Improved
cutting algorithm

by J. Savir

The cutting algorithm allows computation of
bounds on signal probabilities and detection
probabilities in combinational networks. These
bounds can be used to determine the necessary
pseudorandom test length needed to test a
network. One of the problems with the cutting
algorithm is that it may compute loose bounds
which translate into unnecessarily long test
lengths. The object of this paper is to improve
the cutting algorithm so that the computed
bounds become satisfactory. The improved
cutting algorithm is a careful combination of the
original cutting algorithm and the Parker-
McCluskey algorithm. The tightness of the
computed bounds may vary depending on which
portion of the circuit is handled with the cutting
algorithm and which with the Parker-McCluskey
algorithm. Thus, the user of the improved cutting
algorithm can actually control and trade off the
accuracy of the results against the
computational effort needed to achieve them.

Introduction

The continuous increase in chip density and digital
system complexity has created an unprecedented crisis in
testing. Traditional test generation and fault simulation
have been proven to be too slow, too computationally
intensive, and far from being a practical solution.
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Built-in self-test (BIST) 1] has emerged as a possible
solution to this crisis. Many BIST architectures have been
proposed over the last ten years, These architectures
differ in test methodology and in the amount of test
hardware actually built into the product.

One of the most promising methodologies is based on
pseudorandom patterns. As the name implies, this type
of BIST applies pseudorandom patterns to the product
until either the faults are exposed or the product is
declared fault-free. The product test responses to the
pseudorandom patterns are usually compressed in some
form of a signature analyzer. Products either pass or fail
the test depending on whether or not their measured
signature matches that of the fault-free one. The fault-
free signature is acquired either by simulation or by
actual measurement of a network known to be good.

One of the problems associated with pseudorandom-
pattern-based BIST is determining its quality. This
quality is usually measured by the fault coverage (against
single stuck-at faults) achievable by the pseudorandom
test. If the actual patterns used during the test are known,
this fault coverage can be determined by simulation. If
the pseudorandom patterns are not known, or if
simulation methods take too long, one can resort to a
probabilistic evaluation of the fault coverage. The use of
probabilistic measures leads to statistical determination
of the fault coverage. Statements such as “a
pseudorandom pattern test of length 7 will detect P% of
the single stuck-at faults with C% confidence” are quite
common.

Two of the methods used to statistically qualify the
fault coverage are the cutting algorithm [1, 2] and the
Parker-McCluskey algorithm [1, 3]. Both algorithms use
signal probability computations to compute detection
probabilities of faults. The signal probability of
a line is defined as the probability that a randomly
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Table 1 Rules of propagating signal probabilities according to
the Parker-McCluskey algorithm.
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selected pattern will propagate a value 1 to that line. The
detection probability of a fault is the probability that a
randomly selected pattern will expose the fault to at least
one of the circuit outputs. To statistically determine the
fault coverage of the pseudorandom test, it is necessary to
obtain the detection probability profile of all faults at
question. This profile is usually an ordered list of all the
detection probabilities from largest to smallest.

The Parker—-McCluskey algorithm manipulates
symbolic expressions to compute signal and detection
probabilities. This algorithm has the advantage of
computing exact signal and detection probability figures,
and the disadvantage of being too complex for large
circuits. The cutting algorithm, on the other hand,
computes bounds on the signal and detection
probabilities rather than the exact values. The idea used
in this algorithm (and the origin of its name) is to cut a
significant number of fanout branches to turn the circuit
into a tree from which the signal and detection
probabilities can be easily computed. The penalty
associated with these cuts is the abandoning of exact
figures and, therefore, the acceptance of bounds. The
disadvantage of the cutting algorithm, however, is its
inability to deliver acceptable bounds in all instances.
These loose bounds may sometimes lead to unacceptable
test lengths.

