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This  paper  reviews  the  research  literature  that 
has appeared since 1980 on  computer 
calculations  of  current  distribution  in  the  field  of 
electrodeposition.  Key  contributions  and general 
trends  are  identified,  with  particular  emphasis 
given  to  applications  in  the  electronics  industry. 
The  survey reveals how  numerical  models have 
provided  the  technology  of  electrodeposition 
with  general  understanding,  predictive  power, 
and  the  capability of  optimizing  deposit 
uniformity.  Anticipated  developments  for  the 
nineties are discussed. 

Introduction 
The importance of electrodeposition as a fabrication 
technology  in the electronics industry is  large and 
growing.  With the current trends toward miniaturization, 
cost  competitiveness, and high-performance  packaging, 
electrodeposition has become the  dominant 
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manufacturing technology in many new applications and 
remains firmly  established in others. Key applications of 
plating that have  achieved major importance in the 
eighties are tape-automated-bonding (TAB)  packages, 
dual-in-line packages (DIP), thin-film  magnetic-recording 
heads, electromagnetic interference (EMI) shielding of 
system  enclosures, and integrated-circuit packaging by 
controlled collapse chip connection (C4). Applications of 
longer standing that remain vital are printed-wiring 
boards, contacts, connectors, and corrosion .protection. A 
good appreciation of the breadth of electrodeposition 
technology in use in the electronics industry can be 
gained from the proceedings  of a recent symposium [ 11, 
and  the importance of plating to electronic packaging  is 
conveyed in recent monographs [2-41. 

In nearly  every application of electrodeposition, the 
pursuit of deposit uniformity, especially  thickness 
uniformity, has been a technical imperative. However, 
nowhere  has uniformity been as important as in the 
electronics and computer industries, where the most 
stringent requirements on electrodeposition have  been 
imposed. The success of electrodeposition in these 
industries has depended largely upon efforts to achieve 
uniform films  of a metal or alloy in spite  of  difficulties 
presented by lithographic patterns, irregular surface 
topographies, narrow holes,  large  substrates, and resistive 
seed  layers. 
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In general, a uniform electrodeposit is  achieved  when 
the current density  is  evenly distributed over the 
electrode  surface.  Since electrodeposition is a Faradaic 
charge-transfer reaction, the rate of deposition depends 
upon the current density. In  the absence  of any 
interfering reaction, the relationship is  Faraday’s  law: 

&f =- -  i A  
nF P ’ 

where M is the deposition rate in cm/s, i is the 
component of current density normal to the electrode 
surface in A/cm’, n is the  number of electrons transferred 
per  metal atom discharged, F is  Faraday’s constant 
(96  487 C), A is the atomic weight  of the metal in grams, 
and p is the density of the metal in g/cm3. In this case, 
the thickness distribution is proportional to the normal 
current-density distribution for deposits that are very thin 
compared to the size  of shape features on  the substrate. 
When there is a competing reaction, such  as  hydrogen 
gas evolution, the current efficiency  of plating (i.e., the 
fraction of the current density that participates ip the 
electrodeposition reaction) generally  varies  with current 
density; despite this complication, thickness uniformity is 
nearly  always  best  achieved  when the current density is 
uniform. When two or more species are deposited 
simultaneously from the same solution to form an alloy, 
the compositional uniformity of the deposit may be at 
least  as important as the uniformity of the thickness, 
especially in the fabrication of magnetic devices.  Again, 
however, composition generally depends directly on 
current density, as do other deposit properties such as 
roughness and intrinsic stress. In most  cases, therefore, 
the challenge  of deposit uniformity can be  posed as a 
problem  of current-density distribution: How can one 
distribute the electrolytic current evenly  over the surface 
of the cathode? 

there exist strong tendencies for the current distribution 
to be nonuniform. The best-known  effect  of this type  is 
due to nonuniformities in  the electric potential field that 
result  from the shape and geometric configuration of the 
electrodes. A nonuniform current distribution can also 
arise  when the following  two conditions are met. First, 
the deposition reaction must be influenced by the rate of 
mass transfer of one or more active species. Second, the 
rate of  mass transfer must be spatially nonuniform over 
the electrode  surface. The latter condition can apply 
when the agitation of the electrolyte is uneven or when 
electrode shape features of size comparable to the 
diffusion-layer thickness give  rise to nonuniform 
diffusion.  In many cases, the qualitative understanding of 
such  effects has been  established, and recent progress has 

The nature of the electrodeposition process is such that 

694 been  mainly in the judicious application of  scientific 
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knowledge in engineering analysis  of  practical  systems. 
This paper focuses on advances in the use  of quantitative 
mathematical models to determine current distribution 
and, ultimately, to achieve optimum deposit uniformity. 

It can be  said .that the capability  of  precise prediction 
of current-density distribution has been one of the 
foremost achievements in what Carl Wagner  has  called 
“the science  of electrochemical engineering”  [5]. It is one 
of the advances that has  elevated electroplating from an 
empirical art  to a sophisticated technology. 

The purpose of this review  is to summarize the 
significant advances in  the field made during the eighties. 
The large  body  of  progress made in the seventies and 
earlier has been well summarized in a 1982  review paper 
by Prentice and Tobias [6]. Unlike that review, this work 
focuses on electrodeposition rather than  on  the entirety 
of  electrolysis. Work from related fields,  such  as etching 
and corrosion protection, is covered only to the extent 
that its treatment of current-distribution calculations is 
likely to have an impact on electrodeposition. 

treatment of current-density calculations in the eighties. 
Not surprisingly, the emphasis has been  increasingly 
computational and numerical. Analytical treatments are 
less prominent, and even a number of  these  rely on 
numerical evaluation of integral equations. Several 
methods have  been  developed  for use on personal 
computers, which continue to grow in power and 
availability; the pioneering work  of Klingert, Lynn, and 
Tobias [7], performed in 1963 on a state-of-the-art 
mainframe computer, could be repeated today in less 
time on a desktop computer. 

Unfortunately, the zeal to apply computers to current- 
distribution problems has produced some “reinvention of 
the wheel” and failure to build appropriately upon 
existing foundations. Some analysts have  neglected to 
recognize the parametric dependencies of current 
distribution pointed out by earlier investigators. 

age, attention has shifted somewhat from the 
computational methods themselves to actual 
electrochemical problems of interest. Furthermore, there 
has  been a general trend toward specialized application of 
modeling to specific technical problems. 

