. Not optimal. 

Same as above 

A* enhanced for 8 
directions and 
backtracking if 
necessary. Optimal. 

Initial 2D PRP search 
algorithm. Optimal. Path 
history saved. 

Same as above 

Improved 2D  PRP-much 
less memory required, 
since path history not 
saved. 

First 3D: x, y ,  z 

2D 

Second 3D: x, y ,  z 

Time  dimension added to 
2D 

2D 

True parallel processing, 
2D 

2D 

2D 

30 x 20 

30 x 20 

30 x 20 

30 x 20 

30 x 20 

30 X 20 

30 x 20 x 3 

140 x 82 

140 x 82 x 3 

1200 

40 

5 300 

120 

5.3 

0.5 

2.6 

10 

150 

30 X 30 X 30  17 

140 x 82 1 

1024 x 1024 5.9 

128 x 128 1.6 

128 x 128 2.7 

1 

30 

<4 

10 

226 

2600 

1400 

2296 

460 

3176 

23 OOO 

355  449 

20  480 

12 136 

'Normalized speed = 2 x total  number of map cellsitime in seconds to solve average problem. (The factor of 2 sets the normalized speed of first implementation to 1.) 

The  quadtree  route planner  processing sequence is as 
follows: 

1. Thresholding. The cell costs (at best resolution) are 3. 
divided into two groups: a high-cost  and a low-cost 
group. 

2. Quadtree build. Logically  this process  can  be thought of 
as dividing the  map  into  four  quarters and  examining 
each  quarter. If a quarter  consists only of high-cost 
or low-cost  cells,  it is not  processed;  otherwise it is 

subdivided into  quarters again. The  process is continued 
as long as  necessary  down  to  the best/highest  resolution 
until all areas  are high- or low-cost. 
Neighbor identification. In a 2D cost map, each cell 
has  one neighbor north,  south,  east,  and  west.  In  the 
quadtree  data  structure, a given quadtree  element  has a 
variable number and size of neighbors in each direction. 
For the route-planning search  to  proceed efficiently, 
these neighbors  must be identified. This  is a very 
computationally expensive  step, and significant effort 
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location I I 
High resolution 
where map  costs 
differ 

Goal location *. 
"d- 

" 

Optimal path 

Reduced resolution 
where all map  cost 
are  equal 
"*-.*- - 

l.i ..... ".."_" " . ~ ^  ."" I.~ "." ." . ". 

Example of quadtree  route  planning. Resolution adapts to problem  for  faster processing. From [l], reproduced  with  permission. 

has gone into a highly optimized algorithm to identify 
the neighbors of each quadtree element.' 

4. Quadtree search. This is  an  algorithm very similar in 
nature to the PRP cost-minimization algorithm that finds 
an optimal coarse route from start to goal. 

coarse quadtree path are identified. For this purpose we 
have developed a technique that uses a variant of 
Bressenham's circle algorithm to mark all the cells 
within a corridor.' 

6. Corridor search. The PRP search algorithm operates at 
full resolution to optimize the route. The original pre- 
threshold cell  map costs are used. 

5. Corridor build. Cells within a desired distance of the 

Kogge at the IBM Federal Systems Company, Owego, NY, and related work 
1 Some  key insights into quadtree algorithms were obtained from the work by P. M 

similar to that documented in [SI. 
2 P. N. Stiles, unpublished work, 1990. 174 

This quadtree technique produces mixed results. On a 
relatively small 2D map, such as one containing 250 X 250 
cells or less, it usually takes longer to execute quadtree 
steps 2 and 3 than to just run the PRP search at high 
resolution. On larger maps (such as those containing 
500 X 500 cells), the benefit of the quadtree technique 
depends on the map cost data. For example, it  would 
perform poorly on a worst-case highflow-cost checkerboard 
pattern. For some real-world aircraft route planning test 
cases, the total time for the quadtree approach is 112 or 1/3 
that of the PRP search, which represents a significant 
improvement. In other cases on the same map, the 
quadtree approach takes two or three times longer. To 
make  effective use of the quadtree technique, therefore, 
would require using heuristics or map cost data sampling 
to estimate on a case-by-case basis which approach is most 
likely to require less time. 
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Comparison with other algorithms 
Many search and optimization techniques can be  applied to 
the route-planning problem. Some are quite similar to the 
search algorithm of the PRP,  while others  are entirely 
different. This section primarily discusses alternative 
techniques that include a spectrum of interesting, efficient, 
or widely used  algorithms. Some experienced readers may 
find little to recommend some of these techniques for the 
route-planning problem-particularly simulated annealing 
and genetic algorithms. They are included here, however, 
because we devoted a considerable amount of time to 
investigating the use of these techniques, and  would  like to 
point others in potentially more  useful directions. 

