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This paper reviews the research literature that
has appeared since 1980 on computer
calculations of current distribution in the field of
electrodeposition. Key contributions and general
trends are identified, with particular emphasis
given to applications in the electronics industry.
The survey reveals how numerical models have
provided the technology of electrodeposition
with general understanding, predictive power,
and the capability of optimizing deposit
uniformity. Anticipated developments for the
nineties are discussed.

Introduction

The importance of electrodeposition as a fabrication
technology in the electronics industry is large and
growing. With the current trends toward miniaturization,
cost competitiveness, and high-performance packaging,
electrodeposition has become the dominant
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manufacturing technology in many new applications and
remains firmly established in others. Key applications of
plating that have achieved major importance in the
eighties are tape-automated-bonding (TAB) packages,
dual-in-line packages (DIP), thin-film magnetic-recording
heads, electromagnetic interference (EMI) shielding of
system enclosures, and integrated-circuit packaging by
controlled collapse chip connection (C4). Applications of
longer standing that remain vital are printed-wiring
boards, contacts, connectors, and corrosion protection. A
good appreciation of the breadth of electrodeposition
technology in use in the electronics industry can be
gained from the proceedings of a recent symposium (11,
and the importance of plating to electronic packaging is
conveyed in recent monographs [2-4).

In nearly every application of electrodeposition, the
pursuit of deposit uniformity, especially thickness
uniformity, has been a technical imperative. However,
nowhere has uniformity been as important as in the
electronics and computer industries, where the most
stringent requirements on electrodeposition have been
imposed. The success of electrodeposition in these
industries has depended largely upon efforts to achieve
uniform films of a metal or alloy in spite of difficulties
presented by lithographic patterns, irregular surface
topographies, narrow holes, large substrates, and resistive
seed layers.
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In general, a uniform electrodeposit is achieved when
the current density is evenly distributed over the
electrode surface. Since electrodeposition is a Faradaic
charge-transfer reaction, the rate of deposition depends
upon the current density. In the absence of any
interfering reaction, the relationship is Faraday’s law:

M=

LN

i
nFp’ 0
where M is the deposition rate in cm/s, i is the
component of current density normal to the electrode
surface in A/cmz, n is the number of electrons transferred
per metal atom discharged, F is Faraday’s constant
(96 487 C), A is the atomic weight of the metal in grams,
and p is the density of the metal in g/cm’. In this case,
the thickness distribution is proportional to the normal
current-density distribution for deposits that are very thin
compared to the size of shape features on the substrate.
When there is a competing reaction, such as hydrogen
gas evolution, the current efficiency of plating (i.e., the
fraction of the current density that participates in the
electrodeposition reaction) generally varies with current
density; despite this complication, thickness uniformity is
nearly always best achieved when the current density is
uniform. When two or more species are deposited
simultaneously from the same solution to form an alloy,
the compositional uniformity of the deposit may be at
least as important as the uniformity of the thickness,
especially in the fabrication of magnetic devices. Again,
however, composition generally depends directly on
current density, as do other deposit properties such as
roughness and intrinsic stress. In most cases, therefore,
the challenge of deposit uniformity can be posed as a
problem of current-density distribution: How can one
distribute the electrolytic current evenly over the surface
of the cathode?

The nature of the electrodeposition process is such that
there exist strong tendencies for the current distribution
to be nonuniform. The best-known effect of this type is
due to nonuniformities in the electric potential field that
result from the shape and geometric configuration of the
electrodes. A nonuniform current distribution can also
arise when the following two conditions are met. First,
the deposition reaction must be influenced by the rate of
mass transfer of one or more active species. Second, the
rate of mass transfer must be spatially nonuniform over
the electrode surface. The latter condition can apply
when the agitation of the electrolyte is uneven or when
electrode shape features of size comparable to the
diffusion-layer thickness give rise to nonuniform
diffusion. In many cases, the qualitative understanding of
such effects has been established, and recent progress has
been mainly in the judicious application of scientific
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knowledge in engineering analysis of practical systems.
This paper focuses on advances in the use of quantitative
mathematical models to determine current distribution
and, ultimately, to achieve optimum deposit uniformity.

It can be said that the capability of precise prediction
of current-density distribution has been one of the
foremost achievements in what Carl Wagner has called
“the science of electrochemical engineering” [5]. It is one
of the advances that has elevated electroplating from an
empirical art to a sophisticated technology.

The purpose of this review is to summarize the
significant advances in the field made during the eighties.
The large body of progress made in the seventies and
earlier has been well summarized in a 1982 review paper
by Prentice and Tobias [6]. Unlike that review, this work
focuses on electrodeposition rather than on the entirety
of electrolysis. Work from related fields, such as etching
and corrosion protection, is covered only to the extent
that its treatment of current-distribution calculations is
likely to have an impact on electrodeposition.

One can observe certain general trends in the
treatment of current-density calculations in the eighties.
Not surprisingly, the emphasis has been increasingly
computational and numerical. Analytical treatments are
less prominent, and even a number of these rely on
numerical evaluation of integral equations. Several
methods have been developed for use on personal
computers, which continue to grow in power and
availability; the pioneering work of Klingert, Lynn, and
Tobias [7], performed in 1963 on a state-of-the-art
mainframe computer, could be repeated today in less
time on a desktop computer.

Unfortunately, the zeal to apply computers to current-
distribution problems has produced some “reinvention of
the wheel” and failure to build appropriately upon
existing foundations. Some analysts have neglected to
recognize the parametric dependencies of current
distribution pointed out by earlier investigators.

As computers and numerical methods have come of
age, attention has shifted somewhat from the
computational methods themselves to actual
electrochemical problems of interest. Furthermore, there
has been a general trend toward specialized application of
modeling to specific technical problems.