One can observe certain general trends in the 

As computers and numerical methods have come of 

Classification  of  current-distribution  studies 
Possibly the most  logical way to categorize studies of 
current distribution in electrodeposition is in terms of the 
scale of the region  of interest. Since it is seldom  possible 
to represent a structure of  great complexity, such as a 
multichip packaging module, in a single geometric 
model, it is often necessary to decompose the problem 
into simpler problems, each representing a different 
length  scale. This allows one to determine the essential 
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characteristics of current distribution on one scale at a 
time, while disregarding the others. Such an approach 
implies an eventual reconstruction of the multiscale 
problem by somehow  superposing or merging the single- 
scale  solutions, although this step has thus far  escaped 
attention in the literature. In many cases, the structure of 
the workpiece quite naturally suggests distinct length 
scale  of  interest. For the problem of copper  plating of 
through-holes in multilayer printed-circuit boards, 
Kessler and Alkire [8] identified three length  scales: 1) the 
macroscale, characteristic of the size of the entire board, 
2 )  the miniscule, characteristic of the size  of individual 
plated  through-holes, and 3) the microscale, characteristic 
of the size  of surface  roughness.  Such a decomposition of 
the problem  is quite appropriate and, indeed,  necessary, 
since it would  be  virtually  impossible to solve  for the 
current distribution over a 50-cm  board at the level  of 
detail that treats axial nonuniformity within  each of 
thousands of 500-pm-diameter  through-holes. The 
present  work adopts a similar,  though  enlarged and more 
general,  hierarchy of  size  scales: 

1. Workpiece scale characteristic of the entire object 
undergoing  electrodeposition-e.g.,  wafer, circuit 
board, or  tape. 

2.  Pattern scale characteristic of patterns or regions on 
the workpiece  surface that differ in active area per unit 
area as a result of  masking or density of surface 
features. 

3. Feature scale characteristic of individual small 
features  such as wiring  lines, bonding pads,  vias, 
through-holes, and magnetic  recording  heads. 

4. Roughness scale characteristic of microscopic 
crystallographic  roughness,  naturally occurring 
asperities,  etc. 

While  Scales 1, 3, and 4 correspond closely to those 
outlined by Kessler and Alkire [8] for printed-circuit- 
board  plating,  Scale 2, the pattern scale,  has  received little 
attention. An example of the usefulness of the pattern 
scale  occurs in the case  of a wafer that contains an array 
of repeating  photoresist patterns that correspond to 
individual chips that will  be created  when the wafer  is 
diced. As is  discussed  later, nonuniformities in deposit 
thickness  can occur across  each chip pattern as a result of 
nonuniform density of  resist  across the pattern. 

This paper,  which  focuses more on the art of 
fabricating  devices than on the phenomenology of 
electrocrystallization,  does not concern itself  with the 
roughness scale. The ample literature on topics of 
roughness development in electrodeposition  (exemplified 
by two  recent contributions that review earlier  work 
[9, lo]) and on phenomena such  as  leveling [ 1 1-1 31 lies 
outside the scope  of this review. It should be noted, 
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however, that general methods for calculating current 
distribution have found use in such  studies.  It  must  also 
be  stated that structures fabricated by electrodeposition 
are steadily  shrinking and, in some  cases,  have  already 
“intruded upon” the roughness  scale. 

Computational methods for potential-theory 
problems 
Clearly there has  been much progress  over the last  decade 
in computational methods that are applicable to the class 
of current-distribution problems  described by potential 
theory. The potential-theory  model, a good explanation 
of  which is given by Newman [ 141,  is  well established and 
has  been  validated by experiment. For the model to be 
applicable, the electrolyte, bounded by electrodes and 
insulators, must be  of  uniform  conductivity K ,  a 
condition which  is  often  amply  satisfied  when the 
electrolyte  is well  mixed or when the ions that are 
participating in the reactions are responsible  for  only a 
small  fraction of the ionic conductivity of the electrolyte. 
If this is  satisfied, the potential 4 obeys  Laplace’s 
equation within the electrolyte: 

v21$ = 0. ( 2 )  

The boundary condition at all  insulating boundaries or 
planes of symmetry is 

a4 - = 0, 
dn 

where n is a unit vector normal to the surface. The 
boundary conditions at electrode  surfaces contain 
expressions  for  electrode  kinetics and concentration 
polarization and take the form 

dJ = 4% - 9, (4) 

where & is the potential of the electrode  itself, and q is 
the total  overpotential. The total overpotential is often 
decomposed into a kinetic or surface overpotential q, and 
a concentration overpotential q,. The most commonly 
used expression of electrode  kinetics, which relates the 
surface overpotential to the current density i, is the 
Butler-Volmer  expression, 

where io is the exchange current density, and CY, and CY, 
are the kinetic transfer coefficients  of the anodic and 
cathodic components of the electrodeposition  reaction. 
The normal derivative of potential is  related to current 
density by a form of Ohm’s  law, 
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The exchange current density, io, may be taken to 
depend on the concentration of the electrodepositing ion, 
c,,, in the following  way: 

where y is a constant, and the superscript to denotes the 
value at which the concentration is at its bulk value. The 
concentration overpotential is often represented  as 

in which n is the number of electrons transferred in the 
electrodeposition reaction. The potential field, from 
which the current distribution is determined, must satisfy 
Equations (2)-(8). When the total overpotential is 
assumed to be  zero, the result  is  referred to as the 
primary distribution and depends solely on the geometry 
of the problem.  When kinetic limitations are considered 
[as in Equation (5)] in the absence of concentration 
variations, the result  is  called the secondary distribution. 
When concentration variations enter the analysis, the 
result  is  known as the tertiary distribution, although some 
have  used this term to specify the extreme case in which 
mass transfer controls the reaction rate to the exclusion of 
ohmic and kinetic effects. Many  analyses of secondary 
current distribution have treated one of the two limiting 
cases  of the Butler-Volmer  rate  law,  namely the Taf l  
expression,  valid at high overpotential, 

or the linear approximation, valid at low overpotential,’ 

formulation and nomenclature for  the dimensionless groups  that  characterize  the 
’ There  has  been an unfortunate  lack of consensus in the  literature on the  particular 

boundary-value  problem  stated by Equations (2)-(6). For either limiting case 
[Equation (9) or (IO)],  it  has  been  well  established  that  the  current  distribution can be 
characterized by a single dimensionless group, which  has  been named the  Wagner 
number [ 151: 

w a q  
ai I=lAVE’ 

where iAVE is an average  current density and L is a  characteristic  length. As Newman 

neither  the  Tafel nor the  linear limit applies, a  fact  that  has  been unrecognized by 
114)  has shown, however,  three  groups  are  required to specify  the solution when 