The improved cutting algorithm described in this paper
is a combination of the cutting algorithm and the
Parker-McCluskey algorithm. It calls for cutting only a
subset of the total fanout branches and the processing of
the remaining fanout stems with symbolic expressions
using the Parker—-McCluskey algorithm. There is
complete freedom as to which branches to cut and which
to leave in. The improved cutting algorithm allows the
penetration of symbolic expressions into bounds. The
complexity of the algorithm and the accuracy of the
results it produces depend upon the number of cuts made
and the number of symbolic expressions manipulated by
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it. The general trend is that the algorithm becomes more
complex, and therefore more accurate, as the number of
symbolic expressions increases, with an opposite trend
appearing as the number of symbolic expressions
decreases. Thus, the user of the improved cutting
algorithm can actually decide for himself how much
extra complexity is warranted by the added accuracy.

The paper is divided into several sections. Beginning
with a brief description of the Parker-McCluskey and
cutting algorithms, we then describe the improved cutting
algorithm. Most of the paper is devoted to the
computation of signal probabilities, with one section
describing detection probabilities that are derivable from
signal probabilities.

The improved cutting algorithm discussed in this paper
is based upon the full-range cutting algorithm [1, 2].
Everything stated and described in this paper also holds
true for the partial-range cutting algorithm [1, 2]. The
pseudorandom test discussed here is assumed to be
unbiased; i.e., all input vectors are assumed to be equally
likely. The biased case can be treated similarly by
adjusting the signal probabilities of the primary inputs
[1]. The discussion in this paper is restricted to
combinational circuits (or level-sensitive scan designs,
LSSD) [1, 4].

It is worthwhile to mention that there have been other
probabilistic algorithms aimed at evaluating the quality
of BIST designs. Some of these are described in [1].

Parker-McCluskey algorithm

The Parker—-McCluskey (PM) algorithm can compute the
exact signal probability of a line. The PM algorithm
involves manipulation of symbolic expressions, as
described in the following procesure.

o PM procedure

Step 1: Identify the stems of the reconvergent fanout
branches and mark them p,, p,,- - -, p,.
Assign a signal probability of 1/2 to the
primary inputs and compute the signal
probabilities of the lines downstream using
the propagation rules of Table 1. When a
fanout stem is reached, record its value

(or expression if it is a function of other p,
symbols upstream). Continue to propagate
signal probabilities according to Table 1 until
all the stems marked in Step 1 have been
evaluated.

Using the symbols p,, p,, - - -, p, and the
other primary inputs, compute the signal
probabilities in the circuit using the
propagation rules of Table 1.

Step 2:

Step 3:
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Step 4: Substitute the values of p, p,, - - -, p, into the
signal probability expressions of the lines.
Perform exponent suppression whenever
necessary as described in Table 1. The
numeric values thus obtained constitute the
exact signal probabilities of the lines in the

circuit.

We illustrate the PM algorithm with an example.

Example 1

Consider the circuit of Figure 1. We use the PM
algorithm to compute the signal probability of the
output F.

There are two stems in this circuit; the signal
probabilities of these lines are marked p, and p, in Figure
1. Since p, is the signal probability of a primary input,

p, = 1/2. The value of the signal probability p, can be
computed from Table 1: p, = [1 — (1/2)]2 = 1/4. The rest
of the signal probability expressions are as follows:

E =E,=[1-0/211 = p)=1/2)1 — p)),
E,=1-[1-(1/2))1 = p,) = (1/2)(1 + p,),
E, =1 -pEE, =1-pl(1/2(1 - p)I
=1 - (I/4)p(0 = 2, + p)).
After suppressing the second power of p,, we get
1= (1/4)p(1 = p),
E.E; = (1/2)(1 + p)[t — (1/4)p,(1 — p)]
= (1)L + p, = (AP, + P = ).
After suppressing the second power of p,, we get
E{ = (1/)[1 + (1/2)p, + (1/2)p,p,].

Substituting p, = 1/2 and p, = 1/4 in the expression of
E! yields the signal probability of the output F,
SP(F)=19/32. O

As stated earlier, the PM algorithm computes exact
signal probability values. In the worst case, however, its
complexity is exponential, which hinders its use in large
circuits.