Classification of current-distribution studies
Possibly the most logical way to categorize studies of
current distribution in electrodeposition is in terms of the
scale of the region of interest. Since it is seldom possible
to represent a structure of great complexity, such as a
multichip packaging module, in a single geometric
model, it is often necessary to decompose the problem
into simpler problems, each representing a different
length scale. This allows one to determine the essential
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characteristics of current distribution on one scale at a
time, while disregarding the others. Such an approach
implies an eventual reconstruction of the multiscale
problem by somehow superposing or merging the single-
scale solutions, although this step has thus far escaped
attention in the literature. In many cases, the structure of
the workpiece quite naturally suggests distinct length
scale of interest. For the problem of copper plating of
through-holes in multilayer printed-circuit boards,
Kessler and Alkire [8] identified three length scales: 1) the
macroscale, characteristic of the size of the entire board,
2) the miniscale, characteristic of the size of individual
plated through-holes, and 3) the microscale, characteristic
of the size of surface roughness. Such a decomposition of
the problem is quite appropriate and, indeed, necessary,
since it would be virtually impossible to solve for the
current distribution over a 50-cm board at the level of
detail that treats axial nonuniformity within each of
thousands of 500-um-diameter through-holes. The
present work adopts a similar, though enlarged and more
general, hierarchy of size scales:

1. Workpiece scale characteristic of the entire object
undergoing electrodeposition—e.g., wafer, circuit
board, or tape.

2. Pattern scale characteristic of patterns or regions on
the workpiece surface that differ in active area per unit
area as a result of masking or density of surface
features.

3. Feature scale characteristic of individual small
features such as wiring lines, bonding pads, vias,
through-holes, and magnetic recording heads.

4. Roughness scale characteristic of microscopic
crystallographic roughness, naturally occurring
asperities, etc.

While Scales 1, 3, and 4 correspond closely to those
outlined by Kessler and Alkire [8] for printed-circuit-
board plating, Scale 2, the pattern scale, has received little
attention. An example of the usefulness of the pattern
scale occurs in the case of a wafer that contains an array
of repeating photoresist patterns that correspond to
individual chips that will be created when the wafer is
diced. As is discussed later, nonuniformities in deposit
thickness can occur across each chip pattern as a result of
nonuniform density of resist across the pattern.

This paper, which focuses more on the art of
fabricating devices than on the phenomenology of
electrocrystallization, does not concern itself with the
roughness scale. The ample literature on topics of
roughness development in electrodeposition (exemplified
by two recent contributions that review earlier work
[9, 10]) and on phenomena such as leveling [11-13] lies
outside the scope of this review. It should be noted,
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however, that general methods for calculating current
distribution have found use in such studies. It must also
be stated that structures fabricated by electrodeposition
are steadily shrinking and, in some cases, have already
“intruded upon” the roughness scale.

Computational methods for potential-theory
problems

Clearly there has been much progress over the last decade
in computational methods that are applicable to the class
of current-distribution problems described by potential
theory. The potential-theory model, a good explanation
of which is given by Newman [14], is well established and
has been validated by experiment. For the model to be
applicable, the electrolyte, bounded by electrodes and
insulators, must be of uniform conductivity «, a
condition which is often amply satisfied when the
electrolyte is well mixed or when the ions that are
participating in the reactions are responsible for only a
small fraction of the ionic conductivity of the electrolyte.
If this is satisfied, the potential ¢ obeys Laplace’s
equation within the electrolyte:

Vi =0. )

The boundary condition at all insulating boundaries or
planes of symmetry is

=0, 3)

Q»IQ;
= e

where n is a unit vector normal to the surface. The
boundary conditions at electrode surfaces contain
expressions for electrode kinetics and concentration
polarization and take the form

¢=¢E‘“77, (4)

where ¢, is the potential of the electrode itself, and 7 is
the total overpotential. The total overpotential is often
decomposed into a kinetic or surface overpotential n_and
a concentration overpotential n.. The most commonly
used expression of electrode kinetics, which relates the
surface overpotential to the current density /, is the
Butler—Volmer expression,

_'i_ — e"a(Fns/RT) _ e—ac(l"ns/RT) , (5)
)

where i, is the exchange current density, and «, and «,
are the kinetic transfer coefficients of the anodic and
cathodic components of the electrodeposition reaction.
The normal derivative of potential is related to current
density by a form of Ohm’s law,

L)
i=-xo (6)
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The exchange current density, i,, may be taken to
depend on the concentration of the electrodepositing ion,
¢):» in the following way:

Cpz\”
i0=i:;°<f>, (7

Cor

where 7 is a constant, and the superscript « denotes the
value at which the concentration is at its bulk value. The
concentration overpotential is often represented as

RT . Cpy-
n=Fn =, ®)
M

in which 7 is the number of electrons transferred in the
electrodeposition reaction. The potential field, from
which the current distribution is determined, must satisfy
Equations (2)-(8). When the total overpotential is
assumed to be zero, the result is referred to as the
primary distribution and depends solely on the geometry
of the problem. When kinetic limitations are considered
[as in Equation (5)] in the absence of concentration
variations, the result is called the secondary distribution.
When concentration variations enter the analysis, the
result is known as the tertiary distribution, although some
have used this term to specify the extreme case in which
mass transfer controls the reaction rate to the exclusion of
ohmic and kinetic effects. Many analyses of secondary
current distribution have treated one of the two limiting
cases of the Butler-Volmer rate law, namely the Tafel
expression, valid at high overpotential,

i —a

L o AT ©)
Iy

or the linear approximation, valid at low overpotential,’

i (e, + a)F

A (10

! There has been an unfortunate lack of consensus in the literature on the particular

formulation and nomenclature for the dimensionless groups that characterize the
boundary-value problem stated by Equations (2)—(6). For either limiting case
[Equation (9) or (10)], it has been well established that the current distribution can be
characterized by a single dimensionless group, which has been named the Wagner
number [15]:

3
i=ipvVE

where i,y is an average current density and L is a characteristic length. As Newman
[14) has shown, however, three groups are required to specify the solution when
neither the Tafel nor the linear limit applies, a fact that has been unrecognized by
some. Newman's choice of the trio J, 8, and a,/a, [where J = (a, + o )ipFL/RTx and
8 = (@, + . )ipygFL/RTx] is not ideal, since this combination fails to collapse to a
single group in the Tafel limit and does not honor the naming convention that has
become widely recognized in the literature [10, 11, 16-23). This author prefers an
alternative combination of groups adopted by Matlosz et al. [19], Wa, , Wa,, and
a,/a,, where Wa; and Wa, correspond to the Wagner number evaluated at the linear
and Tafel limits:

RTx RT«

Way = ——t -
L= e+ agrLy, M4 Wer

o FLi e

For want of such a standard nomenclature, groups identical to the Wagner number or
its reciprocal have been variously referred to in the literature as P [8], £ [24], j* [25],
k. [26], 8 [27], A [28), and k/A [29]. In this review, the Wa,-Wa, nomenclature is
used when applicable.
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As many authors have pointed out, the key features
that render many current-distribution problems
intractable by analytical methods are the nonlinearity of
the n-i dependence [Equation (5)] and the irregular
shapes often assumed by the electrodes and insulating
boundaries. The earliest known numerical computation
of electrochemical current distribution [7] employed a
finite difference model (FDM). The seventies saw
widespread use of FDM and the introduction of finite
element methods (FEM) to current-distribution
problems. FDM and FEM are sometimes called “domain
methods,” since the boundary-value problem is posed,
discretized, and solved on the entire domain. In the
eighties, the domain methods continued to see progress,
while a class of “boundary methods” began to find use.
The latter comprise boundary integral equation methods
(BIEM) and boundary element methods (BEM); both are
characterized by a recasting of the boundary-value
problem entirely on the boundaries of the domain by
manipulations such as Green’s identities. With the
problem posed entirely on the boundaries, the effort of
defining the discretized geometry is greatly reduced, and
related advantages, such as ease of handling moving-
boundary problems, result [18, 26, 30]. It should be
pointed out that the FDM, FEM, and BEM methods
were developed in the fields of civil and mechanical
engineering and were later adopted for calculation of
electrochemical current distribution. More information
on these numerical methods can be found in [31-35].
Many investigators have emphasized the advantages of
one particular numerical method over another; however,
few teams have demonstrated experience with more than
one method, and very few direct comparisons between
methods have been made on a rigorous basis. Hume,
Deen, and Brown [30] have offered a valuable
comparison of FEM and BEM for current-distribution
problems.

A noteworthy application of the BIEM approach to
current distribution in electrodeposition was a 1980
paper by Blue [26]. This paper was remarkably thorough
and resourceful, both in its description of the plating of
printed-circuit boards and in its approach to the
numerical solution of the problem. Based firmly on an
earlier, more general communication by the same author
on boundary-integral solutions to Laplace’s equation
[36], the method applies Green’s third boundary identity
to the derivation of an integral equation. A solution is
sought in the form of a piecewise superposition of
B-spline basis functions, with special functions employed
at singularity points. The electrochemical description
inctudes concentration-dependent Butler-Volmer kinetics
and concentration overpotential at both anode and
cathode, with vertical variations in the mass-transfer
coefficient characteristic of agitation by gas sparging,
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Ironically, the plating example chosen exhibited behavior
very close to that of the primary current distribution. The
efficiency and simplicity of the BIEM approach were
clearly demonstrated.

Two investigations using BEM appeared one month
apart in 1984, both drawing from BEM methodology
published by Brebbia and Walker [35]. Bialecki, Nahlik,
and Lapkowski [37] used BEM to calculate the primary
current distribution for a configuration of parallel-plate
electrodes inside an insulating cylinder. Notably, they
avoided placing nodes along two symmetry planes by
selecting Green’s functions that satisfied these boundary
conditions as well as Laplace’s equation. The other team,
Hume, Deen, and Brown [30], conducted an excellent
investigation of patterned electrodeposition, the results of
which are described subsequently under the heading
Current distribution on the feature scale. Thorough
attention was given to the issues of solution error and
mesh convergence; with quadratic boundary elements,
the order of convergence was shown to be roughly
quadratic for the root-mean-square solution and cubic for
the overall flux balance. The work involved a moving-
boundary simulation of electrode shape change. The
authors followed this investigation with a study of
moving-boundary potential problems, not limited to
electrolysis, in which BEM and FEM were systematically
compared. For many problems, FEM was found to be
competitive with BEM in accuracy and efficiency, and
emphasis was placed on the extendability of FEM codes
to partial differential equations that cannot be treated by
BEM because no Green’s function can be found.
However, BEM was judged to be superior for problems
in which boundary motion is proportional to the normal
derivative of the potential. Electrodeposition problems
fall into this category.

Another group that made early use of BEM to simulate
electrodeposition was Deconinck, Magetto, and
Vereecken [18]. Their numerical approach was also based
on that of Brebbia and Walker [35] and used a Newton-
Raphson iteration in conjunction with a direct matrix
solver. The advantages of BEM for problems of current
distribution and electrode shape change were illustrated
with several relevant examples.

Cahan, Scherson, and Reid [38] developed an
implementation of the BIEM approach based on an
iterative solution of the integral equations rather than on
a matrix formulation. Nonlinearities stemming from the
overpotential boundary conditions were handled in the
same iterative loop. The memory requirement of this
method is small, permitting implementation on personal
computers. The method was claimed to have high
stability, accuracy, convergence rate, and computational
speed, but direct comparisons to other methods were not
reported. A moving-boundary implementation of the
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method was used to simulate shape change on an
electrode with a square corner.

