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The cutting  algorithm  allows  computation of 
bounds on signal  probabilities and detection 
probabilities in combinational  networks.  These 
bounds  can  be  used to determine  the  necessary 
pseudorandom test length  needed to test a 
network. One  of the  problems  with  the cutting 
algorithm is that it may  compute loose  bounds 
which  translate  into  unnecessarily long test 
lengths. The object of this paper is to improve 
the  cutting  algorithm so that  the  computed 
bounds  become  satisfactory.  The  improved 
cutting  algorithm is a careful combination of the 
original  cutting  algorithm  and  the  Parker- 
McCluskey  algorithm.  The  tightness of the 
computed  bounds may  vary  depending on which 
portion of the circuit is handled  with  the  cutting 
algorithm  and  which  with  the  Parker-McCluskey 
algorithm.  Thus, the  user of the  improved cutting 
algorithm  can  actually  control  and  trade  off  the 
accuracy of the  results  against  the 
computational  effort  needed to achieve  them. 

Introduction 
The continuous increase in chip density and digital 
system  complexity  has  created an unprecedented  crisis in 
testing. Traditional test  generation and fault simulation 
have been proven to be too slow, too computationally 
intensive, and far  from  being a practical solution. 
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Built-in  self-test  (BIST) [ 11 has  emerged  as a possible 
solution to this  crisis.  Many  BIST architectures have  been 
proposed  over the last ten years.  These architectures 
differ in test  methodology and in the amount of test 
hardware  actually  built into the product. 

pseudorandom patterns. As the name  implies, this type 
of  BIST applies pseudorandom patterns to the product 
until either the faults are exposed or the product is 
declared  fault-free. The product test  responses to the 
pseudorandom patterns are usually  compressed in some 
form of a signature analyzer. Products either pass or fail 
the test depending on whether or not their measured 
signature matches that of the fault-free one. The fault- 
free  signature  is acquired either by simulation or by 
actual measurement of a network  known to be  good. 

One of the problems  associated  with pseudorandom- 
pattern-based BIST  is determining its quality. This 
quality is usually  measured by the fault  coverage  (against 
single stuck-at faults)  achievable by the pseudorandom 
test. If the actual patterns used during the test are known, 
this fault  coverage can be determined by simulation. If 
the pseudorandom patterns are not known, or if 
simulation methods take too long, one can resort to a 
probabilistic evaluation of the fault  coverage. The use  of 
probabilistic  measures  leads to statistical determination 
of the fault  coverage. Statements such as “a 
pseudorandom pattern test of length Twill detect P% of 
the single stuck-at faults with C% confidence” are quite 
common. 

Two  of the methods used to statistically  qualify the 
fault  coverage are the cutting algorithm [ 1,2] and the 
Parker-McCluskey  algorithm [ 1,3]. Both  algorithms  use 
signal  probability computations to compute detection 
probabilities of faults. The signal probability of 
a line is defined  as the probability that a randomly 

One of the most  promising  methodologies  is  based on 
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Table 1 Rules of propagating signal probabilities according to 
the Parker-McCluskey algorithm. 

rI P,  
, = I  

__Do___ 1 - P  

p' = p for all i > I (exponent  suppression) 

selected pattern will propagate a value 1 to that line. The 
detection probability of a fault is the probability that a 
randomly  selected pattern will  expose the fault to  at least 
one of the circuit outputs. To statistically determine the 
fault  coverage  of the pseudorandom test, it is  necessary to 
obtain the detection probability proJile of all faults at 
question. This profile  is  usually an ordered  list of all the 
detection probabilities from largest to smallest. 