Dynamic programming 
In [6] ,  the following graph notation is introduced: 

A graph G(V, E )  is a structure which consists of a set 
of vertices V = { v l ,  v2,  - * e }  and a set of edges E = 
{el, e,, a};  each edge e is incident to the elements of 
an unordered pair of vertices {u, v } .  
Z(e) is the length of edge e .  
h(v) is the label of a vertex v assigned by a shortest-path 

T is a set of temporarily assigned vertices. 
s is the start vertex. 
g is the goal ~ e r t e x . ~  

For the route-planning problem under consideration, the 
graph is assumed to be finite and undirected, and  all edges 
are assumed to be of nonnegative length. 

Dynamic programming, as typified by Dijkstra’s 
shortest-path algorithm, is similar to the PRP search 
algorithm.  Dijkstra’s shortest-path algorithm  is expressed 
in [6] as 

1. h(s )  + 0 and for all v # s, A(v) + a. 

2. T - V.  
3. Let u be a vertex in T for which h(u) is minimum. 

5 .  For every edge u +e v ,  if v E T and h(v)  > h(u) + 
I(e), then h(v) + h(u) + Z(e). 

6 .  T + T - {u} and go to step 3. 

With a little thought, it  is clear that this algorithm  will 
determine an optimal path, because the search proceeds 
by expanding the lowest-cost vertices first, and optimal 
wavefronts are generated that work their way out through 
the search space; an optimal decision at each step 
produces a globally  optimal solution. Unlike the PRP 
search algorithm,  with  which each map  cell (vertex) may 

algorithm. 

4. If u = g, stop. 

3 In [6] use is made of s and f to represent the start  and goal vertices, respectively; 
here they are designated ass and g.  

120 

100 

2 80 

F 6 0  
B 

20- 

50 100 150 200 250 300 350 1 

Map cells along one axis (n) 

D 

Serial performance of PRP search algorithm. Processing time 
increases  approximately as 0(n3) .  These cost-minimization  times 
were measured for random  map cost data (uniform distribution 
ranging 1 to 100) on an Intel is60 processor (IBM Wizard  card  in 
a PS/2) with  the  cost-minimization  algorithm  implemented  in  the 
C programming language. 

I75 
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be processed multiple times, in Dijkstra’s  algorithm  each 
cell  is processed only once. 

According to [6] ,  the number of operations for Dijkstra’s 
algorithm is O( IV( ’). For a 2D  grid consisting of n X n 
= N map cells or vertices, this would be O(n4). The serial 
number of operations for the two-dimensional PRP has 
been experimentally determined by three separate analyses 
to be 9 ( n 3 ) ,  which  is substantially better. One set of 
measured data is illustrated in Figure 8. 

Dijkstra’s shortest-path algorithm.  In  Dijkstra’s step 3, 
h(u) for the entire set T must either be kept sorted or 
repeatedly searched to produce a minimum h(u) for each 
vertex processed. This is a computationally expensive 
step. A second advantage is that knowledge of both the 
start and  goal locations can be used  more effectively to 
speed up processing by the PRP  algorithm than by 
Dijkstra’s algorithm. For Dijkstra’s  algorithm,  it is possible 
to propagate optimal wavefronts simultaneously from both 
the start and the goal,  and as soon as they connect with 
one another, an optimal path has been found. The PRP 
search algorithm has the advantage that it propagates from 
many cells simultaneously-the start cell, the goal  cell, and 
all cells connecting them along a straight line or a corridor 
center line (Figure 2).  Additionally,  in the PRP search 
algorithm a global bound on the optimal  path is computed 

The PRP search algorithm has several advantages over 



at the beginning  and  applied to limit the search on an 
ongoing basis; there is  no obvious way to make this 
improvement to Dijkstra’s  algorithm. 