Current distribution at the workpiece scale

Parn et al. [39] applied numerical models to aid in
“yigging,” which is the advantageous spatial arrangement
of the workpiece, counter electrodes, insulating walls, and
auxiliary electrodes. Both FEM and BEM were used to
predict current distribution in an application of
hexavalent chromium plating of an irregularly shaped
print roll. Simple expressions approximating measured
polarization data and current-density-dependent current
efficiency were used. In a second example, involving
plating of an anvil, the improved uniformity afforded by
auxiliary electrodes, current shields, and a specially
shaped anode was evaluated. Some experimental
validation was reported. Unfortunately, no numerical
details were provided, and few conclusions of general
consequence were given.

Matlosz et al. [19] conducted a thorough study of
secondary current distribution in the Hull cell, a popular
diagnostic tool in the plating industry in which the
current density is deliberately nonuniform, so that plating
performance can be evaluated over a range of current
densities. Butler—Volmer kinetics were assumed in the
model, and the general dependence of the current
distribution on the parameters Wa,, Wa,, and a,/a, was
reported (see Footnote 1 for definitions). The collapse of
the three-parameter correlation into a single-parameter
dependency in either the Tafel or the linear regime of
kinetics was vividly shown. Interestingly, the most
uniform current distribution for a given system
sometimes occurs at a current density between the two
limiting cases (Tafel and linear). Results from BEM and
FEM agreed well with each other and with thickness data
from acid-copper plating experiments.

Shih and Pickering [29] conducted the first direct
investigation of three-dimensional (3D) effects in
electrochemical current distribution. (3D models for
cathodic protection in the field of corrosion were
developed earlier [40, 41], but these studies do not seem
to have focused on corner and edge effects in a general
way.) The analysis was restricted to the case of linear
kinetics at a square electrode in an insulating plane, with
a counter electrode infinitely far away. Unfortunately, the
seminumerical solution method, which involves using
Green’s theorem to generate Fredholm integrals of the
second kind, is not readily extendable to more
complicated systems. However, the essential behavior of
square electrodes was characterized and clearly presented:
Current density is highest at the four corners and lowest
at the center; center-to-corner, mid-edge-to-corner, and
center-to-mid-edge current-density profiles were shown
for various values of the Wagner number.
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It has been known for a long time that in the
limiting case of the primary current distribution (i.e.,
Wa, Wa, — 0), geometric effects may cause the current
density at an electrode edge to be infinite or zero [14].
Two recent theoretical studies [42, 43] have focused on
the asymptotic approach to such singular behavior. Smyrl
and Newman [42] determined the current distribution
at a disk electrode in the Tafel kinetic regime
(Wa, <« Wa, ) for high current densities (Wa, <« 1).
Under such conditions, the primary distribution holds
over the electrode, except for a small edge region where
kinetic effects are felt. The problem was solved by
singular perturbation analysis and finite-difference
calculation. The edge current density was found to vary
inversely with the square of Wa.,. The result is
extendable to geometries other than the disk electrode.
West and Newman [43] contributed a similar but more
general analysis for the edge region of any flat electrode
that meets an insulating plane at an arbitrary angle 8.
Singular perturbation analyses were performed for both
Tafel and linear kinetics to yield current distributions in
the edge region for various values of 8.

Despite the increased prominence of computational
techniques in the eighties, studies based on analytic
methods have continued to appear in the literature.
While these works have generally employed gross
approximations and have disregarded the studies based
on numerical methods, the results are of compact form
and may be of value to practitioners. Popov et al. [44]
published a simple approximation of current distribution
for plane-parallel electrodes to explain dendrite growth at
the edges of the cathode. Klenov [45] presented an
analytic approximation for current distribution based on
a piecewise-linear representation of nonlinear
overpotential expressions. Perakh [46] presented an
analytic solution for primary current distribution in a
special slotted cell for electrodeposition onto resistive
substrates. Pomogaev, Kruglikov, and Nachinov [47]
contributed an approximate but compact description of
current distribution in terms of an expression for
“throwing power with respect to metal,” which is related
to “throwing power with respect to current” by an
analytical treatment involving current efficiency.
Nachinov, Vinogadov, and Kruglikov [48] constructed
a nomogram for use in predicting the current
distribution in a cell of complicated geometry containing
one bath, from the measured distribution for another
bath and the measured throwing-power indices of both
baths.

o Studies of specialized applications
Mehdizadeh et al. [49] published a numerical study of
the use of coplanar auxiliary electrodes or “thieves” to
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achieve uniformity of thickness on planar cathodes, such
as resist-patterned wafers. A BEM model of the
secondary current distribution with Tafel kinetics was
used to solve the multi-electrode problem and to evaluate
the thief current at which the thickness uniformity on the
workpiece is optimized. The coplanar thief was shown to
exert a powerful influence on workpiece uniformity. The
sensitivity of the system to Wa,, thief size, workpiece-to-
thief separation, and thief-to-cell-wall separation was
evaluated and summarized.

A treatment of the specific problem of copper
deposition onto moving sheets of flexible material with
substantial seed-layer resistance was published by
D’Amico, DeAngelo, and McLarnon {50]. A one-
dimensional, steady-state model of the secondary current
distribution with linearized kinetics, including ohmic
potential drop within the substrate film, was found to
match the behavior of the industrial process quite well.