6 = (m, + a,)iAvEFL/RTn] is not ideal, since this combination fails to collapse to a 
some. Newman’s choice of the trio J, 6, and aa/ac [where J = (a, + a,)ioFL/RTn and 

single  group  in  the  Tafel limit and does not honor the naming convention that  has 
become widely recognized in  the  literature [IO, 1 I, 16-23]. This author  prefers an 
alternative combination of groups adopted by Matlosz et al. [ 191, Wa,, Wa,, and 

and Tafel  limits: 
where Wa, and Wa, correspond to the  Wagner number evaluated at  the linear 

For want of such  a  standard nomenclature, groups identical to the  Wagner  number or 
its reciprocal have been  variously  referred to in the  literature as P [SI, 6 1241, j *  1251, 
k, [26],B [27], A 1281, and kJA 1291.  In this review,  the Wa,-Wa, nomenclature IS 
used when apphcable. 696 

As many authors have pointed out, the key features 
that render many current-distribution problems 
intractable by analytical methods are the nonlinearity of 
the 7-i dependence [Equation (5)] and the irregular 
shapes  often  assumed by the electrodes and insulating 
boundaries. The earliest  known numerical computation 
of electrochemical current distribution [7] employed a 
finite  difference  model (FDM). The seventies saw 
widespread  use  of FDM and the introduction of finite 
element methods (FEM) to current-distribution 
problems. FDM and FEM are sometimes called “domain 
methods,” since the boundary-value  problem  is  posed, 
discretized, and solved on  the entire domain. In the 
eighties, the domain methods continued to see  progress, 
while a class  of “boundary methods” began to find  use. 
The latter comprise boundary integral equation methods 
(BIEM) and boundary element methods (BEM); both are 
characterized by a recasting of the boundary-value 
problem entirely on the boundaries of the domain by 
manipulations such as Green’s  identities.  With the 
problem  posed  entirely on the boundaries, the effort  of 
defining the discretized  geometry  is  greatly  reduced, and 
related  advantages,  such as ease  of handling moving- 
boundary problems,  result [ 18,26,30]. It should be 
pointed out  that the FDM, FEM, and BEM methods 
were developed in the fields  of  civil and mechanical 
engineering and were later adopted for calculation of 
electrochemical current distribution. More information 
on these numerical methods can be found in [3 1-35]. 
Many  investigators  have  emphasized the advantages of 
one particular numerical method over another; however, 
few teams have demonstrated experience  with more than 
one method, and very  few direct comparisons between 
methods have  been made on a rigorous basis. Hume, 
Deen, and Brown [30] have  offered a valuable 
comparison of  FEM and BEM for current-distribution 
problems. 

A noteworthy application of the BIEM approach to 
current distribution in electrodeposition was a 1980 
paper by  Blue [26]. This paper was remarkably thorough 
and resourceful,  both in its description of the plating of 
printed-circuit boards and in its approach to the 
numerical solution of the problem. Based  firmly on an 
earlier, more general communication by the same author 
on boundary-integral solutions to Laplace’s equation 
[36], the method applies  Green’s third boundary identity 
to the derivation of an integral equation. A solution is 
sought in the form of a piecewise superposition of 
B-spline  basis functions, with  special functions employed 
at singularity points. The electrochemical  description 
includes concentration-dependent Butler-Volmer  kinetics 
and concentration overpotential at both anode and 
cathode, with  vertical variations in the mass-transfer 
coefficient characteristic of agitation by  gas  sparging. 
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Ironically, the plating  example  chosen  exhibited  behavior 
very  close to  that of the primary current distribution. The 
efficiency and simplicity of the BIEM approach were 
clearly demonstrated. 

Two  investigations  using BEM appeared one month 
apart in 1984, both drawing from BEM methodology 
published by Brebbia and Walker [35]. Bialecki, Nahlik, 
and Lapkowski [37] used  BEM to calculate the primary 
current distribution for a configuration of parallel-plate 
electrodes  inside an insulating  cylinder.  Notably,  they 
avoided  placing  nodes  along  two symmetry planes by 
selecting  Green’s functions that satisfied  these boundary 
conditions as well as Laplace’s equation. The other team, 
Hume, Deen, and Brown [30], conducted an excellent 
investigation of patterned electrodeposition, the results of 
which are described  subsequently under the heading 
Current distribution on the feature scale. Thorough 
attention was  given to the issues of solution error and 
mesh  convergence;  with quadratic boundary elements, 
the order of convergence was  shown to be  roughly 
quadratic for the root-mean-square solution and cubic for 
the overall  flux  balance. The work  involved a moving- 
boundary simulation of electrode  shape  change. The 
authors followed this investigation  with a study of 
moving-boundary potential problems, not limited to 
electrolysis, in which BEM and FEM  were  systematically 
compared. For many problems,  FEM was found to be 
competitive  with BEM in accuracy and efficiency, and 
emphasis was placed on the extendability of  FEM  codes 
to partial differential equations that cannot be treated by 
BEM because no Green’s function can be found. 
However,  BEM  was  judged to be superior for problems 
in which boundary motion is proportional to the normal 
derivative of the potential.  Electrodeposition  problems 
fall into this category. 

Another group that made  early  use  of BEM to simulate 
electrodeposition was Deconinck,  Magetto, and 
Vereecken [ 181. Their numerical approach was also  based 
on that of Brebbia and Walker [35] and used a Newton- 
Raphson iteration in conjunction with a direct matrix 
solver. The advantages of  BEM for problems of current 
distribution and electrode  shape  change were illustrated 
with  several  relevant  examples. 