E]

Es

Cutting algorithm

The cutting algorithm (CA) was devised to alleviate the
complexity problem of the PM algorithm. The idea was
to turn the combinational circuit into a tree by “cutting”
some of the reconvergent fanout branches. Since signal
probability computation is very simple in tree networks
(linear complexity), the “cut” version of the circuit can
be analyzed very easily. Notice that no structural changes
are made to the circuit. The so-called “cuts” are software
modifications to the circuit model that are used solely for
the purpose of analyzing the circuit. But when the circuit
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is converted into a tree, an analysis penalty must be paid.
In general, the CA does not compute exact signal
probability values as the PM algorithm does. In the
context of the following algorithm, a tree line is a line
whose cone of logic is free of reconvergent gates (a
reconvergent gate is a gate at which reconvergent fanout
branches converge). A nontree [ine is a line whose cone of
logic includes at least one reconvergent gate. The CA
computes exact signal probability values for tree lines and
signal probability bounds for nontree lines. A more
detailed description of the CA follows.

o CA procedure

To compute the signal probability of a tree line, follow
the PM algorithm. To compute the signal probability
bound of a nontree line, do the following:

Identify the reconvergent fanout branches in
the circuit.

Cut enough reconvergent fanout branches to
turn the circuit into a tree. Assign the signal
probability of 1/2 to the primary inputs and
signal probability range [0, 1] to each of the
cut branches.

Using the CA propagation rules of signal
probability bounds (Table 2), compute the
signal probability bounds of the nontree lines.

Step 1:

Step 2:

Step 3:

The following example illustrates the use of the CA.

Example 2

We compute the signal probability bound of the output F
of Figure 1. Figure 2 is a cut version of Figure 1, in
which two reconvergent branches have been cut in order
to turn the circuit into a tree. These cut branches have
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i Cut version of the example circuit of Figure 1.

Table 2 Cutting algorithm rules for propagating signal
probability bounds.
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been assigned a [0, 1] bound. The propagation of signal
probability values and bounds is shown in Figure 2. As is
evident, the signal probability bound of the output F has
been computed by the CA to be [31/64, 1], which in fact
encloses the exact value, 19/32, computed earlier by the
PM algorithm. [

Although the CA has a relatively low complexity
(polynomial of low degree), it sometimes fails to deliver
acceptable bounds. For example, the best signal
probability bound the CA can compute for an Exclusive-
Or gate implemented by four NAND gates (see Figure 4,
shown later) is the [0, 1] bound.

improved cutting algorithm

The improved cutting algorithm (ICA) is aimed at
combining the advantages of the CA and PM algorithms.
It takes advantage of both the simplicity of the CA
algorithm and the accuracy of the PM algorithm. The
ICA will still, in general, compute bounds of signal
probabilities, but these bounds will be substantially
narrower than those computed by the CA.
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Example circuit of Figure 1 with one fanout branch cut.

In the ICA combination of CA and PM algorithms,
some of the reconvergent fanout branches are cut
according to the CA algorithm, and some fanout stems
are processed symbolically according to the PM
algorithm. The user must decide which portion of the
circuit will be cut and which will be processed
symbolically; he can therefore custom-taiior the ICA
according to his accuracy/complexity trade-off objectives.

o ICA procedure

Step 1: Determine which fanout branches should be
cut and which fanout stems should be
processed symbolically.

Step 2: (Bound consolidation rule) Propagate signal

probability expressions and bounds following
both the CA and PM algorithms. Whenever a
bound of bounds of the form [[L,, U|],

[L,, U,1] is encountered, replace it with the
bound [L,, U,].

We illustrate the use of the ICA with some examples.

Example 3

Consider the circuit of Figure 3, which has been derived
from the example circuit of Figure 1 by cutting one of
the fanout branches.

As can be seen in Figure 3, only one symbol (p,) is
used to compute the signal probability bound of the
output F. The internal expressions and bounds are as
follows:

p, =12, E =[1/2,1],
E, = 1/4, E,=FE, =(1/2)(1 — p),
E,=1~-EEE, =1-(/8[(1/2)1 - p)I’
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After suppressing the second power of p, in E;, we get
E; = (1/16)(15 + p,).

The output signal probability bound expression is

E, = EE;=(1/16)(15 + p)[1/2, 1].