Dimpault-Darcy and White [27] demonstrated
calculation of secondary current distribution in cells,
such as bipolar electrolyzers, in which the potential of
one or more electrodes may not be known a priori. Two-
dimensional problems with linear kinetics were solved
using TOPAZ2D [51], an FEM program originally
written for heat-transfer problems, which allows the
specification of overpotential boundary conditions at
electrically “floating” electrodes.

e Periodic electrodeposition

A major contributing factor to the versatility of
electrolytic metal and alloy deposition is the capability of
modifying the deposit properties by the use of periodic
electrodeposition or “pulse plating.” Modulation of
current or potential has been used extensively in
electrodeposition to influence deposit morphology by
altering the conditions of mass-transport and nucleation.
Pesco and Cheh [52] recently provided a detailed review
of the many applications and theoretical treatments of
periodic electrolysis. The impact of periodic electrolysis
on the time-average current distribution has been studied
by several researchers. Early treatments correctly
predicted that since peak current densities in pulse
plating were higher than the time-average-equivalent dc
current densities, the nonuniformity would be larger,
according to a Wagner-number argument.

Chin [17] addressed the subject of current distribution
in periodic electrodeposition in the following way. A one-
dimensional transport/kinetic model was used to predict
the relationship between time-average current density
and time-average overpotential for rectangular-current-
pulse, pulse-reverse, and double-rectangular-pulse
electrolysis. Chin suggested that the Wagner number
evaluated from the slope of the resulting time-average
polarization curve should characterize the current
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distribution in periodic electrolysis in the same manner
that the Wagner number characterizes the current
distribution in dc electrolysis. On the basis of the above
argument and the time-average polarization behavior
calculated under different conditions, Chin claimed that
pulse-electrolysis systems may exhibit either more or less
uniformity than their dc counterparts. The case of
improved uniformity, however, was reported to apply
mainly to anodic electrolysis rather than to
electrodeposition.

Popov, Totovski, and Maksimovic [53] presented a
rough analytical estimate to interpret experiments in
which periodically reversed current control provided
higher uniformity than did pulse plating,

An excellent study was carried out by Fedkiw and
Brouns [54], who examined current distribution in
periodic-voltage electrodeposition on a flat electrode
embedded in an insulating plane. The two-dimensional
model included laminar-flow convective diffusion,
capacitive charging, and simultaneous hydrogen
evolution. Mass-transport effects entered through the
concentration-dependent Butler-Volmer equation and
the concentration overpotential for the metal-deposition
reaction. The stationary-state solution was found by
iteratively coupling Laplace’s equation for potential to
the boundary-layer form of the mass-conservation
equation. The system was characterized by ten
dimensionless groups. Predicted nonuniformities were
expressed as deviations from the equivalent dc¢
distribution, with care taken to select a fair basis of
comparison between dc and periodic electrolysis: The
charge passed by the metal-deposition reaction was
equivalent in the two cases. It was shown that sinusoidal
voltage control can result in either an increase or a
decrease in uniformity, depending on the transport and
kinetic parameters and on the applied voltage. It was also
shown that, with all other variables held constant,
uniformity improves with increasing pulse frequency.

Wan and Cheh published treatments of the
current distribution on a rotating-disk electrode (RDE)
under galvanostatic [55] and potentiostatic [56] pulsed
electrolysis. The axisymmetric model used in both works
included concentration-dependent Butler—Volmer
kinetics, concentration overpotential, and a rigorous
treatment of convective diffusion. An orthogonal
collocation method was employed in an iterative scheme
to obtain the full transient solution. Predicted current-
density profiles matched acid-copper deposit-thickness
profiles measured by cross-sectioning. It was reported that
nonuniformity increases with current density and that the
surface concentration of the reacting ion is higher at
shorter pulse times and duty cycles.

A treatment of current distribution in periodic
electrodeposition was applied to the specific problem of
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through-hole plating of printed-circuit boards by Pesco
and Cheh [57]. This work is described subsequently
under the heading Through-holes in printed-circuit
boards.

The review paper by Pesco and Cheh [52] considered
current-distribution effects in periodic electrodeposition
and drew heavily from earlier work on tubular electrodes
[57] and on the rotating-disk electrode [55].

Finally, Chin, Vilambi, and Sunkara [16] reported on a
current-distribution study pertaining to a proposed
technology for “selective” or spatially localized
electrodeposition based on pulse plating. The method
relies on periodic electrolysis to deposit metal at very
high current densities, so that a highly nonuniform
distribution of metal can be achieved deliberately. The
authors invoked the assumption that the time-average
current distributions for periodic and dc systems are
equivalent provided that the time-average polarization
curves are identical. Measured time-average current-
voltage behaviors for gold and copper plating baths were
entered as boundary conditions in a dc secondary-
current-distribution model (based on FEM and
orthogonal collocation). Some discrepancy between
experimental thickness profiles and the predicted
behavior was reported. The experiments did show a slight
increase in nonuniformity as a result of pulse plating.

o Measurement errors associated with current
distribution

Spatial models of current and potential distribution are
valuable not only for their ability to describe deposit
uniformity but also for the insight they can provide into
the interrelation of the potential field and various
measurement techniques. Two recent works have made
use of numerical potential-field models to investigate
errors in measurements of electrode overpotential by the
use of Luggin capillaries. Tokuda et al. [23] conducted a
remarkably thorough investigation of Luggin probe
measurements in which an insulating annular capillary
tube is either held with its tip near a polarized planar
electrode on the solution side (as in conventional
practice) or passed through the electrode from the back
side, so that its tip is flush with the active electrode
surface. The axisymmetric secondary-current-distribution
problem was solved by Galerkin FEM with quadratic
quadrilateral elements. A complete analysis of the
relation between true and apparent overpotentials was
given in terms of Wagner number, probe-to-electrode
spacing, and capillary-wall thickness. For convenience of
application, the results were expressed not only as
potential-field contour plots and current-distribution
curves, but also in the form of algebraic approximations.
The study confirmed that the potential measured by a
conventional Luggin probe can be regarded as the sum of
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the true overpotential and the ideal potential drop as long
as the probe is at least one probe diameter away from the
electrode surface. It was also shown that back-side
capillary measurements consistently exaggerate the true
overpotential.