Cahan, Scherson, and Reid [38] developed an 
implementation of the BIEM approach based on an 
iterative solution of the integral equations rather than on 
a matrix formulation. Nonlinearities stemming from the 
overpotential boundary conditions were handled in the 
same iterative loop. The memory requirement of this 
method is  small, permitting implementation on personal 
computers. The method was claimed to have  high 
stability,  accuracy,  convergence rate, and computational 
speed, but direct comparisons to other methods were not 
reported. A moving-boundary implementation of the 
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method was  used to simulate shape  change on an 
electrode  with a square corner. 

Current  distribution at the workpiece scale 
Pam et  al. [39] applied numerical models to aid  in 
“jigging,”  which  is the advantageous  spatial arrangement 
of the workpiece, counter electrodes, insulating walls, and 
auxiliary  electrodes.  Both  FEM and BEM  were  used to 
predict current distribution in an application of 
hexavalent chromium plating of an irregularly  shaped 
print roll.  Simple  expressions approximating measured 
polarization data and current-density-dependent current 
efficiency  were used. In a second  example,  involving 
plating of an anvil, the improved uniformity afforded by 
auxiliary  electrodes, current shields, and a specially 
shaped anode was evaluated. Some experimental 
validation was reported. Unfortunately, no numerical 
details were provided, and few conclusions of general 
consequence were given. 

Matlosz et al. [ 191 conducted a thorough study of 
secondary current distribution in the Hull  cell, a popular 
diagnostic tool in the plating industry in which the 
current density  is  deliberately nonuniform, so that plating 
performance can be  evaluated  over a range  of current 
densities.  Butler-Volmer  kinetics were assumed in the 
model, and the general  dependence of the current 
distribution on the parameters Wa,,  Wa,, and a,/a, was 
reported  (see Footnote 1 for  definitions). The collapse of 
the three-parameter correlation into a single-parameter 
dependency in either the Tafel or the linear  regime  of 
kinetics was  vividly  shown.  Interestingly, the most 
uniform current distribution for a given  system 
sometimes occurs at a current density between the two 
limiting cases  (Tafel and linear). Results  from BEM and 
FEM  agreed  well  with  each other and with  thickness data 
from  acid-copper  plating experiments. 

Shih and Pickering [29] conducted the first direct 
investigation of three-dimensional (3D) effects in 
electrochemical current distribution. (3D models  for 
cathodic protection in the field  of corrosion were 
developed  earlier [40,41], but these studies do not seem 
to have  focused on corner and edge  effects in a general 
way.) The analysis was restricted to the case  of linear 
kinetics at a square electrode in an insulating plane,  with 
a counter electrode  infinitely  far away. Unfortunately, the 
seminumerical solution method, which  involves  using 
Green’s theorem to generate  Fredholm  integrals of the 
second kind, is not readily extendable to more 
complicated  systems.  However, the essential  behavior of 
square  electrodes was characterized and clearly  presented: 
Current density  is  highest at the four corners and lowest 
at the center; center-to-corner, mid-edge-to-corner, and 
center-to-mid-edge current-density profiles  were  shown 
for  various  values of the Wagner number. 
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It has  been known for a long time that in the 
limiting case  of the primary current distribution (i.e., 
Wu,, Wu, + 0),  geometric effects may cause the current 
density at  an electrode edge to be infinite or zero [ 141. 
Two  recent theoretical studies [42,43] have  focused on 
the asymptotic approach to such singular behavior.  Smyrl 
and Newman [42] determined the current distribution 
at a disk electrode in the Tafel kinetic regime 
( Wu, << Wu,) for  high current densities ( Wa, << 1). 
Under such conditions, the primary distribution holds 
over the electrode, except  for a small edge  region  where 
kinetic effects are felt. The problem was  solved  by 
singular perturbation analysis and finite-difference 
calculation. The edge current density was found to vary 
inversely  with the square of Wa,. The result  is 
extendable to geometries other than  the disk  electrode. 
West and Newman [43] contributed a similar but more 
general  analysis  for the edge  region of any flat electrode 
that meets an insulating plane at  an arbitrary angle p. 
Singular perturbation analyses  were performed for both 
Tafel and linear kinetics to yield current distributions in 
the edge  region  for various values  of p. 

Despite the increased prominence of computational 
techniques in the eighties, studies based on analytic 
methods have continued to appear in the literature. 
While  these  works  have  generally employed gross 
approximations and have  disregarded the studies based 
on numerical methods, the results are of compact form 
and may be  of  value to practitioners. Popov et al. [44] 
published a simple approximation of current distribution 
for  plane-parallel electrodes to explain dendrite growth at 
the edges  of the cathode. Klenov [45] presented an 
analytic approximation for current distribution based on 
a piecewise-linear representation of nonlinear 
overpotential expressions. Perakh [46] presented an 
analytic solution for primary current distribution in a 
special slotted cell  for electrodeposition onto resistive 
substrates. Pomogaev,  Kruglikov, and Nachinov [47] 
contributed an approximate but compact description of 
current distribution in terms of an expression  for 
“throwing power  with  respect to metal,” which  is  related 
to “throwing power  with  respect to current” by an 
analytical treatment involving current efficiency. 
Nachinov, Vinogadov, and Kruglikov [48] constructed 
a nomogram for use in predicting the current 
distribution in a cell  of complicated geometry containing 
one bath, from the measured distribution for another 
bath and  the measured throwing-power indices of both 
baths. 

Studies of specialized applications 
Mehdizadeh  et  al. [49] published a numerical study of 
the use  of coplanar auxiliary electrodes or “thieves” to 
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achieve uniformity of thickness on planar cathodes, such 
as resist-patterned wafers. A BEM model of the 
secondary current distribution with  Tafel kinetics was 
used to solve the multi-electrode problem and  to evaluate 
the thief current at which the thickness uniformity on  the 
workpiece is optimized. The coplanar thief was shown to 
exert a powerful  influence on workpiece uniformity. The 
sensitivity  of the system to Wa,, thief size,  workpiece-to- 
thief separation, and thief-to-cell-wall separation was 
evaluated and summarized. 

A treatment of the specific problem of copper 
deposition onto moving  sheets  of  flexible material with 
substantial seed-layer  resistance was published  by 
DAmico, DeAngelo, and McLarnon [50]. A one- 
dimensional, steady-state model of the secondary current 
distribution with linearized  kinetics, including ohmic 
potential drop within the substrate film, was found to 
match the behavior of the industrial process quite well. 