The Parker-McCluskey  algorithm manipulates 
symbolic  expressions to compute signal and detection 
probabilities. This algorithm  has the advantage of 
computing exact  signal and detection  probability  figures, 
and the disadvantage of  being too complex  for  large 
circuits. The cutting algorithm, on the other hand, 
computes bounds on the signal and detection 
probabilities rather than the exact  values. The idea used 
in this  algorithm (and the origin of its name) is to cut a 
significant number of fanout branches to  turn  the circuit 
into a tree from which the signal and detection 
probabilities can be  easily computed. The penalty 
associated  with  these cuts is the abandoning of exact 
figures and, therefore, the acceptance of bounds. The 
disadvantage of the cutting algorithm, however, is its 
inability to deliver  acceptable bounds in all  instances. 
These  loose bounds may sometimes lead to unacceptable 
test  lengths. 

The improved cutting algorithm  described in this paper 
is a combination of the cutting algorithm and the 
Parker-McCluskey algorithm. It calls for cutting only a 
subset of the total fanout branches and the processing  of 
the remaining fanout stems  with  symbolic  expressions 
using the Parker-McCluskey  algorithm. There is 
complete  freedom as to which  branches to cut and which 
to leave in. The improved cutting algorithm  allows the 
penetration of symbolic  expressions into bounds. The 
complexity of the algorithm and the accuracy of the 
results it produces depend upon the number of cuts made 
and the number of symbolic  expressions manipulated by 

it. The general trend is that the algorithm  becomes more 
complex, and therefore  more accurate, as the number of 
symbolic  expressions  increases,  with an opposite trend 
appearing as the number of symbolic  expressions 
decreases. Thus, the user  of the improved cutting 
algorithm  can  actually  decide  for  himself how much 
extra  complexity  is  warranted by the added accuracy. 

The paper is  divided into several  sections.  Beginning 
with a brief description of the Parker-McCluskey and 
cutting algorithms, we then describe the improved cutting 
algorithm. Most of the paper is devoted to the 
computation of signal  probabilities,  with one section 
describing detection probabilities that are derivable  from 
signal  probabilities. 

is  based upon the full-range cutting algorithm [ 1,2]. 
Everything  stated and described in this paper also  holds 
true for the partial-range cutting algorithm [ 1,2]. The 
pseudorandom test  discussed  here  is  assumed to be 
unbiased; i.e.,  all input vectors are assumed to be equally 
likely. The biased  case can be treated similarly by 
adjusting the signal  probabilities of the primary inputs 
[ 11. The discussion in this paper is restricted to 
combinational circuits (or level-sensitive scan designs, 
LSSD) [ 1,4]. 

probabilistic algorithms aimed at evaluating the quality 
of BIST  designs. Some of these are described in [I]. 

The improved cutting algorithm  discussed in this paper 

It  is  worthwhile to mention that there have  been other 

Parker-McCluskey  algorithm 
The Parker-McCluskey (PM) algorithm can compute the 
exact signal  probability of a line. The PM algorithm 
involves manipulation of symbolic  expressions, as 
described in the following  procesure. 

PM procedure 

Step 1: 

Step 2: 

Step 3: 

Identify the stems of the reconvergent fanout 
branches and mark them p ,  , p2,  . . , pk . 
Assign a signal  probability of 112 to the 
primary inputs and compute the signal 
probabilities of the lines downstream using 
the propagation  rules of Table 1. When a 
fanout stem is reached,  record its value 
(or expression if it is a function of other pi 
symbols upstream). Continue to propagate 
signal  probabilities according to Table 1 until 
all the stems  marked in Step 1 have  been 
evaluated. 
Using the symbols p ,  , p2,  . . , pk and the 
other primary inputs, compute the signal 
probabilities in the circuit  using the 
propagation  rules of Table 1. 
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Step 4: Substitute the values of p, , p z ,  . . . , pk into  the 
signal probability expressions of the lines. 
Perform  exponent suppression whenever 
necessary as described in  Table I .  The 
numeric values thus obtained  constitute  the 
exact signal probabilities of the lines in the 
circuit. 

We illustrate the PM algorithm with an example. 