Landau, Weinberg, and Gileadi [58] conducted a
similar investigation, which compared various
placements of the Luggin probe in parallel-plate cells.
(Unfortunately, this team disregarded the work of
Tokuda et al. [23].) The axisymmetric potential problem
with Tafel kinetics was solved by CELL-DESIGN’ [59], a
commercially available, interactive software package,
based on FDM, for computer-aided design of
electrochemical cells. The theoretical study concluded
that the smallest measurement error is introduced when
the capillary consists of an uninsulated hole through the
electrode accessed from the back side. The authors also
showed, as had Tokuda et al. [23], that the other method
of back-side access, in which the wall of the hole is an
insulator, is particularly disadvantageous. Other
recommendations of the investigation are to avoid
placing the probe behind one electrode outside the
interelectrode gap and to subtract the ohmic drop by
calculation when possible, rather than reducing the
ohmic drop by placing the probe very near the electrode
surface.

West and Newman [60] carried out BEM calculations
of potential distribution to determine the extent to which
nonuniform current distribution causes error in the
measurement of kinetic data on a rotating-disk electrode.
The treatment, valid for Tafel kinetics in the absence of
concentration variations, followed an earlier analysis for
linear kinetics [61]. The results were interpreted in the
practical form of equations that yield corrected values of
the exchange current density and the transfer coeflicient
from their apparent values and in terms of recommended
conditions for kinetic measurements.

Current distribution at the pattern scale
Current-distribution effects at the pattern scale are
relevant chiefly to applications of electrodeposition in the
electronics industry in which a lithographic pattern of
small features is present on the workpiece surface.
Nonuniformity effects arise when different regions of the
surface possess different densities of patterning. For
example, neighboring zones of high and low photoresist
density in a wiring pattern can give rise to uneven deposit
thickness from one zone to another, even if an otherwise
uniform current distribution has been achieved on the
workpiece scale. This effect has been noted in the
literature by Romankiw et al. [62], by Horkans and
Romankiw [63], and most recently by Yung and

2 CELL-DESIGN is a registered trademark of L.-Chem, Inc., 13909 Larchmere Bivd.,
Shaker Heights, OH 44120.
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Romankiw [64]. The phenomenon, which can be called
the active-area-density effect, is unique to
electrodeposition as compared to other metallization
processes used in the electronics industry, such as
evaporation, sputter deposition, chemical vapor
deposition, and electroless deposition. Mehdizadeh et al.’
[65] developed a theoretical description of patterned
electrodeposition that enables one to solve problems that
involve the active-area-density effect by the use of
numerical algorithms developed for ordinary problems of
secondary current distribution. Two neighboring zones in
the pattern are approximated as continua, each with a
different active-area density, i.e., active area per unit
superficial area. The overpotential expression applicable
to each zone is modified to reflect the difference between
the true or surface current density and the overall or
superficial current density. The resulting secondary-
current-distribution problem is solved numerically. The
results show that in the Tafel regime, the pattern-scale
nonuniformity depends on two parameters: a Wagner
number based on the average superficial current density,
and the ratio of active area densities between the two
zones. The Wagner number depends in the usual way on
the characteristic length, which in this case reflects the
sizes of the zones, and the model predicts that uniformity
is greatest when the zones are small. The theory applies
not only when the electrode’s active-area density is
decreased by resist coverage but also when the active-area
density is increased by topographic features such as
through-holes.

Current distribution at the feature scale
Nonuniformity effects that occur at the scale of small
features on the surface of a patterned substrate may be
qualitatively different from those across larger regions. In
the present categorization, a “feature” can range in size
from a 500-um through-hole [66] to a 0.2-um-wide
element in the gold absorber pattern of an X-ray
lithography mask [67]. Features at this scale can be
comparable in size to the thickness of the concentration
boundary layer; accordingly, treatments of mass transfer
that assume a mass-transfer boundary layer that
conforms to the electrode profile may be invalid. As
dimensions shrink, the importance of ohmic potential
variations diminishes. However, nonuniformities in mass
transfer, due to geometric effects such as spherical
diffusion, can give rise to strong deposit nonuniformities
by causing local variations in concentration overpotential
and concentration-dependent kinetics. Furthermore, at
this small scale the shape of the electrode can be changed
significantly by the deposition of films that could be

*S. Mehdizadeh, J. Dukovic, P. C. Andricacos, L. T. Romankiw, and H. Y. Cheh, “A
Model for the Influence of Substrate Patterning on Electrodeposit Uniformity,”
submitted to J. Electrochem. Soc. (1990).
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considered negligibly thin at larger scales. Accordingly, in
the fabrication of microelectronic structures, the
capability of simulating the shape evolution with a
moving-boundary model is highly advantageous.

An important early treatment of electrodeposition at
the feature scale was conducted by Alkire, Bergh, and
Sani {68]. This work considered secondary current
distribution and electrode shape change in
electrodeposition onto an alternating pattern of coplanar
conducting and insulating stripes. In this first application
of FEM to moving-boundary problems of
electrochemical potential, profile-growth simulations
exhibiting lateral overgrowth of the deposit over the
insulating stripes were conducted for different values of
applied potential and a linear polarization parameter.
The authors acknowledged that the moving-boundary
scheme and treatment of singularities were simple, but
also made thoughtful remarks on possible refinements
and future models of this type.

Alkire and Reiser [24] built upon the above treatment
to compare predicted and experimental results for acid~
copper deposition onto an array of parallel stripes. A
different polarization parameter, based on Tafel kinetics,
was shown to characterize the shape-change behavior. On
the scale of the experiment (a 0.79-mm unit of
syminetry), lateral overgrowth approximately matched
vertical growth at the electrode edge, and the measured
vertical nonuniformity slightly exceeded the predicted
value.