Dimpault-Darcy and White [27] demonstrated 
calculation of  secondary current distribution in cells, 
such as bipolar electrolyzers, in which the potential of 
one or more electrodes may not be known a priori. Two- 
dimensional problems with linear kinetics were  solved 
using TOPAZ2D [5  I], an FEM program originally 
written for heat-transfer problems, which  allows the 
specification  of overpotential boundary conditions at 
electrically “ floating”  electrodes. 

Periodic  electrodeposition 
A major contributing factor to the versatility of 
electrolytic metal and alloy deposition is the capability of 
modifying the deposit properties by the use  of  periodic 
electrodeposition or “pulse plating.” Modulation of 
current or potential has been  used  extensively in 
electrodeposition to influence deposit morphology by 
altering the conditions of mass-transport and nucleation. 
Pesco and Cheh [52] recently  provided a detailed review 
of the many applications and theoretical treatments of 
periodic  electrolysis. The impact of periodic electrolysis 
on the time-average current distribution has been studied 
by  several  researchers.  Early treatments correctly 
predicted that since  peak current densities in pulse 
plating  were  higher than  the time-average-equivalent dc 
current densities, the nonuniformity would  be  larger, 
according to a Wagner-number argument. 

Chin [ 171 addressed the subject of current distribution 
in periodic electrodeposition in the following way. A one- 
dimensional transport/kinetic model was  used to predict 
the relationship between  time-average current density 
and time-average overpotential for rectangular-current- 
pulse,  pulse-reverse, and double-rectangular-pulse 
electrolysis. Chin suggested that the Wagner number 
evaluated from the slope of the resulting  time-average 
polarization curve should characterize the current 
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distribution in periodic  electrolysis in the same manner 
that the Wagner number characterizes the current 
distribution in dc electrolysis. On the basis  of the above 
argument and the time-average polarization behavior 
calculated under different conditions, Chin claimed that 
pulse-electrolysis  systems  may  exhibit either more or less 
uniformity than their dc counterparts. The case  of 
improved uniformity, however,  was reported to apply 
mainly to anodic electrolysis rather than to 
electrodeposition. 

rough  analytical estimate to interpret experiments in 
which periodically  reversed current control provided 
higher uniformity than did pulse  plating. 

An excellent study was camed out by Fedkiw and 
Brouns [54], who examined current distribution in 
periodic-voltage  electrodeposition on a flat  electrode 
embedded in an insulating plane. The two-dimensional 
model  included  laminar-flow  convective  diffusion, 
capacitive  charging, and simultaneous hydrogen 
evolution. Mass-transport  effects entered through the 
concentration-dependent Butler-Volmer equation and 
the concentration overpotential for the metal-deposition 
reaction. The stationary-state solution was found by 
iteratively  coupling  Laplace’s equation for potential to 
the boundary-layer  form  of the mass-conservation 
equation. The system  was  characterized  by ten 
dimensionless  groups.  Predicted nonuniformities were 
expressed as deviations from the equivalent dc 
distribution, with care taken to select a fair  basis of 
comparison between dc and periodic electrolysis: The 
charge passed  by the metal-deposition  reaction was 
equivalent in the two cases. It was  shown that sinusoidal 
voltage control can result in either an increase or a 
decrease in uniformity, depending on the transport and 
kinetic parameters and on the applied  voltage. It was also 
shown that, with all other variables  held constant, 
uniformity  improves  with  increasing  pulse  frequency. 

current distribution on a rotating-disk  electrode (RDE) 
under galvanostatic [55] and potentiostatic [56] pulsed 
electrolysis. The axisymmetric  model  used in both works 
included concentration-dependent Butler-Volmer 
kinetics, concentration overpotential, and a rigorous 
treatment of convective  diffusion.  An orthogonal 
collocation method was employed in an iterative scheme 
to obtain the full transient solution. Predicted current- 
density  profiles matched acid-copper  deposit-thickness 
profiles  measured by cross-sectioning.  It was reported that 
nonuniformity increases  with current density and  that the 
surface concentration of the reacting ion is  higher at 
shorter pulse times and duty cycles. 

A treatment of current distribution in periodic 
electrodeposition was applied to the specific problem of 

Popov,  Totovski, and Maksimovic [53] presented a 

Wan and Cheh  published treatments of the 
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through-hole plating of printed-circuit boards by Pesco 
and Cheh [57]. This work  is  described  subsequently 
under the heading Through-holes  in  printed-circuit 
boards. 

The review paper by Pesco and Cheh [52] considered 
current-distribution effects in periodic  electrodeposition 
and drew  heavily  from  earlier  work on tubular electrodes 
[57] and on the rotating-disk  electrode [55]. 

Finally, Chin, Vilambi, and Sunkara [ 161 reported on a 
current-distribution study pertaining to a proposed 
technology for “selective” or spatially  localized 
electrodeposition  based on pulse  plating. The method 
relies on periodic  electrolysis to deposit metal at very 
high current densities, so that a highly nonuniform 
distribution of metal can be  achieved  deliberately. The 
authors invoked the assumption that the time-average 
current distributions for periodic and dc systems are 
equivalent provided that the time-average  polarization 
curves are identical. Measured  time-average current- 
voltage  behaviors  for gold and copper  plating baths were 
entered as boundary conditions in a dc secondary- 
current-distribution model (based on FEM and 
orthogonal collocation). Some  discrepancy  between 
experimental thickness  profiles and the predicted 
behavior was reported. The experiments did show a slight 
increase in nonuniformity as a result  of  pulse  plating. 

Measurement errors  associated  with  current 
distribution 
Spatial  models of current and potential distribution are 
valuable not only  for their ability to describe  deposit 
uniformity but also  for the insight  they can provide into 
the interrelation of the potential field and various 
measurement techniques.  Two  recent  works  have  made 
use of numerical potential-field  models to investigate 
errors in measurements of electrode overpotential by the 
use  of  Luggin  capillaries. Tokuda et al. [23] conducted a 
remarkably thorough investigation of  Luggin probe 
measurements in which an insulating annular capillary 
tube is either held  with its tip near a polarized planar 
electrode on the solution side (as in conventional 
practice) or passed through the electrode  from the back 
side, so that its tip is  flush  with the active  electrode 
surface. The axisymmetric secondary-current-distribution 
problem was  solved  by Galerkin FEM  with quadratic 
quadrilateral elements. A complete  analysis of the 
relation  between true and apparent overpotentials was 
given in terms of  Wagner number, probe-to-electrode 
spacing, and capillary-wall  thickness. For convenience of 
application, the results were  expressed not only as 
potential-field contour plots and current-distribution 
curves, but also in the form of algebraic approximations. 
The study  confirmed that  the potential measured by a 
conventional Luggin probe can be  regarded  as the sum of 
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the true overpotential and the ideal potential drop as long 
as the probe  is at least one probe diameter away  from the 
electrode  surface.  It was also  shown that back-side 
capillary measurements consistently  exaggerate the true 
overpotential. 