Example 1 
Consider the circuit of Figure 1. We use the PM 
algorithm to  compute the signal probability of the 
output F, 

There are  two  stems  in  this  circuit; the signal 
probabilities of these lines are marked p ,  and p2 in Figure 
1. Since pI is the signal probability of a  primary input, 
p ,  = 1 /2.  The value of the signal probability p2 can be 
computed from  Table 1: p2 = [ 1 - ( 1/2)12 = 1/4. The rest 
of the signal probability expressions are as follows: 

E ,  = E2 = t1 - (1/2)1(1 - P , )  = (1/2)(1 - P I ) ,  

E3 = 1 - t1 - (1/2)1(1 - P J  = (1/2)(1 + P J ,  

E4 = 1 - p2E1E2 = 1 - p21(1/2)(1 - P , ) I ~  

= 1 - (1/4)Pz(l - 2PI + d). 
After suppressing the second power of pI , we  get 

E; = 1 - (1/4)P2(1 - P,), 

E, = = (1/2)(1 + P J [ ~  - (1/4)p2(1 - P, ) I  
= (1/2)[1 + P’ - (1/4)@* + P:)U - PI)]. 

After suppressing the second power of p 2 ,  we get 

E; = (1/2)[1 + ( 1 / 2 ) ~ ,  + (1/2)PlP,1. 

Substituting p ,  = 1/2 and p2 = 1/4  in  the expression of 
E,’ yields the signal probability of the  output F, 
SP(F)  = 19/32. 

As stated earlier, the PM algorithm computes exact 
signal probability values. In the worst case, however, its 
complexity is exponential, which hinders  its use in large 
circuits. 

Cutting algorithm 
The cutting  algorithm (CA) was devised to alleviate the 
complexity problem of the  PM algorithm. The idea was 
to  turn  the  combinational circuit into a  tree by “cutting” 
some of the reconvergent fanout branches. Since signal 
probability computation is very simple in tree  networks 
(linear complexity), the  “cut” version of the circuit  can 
be analyzed very easily. Notice that  no structural changes 
are  made to the circuit. The so-called “cuts” are software 
modifications to  the circuit model that  are used solely for 
the purpose of analyzing the circuit. But when the circuit 
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is converted into a  tree, an analysis penalty must be paid. 
In general, the CA does not  compute exact signal 
probability values as the PM algorithm does. In the 
context of the following algorithm,  a tree line is a line 
whose cone of logic is free of reconvergent gates (a 
reconvergent gate is a gate at which reconvergent fanout 
branches converge). A nontree line is a  line whose cone of 
logic includes at least one reconvergent gate. The CA 
computes exact signal probability values for  tree lines and 
signal probability bounds for nontree lines. A more 
detailed description of the CA follows. 

0 CA procedure 
To  compute  the signal probability of a  tree  line, follow 
the PM algorithm. To compute  the signal probability 
bound of a nontree line, do  the following: 

Step 1: Identify the reconvergent fanout branches in 
the circuit. 

Step 2: Cut enough reconvergent fanout branches to 
turn  the circuit into a tree. Assign the signal 
probability of 1/2 to the primary inputs  and 
signal probability range [0, 11 to each of  the 
cut branches. 

probability bounds (Table 2), compute  the 
signal probability bounds of the  nontree lines. 

Step 3: Using the CA propagation  rules of signal 

The following example  illustrates the use of the CA. 

Example 2 
We compute  the signal probability bound of the  output F 
of Figure 1 .  Figure 2 is a cut version of Figure 1, in 
which two reconvergent branches have been cut  in  order 
to  turn  the circuit into a tree. These cut branches  have 
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[31/64, I ]  

Table 2 Cutting  algorithm rules for propagating signal 
prohahility  hounds. 

been assigned a [0, I ]  bound.  The propagation of signal 
probability values and bounds is shown in Figure 2.  As  is 
evident,  the signal probability bound of the  output F has 
been computed by the CA to be [31/64, I ] ,  which in fact 
encloses the exact value, 19/32, computed earlier by the 
PM algorithm. 0 

(polynomial of low degree), it sometimes fails to deliver 
acceptable bounds. For example, the best signal 
probability bound the CA can compute for an Exclusive- 
Or gate implemented by four NAND gates (see Figure 4, 
shown later) is the [0, I ]  bound. 