After substituting p, = 1/2 in the expression of £, we
get the signal probability bound of the output F, SPB(F)
= [31/64, 31/32]. Notice that this bound is narrower
than the one computed by the CA. The reader can verify
that if the p, stem is cut, rather than p, (see Figure 1), the
output signal probability bound achieved is even tighter
([19/32,5/8)). O

As can be seen in the following example, the symbols
P,s Dy, -+, P, can themselves be bounds. This is the case
in which the bound consolidation rule of Step 2 of the
ICA procedure must be invoked.

Example 4
Consider the Exclusive-Or implementation of Figure 4.
Figure 5 shows the circuit of Figure 4 with two fanout
branches cut.

The symbol p assigned to the fanout stem is now a
bound, p = [1/2, 1]. Following the steps of the ICA, we
get

s =1 =(1/2)p,
Ey=1-EE, =1-[1-/2)plll - p, 1]

oy
il

E,=[1-p 1],

I

[(1/2)p, p] (after exponent suppression).

Substituting the value of p in E,, we get a bound of
bounds,

Ey = [(1/2)[(1/2), 1], [(1/2), 1].

The resolution of this bound of bounds leads to the signal
probability bound of the output F, SPB = [1/4, 1}
(the exact value is 1/2).

Note that other cutting patterns are possible in the
circuit of Figure 4. Each cutting pattern may result in a
different signal probability bound for the output F. The
bound achieved by the cutting pattern of Figure 5 is not
necessarily the best one possible. O

As shown in Example 4, the symbols p,, p,, - - -
used as if they were simple numeric parameters.
Whenever a signal probability bound expression must be
numerically evaluated, the bound is compressed
according to the bound consolidation rule (Step 2 of the
ICA procedure).

The next example is concerned with multiple-symbol
use of the ICA.

, P, are

Example 5
Consider the circuit of Figure 6. Figure 7 is a cut version
of the circuit shown in Figure 6 (two branches cut).
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Three symbols are used in Figure 7 to compute the signal
probability bound of the output F.
The application of the ICA procedure yields

po=111/2,1,  p,=3/4  p,=10,1/2],
E=1-0-p)X1l-p), E =pp,
E, = (1 = p,X1 — py),
E,=1-(-E)1—- E)I-E)

I

=1 = p)(A = p)L = p,p)(py + Py~ pys).
Suppressing high-order exponents in E, resuits in
E{=1=(1-p)p(l = py).

The signal probability bound of the output F is
SPB(F) =1 — [0, 1/2)(3/4)[1/2, 1]

1 - [0, 3/8][1/2, 1]

1 - [0, 3/8] = [5/8, 1].

]
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The reader can verify that this bound encloses the exact
value of 13/16. It is also important to note that different
cutting patterns of Figure 6 will lead to different signal
probability bounds, and the bound computed according
1o the cutting pattern of Figure 7 is not necessarily the
best one possible. [J

Computing lower bounds of detection
probabilities

As is shown in [1, 2], it is possible to turn the detection
probability computation problem into a signal
probability problem. One such method adds auxiliary
gates to the circuit model, so that the lower bounds of
the signal probabilities computed at the outputs of those
auxiliary gates constitute lower bounds on the detection
probabilities at question. The auxiliary gates are usually
And-gates, which are fed from a number of circuit lines
in such a way that the output of the And-gate is 1 if and
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only if a fault is detected by propagating its effect along a
preselected path to one of the primary outputs.

The addition of auxiliary gates to the circuit model
allows computation of lower bounds on the detection
probabilities of faults. Using these lower bounds, instead
of the exact detection probability of faults, to compute
the random-pattern test length needed to detect all faults
with a certain degree of confidence, results in
conservative test length figures [1, 5].

Since the CA sometimes delivers a lower bound of
on detection probabilities of faults, it may cause this
conservative test length figure to be unacceptable. The
ICA, on the other hand, can deliver nonzero lower
bounds at the expense of a higher (but still reasonable)
complexity cost. The next example is aimed at clarifying
these points.

Example 6

Consider the circuit of Figure 8(a). We are interested in
computing a lower bound on the detection probability of
the fault w stuck-at-0 (w/0). We choose to propagate the
effect of w/0 along the boldface path shown in Figure
8(a). Figure 8(b) shows the circuit of Figure 8(a) with the
auxiliary gate (AG) added. The connections to AG are
made so that its output H = 1 if and only if the fault w/0
is detected by propagating its effect along the boldface
path. For that to happen, gates G, and G, must be in a
sensitized state, and gate G, in a blocked state. Thus,
points A, B, and D are connected directly to the inputs of
the AG, and point C is connected with inverted polarity
1o the AG.