Landau, Weinberg, and Gileadi [ 581 conducted a 
similar investigation,  which compared various 
placements of the Luggin  probe in parallel-plate  cells. 
(Unfortunately, this team disregarded the work  of 
Tokuda et  al.  [23].) The axisymmetric potential problem 
with  Tafel  kinetics  was  solved by CELL-DESIGN2 [59], a 
commercially  available, interactive software  package, 
based on FDM, for computer-aided design  of 
electrochemical cells. The theoretical study concluded 
that the smallest measurement error is introduced when 
the capillary  consists of an uninsulated hole through the 
electrode  accessed  from the back  side. The authors also 
showed, as had Tokuda et al.  [23], that the other method 
of  back-side  access, in which the wall  of the hole  is an 
insulator, is  particularly  disadvantageous. Other 
recommendations of the investigation are to avoid 
placing the probe  behind one electrode outside the 
interelectrode  gap and to subtract the ohmic drop by 
calculation when  possible, rather than reducing the 
ohmic drop by placing the probe very near the electrode 
surface. 

West and Newman  [60] camed  out BEM calculations 
of potential distribution to determine the extent to which 
nonuniform current distribution causes error in the 
measurement of kinetic data  on a rotating-disk  electrode. 
The treatment, valid for Tafel  kinetics in the absence of 
concentration variations,  followed an earlier  analysis for 
linear kinetics  [61]. The results were interpreted in the 
practical  form of equations that yield  corrected  values of 
the exchange current density and the transfer coefficient 
from their apparent values and in terms of recommended 
conditions for kinetic measurements. 

Current  distribution at the pattern  scale 
Current-distribution effects at the pattern scale are 
relevant  chiefly to applications of electrodeposition in the 
electronics industry in which a lithographic pattern of 
small  features is present on the workpiece  surface. 
Nonuniformity effects arise  when  different  regions of the 
surface  possess  different densities of patterning. For 
example,  neighboring  zones of  high and low photoresist 
density in a wiring pattern can give  rise to uneven deposit 
thickness  from one zone to another, even  if an otherwise 
uniform current distribution has  been  achieved on  the 
workpiece  scale. This effect has  been noted in the 
literature by Romankiw et al. [62], by Horkans and 
Romankiw  [63], and most  recently by Yung and 
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Romankiw [64]. The phenomenon, which can be  called 
the active-area-density efect, is unique to 
electrodeposition  as compared to other metallization 
processes  used in the electronics industry, such as 
evaporation, sputter deposition, chemical  vapor 
deposition, and electroless  deposition.  Mehdizadeh et al.3 
[65]  developed a theoretical description of patterned 
electrodeposition that enables one to solve  problems that 
involve the active-area-density effect  by the use  of 
numerical algorithms  developed  for ordinary problems of 
secondary current distribution. Two  neighboring  zones in 
the pattern are approximated as continua, each  with a 
different active-area density, i.e., active area per unit 
superficial area. The overpotential expression  applicable 
to each zone is  modified to reflect the difference  between 
the true or surface current density and the overall or 
superjicial current density. The resulting  secondary- 
current-distribution problem  is  solved  numerically. The 
results  show that in the Tafel  regime, the pattern-scale 
nonuniformity depends on two parameters: a Wagner 
number based on the average  superficial current density, 
and the ratio of active area densities  between the two 
zones. The Wagner number depends in the usual way on 
the characteristic length,  which in this case  reflects the 
sizes of the zones, and  the model  predicts that uniformity 
is  greatest  when the zones are small. The theory  applies 
not only  when the electrode's  active-area  density is 
decreased by resist  coverage but also  when the active-area 
density is increased by topographic features such as 
through-holes. 

Current  distribution at the  feature  scale 
Nonuniformity effects that occur at the scale  of  small 
features on the surface of a patterned substrate may be 
qualitatively  different  from  those  across  larger  regions. In 
the present  categorization, a " feature" can range in size 
from a 500-pm  through-hole [66] to a 0.2-pm-wide 
element in the gold absorber pattern of an X-ray 
lithography  mask  [67]. Features at this scale can be 
comparable in size to the thickness  of the concentration 
boundary layer; accordingly, treatments of  mass transfer 
that assume a mass-transfer boundary layer that 
conforms to  the electrode  profile may be  invalid. As 
dimensions shrink, the importance of ohmic potential 
variations diminishes.  However, nonuniformities in mass 
transfer, due  to geometric  effects  such as spherical 
diffusion, can give  rise to strong deposit nonuniformities 
by causing  local variations in concentration overpotential 
and concentration-dependent kinetics. Furthermore, at 
this small  scale the shape of the electrode can be  changed 
significantly  by the deposition of  films that could be 

S. Mehdizadeh, J. Dukovic, P. C. Andricacos, L. T. Romankiw, and H. Y. Cheh, "A 
Model for the Influence of Substrate Patternine on Electrodemsit Unifonnitv." 
submitted to J. Electrochem. Soc. (1990). 
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considered negligibly thin at larger  scales.  Accordingly, in 
the fabrication of microelectronic structures, the 
capability of simulating the shape evolution with a 
moving-boundary  model is highly  advantageous. 

the feature scale  was conducted by  Alkire,  Bergh, and 
Sani  [68]. This work  considered  secondary current 
distribution and electrode shape change in 
electrodeposition onto an alternating pattern of coplanar 
conducting and insulating stripes. In this first application 
of  FEM to moving-boundary  problems of 
electrochemical potential, profile-growth simulations 
exhibiting lateral overgrowth  of the deposit  over the 
insulating stripes were conducted for different  values of 
applied potential and a linear polarization parameter. 
The authors acknowledged that the moving-boundary 
scheme and treatment of singularities were simple, but 
also  made thoughtful remarks on possible  refinements 
and future models of this type. 