Although the CA has  a relatively low complexity 

Improved cutting algorithm 
The improved cutting algorithm (ICA) is aimed at 
combining  the  advantages of the CA and PM algorithms. 
It takes advantage of both the simplicity of the CA 
algorithm and  the accuracy of the PM algorithm. The 
ICA  will still, in general, compute  bounds of signal 
probabilities, but these bounds will  be substantially 
narrower than those computed by the CA. 
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In the ICA combination of CA and PM algorithms, 
some of the reconvergent fanout branches are  cut 
according to  the CA algorithm, and some  fanout  stems 
are processed symbolically according to  the PM 
algorithm. The user must  decide which portion of the 
circuit will  be cut  and which will be processed 
symbolically; he can therefore  custom-tailor the ICA 
according to his accuracy/complexity trade-off objectives. 

ICA procedure 

Step 1: Determine which fanout  branches  should be 
cut  and which fanout stems  should be 
processed symbolically. 

probability expressions and  bounds following 
both the CA and PM algorithms.  Whenever  a 
bound of bounds of the  form [ [ L ,  , U , ] ,  
[L,, U 2 ] ]  is encountered, replace it with the 
bound [ L , ,  U,]. 

Step 2: (Bound  consolidation rule) Propagate signal 

We illustrate the use of the ICA with some examples. 

Example 3 
Consider the circuit of Figure 3, which has been derived 
from the example  circuit of Figure 1 by cutting one of 
the fanout branches. 

As can be seen in Figure 3, only one symbol ( p ,  ) is 
used to  compute the signal probability bound of the 
output F: The internal expressions and  bounds  are as 
follows: 

pI = 1/2, E, = [1/2, 11, 

E, = 1/4, E3 = E, = (1/2)(1 - pi), 

E5 = 1 - E2E3E4 = 1 - (1/4)[(1/2)(1 - p,)] , .  
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After suppressing the second power of p ,  in E,, we get 

EJ = (1/16)(15 +p i ) .  

The  output signal probability bound expression is 

E6 = E , E ;  = (1/16)(15 + pl)[1/2, I]. 

After substituting pI = 1/2  in  the expression of E6,  we 
get the signal probability bound of the  output F, SPB(F) 
= [3 1/64,  3 1/32]. Notice that this bound is narrower 
than  the  one  computed by the CA. The reader can verify 
that if the pi stem is cut, rather than p z  (see Figure I ) ,  the 
output signal probability bound achieved is even tighter 
([ 19/32, 5/81). 0 

As can be seen in the following example,  the symbols 
p i ,  p? ,  . . . , p L  can themselves be bounds. This is the case 
in which the bound consolidation rule of Step  2 of  the 
ICA procedure  must be invoked. 

6uamplt. 4 
Consider  the Exclusive-Or implementation of Figure 4. 
Figure 5 shows the circuit of Figure 4 with two fanout 
branches  cut. 

The symbol p assigned to  the fanout stem is now a 
bound, p = [ 1/2, I]. Following the steps of the ICA, we 
get 

E ,  = I - (1/2)p, E2 = [ I  - p ,  I], 

E, = 1 - E,Ez = 1 - [ I  - (1/2)p][l - p ,  I ]  

= [( 1/2)p, p ]  (after  exponent  suppression). 

Substituting the value of p in E,, we  get a bound of 
bounds, 

E3 = [(1/2)[(1/2), 11, [(1/2), I l l .  
The resolution of this  bound of bounds leads to the signal 
probability bound of the  output F, SPB = [ l/4, I ]  
(the exact value is 1 /2). 