world test cases the PRP search algorithm  ran 20 to 25 
times faster. For unusual data sets where the optimal 
path is very complex, such as  a spiral maze,  Dijkstra’s 
algorithm  can be faster. A related characteristic of the PRP 
search algorithm  is that the processing time is highly 
dependent on the data. 

so-far’’ characteristic not shared by Dijkstra’s shortest- 
path algorithm. It begins  with a straight-line path  from 
start to goal  and therefore has a solution available 
immediately. As time proceeds, better and better solutions 
become available until  finally, at termination, the globally 
optimal solution is produced. If processing must  be 
terminated early to meet a real-time deadline, path 
generation can be executed at any time to generate the 
best path discovered at that point  in  time. 

h(u) step in Dijkstra’s  algorithm presents a  very serious 
disadvantage. For the algorithm to proceed, all  of the 
labels h(u)  must be compared against one another, or kept 
in a sorted list, in order for the minimum choice to be 
processed next. With 1000 or 10 000 processors in the 
MPP, this becomes an untenable communications or 
shared-memory problem.  In contrast, the local  and 
potentially random processing nature of vertices in the 
PRP search algorithm permits multiple processors to 
proceed independently of one another as long as they can 
share information about the cells on the edge of the area 
they are each processing (i.e., if processor i operates 
on a square area of map,  and processor j operates on an 
adjacent square area, they must both be  able to access a 
single  common  column of map-cost and best-cost array 
values where they join). 

Ford’s algorithm 
In [6], Ford’s shortest-path algorithm,  which  finds the 
distance of  all the  vertices from a given vertex s, is 
characterized as 

We have implemented Dijkstra’s algorithm,  and in real- 

The PRP search algorithm also exhibits a useful “best- 

With  regard to implementation on an  MPP, the minimum 

1. A(s) + 0 and  for every v f s, h(v)  +“ m. 

2. As long as there is an  edge u +e  v such that A(o)  > 
h(u) + l (e ) ,  replace h(v)  with h(u )  + l (e) .  

This 35-year-old  algorithm was noticed  and  pointed out to 
the authors several years after the PRP search algorithm 
was developed. It is a concise generalized expression of 
the cost-minimization element of the PRP search algorithm 
and captures the most crucial, unique,  and unintuitive 
aspect of this algorithm-that  even  though the vertices can 
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will  indeed terminate having produced the lowest-cost 
distance from every vertex to the start (or goal) vertex. 
(A proof  of this statement is provided in [6].) The path can 
be generated directly from h(v )  without having saved any 
other information  during the search. This was a pleasant 
and unexpected realization during development of the 
PRP, because earlier efforts had stored path history in 
memory or left pointers for path generation. (The path- 
generation phase is not discussed in [6].) Ford’s algorithm 
is shown to be O(lEl IV I), and as is the case with 
Dijkstra’s  algorithm, this is equivalent to O(N2)  or O(n4) 
for a 2D grid. 

There are many ways to implement Ford’s statement 
“as long as there is an edge.” The technique developed for 
the PRP  and presented in Figure 2 performed  significantly 
faster than earlier approaches utilizing geometric sweeps to 
iteratively process the vertices. The current PRP  method 
initially focuses processing along the straight line 
which connects the start and the goal,  and thereafter 
processes changed cells on a first-come, first-served 
basis. 

As indicated previously, the PRP cost-minimization 
algorithm takes advantage of the knowledge of both 
endpoints (start and goal) rather than just the one used 
in Ford’s algorithm,  producing a much faster solution. 

A* search 
The term A* designates an optimal best-first search 
technique that, like Dijkstra’s shortest-path algorithm,  is 
used quite extensively. (Two examples may  be  found  in [7] 
and [8].) The A* algorithm explores the search space by 
computing a cost function for  each possible next position, 
and then selecting the lowest-cost position to add to the 
path and  from  which to generate more  possible positions. 
All paths in the search space are explicitly represented 
using pointers from each position back to the previous 
position  from  which  it was derived. 