An analysis by Hume, Deen, and Brown [30] focused
on electrodeposition of features “small relative to the
concentration boundary-layer thickness” that are defined
by polymeric masks that are not negligibly thin.
Concentration effects were treated by solving the
diffusion equation within an assumed stagnant layer that
is thicker than the mask material and the growing
deposit. Potential variations due to ohmic effects were
ignored, and the potential field was not solved. The
degree of nonuniformity of the deposit was found to
depend mainly on a parameter £ that is proportional to
the ratio of the current density to the limiting current
density. At low £ the growth is even, whereas for high ¢
the growth is faster near the resist wall, because of metal
ions supplied from above the resist structure. When the
diffusion boundary layer is made thinner, this extra
supply and the resultant nonuniformity diminish. In
general, deposition at rates below 40 percent of the
limiting current is not significantly nonuniform. When
nonuniformity does occur, its magnitude accelerates as
the deposit grows. The BEM with isoparametric,
quadratic elements was shown to be well suited to shape-
change problems of this type.

Menon and Landau [69] presented a specialized model
of current distribution that is applicable to stagnant
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electrolytes or electrolyte layers. The treatment was
developed for binary electrolytes and accounts for
transient diffusion and migration. The solution was
obtained on a personal computer by a modified
alternating-direction implicit (ADI) implementation of
FDM. In this system, the fraction of the current density
due to migration varies with time and position in the cell.
It was found that the diffusion resistance typically causes
nonuniformity to increase with time.

e Through-holes in printed-circuit boards

Perhaps the most familiar problem of electrodeposit
uniformity of small features is the plating of through-
holes on printed-circuit boards. In this technology, one
seeks to metallize as uniformly as possible the interior
walls of holes that are approximately 0.5 mm in diameter
and 6 mm in length [66]; the latter dimension
corresponds to the thickness of the board. The issue of
nonuniformity has become more challenging with time,
as increasingly long and narrow holes have been required.
A good review of the technology and of the various
published studies of uniformity has been provided by
Yung, Romankiw, and Alkire [70].

The benchmark treatment of the through-hole problem
appeared in a pair of papers from 1976 by Kessler and
Alkire [8, 71], based in part on a model of tubular
electrodes by Alkire and Mirarefi [72]. Fully developed
laminar flow within the hole is assumed, and the
convective diffusion equation for the cupric ion is
coupled to a one-dimensional charge-balance equation
for potential. Two dimensionless groups that characterize
the problem are identified: £, a Tafel polarization
parameter that reflects the relative importance of ohmic
and kinetic resistance, and N, a dimensionless, average
limiting current density, which reflects the relative
importance of ohmic and mass-transfer limitations.

Ben-Porat, Yahalom, and Rubin [73] developed a
similar model of somewhat greater complexity by
including the transient effect of finite ohmic resistance in
the substrate layer. Periodically fluctuating fluid flow
was also included in the model.

Sullivan and Middleman [74] described the through-
hole system with a model that neglects ohmic potential
drop and assumes that the plating rate is entirely
controlled by mass transfer. Since many would consider
both assumptions inappropriate to the problem of
through-hole plating, the results of the study are
questionable, except as a confirmation that plating rates
would be severely limited in the absence of convection. A
follow-up paper by Middleman [75], based on the same
assumptions, compares unidirectional and periodically
reversed flows. The latter are found to be more
effective, but the fact that only mild convection is
required to remove any influence of transport resistance
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(as emphasized by Lanzi and Landau [76]) is not
recognized.

Alkire and Ju [77} treated the somewhat specialized
problem of a through-hole agitated by a coaxial
impinging jet. Mass-transfer behavior under both
submerged and unsubmerged jets was characterized
theoretically and confirmed experimentally by the use of
sectioned electrodes and the reduction of ferricyanide to
ferrocyanide as a mass-transfer-indicating reaction. It was
found that for current below one fifth of the limiting
current, no mass-transfer influence is felt.

Lanzi and Landau [76] performed individual
calculations of the mass-transfer-limited current
distribution for oscillating fluid flow inside a through-
hole and of the secondary current distribution under
Tafel kinetics. They concluded that, under typical
industrial conditions, it is the ohmic resistance rather
than the mass-transfer resistance that limits uniformity.
Measures that can be taken to improve uniformity are
cited, such as raising bath conductivity or polarization
resistance, or changing the system geometry to reduce the
ratio L*/R, where L and R are the length and radius of
the through-hole.

Lanzi et al. [78] conducted a theoretical investigation
of the possibility of improving through-hole plating
uniformity by modifying the electrode-kinetic behavior
with additives. Electrode-kinetic curves from three
different bath formulations were entered as boundary
conditions in a one-dimensional model of secondary
current distribution, based on several approximations. It
was concluded that minor changes in kinetic behavior
may profoundly affect through-hole current distribution.

Pesco and Cheh [57, 79] recently contributed two
theoretical studies on the subject of through-hole plating.
The first [79] considered the influence of fluid flow
within the hole. They rigorously solved the coupled mass-
transfer and ohmic-potential problems, making use of
separation of variables, combination of variables,
Duhamel’s theorem, the method of Acrivos and
Chambre, and a modified orthogonal-collocation
method. The result for a stagnant electrolyte reveals that
current densities higher than 1 mA/cm’ cannot be
achieved without fluid flow. The solutions for a
unidirectional flow of 25 cm/s show that for length-to-
diameter ratios 5: 1 and 10: 1, the chief limitation to
current density inside the hole is ohmic (as shown by
Lanzi and Landau [76]), although the current density
may approach its mass-transfer limit at either end of the
hole.