Note  that other cutting  patterns are possible in the 
circuit of Figure 4. Each cutting  pattern may result in a 
different signal probability bound for  the output F. The 
bound achieved by the  cutting  pattern of Figure 5 is not 
necessarily the best one possible. 0 

As shown in Example 4, the symbols p , ,  p z ,  . . . , pa are 
used as if they were simple numeric parameters. 
Whenever a signal probability bound expression must be 
numerically evaluated,  the bound is compressed 
according to the bound consolidation rule (Step  2 of the 
ICA procedure). 

The next example is concerned with multiple-symbol 
use  of the ICA. 

Fhurnple 5 
Consider  the  circuit of Figure 6.  Figure 7 is a cut version 
of the circuit shown in Figure 6 (two  branches cut). 
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Three symbols are used in Figure 7 to  compute the signal 
probability bound of the output E'. 

The application of the 1CA procedure yields 

PI = [1/2, 11, pz = 3/4, Pi = [(A 1/21, 

4 = 1 - ( 1  -Pi)(1 - P3), 4 = P , P z ,  

E, = ( 1  - P J I  - P J ,  

E4 = I - ( I  - E , ) ( l  - E l ) (  1 - E,)  

= 1 - ( 1  - P , ) ( l  - P , ) ( l  - P , P 2 ) ( P ?  + P? - 
Suppressing high-order exponents in E4 results in 

E; = 1 - ( 1  - PI)P2(I - P J  

The signal probability bound of the  output F is 

SPB(F) = 1 - [0, 1/2](3/4)[1/2, I] 

= I - [0, 3/8][1/2,  I] 

= I - [0, 3/81 = [ 5 / 8 ,  I ] .  
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The reader can verify that this bound encloses the exact 
value of 13/16. It is also important  to note that different 
cutting  patterns of Figure 6 will lead to different signal 
probability bounds, and the bound computed according 
to the  cutting  pattern of Figure 7 is not necessarily the 
best one possible. 0 

Computing  lower  bounds of detection 
probabilities 
As  is shown in [ 1, 21, it is possible to  turn the detection 
probability computation problem into a signal 
probability problem. One such method  adds auxiliary 
gates to the circuit model, so that the lower bounds of 
the signal probabilities computed  at  the  outputs of those 
auxiliary gates constitute lower bounds on the detection 
probabilities at question. The auxiliary gates are usually 
And-gates, which are fed from  a number of circuit lines 

386 in such a way that the output of the And-gate is 1 if and 
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only if a fault is detected by propagating its effect along a 
preselected path to  one of the primary  outputs. 

The addition of auxiliary gates to the circuit model 
allows computation of lower bounds on  the detection 
probabilities of faults. Using these lower bounds, instead 
of the exact detection probability of faults, to  compute 
the  random-pattern test length needed to detect all faults 
with a  certain degree of confidence, results in 
conservative test length figures [ 1, 51. 

Since the CA sometimes delivers a lower bound of 0 
on detection probabilities of faults, it may cause this 
conservative test length figure to be unacceptable. The 
ICA, on the other  hand, can deliver nonzero lower 
bounds at the expense of a higher (but still reasonable) 
complexity cost. The next example is aimed at clarifying 
these points. 

Example 6 
Consider the circuit of Figure 8(a). We are interested in 
computing  a lower bound  on the  detection probability of 
the fault w stuck-at-0 (w/O). We choose to propagate the 
effect of w/O along the boldface path shown in Figure 
8(a). Figure 8(b) shows the circuit of Figure 8(a) with the 
auxiliary gate (AG)  added. The connections to AG are 
made so that its output H = 1 if and only if the fault w/O 
is detected by propagating its effect along the boldface 
path. For  that  to happen, gates G, and G4 must be in a 
sensitized state, and gate G,  in a blocked state. Thus, 
points A, B, and D are  connected directly to  the  inputs of 
the AG, and point  C is connected with inverted polarity 
to the  AG. 