The cost function  is 

ci = U C ~ , ~  + , 

where acs,, is the actual cost from start to an intermediate 
position i ,  and eci,g is the estimated cost from i to the goal. 
If the actual cost from  position i to the goal  is greater than 
or equal to the estimate (eci,J of this cost, the solution is 
guaranteed to be optimal. The accuracy of the estimate 
will  affect the speed of the solution and the amount of 
memory needed. 

witnessed the performance of other implementations, we 
have  found that this algorithm is generally unsatisfactory 
for route planning because the time and/or memory 
requirements are often excessive. One reason for this is 
the explicit  path representation. Another is evident in a 
situation such as when the goal  is surrounded by a high- 

Having  implemented several versions of A*, and  having 
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cost region. In this case the algorithm expands the search 
space almost everywhere else first, and eventually 
consumes all  available  memory. 

representation of A* is that the algorithm  can  readily 
factor in constraints that are dependent on the path 
encountered thus far. For example, the cost associated 
with traversing three connected cells may  be  higher than 
the cost of traversing the same three cells spread out 
across the map  (e.g., a pilot encountering three separate 
ten-second episodes of lost visibility  may have a safer 
route than one with a single thirty-second loss). 

We have developed a modified version of A* (not 
necessarily optimal, but faster) to impose aircraft turn-rate 
limiting  constraint^.^ This algorithm can replace the path- 
generation element of the PRP search algorithm. It 
executes after PRP cost minimization  and uses the best 
cost value at each cell as  a  very good  lower bound 
estimate ecL,g. Though it often performs quite well, it is  not 
entirely reliable, since in some cases it runs out of memory 
for reasons already discussed. 

disadvantage as Dijkstra’s algorithm-a global collection of 
possible next positions must be available to all processors 
so that the best (lowest-cost) can be expanded for the next 
stage. 

However, an advantage of the explicit  path 

For an  MPP implementation, A* has the same 

Potential field methods 
Another route-planning technique utilizes artificial potential 
fields that “repel” the path from obstacles and  high-cost 
regions, and “attract” the path to the goal  and to desirable 
regions [9]. The potential field affects the entire path 
simultaneously (not just one position), and uses 
optimization techniques to alter the path so that it passes 
through  an accumulated minimum potential. In contrast to 
the previous algorithms discussed, this technique does not 
guarantee an optimal  global solution upon  algorithm 
termination. Although various methods are used to reduce 
this problem, the solution may  be trapped in a local  field 
minimum. (Local minima  may also cause difficulties  for 
several of the algorithms discussed subsequently. An 
example  would be a northern route that passes through a 
low-cost valley in a high-cost  region. The optimal route 
may be farther south, but the solution can converge to the 
northern route, having gotten “stuck” in the low-cost 
valley. This happens because most routes near the 
northern route are poorer, and the algorithm  can accept a 
locally optimal solution even  though it is  not  globally 
optimal.) In some applications this may be an acceptable 
trade-off, since this technique is purported to be much 
faster than more  thorough graph-searching algorithms. 

1 P. N. Stiles, unpublished work, 1990. 

Simulated  annealing 
Simulated annealing [lo, 111 is a relatively general 
optimization technique that can be parallelized and applied 
to problems with a complex search space to provide an 
approximate, though  not necessarily optimal, solution. 
Simulated annealing seeks to minimize  an objective 
function (e.g., path cost) by  utilizing stochastic processes. 
It selects a feasible initial solution and then iteratively 1) 
produces random perturbations of the previous solution to 
generate a new possible solution, and 2 )  decides whether 
or not to accept the new solution. The new solution is 
always accepted if  it is better than the previous 
solution, and  it  is sometimes accepted if it is worse. A 
“temperature” value is  initially set high and  is decreased 
at each iteration. If the new solution is worse, it  is 
accepted with probability e-(AE’T), where AE = E,,, - 
Eprevious; E,,, is the value of the objective function for the 
new solution (for example, the cost of traversing a path 
described by the current route solution) and Eprevious is 
the value of the objective function for the previous 
solution. 

The authors are not  familiar  with any papers specifically 
detailing the use  and results of simulated  annealing for 
route planning,  although it has been suggested for such 
use. The nature of the route-planning search space is  such 
that small perturbations of the path produce very different 
solution costs, which  again leads to problems with  local 
minima. For a search space with this characteristic, a 
simulated annealing  algorithm  would  have  difficulty 
converging to a good solution. 