Alkire and Reiser  [24]  built upon the  above treatment 
to compare predicted and experimental results  for  acid- 
copper  deposition onto an array of parallel  stripes. A 
different  polarization parameter, based on Tafel  kinetics, 
was  shown to characterize the shape-change  behavior. On 
the scale of the experiment (a 0.79-mm unit of 
symmetry), lateral overgrowth approximately matched 
vertical  growth at the electrode edge, and the measured 
vertical nonuniformity slightly  exceeded the predicted 
value. 

An analysis by Hume, Deen, and Brown  [30]  focused 
on electrodeposition of features  “small  relative to the 
concentration boundary-layer  thickness” that are defined 
by polymeric  masks that are not negligibly thin. 
Concentration effects  were treated by solving the 
diffusion equation within an assumed stagnant layer that 
is thicker than the mask material and the growing 
deposit. Potential variations due  to ohmic effects  were 
ignored, and the potential field  was not solved. The 
degree  of nonuniformity of the deposit was found to 
depend mainly on a parameter E that is proportional to 
the ratio of the current density to  the limiting current 
density. At  low the growth is even,  whereas  for  high 5 
the growth is faster near the resist  wall,  because  of  metal 
ions supplied  from  above the resist structure. When the 
diffusion boundary layer  is made thinner, this extra 
supply and the resultant nonuniformity diminish. In 
general,  deposition at rates below 40 percent of the 
limiting current is not significantly nonuniform. When 
nonuniformity does  occur, its magnitude accelerates  as 
the deposit grows. The BEM with isoparametric, 
quadratic elements was  shown to be  well suited to shape- 
change  problems of this type. 

Menon and Landau [69]  presented a specialized  model 
of current distribution that is  applicable to stagnant 

An important early treatment of electrodeposition at 
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electrolytes  or  electrolyte  layers. The treatment was 
developed  for binary electrolytes and accounts for 
transient diffusion and migration. The solution was 
obtained on a personal computer by a modified 
alternating-direction implicit (ADI) implementation of 
FDM. In this system, the fraction of the current density 
due to migration varies  with time and position in the cell. 
It was found that the diffusion  resistance  typically  causes 
nonuniformity to increase  with  time. 

Through-holes in printed-circuit boards 
Perhaps the most  familiar  problem of electrodeposit 
uniformity of small  features  is the plating of through- 
holes on printed-circuit boards. In this technology, one 
seeks to metallize as uniformly as possible the interior 
walls  of holes that are approximately 0.5 mm in diameter 
and 6 mm in length [66]; the latter dimension 
corresponds to  the thickness of the board. The issue  of 
nonuniformity has  become more challenging  with time, 
as increasingly  long and narrow  holes  have  been required. 
A good  review  of the technology and of the various 
published  studies of uniformity has  been  provided by 
Yung, Romankiw, and Alkire  [70]. 

appeared in a pair of papers from 1976  by  Kessler and 
Alkire [8,7 11, based in part on a model of tubular 
electrodes by Alkire and Mirarefi  [72].  Fully  developed 
laminar flow within the hole is assumed, and the 
convective  diffusion equation for the cupric ion is 
coupled to a one-dimensional charge-balance equation 
for potential. Two  dimensionless  groups that characterize 
the problem are identified: lTn, a Tafel polarization 
parameter that reflects the relative importance of ohmic 
and kinetic resistance, and N, a dimensionless,  average 
limiting current density,  which  reflects the relative 
importance of ohmic and mass-transfer limitations. 

Ben-Porat, Yahalom, and Rubin [73] developed a 
similar  model of somewhat  greater  complexity by 
including the transient effect  of finite ohmic resistance in 
the substrate layer.  Periodically  fluctuating  fluid flow 
was also included in the model. 

Sullivan and Middleman [74] described the through- 
hole  system  with a model that neglects ohmic potential 
drop and assumes that the plating  rate  is  entirely 
controlled by mass transfer. Since  many  would  consider 
both assumptions inappropriate to the problem of 
through-hole plating, the results of the study are 
questionable, except as a confirmation that plating  rates 
would  be  severely limited in the absence of convection. A 
follow-up  paper by Middleman [75],  based on the same 
assumptions, compares unidirectional and periodically 
reversed  flows. The latter are found to be more 
effective, but the fact that only  mild  convection  is 
required to remove  any  influence of transport resistance 

The benchmark treatment of the through-hole  problem 
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(as emphasized by Lanzi and Landau [76]) is not 
recognized. 

problem of a through-hole  agitated by a coaxial 
impinging jet. Mass-transfer  behavior under both 
submerged and unsubmerged jets was characterized 
theoretically and confirmed  experimentally by the use  of 
sectioned  electrodes and the reduction of ferricyanide to 
ferrocyanide as a mass-transfer-indicating reaction. It was 
found that for current below one fifth  of the limiting 
current, no mass-transfer  influence is felt. 

Lanzi and Landau [76] performed individual 
calculations of the mass-transfer-limited current 
distribution for oscillating  fluid flow inside a through- 
hole and of the secondary current distribution under 
Tafel  kinetics.  They concluded that, under typical 
industrial conditions, it is the ohmic resistance rather 
than the mass-transfer  resistance that limits uniformity. 
Measures that can be taken to improve uniformity are 
cited,  such as raising bath conductivity or polarization 
resistance, or changing the system  geometry to reduce the 
ratio L2/R, where L and R are the length and radius of 
the through-hole. 

Lanzi et al.  [78] conducted a theoretical  investigation 
of the possibility of improving through-hole plating 
uniformity by modifying the electrode-kinetic  behavior 
with  additives.  Electrode-kinetic  curves from three 
different bath formulations were entered as boundary 
conditions in a one-dimensional model of  secondary 
current distribution, based on several approximations. It 
was concluded that minor changes in kinetic behavior 
may  profoundly affect through-hole current distribution. 

Pesco and Cheh [57,79] recently contributed two 
theoretical  studies on the subject of through-hole plating. 
The first  [79]  considered the influence  of  fluid flow 
within the hole.  They  rigorously  solved the coupled mass- 
transfer and ohmic-potential problems,  making use  of 
separation of  variables, combination of variables, 
Duhamel’s theorem, the method of  Acrivos and 
Chambre, and a modified  orthogonal-collocation 
method. The result  for a stagnant electrolyte  reveals that 
current densities  higher than 1 mA/cm* cannot be 
achieved without fluid flow. The solutions for a 
unidirectional flow  of  25 cmfs show that for length-to- 
diameter ratios 5 : 1 and 10 : 1, the chief limitation to 
current density  inside the hole  is ohmic (as  shown by 
Lanzi and Landau [76]), although the current density 
may approach its mass-transfer limit at either end of the 
hole. 