Figure 8(c) shows the auxiliary gate with its cone of 
logic. The gates which do  not influence the  output H 
have been removed. We  use Figure 8(c) to show that  the 
CA cannot  compute a  nonzero lower bound for the 
detection probability of w/O along the selected boldface 
path. Note that the lower bound of the signal probability 
of the output H constitutes  a lower bound  on the 
detection probability of w/O. 

of the output H,  it is necessary to  cut enough fanout 
branches in Figure 8(c) to  turn it into a tree. To 
accomplish this, two fanout branches  must be cut.  There 
are four possible cutting patterns: lac, ad, bc, bd}. Note 
that if any pair from lac, ad, bc} is chosen for cutting, an 
immediate [0, 11 signal probability bound appears at  one 
of the inputs of AG, resulting in a 0 lower bound for the 
detection probability in question.  Thus,  there is only one 
more possibility to consider, cutting  branches  b and  d. 
However, if branches  b and d  are cut, line  e receives a 
signal probability bound of [0, I], causing the lower 
bound of the  detection probability in question to be zero 
again. The CA, therefore, cannot  compute a  nonzero 
lower bound for the  detection probability of w/O. 

To use the CA to compute a signal probability bound 
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Figure 9 shows the circuit of Figure 8(c) with only 
fanout  branch  d  cut. We next apply the ICA to  the circuit 
of Figure 9: 

p = 1/2, E, = 3/4, E2 = [ I  - p ,  I], 

E, = (1/2)(1 - P)E,E* = (1/2)(1 - P)(3/4)[1 - P ,  11, 

E3 = (3/8)[(1 - 1 - PI. 

Suppressing high-order exponents in E, results in 

E;  = (3/8)[1 - p ,  1 - p]. 

Thus, the lower bound of the detection probability of w/O 
is 

LB(w/O) = (3/8)(1 - p )  = (3/8)(1/2) = 3/16. 

The reader can verify that  the exact detection probability 
of w/O along the boldface path of Figure 8(a) is 3/16. The 
unrestricted (in  the sense that  no limitation  is  imposed 
on propagation paths) detection probability of w/O is 
9/16. 0 

Conclusions 
The improved cutting algorithm is a  combination of the 
original cutting algorithm and  the Parker-McCluskey 
algorithm. The accuracy of the results delivered by the 
improved  cutting algorithm may range from loose 
bounds to exact figures. The complexity of  the improved 
cutting algorithm may range from quadratic to 
exponential. 

Both accuracy and complexity are  controlled by the 
user of the  algorithm. The user has complete freedom 
with respect to analyzing his design: He  can use  very  few 
cuts, in which case the results are  more  accurate, or he 
may use more  cuts, in which case the algorithm is less 
complex. The user always has the option of increasing 
the accuracy of the results by running  the algorithm 
again with fewer cuts. The accuracy of the results can 
thus be dynamically adjusted. 

Experience with the improved cutting algorithm 
suggests that even processing of  very  few symbols greatly 
enhances  the accuracy of the results, in which case the 
complexity of the  improved  cutting algorithm is very 
close to  that of the original cutting  algorithm. 

If a given choice of cuts results in unsatisfactory 
bounds,  the user may rerun the procedure to achieve 
better results. The improved cutting algorithm is 
amenable  to  incremental analysis. If the rerun requires 
only an incremental change in  the set of branches that 
need be cut,  only  incremental work is needed to  compute 
the effect  of these incremental changes. More specifically, 
only bounds on lines reachable from the changed 
branches  must be recomputed by the procedure. 
Expressions and bounds  computed for other lines remain 
the  same after the change. This property is important 
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because the cost of improvements is usually less than  the 
cost of the original job. 
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