Unlike the PRP search algorithm,  which focuses 
processing along the straight-line path between start and 
goal  and then only to map cells that have changed, 
simulated  annealing  is essentially a random undirected 
process, and  is  even  likely to waste processing by 
repeatedly exploring the same solutions. 

computationally intractable for an optimal search strategy 
like that of the PRP search algorithm, simulated annealing 
may be a good alternative. Otherwise, it appears to be 
less well suited than some of the other alternatives 
discussed. 

For applications that are so large they are 

Genetic algorithms 
Genetic algorithm (GA) search is a  very intriguing  idea that 
was invented by John Holland in 1975 and  is thoroughly 
explored in [12] by Goldberg. He classifies traditional 
search algorithms as 

Calculus-based: gradient or hill-climbing search 

Enumerative: dynamic programming (and the PRP search 

Random: simulated annealing. 

algorithms. 

algorithm). 

I 
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Holland states that a unique strength of genetic 
algorithms is that there is a structured, yet randomized, 
information exchange. Genetic algorithm search applies 
to large, complex problems that cannot be solved by 
enumerative methods, and situations in which any good 
solution, as opposed to the best solution, will  suffice. It 
also applies to complex search spaces that would violate 
continuity or derivative constraints usually imposed by 
calculus-based algorithms. Since the route-planning 
problem search space can be highly nonlinear, such 
calculus-based search techniques are seldom, if ever, 
attempted. 

The GA  algorithms use search strings that are coded 
solutions. For route planning, a string could represent a 
path  from A to B. A population of many simultaneous 
search strings is used, and since they are modeled after 
biological evolution, they evolve over time in such a way 
that the “fittest” tend to survive. (A low-cost path is  more 
fit to survive than a high-cost path.) Three primary 
operators used are reproduction, crossover, and mutation. 
Reproduction selects pairs of search strings that will 
survive into the next generation after undergoing 
crossover. It favors those with the best “payoff” (lowest 
cost), but even low-payoff strings can survive with some 
probability. This process tends to keep the best substrings 
in the search population. For route planning, the substrings 
could  be path segments. Crossover operates on each pair 
of strings selected by reproduction and exchanges 
randomly selected substrings between them. Mutation 
guards against premature loss of good substrings by 
occasionally generating new substrings that are patched 
into the search strings or replace existing portions. 

We have spent considerable time developing a genetic 
algorithm route planner, but results to date have been very 
disappointing.  The paths tend to become complex and loop 
back on themselves, and the search population often 
converges to a poor solution even when a good solution is 
close by. Perhaps with  more  effort a method could be 
found to constrain the crossover process so that loops 
would  not  form;  and perhaps with better mutation or a 
different  algorithm formulation the search would usually 
converge to a good solution. However, Goldberg admits 
that genetic algorithms do not work well  on a problem  with 
a “deceptive needle-in-haystack” search space-where the 
best solution is surrounded by bad solutions. As explained 
above, the route-planning problem  under investigation 
often has this property. 

Neural  networks 
Huse has presented a locally connected, fixed-weight 
neural network paradigm [13] that finds “optimal/ 
near-optimal” paths. The world  is represented by a grid, 
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of the neural network. Interconnection weights are fixed 
values ranging  from zero to less than one, and are based 
upon the ease of movement  from one neuron to its 
respective north, south, east, and west neighbors (e.g., a 
good road = 0.9 and a lake = 0). The output value of the 
goal node is initialized  and  maintained at 1000. The outputs 
of nodes with connection weight = 0 are initialized to 0. 
The outputs of  all other neurons are initialized to 1. For 
the processing stage, the output value of each neuron is 
updated as follows: 

Neuron output + max(NcNo, ScSo, EcEo, WcWo), 

where N = north, S = south, E = east, W = west, 
c = connection weight, and o = output value. 

All of the neurons are updated simultaneously in this 
manner until the output levels are stable. Then, beginning 
at the start, the path is selected by choosing the highest 
neighboring node for the next position. This  algorithm  is 
essentially the same as a parallel implementation of Ford’s 
algorithm  and also the NASA invention discussed below. 
Unlike the PRP search algorithm,  it does not  make use of 
the speedup possible by knowledge of both the start and 
goal. 