Figure 8(c) shows the auxiliary gate with its cone of
logic. The gates which do not influence the output H
have been removed. We use Figure 8(c) to show that the
CA cannot compute a nonzero lower bound for the
detection probability of w/Q along the selected boldface
path. Note that the lower bound of the signal probability
of the output H constitutes a lower bound on the
detection probability of w/0.

To use the CA to compute a signal probability bound
of the output H, it is necessary to cut enough fanout
branches in Figure 8(c) to turn it into a tree. To
accomplish this, two fanout branches must be cut. There
are four possible cutting patterns: {ac, ad, bc, bd }. Note
that if any pair from {ac, ad, bc} is chosen for cutting, an
immediate [0, 1] signal probability bound appears at one
of the inputs of AG, resulting in a 0 lower bound for the
detection probability in question. Thus, there is only one
more possibility to consider, cutting branches b and d.
However, if branches b and d are cut, line e receives a
signal probability bound of [0, 1], causing the lower
bound of the detection probability in question to be zero
again. The CA, therefore, cannot compute a nonzero
lower bound for the detection probability of w/0.
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Figure 9 shows the circuit of Figure 8(c) with only
fanout branch d cut. We next apply the ICA to the circuit
of Figure 9:

D= 1/2, E] = 3/4, Ez = [1 - D l]a

— " Dommm—r

E, = (1721 = p)E E, = (1/2)(1 — p)3/H)[1 — p, 1],
E, = (G/8)[(1 = p), 1 = pl. L—Do——

(a)

Suppressing high-order exponents in E, results in

E; =@3/8)[1 —-p, 1-pl ‘ AG H

Thus, the lower bound of the detection probability of w/0 Auxiliary

gate
- G;b
1S A B

LB(w/0) = (3/8)(1 ~ p) = (3/8)(1/2) = 3/16. — ) oy ’\:'-@}D——F

The reader can verify that the exact detection probability

of w/0 along the boldface path of Figure 8(a) is 3/16. The -——————-CL—:@)'; D
unrestricted (in the sense that no limitation is imposed (b

on propagation paths) detection probability of w/0 is

9/16. O

Conclusions al ¢ Auxiliary

gate

The improved cutting algorithm is a combination of the {
original cutting algorithm and the Parker-McCluskey
algorithm. The accuracy of the results delivered by the
improved cutting algorithm may range from loose
bounds to exact figures. The complexity of the improved
cutting algorithm may range from quadratic to
exponential.

Both accuracy and complexity are controlled by the
user of the algorithm. The user has complete freedom
with respect to analyzing his design: He can use very few
cuts, in which case the results are more accurate, or he
may use more cuts, in which case the algorithm is less
complex. The user always has the option of increasing
the accuracy of the results by running the algorithm
again with fewer cuts. The accuracy of the results can
thus be dynamically adjusted. o

Experience with the improved cutting algorithm

. E Auxiliary
suggests that even processing of very few symbols greatly " 1 gate
enhances the accuracy of the results, in which case the 2
complexity of the improved cutting algorithm is very
close to that of the original cutting algorithm. [0, 1} —G

If a given choice of cuts results in unsatisfactory 2 ? 2
bounds, the user may rerun the procedure to achieve
better results. The improved cutting algorithm is
amenable to incremental analysis. If the rerun requires
only an incremental change in the set of branches that
need be cut, only incremental work is needed to compute
the effect of these incremental changes. More specifically,
only bounds on lines reachable from the changed
branches must be recomputed by the procedure.
Expressions and bounds computed for other lines remain  because the cost of improvements is usually less than the
the same after the change. This property is important cost of the original job.

(a) Circuit of Example 6. (b) Circuit with auxiliary gate to detect w/0.
(c) Cone of logic of the auxiliary gate.

112 E

AG H

Circuit of Figure 8(c) with one cut branch.
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