The second study by Pesco and Cheh [57] considered 
the use  of periodic potential control in through-hole 
plating.  The  problem of transient mass transfer under 
developed laminar flow coupled to the potential problem 

Alkire and Ju [77] treated the somewhat  specialized 

702 via the concentration overpotential and concentration- 
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dependent kinetic overpotential was  solved  by an 
elaborate method involving orthogonal collocation and 
implicit integration over  each time step.  Periodic 
electrolysis  was  shown to increase the nonuniformity 
over the dc case. Calculations that disregarded 
concentration effects  showed that deposition with 
periodically  reversed current can improve uniformity 
with  respect to the dc case under some conditions. 

Finally, as part of a mainly experimental investigation, 
Yung and Romankiw [64]  developed a model that 
encompasses both the through-hole and the surface of the 
board. It was generally found that the deposit  thickness 
on the board decreases near the mouth of a through-hole 
and further decreases  within the hole.  Conclusions 
regarding the factors that limit uniformity and suggested 
measures  for  overcoming  these were given. 

Special applications 
Current distribution plays a pivotal  role in the special 
technique of “selective”  plating, in which a deliberately 
high nonuniformity is  generally  sought.  Two 
investigations on the use  of jets of electrolyte to achieve 
selective  deposition  were conducted by Alkire and Chen 
[80] and by Alkire and Ju [25].  Both  investigations were 
accompanied by theoretical treatments of the current 
distribution. The first paper [80]  dealt  with  unsubmerged, 
circular jets, as from a round nozzle. The model included 
ohmic conduction within the electrolyte stream of the 
impinging jet, mass  transfer, and charge-transfer 
overpotential for multiple electrode  reactions. Factors 
influencing the spatial  selectivity  of the deposition  rate 
were identified. The interdependence of model and 
experiment and the value  of mathematical models in the 
design  process were emphasized. The second  paper [25] 
treated  two-dimensional jet flow, as from a slot,  which 
was modeled in a similar way. It was found that flow 
conditions exert an especially  strong  effect at higher 
current densities, at which  mass-transfer effects are 
important. Dimensionless  groups  useful  for  scaling up the 
apparatus were  identified, and the potential engineering 
value  of the model was  discussed. 

Activity  outside  electrodeposition 
Methods and approaches for calculating current 
distribution in electrodeposition  systems  have  often come 
from other areas.  Several  recent  noteworthy  advances are 
pointed out in this section. Sautebin and Landolt [ 1 11 
conducted a moving-boundary FEM simulation of 
anodic leveling of a triangular surface  profile,  with 
concentration effects  handled by a stagnant-diffusion- 
layer approximation. A succeeding study by Clerc and 
Landolt [ 121 examined the dependence of FEM accuracy 
on the size  of elements and time steps.  Alkire,  Reiser, 
and Sani [8 11 rigorously treated convective  diffusion in a 
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dissolution  problem  involving  recirculating flow inside 
cavities;  FIDAP,4 a commercial FEM  program, was  used, 
and its extendability to more complicated  systems was 
emphasized. The same approach to modeling  fluid flow 
and convective transport was employed by Alkire and 
Deligianni [82] in a study of anisotropic etching.  Finally, 
two  papers on cathodic protection technology in the field 
of corrosion  illustrated the use  of three-dimensional 
potential-theory  models  with nonlinear, time-dependent 
kinetic  expressions that reflect  surface  fouling  of  steel 
structures in contact with  sea  water. Gartland and 
Johnsen [41] used a commercial BEM program  called 
COMCAPS5  with  rectangular  elements; the potential was 
assumed constant over  each element. Strommen et al. 
[40] reviewed advances in models  for cathodic protection 
of offshore structures. The use  of tubular boundary 
elements to describe three-dimensional structures and the 
use  of  digitized  empirical polarization data were 
illustrated. The advantages of  BEM for  such applications 
were enumerated. 

Anticipated  developments  in  the 1990s 
The nineties will certainly see continued progress in 
electrodeposit-distribution  modeling,  with important 
changes  driven  largely by the electronics industry. 
Electrodeposition is likely to remain a vital  fabrication 
process  for  reasons  of  technical  viability and cost, 
especially for packaging,  where  technical and cost-related 
demands have  already  begun to surpass  those of 
integrated-circuit fabrication. The demands for  precision 
and uniformity will certainly intensify as features and 
tolerances continue to shrink. In general, it is probable 
that the better-established  models will find  widespread 
use and  that research will extend the scope of models to 
encompass more subtle and realistic effects. 

The implementation of current-distribution models as 
computer-aided  engineering  software  is certain to become 
widespread, as powerful workstations continue to 
proliferate. The numerical details of such commercial 
interactive  programs will be invisible to the user  occupied 
with the need to optimize a manufacturing process. The 
sophistication of electrodeposition  process  models will 
approach that of semiconductor  process models, such  as 
SUPREM 1116 [83] and BICEPS’ [84]. The latter 
category, in turn, is constantly being improved, with the 
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aim of achieving the geometric  realism and predictive 
capability of device-performance  models, such  as 
FIELDAYE [85] and CADDETH9 [86]. Precise 
simulation of the shape evolution of electrodeposited 
features will  be required in the context of 3D solid 
models  for multistep component fabrication. Such 
multistep process  models, in conjunction with  device- 
performance simulation, will enable optimized design for 
manufacturability as  well  as the exploration of new 
designs and processes. 

will  be linked to advances in the science  of 
electrodeposition  itself and will include the effects  of 
chemical-additive  systems on feature-scale current 
distribution, alloy  deposition  with anomalous kinetics, 
and the evolution of microcrystalline  morphology. All 
enduring progress in these areas will  be predicated on 
conclusive experiments, as the predictive  power of 
numerical  models can surpass  neither the correctness of 
the physical  description nor the precision  with  which the 
process parameters are known. 

Research areas in electrodeposit-distribution  modeling 
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