Huse also states that the solution is not  optimal because 
there can be competing nodes with the same output value, 
in  which case the path selection is purely arbitrary, This is 
the digital indiscrimination problem,  and  no solution is 
offered in  [13]. 

Another neural network implementation has been 
presented by Welker and Barhorst [14]. Constraint- 
satisfaction neural networks were investigated. Of the 
three types of models analyzed, a Boltzmann  machine 
model worked the best. This Boltzmann  machine  neural 
network technique is very similar  in nature to simulated 
annealing;  most of the comments in that section (e.g., the 
tendency to become trapped in a local energy minimum) 
are applicable here. Additionally, the functional operation 
of the algorithm depends on some simplifymg assumptions 
that would probably be violated in a real-world application. 
For example, since the path must flow continuously in one 
direction from start to goal, a path which temporarily 
heads in the wrong direction to avoid a high-cost  region  is 
not permitted. 

Dedicated hardware 
A unique and interesting approach to the route-planning 
problem has been presented by Carroll [15]. He has 
described an integrated circuit designed  in the late 1970s 
that used a fine-grained parallel processor architecture to 
perform the computationally expensive portion of a maze- 
solving  algorithm. Travel through the maze in  different 
directions is represented by continuously variable weights 
incorporated as analog parameters affecting interprocessor 
communication of digital data. Using  analog VLSI, the 
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traversal cost is represented via capacitance discharge 
rates that directly/physically control the speed of 
wavefront propagation from cell to cell.  The  first path 
to reach the goal  in real time is thus the lowest-cost 
path. 

Unlike many  maze-solving algorithms that incorporate 
only binary traversal costs, this circuit has at least three 
different traversal costs: low,  medium,  and  high. The 
dynamic range required for the map costs depends on the 
application. If the route planner is used for robot obstacle 
avoidance where a cell  is either occupied or empty, a 
one-bit dynamic range  may  suffice. If the route planner 
primarily optimizes fuel consumption but also avoids very 
high-cost  regions, a much  larger dynamic range  may be 
necessary. The  PRP route planner uses a 16-bit integer for 
the map cost value that provides a fairly good dynamic 
range. Some map regions can  be “really bad” (e.g.,  1000 
times worse than normal), yet if the path is forced to go 
through them, the smaller variations in  map cost are still 
factored into the solution. 

A NASA technical  brief  [16] describes a patent 
application for a “Processor [that] Would  Find Best 
Paths on Map.”  This  invention is essentially a hardware 
implementation of Ford’s shortest-path algorithm. A cost 
would  be  assigned to each map  cell,  and  each  cell  would 
be represented by a microprocessor (which  could be 
analog or partly analog.)  The cost could be stored as the 
voltage on a capacitor. One microprocessor would be 
designated as the start (or goal),  and  would send out a 
constant maximum  signal to its nearest neighbors. Each 
other processor would take whichever of the signals from 
its nearest neighbors was the maximum one, scale it  down 
according to the cost assigned to that map cell,  and 
transmit the resulting  signal to its nearest neighbors. 

Lockheed/Sanders and FMC) have built dedicated 
hardware route planners. From the limited information 
available, they appear to be custom-designed accelerators 
used to solve dynamic programming  algorithms. 

certainly interesting and clever, it is probably not practical 
or affordable in most cases to design  and  build a piece of 
dedicated hardware to solve a single type of problem, 
especially if a generic MPP  algorithm can do the job just 
as well. 

Additionally, several companies (including 

Though some of these hardware approaches are 

Massively  parallel  processor  (MPP) 
implementation 
The cellular automata concept has been discussed (in the 
section following the Introduction) and a rationale has 
been provided indicating that it is very well suited to 
fine-grain parallel processor implementation. For route 
planning, if each map  cell  had its own processor, the PRP 
cost-minimization step could be simply 

MPP processing of PRP search algorithm.  Processing  time 
increases  linearly  with map dimension as long as there is a pro- 
cessing element  available  for each map cell. 

1. Compute the cost c from c = BCi t MCj (where i is 

2. If c < BCj,  then BC, = c .  
any cell  and j is a neighboring cell). 

This assumes that no  global broadcast of information 
is  available. If the MPP has an  efficient broadcast 
mechanism,  which  is  not uncommon, step 2 can be 
modified to add the additional condition “if c < BC,l,t,” 
and the performance should improve. 