The second study by Pesco and Cheh [57] considered
the use of periodic potential control in through-hole
plating. The problem of transient mass transfer under
developed laminar flow coupled to the potential problem
via the concentration overpotential and concentration-
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dependent kinetic overpotential was solved by an
elaborate method involving orthogonal collocation and
implicit integration over each time step. Periodic
electrolysis was shown to increase the nonuniformity
over the dc case. Calculations that disregarded
concentration effects showed that deposition with
periodically reversed current can improve uniformity
with respect to the dc case under some conditions.

Finally, as part of a mainly experimental investigation,
Yung and Romankiw [64] developed a model that
encompasses both the through-hole and the surface of the
board. It was generally found that the deposit thickness
on the board decreases near the mouth of a through-hole
and further decreases within the hole. Conclusions
regarding the factors that limit uniformity and suggested
measures for overcoming these were given.

o Special applications

Current distribution plays a pivotal role in the special
technique of “selective™ plating, in which a deliberately
high nonuniformity is generally sought. Two
investigations on the use of jets of electrolyte to achieve
selective deposition were conducted by Alkire and Chen
[80] and by Alkire and Ju [25]. Both investigations were
accompanied by theoretical treatments of the current
distribution. The first paper [80] dealt with unsubmerged,
circular jets, as from a round nozzle. The model included
ohmic conduction within the electrolyte stream of the
impinging jet, mass transfer, and charge-transfer
overpotential for multiple electrode reactions. Factors
influencing the spatial selectivity of the deposition rate
were identified. The interdependence of model and
experiment and the value of mathematical models in the
design process were emphasized. The second paper [25]
treated two-dimensional jet flow, as from a slot, which
was modeled in a similar way. It was found that flow
conditions exert an especially strong effect at higher
current densities, at which mass-transfer effects are
important. Dimensionless groups useful for scaling up the
apparatus were identified, and the potential engineering
value of the model was discussed.

Activity outside electrodeposition

Methods and approaches for calculating current
distribution in electrodeposition systems have often come
from other areas. Several recent noteworthy advances are
pointed out in this section. Sautebin and Landolt {11]
conducted a moving-boundary FEM simulation of
anodic leveling of a triangular surface profile, with
concentration effects handled by a stagnant-diffusion-
layer approximation. A succeeding study by Clerc and
Landolt [12] examined the dependence of FEM accuracy
on the size of elements and time steps. Alkire, Reiser,
and Sani [81] rigorously treated convective diffusion in a
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dissolution problem involving recirculating flow inside
cavities; FIDAP,* a commercial FEM program, was used,
and its extendability to more complicated systems was
emphasized. The same approach to modeling fluid flow
and convective transport was employed by Alkire and
Deligianni [82] in a study of anisotropic etching. Finally,
two papers on cathodic protection technology in the field
of corrosion illustrated the use of three-dimensional
potential-theory models with nonlinear, time-dependent
kinetic expressions that reflect surface fouling of steel
structures in contact with sea water. Gartland and
Johnsen [41] used a commercial BEM program called
COMCAPS’ with rectangular elements; the potential was
assumed constant over each element. Strommen et al.
[40] reviewed advances in models for cathodic protection
of offshore structures. The use of tubular boundary
elements to describe three-dimensional structures and the
use of digitized empirical polarization data were
illustrated. The advantages of BEM for such applications
were enumerated.

Anticipated developments in the 1990s

The nineties will certainly see continued progress in
electrodeposit-distribution modeling, with important
changes driven largely by the electronics industry.
Electrodeposition is likely to remain a vital fabrication
process for reasons of technical viability and cost,
especially for packaging, where technical and cost-related
demands have already begun to surpass those of
integrated-circuit fabrication. The demands for precision
and uniformity will certainly intensify as features and
tolerances continue to shrink. In general, it is probable
that the better-established models will find widespread
use and that research will extend the scope of models to
encompass more subtle and realistic effects.

The implementation of current-distribution models as
computer-aided engineering software is certain to become
widespread, as powerful workstations continue to
proliferate. The numerical details of such commercial
interactive programs will be invisible to the user occupied
with the need to optimize a manufacturing process. The
sophistication of electrodeposition process models will
approach that of semiconductor process models, such as
SUPREM III° [83] and BICEPS’ (84]. The latter
category, in turn, is constantly being improved, with the

* FIDAP is a registered trademark of Fluid Dy
Orrington Ave., Suite 400, Evanston, IL 60201.

International, Inc., 1600

* COMCAPS is a computer program developed by SINTEF, Division of materials and
processes, 7034 Trondheim-NTH, Norway.

®SUPREM Il is a computer program developed by the Integrated Circuits
Laboratory, Stanford University, Stanford, CA 94305.

"BICEPS isa computer program developed at AT&T Bell Laboratories, 600
Mountain Ave., Murray Hill, NJ 07974.

{BM J. RES. DEVELOP. VOL. 3¢ NO. 5 SEPTEMBER 1990

aim of achieving the geometric realism and predictive
capability of device-performance models, such as
FIELDAY® [85] and CADDETH’ [86]. Precise
simulation of the shape evolution of electrodeposited
features will be required in the context of 3D solid
models for multistep component fabrication. Such
multistep process models, in conjunction with device-
performance simulation, will enable optimized design for
manufacturability as well as the exploration of new
designs and processes.

Research areas in electrodeposit-distribution modeling
will be linked to advances in the science of
electrodeposition itself and will include the effects of
chemical-additive systems on feature-scale current
distribution, alloy deposition with anomalous kinetics,
and the evolution of microcrystalline morphology. All
enduring progress in these areas will be predicated on
conclusive experiments, as the predictive power of
numerical models can surpass neither the correctness of
the physical description nor the precision with which the
process parameters are known.
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