Figure 9 shows the results obtained when the two- 
dimensional  PRP search algorithm was hosted’ on a 
Connection Machine@ CM-2.6 The CM-2 is an MPP with 
65536  simple processing elements. The results confirm that 
the algorithm performs very well  on a true MPP.  The x 
axis is the number of  map cells (n) along one side of a 
square map (total map cells N = n x n). They axis is the 
actual time  in CPU seconds needed to solve a problem 
with a randomized cost map which has the MC elements 
set between 1 and 100 with a uniform distribution. The 
start was located at position (3, 3) and  the goal at (n/2, nn). 
There is  an obvious breakpoint located at n = 256 
(N = 65536) because the Connection Machine has 65536 
processors. The processing time increased as O(n) as long 
as there was a processor available for each map  cell in the 
problem,  which indicates that the time depends roughly 
on the distance from start to goal. It increased as 
O(n 2.4) when there were not enough processors available. 
Performance of O(n2.4) was somewhat better than that of 

5 By J. N. Fenner, IBM Federal Systems Company,  Gaithersburg, MD. 
6 Thinking  Machines  Corporation, 245 Fifth St., Cambridge,  MA 02142. 179 
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the serial algorithm, which increases as O(n ’) because the 
number of processors on the MPP constitutes a large 
portion of the number of  map cells. 

An interesting observation was made pertaining to 
the number of neighbors processed. In the serial PRP 
implementation, the cost minimization runs significantly 
faster if four neighbors are considered rather than eight. 
On the Connection Machine, better performance was 
obtained when cost minimization considered eight 
neighbors. This is because, using such a machine, the 
information spreads out faster and causes idle processors 
to function sooner. For the same reason, the initialization 
step that immediately sets a path from start to goal also 
improves processor efficiency. Other optimizations are 
possible on the MPP, such as initializing all  map cells 
with a simple Manhattan distance path. 

in a small study’ that hosted the PRP search algorithm on 
a simulator for a new  MPP computer (designated as 
Execube) being developed at IBM  Owego. 

Equally promising  parallel speedup results were obtained 

Extensions  and  related  applications 
Current work in the area of route planning  is  primarily 
focused on explicitly including  time  and speed in the 
optimization. The route planner described here assumed a 
fixed-cost map for the duration of the problem.  But what if 
the storm front in the original  example were to be  moving? 
At a faster speed, the helicopter might  get  through before 
the storm moved in. A preliminaryx, y ,  t search algorithm 
has been developed to deal with such possibilities, but 
more work remains to be done. 

In addition to the route-planning application, the authors 
have developed a CA approach to situation assessment 
which correlates evidence from  multiple sources to help 
locate objects of interest in space and  time. It also predicts 
the likely future locations of those objects. Evidence of an 
object’s location propagates from  cell to cell  on the basis 
of terrain, context of the situation, and characteristics of 
the object. Early work has been presented in [17]. 

Other CA-like applications reported in the literature 
include image processing, classification, target detection, 
and  signal processing. It takes a different approach to 
solve problems in a massively parallel manner, and 
Norman Margolus of MIT provides motivation to do so 
[18]. He  states that cellular automata constitute an 
important general approach to massively  parallel 
computation. The uniform arrays of simple processors 
used by the CA approach are a good  match for the 
capabilities of parallel  digital hardware. Taking advantage 
of the locality and scalability provided by CA, extremely 
high-performance MPPs  can be built.  Margolus states, 
“It is the possibility of  making  efficient use of this level of 
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performance which can be made available only in a CA 
format which makes it so important to discover what 
computations of practical interest can be cast into this 
mold.” 

Summary 
Our work on an efficient cellular automata parallelizable 
route planner has been described. The details of the PRP 
optimal search algorithm were presented; its performance 
was analyzed relative to other search and  optimization 
techniques, and was shown to provide advantages over 
those techniques. 

Various supporting and related algorithms were also 
described, including a quadtree algorithm for reducing the 
search space of a large  map area, and a contour line 
algorithm  which illustrates the simplicity and efficiency of 
cellular automata. 

prevalent, the benefits obtained by using cellular automata 
techniques for route planning  and other applications should 
become more apparent. 
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